
CSAR: A Practical and Provable Technique to Make Randomized
Systems Accountable

Michael Backes1,2 Peter Druschel2 Andreas Haeberlen2,3 Dominique Unruh1
1 Saarland University 2 MPI-SWS 3 Rice University

Abstract

We describe CSAR, a novel technique for generating cryp-
tographically strong, accountable randomness. Using
CSAR, we can generate a pseudo-random sequence and
a proof that the elements of this sequence up to a given
point have been correctly generated, while future values
in the sequence remain unpredictable. CSAR enables ac-
countability for distributed systems that use randomized
protocols. External auditors can check if a node has devi-
ated from its expected behavior without learning anything
about the node’s future random choices. In particular, an
accountable node does not need to leak secrets that would
make its future actions predictable. We demonstrate that
CSAR is practical and efficient, and we apply it to imple-
ment accountability for a server that uses random sam-
pling for billing purposes.

1 Introduction

Nodes in distributed systems can fail for many reasons: a
node can suffer a hardware or software failure, an attacker
can compromise a node, or a node’s operator can deliber-
ately tamper with its software. Moreover, faulty nodes are
not uncommon [24]. As a system grows larger, it is in-
creasingly likely that some nodes are accidentally miscon-
figured or have been compromised as a result of unpatched
security vulnerabilities.

Recent work has explored the use ofaccountabil-
ity to detect and expose node faults in distributed sys-
tems [28, 16]. Accountable systems maintain a tamper-
evident record that provides non-repudiable evidence of all
nodes’ actions. Based on this record, a faulty node whose
observable behavior deviates from that of a correct node
can eventually be detected. At the same time, a correct
node can defend itself against any false accusations.

In PeerReview [16], for instance, each node maintains
a tamper-evident log, which records all messages the node
sends and receives as well as inputs and outputs of the ap-

plication. Any nodei can request the log of another nodej

and independently determine whetherj has deviated from
its expected behavior. To do this,i replaysj’s log using a
reference implementation that definesj’s expected behav-
ior. By comparing the results of the replayed execution
with those recorded in the log, PeerReview can detect ob-
servable Byzantine faults without requiring a formal spec-
ification of the system.

The approach taken by PeerReview is very general, but
it requires that each node’s actions be deterministic; other-
wise, a different non-deterministic choice by a node and its
reference implementation would be classified incorrectly
as a fault. One approach to ensure deterministic behav-
ior is to disclose, as part of a node’s record, the seed of
any pseudo-random number generator used in the node’s
program. Unfortunately, disclosing the seed also reveals
any secrets that were randomly chosen by the node and
makes the future sequence of pseudo-random numbers pre-
dictable. One could allow a node to choose a new seed
once it has proven that its past actions were fault-free.
However, this would allow a bad node to choose seeds
strategically, and thus to influence its own pseudo-random
numbers.

Thus, applying existing accountability techniques faces
us with a choice: we can make a node’s actions (including
its adherence to a pseudo-random sequence) accountable
at the expense of revealing the node’s secrets and making
its future actions predictable; or, we can protect a node’s
secrets and keep its future actions unpredictable, but give
up the ability to verify that the node is following a pseudo-
random sequence of actions.

Consider, for instance, a distributed algorithm that uses
some form of statistical sampling. We would like to be
sure that each node follows a truly random sequence of
samples to ensure unbiased results. However, disclosing a
node’s future random samples as a side-effect of auditing
the node’s past actions may allow an attacker to adapt his
behavior to the expected sampling, thus biasing the results.
As a result, existing accountability techniques are not ap-
propriate for such protocols.

1

1.1 Our contributions

We contribute CSAR, a technique for generating Crypto-
graphically Strong, Accountable Randomness. CSAR al-
lows us to apply accountability techniques to probabilistic
protocols without making their actions predictable. More
precisely, we propose a pseudo-random generator that sat-
isfies the following requirements:

1. The pseudo-random generator should output crypto-
graphically strong randomness. It is not sufficient for
the output of the generator to be uniformly distributed.
We require that the node generating the output should
only be able to compute values it could also compute
if the output was truly random.1

2. The pseudo-random generator should be accountable,
i.e., after each random valuer is generated, it should
be possible to generate a proof that this valuer was
indeed correctly derived from a given seed. Thus, if
a node generates a value incorrectly, it can be held
accountable because it cannot produce a valid proof.

3. Future random values of correct nodes should be un-
predictable, i.e., to a node that learns random val-
uesr1, . . . , ri and the corresponding proofs, all fu-
ture random valuesri+1, . . . should still look random.
This excludes the obvious solution of using the ran-
dom seed as a proof.

4. Properties 1-3 should hold even if malicious nodes
are present while the seed is computed. In particular,
no node should be able to influence the output of its
own generator by choosing a suitable seed.

Additionally, both generating the randomness and verify-
ing the corresponding proofs should be highly efficient, in
order to limit the cost of accountability relative to the ac-
tual protocol execution. This requirement excludes a gen-
eral solution based on zero-knowledge proofs.

CSAR achieves these goals with a protocol in which
an initial coin-toss is followed by a combination of hash-
ing (where the hash function is modeled as a random or-
acle) and a trapdoor one-way permutation. Our construc-
tion essentially constitutes a chain of inverse trapdoor ap-
plications starting from the seed derived from the coin-toss,
where the sequence is partitioned into blocks by interme-
diate applications of the hash function. The hash function
is additionally used to transform elements of this sequence
into independent random values. The overall construction

1As a counterexample, consider a pseudo-random generator that pro-
duces random numbers asr = gx in some group G, wherex is a random
element. The output of this generator is uniformly distributed, but the
node that generatesr also knows the discrete logarithm ofr - which it
could not know ifr was a true random number.

resembles existing techniques for generating keys in cryp-
tographic file systems, e.g., [17, 1]. Elements in the se-
quence serve as a proof for former sequence elements and
hence for the corresponding random values, since a third
party can use the permutation to compute former sequence
values and compare them with the random values that were
used. The hardness of inverting the trapdoor permutation
and the usage of the random oracle prevent a prediction
of future sequence elements. This construction is efficient
(requiring only a few hashes and multiplications in an RSA
group for each generation of a random value), and it can
be further optimized by exploiting number-theoretic prop-
erties of low-exponent RSA.

The security of CSAR is formally established by com-
paring it to an ideal specification of its expected behavior,
under the additional hypothesis that the surrounding pro-
tocol does not use the same hash function as that used for
generating the randomness. This corresponds to the well-
known simulatability paradigm of modern cryptography.
Among these, the Reactive Simulatability (RSIM) frame-
work [4] and the Universal Composability (UC) frame-
work [9] constitute the most prominent representatives;
they have been used to prove the security of various pro-
tocols. In particular, simulatability offers strong composi-
tionality guarantees.

CSAR can be used with different accountability tech-
niques; however, for concreteness, we present it in the
context of PeerReview. We implemented CSAR as an ex-
tension to the publicly available PeerReview library [25].
Adding support for accountable randomness enables the
use of PeerReview in applications that rely on unpre-
dictable random choices. Such applications include, for
instance, systems that rely on random sampling for secu-
rity monitoring or billing, randomized load balancing in
federated systems or randomized replica placement in dis-
tributed storage systems. Our evaluation shows that the
computational cost of our technique is low: on current
hardware and with a1024-bit RSA modulus, a random
number can be generated in less than20µs and verified
in less than10µs. We also show that CSAR is practical
and that its storage and bandwidth costs are low, both in
relative and in absolute terms.

1.2 Related work

Verified random functions (VRFs) [22] and the stronger
simulatable VRFs [12] are closely related to the technique
proposed in this paper. However, even simulatable VRFs
cannot guarantee that the randomness produced by mali-
cious parties has strong properties when the malicious par-
ties release additional information about their seeds; hence
simulatable VRFs are not sufficient for the scenario consid-
ered in this paper. Furthermore, VRFs, and even more so

2

simulatable VRFs, are much less efficient than our tech-
nique. In CSAR, we obtain the improved efficiency, as
well as the ability to produce strong randomness when ma-
licious parties disclose their seeds, by applying the random
oracle model, which permits very efficient constructions.

Hash chains [18] can be used to generate verifiable
pseudo-random values. However, since each hash chain
can produce only a finite number of values, an upper bound
on the required output length must be known in advance.
Also, the hash chain must either be stored in memory or
recalculated from scratch after each invocation, both of
which are inefficient. Finally, the initial hash value must
remain secret, which enables an attacker to influence at
least some bits of his randomness by choosing a suitable
initial hash. None of these limitations apply to CSAR.

Accountability in distributed systems has been sug-
gested as a means to achieve practical security [19], to cre-
ate an incentive for cooperative behavior [14], and even
as a general design goal for dependable networked sys-
tems [27]. Several recent systems provide accountability
for deterministic systems [29, 23, 16]. None of these sys-
tems can hold a node accountable for its random choices
without also making its future choices predictable, which
can make the node vulnerable to attacks and exploits.

1.3 Outline

The remainder of this paper is organized as follows. Sec-
tion 2 reviews cryptographic preliminaries such as the ran-
dom oracle model and simulatable security notions. Sec-
tion 3 defines the security guarantees CSAR is designed to
fulfill. Sections 4 and 5 present the protocol for generat-
ing accountable randomness and its security proof, respec-
tively. Section 6 sketches the implementation of CSAR
in the context of PeerReview, while Section 7 discusses
applications of CSAR. Section 8 reports on experimental
results to measure the efficiency and storage consumption
of CSAR. Section 9 discusses possible variations of our
approach, and Section 10 concludes the paper.

2 Preliminaries

2.1 The random oracle model

The random oracle model [6] is one of the most popu-
lar heuristics in cryptography. The security of virtually
all practically deployed public-key encryption and signa-
ture schemes relies on the random oracle model, e.g., that
of the RSA-OAEP encryption scheme [7] specified in the
PKCS #1 standard [26].

The random oracle model formalizes the intuition that
a good cryptographic hash function has essentially no rec-
ognizable structure, i.e., the function can be expected to

behave like a completely random function. Instead of
proving the protocol under consideration with respect to
some fixed actual hash functionH (e.g., SHA-1), proofs
in the random oracle model presuppose a functionH :
{0, 1}∗ → {0, 1}l that is uniformly chosen from the set
of all such functions, i.e., for each valuex, the value
H(x) constitutes a uniformly chosen value (with two calls
to H(x) returning the same value). The security of the
protocol under consideration is then proven by granting
the protocol oracle-access toH ; the implementation, how-
ever, uses the concrete hash function. Although (patholog-
ical) protocols exist that violate the random oracle heuris-
tics [10], to the best of our knowledge there is no exam-
ple of a practical protocol that is proven secure within the
random oracle model but whose implementation turns out
to be insecure when implemented with a sufficiently good
cryptographic hash function.

The random oracle model permits very efficient proto-
col constructions. In addition, the random oracle model
has the following advantage in our setting: our random-
ness generation protocol is only provably secure if it relies
on a different hash function than the one used in the appli-
cation protocol. For an actual hash function, this statement
is difficult to formalize properly since the application pro-
tocol might only compute parts of the hash function, or the
function might be obfuscated. If one relies on the random
oracle model, this statement can be naturally formalized
by not allowing the application protocol to query the ora-
cleH .

2.2 Low-exponent RSA

In the following sections, we consider the low-exponent
RSA permutationfn(x) := x3 mod n, wheren is a ran-
dom RSA-modulus (a product of two random primesp and
q of the same length) of some lengthl with 3 ∤ ϕ(n) =
(p − 1) · (q − 1). The low-exponent RSA permutation is
a variant of the RSA permutation in which the public ex-
ponente is instantiated as a small fixed number (in our
casee = 3). It is well known that naively using low-
exponent RSA in larger protocols is known to yield trou-
blesome scenarios. For example, using it as an encryption
scheme without additional padding allows an adversary to
recover a plaintext from seeing three encryptions of this
plaintext for three different public keys. However, it is a
well-accepted assumption that the low-exponent RSA per-
mutation itself is hard to invert. More exactly, we define
the following functionε3RSA.

Definition 1 Let ε3RSA(l, s) be the maximum probabil-
ity over all circuits of size at mosts that, upon input
of a random RSA modulusn of length l and a random
y ∈ {0, . . . , n − 1}, the circuit outputs somex with
x3 ≡ y mod n.

3

The low-exponent RSA assumption fore = 3 (abbreviated
3RSA) can be formally stated as follows:

Assumption 1 (3RSA) For l(k) ∈ Ω(k) and any polyno-
mial s, ε3RSA(l(k), s(k)) is negligible.

The 3RSA assumption trivially follows from the well-
established strong RSA assumption [5]. In addition, the
function fn can be inverted efficiently if the factoriza-
tion of n = pq is known: One computes a secret key
d with 3d ≡ 1 mod ϕ(n) and then computesf−1

n (x) =
xd mod n. In other words, under the 3RSA assumption,
fn constitutes a trapdoor one-way permutation.

2.3 Simulatable security

The security guarantees CSAR is designed to fulfill will
be defined by an ideal functionality, which serves as a
specification of the protocol’s desired behavior. Simulat-
able security then aims at showing that a protocol is as
good as its ideal functionality. This is formalized by re-
quiring that for any adversaryA that attacks the protocol
(i.e., an adversary that controls the malicious nodes and
may intercept information) there exists a simulatorS that
attacks the ideal functionality of the protocol, such that
any third entity, called the environment and intuitively de-
noting the application built on top of the protocol, cannot
distinguish between a run of the real protocol withA and
an execution of the ideal functionality withS. This ap-
proach for defining properties of cryptographic systems is
widely used in the cryptographic community, where it is
known as UC security (Universal Composability) [9] or as
RSIM security (Reactive Simulatability) [4]; we refer to
these papers for the rigorous definitions. These definitions
provide very strong security and compositionality guaran-
tees [9, 3]. Compositionality constitutes a particularly im-
portant property in our setting since we want to use CSAR
within a larger context (with the application protocol and
with an accountability technique like PeerReview).

3 Desired security guarantees

We now formally define an ideal functionality that cor-
responds to the security properties CSAR is supposed to
achieve. The ideal functionality is defined as a collection
of machinesM̃P , one for every entityP . Phrasing the
ideal functionality as a (collection of) machine(s) allows
us to meaningfully compare it to real protocols within ex-
isting simulatable security models, which are all machine-
based.

The behavior of the ideal functionality reflects the se-
curity properties informally outlined in Section 1.1. The

ideal functionality does not generate randomness accord-
ing to the protocol description; rather, it chooses truly ran-
dom valuesri. The ideal functionality moreover ensures
that even malicious entities cannot lie about their random-
ness. However, malicious entities are allowed to predict
their own future random values even if these values have
not yet been used by the protocol; moreover, previously
used random values of honest entities are revealed to the
adversary. We give these powers to the malicious entities
in the ideal model to explicitly model the security require-
ments that arenot fulfilled by our construction. Hence,
the ideal functionality captures the requirement that, intu-
itively, the randomness generated by CSAR is as good as
true randomness, up to the two imperfections mentioned
above. These imperfections can be eliminated if desired,
but the cost is a computationally more expensive solution,
cf. Section 9.

To model the generation of a single random value in
the real protocol, we let the functionality output a triple
(ri, si, bi) to the environment. Hereri corresponds to
the randomness,si to the audit information, andbi is a
bit which describes whether the audit information is valid.
That is, we assume that in the real protocol, any auditor
which seessi will immediately compute the correspond-
ing bit bi and consider this derived bit to be part of the
audit information. In the real protocol (assuming that it is
secure) the adversary will only have two choices: Either
it choosesri honestly at random and chooses some audit-
ing informationsi such thatbi = 1, or it choosesri to
its liking, but then it may only produce auditing informa-
tion si such thatbi = 0. In other words, while the real
protocol cannot be designed to output correct valuesri for
malicious entities that deviate arbitrarily from the protocol,
we can ensure that incorrect values will fail the respective
tests. In the ideal functionality, this observation is reflected
in the assumption that the adversary can choose the out-
comebi of the test. If the adversary choosesbi = 0, it
may choose the “random” value; if the adversary chooses
bi = 1, true randomness is always returned. Furthermore,
if the entity is honest, onlybi = 1 is allowed (as honest
agents will never produce invalid audit information). Our
security definition in particular does not require any prop-
erties about thesi (only about the result of the verification
of the randomness, which is captured by the value ofbi).
Consequently,si can be chosen by the adversary even in
the case of honest parties (this is a popular way to model
nondeterminism in cryptographic protocols).

Definition 2 (Ideal Functionality) The ideal 〈honest〉
[dishonest] machine M̃P for entity P performs the
following steps, given security parametersl1 andt2:
• Before the first activation,̃MP initializes an infinite

list of valuesr1, r2, . . . uniformly and independently

4

distributed over{0, 1}l1.2 [All valuesri are made
accessible to the adversary, i.e., a queryi from the
adversary is answered withri.]

• Upon each activation, the inputs to the machineM̃P

are forwarded to the adversary.
• In M̃P ’s first environment activation,M̃P asks the

adversary for some values(n, q1, . . . , qt2). This tu-
ple (n, q1, . . . , qt2) is returned to the environment.
The valuesn, q1, . . . , qt2 correspond to values that
might be used in the setup phase, in order to estab-
lish a common random element.3

• In M̃P ’s second environment activation, a random
s ∈ {0, 1}l1 is chosen and returned. The values
is also given to the adversary. (s corresponds to the
publicly known seed.)

• In each subsequent environment activation (indexed
consecutively, starting withi = 1), M̃P sendsri

to the adversary and asks the adversary for a tuple
(r̃i, si, bi). 〈ThenM̃P returns(ri, si, 1).〉 [ThenMP

returns(ri, si, 1) if bi = 1 and(r̃i, si, 0) otherwise.]

We check that each of the intuitive security require-
ments described in Section 1.1 is implied by this ideal
functionality: Property 1 holds because the ideal function-
ality chooses the random valuesri in a truly random way,
even for the malicious parties. Property 2 is satisfied be-
cause the ideal function will ensure thatbi = 0 unless
the adversary uses the honestly generated randomnessri.
Property 3 is ensured because the functionality will reveal
the random valuesri corresponding tohonestparties only
when an honest party actually requests them. Until then,
they are not accessed by any machine. Property 4 is ful-
filled because in the ideal model we have modeled that the
seeds is chosen in a truly random fashion by the func-
tionality. This implies that any protocol implementing the
functionality also has to choose the seeds in a random
fashion, even if malicious parties are involved.

Moreover, the functionality also explicitly models the
security imperfections of CSAR: The valuesri of ma-
licious agents are revealed to the adversary in advance.
Whenever an honest agent uses a random value, that value
ri is revealed to the adversary (because in the real protocol,
it appears in the audit log). Malicious parties can actually
use non-random values̃ri; this is only detected by compar-
ing these values to the audit log. The fact that the ideal
functionality has to explicitly model all restrictions of the
protocol is considered one of the main advantages of sim-
ulatable security notions.

2Strictly speaking, the whole infinite list is not initialized at the begin-
ning of the protocol, but is lazily built up whenever a valueri is required.

3This step is needed for technical reasons because otherwisethe out-
puts of the protocol described in the next section would looksyntactically
different from the outputs of the ideal functionality, which is forbidden
by simulatable security definitions.

4 The CSAR protocol

We first explain the concepts we exploit in order to achieve
the desired security guarantees. Afterwards, we give the
formal description of our protocol for generating account-
able randomness.

4.1 Informal overview

4.1.1 Accountability and unpredictability

We first illustrate how we achieve the accountability and
the unpredictability of the pseudo-random generator, i.e.,
properties 2 and 3 from Section 1.1. SupposeP is an en-
tity that needs to generate random values. We assume that
there is a trapdoor one-way permutationf whose secret
key is known only toP (that is, onlyP can invert the per-
mutation). For now, we will also assume that there is a
well-known random seeds0; in Section 4.1.3, we describe
how this value is generated with an initial coin-toss.

SinceP is the only entity that can invert the permuta-
tionf , it alone is able to compute elements of the sequence
si := f−1(si−1). The other entities do not have the secret
key off and therefore cannot compute new elements, even
if they already know the old elementss0, . . . , si−1. How-
ever, all entities canevaluatef and can therefore validate
a new elementsi by checking whetherf(si) = si−1 holds
true. Sincef is a permutation, this check is equivalent
to si = f−1(si−1). (Our proof additionally ensures that
f constitutes a permutation even for incorrectly generated
keys, hence ensuring accountability for dishonest parties
as well.) Thus, we can achieve accountability for those val-
ues (by including allsi in the audit log), and at the same
time, prevent future values from being predicted.

However, directly using the elementssi as the desired
random valuesri is not secure, because there is a strong
relationship betweensi andsi−1 (one being the image of
the other underf), which would not be the case if the val-
ues were truly random. To avoid this, we useri := H(si)
as the desired random value. WhenH is modeled as a
random oracle,H(ri) andH(ri−1) are decoupled and be-
come independent, random elements.

4.1.2 Strong cryptographic randomness

Providing strong cryptographic randomness in the sense
of property 1 from Section 1.1 is difficult in general. For-
tunately, the construction outlined above for computing
the valuesri can already be shown to offer strong crypto-
graphic randomness, provided that 1) we modelH as a ran-
dom oracle, and that 2) we make the following change to
our construction: We first define a hash functionH∗(x) :=
H(1, x)‖ . . . ‖(t3, x) for a certain parametert3. Then the

5

g0 g1 g2

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

r1 r2 r3 r4 r5 r6 r7 r8 r9

f −
1

n
f −

1
n

f −
1

n
H

∗

H
∗

H
∗

Hf−1

n
f−1

n
f−1

n
f−1

n
f−1

n
f−1

n

H H H H H H H H H

fnfn fnfn fnfn

f−t1
n

f−t1
n

f−t1
n

Figure 1: The randomness generator for t1 = 3. The dashed lines depict the optimized variant from
Section 6.2.

images of this so-called padded hash functionH∗ are long
enough to be used as arguments tof . Then, in everyt1th
step for a parametert1, the valuesi is not computed as
si = f−1(si−1) but assi = f−1(H∗(si−1)) (see Fig-
ure 1). In the following, we briefly describe how this adap-
tation enables the security proof in Section 5.

Recall that our work relies on the well-established ap-
proach of defining security by means of simulation. To
show that a sequencer1 is random, even given the side
informationsi andf (and if P is malicious, additionally
the secret key forf), we must show the existence of an
efficient machine called the simulator, which, given a se-
quence of valuesri, can simulate a realistically looking
protocol execution that results in exactly these values. In
particular, it has to come up with realistic values forsi and
f . Hence, if some property holds for the valuesri in the
real protocol, the same property would also hold for the
truly random valuesri in the simulation. For instance, if
one could compute the discrete logarithm ofri in the ex-
ecution of the real protocol, one could also compute the
discrete logarithm of the truly randomri in the simulation,
and since the latter is conjectured infeasible, it follows that
the discrete logarithm ofri cannot be computed in the real
protocol either – not even byP itself.

In our case, the simulation becomes possible because
H is modeled as a random oracle. Since the simulator has
to simulateH , it is free to choose the valuesH(x) in a suit-
able manner, as long as the distribution ofH(x) is still uni-
form. For example, it can setH(si) := ri, provided that
it can recognize a values = si. The construction of theri

outlined above does not yet seem to entail an efficient way
to recognize such values because arbitrary valuess may
occur,i might be arbitrarily large, and one would have to
test for arbitrarily manyi whetherf i(s) = s0 holds. This
is why we require the change described earlier, namely
that in everyt1-th step, the valuesi is not computed as
si = f−1(si−1) but assi = f−1(H∗(si−1)). Thus, any
s = si fulfills f j(s) = H∗(x) for somej ≤ t1 and some
x. Since the simulator simulates the functionH , it knows
all valuesH∗(x) that have been queried fromH so far,

and thus it can efficiently check whetherf j(s) = H∗(x)
holds for somex that has already been queried and for
somej ≤ t1. For valuesx that have not been queried, one
can easily show that this equation only holds with negligi-
ble probability.

In summary, these two modifications allow us to prove
that CSAR offers strong cryptographic randomness guar-
antees, even for randomness produced by malicious enti-
ties. We note thatt1 = 1 is a perfectly fine choice from a
security point of view, but larger values oft1 can make the
implementation more efficient. We describe the details in
Section 6.2.

4.1.3 Choosing a suitable seed

We finally turn to the property of suitably choosing the
seed, in the sense of property 4 from Section 1.1. So far,
our construction presupposed that the initial seeds0 is cho-
sen randomly, and that the functionf is chosen correctly,
even ifP is malicious. A suitable choice ofs0 can be en-
forced by choosings0 with a coin-toss, which can easily
be implemented using the hash functionH . Enforcing a
correct choice off turns out to be more difficult. Since
the secret key off must not be disclosed to any partici-
pant other thanP , P choosesf on its own. This opens
the possibility thatf could be badly-formed in one of the
following two ways.

First,f might not constitute a permutation. In this case,
the valuessi will not necessarily be uniformly distributed;
worse, some valuesi−1 may have several preimagessi un-
der f , so thatP may be able to choose the next random
value from these possible values. This can be prevented by
finding a way to prove thatf indeed constitutes a permu-
tation. In particular, this will ensure accountability fordis-
honest users that might incorrectly generate their keys, but,
since the secret key must not be revealed, it is difficult to
prove in general. In the case of the low-exponent RSA per-
mutation, however, it turns out to be sufficient to show for
a few random valuesyi that all these values have a preim-
age underf . Hence, in order to prove thatf constitutes a

6

permutation, CSAR computes valuesqµ = f−1(H(µ, n)),
wheren is the RSA modulus used byf . We elaborate on
this in detail in the long version of this paper [2].

The second possibility is that an incorrectly chosenf

might have a small period, i.e., for somes0 and someµ,
we might have thatsν+µ = fµ(sν) = sν and consequently
thatrν+µ = rν . This is circumvented by includingP and
i in all hash values. Hence, even in the casesν+µ = sν ,
we still haverν+µ 6= rν .

4.2 Formal description of CSAR

We now formally describe the protocol for generating ac-
countable randomness. CSAR is designed as a subprotocol
for inclusion in some larger application like PeerReview;
here, we only specify the routines for generating random-
ness and for generating and verifying the corresponding
proofs. Full-scale accountability is then provided at the
next layer, e.g., by PeerReview.

4.2.1 Parameters and additional notation

CSAR is parametrized by the following values: the valuel1
is the length ofH(x) for anyx. The valuel2 is the length
of the RSA modulus used. The valuest1, t2, t3, t4 ≥ 1 de-
note integers satisfyingt3l1 ≥ l2. The security of CSAR
will be guaranteed ift1, t2, t3l1 − l2, andt4 are of at least
linear size in the security parameter; see also Theorem 1
below. For the setup phase, we additionally need a func-
tion ω that maps each entityP to a set of other entities
ω(P) such that at least one entity in each set{P} ∪ ω(P)
is guaranteed to be honest during the setup phase. The
witness set function in PeerReview can be used for this
purpose.

We use the following notation:H(x) denotes an appli-
cation of the random oracle. When writingH(x, y, . . .)
we assume that the tuple(x, y, . . .) is encoded into a sin-
gle string in some efficiently decodable fashion. ByH∗(x)
we denoteH(1, x)‖ . . . ‖H(t3, x). Note that the length
of H∗(x) is at leastl2. For an integern (not necessar-
ily an RSA modulus), we writefn to denote the func-
tion fn(x) := x3 mod n. In a slight abuse of notation,
we write f−1

n (x) ∈ {0, . . . , n − 1} for the preimage of
x mod n underfn, provided thatfn constitutes a permu-
tation on{0, . . . , n − 1}. Note though that even iff−1

n is
defined, it is the inverse offn only on{0, . . . , n − 1}.

4.2.2 Setup phase

CSAR starts with a setup phase for generating the seed and
the permutationf . In this phase, each entityP performs
the following steps with the entities inω(P):

• P chooses a random RSA modulusn such that3 ∤
ϕ(n) and computes the secret keyd with 3d ≡ 1 mod
ϕ(n). P doesnot store the secret key in its audit log.

• P computes qµ := f−1
n (H∗(pk, µ, n)) for

µ = 1, . . . , t2 and sends a signed message
(pk, n, q1, . . . , qt2) to each entity inω(P). Herepk
denotes an arbitrary but fixed string that is different
from the identifier of any entity.

• The entities inP ∪ {ω(P)} perform a coin-toss (see
below), which produces a random values.

• Finally, P setss0 := H∗(P, start, s) whereP de-
notes a string encoding the identity of the entityP ,
andstart denotes some arbitrary but fixed string that
is not an integer.

The setup phase includes acoin-toss subprotocolto pro-
duce a random values. EntitiesP, P1, . . . , Pk perform
a coin toss as follows. First, they choose random values
r, r1, . . . , rk. Then each entityPi computesci := H(ri)
and produces a signatureσi on ci. Next, all (ci, σi) are
sent toP . P setsc := H(r), h := (c, c1, σ1, . . . , ck, σk),
and produces a signatureσ onh. Then eachPi checks all
signatures inh, produces a signatureσ′

i on h, and sends
(ri, σ

′

i) to P . Finally,P checks all signaturesσ′

i and sends
(r, r1, . . . , rk) to P1, . . . , Pk. The outcome of the coin toss
is s := r ⊕ r1 ⊕ · · · ⊕ rk.

The coin-toss subprotocol can easily be shown to pro-
duce a random values, provided that at least one entity is
honest. All messages are signed, so that when plugging the
subprotocol into PeerReview, every entity can prove that it
indeed behaved correctly (since the coin-toss subprotocol
is only invoked once, the communication and computation
overhead induced in particular by the signatures is accept-
able). We do not require the values to remain secret; this
strongly facilitates performing a secure coin toss, in partic-
ular in the random oracle model.

4.2.3 Generating random values

To generate a random valueri and the corresponding audit
information, an entityP performs the following steps. Let
i be a sequential index, starting ati = 1. If t1 | i − 1, P

setssi := f−1
n (H∗(P, i − 1, si−1)); if t1 ∤ i − 1, P sets

si := f−1
n (si−1). P then choosesri := H(P, i, si) and

storessi, ri in the audit log.

4.2.4 Verifying random values

To verify a random valueri, an auditor evalu-
ates the following functionVerify on the values
(P, n, s, ri, q1, . . . , qt2 , s1, . . . , si), whereP is a string en-
coding the identity of the entityP , s is the value computed
in the coin-toss,ri is the current random value,q1, . . . , qt2

are the values sent in the setup phase ands1, . . . , sn are
the values found in the audit log.

7

Definition 3 (Verification function) When invoked as
Verify(P, n, s, ri, q1, . . . , qt2 , s1, . . . , si) with i ≥ 1, the
functionVerify performs the following checks:

• sµ

?
∈ {0, . . . , n − 1} for µ = 1, . . . , i.

• fn(qµ)
?
≡ H∗(pk, µ, n) mod n for µ = 1, . . . , t2.

• fn(sµ)
?
= sµ−1 for all µ = 1, . . . , i with t1 ∤ µ − 1.

• fn(sµ)
?
≡ H∗(P, µ − 1, sµ−1) mod n for all µ =

1, . . . , i with t1 | µ−1 wheres0 := H∗(P, start, s).

• ri
?
= H(P, i, si mod n).

An implementation does not need to perform all these
checks upon each invocation ofVerify . Since only one
new valuesi occurs for each new randomness query, each
evaluation ofVerify essentially uses one application offn

(costing two multiplications) and some hashing. Further-
more, at mostt1 valuessi need to be stored when such an
incremental evaluation ofVerify is used.

5 Security proof

We now formally establish the security guarantees offered
by CSAR by comparing it to the ideal functionality pre-
sented in Section 3.

We first phrase the protocol in terms of an I/O machine
that can be meaningfully compared to the ideal function-
ality in the simulatable security models. To facilitate the
modeling, we include both the generation of the random-
ness and the verification of the proofs usingVerify in a
single machineMP for every entityP . In a real imple-
mentation, these two algorithms would of course run on
different machines; in particular,Verify would be evalu-
ated several times.

Definition 4 (Real machine) The real 〈honest〉
[dishonest] machine MP for entity P performs the
following steps:
• In the first activation by the environment,〈MP gen-

erates the values(n, q1, . . . , qt2) honestly according
to the randomness generation protocol〉 [asks the ad-
versary for some values(n, q1, . . . , qt2)]. This tu-
ple (n, q1, . . . , qt2) is returned to the environment.

• In MP ’s second environment activation,MP chooses
a randoms ∈ {0, 1}l1 and returnss to the environ-
ment. The values is also given to the adversary.4

• In each subsequent environment activation (the
i-th randomness query, starting withi = 1),
〈MP generates the valuesri, si according

4Here we simplify: Instead of using the coin-toss subprotocol, we
assume that the initial seeds is chosen as true randomness. A complete
treatment would have to prove that the coin-toss subprotocol presented
above actually returns a truly randoms. At this point, however, we treat
the subprotocol as a black-box since it uses only well-knowntechniques.

to the randomness generation protocol〉 [MP

asks the adversary for valuesri, si]. Then
bi := Verify(P, n, s, ri, q1, . . . , qt2 , s1, . . . , si)
is computed.5 MP returns the triple(ri, si, bi) to the
environment.

The security property of CSAR can now be formally stated
as follows:

Theorem 1 Let l1, l2, t1, t2, t3, #Π be polynomi-
ally bounded in some security parameterk, and
l2, t2, (t3l1 − l2) ∈ Ω(k), and assume that the 3RSA
assumption holds.

Let a setΠ of entities be given of which an arbitrary
number may be malicious. Then for any polynomial-time
machineA there exists a polynomial-time machineS such
that for any environmentZ that does not access the ran-
dom oracleH the following holds: letPR denote the prob-
ability thatZ outputs1 after running together withA and
real machinesMP for all P ∈ Π. LetPI denote the prob-
ability thatZ outputs1 after running together withS and
ideal machinesM̃P for all P ∈ Π. Then|PR − PI | is
negligible in the security parameterk.

Constraining the environmentZ to not access the random
oracleH translates into the requirement that the protocol
we wish to make accountable using CSAR is not allowed
to use the hash functionH . This does not imply, however,
that H has to be secret, since we allow the adversary to
accessH . (The formal consequence of disallowingZ ’s
access toH is that the simulator now can simulate any
valuesH(x) as long as these values look random. This is
crucial for our simulation proof.)

For reasons of space, we only briefly sketch the proof
of Theorem 1. The full proof as well as concrete security
bounds are given in the long version of this paper [2].

Proof sketch.The proof is conducted in three main steps.
First, we define a variant of the real execution where the
random oracleH is replaced by a simulatioñH . Internally,
the simulationH̃ vastly differs fromH , but it is designed
to still give (almost) uniformly distributed outputs̃H(x).
We call the execution using̃H the hybrid execution, re-
flecting that it is a mix of the real and the ideal execution.
Then we define several events that represent various possi-
ble failures or imperfections of the simulatioñH , and we
show that the probabilityPrBAD of these events is negli-
gible. Next, we show that, unless these events occur, the
outputs ofH̃ have the same distribution as those ofH . We
then proceed to construct the simulatorS; this construction
is strongly simplified by the fact that the oraclẽH already

5Note that the valuebi is computed correctly even for maliciousP ,
sincebi is not part of the output ofP , but represents whether or not the
output ofP would pass the tests.

8

computes all values necessary for the execution ofS. Fi-
nally, we show that, unless one of the above-mentioned
events occurs, the hybrid and the ideal execution have the
same distribution. Hence, the distribution of the output of
Z in the real and the ideal execution differ only byPrBAD .

6 Implementation

We implemented CSAR as an addition to
libpeerreview, which is an open-source imple-
mentation of PeerReview that was written by the authors
of [16] and is publicly available from [25]. In total, we
added or modified1984 lines of code.

6.1 Integration with PeerReview

Our implementation is transparent to the user and works
without modifications to existing application code; it sim-
ply replaces the library’sgetRandom function. When
CSAR is enabled, faulty nodes can no longer predict fu-
ture random values of a correct node. In addition, nodes
can be exposed as faulty if they change their random seed
after startup.

Internally, our code extends the application’s state ma-
chine to (i) run the randomness generation protocol when
a node is started for the first time, and to (ii) respond
to coin-toss messages from other nodes. We could have
added these elements as a meta-protocol instead, but our
approach has the advantage that the additional steps can be
checked natively by PeerReview. Thus, we do not need a
separate mechanism to detect if a node breaks the random-
ness generation protocol or ignores a coin-toss message.

We also extended the log format with additional entries
for thesi. Checkpoints now include the tuple(l2, t, i, si),
wherei is the index of the last random number generated,
as well as the state of the randomness generation protocol
(while it is active). This is necessary because the witnesses
need to be able to start auditing from a recent checkpoint.

Our implementation uses SHA-1 hashes forH , which
implies a hash length ofl1 = 160 bits, and it chooses

the size ofH∗ ast3 = l1 ·
(⌈

l2
l1

⌉

+ 1
)

. The randomness

generation protocol transferst2 = 5 preimages of length
t4 = 480 bits. The lengthl2 of the RSA modulus and the
spacingt1 between hashes in thesi-sequence can be freely
chosen by the user.

6.2 Higher efficiency with precomputation

In a straightforward implementation of CSAR, the most
expensive operation is generating a random number. Ver-
ification is efficient because it only involves applyingfn

to each value, and, sincefn has been chosen asfn(x) =

x3 mod n, it can be computed with two multiplications
modulon. On the other hand, generating a random number
requires evaluatingf−1

n (x) = xd mod n, which involves
an exponentiation modulon and is therefore expensive.

However, we can amortize the cost of the exponenti-
ation across several random values. We exploit that for
anym and anyj ∈ {1, . . . , t1}, we have thatsmt1+j =
f−j

n (gm), wheregm := H∗(P, mt1, smt1). In particu-
lar, s(m+1)t1 = f−t1

n (gm) andsmt1+j = fn(smt1+j+1)
for j = {1, . . . , t1 − 1}. Hence, we can efficiently com-
pute an entire block of valuessmt1+1, . . . , s(m+1)t1 by
computing the last value first, and then deriving the other
values by applyingfn t1 − 1 times (this corresponds to
the dashed lines in Figure 1). Additionally, note that
f−t1

n (x) ≡ xdt1

≡ xc mod n with c := dt1 mod ϕ(n).
Sincec needs to be computed only once, the cost for eval-
uatingf−t1

n is essentially one exponentiation modulon.
In summary, our implementation computes the se-

quencesi in blocks oft1 values. Ift1 is sufficiently large,
the amortized cost per random value is essentially two mul-
tiplications modulon. This is confirmed by our bench-
marks in Section 8.1.

7 Applications

Randomness is an important instrument in the design
of many distributed algorithms. Ensuring accountable
pseudo-randomness is important in systems where (i) it is
important to be able to detect when a node deviates from an
expected sequence of pseudo-random values; and, (ii) pre-
dicting future values in a node’s pseudo-random sequence
may allow an attacker to gain an advantage.

In this section, we give a few examples of existing and
prospective applications that use randomness in this way.
In each case, CSAR can be used to add accountability to
these applications without exposing them to attacks.

7.1 Sampling

Some applications use statistical sampling to estimate the
properties of a large system. For example, Massoulié et
al. propose a technique to aggregate statistics of peers in
a peer-to-peer system using random walks or random sam-
ples [21]. A node that performs these samples must follow
a pseudo-random sequence, else it could bias the results.
However, if an attacker can predict future pseudo-random
values generated by benign nodes, it can bias the random
walk towards nodes under its own control or adjust its re-
sponse to the sampling query and thereby influence the
sampled value.

Random sampling is also used to measure resource us-
age. For example, many routers implement NetFlow [13],
which provides IP flow information that ISPs use for

9

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e/
op

er
at

io
n

[m
ic

ro
se

co
nd

s]

Parameter t1

Generate random number
Generate (with precomputation)

Verify random number

(a) Average time required to generate and verify a random
number

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000

Lo
g

st
at

e/
op

er
at

io
n

[b
its

]

Parameter t1

(b) Average amount of state that must be revealed to the au-
ditor per random number

Figure 2: Microbenchmarks. With t1 = 100 and an RSA modulus of l2 = 1024 bits, a node can generate a
random number in 19µs, and an auditor can verify its choice in 6.1µs, given 10.2 bits of information.

billing purposes. In this case, customers wish to verify
that the sampling is truly random; however, if customers
were able to predict the sampling pattern, they could delay
their own traffic when the ISP is about to take a sample,
and thus make their resource usage appear lower.

7.2 Randomized replication

LOCKSS [20] is a distributed storage system for long-term
data preservation. In LOCKSS, documents are replicated
across a large number of independent storage nodes. To re-
pair damage from data corruption, the storage nodes peri-
odically compare their own version of each document with
a number of other nodes. If there is another version that is
much more common, they replace their local version with
it. Many steps of this protocol are heavily randomized, so
as to make it difficult for an attacker to predict the actions
of a correct node.

LOCKSS would benefit from accountability because it
could detect and remove faulty nodes early. However, ex-
isting techniques cannot be used because the logs would
have to contain the random seeds, and thus correct nodes
would be predictable. This would undermine the security
of the entire system. This is not the case with CSAR, since
the logs do not reveal information about a node’s future
actions.

7.3 Load balancing

Some systems use randomness to distribute the load evenly
across a set of servers. For example, the TotalRecall stor-
age system places replicas of objects on a random set of
nodes [8]. If a node was able to predict this choice, it could
insert a small dummy object whenever it knows that it will

be chosen next. Thus, it could reduce its own storage load
at the expense of other nodes.

A similar challenge occurs in anycast services such
as [11], where requests are forwarded along a tree. If a
leaf node can predict from the seed values of the interior
nodes that the next request will be forwarded to it, it can
insert a particularly cheap request and thus cause the more
expensive requests to be forwarded to other nodes, in order
to shed load unfairly.

8 Evaluation

8.1 Microbenchmarks

We begin by discussing the cost of the two fundamental op-
erations in CSAR, namely (i) generating a random number
on a node, and (ii) verifying a random number that was
generated on another node. To quantify the average cost
per operation, we executed each operation10, 000 times
in a tight loop, using a RSA modulus ofl2 = 1024 bits
and varying the batching parametert1. The hardware we
used was a Sun V20Z rack server, which has a 2.5 GHz
AMD Opteron CPU. Figure 2(a) shows our results.

Without precomputation, it takes1200µs to generate a
random number, and12.7µs to verify one. The numbers
vary little with t1, which is expected because the cost of
exponentiation dominates the cost of hashing. However,
if we compute random numbers in blocks oft1 values, as
described in Section 6.2, the average cost drops quickly
with t1. With t1 = 500, a random number can be gener-
ated in only9.1µs and verified in only6.0µs. This shows
that our optimization is effective, and it demonstrates that
the overhead from random number generation should be
insignificant for most applications.

10

 1

 10

 100

 1000

512 1024 2048 4096

T
im

e/
op

er
at

io
n

[m
ic

ro
se

co
nd

s]

Length of RSA modulus [bits]

Generate (with precomputation)
Verify random number

Figure 3: Key length. The cost per operation in-
creases with the length of the RSA modulus.

In Figure 2(b), we show the average amount of state
that a node must disclose to an auditor for each random
value it generates. If random numbers are generated reg-
ularly, the node only needs to disclose onesi, i.e. l2 bits,
for each block oft1 random numbers; hence, the overhead
drops quickly witht1. With t1 = 500, only 2 bits need to
be disclosed on average, although one additionalsi must
be disclosed during each audit ift1 ∤ i. This overhead is in-
significant, given that the logs of accountable applications
can grow by several megabytes per hour [16].

Figure 3 shows how the average cost per operation in-
creases with the length of the RSA modulus. For this ex-
periment, we choset1 = 100 and used the same hardware
as above.

8.2 Application-level benchmark

To estimate the overall impact of these costs, we imple-
mented a simple demo application, which consists of a
web server andk clients. The web server allows its clients
to store, retrieve, or delete objects in its store, and it
charges them using a simple random sampling technique:
at random intervals, it picks a random file from its store,
and it charges the owner one credit point. It is clearly
desirable to make such a server accountable to its clients,
since otherwise it might charge arbitrary amounts; how-
ever, without CSAR, this is difficult to accomplish because
clients would gain the ability to predict when one of their
files will be sampled, and could avoid the charge by tem-
porarily removing that file.

We performed a simulation experiment in which we ran
this server withk = 5 clients for one hour. On average,
the server stored1000 files with an average size of10kB,
one of which was requested every second. The expected
number of samples per second was five, i.e. random num-
bers were used at the rather high rate of ten per second.
The parameters we chose werel2 = 1024 andt1 = 100.
We ran the simulation twice, once using CSAR to generate

the random numbers and once using thelrand function
from GLIBC (which reveals the random seed to the audi-
tor). The workload in the two simulations was identical.

We found that CSAR changed the server’s on-disk log
size from56.5 MB to 56.7 MB, a 0.3% increase. The
amount of information transmitted to the auditors (the five
clients) changed from12.5 MB to 13.1 MB, a 4.2% in-
crease. The difference occurs because the on-disk log con-
tains additional information (such as checkpoints) which
is not normally sent to the auditors. These overheads are
small both in relative and absolute terms, which suggests
that CSAR is practical.

9 Variants of our approach

In designing CSAR, we have made some non-obvious de-
sign choices. To highlight the importance of these choices,
we now describe some possible variations of CSAR, and
we point out the challenges that would have to be over-
come to make them work.

9.1 Different choice of the trapdoor permutation

The most obvious variation is to use a different trapdoor
one-way permutation. Although this is possible, there are
a few caveats. First, our optimization technique from Sec-
tion 6.2 is specific to 3RSA. Implementations using alter-
native permutations hence are likely to be much less ef-
ficient. Furthermore, if one replaces 3RSA by another
functionf , the security of CSAR will only be guaranteed
if f , in addition to being one-way, satisfies the follow-
ing three properties (which are derived from the security
proof). First, one must be able to efficiently prove thatf

is indeed a permutation (this is done in CSAR by send-
ing the valuesqµ). Second, one must be able to efficiently
convert a random bitstringh into an element of the do-
main of f (we did this by computingv mod n). Also, it
must be efficiently possible to recognize if a given value
is indeed in the domain off (we did this by checking
whethersi ∈ {0, . . . , n − 1}). The importance of the
last point is best illustrated by an example. Consider the
function fn := x2 mod n. If n is a so-called Blum in-
teger, thenfn is a permutation on the quadratic residues
modulon (see, e.g., [15, App. A.2.4]). However, for any
given quadratic residuesi there always existsi+1 6= s′i+1

with fn(si+1) = fn(s′i+1) = si where s′i+1 is not a
quadratic residue. This does not contradict the property
that fn is a permutation on the quadratic residues, but it
still breaks the security of CSAR: in each step a malicious
node can choose between two values, and since no efficient
way is known to tell quadratic residues from quadratic non-
residues, the auditors could not detect an incorrect choice.

11

9.2 Applying a PRG tori

In highly randomness-consuming protocols, one might be
tempted to perform the following optimization: one gener-
ates a newri only when the previousri has been revealed
(e.g., since it was contained in an audit log). Then the ran-
domnessx(i)

1 , x
(i)
2 , . . . of the protocol is generated with a

classical pseudo-random generator fromri. In this case,
however, a malicious node can mount the following attack:
before performing some action that requires randomness,
the node first checks what the next valuex

(i)
j would be. If

the node does not like this value, the node delays that ac-
tion until the next audit. After that audit, a new seedri+1

is used and the next value isx(i+1)
1 , which possibly suits

the node better. Although the effect of this attack may be
small when audits are not too frequent, the possibility of
such an attack is still present. Such an attack may have
important consequences in protocols in which a single ran-
dom value is critical, e.g., if the value determines whether
a given sum of money will be transferred or not.

9.3 Using interaction

One of the limitations of CSAR is that malicious nodes can
predict their own randomness. If the randomness is gener-
ated non-interactively, this is necessarily the case, since a
node can always compute that randomness ahead of time.
One way to circumvent this problem would be to use in-
teractivity: foreachrandom value,P performs a coin-toss
with the entities inω(P) (in this case one could also get
rid of the random oracle). Although a coin-toss is a rather
efficient protocol, it obviously incurs large communication
costs (but this might still be feasible for protocols that only
rarely need randomness). Another solution is to include
the incoming messages in the generation of the random-
ness, i.e.,ri := H(P, i, si, m) wherem is the history of
communication. Then even a malicious node can only pre-
dict its own randomness as far as it can predict incoming
communication. However, this approach is flawed: if two
malicious nodes collude, they can mutually influence their
randomness by adaptively choosing the messages they ex-
change.

9.4 Using zero-knowledge

The second limitation of CSAR (which is already present
in the original PeerReview) is that the auditors learn the
state of a node. One can solve this problem by letting a
node send only a hash of its log and then prove that the
hash contains a valid log using a zero-knowledge proof.
Although this is possible in theory, general purpose zero-
knowledge proofs are extremely inefficient. Even the most

efficient zero-knowledge proofs either target very specific
number theoretic problems or need to perform a proof
step for each elementary computation step in the proto-
col. Hence the incurred computational and communication
costs would be prohibitive for all but very specific applica-
tions.

10 Conclusion

In this paper, we have described CSAR, a technique that
lends accountability to systems that use randomized pro-
tocols. The key contribution is a new technique for gen-
erating cryptographically strong, accountable randomness,
that is, a pseudo-random sequence that comes with a proof
that the elements of the sequence have been correctly gen-
erated, while ensuring that the auditors are unable to learn
anything that would make the node’s future actions pre-
dictable. We have applied CSAR to a simple web server
that uses random sampling for billing purposes. Our ex-
periments indicate that the computational cost of CSAR
is low and that the approach is practical: on current hard-
ware and with a1024-bit RSA modulus, a random number
can be generated in less than20µs and verified in less than
10µs. We have additionally shown that the CSAR’s stor-
age and bandwidth costs are low both in relative and in
absolute terms.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments.

References

[1] M. Backes, C. Cachin, and A. Oprea. Secure key-updating
for lazy revocation. InEuropean Symposium on Research
in Computer Security (ESORICS), volume 4189 ofLecture
Notes in Computer Science. Springer, 2006.

[2] M. Backes, P. Druschel, A. Haeberlen, and D. Unruh.
CSAR: A practical and provable technique to make ran-
domized systems accountable. Technical Report MPI-
SWS-2008-D1-002, Max Planck Institute for Software Sys-
tems (MPI-SWS), Dec 2008.

[3] M. Backes, B. Pfitzmann, and M. Waidner. A general com-
position theorem for secure reactive systems. InProc. 1st
Theory of Cryptography Conference (TCC), volume 2951
of Lecture Notes in Computer Science, pages 336–354.
Springer, 2004.

[4] M. Backes, B. Pfitzmann, and M. Waidner. Secure
asynchronous reactive systems. IACR Cryptology ePrint
Archive 2004/082, Mar. 2004. To appear inInformation
and Computation.

12

[5] N. Baric and B. Pfitzmann. Collision-free accumulators
and fail-stop signature schemes without trees.Advances in
Cryptology – EUROCRYPT, pages 480–94, 1997.

[6] M. Bellare and P. Rogaway. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In1st
ACM Conference on Computer and Communications Secu-
rity, Proceedings of CCS 1993, pages 62–73. ACM Press,
1993. Full version online available athttp://www.cs.
ucsd.edu/users/mihir/papers/ro.ps.

[7] M. Bellare and P. Rogaway. Optimal asymmetric
encryption—how to encrypt with RSA. In A. de San-
tis, editor,Advances in Cryptology, Proceedings of EURO-
CRYPT ’94, volume 950 ofLecture Notes in Computer Sci-
ence, pages 92–111. Springer-Verlag, 1995. Extended ver-
sion online available athttp://www.cs.ucsd.edu/
users/mihir/papers/oae.ps.

[8] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M.
Voelker. TotalRecall: System support for automated avail-
ability management. InProceedings of the ACM/USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI’04), San Francisco, CA, Mar 2004.

[9] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. InProc. 42nd IEEE
Symposium on Foundations of Computer Science (FOCS),
pages 136–145, 2001. Extended version in Cryptol-
ogy ePrint Archive, Report 2000/67,http://eprint.
iacr.org/.

[10] R. Canetti, O. Goldreich, and S. Halevi. The random oracle
methodology, revisited. InThirtieth Annual ACM Sympo-
sium on Theory of Computing, Proceedings of STOC 1998,
pages 209–218. ACM Press, 1998. Preliminary version,
extended version online available athttp://eprint.
iacr.org/1998/011.ps.

[11] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Row-
stron. Scalable application-level anycast for highly dy-
namic groups. InNGC 2003, Sep 2003.

[12] M. Chase and A. Lysyanskaya. Simulatable VRFs with
applications to multi-theorem NIZK. In A. Menezes, edi-
tor, CRYPTO, volume 4622 ofLecture Notes in Computer
Science, pages 303–322. Springer, 2007.

[13] B. Claise. RFC 3954: Cisco systems NetFlow ser-
vices export version 9.http://www.ietf.org/rfc/
rfc3954.txt, Oct 2004.

[14] R. Dingledine, M. J. Freedman, and D. Molnar.Peer-to-
Peer: Harnessing the Power of Disruptive Technologies,
chapter Accountability. O’Reilly and Associates, 2001.

[15] O. Goldreich. Foundations of Cryptography – Volume 1
(Basic Tools). Cambridge University Press, Aug. 2001. Pre-
vious version online available athttp://www.wisdom.
weizmann.ac.il/~oded/frag.html.

[16] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerRe-
view: Practical accountability for distributed systems. In
Proceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP’07), pages 175–188. ACM, Oct
2007.

[17] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted
storage. InProc. 2nd USENIX Conference on File and Stor-
age Technologies (FAST), 2003.

[18] L. Lamport. Password authentication with insecure com-
munication.Commun. ACM, 24(11):770–772, 1981.

[19] B. W. Lampson. Computer security in the real world. In
Proc. Annual Computer Security Applications Conference,
Dec 2000.

[20] P. Maniatis, D. S. H. Rosenthal, M. Roussopoulos,
M. Baker, T. Giuli, and Y. Muliadi. Preserving peer repli-
cas by rate-limited sampled voting. InProceedings of the
19th ACM Symposium on Operating Systems Principles
(SOSP’03), pages 44–59. ACM, 2003.

[21] L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and
A. Ganesh. Peer counting and sampling in overlay net-
works: random walk methods. InProceedings of the
twenty-fifth annual ACM symposium on Principles of dis-
tributed computing (PODC’06), pages 123–132. ACM,
2006.

[22] S. Micali, M. Rabin, and S. Vadhan. Verifiable random
functions. InProceedings of the 40th Annual Symposium
on the Foundations of Computer Science, pages 120–130,
New York, NY, October 1999. IEEE.

[23] N. Michalakis, R. Soulé, and R. Grimm. Ensuring content
integrity for untrusted peer-to-peer content distribution net-
works. InProceedings of the 4th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’07),
Apr 2007.

[24] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why
do internet services fail, and what can be done about it?
In Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems (USITS’03), Mar 2003.

[25] PeerReview project homepage.http://peerreview.
mpi-sws.org/.

[26] RSA Laboratories. PKCS #1: RSA Cryptography
Standard, Version 2.1, 2002. Online available at
ftp://ftp.rsasecurity.com/pub/pkcs/
pkcs-1/pkcs-1v2-1.pdf.

[27] A. R. Yumerefendi and J. S. Chase. Trust but verify: Ac-
countability for Internet services. InACM SIGOPS Euro-
pean Workshop, Sep 2004.

[28] A. R. Yumerefendi and J. S. Chase. The role of account-
ability in dependable distributed systems. InProceedings
of the First Workshop on Hot Topics in System Dependabil-
ity (HotDep’05), Jun 2005.

[29] A. R. Yumerefendi and J. S. Chase. Strong accountability
for network storage. InProceedings of the 5th USENIX
Conference on File and Storage Technologies (FAST’07),
Feb 2007.

13

