
1

Measurement-Based Analysis, Modeling, and
Synthesis of the Internet Delay Space

Bo Zhang†, T. S. Eugene Ng†, Animesh Nandi†‡, Rudolf Riedi$, Peter Druschel‡, Guohui Wang†
†Rice University, USA ‡Max Planck Institute for Software Systems, Germany$EIF-Fribourg, Switzerland

Abstract—Understanding the characteristics of the Internet
delay space (i.e., the all-pairs set of static round-trip propagation
delays among edge networks in the Internet) is important for
the design of global-scale distributed systems. For instance, algo-
rithms used in overlay networks are often sensitive to violations
of the triangle inequality and to the growth properties within the
Internet delay space. Since designers of distributed systems often
rely on simulation and emulation to study design alternatives,
they need a realistic model of the Internet delay space.

In this paper, we analyze measured delay spaces among thou-
sands of Internet edge networks and quantify key propertiesthat
are important for distributed system design. Our analysis shows
that existing delay space models do not adequately capture these
important properties of the Internet delay space. Furthermore,
we derive a simple model of the Internet delay space based on our
analytical findings. This model preserves the relevant metrics far
better than existing models, allows for a compact representation,
and can be used to synthesize delay data for simulations and
emulations at a scale where direct measurement and storage
are impractical. We present the design of a publicly available
delay space synthesizer tool calledDS

2 and demonstrate its
effectiveness.

Index Terms—Internet delay space, measurement, analysis, modeling,
synthesis, distributed system, simulation.

I. I NTRODUCTION

Designers of large-scale distributed systems rely on simu-
lation and network emulation to study design alternatives and
evaluate prototype systems at scale and prior to deployment.
To obtain accurate results, such simulations or emulationsmust
include an adequate model of theInternet delay space: The
all-pairs set of static round-trip propagation delays among
edge networks. Such a model must accurately reflect those
characteristics of real Internet delays that influence system
performance. For example, having realistic clustering proper-
ties is important because they can influence the load balance
of delay-optimized overlay networks, and the effectiveness
of server placement policies and caching strategies. Hav-
ing realistic growth characteristics [16] is equally important,
because the effectiveness of certain distributed algorithms
depends on them. Many distributed systems are also sensitive
to the inefficiency of IP routing with respect to delay. Such
inefficiency manifests itself as triangle inequality violations in
the delay space, and must be reflected in a model as well.

This research was sponsored by the NSF under CAREER Award CNS-
0448546, an Alfred P. Sloan Research Fellowship, and by the Texas Advanced
Research Program under grant No.003604-0078-2003. Views and conclusions
contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied,
of NSF, the Alfred P. Sloan Foundation, the state of Texas, orthe U.S.
government.

Currently, two approaches are used to obtain a delay model.
The first approach, adopted for instance by the p2psim sim-
ulator [24], is to collect actual delay measurements using a
tool such as King [14]. However, due to limitations of the
measurement methodology and the quadratic time requirement
for measuring a delay matrix, measured data tends to be
incomplete and there are limits to the size of a delay matrix
that can be measured in practice. To its credit, p2psim provides
a 1740×1740 delay space matrix, which is not a trivial amount
of data to obtain.

The second approach is to start with a statistical network
topology model (e.g., [44], [47], [8], [10], [18]) and assign
artificial link delays to the topology. The delay space is
then modeled by the all-pair shortest-path delays within the
topology. The properties of such delay models, however, tend
to differ dramatically from the actual Internet delay space.
This is because these models do not adequately capture rich
features in the Internet delay space, such as those caused by
geographic constraints, variation in node concentrations, and
routing inefficiency.

A delay space model suitable for large-scale simulations
must adequately capture the relevant characteristics of the
Internet delay space. In addition, the model must have a
compact representation, since large-scale simulations tend to
be memory-bound. The naive approach of storing 16-bit delay
values for all pairs of a 100K node network, for instance,
would require 20GB of main memory! Finally, to enable effi-
cient simulation, generating a delay for a given pair of nodes
must require very little computation and no disk accesses.

One approach is to build astructural model of the Internet,
using BGP tables, traceroute, ping and other measurements
to capture the routing policies, the topology of the Internet
and the associated static link delays [22]. Given such a
model, the delay for a given pair of IP addresses can be
estimated by adding the link delays on the predicted route
through the topology. However, it remains unclear how all
the required information (e.g., intra-domain and inter-domain
routing policies, Internet topology and link weights) can be
accurately obtained and how detailed such a model has to be to
preserve the relevant characteristics. On the other hand, many
distributed systems (e.g., structured overlays, server selection
systems) only need end-to-end delays for their simulations;
routing information is not necessary.

Another approach is to build astatistical model, designed
to preserve the statistical characteristics of a measured Internet
delay data set. Unlike a structural model, a statistical model
cannot predict the delay between a particular pair of real

2

Internet IP addresses. For the purposes of distributed systems
simulations, however, it suffices that the statistical properties
of the model adequately reflect those of the measured delay
data. Statistical models lend themselves to a compact represen-
tation and can enable efficient generation of delay data at large
scale. Since we are primarily interested in enabling accurate,
efficient, large-scale simulations, we decided to pursue this
approach in this paper.

We have measured a sample of the Internet delay space
among 3,997 edge networks. We then characterize the mea-
sured sample with respect to a set of properties that are relevant
to distributed system design. Based on the analytical findings,
we develop the methods and tool to model and synthesize
artificial Internet delay spaces. A synthesized delay space
model has a compactO(N) representation (as opposed to the
O(N2) matrix representation) and adequately preserves the
relevant characteristics of the Internet delay space. We make
two primary contributions in this work:
• We quantify the properties of the Internet delay space
with respect to a set of statistical, structural, and routing
metrics relevant to distributed systems design. This leadsto
new insights into Internet delay space characteristics that may
inform future work.
• We develop a set of building block techniques and a publicly
available tool calledDS2 to model and synthesize the Internet
delay space compactly, while accurately preserving the rele-
vant metrics. The compact representation enables accurateand
efficient simulations at large scale. We show the benefits of
DS2 through several applications.

II. M ETHODOLOGY AND MODELS

We begin by describing our measurement methodology and
the existing delay space models we use in this study.

A. Measured Internet Delay Space

We use the King tool [14] to measure the all-pairs round-trip
static propagation delays among a large number of globally
distributed DNS servers, where each server represents a unique
domain and typically one edge network. To our best knowl-
edge, the King tool is the only tool that can accurately measure
the delays among a large number of DNS servers. In order to
measure the delay between two DNS serversD1 andD2, the
King tool first measures the amount of time it takes to issue
a recursive query toD1 for a name whose authoritative name
server isD2 (the time it takes is denoted asT (King, D1, D2)),
and then it measures its delay toD1 by using an iterative
DNS query (this measured delay is denoted asT (King, D1)).
By subtractingT (King, D1) from T (King, D1, D2), it can
obtain the estimated delay betweenD1 and D2. To choose
DNS servers, we start with a list of 100,000 random IP
addresses drawn from the prefixes announced in BGP as
published by the Route Views project [31]. For each IP
addressi, we perform a reverse DNS lookup to determine
the associated DNS servers. Each reverse lookup returns a
set of DNS serversSi. We keep only the DNS server sets
in which at least one server supports recursive queries, since
King requires it. If two DNS server setsSi and Sj overlap,

then only one of the two sets is kept since they do not
represent distinct domains. If there is more than one server
in a set, the set is kept only if all the servers in the set are
topologically close. We check this by performing traceroutes
from our machine to all the servers in the set to make sure
the minimum delays to them differ less than 5% and the
traceroute paths have at least 90% overlap with each other. By
making sure the servers in the set are physically co-located, we
ensure different measurement samples are measuring the same
network. Among the remaining DNS server sets, we choose
one server per set that supports recursive query. We then use
5,000 such DNS servers to conduct our measurements.

To ensure the subsequent analysis is based on accurate data,
we adopt a fairly stringent methodology. We measure the
round-trip delay between two DNS servers,D1 andD2, from
both directions by using either server as the recursive server.
For each direction, we make up to 50 attempts to measure
the direct delay toD1 and the recursive delay toD2 via D1,
and up to 50 attempts to measure the direct delay toD2 and
the recursive delay toD1 via D2. At least 20 measurement
samples must be obtained in each case. The minimum value
across the samples is used as the propagation delay. After the
subtraction step, if the delay is greater than 2 seconds (most
likely the recursive delay measurement is inflated too much)or
smaller than 100 microseconds (most likely the direct delay
measurement is inflated too much), it is discarded. Also, if
the obtained round-trip delay betweenD1 and D2 measured
in each direction disagrees by more than 10%, we consider
the measurement problematic and then discard it. Finally, we
remove data from DNS servers that are consistently failing
to provide valid measurements. After we assemble the delay
space matrix, if any row/column has more than 25% of the
values missing, the entire row/column is removed.

We collected the measurements in October 2005. Among
the collected 5,000×5,000 delay data, 16.7% have insuffi-
cient measurements samples, 8.1% have inconsistent samples,
0.16% are smaller than 100 microseconds, and 0.51% are
larger than 2 seconds. After removing suspicious measurement
values, the remaining delay matrix has 3,997 rows/columns
with 13% of the values in the matrix unavailable. To char-
acterize the distribution of the missing values, we partition
the delay matrix into its three largest clusters. These clusters
correspond to IP hosts in North America, Europe and Asia.
We find that the percentage of missing values are distributed
as follows:

From/To North America Europe Asia
North America 14% 11% 12%

Europe 11% 15% 11%
Asia 12% 11% 18%

To understand the properties in the data set under scaling,
we consider four different random sub-samples of the mea-
sured data with the sizes 800, 1,600, 2,400 and 3,200. Then,
for each sub-sample size, we consider five random sample.
Results presented in this paper are averages over the five
samples.

The data set has some limitations. First, the measurements
are among DNS servers. The data set thus represents the
delay space among edge networks in the Internet. No explicit

3

measurements were collected among hostswithin a local
area network. Therefore, this study addresses only the delay
space properties among edge networks in the wide area, but
not the delay space properties within a local area network.
Secondly, to increase our confidence in the data, we have
discarded questionable measurements. We therefore proceed
with the assumption that the missing delay values do not have
significantly different properties than the available data.

B. Topology Model Delay Spaces

We also generate delay matrices based on existing topology
models and compare them against the measured Internet delay
space. The two generators we use are Inet [45] and GT-
ITM [47]. The Inet generator creates a topology that has
power-law node degree distribution. The GT-ITM generator is
used to generate a topology based on the Transit-Stub model.
We include the Inet and GT-ITM topology models in this study
because they are often used in distributed system simulations.

For Inet, we create a 16,000-node topology. To generate the
delays, we use the standard method of placing nodes randomly
in a plane and then use the Euclidean distance between a pair
of connected nodes as the link delay. All-pairs shortest delay
routing is then used to compute end-to-end delays. Finally,
we extract the generated delays among the 5,081 degree-1
nodes in the graph in order to model the delays among edge
networks. No triangle inequality violations are introduced. For
GT-ITM, we create a 4,160-node transit-stub topology. Note
that GT-ITM annotates links with routing policy weights and
artificial delays. Shortest path routing is performed over the
topology using routing policy weights as the link costs. End-
to-end delays are then computed by summing the artificial
link delays along the selected paths. Some triangle inequality
violations are then introduced artificially in the resulting delay
space. Finally, we extract the delays among 4,096 stub routers
to model the delays among edge networks.

We scale the delays in the two artificial delay matrices
such that their average delay matches the average delay in
the measured delay data. This constant scaling does not affect
the structure of the generated delay spaces. We do this only
to simplify the presentation of results.

III. I NTERNET DELAY SPACE ANALYSIS

In this section, we first identify a set of metrics that are
known to significantly influence the performance of distributed
systems. Then, we analyze measured delay data with respect to
these and other statistical and structural properties. Theresults
give insight into the characteristics of the Internet delayspace,
and they inform the design of an appropriate model.

A. Systems-Motivated Metrics

The metrics presented below are known to strongly influ-
ence distributed system performance and capture a wide range
of important issues in distributed system design and evaluation.
Global clustering - This metric characterizes clustering in
the delay space at a macroscopic level. For instance, the
continents with the largest concentration of IP subnetworks

1

2

Nearest neighbor edge
Node in delay space

1st cluster head

2nd cluster head

Not drawn to exact scale

1

2

3

3rd cluster head3
4

Not a cluster head; extracted
by cluster 1

4

Fig. 1. Nearest neighbor directed graph analysis technique.

(North America, Europe and Asia) form recognizable clusters
in the delay space. This global clustering structure is, for
instance, relevant to the placement of large data centers and
web request redirection algorithms (e.g., [28]).

Our algorithm to determine the global clustering works as
follows. Given N nodes in the measured delay data, it first
treats each node as a singleton cluster. Then it iteratively
finds two closest clusters to merge. The distance between two
clusters is defined as the average distance between the nodes
in the two clusters. A cutoff value determines when to stop
the merging process. If the distance between the two closest
clusters is larger than the cutoff, the merging process stops. By
varying the cutoff value and monitoring the resulting cluster
sizes, the global clustering properties can be determined.
Local clustering - This metric characterizes clustering in the
delay space at the local level. It is based on analyzing the
in-degree distribution of the directed graph formed by having
each node point to its nearest neighbor in the delay space.
Moreover, we use the graph to identify a set of local cluster
heads (or centers). We select the node with the highest in-
degree as a local cluster head and remove it and its immediate
children from the graph. This step is applied repeatedly to
identify the next local cluster head until no more nodes remain.
Since a local cluster resembles a star graph, we sometimes
simply call it a star. The process is illustrated in Figure 1.
The importance of the local cluster heads will become clear
in subsequent sections.

Local clustering is relevant, for instance, to the in-degree
and thus the load balance among nodes in delay-optimized
overlay networks (e.g., [5]). For example, dense local clus-
tering can lead to an overlay node having an unexpectedly
high number of neighbors and can potentially create a load
imbalance in the overlay.
Growth metrics - Distributed nearest neighbor selection is
a hard problem, but efficient algorithms have been identified
to solve the problem for growth-restricted metric spaces [16].
These algorithms are used, for instance, in Tapestry [49] and
Chord [40] to select overlay neighbors. Growth-constrained
metric spaces satisfy the property that for any nodei and
distancer, the number of nodes within distance2r of i,
denoted asBi(2r), is at most a constant factor larger than
the number of nodes within distancer of i, denoted asBi(r).
We characterize the growth properties of a delay space by
evaluating the functionB(2r)/B(r).

A related metric is theD(k) metric. Letd(i, k) be the aver-
age delay from a nodei to itsk closest nodes in the delay space
and N be the set of nodes, thenD(k) = 1

|N |

∑
i∈N d(i, k).

Structured overlay networks like Chord, Tapestry and Pastry
employ proximity neighbor selection (PNS) to reduce the

4

200 400 600 800 1000
0

1

2

3

4

5

6

7

8
x 10

−3

Delay (ms)

P
ro

b
a

b
ili

ty

Measured
Inet
GT−ITM

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Cutoff (ms)

L
a

rg
e

st
 C

lu
st

e
r

P
e

rc
e

n
ta

g
e

Measured 800

Measured 1600

Measured 2400

Measured 3200

Inet

GT−ITM

(a) (b)

Fig. 2. Global clustering properties. (a) Delay distribution. (b) Clustering.

expected delay stretchS, i.e., the ratio of the delay of an
overlay route over the direct routing delay averaged over all
pairs of nodes [13][4][29][5]. We choose to include theD(k)
metric because analysis has shown that in Tapestry and Pastry,
the expected delay stretchS in the overlay can be predicted
based on the functionD(k) [5].
Triangle inequality violations - The triangle inequality states
that given pointsx, y and z, the distancedij between points
i and j satisfies dxz ≤ dxy + dyz. The Internet delay
space, however, does not obey the triangle inequality, since
Internet routing may not be optimal with respect to delay.
Unfortunately, many distributed nearest neighbor selection
algorithms rely on the assumption that the triangle inequality
holds (e.g., [32] [16] [43]). Thus, it is important to understand
the characteristics of the violations in the Internet delayspace.

B. Analysis Results

We begin with a comparison of the delay distribution. In
Figure 2(a), we can observe that the delay distribution of the
measured data set has characteristic peaks at roughly 45 ms,
135 ms, and 295 ms. This suggests that the nodes form clusters
in the data. In contrast, the delay distributions for the topology
models do not indicate such behavior. Clearly, there are rich
features in the Internet delay space that are not captured in
the delays derived from these topology models.

To quantify the global clustering properties in the measured
data set, we apply the described global clustering algorithm
and plot the percentage of nodes in the largest cluster against
different clustering cut-off thresholds in Figure 2(b). Regard-
less of the sample size, the largest cluster’s size increases
sharply at cutoff values 155 ms and 250 ms. These sharp
increases are caused by the merging of two clusters at these
thresholds. The steps suggest that there are three dominant
clusters. By setting the threshold to 120 ms, nodes can be
effectively classified into the three major clusters that account
for 45%, 35% and 9% of the nodes, respectively. By using
traceroute and the WHOIS database, we find that 94.9% of
the nodes in the first cluster are from North America, 99.4%
of the nodes in the second cluster are from Europe and 99.5%
of the nodes in the third cluster are from Asia. The remaining
11% nodes have large delays to other nodes either because
they are located in other continents (e.g., Oceania, South
America and Africa) or because they have large access delays.
These global clustering properties can be used to guide the
global placement of servers and the design of load-balancing
algorithms. In contrast, there is no clear clustering structure in

Sample size # of samples # Cluster heads Avg. proportion Variance
800 20 179 22.38% 4.13%
1,600 20 356 22.25% 4.21%
2,400 20 528 22.00% 4.26%
3,200 20 703 21.97% 4.56%
3,997 1 884 22.12% 0

TABLE I
AVERAGE PROPORTION OF NODES CLASSIFIED AS CLUSTER HEADS.

the Inet model. The clustering structure of the GT-ITM model
does not resemble that of the measured data.

The global clustering reveals the coarse-grained structure of
the delay space. To understand the fine-grained structure, we
conduct the nearest neighbor directed graph analysis on the
measured data. We emphasize that these results characterize
the properties among edge networks in the Internet; theydo not
characterize the properties among end hosts within local area
networks. Figure 3(a) shows the in-degree distributions for
different sample sizes. Observe that the in-degree distribution
for the measured data has an exponential decay (note the log-
linear scale). Interestingly, we discover that the distribution
is consistent across different sample sizes. If a straight line is
fitted over 99.9% of the distribution (i.e., ignoring the 0.1% of
nodes with the largest in-degrees), the line has a y-intercept of
-0.8565 and a slope of -0.6393. These parameters can be used
to model the nearest-neighbor in-degree distribution among
edge networks in the Internet. In the future, when delay data
for hosts within local area networks become available, the
model can be hierarchically extended by assigning end hosts
appropriately to each edge network in the model.

We classify the nodes into local cluster heads (or star heads)
and non-heads using the procedure described in III-A. TableI
shows that when the sample size increases 4 times from 800
to 3,200, the average proportion of cluster heads decreasesby
0.41%. However, the decreasing rate is very small compared to
the variance (> 4%), so we will proceed with the assumption
that the proportion is stable across sample sizes for simplicity.
Note that local cluster heads are not simply a random subset
of nodes because local cluster sizes vary. Moreover, we find
that the delays among cluster heads at different sample sizes
follow a stable distribution, suggesting a scaling invariant.

In contrast, as shown in Figure 3(b), the in-degree distribu-
tion for the Inet topology follows closely the power-law (note
the log-log scale). If a straight line is fitted over 99.9% of the
distribution, the line has a y-intercept of -3.7852 and a slope
of -1.3970. Thus, the Inet model does not reflect the local
clustering properties among edge networks in the measured
data. For the GT-ITM topology, as shown in Figure 3(c), the
distribution is close to exponential, the best fit line in thelog-
linear plot has y-intercept of -0.0080 and slope of -1.1611.
Thus, this distribution is also different from that found in
the measured data. In addition, the maximum in-degree in the
measured data is much larger than that in the GT-ITM model.

Next we analyze spatial growth. Figure 4(a) shows the
median B(2r)/B(r) growth of the data sets. We plot the
median because, unlike the mean, it is insensitive to the
extreme outliers and can better characterize the dominant
trends. As can be seen, the topology models have far higher
peak spatial growth than the measured data (note the log-

5

0 10 20 30
10

−4

10
−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

Measured 800
Measured 1600
Measured 2400
Measured 3200
Best fit

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

Inet
Best fit

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

GT−ITM
Best fit

(a) (b) (c)

Fig. 3. Local clustering analysis. (a) Exponential-like in-degree distribution for measured data (log-linear scale). (b) Power-law-like in-degree distribution
for Inet (log-log scale). (c) Exponential-like in-degree distribution for GT-ITM (log-linear scale).

0 100 200 300 400 500
10

0

10
1

10
2

r (ms)

M
ed

ia
n

B
(2

r)
/B

(r
)

Measured

Measured 800

Measured 1600

Measured 2400

Measured 3200

Inet

GT−ITM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

k/N

D
(k

)/
D

(N
)

Measured

Measured 800

Measured 1600

Measured 2400

Measured 3200

Inet

GT−ITM

(a) (b)

Fig. 4. Growth metrics. (a)B(2r)/B(r) (log-linear scale). (b)D(k)/D(N).

linear scale) and have different trends. In the measured data,
the initial growth is higher when the ball is expanding within
a major cluster. As soon as the ball radius covers most of
the nodes within the same major cluster, growth slows down
as expected. When the ball radius reaches a size that begins
to cover another major cluster, the growth increases again.
Eventually most of the nodes are covered by the ball and the
growth ratio steadily drops to one. This growth trend in the
measured data is invariant across different sample sizes. These
findings can help fine tune distributed system algorithms that
are sensitive to the ball growth rate. On the other hand, the
growth trends in the Inet and GT-ITM topology models do not
reflect the structure of the measured data.

In terms of theD(k) metric, we also observe dramatic
differences between topology models and the measured data.
Figure 4(b) indicates that in the Inet and GT-ITM topology
models, from the perspective of an observer node, there are
very few nodes whose delays are substantially smaller than
the overall average delay. In contrast, in the measured data,
from an observer node, we can find many more nodes whose
delays are substantially smaller than the overall average.The
bigger the fraction of small delays is, the more likely we can
find a close-by node by randomly probing the same number of
nodes. Thus, a random probing strategy for finding a close-by
neighbor would be much more successful in the real Internet
than in the Inet and GT-ITM topology models. This is an
example of how using an inadequate delay space model for
simulation can potentially lead to misleading results. Finally,
it can be observed that theD(k) metric is also invariant across
different sample sizes. This empiricalD(k) function can be
applied to compute the expected delay stretch in the Pastry and
Tapestry overlays when deployed over the global Internet [5].

We next analyze the measured data set with respect to
properties related to triangle inequality violations. We say that
an edgeij in the data set causes a Type 1 triangle inequality

violation if for some nodek, dik+dkj

dij
< 1, and it causes a

Type 2 violation if |dik−dkj|
dij

> 1. Intuitively, better overlay
paths can be found for edges that cause Type 1 violations,
and edges that cause Type 2 violations can potentially provide
short-cut overlay paths.

For each edge, we count the number of Type 1 violations
it causes. To show how the triangle inequality violations are
distributed over the major clusters, we present a matrix in
Figure 5[a] for the measured data. To produce this figure, we
first reorganize the original matrix by grouping nodes in the
same clusters together. The top left corner has index (0,0).
The matrix indices of the nodes in the largest cluster (North
America) are the smallest, the indices for nodes in the second
largest cluster (Europe) are next, then the indices for nodes in
the third largest cluster (Asia), followed by indices for nodes
that did not get classified into any of the 3 major clusters.

Each point(i, j) in the plot represents the number of Type
1 violations that the edgeij is involved in as a shade of
gray. A black point indicates no violation and a white point
indicates the maximum number of violations encountered in
the analysis. Missing values in the matrix are drawn as white
points.

It is immediately apparent that clustering is very useful for
classifying triangle inequality violations. It can be seenthat
edges within the same cluster (i.e., the 3 blocks along the
diagonal) tend to have significantly fewer Type 1 violations
(darker) than edges that cross clusters (lighter). Also, the num-
ber of violations for edges connecting a given pair of clusters
is quite homogeneous. The fact that TIVs exist even within
the same cluster is consistent with the effects of policy based
Internet routing. On the other hand, the fact that TIVs are much
less severe within the same cluster implies that the routing
path between two nodes in the same continent is most likely
contained within the continent without detouring through other
continents. Note that the white wavy lines roughly parallel
to the diagonal are simply showing the missing data. Our
measurement methodology measures the data in sequences
parallel to the diagonal to evenly spread the traffic among the
probed DNS servers. Thus, when a measurement station fails,
an entire diagonal can be missing. The lines are not straight
because whole rows and columns are removed from the data
set if they have more than 25% of the values missing. Due
to space limitations, we do not include the matrix picture for
Type 2 violations, but as expected, the relative shades are the
reverse of those in Figure 5[a]. These results imply that, if

6

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Average Type 1 Violation Ratio (%)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Measured 800

Measured 1600

Measured 2400

Measured 3200

(a) (b)

Fig. 5. (a) Clustered Type 1 TIVs (white color is most severe). (b) Type 1
TIV ratio distributions.
two nodes are within the same major cluster, then finding a
shorter overlay path is more difficult than when the nodes are
in different clusters. Interestingly, observe that it is hardest to
find better overlay routes for paths within the Asia cluster,but
it is easiest to find better overlay routes for paths across the
Asia and Europe clusters.

We show in Figure 5(b) the cumulative distributions of Type
1 violation ratios for different sample sizes. Observe thatthe
distribution is stable across sample sizes. Intuitively, since
triangle inequality violation is an inherent property of the in-
efficiency of Internet routing, the amount of triangle inequality
violations observed is not expected to depend on the number
of data samples. This invariant is useful in synthesizing the
Internet delay space.

IV. I NTERNET DELAY SPACE MODELING AND SYNTHESIS

Using measured Internet delay data to drive distributed
system simulations allows system designers to evaluate their
solutions under realistic conditions. However, there are two
potential concerns. First of all, our ability to measure a large
portion of the Internet delay space is limited by the time
required and the difficulty of dealing with network outages,
measurement errors and accidentally triggered intrusion alerts.
The second concern is that theO(N2) storage requirement of
a measured delay matrix representation does not scale.

To address these concerns, we develop techniques to model
and synthesize realistic delay spaces based on the character-
istics of a measured Internet delay space. An overview of
the proposed techniques and the relationships between the
techniques and the delay space properties are summarized in
Table II. The synthesized delay space adequately preserves
the relevant properties of the measured data while it has only
O(N) storage overhead. The goal is to allow synthesis of
realistic delay spaces at scales that exceed our capabilityto
measure Internet delays. Such a tool is valuable for distributed
system design and evaluation.

A. Building Block Techniques

Technique 1: Low-dimensional Euclidean embedding-
The first technique we use is to model an Internet delay
space using a low-dimensional Euclidean embedding. That
is, we compute Euclidean coordinates for each node and use
Euclidean distances to model the delays in the delay space.
Such a Euclidean map containsN low-dimensional Euclidean
coordinates and has a scalableO(N) representation.

Several techniques have been proposed to compute a Eu-
clidean embedding robustly (e.g., [23], [7], [34], [6], [19],

0 200 400 600 800 1000
0

1

2

3

4

5

x 10
−3

Delay (ms)

P
ro

ba
bi

lit
y

Measured

5D

5D no missing

Fig. 6. Delay distribution of the 5D Euclidean map.

[42], [39], [38]). Previous studies have shown that a Euclidean
embedding can well approximate an Internet delay space with
as little as 5 dimensions. However, studies (e.g., [17]) have
also shown that such an embedding tends to inflate the small
values (< 10 ms) in the delay space significantly.

In order to create a model that also preserves small values,
we first use the Vivaldi algorithm to create an Euclidean
embedding of the measured delay space, then we explicitly
adjust the Euclidean coordinates of nodes as follows. First,
extract the setS of all node pairs(i, j) with measured delay
dij less than 10 ms. Next, among these node pairs, select
the node pair(m, n) whose Euclidean distancêdmn in the
embedding is smallest. If̂dmn > 30 ms, the procedure
terminates. Otherwise, the coordinates of nodesm andn are
adjusted so that̂dmn becomes identical todmn. Then,(m, n)
is removed fromS and the procedure repeats. The 30 ms
threshold is empirically derived which allows a similar amount
of small delays as in the measured data to be reproduced by
the coordinates adjustments.

The effect of this procedure is that small values in the
measured delay space that are mildly distorted in the initial Vi-
valdi Euclidean embedding are well preserved by the final set
of adjusted Euclidean coordinates. These adjusted Euclidean
coordinates serve as the starting point for our model.

Figure 6 shows the delay distributions for (1) the measured
data, (2) all the delays in the 5D Euclidean map, including
the modeled values for the missing data, and (3) the delays
in the 5D Euclidean map corresponding to the available mea-
sured data. We can see that the 5D Euclidean map preserves
the distribution of the measured data well. In addition, the
modeled values for the missing data do not skew the overall
distribution.

However, the Euclidean map is at the same size as the mea-
sured data so it still cannot support large scale simulation. In
addition, the Euclidean map cannot preserve triangle inequality
violations. Finally, it also fails to preserve the high in-degree
of some nodes in the nearest neighbor directed graph because
a node cannot have a high number of nearest neighbors in a
low-dimensional Euclidean space.

To address these limitations of the basic Euclidean model,
we use four additional techniques in order to enable synthesis
of a larger delay space while preserving the properties lostas
a result of the Euclidean embedding.
Technique 2: Euclidean map synthesis- This technique
exploits the node-growth properties found in the measured
Internet delay space to enable the synthesis of a larger de-
lay space. The node-growth properties relate to the spatial

7

Techniques Input Output Relationship to delay properties

Euclidean embedding Measured delay matrix A Euclidean map Preserve global clustering
properties & growth properties

Euclidean map synthesis
(1) A Euclidean map
(2) A scaling factor

A synthesized Euclidean map Preserve global clustering
properties & growth properties

Global distortion
(1) A synthesized Euclidean map
(2) Global distortion statistics

Synthesized delays after global
distortion Recreate TIVs characteristics

Local cluster size assignment A list of synthesized cluster centers A list of assigned cluster sizes Preserve the in-degree distribution

Local distortion

(1) A synthesized Euclidean map
(2) Local distortion statistics
(3) Synthesized delays after global
distortion

Synthesized delays after global
distortion and local distortion

Recreate local clustering properties

TABLE II
SUMMARY OF THE PROPOSEDTECHNIQUES

First half of data

Second half of data

First intensity component C1

Support S1 = {bin2}

Remaining support R1 = {bin2}
R1 covers 75% of second half

Weight p1 = 0.75

C2
bin2=2x0.25

Second intensity component C2

Support S2 = {bin1, bin2, bin3}

Remaining support R2 = {bin1, bin3}

R2 covers 25% of second half
Weight p2 = 0.25

C2
bin3=1x0.25

C2
bin1=1x0.25

bin1 bin2 bin3

Intensitybin1 = 0.25 Intensitybin2 = 3.5 Intensitybin3 = 0.25

Sum of component intensities

C1
bin2=4x0.

75

Euclidean model

Cluster 1

Cluster 2

Cluster 3

i

j

150ms

Hcluster 1&2,150ms
Type-1

Hcluster 1&2,150ms
Type-2

150ms

150ms

P1 = Pcluster 1&2, 150ms
Type-1

P2 = Pcluster 1&2, 150ms
Type-2

P 1
+P 3

(P 1
/(P

1
+P 2

) -
1)

1-P1-P2+P3
No global distortion, return 150ms

P3 = Pcluster 1&2, 150ms
Type-1&2

P
2 +P

3 (P
2 /(P

1 +P
2) -1)

ri

ti

Local cluster center i, size = 6

Member of 6-nearest neighbor

set, Xi

Delay to node i gets distorted

to ti

(a) (b) (c)

Fig. 7. (a) Euclidean map synthesis technique. (b) Global distortion technique. (c) Local distortion technique.

distribution and density of nodes in a Euclidean map. Given
a Euclidean map of an Internet delay space, we seek to
capture its node-growth properties so that we can synthesize an
artificial map and create realistic structure in the synthesized
delay space.

A simple idea is to divide the Euclidean space into equal
sized hyper-cubes, count the number of points in each hyper-
cube, and use these counts as relative intensities. With appro-
priate scaling of the relative intensities, one can synthesize an
artificial map of a certain size by generating random points in
each hyper-cube using an inhomogeneous Poisson point pro-
cess1 [20][30]. Indeed, this simple method can mimic the point
distribution of the original map and generate a realistic overall
delay distribution and global clustering structure. However,
this method ignores the node-growth properties in the data.
As a result, synthetic points can only appear in hyper-cubes
where points were originally found.

To incorporate the node-growth properties, the idea is to
introduce uncertainties in the locations of each point and
compute intensities that predict the node-growth. The idea
is best explained with a simple example in Figure 7(a). In
the example, there are 8 points in a 1-dimensional Euclidean
space divided into 3 equally sized bins. We randomly divide
the points into two halves, the first half happens to lie in bin2,
while the other half is spread across bin1 and bin2. Let us
define anintensity component as a vector of intensities for the
bins. We then iteratively compute theith intensity component
Ci using the first half of the points to predict the node-growth
observed in the second half of the points. Each component is
weighted according to how well it predicts the second half. The
location uncertainty of a point in the first half is represented

1The number of points lying in any two disjoint sets in space are indepen-
dent random numbers distributed according to a Poisson law with mean given
by the intensity.

by a Gaussian probability distribution with a certain variance
or width. To compute the first intensity componentC1, we
place a Gaussian with a smallwidth w1 that represents a low
level of uncertainty in the center of each bin and scale it by
the number of first half points in the bin. As a result, the
99% bodies of the Gaussians lie within bin2. We call the bins
occupied by the 99% bodies of the Gaussians thesupport of
the first component,S1. We also define theremaining support
of a component to be the support of the current component
subtracted by the support of the previous component, i.e.,
Ri = Si\Si−1. For the first component,R1 is simply S1.

The intensity I1 generated by the Gaussian is spread over
the three bins as 0, 4, 0, respectively. Now we ask, how well
doesR1 cover the second half of the points? If all points in
the second half are covered byR1 thenI1 can account for the
node-growth in the second half and we are done. However, in
the example,R1 only covers 75% of the points in the second
half. As a result, we weight the intensityI1 by a factorp1 =
0.75 to obtain the intensity componentC1. Since we have not
completely accounted for the node-growth in the second half,
we need to increase the location uncertainty and compute the
second intensity componentC2. To do so, we use a wider
Gaussian (widthw2) for the second iteration. The aggregate
intensity is still 4, but this time, it is spread across all 3 bins.
Suppose the intensities generated in the 3 bins are 1, 2, 1,
respectively. The 99% body of these wider Gaussians occupy
all three bins, thus the support of the second componentS2 is
the set{bin1, bin2, bin3}. The remaining supportR2 is S2\S1,
i.e., {bin1, bin3}. The fraction of the second half covered
by R2 is 25%. Thus, the intensityI2 is weighted byp2 =
0.25 to obtainC2. This iterative process continues until either
all points in the second half are covered byRi, or when a
maximum Gaussian width has been reached. The intensity of
each bin is simply the sum of all the intensity components

8

Ci. Finally, we repeat the procedure to use the second half to
predict the node-growth in the first half and use the average
intensity of each bin as the final intensity. In practice, we
divide the space into 100 bins in each dimension and vary the
Gaussian width from one-tenth to ten times the bin width.
Technique 3: Global distortion - The basic technique to
create triangle inequality violations in the Euclidean model
is to distort the delays computed from the embedding. Since
the frequency of triangle inequality violations in the measured
data is relatively small, it suffices to distort only a small subset
of node pairs or edges.

Recall that edges between different pairs of global clusters
have very different triangle inequality violation behaviors
(as can be seen in Figure 5(a)). Thus, we first identify the
edges in each pair of clusters that cause violations above a
certain severity threshold, and then characterize the distortion
distribution for these edges when they are mapped into the
Euclidean model, finally we use this same distortion distribu-
tion to introduce distortions when delays are generated from
the embedding. To ensure that the model always produces the
same delay for a given pair of nodes, it uses the node identi-
fiers to generate deterministic pseudo-random distortions. By
choosing different severity thresholds, we can vary the number
of edges that get distorted in the model and experimentally
determine the threshold that best matches the empirical data.
An overview of the technique is illustrated in Figure 7(b).

We define a violation severity thresholdR. A violation
caused by an edgeij is severe if for some nodek, dik+dkj

dij
< R

(called Type 1 violation), or if|dik−dkj |
dij

> 1

R
(called Type 2

violation). For each global cluster pairg, all edges with the
same Euclidean model delayl (rounded down to the nearest
1ms) form a subgroup. For each subgroup(g, l), we compute
the fraction of edges in this subgroup that are involved in
severe Type 1 violations in the measured data,P

Type-1
g,l , and a

histogramH
Type-1
g,l to characterize the real delay distribution of

those severe violation edges. Similarly, for Type 2 violations,
we compute the fractionP Type-2

g,l and the histogramHType-2
g,l .

We also compute the fraction of edges that incur severe Type
1 and Type 2 violations simultaneously,P

Type-1&2
g,l . This extra

statistical information incurs an additional constant storage
overhead for the model.

With these statistics, the delay between nodei and j is
then computed from the model as follows. Draw a pseudo-
random numberρ in [0,1] based on the IDs ofi and j. Let
the Euclidean distance betweeni andj be lij and the cluster-
cluster group beg. Based onP

Type-1
g,lij

, P
Type-2
g,lij

, P
Type-1&2
g,lij

,
and usingρ as a random variable, decide whether the edge
ij should be treated as a severe Type 1 violation (with

probabilityP
Type-1
g,lij

+P
Type-1&2
g,lij

· (
P

Type-1
g,lij

P
Type-1
g,lij

+P
Type-2
g,lij

− 1)), or a

severe Type 2 violation (with probabilityP Type-2
g,lij

+P
Type-1&2
g,lij

·

(
P

Type-2
g,lij

P
Type-1
g,lij

+P
Type-2
g,lij

− 1)), or to return the valuelij without

distortion. If the edgeij is treated as a severe Type 1 violation,
then we use the histogramHType-1

g,lij
andρ to draw a value from

the histogram and return that value. Similarly, if the edge is
treated as a severe Type 2 violation, then we use the histogram
H

Type-2
g,Dij

instead.
By experimenting with different threshold valuesR, we

have determined that a value of 0.85 produces Type 1 and
Type 2 violation distributions similar to those observed in
the measured data. This is also the threshold we use in the
remainder of this paper.

In order to preserve realistic local clustering properties, we
will first assign a cluster size to each local cluster center
(Technique 4) and then perform the local distortion technique
(Technique 5) to create the needed in-degree.
Technique 4: Local cluster size assignment- Recall the
synthesizer knows the empirical exponential distributionof
cluster sizes (as computed in Section III-B). Thus, it can
draw the cluster sizes from the distribution to approximate
the local cluster size distribution of the measured data. What
remains unclear is how to assign different cluster sizes to the
synthesized cluster centers. Should they be assigned randomly
to the cluster centers? Would that be realistic?

It turns out cluster sizes are related to node densities in
the measured data. Figure 8 plots the average local density at
the cluster centers, i.e., the number of nodes within 15ms of
the cluster centers, versus the local cluster size (or star size)
for different sample sizes. As can be seen, the size of a local
cluster is roughly linearly related to the local node density
around the cluster center.

Therefore, the synthesizer assigns cluster sizes as follows.
First, the synthesizer computes the local node densities for the
synthesized cluster centers and ranks them according to the
densities. The synthesizer also ranks the cluster sizes drawn
from the exponential distribution. Then, the synthesizer assigns
a cluster center of local density rankr the cluster size of rank
r. This way, the linear relationship between cluster size and
local density is preserved.
Technique 5: Local distortion - The idea of this technique is
to simply pull some nodes within a radius around a local clus-
ter center closer to create the needed in-degree, as illustrated in
Figure 7(c). Suppose a local cluster center nodei has a cluster
size ofsi assigned by Technique 4. We identify the set of its
si nearest neighbors,Xi, in the synthetic data after global
distortion. Then, we compute a radiusri as maxj∈Xi

(dij),
and a thresholdti asminj,k∈Xi

(djk)− ε. Currently,ε is set to
0.01 ·minj,k∈Xi

(djk). Then we associate the valuesri andti
with nodei. ri is essentially the radius within which distortion
may be necessary.ti is the delay needed to beat the smallest
delay among the nodes inXi.

The delay between nodei andj is then computed as follows.
Suppose the delay for the edgeij after global distortion islij .
If neither i nor j is a local cluster center,lij is returned.
Supposei is a local cluster center andj is not, then if
lij ≤ ri, we returnmin(ti, lij); otherwise, we returnlij . Theti
threshold is used to ensure that the nodes inXi cannot choose
one another as their nearest neighbors. After the distortion,
they will choosei as their nearest neighbor unless there is
a closer node outside of the radiusri. If both i and j are
local cluster centers, we pick the one with the smaller node

9

0 10 20 30
0

50

100

150

Star Size

A
ve

ra
ge

 L
oc

al
 D

en
si

ty

Measured 800
Best fit: Measured 800
Measured 1600
Best fit: Measured1600
Measured 2400
Best fit: Measured 2400
Measured 3200
Best fit: Measured 3200

Fig. 8. Average local density vs local cluster size for different sample sizes.

identifier as the center and perform the above steps.

B. Delay Space Synthesizer DS2

Based on the techniques described above, we have imple-
mented a delay space synthesizer calledDS2. At a high level,
DS2 works as follows:Step 1.Perform global clustering on
the measured data to assign nodes to major clusters. Perform
nearest neighbor directed graph analysis to identify local
cluster centers.Step 2.Compute a 5D Euclidean embedding
of the measured data using a robust method such as the Vivaldi
algorithm, which can handle missing data. Then, adjust coordi-
nates to preserve small values.Step 3.For each cluster-cluster
groupg and Euclidean delayl, compute the global distortion
statisticsP Type-1

g,l , P
Type-2
g,l , P

Type-1&2
g,l , H

Type-1
g,l , H

Type-2
g,l using

a severe violation thresholdR. Step 4. At this point, the
original measured data is no longer needed. Split the 5D
Euclidean map into two, one containing only local cluster
centers, and one containing all other nodes. Recall that cluster
heads are not simply a random sample of the full data, so
they are treated separately. Then each of the two maps is
further divided according to which global cluster each node
belongs. Assuming there are three major global clusters and
the remaining un-clustered nodes form another group, then the
splitting procedure produces eight sub-maps. Based on these
eight maps, separately synthesize Euclidean maps of each part
to the appropriate scale using the Euclidean map synthesis
technique. Merge the eight resulting synthesized maps back
into one synthesized map. In the final synthesized map, for
each node, we now know whether it is a local cluster center
and which major cluster it belongs to.Step 5.Assign a local
cluster size to each synthesized center using the local cluster
size assignment technique. For each local cluster centeri,
compute the local distortion statisticsri and ti. Step 6. To
compute the synthesized delay between nodei and j, we
first compute the Euclidean delay. In order to reproduce TIVs
characteristics, we always apply global distortion according
to the global distortion statistics from the measured data,and
finally apply local distortion according to the local distortion
statistics from the measured data . Return final value.

Note that a lower bound can be enforced on the synthesized
delays to mimic some sort of minimum processing delay
incurred by network devices.DS2 provides this as an option.

V. DESIGN AND EVALUATION OF DS2

In this section, we describe the design and implementation
details of theDS2 software (see [9] for further information).

DS2 Runtime

Distortion
Tool

DS2 Static
Analysis Tool

Synthetic
Delay

Space

DS2

Measured Delay Matrix Synthetic Delay

Fig. 9. Architecture ofDS2 software.

A. Design of DS2

The architecture ofDS2 is shown in Figure 9. TheDS2

software comprises two separate tools: theDS2 static analysis
tool, which analyzes the input delay matrix to generate a
synthetic delay space, and theDS2 runtime distortion tool,
which generates synthetic delays upon requests at runtime.By
decoupling its functionalities into two separate tools,DS2 can
be used in simulations more efficiently. First of all, theDS2

static analysis tool allows users to perform time-consuming
analysis to generate a synthetic and reusable delay space model
offline. Secondly, the resulting synthetic delay space can be
recorded in an intermediate file that can be used by different
DS2 runtime distortion implementations. Thirdly, in order
to use DS2 in simulations, users only need to incorporate
a runtime distortion implementation into the simulators and
then load the generated synthetic delay space into the runtime
distortion implementation.

The DS2 static analysis tool is implemented in C++.
Specifically, it implements step 1 to step 5 in Section IV-B.
The DS2 runtime distortion tool is currently implemented as
both a C++ class and a Java class so it can be incorporated
into C++ based or Java based simulators easily. It implements
step 6 in Section IV-B. UsingDS2 in simulations involves
the following steps:Step 1.Generate a synthetic delay space
using theDS2 static analysis tool offline.Step 2.Instantiate a
DS2 runtime distortion object (C++ version or Java version)
in the simulator.Step 3.Load the generated synthetic delay
space into theDS2 runtime distortion object.Step 4.When a
delay between two nodes is needed, the simulator just simply
calls theDS2 runtime distortion object to generate the delay.

B. Evaluating the Synthesized Delay Space Model

To evaluate the effectiveness of the synthesized delay model,
we first extract a 2,000 node random sub-sample from the
measured data. Then, we feedDS2 with just this 2,000 node
sub-sample to synthesize delay spaces with 2x, 4x, and 50x
scaling factors. IfDS2 correctly predicts and preserves the
scaling trends, then the synthetic 2x delay space should have
properties very similar to those found in the measured data
from 3,997 nodes. The larger scaling factors (4x and 50x) are
presented to illustrate how the synthesizer preserves various
properties under scaling. Note that at the scaling factor of50x,
a 100,000 node delay space is synthesized. Unfortunately, at
this scale, we do not have efficient ways to compute global
clustering (requiresO(N3) space) and triangle inequality
violation ratios (requiresO(N3) time) and thus results for
these two metrics are calculated based on a 16,000 node

10

0 200 400 600 800 1000 1200
0

1

2

3

4

5
x 10

−3

Delay (ms)

P
ro

ba
bi

lit
y

Measured
2X
4X
50X

0 100 200 300
0

20

40

60

80

100

Cutoff (ms)

La
rg

es
t C

lu
st

er
 P

er
ce

nt
ag

e

Measured

2X

4X

50X

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

Measured

2X

4X

50X

(a) (b) (c)

0 100 200 300
0

1

2

3

4

5

r (ms)

M
ed

ia
n

B
(2

r)
/B

(r
)

Measured
2X
4X
50X

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

k/N

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Measured

2X

4X

50X

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Type 1 Violation Ratio (%)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Measured

2X

4X

50X

(d) (e) (f)

Fig. 10. DS2 vs measured data. (a) Delay distribution. (b) Clustering cutoff. (c) In-degree distribution. (d) Median B(2r)/B(r). (e) D(k)/D(N). (f) Triangle
inequality violation ratio distribution.

random sample out of the 50x synthetic delay space.
The results in Figure 10 show that, even though the synthe-

sis is based on a 2,000 node subset of data, the 2x synthesized
data is able to match the characteristics of the 3,997 node mea-
sured data very well. As expected, there are a few differences.
However, these differences are small and we will show in
Section VI that they do not negatively affect the application of
the synthesized delay model in distributed system simulations.
It is also worth noting that the scaling invariants observed
in the measured data are maintained by the synthesizer. In
summary, the synthesis framework implemented byDS2 is
highly effective in creating realistic delay spaces with compact
O(N) storage requirement.

C. Performance of DS2

In this section, we present the computational performance
of DS2. All experiments are done on a Dell Dimension 9100
desktop with a Pentium 4 3.0 GHz CPU and 2GB of memory.
Performance of the DS2 static analysis tool - The DS2

static analysis tool is applied to our 3,997×3,997 measured
delay matrix to synthesize a synthetic delay space with a
scaling factor of 10. The computation times for all components
in the DS2 static analysis tool are shown in Table III.

“Extract local distortion statistics”, “Calculate triangle in-
equality violations” and “Global clustering” are the threemost
time-consuming components. Let us denote the scaling factor
asF and the size of input matrix asN , then the computation
complexity of the component “Extract local distortion statis-
tics” is O((N ×F)2). The computation complexities of “Cal-
culate triangle inequality violations” and “Global clustering”
are bothO(N3). Fortunately, these expensive components can
be done offline and only need to be done once.

The resulting synthetic delay space is a 40MB ASCII text
file, which can be easily loaded into any modern computer’s
memory. In contrast, if we use a full matrix to represent the

Component Name (min.) (sec.)
Euclidean embedding 5 36
Adjust coordinates 3 42
Calculate relative errors 0 34
Calculate triangle inequality violations 44 30
KNN analysis 0 12
Global clustering 13 57
Re-organize matrices 2 45
Synthesis 3 43
Extract global distortion statistics 0 58
Extract local distortion statistics 66 24
Delete temporary files 0 2
Total time 142 23

TABLE III
COMPUTATION TIME OF COMPONENTS INDS2 STATIC ANALYSIS TOOL.

delay space of a 40k-node network and assume we use 4 bytes
to hold each value, we need 40k×40k×4 =6.4 GB of memory.
Performance ofDS2 runtime distortion tool - A delay space
model with 4k nodes is generated using theDS2 static analysis
tool and loaded into theDS2 runtime distortion tool. Then a
C program, which simply keeps querying theDS2 runtime
distortion tool, is used to test the standalone performance
of DS2. 108 random delay requests are issued to theDS2

runtime distortion tool and it takesDS2 5.6 microsecond on
average to handle each delay request. For comparison, another
C program simply loads a 4k×4k delay matrix into memory
and then issues108 random memory access on the delay
matrix. It takes 0.24 microsecond to perform one memory
access on average. The comparison results are summarized
in Table IV. Although DS2 is slower than direct memory
access, such delay calculations are only a small part of a
simulation. In addition,DS2 features constant overhead, i.e.,
the computation time does not increase with the size of the
simulated network. In contrast, the approach of using a full
delay matrix does not scale. To further improve the efficiency
of DS2, a caching system can be implemented inDS2 to
cache the recently calculated delays. This can benefit those
simulations that have good delay request locality.

11

Models Average Time (ms) Memory (MB)
DS2: 4k nodes 5.6 30
Delay Matrix: 4k nodes 0.24 64
DS2: 40k nodes 5.6 40
Delay Matrix: 40k nodes 105 6,400

TABLE IV
PERFORMANCE OF STANDALONEDS2 RUNTIME DISTORTION TOOL.

Table IV compares the performance of usingDS2 and
using a delay matrix to simulate a 40k-node network.DS2

only requires 40 MB of memory to simulate a 40k-node
network and the runtime simulation overhead remains the
same as simulating a 4k-node network. While if a 40k×40k
delay matrix is used, the delay matrix of 6.4 GB cannot be
completely loaded into memory so pages have to be swapped
in and out, which is very inefficient. This is why the average
access time of the direct matrix approach increases 438 times
to 105 microseconds per request.

D. Limitations of DS2

The strength ofDS2 is that it synthesizes delay space mod-
els based on the empirical characteristics of measured Internet
delays. This approach produces realistic delay spaces at scales
where direct measurement and storage are impractical.

One down side of this approach is thatDS2 is designed
based on a set of assumptions that are empirically derived
from delays among edge networks in the Internet. That is,
it is not designed to synthesize delays within a local area
network, although such a capability can be incorporated into
DS2 as future work. Another limitation is that it does not
model delay dynamics (e.g., dynamic convergence of routing
protocols and congestion events). In fact, modeling delay
dynamics is orthogonal to our work on modeling static all-
pairs delays. We believe the two models can be integrated
when the delay dynamics model becomes available. On the
other hand, the static all-pairs delays generated byDS2 are
sufficient for simulations of many distributed systems. Taking
Vivaldi as an example, each Vivaldi node periodically probes
its neighbors and keeps the minimum delay to each neighbor,
i.e, it is designed to filter out the delay dynamics. Our goal is
to provide a way for stressing thescalability of distributed
systems under realistic delay models. For evaluations that
concern adaptability to delay dynamics, our model does not
apply and Planet-lab based experiments could be used.

We have experimented with PlanetLab delay data as well
as p2psim delay data and found thatDS2 can correctly
synthesize the characteristics of these data sets. However, DS2

may not work correctly on arbitrary delay data inputs that
violate the following empirical assumptions:
• A low-dimensional Euclidean embedding can model the
input delay data with reasonable accuracy, ignoring triangle in-
equality violations and local clustering properties. Somerecent
studies (e.g., [21], [17]) have shown that Euclidean embedding
has difficulties in predicting pairwise Internet delays very
accurately. Note, however, that we do not aim at predicting
pairwise delays, we only use the Euclidean embedding as a
compact model of the statistical properties of the input data.
• The in-degree distribution of the nearest neighbor graph
computed from the input data is exponential. The current

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Penalty (ms)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Measured

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DS2

Penalty (ms)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Penalty (ms)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Inet

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Penalty (ms)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

GT−ITM

Meridian−2k

Meridian−4k

Meridian−16k

Vivaldi−2k

Vivaldi−4k

Vivaldi−16k

Random−2k

Random−4k

Random−16k

Fig. 11. Performance comparison of three server selection algorithms.

implementation ofDS2 automatically fits the in-degree distri-
bution of the input data to an exponential distribution.
• Due to the limited amount of data available, we cannot yet
accurately model the slow decreasing trend for the proportion
of local cluster heads. The current implementation ofDS2

assumes the proportion of cluster heads is stable under scaling.
However, this can be easily changed once an accurate model
becomes available.
• The input data has a coarse-grained clustering structure. And
the delay edges across the same coarse-grained cluster pair
exhibit similar triangle inequality violation characteristics.

VI. A PPLICATIONS

In this section, we demonstrate the importance of using
a realistic delay model for simulation-based evaluation of
distributed systems.

A. Server Selection

A number of server selection systems [46], [11], [7] have
been proposed recently. In this section, the performance of
Meridian [46], Vivaldi [7] and random server selection is
evaluated using four different delay spaces: measured data,
DS2, Inet and GT-ITM.

We evaluate the accuracy of the three server selection
algorithms using the delay penalty metric, which is defined as
the difference between the delay to the chosen server and the
delay to the closest server. We run each algorithm on all of the
following data sets: for measured data, in addition to the full
3,997-node data, we also use a 2k sample; forDS2 data, we
synthesize 2k data from a 1k sample of the measured data, and
synthesize 4k and 16k data from a 2k sample of the measured
data; for both Inet and GT-ITM, we generate 2k, 4k and 16k
data sets, respectively, using the same methodology described
in Section II. In all server selection experiments, we assume
that there is only one service available in the network, and
all the nodes act as clients and servers simultaneously. Clients
are not allowed to select themselves as their servers. For each
data set, we run five experiments with different random seeds
and the cumulative distributions of server selection penalties
are presented in Figure 11.

12

First of all, the synthesized 2k and 4kDS2 data sets yield
virtually identical results as the 2k and 3,997-node measured
data, even though they are synthesized from only 1k and 2k
measured data samples, respectively. Second, using the Inet
model significantly underestimates the performance of Vivaldi.
The results suggest that Vivaldi performs no better than
random server selection, while Vivaldi performs much better
than random selection if it is evaluated using the measured
data orDS2 data. Thus, using Inet model could lead to false
conclusions about the performance of Vivaldi. Third, although
the relative performance rank of the three algorithms is the
same across all four delay models, the absolute performance
estimated with Inet and GT-ITM differs dramatically from that
achieved with the measured data orDS2 data.

Finally, the experiment based on the 16kDS2 synthetic
data indicates that the performance of Vivaldi should almost
remain constant under scaling, but this is not the case with Inet
and GT-ITM delay models. Similarly, Meridian’s performance
degrades more rapidly on Inet and GT-ITM than onDS2

data with increasing network size. This illustrates that itis
important to have good delay space models that are beyond
our ability to measure since important performance trends
sometimes only show at scale.

B. Structured Overlay Networks

Here, we show the importance of using a realistic delay
space in simulation of structured overlay networks. Unless
otherwise stated, the results in this section have been evaluated
on a 4,000-node overlay network using FreePastry [12], where
the delay space used was either based on measured data,DS2,
Inet, or GT-ITM.
Overlay Metrics - We firstly evaluate three important metrics
in overlay network:Hop Length Distribution of overlay route,
which determines the latency of overlay lookups.Overlay
Indegree of a node, which is the number of overlay nodes
that have the node in their routing tables.Route Convergence
of overlay routes, which, given two nodes located at distanced
from each other, measures what fraction of their overlay paths
to a given destination is shared.

 0

 10

 20

 30

 40

 50

 60

 70

 80

321

%
 o

f
to

ta
l
o

v
e

rl
a

y
 p

a
th

 l
a

te
n

c
y

Hop number

Measured
DS2

Inet
GT-ITM

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 750 500 250

Cu
m

ul
at

ive
 F

ra
ct

io
n

Overalay node’s Indegree

Measured
DS2

Inet
GT-ITM

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Co
nv

er
ge

nc
e

M
et

ric

Distance(node1,node2) in ms

Measured
DS2

Inet
GT-ITM

(c)

Fig. 12. Overlay properties. (a) Hop Length Distribution. (b) Overlay
Indegree. (c) Route Convergence.

Figure 12 shows that the results agree very well for the
measured delay data andDS2 data on all three metrics, while
the results with the Inet and GT-ITM models differ signifi-
cantly. For the hop length distributions, we observe that the
first hop of overlay routes with the Inet model is significantly
larger than the first hop obtained with measured delay data.

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

Ac
ces

s la
ten

cy

Number of Replicas

Measured
DS2

Inet
GT-ITM

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4000 3000 2000 1000 0

Cu
mu

lati
ve

%
of q

uer
y lo

ad
ser

ved

Node rank wrt query load

Measured
DS2

Inet
GT-ITM

(b)

Fig. 13. Proactive replication. (a) Query latency. (b) Query load.
The Inet model yields different results on indegree because
of its power-law connectivity. Finally, the route convergence
with Inet/GT-ITM is higher than with the measured data. The
deviations of these properties are rooted in the differences of
the D(k)/D(N) growth metric and the local clustering in-degree
metric among the delay models.
Effectiveness of PNS on Eclipse Attacks- Recently Singh et
al. [36] argue that Proximity Neighbor Selection (PNS) alone
is a weak defense against Eclipse attacks [3]. While earlier
work has shown that PNS is effective against Eclipse attacks
based on simulations with a GT-ITM delay model [15], Singh
et al. demonstrate that the defense breaks down when using
measured delay data in simulations. We have repeated their
simulations usingDS2 data and confirmed thatDS2 yields
same results as the measured data. This shows again how using
inadequate delay models can lead to wrong conclusions.
Performance of Proactive Replication- Proactive replication
is very effective in reducing overlay lookup hops and latency
in structured overlays [27]. We experimented with a simple
proactive replication network that consists of 4,000 nodes
(3,997 nodes for measured data) and a total of 10,000 objects.

Figure 13(a) shows that the average query latency for a
given number of replicas is significantly lower with measured
delay, especially when compared to Inet. This is an artifact
of the different distributions of hop length as shown earlier in
Figure 12(b). In the absence of realistic models, one would
overestimate the number of replicas required to achieve a
certain target lookup latency.

We then evaluate the distribution of query traffic to the
replicas. The objects were replicated on all nodes that matched
at least one digit with the object identifier. Figure 13(b) shows
the distribution of query load among the replicas. A point
(x, y) in the plot indicates that thex lowest ranked nodes with
respect to the amount of query traffic they served, together
servey% of the overall query traffic. The figure shows a huge
imbalance in the load distribution for the Inet topology model,
wherein 5% of the nodes serve over 50% of the traffic. This
imbalance is caused due to the highly skewed overlay indegree
distribution of nodes in the Inet topology.

In conclusion, theDS2 delay model allows realistic eval-
uation of the effectiveness and performance of distributed
systems at scale. In contrast, simulation results based on GT-
ITM and Inet delay models are often not realistic.

VII. R ELATED WORK

This paper is based on [48] and contains significant re-
visions and extensions. In this extended paper, we present
the design of theDS2 delay synthesizer tool. We show that

13

decomposingDS2 into the analysis and runtime components
can lead to an efficient implementation and ease integration
into existing network simulators. We have quantified the
performance ofDS2 and showed that it has a low runtime
overhead and can support large scale simulations highly ef-
ficiently. The proposed modeling and synthesis techniques
are presented in an integrated fashion. We also explain the
importance of synthesizing the local cluster heads separately.
The data presented and theDS2 tools are available at [9].

Our work on modeling the Internet delay space is comple-
mentary to existing work on modeling network connectivity
topologies. There is an opportunity for future work to incor-
porate delay space characteristics into topology models.

Early artificial network topologies had a straight-forward
connectivity structure such as tree, star, or ring. A more sophis-
ticated topology model that constructs node connectivity based
on the random graph model was proposed by Waxman [44].
However, as the hierarchical nature of the Internet connectivity
became apparent, solutions that more accurately model this
hierarchy, such as Transit-Stub by Calvertet al [47] and Tier
by Doar [8], emerged. Faloutsoset al [10] studied real Internet
topology traces and discovered the power-law node degree
distribution of the Internet. Liet al [18] further showed that
router capacity constraints can be integrated with the power-
law node degree model to create even more realistic router-
level topologies.

There are many on-going projects actively collecting delay
measurements of the Internet, including Skitter [37], AMP
[2], PingER [26], and Surveyor [41] to name just a few
examples. Some of these projects also collect one-way delays
and hop-by-hop routing information. These projects typically
use a set of monitoring nodes, ranging roughly from 20
to 100, to actively probe a set of destinations. The active
monitoring method can probe any destination in the network,
but the resulting measurements cover only a small subset of
the delay space as observed by the monitors. Many of these
measurements are also continuously collected, allowing the
study of changes in delay over time. Our work uses the King
tool to collect delay measurements, which restricts the probed
nodes to be DNS servers, but produces a symmetric delay
space matrix, which lends itself to a study of the stationary
delay space characteristics.

Some of the delay space properties reported in this paper
have been observed in previous work. For example, triangle
inequality violations and routing inefficiencies have been
observed in [33] and [23]. [50] explored some of the
ways in which routing policies can cause TIVs. Some of
the characteristics of delay distributions and their implications
for global clustering have been observed in Skitter. How-
ever, many of the observations made in this paper are new.
These include the local clustering properties, and in particular
the approximately exponential in-degree distribution, spatial
growth properties, detailed properties of triangle inequality
violations of different types and across different clusters,
and the examination of these properties under scaling. In
addition to the ”static” properties of delay, previous work
have also studied the temporal properties of Internet delay[1].
Incorporating temporal properties into a delay space modelis

an area for future work.
One key technique used in our work is computing a

low dimensional Euclidean embedding of the delay space
to enhance the scalability of the delay space representation.
Many approaches for computing such an embedding have
been studied [23], [7], [34], [6], [19], [42], [35], [25]. We
have not considered the impact of using different computation
methods or using different embedding objective functions.
This represents another area for future work.

VIII. C ONCLUSIONS

To the best of our knowledge, this is the first study to
systematically analyze, model, and synthesize the Internet
delay space. We quantify the properties of the Internet delay
space with respect to a set of metrics relevant to distributed
systems design. This leads to new understandings of the
Internet delay space characteristics which may inform future
work. We also develop a set of building block techniques to
model and synthesize the Internet delay space compactly while
accurately preserving all relevant metrics. The result is an
Internet delay space synthesizer calledDS2 that can produce
realistic delay spaces at large scale.DS2 requires onlyO(N)
memory, whereN is the number of nodes, and requires only
simple run-time calculations to generate the delay betweena
pair of nodes. This helps to address the memory requirement
barrier of conducting large-scale simulations.DS2 provides an
important mechanism for simulating and emulating distributed
systems at large-scale, which complements other evaluation
methodologies. See [9] for further information onDS2.

REFERENCES

[1] A. Acharya and J. Saltz. A Study of Internet Round-Trip Delay.
Technical Report CS-TR-3736, University of Maryland, 1996.

[2] Active measurement project, NLANR. http://watt.nlanr.net.
[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D.S. Wallach.

Security for Structured Peer-to-Peer Overlay Networks. InUSENIX
OSDI, December 2002.

[4] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploiting Network
Proximity in Peer-to-Peer Overlay Networks. Technical Report MSR-
TR-2002-82, Microsoft Research, May 2002.

[5] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. ProximityNeighbor
Selection in Tree-based Structured Peer-to-peer Overlays. Technical
Report MSR-TR-2003-52, Microsoft Research, June 2003.

[6] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical Internet
Coordinates for Distance Estimation. Technical Report MSR-TR-2003-
53, Microsoft Research, September 2003.

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized
Network Coordinate System. InACM SIGCOMM, August 2004.

[8] M. Doar. A Better Model for Generating Test Networks. InIEEE
GLOBECOM, November 1996.

[9] DS2. http://www.cs.rice.edu/∼eugeneng/research/ds2/.
[10] C. Faloutsos, M. Faloutsos, and P. Faloutsos. On Power-law Relation-

ships of the Internet Topology. InACM SIGCOMM, August 1999.
[11] M. Freedman, K. Lakshminarayanan, and D. Mazieres. OASIS: Anycast

for Any Service. InUSENIX NSDI, May 2006.
[12] FreePastry. http://freepastry.rice.edu/.
[13] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker,

and I. Stoica. The Impact of DHT Routing Geometry on Resilience and
Proximity. In ACM SIGCOMM, August 2003.

[14] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating Latency
Between Arbitrary Internet End Hosts. InACM IMW, November 2002.

[15] K. Hildrum and J. Kubiatowicz. Asymptotically Efficient Approaches
to Fault Tolerance in Peer-to-Peer Networks. In17th International
Symposium on Distributed Computing, October 2003.

[16] D. R. Karger and M. Ruhl. Finding Nearest Neighbors in Growth
Restricted Metrics. InACM STOC, May 2002.

14

[17] S. Lee, Z. Zhang, S. Sahu, and D. Saha. On Suitability of Euclidean
Embedding of Internet Hosts. InACM SIGMETRICS, June 2006.

[18] L. Li, D. Alderson, W. Willinger, and J. Doyle. A First-Principles
Approach to Understanding the Internet’s Router-level Topology. In
ACM SIGCOMM, August 2004.

[19] H. Lim, J. Hou, and C.-H. Choi. Constructing Internet Coordinate
System Based on Delay Measurement. InACM IMC, October 2003.

[20] J. Møller and R. Waagepetersen. Statistical Inferenceand Simulation
for Spatial Point Processes. Chapman and Hall/CRC, 2004.

[21] E. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft. Onthe Accuracy
of Embeddings for Internet Coordinate Systems. InACM IMC, October
2005.

[22] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani. iPlane: An InformationPlane for
Distributed Services. InUSENIX OSDI, November 2006.

[23] T. S. E. Ng and H. Zhang. Predicting Internet NetworkingDistance with
Coordinates-Based Approaches. InIEEE INFOCOM, June 2002.

[24] p2psim. http://www.pdos.lcs.mit.edu/p2psim/.
[25] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti. Lighthouses

for Scalable Distributed Location. InIPTPS, February 2003.
[26] PingER. http://www.slac.stanford.edu/comp/net/wan-mon/tutorial.html.
[27] V. Ramasubramanian and E.G Sirer. Beehive: O(1) LookupPerfor-

mance for Power-Law Query Distributions in Peer-to-Peer Overlays. In
USENIX NSDI, March 2004.

[28] S. Ranjan, R. Karrer, and E. Knightly. Wide Area Redirection of
Dynamic Content by Internet Data Centers. InIEEE INFOCOM, 2004.

[29] S. Ratnasamy, S. Shenker, and I. Stoica. Routing Algorithms for DHTs:
Some Open Questions. InIPTPS, March 2002.

[30] R. Reiss. A Course on Point Processes. Springer Series in Statistics.
Springer, 1993.

[31] Route views. http://www.routeviews.org/.
[32] B. Bhattacharjee S. Banerjee and C. Kommareddy. Scalable Application

Layer Multicast. InACM SIGCOMM, August 2002.
[33] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The End-

to-end Effects of Internet Path Selection. InACM SIGCOMM, August
1999.

[34] Y. Shavitt and T. Tankel. Big-Bang Simulation for Embedding Network
Distances in Euclidean Space. InIEEE INFOCOM, March 2003.

[35] Y. Shavitt and T. Tankel. On the Curvature of the Internet and Its Usage
for Overlay Construction and Distance Estimation. InIEEE INFOCOM,
March 2004.

[36] A. Singh, T. W. Ngan, P. Druschel, and D. S. Wallach. Eclipse Attacks
on Overlay Networks: Threats and Defenses. InIEEE INFOCOM, 2006.

[37] Skitter. http://www.caida.org/tools/measurement/skitter/.
[38] A. Slivkins. Distributed Approaches to Triangulationand Embedding.

In 16th ACM-SIAM SODA, January 2004.
[39] A. Slivkins, J. Kleinberg, and T. Wexler. Triangulation and Embedding

Using Small Sets of Beacons. InIEEE FOCS, October 2004.
[40] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.

Chord: A Scalable Peer-to-Peer Lookup Service for InternetApplica-
tions. In ACM SIGCOMM, August 2001.

[41] Surveyor. http://www.advanced.org/csg-ippm/.
[42] L. Tang and M. Crovella. Virtual Landmarks for the Internet. In ACM

IMC, October 2003.
[43] M. Waldvogel and R. Rinaldi. Efficient Topology-Aware Overlay

Network. In ACM HotNets-I, October 2002.
[44] B. Waxman. Routing of Multipoint Connections.IEEE J. Select. Areas

Commun., December 1988.
[45] J. Winick and S. Jamin. Inet-3.0: Internet Topology Generator. Technical

Report UM-CSE-TR-456-02, University of Michigan, 2002.
[46] B. Wong, A. Slivkins, and E. Sirer. Meridian: A Lightweight Network

Location Service Without Virtual Coordinates. InACM SIGCOMM,
August 2005.

[47] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How toModel an
Internetwork. InIEEE INFOCOM, March 1996.

[48] B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, andG. Wang.
Measurement-Based Analysis, Modeling, and Synthesis of the Internet
Delay Space. InACM IMC, October 2006.

[49] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure for
Wide-area Fault-tolerant Location and Routing.U.C. Berkeley Technical
Report UCB//CSD-01-1141, 2001.

[50] H. Zheng, E. Luo, M. Pias, and T. Griffin. Internet Routing Policies and
Round-Trip Time. InPAM, March 2005.

Bo Zhang is a Ph.D. student in Computer Science
at Rice University. He received a B.S. in Computer
Science in 2004 from the University of Science
and Technology of China and a M.S. in Computer
Science in 2007 from Rice University. His research
interest lies in network management and network
measurement.

T. S. Eugene Ngis an Assistant Professor of Com-
puter Science at Rice University. He is a recipient
of a NSF CAREER Award (2005) and an Alfred
P. Sloan Fellowship (2009). He received a Ph.D. in
Computer Science from Carnegie Mellon University
in 2003. His research interest lies in developing
new network models, network architectures, and
holistic networked systems that enable a robust and
manageable network infrastructure.

Animesh Nandi got his Ph.D. from Rice University
in 2009. He previously got his M.S. from Rice
University in 2004, and his B.Tech. from Indian
Institute of Technology, Kharagpur, India in 2001.
All the above degrees were in Computer Science.
He is currently visiting the Max Planck Institute
for Software Systems, Germany, working in the net-
worked and distributed systems group. His research
interests lie in the area of Internet-scale networked
and distributed systems, content distribution net-
works and middleware for communication systems.

Rudolf Riedi is a Professor of Mathematics at
EIF Fribourg, Switzerland. Prior to joining the EIF
in Sept 2007, he was an Associate Professor of
Statistics at Rice University. He received his Ph.D. in
Mathematics in 1993 from ETH Zurich, Switzerland.
His research focuses on the development of multi-
scale methodologies for modeling, estimation, infer-
ence and simulation, emphasizing on applications to
complex systems with evolutionary components.

Peter Druschel is on the faculty of the Max Planck
Institute for Software Systems (MPI-SWS). Prior to
joining MPI-SWS in 2005, he was a Professor of
Computer Science at Rice University. He received
a Ph.D. from the University of Arizona (1994), an
NSF CAREER Award (1995), a Alfred P. Sloan
Fellowship (2000) and the Mark Weiser Award
(2008). His research interests are in understanding,
designing and building distributed systems.

Guohui Wang is a Ph.D. student in Computer
Science at Rice University. He received a B.S. in
Electrical Engineering from University of Science
and Technology of China in 2002, a M.S. in Com-
puter Science from Chinese Academy of Science in
2005 and a M.S. in Computer Science from Rice
University in 2008. His research interests are in
networking and distributed systems.

