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Abstract—Understanding the characteristics of the Internet Currently, two approaches are used to obtain a delay model.
delay space (i.e., the all-pairs set of static round-trip popagation  The first approach, adopted for instance by the p2psim sim-
delays among edge networks in the Intemet) is important for ;15161 [24], is to collect actual delay measurements using a

the design of global-scale distributed systems. For instae, algo- - .
rithms used in overlay networks are often sensitive to violdons tool such as King [14]. However, due to limitations of the

of the triangle inequality and to the growth properties within the ~Measurement methodology and the quadratic time requiremen
Internet delay space. Since designers of distributed systes often for measuring a delay matrix, measured data tends to be

rely on simulation and emulation to study design alternaties, incomplete and there are limits to the size of a delay matrix
they need a realistic model of the Internet delay space. that can be measured in practice. To its credit, p2psim gesvi

In this paper, we analyze measured delay spaces among thou- . . -
sands of Internet edge networks and quantify key propertieshat & 1740<1740 delay space matrix, which is not a trivial amount

are important for distributed system design. Our analysis sows Of data to obtain.

that existing delay space models do not adequately capturéése The second approach is to start with a statistical network
importgnt prqperties of the Internet delay space. Furthermore, topology model (e.g., [44], [47], [8], [10], [18]) and assig
we derive a simple model of the Internet delay space based oniio artificial link delays to the topology. The delay space is

analytical findings. This model preserves the relevant metes far . L
better than existing models, allows for a compact represeation, then modeled by the all-pair shortest-path delays with th

and can be used to synthesize delay data for simulations and topology. The properties of such delay models, howeved ten

emulations at a scale where direct measurement and storageto differ dramatically from the actual Internet delay space

are impractical. We present the design of a publicly availale  This is because these models do not adequately capture rich

delay space synthesizer tool called)S* and demonstrate its  feayyres in the Internet delay space, such as those caused by

effectiveness. . . T .
geographic constraints, variation in node concentratians

Inde?( Tel_’m_s—lnternet delay space, measurement, analysis, modeling, routing inefficiency.

synthesis, distributed system, simulation. . . .

A delay space model suitable for large-scale simulations
must adequately capture the relevant characteristics @f th
Internet delay space. In addition, the model must have a

Designers of large-scale distributed systems rely on simeempact representation, since large-scale simulatiams tie
lation and network emulation to study design alternative$ abe memory-bound. The naive approach of storing 16-bit delay
evaluate prototype systems at scale and prior to deploymentlues for all pairs of a 100K node network, for instance,
To obtain accurate results, such simulations or emulatimest  would require 20GB of main memory! Finally, to enable effi-
include an adequate model of theternet delay space: The cient simulation, generating a delay for a given pair of reode
all-pairs set of static round-trip propagation delays agiomust require very little computation and no disk accesses.
edge networks. Such a model must accurately reflect thos&ne approach is to build siructural model of the Internet,
characteristics of real Internet delays that influenceesyst using BGP tables, traceroute, ping and other measurements
performance. For example, having realistic clusteringppro to capture the routing policies, the topology of the Intérne
ties is important because they can influence the load balargrl the associated static link delays [22]. Given such a
of delay-optimized overlay networks, and the effectivenesnodel, the delay for a given pair of IP addresses can be
of server placement policies and caching strategies. Hastimated by adding the link delays on the predicted route
ing realistic growth characteristics [16] is equally img@ot, through the topology. However, it remains unclear how all
because the effectiveness of certain distributed algosththe required information (e.g., intra-domain and intem@in
depends on them. Many distributed systems are also sensitiyuting policies, Internet topology and link weights) caa b
to the inefficiency of IP routing with respect to delay. Suchccurately obtained and how detailed such a model has to be to
inefficiency manifests itself as triangle inequality viiddas in  preserve the relevant characteristics. On the other haady m
the delay space, and must be reflected in a model as well.distributed systems (e.g., structured overlays, serdecten

. %ystems) only need end-to-end delays for their simulations
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Internet IP addresses. For the purposes of distributeémsgst then only one of the two sets is kept since they do not
simulations, however, it suffices that the statistical prtips represent distinct domains. If there is more than one server
of the model adequately reflect those of the measured delaya set, the set is kept only if all the servers in the set are
data. Statistical models lend themselves to a compactgepre topologically close. We check this by performing traceesut
tation and can enable efficient generation of delay datagé lafrom our machine to all the servers in the set to make sure
scale. Since we are primarily interested in enabling at¢eurathe minimum delays to them differ less than 5% and the
efficient, large-scale simulations, we decided to pursug thraceroute paths have at least 90% overlap with each otler. B
approach in this paper. making sure the servers in the set are physically co-located

We have measured a sample of the Internet delay spasesure different measurement samples are measuring tlee sam
among 3,997 edge networks. We then characterize the meatwork. Among the remaining DNS server sets, we choose
sured sample with respect to a set of properties that areargle one server per set that supports recursive query. We then use
to distributed system design. Based on the analytical fgsjin 5,000 such DNS servers to conduct our measurements.
we develop the methods and tool to model and synthesizeTo ensure the subsequent analysis is based on accurate data,
artificial Internet delay spaces. A synthesized delay spase adopt a fairly stringent methodology. We measure the
model has a compac€?(V) representation (as opposed to theound-trip delay between two DNS servef3, and D5, from
O(N?) matrix representation) and adequately preserves theth directions by using either server as the recursiveeserv
relevant characteristics of the Internet delay space. Weemd-or each direction, we make up to 50 attempts to measure
two primary contributions in this work: the direct delay taD; and the recursive delay tb, via Dy,
e We quantify the properties of the Internet delay spa@nd up to 50 attempts to measure the direct delap4cand
with respect to a set of statistical, structural, and raytirthe recursive delay td; via D,. At least 20 measurement
metrics relevant to distributed systems design. This ldadssamples must be obtained in each case. The minimum value
new insights into Internet delay space characteristicsrttey across the samples is used as the propagation delay. Aéter th
inform future work. subtraction step, if the delay is greater than 2 secondst(mos
o We develop a set of building block techniques and a publiclikely the recursive delay measurement is inflated too moch)
available tool called>.S? to model and synthesize the Internesmaller than 100 microseconds (most likely the direct delay
delay space compactly, while accurately preserving the- remeasurement is inflated too much), it is discarded. Also, if
vant metrics. The compact representation enables acamdte the obtained round-trip delay betweéh and D, measured
efficient simulations at large scale. We show the benefits iof each direction disagrees by more than 10%, we consider

DS? through several applications. the measurement problematic and then discard it. Finaky, w
remove data from DNS servers that are consistently failing
II. METHODOLOGY AND MODELS to provide valid measurements. After we assemble the delay

afgace matrix, if any row/column has more than 25% of the
values missing, the entire row/column is removed.

We collected the measurements in October 2005. Among
the collected 5,0005,000 delay data, 16.7% have insuffi-
A. Measured Internet Delay Space cient measurements samples, 8.1% have inconsistent sample

We use the King tool [14] to measure the all-pairs round-trip.16% are smaller than 100 microseconds, and 0.51% are
static propagation delays among a large number of globalgrger than 2 seconds. After removing suspicious measureme
distributed DNS servers, where each server representsgjaeinivalues, the remaining delay matrix has 3,997 rows/columns
domain and typically one edge network. To our best knowlvith 13% of the values in the matrix unavailable. To char-
edge, the King tool is the only tool that can accurately measiacterize the distribution of the missing values, we pantiti
the delays among a large number of DNS servers. In orderth@ delay matrix into its three largest clusters. Thesetetas
measure the delay between two DNS send@isand Ds, the correspond to IP hosts in North America, Europe and Asia.
King tool first measures the amount of time it takes to issi¥e find that the percentage of missing values are distributed
a recursive query td, for a name whose authoritative names follows:

We begin by describing our measurement methodology
the existing delay space models we use in this study.

server isD, (the time it takes is denoted @& King, D1, D2)), From/To North America | Europe | Asia
and then it measures its delay 0, by using an iterative North America 14% 11% | 12%

; ; . Europe 11% 15% 11%
DNS query (this measured delay is denoted 8&'ing, D1)). s 5% T 8%

By subtractingT' (King, D1) from T'(King, D1, D2), it can — .
obtain the estimated delay betweén and D,. To choose 10 understand the properties in the data set under scaling,
DNS servers, we start with a list of 100,000 random € consider four different random sub-samples of the mea-

addresses drawn from the prefixes announced in BGP S$ed data with the sizes 800, 1,600, 2,400 and 3,200. Then,
published by the Route Views project [31]. For each If2r €ach sub-samplg size, we consider five random samp!e.

addressi, we perform a reverse DNS lookup to determinResults presented in this paper are averages over the five
the associated DNS servers. Each reverse lookup return§2gPles. o _

set of DNS serversS;. We keep only the DNS server sets The data set has some limitations. First, the measurements
in which at least one server supports recursive queriesgsi® among DNS servers. The data set thus represents the
King requires it. If two DNS server setS; and S; overlap, delay space among edge networks in the Internet. No explicit



measurements were collected among hosithin a local
area network. Therefore, this study addresses only they dela

u\f% -
space properties among edge networks in the wide area, but o— ?LF’

not the delay space properties within a local area network.

Secondly, to increase our confidence in the data, we have \ T Nodan deloy space””
discarded questionable measurements. We therefore jprocee [2] 2 2" clusiornoas
with the assumption that the missing delay values do not have 4 Nota cluster head; exiracted

significantly different properties than the available data

Fig. 1. Nearest neighbor directed graph analysis technique

B. Topology Model Delay Spaces (North America, Europe .and Asia) form rgcognlzable cI_uster
_ o in the delay space. This global clustering structure is, for

We also generate delay matrices based on existing topolqg¥iance, relevant to the placement of large data centets an
models and compare them against the measured Internet dglay request redirection algorithms (e.g., [28]).
space. The two generators we use are Inet [45] and GT-oyr glgorithm to determine the global clustering works as
ITM [47]. The Inet generator creates a topology that ha§|iows. Given N nodes in the measured delay data, it first
power-law node degree distribution. The GT-ITM generasor jreats each node as a singleton cluster. Then it iteratively
used to generate a topology based on the Transit-Stub MOo&lis two closest clusters to merge. The distance between two
We include the Inet and GT-ITM topology models in this studyjysters is defined as the average distance between the nodes
because they are often used in distributed system simo&atio, the two clusters. A cutoff value determines when to stop

For Inet, we create a 16,000-node topology. To generate @ merging process. If the distance between the two closest
Qelays, we use the standard method of p_Iacmg nodes ra”doﬁ]l}_’sters is larger than the cutoff, the merging processssBp
in a plane and then use the _Euchdean dlstar!ce between a RaK/ing the cutoff value and monitoring the resulting chust
of connected nodes as the link delay. All-pairs shortesiydelgjzes, the global clustering properties can be determined.
routing is then used to compute end-to-end delays. Finallyycq| clustering - This metric characterizes clustering in the
we extract the generated delays among the 5,081 degrégajay space at the local level. It is based on analyzing the
nodes in the graph in order to model the delays among edg&jegree distribution of the directed graph formed by hgvi
networks. No triangle inequality V|oIat|or_13 are introddcBor  o5ch node point to its nearest neighbor in the delay space.
GT-ITM, we create a 4,160-node transit-stub topology. NojGoreover, we use the graph to identify a set of local cluster
that GT-ITM annotates links with routing policy weights antheads (or centers). We select the node with the highest in-
artificial delays. Shortest path routing is performed oV® t jegree as a local cluster head and remove it and its immediate
topology using routing policy weights as the link costs. Engtpilgren from the graph. This step is applied repeatedly to
to-end delays are then computed by summing the artificiglnify the next local cluster head until no more nodes iiema
link delays along the selected paths. Some triangle inégualsince a local cluster resembles a star graph, we sometimes
V|0Iat|ons_ are then introduced artificially in the resutfidelay simply call it a star. The process is illustrated in Figure 1.
space. Finally, we extract the delays among 4,096 stubmdutene importance of the local cluster heads will become clear
to model the delays among edge networks. in subsequent sections.

We scale the delays in the two artificial delay matrices | oca| clustering is relevant, for instance, to the in-degre
such that their average delay matches the average delay,ify thus the load balance among nodes in delay-optimized
the measured delay data. This constant scaling does not afﬁﬁ/erlay networks (e.g., [5]). For example, dense locallus
the structure of the generated delay spaces. We do this Of(}JMng can lead to an overlay node having an unexpectedly

to simplify the presentation of results. high number of neighbors and can potentially create a load
imbalance in the overlay.
I1l. INTERNETDELAY SPACE ANALYSIS Growth metrics - Distributed nearest neighbor selection is

In this section, we first identify a set of metrics that ar@ hard problem, but efficient algorith_ms have l_Jeen identified
known to significantly influence the performance of disttéals 0 Solve the problem for growth-restricted metric space.[1
systems. Then, we analyze measured delay data with respect}ese algorithms are used, for instance, in Tapestry [48] an
these and other statistical and structural propertiesr@ats Chord [40] to select overlay neighbors. Growth-constrdine
give insight into the characteristics of the Internet dedpgice, Metric spaces satisfy the property that for any nedend

and they inform the design of an appropriate model. distancer, the number of nodes within distan& of ¢,
denoted asB;(2r), is at most a constant factor larger than

_ _ the number of nodes within distaneeof i, denoted a3, (r).

A. Systems-Motivated Metrics We characterize the growth properties of a delay space by
The metrics presented below are known to strongly inflevaluating the functioB(2r)/B(r).

ence distributed system performance and capture a widerangA related metric is theéD (k) metric. Letd(i, k) be the aver-
of important issues in distributed system design and etialua age delay from a nodeto its i closest nodes in the delay space
Global clustering - This metric characterizes clustering inrand N be the set of nodes, theb(k) = ﬁzia\, d(i, k).
the delay space at a macroscopic level. For instance, ®tuctured overlay networks like Chord, Tapestry and Rastr
continents with the largest concentration of IP subnetworkmploy proximity neighbor selection (PNS) to reduce the
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b the Inet model. The clustering structure of the GT-ITM model
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. _ . S . does not resemble that of the measured data.

Fig. 2. Global clustering properties. (a) Delay distribati (b) Clustering. The gIobaI clustering reveals the coarse-grained stracifir

expected delay stretch, i.e., the ratio of the delay of an the delay space. To understand the fine-grained structge, w

overlay route over the direct routing delay averaged ovier &Pnduct the nearest neighbor directed graph analysis on the
pairs of nodes [13][4][29][5]. We choose to include thek) measured data. We emphasize that these results characteriz
metric because analysis has shown that in Tapestry and/Padfle Properties among edge networks in the Internet; doent

the expected delay stretch in the overlay can be predictedCharaCterize the properties among end hosts within loea ar
based on the functio® (k) [5]. networks. Figure 3(a) shows the in-degree distributions fo

different sample sizes. Observe that the in-degree disioib
for the measured data has an exponential decay (note the log-
linear scale). Interestingly, we discover that the disttidn
rig consistent across different sample sizes. If a straigbtis

Triangle inequality violations - The triangle inequality states
that given pointsy, y and z, the distancel;; between points
i and j satisfiesd,. < d.y + dy.. The Internet delay
space, however, does not obey the triangle inequality,esing L ed - : .
Internet routing may not be optimal with respect to delay/{t€d over 99.9% of the distribution (i.e., ignoring the % bf
Unfortunately, many distributed nearest neighbor sedectindes with the largest in-degrees), the line has a y-ingeaie
algorithms rely on the assumption that the triangle incigual “0-8565 and a slope of -0.6393. These parameters can be used
holds (e.g., [32] [16] [43]). Thus, it is important to undinsd to model the nearest-neighbor in-degree distribution amon

the characteristics of the violations in the Internet delpsice. edge networks in the Internet. In the future, when delay data
for hosts within local area networks become available, the

_ model can be hierarchically extended by assigning end hosts
B. Analysis Results appropriately to each edge network in the model.

We begin with a comparison of the delay distribution. In We classify the nodes into local cluster heads (or star heads
Figure 2(a), we can observe that the delay distribution ef tland non-heads using the procedure described in IlI-A. Table
measured data set has characteristic peaks at roughly 45 shews that when the sample size increases 4 times from 800
135 ms, and 295 ms. This suggests that the nodes form cluster8,200, the average proportion of cluster heads decré&gses
in the data. In contrast, the delay distributions for theotogy 0.41%. However, the decreasing rate is very small compared t
models do not indicate such behavior. Clearly, there ate rithe variance ¢ 4%), so we will proceed with the assumption
features in the Internet delay space that are not capturedthat the proportion is stable across sample sizes for simypli
the delays derived from these topology models. Note that local cluster heads are not simply a random subset

To quantify the global clustering properties in the meaguref nodes because local cluster sizes vary. Moreover, we find
data set, we apply the described global clustering algorittthat the delays among cluster heads at different sampls size
and plot the percentage of nodes in the largest cluster stgaiiollow a stable distribution, suggesting a scaling invatia
different clustering cut-off thresholds in Figure 2(b).daed- In contrast, as shown in Figure 3(b), the in-degree distribu
less of the sample size, the largest cluster’'s size incseatien for the Inet topology follows closely the power-law (ao
sharply at cutoff values 155 ms and 250 ms. These shdhe log-log scale). If a straight line is fitted over 99.9% loé t
increases are caused by the merging of two clusters at thdstribution, the line has a y-intercept of -3.7852 and aslo
thresholds. The steps suggest that there are three domirednt1.3970. Thus, the Inet model does not reflect the local
clusters. By setting the threshold to 120 ms, nodes can dlastering properties among edge networks in the measured
effectively classified into the three major clusters thatoamt data. For the GT-ITM topology, as shown in Figure 3(c), the
for 45%, 35% and 9% of the nodes, respectively. By usimdjstribution is close to exponential, the best fit line in thg-
traceroute and the WHOIS database, we find that 94.9% lwfear plot has y-intercept of -0.0080 and slope of -1.1611.
the nodes in the first cluster are from North America, 99.4%hus, this distribution is also different from that found in
of the nodes in the second cluster are from Europe and 99.5% measured data. In addition, the maximum in-degree in the
of the nodes in the third cluster are from Asia. The remainingeasured data is much larger than that in the GT-ITM model.
11% nodes have large delays to other nodes either becausdext we analyze spatial growth. Figure 4(a) shows the
they are located in other continents (e.g., Oceania, Souttedian B(2r)/B(r) growth of the data sets. We plot the
America and Africa) or because they have large access delapedian because, unlike the mean, it is insensitive to the
These global clustering properties can be used to guide #adreme outliers and can better characterize the dominant
global placement of servers and the design of load-balgncimends. As can be seen, the topology models have far higher
algorithms. In contrast, there is no clear clustering $tmgcin  peak spatial growth than the measured data (note the log-
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violation if for some nodek, W < 1, and it causes a

2

Type 2 violation if“ii’“{i’%m > 1. Intuitively, better overlay
paths can be found for edges that cause Type 1 violations,
e 0 and edges that cause Type 2 violations can potentially geovi
e short-cut overlay paths.
T preasureaszeo For each edge, we count the number of Type 1 violations

——— it causes. To show how the triangle inequality violations ar
T Byt T e ™" distributed over the major clusters, we present a matrix in

(a) (b) Figure 5[a] for the measured data. To produce this figure, we
Fig. 4. Growth metrics. (al3(2r)/B(r) (log-linear scale). (6P (k)/D(N). first reorganize the original matrix by grouping no.des in the
. . same clusters together. The top left corner has index (0,0).
Ilnez_jlr.s.cale) and.hav.e different trends. '.” the mea!suml d he matrix indices of the nodes in the largest cluster (North
the |n.|t|al growth is higher when the ball 'S expanding withi America) are the smallest, the indices for nodes in the skcon
a major clugter. As soon as t_he ball radius covers most Igigest cluster (Europe) are next, then the indices for siade
the nodes within the same major cluster, growth slows dovyl!?e third largest cluster (Asia), followed by indices fordes

as expected. When the ball radius reaches a size that be%@ﬁ did not get classified into any of the 3 major clusters.

to cover another major cluster, the growth increases again TR
' Each point(s, §) in the plot represents the number of Type
Eventually most of the nodes are covered by the ball and ttﬂe point(i, /) P P b

. i i . violations that the edgej is involved in as a shade of
growth ratio steadily drops to one. This growth trend in th 9%

d data is | . diff le si - Sray. A black point indicates no violation and a white point
measured data is invariant across different sample sizese indicates the maximum number of violations encountered in

findings can help fine tune distributed system algorithms t?e analysis. Missing values in the matrix are drawn as white

10° 1
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S
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o
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are sensitive to the ball growth rate. On the other hand, 8ints
growth trends in the Inet and GT-ITM topology models do not It is immediately apparent that clustering is very useful fo

reflect the structure of the mgasured data. . classifying triangle inequality violations. It can be sethat
In terms of the D(k) metric, we also observe dramatic

diff b | del d th q dedges within the same cluster (i.e., the 3 blocks along the
lierences between topology models and the measured ag agonal) tend to have significantly fewer Type 1 violations

_ et _ i
Figure 4(b) indicates that n the Inet and GT-ITM tOpomgxﬁdarker) than edges that cross clusters (lighter). Alsontim-
models, from the perspective of an observe_r node, there &t of violations for edges connecting a given pair of clisste
very few nodes whose delays are sub;tanﬂally smaller th@nquite homogeneous. The fact that TIVs exist even within
the overall average delay. In contrast, in the measured dqf‘?e same cluster is consistent with the effects of policyetlas

golm an obsert;/etr n?dﬁa’ we c”an :'r:‘d Tﬁny mor(ﬁ nod(_e; thﬁ?ernet routing. On the other hand, the fact that TIVs aremu
elays are substantially smaller than the overall averabe. less severe within the same cluster implies that the routing

Igigger the fraction of small delays is, t_he more likely we CaB th between two nodes in the same continent is most likely
find a close-by node by randomly probing the same numberggntained within the continent without detouring throudihes

nodes. Thus, a random probing strategy for finding a close- ¥ntinents. Note that the white wavy lines roughly parallel

neighbor would be much more successful in the real Interqgt the diagonal are simply showing the missing data. Our
than in the Inet and GT-ITM topology models. This is a%é[ '

. . easurement methodology measures the data in sequences
zi);r?lrﬂgtli?) r?t:gr?véoutzl:t?aﬁl;Ilenaa:jdfgl:ritseiei?jlfr% Srgglfﬁsn;ﬁ;el rallel to the diagonal to evenly spread the traffic amomeg th
it can be observed that tHe(k) metric is also invariant acrc;sspmbeq DN-S servers. Thus, vyhe_n a meas.urement station fa|ls,
. . ) . i an entire diagonal can be missing. The lines are not straight
different sample sizes. This empirical(k) function can be because whole rows and columns are removed from the data
applied to compute the expected delay stretch in the Pastry et if they have more than 25% of the values missing. Due

Tapestry overlays when deployed over the global Interrjet [5to space limitations, we do not include the matrix picture fo

we r_lext analyze the measumd _datg se_t with respectT%e 2 violations, but as expected, the relative shadeshare t
properties related to triangle inequality violations. Vég shat reverse of those in Figure 5[a]. These results imply that, if
an edgeij in the data set causes a Type 1 triangle inequality '
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two nodes are within the same major cluster, then finding a
shorter overlay path is more difficult than when the nodes af2l, [39], [38]). Previous studies have shown that a Eezidl
in different clusters. Interestingly, observe that it isdest to €mbedding can well approximate an Internet delay space with
find better overlay routes for paths within the Asia cluste, as little as 5 dimensions. However, studies (e.g., [17])ehav
it is easiest to find better overlay routes for paths across SO shown that such an embedding tends to inflate the small
Asia and Europe clusters. values & 10 ms) in the delay space significantly.

We show in Figure 5(b) the cumulative distributions of Type In order to create a model that also preserves small values,
1 violation ratios for different sample sizes. Observe that We first use the Vivaldi algorithm to create an Euclidean
distribution is stable across sample sizes. Intuitivelpces €mbedding of the measured delay space, then we explicitly
triangle inequality violation is an inherent property oetm- adjust the Euclidean coordinates of nodes as follows. First
efficiency of Internet routing, the amount of triangle inatity ~ €xtract the setS of all node pairs(i, j) with measured delay
violations observed is not expected to depend on the numBer less than 10 ms. Next, among these node pairs, select

of data samples. This invariant is useful in synthesizing thhe node pair(m,n) whose Euclidean distancé,,, in the
Internet delay space. embedding is smallest. Ifl,,,, > 30 ms, the procedure

terminates. Otherwise, the coordinates of nodeandn are

IV. INTERNETDELAY SPACE MODELING AND SYNTHEsIs ~ adjusted so thad,,,, becomes identical td,,,. Then,(m,n)
is, removed fromS and the procedure repeats. The 30 ms

Using .measgred Internet delay dat.a to drive dlsmbUt?HreShold is empirically derived which allows a similar amb
system simulations allows system designers to evaluate th

solutions under realistic conditions. However, there ave t 61 small d_elays as in the measured data to be reproduced by
) ; . the coordinates adjustments.
potential concerns. First of all, our ability to measure @da

. T : The effect of this procedure is that small values in the
portion of the Internet delay space is limited by the tlmreneasured delay space that are mildly distorted in the initia
required and the difficulty of dealing with network outage ysp y

Saldi Euclidean embedding are well preserved by the final set
measurement errors and accidentally triggered intrudientsa . . ga P ' by )
. N : of adjusted Euclidean coordinates. These adjusted Euaglide
The second concern is that th¥ N*) storage requirement of

. . coordinates serve as the starting point for our model.
a measured delay matrix representation does not scale. . T
. Figure 6 shows the delay distributions for (1) the measured
To address these concerns, we develop techniques to mo a(?l
e
0

and synthesize realistic delay spaces based on the Chara? 2, (2) all the delays in the.SI? Euclidean map, including
istics of a measured Internet delay space. An overview modeled values for the missing data, and (3) the delays

) S n the 5D Euclidean map corresponding to the available mea-
the proposed techniques and the relationships between the .

. . - sufed data. We can see that the 5D Euclidean map preserves
techniques and the delay space properties are summarlzeﬁ_llen distribution of the measured data well. In addition, the
Table Il. The synthesized delay space adequately Prese N Sdeled values for the missing data do no.t skew the 0'\/eraII
the relevant properties of the measured data while it hag Oréllistribution 9

O(N) storage overhead. The goal is to allow synthesis 0 . . .
o ..~ However, the Euclidean map is at the same size as the mea-
realistic delay spaces at scales that exceed our capatality

measure Internet delays. Such a tool is valuable for digtib sure_c_i data so it S.t'” cannot support large scal_e 5|mg|a_1m>n
. ) addition, the Euclidean map cannot preserve triangle iakdgu
system design and evaluation.

violations. Finally, it also fails to preserve the high iegatee

o ) of some nodes in the nearest neighbor directed graph because

A. Building Block Techniques a node cannot have a high number of nearest neighbors in a

Technique 1: Low-dimensional Euclidean embedding- low-dimensional Euclidean space.

The first technique we use is to model an Internet delay To address these limitations of the basic Euclidean model,

space using a low-dimensional Euclidean embedding. The¢ use four additional techniques in order to enable syigthes

is, we compute Euclidean coordinates for each node and wée larger delay space while preserving the propertiesdsst

Euclidean distances to model the delays in the delay spaaeesult of the Euclidean embedding.

Such a Euclidean map containslow-dimensional Euclidean Technique 2: Euclidean map synthesis- This technique

coordinates and has a scalalfléN) representation. exploits the node-growth properties found in the measured
Several techniques have been proposed to compute a Hiernet delay space to enable the synthesis of a larger de-

clidean embedding robustly (e.g., [23], [7], [34], [6], |19 lay space. The node-growth properties relate to the spatial
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Fig. 7.

distribution and density of nodes in a Euclidean map. Givdrzy a Gaussian probability distribution with a certain vada
a Euclidean map of an Internet delay space, we seek dowidth. To compute the first intensity componetif, we
capture its node-growth properties so that we can synthesiz place a Gaussian with a smalldth w; that represents a low
artificial map and create realistic structure in the syritees level of uncertainty in the center of each bin and scale it by
delay space. the number of first half points in the bin. As a result, the
A simple idea is to divide the Euclidean space into equ8b% bodies of the Gaussians lie within bin2. We call the bins
sized hyper-cubes, count the number of points in each hypeccupied by the 99% bodies of the Gaussiansstipport of
cube, and use these counts as relative intensities. Wittoapghe first componentS;. We also define theemaining support
priate scaling of the relative intensities, one can syritflieean of a component to be the support of the current component
artificial map of a certain size by generating random points subtracted by the support of the previous component, i.e.,
each hyper-cube using an inhomogeneous Poisson point pRp= S;\.S;_1. For the first componen®; is simply S;.
cess [20][30]. Indeed, this simple method can mimic the point The intensity I; generated by the Gaussian is spread over
distribution of the original map and generate a realistierall the three bins as 0, 4, 0, respectively. Now we ask, how well
delay distribution and global clustering structure. Hoamev doesR; cover the second half of the points? If all points in
this method ignores the node-growth properties in the dathe second half are covered B4 thenl; can account for the
As a result, synthetic points can only appear in hyper-cubesde-growth in the second half and we are done. However, in
where points were originally found. the example R, only covers 75% of the points in the second
To incorporate the node-growth properties, the idea is half. As a result, we weight the intensify by a factorp; =
introduce uncertainties in the locations of each point ard75 to obtain the intensity compone@y. Since we have not
compute intensities that predict the node-growth. The ideampletely accounted for the node-growth in the second half
is best explained with a simple example in Figure 7(a). hwe need to increase the location uncertainty and compute the
the example, there are 8 points in a 1-dimensional Euclidesecond intensity componeiif,. To do so, we use a wider
space divided into 3 equally sized bins. We randomly divid8aussian (widthws) for the second iteration. The aggregate
the points into two halves, the first half happens to lie irebinintensity is still 4, but this time, it is spread across allish
while the other half is spread across binl and bin2. Let @&ippose the intensities generated in the 3 bins are 1, 2, 1,
define anintensity component as a vector of intensities for therespectively. The 99% body of these wider Gaussians occupy
bins. We then iteratively compute tli€ intensity component all three bins, thus the support of the second compoSeris
C; using the first half of the points to predict the node-growtthe set{bin1, bin2, bin3. The remaining suppoR; is S5\ 51,
observed in the second half of the points. Each component.&s, {binl, bin3.. The fraction of the second half covered
weighted according to how well it predicts the second hdie T by R, is 25%. Thus, the intensity, is weighted byps
location uncertainty of a point in the first half is repregeht 0.25 to obtainC,. This iterative process continues until either
all points in the second half are covered Ry, or when a
maximum Gaussian width has been reached. The intensity of
each bin is simply the sum of all the intensity components

1The number of points lying in any two disjoint sets in space iadepen-
dent random numbers distributed according to a Poisson dwmean given
by the intensity.



C;. Finally, we repeat the procedure to use the second halfttee histogram and return that value. Similarly, if the edge i
predict the node-growth in the first half and use the averageated as a severe Type 2 violation, then we use the histogra
intensity of each bin as the final intensity. In practice, WEI{I‘%’?J_'Z instead.
divide the space into 100 bins in each dimension and vary theBy "experimenting with different threshold valug®, we
Gaussian width from one-tenth to ten times the bin width. have determined that a value of 0.85 produces Type 1 and
Technique 3: Global distortion - The basic technique to Type 2 violation distributions similar to those observed in
create triangle inequality violations in the Euclidean miodthe measured data. This is also the threshold we use in the
is to distort the delays computed from the embedding. Sinpemainder of this paper.
the frequency of triangle inequality violations in the measl In order to preserve realistic local clustering properties
data is relatively small, it suffices to distort only a smalbset will first assign a cluster size to each local cluster center
of node pairs or edges. (Technique 4) and then perform the local distortion techaiq
Recall that edges between different pairs of global clsstgTechnique 5) to create the needed in-degree.
have very different triangle inequality violation behaw@o Technique 4: Local cluster size assignment Recall the
(as can be seen in Figure 5(a)). Thus, we first identify tiggynthesizer knows the empirical exponential distributiafn
edges in each pair of clusters that cause violations abovelaster sizes (as computed in Section IlI-B). Thus, it can
certain severity threshold, and then characterize thertiish draw the cluster sizes from the distribution to approximate
distribution for these edges when they are mapped into th local cluster size distribution of the measured dataatWh
Euclidean model, finally we use this same distortion distrib remains unclear is how to assign different cluster sizefi¢o t
tion to introduce distortions when delays are generateoh fraisynthesized cluster centers. Should they be assignedmindo
the embedding. To ensure that the model always produces thehe cluster centers? Would that be realistic?
same delay for a given pair of nodes, it uses the node identidt turns out cluster sizes are related to node densities in
fiers to generate deterministic pseudo-random distortiBgs the measured data. Figure 8 plots the average local dertsity a
choosing different severity thresholds, we can vary thelmemm the cluster centers, i.e., the number of nodes within 15ms of
of edges that get distorted in the model and experimentathe cluster centers, versus the local cluster size (or &e) s
determine the threshold that best matches the empirical dabr different sample sizes. As can be seen, the size of a local
An overview of the technique is illustrated in Figure 7(b). cluster is roughly linearly related to the local node dgnsit
We define a violation severity thresholfl. A violation around the cluster center.
caused by an edgg is severe if for some nodg di%j’”' <R Therefore, the synthesizer assigns cluster sizes as fllow
(called Type 1 violation), or if\dmdf_dwl > % (called Type 2 First, the synthesizer computes the local node densitiethéo

violation). For each global cluster pajr all edges with the synthesized cluster centers and ranks them according to the

same Euclidean model deldy(rounded down to the nearestdénsities. The synthesizer also ranks the cluster sizegndra
1ms) form a subgroup. For each subgraypl), we compute from the exponential distribution. Then, the synthesizasigns

the fraction of edges in this subgroup that are involved @ Cluster center of local density rankhe cluster size of rank
severe Type 1 violations in the measured dmﬁ'pe-l and a 7- This way, the linear relationship between cluster size and

. - . o ocal density is preserved.
hlstograquT%pe Lto characterize the real delay distribution o&r y1s P

h 2! iolati q Similarlv. for T > vioas echnique 5: Local distortion - The idea of this technique is
those severe vio atlon_ © yep%.z imitarty, for fype ¥;,pe[?§’ to simply pull some nodes within a radius around a local clus-
we compute the fractiod® ;™ “ and the histogrant 3™ ~.

g, s 4 ter center closer to create the needed in-degree, asalladtn
We also compute the fraction of edgesTygg_tlglzcur severe TypRyure 7(c). Suppose a local cluster center noblas a cluster
1 and Type 2 violations simultaneousk), ; - This extra gjze of s; assigned by Technique 4. We identify the set of its
statistical information incurs an additional constantrage s; nearest neighborsy;, in the synthetic data after global
overhead for the model. , ~ distortion. Then, we compute a radius as max;ex, (di;),
With these statistics, the delay between nadand j is gpq a threshold; asmin; e, (d;) — €. Currentlye is set to
then computed fr_om the model as follows. Draw a pseudgyy . min; ze x, (d;x). Then we associate the valugsandt;
random numbep in [0,1] based on the IDs of and j. Let  yith nodei. r; is essentially the radius within which distortion
the Euclidean distance betweer%lge]_ lbel% p%f‘zd th% :gfﬁ:‘zer' may be necessary; is the delay needed to beat the smallest
cluster group bey. Based onP ;""" P 37" % P "™, delay among the nodes ;.
and usingp as a random variable, decide whether the edgeThe delay between nodend; is then computed as follows.

ij should be treated as a severe Type 1 violation (Witbuppose the delay for the edgeafter global distortion ig;;.

o Type-l o Type-1&2 PJYPe'l If neither i nor j is a local cluster center;; is returned.
probability P 3"~ ~+ P 3" (—TpeT—Tvpe — 1), Or a o - ;
9:lij g:li plype-d, plype Supposei is a local cluster center ang is not, then if

0lss olis

ij stig . .
o . oType2 | Type-1&2 Ly <1, We returnmin(¢;, ;;); otherwise, we returky;. Thet;
severeTType 2 violation (with probabllmy%lw +P-q=lw' threshold is used to ensure that the nodeX jrcannot choose
ype2 ther as their nearest neighbors. After the distgrtio
2l _____ 1)), or to return the valud,; without one ano )
(PBPe'HPE’Pe'Z ) K they will choosei as their nearest neighbor unless there is
L9 L . . . : i : .
distortion. If the edgéj is treated as a severe Type 1 violatiora closer node outside of the radius If both ¢ and j are
then we use the histogramgff'l andp to draw a value from local cluster centers, we pick the one with the smaller node
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Fig. 8. Average local density vs local cluster size for diéfg sample sizes. A. Des gn of DS?

identifier as the center and perform the above steps. The architecture ofDS? is shown in Figure 9. TheD5?
software comprises two separate tools: ihg? static analysis
B. Delay Space Synthesizer DS? tool, which analyzes the input delay matrix to generate a

Based on the techniques described above, we have imgignthetic delay space, and tHies? runtime distortion tool,
mented a delay space synthesizer calle§?. At a high level, which generates synthetic delays upon requests at runiigne.

S : o o
DS?2 works as follows:Step 1.Perform global clustering on decoupling its functionalities into two separate todls5< can

9 . - ; )
the measured data to assign nodes to major clusters. Perf griised in simulations more efficiently. First of all, thes®
nearest neighbor directed graph analysis to identify locSiAtic analysis tool allows users to perform time-consgmin
cluster centersStep 2. Compute a 5D Euclidean embeddingN2!ysis to generate a synthetic and reusable delay spate mo
of the measured data using a robust method such as the Vivaiiine. Secondly, the resulting synthetic delay space oan b
algorithm, which can handle missing data. Then adjustdjeorrecorded in an intermediate file that can be used by different
L . L 2 . . . . . . .
nates to preserve small valu&ep 3.For each cluster-cluster P~ runtime distortion implementations. Thirdly, in order

M . :
groupg and Euclidean 2olela , corr12pute the global olzistortiontO uscs DSd'mt St'_mUI"?‘t'OTS' ustertg on_Iyt n?ﬁd to |n|cct)rpsojrate

P Type-1 Type- ype-1& Type-1 ,,Type- a runtime distortion implementation into the simuiatorsl an
statisticsP P P , H H P

) ) ) usin . . .
2 severe z}folatioh%lthreshgiﬂl. Step 4l At thiglpoint thge then load the generated synthetic delay space into thewanti
: Eﬂ'b'stortion implementation.

original measured data is no longer needed. Split the . . . .
g vy P The DS? static analysis tool is implemented in C++.

Euclidean map into two, one containing only local clusteé ifically. it impl ts step 1 1o step 5 in Section IV-B
centers, and one containing all other nodes. Recall thaterlu pec |02a y, It impiements step 2 1o step 5 1n section 1V-b.
ge DS* runtime distortion tool is currently implemented as

heads are not simply a random sample of the full data, % X )
Py P h a C++ class and a Java class so it can be incorporated

they are treated separately. Then each of the two maps S C++ based or J based simulat iiv. [t imol ¢
further divided according to which global cluster each nodd'© ~¥* based or.Java base swgq ators eastly. 1l Impiesnen
p 6 in Section IV-B. UsingD.S< in simulations involves

belongs. Assuming there are three major global clusters a § . X
the remaining un-clustered nodes form another group, then fne following stepsStep 1.Generate a synthetic delay space

. o ; ; . ;
splitting procedure produces eight sub-maps. Based or th §|r;g the_DS ;tauc _analy;_ls toocI:Jcr)iﬂmaSt_ep 2.Iantannate§
eight maps, separately synthesize Euclidean maps of each Qias runtime distortion object ( version or Java version)

: ; ) he simulator.Step 3.Load the generated synthetic delay
to the appropriate scale using the Euclidean map syntheSid ; . . i .
pprop g P sy ce into theDS? runtime distortion objectStep 4.When a

technique. Merge the eight resulti thesized ba . . J1eh @
echnique. Merge te eignt restifing synihesized maps ay between two nodes is needed, the simulator just simply

into one synthesized map. In the final synthesized map, lis the DS time distort biect t te the del
each node, we now know whether it is a local cluster cente''s the runtime distortion object to generate the delay.

and which major cluster it belongs t8tep 5.Assign a local
cluster size to each synthesized center using the locaeclusB. Evaluating the Synthesized Delay Space Model

size assignment technique. For each local cluster center g evaluate the effectiveness of the synthesized delay imode
compute the local distortion statisties and¢;. Step 6.To e first extract a 2,000 node random sub-sample from the
compute the synthesized delay between nodend j, We measured data. Then, we fedth? with just this 2,000 node
first compute the Euclidean delay. In order_to re_produ_ce TI\@ib-sample to synthesize delay spaces with 2x, 4x, and 50x
characteristics, we always apply global distortion actWd gcajing factors. 1fDS? correctly predicts and preserves the
to the global distortion statistics from the measured datal, scaling trends, then the synthetic 2x delay space should hav
finally apply local distortion according to the local didion  yroperties very similar to those found in the measured data
statistics from the measured data . Return final value. _from 3,997 nodes. The larger scaling factors (4x and 50x) are
Note that a lower bound can be enforced on the synthesizgdsented to illustrate how the synthesizer preservesuari
delays to mimic some sort of minimum processing delayroperties under scaling. Note that at the scaling fact@Oed
incurred by network deviced)S? provides this as an option. a 100,000 node delay space is synthesized. Unfortunately, a
this scale, we do not have efficient ways to compute global
V. DESIGN AND EVALUATION OF DS” clustering (requiresO(N?3) space) and triangle inequality
In this section, we describe the design and implementatigiolation ratios (requiresD(N?) time) and thus results for
details of theDS? software (see [9] for further information).these two metrics are calculated based on a 16,000 node
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random sample out of the 50x synthetic delay space. Eﬁmggﬁr‘én’:@g&%mg gmn') (356ec.)
The results in Figure 10 show that, even though the synthe- Adjust coordinates 3 42

sis is based on a 2,000 node subset of data, the 2x synthesized | Calculate relative errors | 0 34

data is able to match the characteristics of the 3,997 node me Eﬂﬁ“g;;ggngle inequality violations 34 fg

sured data very well. As expected, there are a few diffeience Global clustering 13 57

However, these differences are small and we will show in Re-organize matrices 2 45

Section VI that they do not negatively affect the applicatid Eig?gs;obal distortion statistics g gg

the synthesized delay model in distributed system sinanati Extract local distortion statistics 66 24

It is also worth noting that the scaling invariants observed Delete temporary files 0 2

in the measured data are maintained by the synthesizer. In 10l time 142 |23

TABLE Il

summary, the synthesis framework implementedbg? is
COMPUTATION TIME OF COMPONENTS INDS2 STATIC ANALYSIS TOOL.

highly effective in creating realistic delay spaces witmgract

O(IV) storage requirement. delay space of a 40k-node network and assume we use 4 bytes

to hold each value, we need 40k0kx 4 =6.4 GB of memory.

C. Performance of DS? Performance of DS? runtime distortion tool - A delay space

In this section, we present the computational performancedel with 4k nodes is generated using fh8? static analysis
of DS?. All experiments are done on a Dell Dimension 910@ol and loaded into thé.S? runtime distortion tool. Then a
desktop with a Pentium 4 3.0 GHz CPU and 2GB of memorg program, which simply keeps querying ti2S? runtime
Performance of the DS? static analysis tool- The DS? distortion tool, is used to test the standalone performance
static analysis tool is applied to our 3,993,997 measured of DS2. 10® random delay requests are issued to ih§?
delay matrix to synthesize a synthetic delay space withrantime distortion tool and it take®S? 5.6 microsecond on
scaling factor of 10. The computation times for all compdeenaverage to handle each delay request. For comparison,eanoth
in the D.S? static analysis tool are shown in Table IlI. C program simply loads a 4dk delay matrix into memory

“Extract local distortion statistics”, “Calculate trialegin- and then issued0® random memory access on the delay
equality violations” and “Global clustering” are the thn@®st matrix. It takes 0.24 microsecond to perform one memory
time-consuming components. Let us denote the scalingrfacéecess on average. The comparison results are summarized
as F' and the size of input matrix a&, then the computation in Table 1V. Although DS? is slower than direct memory
complexity of the component “Extract local distortion &at access, such delay calculations are only a small part of a
tics” is O((N x F)?). The computation complexities of “Cal- simulation. In addition,DS? features constant overhead, i.e.,
culate triangle inequality violations” and “Global clusteg” the computation time does not increase with the size of the
are bothO(N3). Fortunately, these expensive components caimulated network. In contrast, the approach of using a full
be done offline and only need to be done once. delay matrix does not scale. To further improve the efficgenc

The resulting synthetic delay space is a 40MB ASCII textf DS?, a caching system can be implemented/i$? to
file, which can be easily loaded into any modern computeitsiche the recently calculated delays. This can benefit those
memory. In contrast, if we use a full matrix to represent th&mulations that have good delay request locality.
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Models Average Time (ms)| Memory (MB) Veasured
DS?: 4k nodes 5.6 30 Y :
Delay Matrix: 4k nodes | 0.24 64 5. s
DS?: 40k nodes 56 40 £ gor
Delay Matrix: 40k nodes| 105 6,400 s, 8
TABLE IV k. e
> £, E o2
PERFORMANCE OF STANDALONED.S? RUNTIME DISTORTION TOOL 3 3

10° 10 10° 10° 10" 10°
Penalty (ms) Penalty (ms)

Table IV compares the performance of usifigs? and
using a delay matrix to simulate a 40k-node netwalks? et
only requires 40 MB of memory to simulate a 40k-nod
network and the runtime simulation overhead remains t
same as simulating a 4k-node network. While if a 4@k
delay matrix is used, the delay matrix of 6.4 GB cannot t
completely loaded into memory so pages have to be swapj I S | e
in and out, which is very inefficient. This is why the averag T penayes T penays

GT-IT™M

Cumulative Distribution
Cumulative Distri

access time of the direct matrix approach increases 43&tinic
to 105 microseconds per request. Fig. 11. Performance comparison of three server selectgorithms.

implementation ofDS? automatically fits the in-degree distri-
D. Limitations of DS” bution of the input data to an exponential distribution.

The strength oD.S? is that it synthesizes delay space mode Due to the limited amount of data available, we cannot yet
els based on the empirical characteristics of measurethktte accurately model the slow decreasing trend for the progorti
delays. This approach produces realistic delay spacesiasscof local cluster heads. The current implementationZo$?
where direct measurement and storage are impractical. ~ assumes the proportion of cluster heads is stable undéngcal

One down side of this approach is thatS? is designed However, this can be easily changed once an accurate model
based on a set of assumptions that are empirically derivieécomes available.
from delays among edge networks in the Internet. That is,The input data has a coarse-grained clustering structure. A
it is not designed to synthesize delays within a local ardae delay edges across the same coarse-grained cluster pair
network, although such a capability can be incorporateal inexhibit similar triangle inequality violation charactstics.

DS? as future work. Another limitation is that it does not
model delay dynamics (e.g., dynamic convergence of routing VI. APPLICATIONS

protocols and congestion events). In fact, modeling delayln this section, we demonstrate the importance of using

dy_namlcs 1S orthogoqal to our work on modeling s_tatlc a”é\ realistic delay model for simulation-based evaluation of
pairs delays. We believe the two models can be 'ntegrat&gtributed systems

when the delay dynamics model becomes available. On the
other hand, the static all-pairs delays generated)$? are _
sufficient for simulations of many distributed systems. ifigk A Server Selection
Vivaldi as an example, each Vivaldi node periodically prebe A number of server selection systems [46], [11], [7] have
its neighbors and keeps the minimum delay to each neighbloeen proposed recently. In this section, the performance of
i.e, it is designed to filter out the delay dynamics. Our geal Meridian [46], Vivaldi [7] and random server selection is
to provide a way for stressing thesalability of distributed evaluated using four different delay spaces: measured data
systems under realistic delay models. For evaluations thas?, Inet and GT-ITM.
concern adaptability to delay dynamics, our model does notWe evaluate the accuracy of the three server selection
apply and Planet-lab based experiments could be used. algorithms using the delay penalty metric, which is defined a
We have experimented with PlanetLab delay data as w#ike difference between the delay to the chosen server and the
as p2psim delay data and found thBxS? can correctly delay to the closest server. We run each algorithm on allef th
synthesize the characteristics of these data sets. Howewér following data sets: for measured data, in addition to tHe fu
may not work correctly on arbitrary delay data inputs tha&,997-node data, we also use a 2k sample;[ & data, we
violate the following empirical assumptions: synthesize 2k data from a 1k sample of the measured data, and
e A low-dimensional Euclidean embedding can model thgynthesize 4k and 16k data from a 2k sample of the measured
input delay data with reasonable accuracy, ignoring tlaing  data; for both Inet and GT-ITM, we generate 2k, 4k and 16k
equality violations and local clustering properties. Soeeent data sets, respectively, using the same methodology tesicri
studies (e.g., [21], [17]) have shown that Euclidean emlmgdd in Section II. In all server selection experiments, we assum
has difficulties in predicting pairwise Internet delays werthat there is only one service available in the network, and
accurately. Note, however, that we do not aim at predictiradl the nodes act as clients and servers simultaneousnli
pairwise delays, we only use the Euclidean embedding agr@ not allowed to select themselves as their servers. ebr ea
compact model of the statistical properties of the inpuadat data set, we run five experiments with different random seeds
e The in-degree distribution of the nearest neighbor grapimd the cumulative distributions of server selection piéasal
computed from the input data is exponential. The curreate presented in Figure 11.
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First of all, the synthesized 2k and 4kS? data sets yield FooVettwed s [ MemTEEd
virtually identical results as the 2k and 3,997-node messur " [. 7T T B = p e 1
data, even though they are synthesized from only 1k and 2k B i E ool /.ff{ f
measured data samples, respectively. Second, using the lge °° [ 1 £ 0 Y/
model significantly underestimates the performance ofdiva =~  °°| . T % s0 | {/,/i T
The results suggest that Vivaldi performs no better than <o B i s L = 1
random server selection, while Vivaldi performs much brette 20 o e e e o bl
than random selection if it is evaluated using the measured ””m(tgic" e e Zl”;)w e rond

data orDS? data. Thus, using Inet model could lead to false
conclusions about the performance of Vivaldi. Third, altgb Fig. 13. Proactive replication. (a) Query latency. (b) Quiead.

the relative performance rank of the three algorithms is tH&'€ Inet model yields different results on indegree because

same across all four delay models, the absolute performa@édts pPower-law connectivity. Finally, the route convenge
estimated with Inet and GT-ITM differs dramatically fromath With IneVGT-ITM is higher than with the measured data. The
achieved with the measured dataos? data. deviations of these properties are rooted in the differemde

Finally, the experiment based on the 16kS? synthetic the D_(k)/D(N)grovvth metric and the local clustering in-deg
data indicates that the performance of Vivaldi should atmo®€tric among the delay models. .
remain constant under scaling, but this is not the case with | Effectiveness of PNS on Eclipse Attacks Recently Singh et
and GT-ITM delay models. Similarly, Meridian’s performanc - [36] argue that Proximity Neighbor Selection (PNS) alon
degrades more rapidly on Inet and GT-ITM than &rs2 'S @ weak defense against Ecllpse_ attack_s [3]. Whlle earlier
data with increasing network size. This illustrates thaisit WOrk has shown that PNS is effective against Eclipse attacks
important to have good delay space models that are beydtfed on simulations with a GT-ITM delay model [15], Singh
our ability to measure since important performance tren§b &l demonstrate that the defense breaks down when using
sometimes only show at scale. measured delay data in simulations. We have repeated their
simulations usingDS? data and confirmed thaP.S? yields
same results as the measured data. This shows again how using
B. Structured Overlay Networks inadequate delay models can lead to wrong conclusions.

Here, we show the importance of using a realistic deldgerformance of Proactive Replication- Proactive replication
space in simulation of structured overlay networks. Unless very effective in reducing overlay lookup hops and latenc
otherwise stated, the results in this section have beenateal in structured overlays [27]. We experimented with a simple
on a 4,000-node overlay network using FreePastry [12], ehgiroactive replication network that consists of 4,000 nodes
the delay space used was either based on measureddstta, (3,997 nodes for measured data) and a total of 10,000 objects
Inet, or GT-ITM. Figure 13(a) shows that the average query latency for a
Overlay Metrics - We firstly evaluate three important metricgiven number of replicas is significantly lower with measlre
in overlay networkHop Length Distribution of overlay route, delay, especially when compared to Inet. This is an artifact
which determines the latency of overlay lookuverlay of the different distributions of hop length as shown eaiilie
Indegree of a node, which is the number of overlay nodekigure 12(b). In the absence of realistic models, one would
that have the node in their routing tabl&aute Convergence overestimate the number of replicas required to achieve a
of overlay routes, which, given two nodes located at distahc certain target lookup latency.
from each other, measures what fraction of their overlappat We then evaluate the distribution of query traffic to the

to a given destination is shared. replicas. The objects were replicated on all nodes thatmeatc
at least one digit with the object identifier. Figure 13(bdwh
o e G T ‘[ | the distribution of query load among the replicas. A point
Foo o [ ol et | (x,%) in the plot indicates that the lowest ranked nodes with

respect to the amount of query traffic they served, together
servey% of the overall query traffic. The figure shows a huge
imbalance in the load distribution for the Inet topology rabd
wherein 5% of the nodes serve over 50% of the traffic. This
. B o1 imbalance is caused due to the highly skewed overlay inéegre
1 Hﬂpnimber 3 ’ OGM <?m distribution of nodes in the Inet topology.
‘ In conclusion, theDS? delay model allows realistic eval-
(@) (b) (€) ; : C
uation of the effectiveness and performance of distributed
Fig. 12.  Overlay properties. (a) Hop Length Distributiom) Overlay systems at scale. In contrast, simulation results basedTen G

Indegree. (c) Route Convergence. ..
Figure 12 shows that the results agree very well for t{&M and Inet delay models are often not realistic.

measured delay data afi2l5? data on all three metrics, while

the results with the Inet and GT-ITM models differ signifi- VII. RELATED WORK

cantly. For the hop length distributions, we observe that th This paper is based on [48] and contains significant re-
first hop of overlay routes with the Inet model is significgntlvisions and extensions. In this extended paper, we present
larger than the first hop obtained with measured delay dathe design of theDS? delay synthesizer tool. We show that
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decomposingDS? into the analysis and runtime componentan area for future work.
can lead to an efficient implementation and ease integratiorOne key technique used in our work is computing a
into existing network simulators. We have quantified thiew dimensional Euclidean embedding of the delay space
performance ofDS? and showed that it has a low runtimeto enhance the scalability of the delay space representatio
overhead and can support large scale simulations highly &fany approaches for computing such an embedding have
ficiently. The proposed modeling and synthesis techniquiesen studied [23], [7], [34], [6], [19], [42], [35], [25]. We
are presented in an integrated fashion. We also explain theve not considered the impact of using different compurtati
importance of synthesizing the local cluster heads seggratmethods or using different embedding objective functions.
The data presented and tfigS? tools are available at [9].  This represents another area for future work.

Our work on modeling the Internet delay space is comple-
mentary to existing work on modeling network connectivity VIIl. CONCLUSIONS
topologies. There is an opportunity for future work to incor
porate delay space characteristics into topology models.

Early artificial network topologies had a straight-forwar
connectivity structure such as tree, star, or ring. A mophss
ticated topology model that constructs node connectiatsell
on the random graph model was proposed by Waxman [4
However, as the hierarchical nature of the Internet convigct
became apparent, solutions that more accurately model
hierarchy, such as Transit-Stub by Calvertal [47] and Tier
by Doar [8], emerged. Faloutsesal [10] studied real Internet
topology traces and discovered the power-law node deg

distribution of the Internet. Let al [18] further showed that memory, where)' is the number of nodes, and requires only
router capacity constraints can be integrated with the powe; imple run-time calculations to generate the delay betveeen

law node degree model to create even more realistic rOUtEElII‘ of nodes. This helps to address the memory requirement

lev_ﬁl] topologies. . . ivel lecting del barrier of conducting large-scale simulatiofsS? provides an
ere are many on-going projects actively collecting de E%portant mechanism for simulating and emulating distebu
measurements of the Internet, including Skitter [37], AMP

systems at large-scale, which complements other evatuatio

[2], PingER  [26], and Surveyor [41] to name just a feV\‘nethodologles See [9] for further information @&nS2.
examples. Some of these projects also collect one-way slelay

and hop-by-hop routing information. These projects tylhica REFERENCES
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