
POST: A Secure, Resilient, Cooperative Messaging System

Alan Mislove1 Ansley Post1 Charles Reis1 Paul Willmann1 Peter Druschel1

Dan S. Wallach1 Xavier Bonnaire2 Pierre Sens2 Jean-Michel Busca2

Luciana Arantes-Bezerra2

1Rice University, Houston, TX, USA
2LIP6, Universit́e Paris VI, Paris, France

Abstract

POST is a cooperative, decentralized messaging system
that supports traditional services like electronic mail
(email), news, instant messaging, as well as collabo-
rative applications such as shared calendars and white-
boards. Unlike existing implementations of such ser-
vices, POST is highly resilient, secure, scalable and
does not rely on dedicated servers. POST is built upon
a peer-to-peer (p2p) overlay network, consisting of par-
ticipant’s desktop computers. We sketch POST’s basic
messaging infrastructure, which provides shared, se-
cure, single-copy message storage, user-specific meta-
data, and notification. As an example application, we
describe how POST can be used to construct a cooper-
ative, secure email service.

1 Introduction

Messaging systems like traditional email and news, as
well as instant messaging services, shared calendars
and bulletin boards, are among the most successful and
widely used distributed applications. Currently, these
services are implemented in the client-server model.
Messages are stored on and routed through dedicated
servers, each hosting a set of user accounts. This partial
centralization requires substantial infrastructure costs if
the system is scaled to large numbers of users. The
client-server model also limits reliability, as servers
present a single point of failure or attack on the sys-
tem for the users they support. Additionally, mainte-
nance and administration costs can become significant
for large organizations.

POST is a cooperative infrastructure that leverages
the resources of users’ desktop workstations to provide
messaging services. POST provides three fundamen-
tal services to applications: (1) persistent single-copy

message storage, (2) per-user metadata, and (3) notifi-
cation. A wide range of messaging applications can be
constructed on top of POST using these services.

POST itself is built upon a structured p2p over-
lay, providing it with scalability, resilience and self-
organization. Users contribute resources to the POST
system (CPU, disk space, network bandwidth), and in
return, they are able to utilize its services. POST as-
sumes that participating nodes can suffer byzantine fail-
ures. Stronger failure assumptions may be unrealistic,
even in scenarios where participating hosts belong to
a single organization, because a single compromised
node may be able to disrupt critical messaging services
or disclose confidential messages.

In this paper, we sketch the design of the POST
infrastructure, and then describe how a cooperative,
secure email system can be built on top of POST.
Unlike conventional SMTP-based email services, our
ePOST system provides secure email services by de-
fault. Furthermore, due to its strong sender authentica-
tion, ePOST makes efficient spam defense easier.

The remainder of this paper is organized as follows.
Secion 2 provides background information on Pastry,
PAST, and Scribe, which are used as building blocks
for POST. Section 3 sketches the design of the POST
infrastructure. In Section 4, we sketch the design of a
cooperative email system as an example POST applica-
tion. Section 5 discusses integrating POST with exist-
ing messaging systems. Section 6 outlines related work
and Section 7 concludes.

2 Background

In this section, we briefly describe Pastry, PAST and
Scribe, which are used as building blocks in POST.

Pastry [9] is a structured p2p overlay network de-
signed to be self-organizing, highly scalable, and fault

1



tolerant. In Pastry, every node and every object is as-
signed a unique identifier chosen from a large id space,
referred to as anodeIdandkey, respectively. Given a
message and a key, Pastry can efficiently route the mes-
sage to the node whose nodeId is numerically closest to
the key.

PAST [10] is a storage system built on top of Pastry
and can be viewed as a distributed hash table. Each
stored item in PAST is given a 160 bit key, and replicas
of an object are stored at thek nodes whose nodeIds are
the numerically closest to the object’s key. PAST also
maintains the invariant that the object is replicated onk
nodes, regardless of node addition or failure.

Since nodeId assignment is random, thesek nodes
are unlikely to suffer correlated failures. PAST relies
on Pastry’s secure routing [1] to ensure thatk replicas
are stored on the correct nodes, despite the presence
of malicious nodes who may attempt to prevent this.
Throughout this paper, we assume that at mostk− 1
nodes are faulty in any replica set.

A variant of PAST is used in POST to store three
types of data:content-hash blocks, public-key blocks,
andcertificate blocks. Content-hash blocks are stored
using the cryptographic hash of the block’s contents as
the PAST key. Public-key blocks contain monotonically
increasing timestamps, are signed with a private key,
and are stored using the cryptographic hash of the corre-
sponding public key as the PAST key. Certificate blocks
are signed by a trusted third party and bind a public key
to a name (e.g., an email address). The block is stored
using the cryptographic hash of the name as the key.

Content-hash blocks can be authenticated by obtain-
ing a single replica and verifying that its contents match
the key. Unlike content-hash blocks, public key blocks
are mutable. To prevent rollback attacks by faulty stor-
age nodes, it is necessary to obtaink replicas and choose
the authentic block with the highest timestamp. Cer-
tificate blocks require a signature verification using the
well-know public key of a trusted third party.

Scribe [2] is a scalable multicast system built on top
of Pastry. Each Scribe group has a 160 bitgroupId
which serves as the address of the group. The nodes
subscribed to each group form a multicast tree, consist-
ing of the union of Pastry routes from all group mem-
bers to the node with nodeId numerically closest to the
groupId.

3 POST Architecture

As a generic messaging system, POST provides three
fundamental services: a shared, secure single-copy
message store, per-user metadata, and notification.

These services can be combined to implement a vari-
ety of collaborative messaging applications, like email,
news, instant messaging and collaborative tools.

A typical pattern is that users create messages, which
are inserted in encrypted form into the secure store. To
send the message to another user or group, the notifica-
tion service is used to provide the recipient(s) with the
necessary information to locate and decrypt the mes-
sage. The recipients may then modify their metadata
to incorporate the message into their view (e.g., into a
private mail folder).

POST assumes the existence of a certificate authority.
This authority signs certificates binding a user’s unique
name (e.g., her email address) to her public key. The
same authority issues the nodeId certificates required
for secure routing in Pastry [1]. Furthermore, the au-
thority may require that each user also owns a nodeId
bound to a live IP address, thus requiring each user to
contribute a node to the system. Users can access the
system from any node, but it is assumed that the user
trusts its local node, hereafter refered to as the trusted
node, with its private key.

Throughout the design of POST, we assume that ob-
jects stored in PAST persist indefinitely and cannot be
deleted. Thus, we assume that the amount of available
disk space in the system is always increasing and greater
than the total storage requirements, which is reasonable
to expect in a p2p environment.

3.1 User Accounts

Each user in the POST system possesses an account,
which is associated with a certificate. The certificate
is stored as a certificate block in PAST, using the secure
hash of the user’s name as the key. Associated with each
account is also a user identity block which contains an
XML description of the user, the contact address of the
user’s trusted node, and any references to public meta-
data associated with the account. The identity block is
stored as a public-key block in PAST, and signed with
the user’s private key. Finally, each user account has
an associated Scribe group used for notification, with
a groupId equal to the cryptographic hash of the user’s
public key. This group

3.2 Secure Message Storage

POST provides a shared, secure message storage fa-
cility. Application-provided message data is encrypted
using a technique known as convergent encryption [5].
Like conventional encryption, convergent encryption al-
lows the message to be disclosed to selected recipients,
while ensuring that copies of a given cleartext message

2



inserted by different users map to the same ciphertext,
thus requiring only a single copy of the ciphertext to be
stored.

When an application wishes to store messageX,
POST first computes the cryptographic hashH(X), uses
this hash as a key to encryptX using an efficient sym-
metric cipher, and then stores the resulting ciphertext at
the Pastry key

H({X}H(X))

which is the secure hash of the ciphertext. To decrypt
the message, a user must know the hash of the cleartext.

3.3 Notification

The purpose of the notification is to alert a user to the
availability of a message and providing it with the ap-
propriate decryption key. In the common case, a noti-
fication requires obtaining the contact address from the
recipient’s identity block (this may require a lookup of
the recipient’s certificate block, if the certificate is not
already cached by the sender). Then, a notification mes-
sage is sent to the recipient’s contact address, which
contains the secure hash of the message’s ciphertext and
its decryption key, and is encrypted with the recipient’s
public key and signed by the sender.

In practice, notification is complicated by the fact that
the recipient may be off-line and the fact that the sender
may go off-line before the recipient comes on-line. To
handle this case, the sender delegates the reponsibility
of delivering the notification message to a set ofk ran-
dom nodes.

When a userA wishes to send a notification message
to a userB whose trusted node is off-line,A first sends
a notification request message to thek nodes numeri-
cally closest to a random Pastry keyC. This message
is encrypted forB, and separately containsA’s signa-
ture indicating the message is valid. Thek nodes are
then responsible for delivering the notification message
(contained within the notification request message) toB.
Each of these nodes stores the message as soft state, as
in PAST, and then subscribes to the Scribe group rooted
at the hash ofB’s public key. Additionally, the nodes
periodically check the recipient’s identity block for an
updated contact address, and ping the address.

Whenever userB’s trusted node is on-line, it periodi-
cally publishes a message to the Scribe group rooted at
the hash of her public key, notifying any subscribers of
her presence and current contact address. This presence
message may contain application-specific data about the
state of the user. The subscribers then deliver the noti-
fication when the recipient comes on-line. Since, by as-
sumption, at mostk−1 of these nodes can be faulty, the

notification is guaranteed to be delivered. POST relies
on Scribe only for timely delivery. If Scribe messages
are lost due to failures, the notification will eventually
be delivered due to periodic pings and checks of the re-
cipient’s identity block.

3.4 Per-User Metadata

POST provides a facility that allows applications to
maintain per-user metadata that relates stored messages
of interest to the user. The facility provides single-
writer logs that can be used by applications to represent
changes to application metadata. For instance, an email
application can use a log of insert and delete records to
keep track of the state of a user’s mail folder. In gen-
eral, logs can be used to track the state of a chatroom,
a newsgroups, or a shared calendar. POST represents
logs using self-authenticating blocks in PAST, similar
to the logs in Ivy [7].

The log head is stored as a private key block in PAST
and contains the location of the most recent log record.
PAST keys for log heads may be stored in the user’s
identity block, in a log record, or in a message. Each
log record is stored in PAST as a content-hash block and
contains application-specific metadata and the PAST
key of the next recent record in the log. Applications
encrypt the contents of log records depending on the in-
tended set of readers.

In a straightforward implementation, the log head and
each log record are stored at a different set of PAST
nodes. To allow for more efficient log traversal, POST
stores clusters ofM consecutive log records on the same
PAST node, under the content-hash key of the least re-
cent of theM records. To deal with partially filled clus-
ters, the log head contains an additional content hash
key, referring to the least recent record in a partially
filled cluster. This key identifies the cluster in PAST.

Other optimization are possible to reduce the over-
head of log traversals, including caching of log records
at clients and the use of snapshots. Similar to Ivy, POST
applications may periodically insert snapshots of their
metadata into PAST making log traversal only neces-
sary up to the most recent snapshot.

4 Example: Electronic Mail

In this section, we sketch the design of an email system,
ePOST, on top of the POST infrastructure. The goal is
to leverage POST to build a secure, scalable and highly
resilient email system, while leveraging the resources of
participating desktop computers.

3



Each ePOST user is expected to run a daemon pro-
gram on his desktop computer that implements the Pas-
try, PAST, Scribe and POST protocols, and contributes
some CPU, network bandwidth and disk storage to the
system. The daemon acts as a SMTP and IMAP server,
thus allowing the user to utilize conventional email
client programs. The daemon is assumed to be trusted
by the user and holds the user’s private key. No other
participating nodes in the system are assumed to be
trusted by the user.

4.1 Message Storage

In ePOST, email messages received from an email client
program are parsed and the MIME components of the
message (message body and any attachments) are stored
as separate messages in POST. Thus, frequently circu-
lated attachments are stored in the system only once.

The message components are first inserted into POST
by the sender’s ePOST daemon; then, a notification
message is sent to the recipient. Sending a message
or attachment to a large number of recipients requires
very little additional storage overhead beyond sending
to a single recipient. If messages are forwarded or sent
by different users, the original message data does not
need to be stored again; the original message reference
is reused.

The convergent encryption used in POST is known
to be less secure when encrypting short messages and
highly structured content (e.g., text), as it is vulnerable
to known cleartext attacks. To avoid a loss of confiden-
tiality, small message bodies are padded by ePOST with
a number of random bits. This defeats the single-copy
storage, but the small size of the affected messages limit
the impact of this measure.

Due to the necessary data replication in PAST, the
storage overhead per message is higher in POST com-
pared to a conventional server-based email system.
However, this effect is partly offset by POST’s single-
copy store, which eliminates large amounts of duplica-
tion due to large, widely circulated email attachments.
Moreover, mining the typically underutilized disk space
on desktop computers should more than compensate the
overhead.

4.2 Delivery

The delivery of new messages is accomplished using
POST’s notification service. A sender first constructs a
notification message containing basic header informa-
tion, such as the names of the sender and recipients, the
subject, a timestamp, and a reference to the body and at-
tachments of the message. The sender then requests the

local POST service to deliver this notification to each of
the recipients. It is noteworthy to mention that ePOST
extends recipient control beyond current systems by al-
lowing the recipient to append the message to his mail-
box or to simply ignore the notification, perhaps based
on a spam filter.

4.3 Metadata

User’s mail folders are maintained by a POST log. Each
log entry represents a change to the state of the associ-
ated folder, such as the addition or deletion of a mes-
sage. Furthermore, since the log can only be written by
the owner and its content can be encrypted, ePOST pre-
serves the expected semantics of current mail systems.

Next, we describe a log record representing an in-
sertion of a email message into a user’s Inbox folder.
Other types of log records are analogous. An email
insertion record contains the content of the message’s
MIME header, the message’s PAST key and its decryp-
tion key, and a signature from the sender, all of which
are encrypted with the recipient’s public key.

Thus, the recipient can verify that the message was
actually sent by the stated sender, and both parties have
the confidence that only the intended recipient will be
able to read the message. As an example, if userA sent
a message to userB with subjectSand message textX
at timeT, the insertion record inB’s Inbox will be

{A,B,S,T,H({X}H(X)),H(X),sigA}B

4.4 Discussion

By default, ePOST provides strong confidentiality, au-
thentication and message integrity. It is interesting to
note that ePOST also provides better spam prevention
than current email systems. In ePOST, all messages
are signed by the sender which makes it possible to
build effective spam block lists. These block lists could
be compiled on a per-user basis, and possibly shared
among users. Additionally, ePOST could limit the rate
of sending messages by requiring senders to solve small
cryptographic puzzles [4] before being allowed to send
notification messages. This would not have much of
an effect on normal ePOST users but would slow down
bulk emailers.

Mailing lists can be easily supported by maintaining
the list as an additional log and storing the log head ref-
erence at the list maintainer’s user identity block. Only
the maintainer is allowed to modify the membership.
When delivering a message, the sender notices the list
and expands the recipient list appropriately.

4



5 Incremental deployment

In this section, we discuss integration issues in the con-
text of ePOST but the approaches could be general-
ized. To allow an organization to adopt ePOST as its
email infrastructure, ePOST must be able to interoper-
ate with the existing, server-based email infrastructure.
We sketch here how ePOST could be deployed in a sin-
gle organization and interoperate with email services in
the general Internet.

To send email messages to the outside world, the
ePOST proxies use standard SMTP to contact the re-
cipient’s email server, whenever a recipient is outside
the local organization. For inbound email, the organi-
zation’s DNS server delivers MX records referring to
a random proxy in the ePOST system, which accepts
the message using SMTP, and delivers it locally to the
intended recipients. Of course, ePOST’s built-in au-
thentication and privacy mechanisms are not available
when email is exchanged with a party that does not use
ePOST. Incoming messages are tagged with a MIME
header indicating that the message’s origin and integrity
could not be verified.

ePOST currently assumes that all participating hosts
can communicate with each other, without intervening
firewalls. ePOST systems separated by firewalls can in-
teroperate via SMTP, at the cost of losing the security
aspects and shared message storage. Allowing ePOST
systems separated by firewalls to be integrated more
tightly is the subject of ongoing work.

6 Related Work

Current email protocols, including SMTP [8],
POP3 [6], and IMAP [3], are tailored towards an
infrastructure based on dedicated servers. Minimal
security is provided in these protocols, and email is not
secure. Extensions like PGP [14] provide secure email,
but are not widely used.

Lotus Notes [12] and Microsoft Exchange [13] pro-
vide a general, secure messaging infrastructure based on
the client-server model, providing the ability to transfer
email, personal contacts, calendars, and tasks.

There has been work to allow email to more effec-
tively scale through the use of clustering technologies,
such as the Porcupine System [11] as well as Hotmail
and Yahoo’s mail services.

7 Conclusions

POST is a p2p, collaborative messaging system that
leverages the resources of participating desktop com-

puters. POST provides highly resilient and scalable
messaging services, while ensuring confidentiality, data
integrity, and authentication. The fundamental services
provided by POST can be used to support a variety of
messaging applications. In this paper, we have sketched
how POST can be used to construct ePOST, a coopera-
tive, secure email system. We are currently implement-
ing POST and ePOST using Pastry, PAST, and Scribe.
A full description and evaluation will be provided in an
upcoming full paper.

References
[1] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wal-

lach. Security for structured peer-to-peer overlay networks. In
Proc. of the Fifth Symposium on Operating System Design and
Implementation (OSDI 2002), Boston, MA, December 2002.

[2] M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level
multicast infrastructure.IEEE JSAC, 20(8), October 2002.

[3] M. Crispin. RFC 2060: Internet message access protocol ver-
sion 4rev1, December 1996.

[4] D. Dean and A. Stubblefield. Using client puzzles to protect
tls. In Proc. 10th USENIX Security Symposium, Washington,
D.C., August 2001.

[5] J. Douceur, A. Adya, W. Bolosky, D. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless dis-
tributed file system. InProc. of the International Confer-
ence on Distributed Computing Systems (ICDCS 2002), Vi-
enna, Austria, July 2002.

[6] J. Meyers and M. Rose. RFC 1939: Post office protocol ver-
sion 3, May 1996.

[7] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy:
A read/write peer-to-peer file system. InProc. of the Fifth
Symposium on Operating System Design and Implementation
(OSDI 2002), Boston, MA, December 2002.

[8] J. Postel. RFC 821: Simple mail transfer protocol, August
1982.

[9] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InIFIP/ACM Middleware 2001, Heidelberg, Germany,
November 2001.

[10] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. InProc. ACM SOSP’01, Banff, Canada, October
2001.

[11] Y. Saito and B. Bershad H. Levy. Manageability, availabil-
ity and performance in porcupine: A highly scalable, cluster-
based mail service. InProc. ACM SOSP’99, Charleston, South
Carolina, December 1999.

[12] S. Thomas, B. Hoyt, and B. J. Hoyt.Lotus Notes & Domino
4.5 Architecture, Administration, and Security. Computing
McGraw-Hill, 1997.

[13] J. Woodcock. Introducing Microsoft Exchange 2000 Server.
Microsoft Press, 2000.

[14] P. Zimmerman. PGP user’s guide, December 1992.

5


