
Guardat: A foundation for policy-protected persistent data

1, Anjo Vahldiek†, Eslam Elnikety†, Aastha Mehta†, Deepak Garg†, Peter Druschel†,
Johannes Gehrke‡, Rodrigo Rodrigues†, and Ansley Post†

†Max Planck Institute for Software Systems (MPI-SWS)
‡Cornell University

Abstract

We present Guardat, an architecture that enforces
rich data access policies at the storage layer. Users,
application developers and system administrators can
provide per-object policies to Guardat. Guardat en-
forces these policies and provides attestations about
the state of stored objects. With Guardat, the data
integrity, confidentiality and access accounting rules
for a collection of objects can be stated as a single
declarative policy. Policy enforcement relies only on
the integrity of the Guardat controller and any exter-
nal policy dependencies; it does not depend on cor-
rect software, configuration and operator actions in
other parts of a system. Guardat allows developers,
system administrators and third-party hosting plat-
form providers to enforce concise, system-wide data
protection policies based on a small trusted comput-
ing base, and to demonstrate their compliance to any
party that trusts the Guardat layer. We present a de-
sign and prototype implementation of Guardat, show
experimentally that the overhead of making policy
checks and storing additional metadata are low, and
discuss applications and policies.

1 Introduction

As the volume and value of digitally stored assets
keep increasing, so do the risks to the integrity and
confidentiality of said data. Computer and storage
systems are increasing in complexity, exposing data
to risks from software bugs, security vulnerabilities

and human error. In addition, data is increasingly
stored on third-party platforms, introducing addi-
tional risks like unauthorized data use by a third
party.

In today’s systems, the confidentiality and in-
tegrity of persistent data depend on the absence of
design errors, bugs, malware and operator mistakes in
most components of a system. Moreover, the applica-
ble policies for a collection of data objects may be im-
plicit in the code, and their specification and enforce-
ment spread over different parts of a system, increas-
ing the risk of misconfigurations. For data stored
on third-party platforms, data confidentiality and in-
tegrity, as well as proper accounting of data use, ad-
ditionally depend on the reliability of the third-party
provider.

To address these challenges, we present Guardat,
an architecture that includes a policy interpreter,
crypto and enforcement logic at the storage layer.
With Guardat, users, developers and administrators
can state the integrity, confidentiality, and account-
ing rules for a collection of data objects using a con-
cise, declarative policy language. Applications com-
municate with Guardat through secure channels, tun-
neling through untrusted system layers like storage
servers or hosting platforms. Applications send poli-
cies, commands and evidence of policy compliance
(e.g., proof of authentication) to Guardat and re-
quest attestations of stored data and their policies
from Guardat. Guardat enforces the policies while
relying only on its own interpreter and enforcement
logic and any explicit policy dependencies, thus min-

imizing the computing base relied upon for enforce-
ment, and its attack surface.

A Guardat policy specifies the conditions under
which an object may be read, updated, or have its
policy changed. These conditions, written in a sim-
ple but expressive declarative language, may depend
on client authentication, the initial and final states of
the object (size and content) in an update transac-
tion, or signed statements by external trusted compo-
nents (certifying, for instance, the current wall-clock
time). Guardat stores the policy as part of its own
metadata and ensures that each access to the object
complies with the policy.

Following are some example Guardat policies that
mitigate important threats: System binaries can be
protected from viruses through a policy that allows
modification only when the updated binary is signed
by a trusted party; system log corruption and tam-
pering can be avoided through a Guardat-enforced
append-only policy; accidental deletion or corruption
of backup data can be prevented by a policy that pre-
vents modification for a specific period of time; confi-
dentiality of a user’s private data can be enforced by
allowing reads only in a session authenticated by the
user’s public key; and, accesses to a data object can
be permitted only if a corresponding access record is
added to an append-only log file, enforcing manda-
tory access logging.

While these policies can be implemented in higher
software layers, the merit of using Guardat is that the
policy applicable to a collection of data objects can
be specified using a concise, declarative language, and
enforced by a small trusted computing base (TCB)
with a small attack surface. Guardat complements
existing techniques for ensuring the reliability of data
processing systems, including software testing, veri-
fication, security auditing, sealed data and trusted
computing. While no technique can provide com-
prehensive protection, Guardat provides a safety net
that protects a system’s persistent data from a wide
range of threats. Moreover, Guardat can demon-
strate compliance with client and provider policies,
as well as legal mandates to any party that trusts
Guardat.

Guardat can provide additional benefits in multi-
party environments where all parties trust Guardat,

e.g., a client storing her data at a hosting provider,
or a service provider allowing caching of parts of its
database on a client device. Here, Guardat can en-
force the data owner’s policies on third-party data
accesses, and the data holder can use Guardat to
demonstrate its compliance with client and provider
policies.

The Guardat design is based on three principles.
First, enforcing policy at the storage layer minimizes
the TCB and its attack surface. Second, a simple,
declarative policy language allows the concise speci-
fication of all policy related to a collection of data ob-
jects. Third, the policy language supports a small set
of declarative primitives expressive enough to specify
the access policy, leaving it to untrusted code to pro-
vide the mechanism required to satisfy the policy.

Guardat can be implemented in different ways,
depending on the deployment scenario and threat
model. For instance, an integration into a SAN
server enforces the policy on all accesses from net-
work clients as long as the server is trusted; while
an integration into the microcontroller of a storage
device enforces the policy on all accesses as long as
the controller chip is not compromised. This paper
contributes the Guardat architecture and design, its
policy language, a prototype implementation and a
performance evaluation based on sample policies and
application scenarios.

We cover background and related work in Sec-
tion 2. Section 3 describes the design of Guardat and
its policy language. Section 4 presents example poli-
cies and the guarantees they provide. In Section 5,
we present results from experiments with a proto-
type implementation in the iSCSI IET SAN server.
Using microbenchmarks and experiments with a Web
server, we show that Guardat policies can be enforced
with low overhead, thanks to the efficient caching of
metadata and its persistent storage in Flash mem-
ory, as well as optimizations that overlap metadata
operations with disk reads and writes. We conclude
in Section 6 and provide additional details about the
Guardat API, policy language and implementation in
an Appendix.

2

2 Background and related work

Storage work group specification. Although
developed independently, the Guardat architecture
bears some resemblance to a set of specifications
for storage devices standardized by the storage work
group of the trusted computing group (TCG) [43].
Similar to Guardat, the TCG standard prescribes
session-based communication with storage devices
and access control on all calls to them. This industry
interest supports the case for Guardat’s architecture.
Unlike our work, however, the TCG standard does
not describe a concrete design, implementation, or
policy language, leaving these to device vendors; nor
does it include certification of stored data by the stor-
age device. Implementations exist for a subset of the
TCG specification [42], providing full-disk encryption
to preserve confidentiality of data upon device theft,
loss or end of life. They do not include secure ses-
sions, universal access checks or integrity policies, all
of which Guardat does.

Guardat vs. trusted computing. At a high level,
trusted computing (TC) relies on a trusted platform
module (TPM) attached to a computer’s mother-
board to provide a hardware root-of-trust [31], while
Guardat relies on a controller (GDC) attached to
a storage device, enclosure or server (called a stor-
age device in the sequel). While TC provides re-
mote attestation of the hardware/software executing
on a computer, Guardat attests the state of stored
objects, and enforces an application-defined policy
for read and write accesses to objects. TC provides
sealed storage, where disk data is encrypted with a
key stored within the TPM and released only when
the computer runs a specific, trusted software config-
uration. Guardat instead enforces a declarative pol-
icy on all data accesses from untrusted client code.
Compared to TC, Guardat can reduce the size of the
TCB and its attack surface. Depending on the pol-
icy and implementation, the TCB can be as small as
the Guardat controller. Lastly, TC can complement
Guardat: A Guardat policy for access to an object
can require that trusted software, verified via TC re-
mote attestation, execute on the client computer.

Related trusted computing proposals. Building
on TC, semantic attestation [17] enforces properties

of a computation by a runtime verification substrate
within a virtual machine monitor. Guardat provides
a limited form of semantic attestation that enforces
a data access policy, and does not require machine
virtualization.

Excalibur [36] extends sealed storage with a prim-
itive that binds cryptographically sealed data to a
policy, such that a node can decrypt the data only
if a trusted authority states that it obeys the policy
(e.g., “this node is in Europe” or “this node is run-
ning Xen”). Guardat can be used to implement a
similar capability, possibly with the help of a trusted
authority as required by the Excalibur policy. How-
ever, Guardat can enforce many rich policies directly,
without requiring an external trusted authority to
map high-level policy descriptions to the nodes that
meet those requirements.

Pasture [22] is a messaging and logging library that
enables data to be stored on an untrusted client ma-
chine while ensuring that a user cannot access the
data without logging that access. Furthermore, users
can delete unaccessed data in a way that provably
prevents future access. The protocol relies on a TPM
on the client machine. In Section 4, we describe a
Guardat policy that can enforce the more general
property of mandatory access logging for a collection
of objects.
Protecting data integrity and confidentiality.
Butler et al. [8, 9, 10] describe storage devices that
control access to storage segments contingent on the
presence of a hardware token, or on successful re-
mote attestation of the host computer. In Guardat,
these forms of access control can be expressed as poli-
cies. Moreover, Guardat supports much richer and
per-object policies that can additionally depend on
client authentication, wall-time clock or object con-
tents, and Guardat supports certification of object
states.

Commercially available self-encrypting disks [37]
encrypt data to ensure its confidentiality when the
device is lost or stolen. Guardat includes this ca-
pability as well, and additionally enforces rich data
access policies. Web storage services like Amazon
S3 [3] provide access control to a client’s data based
on user identities, groups and roles, encryption for
secure data storage and transit, and access logging.

3

Guardat can enforce these (and many other) policies
and provides object attestations. Because it operates
at the storage layer, it does not require trust in the
Cloud provider’s remaining platform.

In capability-based network-attached storage
(NAS) [16, 2, 13], individual access requests include
a capability, i.e., a tamper-proof description of
client access rights. This capability is created out
of band by a policy manager, a trusted component
that serves all storage devices in a data center. A
Guardat device, on the other hand, can interpret
and enforce rich policies without relying on an
external policy manager; thus, Guardat can operate
in an otherwise untrusted or offline environment
(unless a policy specifically requires validation by an
external trusted component). Guardat can enforce
state-based policies and certify the state of objects
and their policies, which capability-based NAS
cannot.

Type-safe disks (TSD) [40] track the filesystem’s
relationship among disk blocks using an extended
block interface. Thus, a TSD can enforce basic
filesystem integrity invariants, such as preventing ac-
cess to unlinked blocks. A security extension called
ACCESS adds read and write capabilities to selected
disk blocks, thus enabling access control for entire
files and directories. Guardat goes beyond TSD in
two ways. First, Guardat devices have signing keys
and support secure channels, which lends them ac-
countability and stronger security with respect to
compromised hosts, buggy filesystems and operator
mistakes. Second, Guardat’s policy language can
support policies far beyond filesystem metadata in-
tegrity.

Storage systems such as Self Securing Storage
(S4) [44] and NetApp’s SnapVault [18] RAID stor-
age server retain shadow copies of overwritten data
or disable writes for a given period of time to ad-
dress the specific problem of accidental or malicious
corruption of data. Guardat can enforce these and
much richer integrity constraints (Section 4), as well
as confidentiality and accountability.

jVPFS [47, 48] is a stacked, microkernel-based
filesystem that combines a small, isolated trusted
component with a conventional untrusted filesystem.
jVPFS uses encryption, hash trees and logging to en-

sure data confidentiality and integrity. Guardat can
provide similar functionality at the storage layer, and
supports a much richer set of policies.

The filesystems PCFS [14] and PFS [46] enforce in-
tegrity and confidentiality policies expressed in rich
policy languages similar to that of Guardat. How-
ever, unlike Guardat, PCFS and PFS trust the entire
storage stack below the filesystem, cannot enforce in-
tegrity policies that depend on the content or size
of objects, do not certify the state of stored objects,
and can be bypassed by booting into a different con-
figuration. PFS policies are expressed in a formal
logic similar in expressiveness to the Guardat policy
language. PCFS uses a formal logic that is more ex-
pressive than the Guardat policy language, but much
more expensive (in terms of time and space) to im-
plement. The Guardat policy language deliberately
avoids policy features like recursive predicates that
increase complexity but are rarely used in practice.
Protecting data availability. Storage systems like
RAID [32], snapshotting filesystems [19, 30, 26] and
some backup utilities [6, 27] use redundancy to ensure
data availability. Guardat addresses the orthogonal
problem of ensuring integrity, confidentiality and ac-
cess accounting in the face of human error, adversar-
ial threats and software bugs (e.g., a bug in a backup
application that overwrites backed up data [15]). In
practice, Guardat must be combined with redundant
storage to ensure the availability of data in case of a
media failure, loss, destruction or failure of a Guardat
device.
Extended storage functionality. Commercial hy-
brid disks [39] package a magnetic disk drive with
a modest amount of NAND Flash memory, used as
a non-volatile write-back cache to increase perfor-
mance. Guardat uses a comparable amount of Flash
memory to store its policy metadata but, in addition,
protects data. Object-based storage devices replace
the traditional block-based with an object-based in-
terface [24]. These systems offer capability-based se-
curity for whole objects, which we already compared
to. Part of the Guardat API is also object-based,
and could therefore be integrated with an emerg-
ing object-based storage standard. Several storage
subsystems like active disks [35], semantically smart
disks [41] and differentiated storage services [25] in-

4

clude program logic to improve performance. Guar-
dat addresses the orthogonal concerns of data confi-
dentiality, integrity and access accounting.

Pennington et al. [33] describe an intrusion detec-
tion system (IDS) at the storage layer, which raises
an alarm when an access matches a per-file or global
rule. Guardat instead is able to enforce per-file secu-
rity policies, and these policies can be richer than the
rules of an IDS system. However, intrusion detection
rules could be specified as Guardat policies that allow
offending accesses but log an alarm record.

Novelty. To the best of our knowledge, Guardat
is the first system that enforces per-object and per-
block general confidentiality, integrity and access ac-
counting policies at the storage layer. Policies are
expressed in a concise declarative language and can
be predicated on a wide range of conditions, includ-
ing client authentication, remote attestation, physi-
cal authorization tokens, trusted wall-clock time, and
the state (content) of objects. The use of an expres-
sive declarative language enables the concise specifi-
cation of unified access control, integrity and account-
ing policies for persistent data, even at sub-object
granularity. Enforcing policies at the storage (block-
device) layer reduces the attack surface and, in many
cases, the size of the TCB relied upon for enforce-
ment. Existing techniques, on the other hand, either
rely on a larger TCB, spread the specification and
enforcement of policies affecting a given data object
over many different components and layers of a sys-
tem, or support a smaller set of policies.

3 Guardat design

The design of Guardat is guided by three principles.
First, Guardat enforces policies entirely in the stor-

age layer to minimize the TCB and its attack sur-
face. Second, we keep policy specifications concise
and separate from code by expressing policies in a
domain-specific declarative policy language. Third,
in the interest of a small TCB, the Guardat policy
language provides only a minimal set of primitives
sufficient to check a rich set of policies, but we rely
on untrusted code to specify how to satisfy a pol-
icy. We point out instances of such design economy

throughout this section, as we describe the Guardat
API and policy language.

Design overview Data stored in Guardat is orga-
nized into objects, e.g., files. With each object, Guar-
dat associates metadata, which includes the object’s
access policy. Guardat’s program logic, called the
Guardat controller or GDC, executes just above or
inside the storage layer and enforces the object’s pol-
icy on every read and write to it. The GDC exports
an extended block-device API that allows users, ap-
plications and system administrators to (a) create,
delete, read and update objects, (b) cryptograph-
ically authenticate and establish secure sessions to
tunnel commands and data through other untrusted
software and hardware, (c) associate policies with ob-
jects, (d) provide credentials and other information
to satisfy these policies during subsequent access, and
(e) obtain Guardat attestation on stored objects and
their policies.

The policy of an object consists of four rules, one
for each of the permissions read, update, destroy
and setpolicy. Each rule, expressed declaratively
in the Guardat policy language, specifies conditions
on the context and environment under which the re-
spective permission holds. Abstractly, the read rule
represents the object’s confidentiality policy; the up-
date rule encodes the object’s integrity policy; the
destroy rule governs when the object’s name can be
recycled; and the setpolicy rule describes when the
policy can be changed. API calls that read or up-
date an object or its metadata check conditions of
the corresponding policy rules.

Besides a device for storing data, the GDC re-
quires a small amount of fast, persistent memory like
Flash for storing policies and other metadata. Flash
memory is widely available now; hybrid disks even
combine a HDD and Flash in a single enclosure [39].
To authenticate itself as a legitimate Guardat device,
sign attestations and encrypt data, the GDC includes
a manufacturer-provided unique key pair and certifi-
cate.

Implementation, threat model and scope The
Guardat design can be implemented in different ways

5

Figure 1: Possible implementations of Guardat: (a)
In a SAN server and (b) In a hybrid disk’s microcon-
troller

depending on deployment. Figure 1 shows two possi-
ble implementations. In (a), the GDC is implemented
in a SAN server for use in a data center. In (b), the
GDC is integrated with the microcontroller of a hy-
brid disk for use in an individual machine.

In each implementation, the GDC, metadata and
data must be protected from unauthorized access and
undetected tampering. In implementation (a), which
is the basis of our Guardat prototype described in
Section 5, the SAN server includes the GDC, data
and metadata storage devices, and must be physi-
cally protected, e.g., in a machine room where access
is restricted to trusted staff. In this scenario, the
Guardat policies are enforced despite any bugs, mis-
configurations, or security incidents outside the SAN
server, and regardless of actions by employees with-
out access to the machine room.

In implementation (b), the GDC is implemented as
part of a microcontroller embedded in a hybrid disk.
Here, the metadata and data are encrypted and au-
thenticated to protect them from unauthorized access
and undetected tampering. The microcontroller im-
plements the GDC and stores its private key in an
embedded TPM. In this scenario, the Guardat poli-
cies are enforced as long as the microcontroller has

not been physically tampered with. While we have
not attempted this implementation, we believe it is
feasible with a high-end microcontroller that has on-
chip hardware support for secure hashing and cryp-
tography, as well as a TPM.

Table 1 lists examples of deployment scenarios,
their threat models and trust assumptions. For
instance, if a reputable Cloud provider deploys
Guardat-enabled SAN servers to protect user data
from bugs and misconfigurations in its infrastructure
and from opportunistic access by employees, then the
user must trust the Cloud provider to prevent phys-
ical access to the SAN by all but trusted employ-
ees (line A in Table 1). Similarly, if a digital con-
tent provider locally caches copyrighted content in
a Guardat-enabled hybrid disk on a user’s machine,
then it must trust that the user is unable to tamper
with the controller chip, much in same way trusted
computing applications trust that users are unable to
tamper with a TPM.

We also make obvious and standard assumptions
about policies: correct policies must be installed
when data is first stored, and external dependen-
cies of policies (e.g., time servers, client’s authenti-
cation keys) must be trustworthy. Under these as-
sumptions, Guardat defends against threats to con-
fidentiality and integrity of stored data or to data
in transit to storage. This includes threats due to
bugs and vulnerabilities in intermediate software lay-
ers including operating systems, filesystems, storage
services built on top of Guardat, and networks, and
threats due to human negligence and opportunistic
malice. Guardat is not concerned with data avail-
ability. To mask the effects of a hardware or media
failure, loss, or destruction of a Guardat device, data
must be replicated on multiple devices with indepen-
dent failure modes.

3.1 Guardat API

We describe the Guardat API that allows higher lay-
ers to manipulate objects, establish sessions, provide
policies, provide credentials to satisfy policies, and
obtain attestations. For reasons of space, we defer
many details to the Appendix.

6

Deployment objective Guardat

imple-

menta-

tion

Trust assump-

tion

Who

trusts?

How trust is dis-

charged

A. User wishes to protect her data

from bugs above the storage layer,

and opportunistic employees at a

reputable Cloud provider

Cloud stor-

age servers

Only trusted staff

has physical ac-

cess to servers

User Provider restricts phys-

ical access to servers

B. Data center wishes protection from

bugs, misconfigurations, disgrun-

tled employees

Storage

servers

ditto Data

center

Center restricts physi-

cal access to servers

C. Service provider wishes to pro-

tect proprietary content cached on

user’s machine

Microcontroller

in user’s

disk

User cannot com-

promise the con-

troller

Provider User lacks ability to

tamper with controller

chip

D. User wants to protect data on her

machine from bugs, viruses and

mistakes

Microcontroller

in user’s

disk

None needed – –

Table 1: Guardat deployment scenarios and trust assumptions

Guardat organizes data into objects. Physically,
an object is an ordered sequence of disk extents with
a unique name and an access policy, which together
constitute the object’s metadata. Relevant rules of an
object’s policy are evaluated on every read or write
to the object or its metadata.

A user or an application (generically called client)
interacts with Guardat in a session. A session is es-
tablished with a handshake protocol in which the
client and Guardat authenticate each other using
their private keys. As part of the protocol, new,
session-specific keys are created. These keys are used
to encrypt and/or authenticate (through message au-
thentication codes) all subsequent communication in
the session. This protects in-transit data and com-
mands from snooping and modification in interme-
diate layers. Moreover, the public key of the client
(which acts as a unique identifier for the client) be-
comes available during every policy evaluation in the
session; hence, Guardat can enforce policies that re-
strict access to specific users. At the end of the hand-
shake, Guardat returns a unique session identifier
that links later API calls to the session. Our sim-
ple handshake protocol and the two API calls it uses
are shown in Appendix A. (To access objects whose

policies do not require authentication, it is possible
to communicate with Guardat outside of a session.
Such communication is conceptually treated as part
of a default, untrusted session.)

Within a session, the client may read and update
stored objects in batches. A batch is a sequence of
reads and updates on a single object; batches on dis-
tinct objects may proceed concurrently. The updates
in a batch have transactional semantics: At the end
of a batch, either all the updates are atomically per-
sisted or they are all discarded. This design allows
enforcing integrity policies that refer to the old and
the new contents of more than one block within the
object (the integrity policy is checked once for the
entire object at the end of the batch). We find this
design useful in encoding policy state machines and
access-accounting policies, as illustrated in Section 4.
However, this design decision comes with a trade-off:
To avoid buffering a potentially unbounded number
of updates during a batch, we do not allow destructive
content changes to objects during a batch. Instead,
new content must be written to fresh (unused) ex-
tents on disk. (This decision is consistent with trends
in modern file systems designs.) Metadata changes
are bufferred in memory.

7

The call openBatch(sessionId, objName) starts a
new batch on the object named objName. If obj-
Name does not exist, a new empty object is created
and given this name (this is the only way to create an
object in Guardat). The call returns a batch id that
links later calls to the batch and the session. Subse-
quently, the call readBatched(batchId, off, len, buf)
reads len bytes of the object starting at logical offset
off in the object and returns the result to the buffer
buf. The read rule of the object’s policy is evaluated
before writing to buf; if it denies access, the call fails.
This enforces data confidentiality. Note that we allow
byte-level addressing on objects.

An object is updated by reusing content from its
current version and adding fresh content to create a
new version. The call reuse(batchId, off, len, off’)
takes content in the logical range [off,off+len-1] from
the current version and inserts it at offset off’ in the
new version (insertion is purely a metadata opera-
tion). The call fresh(batchId, off, len, buf, off’) writes
len bytes from buffer buf to the extent starting at byte
number off on disk and adds the resulting extent to
the new version at logical offset off’. Before writing
the extent, Guardat checks that it is not occupied
by any object (including the object being modified).
The new version of the object may be given a new
policy with the call setPolicy(batchId, new_policy).

The updates in a batch are committed with the call
endBatch(batchId). Guardat evaluates the update
rule of the object’s policy before committing the new
version. This enforces data integrity. The update
rule has access to the current and new content of
the object, as well as relevant metadata, e.g., the
offsets and lengths of reads and writes in the batch.
Additionally, if the policy has been updated, Guardat
evaluates the setpolicy rule of the object’s policy;
this protects the policy from unauthorized changes.

The call destroy(objName) deletes objName and
all its metadata. The object’s destroy policy autho-
rizes the call. The call also requires that objName
be empty. This design, following our goal of concise
policy representation, ensures that the integrity pol-
icy of an object is represented entirely in the update
permission; destroy only controls removal of the ob-
ject’s name from Guardat metadata.

Content caches Two Guardat caches buffer ob-
ject content for use in policy evaluation. There
is a per-session cache of two types of records:
(obj,off,len,content), where content is the sequence
of len bytes stored starting at offset off within the
object obj; and (obj,((off1,len1),...,(offn,lenn)),hash),
where hash is the 32-byte SHA-256 hash over the
bytes stored at the specified ordered list of (off,len)
extents within the object. The session cache re-
flects the current committed content of the ref-
erenced objects. In addition, there is a sepa-
rate per-batch cache of records (off,len,content) and
((off1,len1),...,(offn,lenn)),hash) which represent the
new uncommitted content of the object manipulated
within the batch. Records are inserted into the ses-
sion cache as a side-effect of the readBatched() call,
while records are inserted into the batch cache as a
side-effect of the fresh() call. Flags to these calls in-
dicate whether content, hashes or neither should be
inserted (these flags are described in Appendix A).
When a batch commits, any records in the batch
cache are moved into the session cache, and any exist-
ing session cache records they supersede are evicted.
When a batch aborts, the records in the batch cache
are discarded.

All relevant object content must exist in the caches
before policy evaluation, else access is denied. We
rely on the untrusted client for this: The client
must set appropriate cache flags in readBatched()
and fresh() calls. This is in line with our principle
of economy in design: denying access for lack of con-
tent in the cache is safe, whereas searching for that
information on disk is inefficient and can easily lead
to DoS attacks. Policy-aware wrapper libraries could
alleviate the need for adding cache flags in every ap-
plication’s code.

Certificate API The call setCertifi-
cate(certificate) forwards a third-party certificate to
Guardat for use in subsequent policy evaluations,
whereas getNonce() returns a fresh nonce, which can
be embedded in a subsequent certificate. Third-party
certificates are described further in Section 3.2.

The call attest(objName, nonce) returns a
Guardat-signed certificate that attests the existence

8

of objName, its extents and its policy. Optionally, the
certificate also includes a hash of any of the object’s
data in the session cache. The attestation certifi-
cate embeds a client-provided nonce, which is useful
for preventing replay attacks in protocols built over
Guardat. The read policy rule authorizes this call.

Backwards compatibility For compatibility with
existing systems, Guardat supports the stan-
dard block-device API calls read(blk,cnt,buf) and
write(blk,cnt,buf). The read() call reads cnt blocks
sequentially from disk starting at block blk and re-
turns the data in buffer buf. The write() call is dual.
In executing these calls, Guardat uses its metadata
to find all objects that intersect the extent being read
or written. It evaluates the respective read or up-
date policy rule of all these objects, and fails with
an error if any evaluation denies access. Disk blocks
not associated with any object can be accessed with-
out restriction through the read() and write() calls.
Hence, Guardat may be configured to selectively pro-
tect only a part of a storage disk. Also, Guardat
can interoperate with existing, unmodified file sys-
tems using an application library. More details can
be found in Appendix C.

3.2 Guardat policy language

Clients specify object protection policies in an expres-
sive and simple declarative language. Each object’s
policy contains four rules, one for each of the permis-
sions read, update, destroy and setpolicy. Each
rule specifies the conditions under which the respec-
tive permission holds. In Section 3.1, we explained
which API calls evaluate each of these rules.

A rule has the form (perm :- conds) and means that
permission “perm” is granted if the conditions “conds”
are satisfied. The conditions “conds” consist of atomic

facts connected with conjunction (“and”, written ∧

) and disjunction (“or”, written ∨). Operationally,
policy rules are clauses of constrained Datalog, with
all atomic facts in conditions treated as external [23].
Datalog is a standard foundation for writing access
policies [7, 12, 34], known for its clarity, high-level of
abstraction and ease of implementation.

Each atomic fact contains a predicate that relates
object names, content, public keys, extent lists, etc.
to each other. The expressiveness of the Guardat
policy language stems from the wide range of avail-
able predicates. Universal predicates are available in
all policy rules. The predicate session_is(K) checks
that the ongoing session is authenticated with the
public key K and object_name_is(O) means that the
object being accessed has name O. The predicate
(obj, off, len) says R provides access to the session
cache. It means that a record in the session cache
states that object obj has content R at offset off. Sim-
ilarly, (obj, ((off1, len1), . . . (offn, lenn))) hasHash H

provides access to hashes in the session cache.
Through these predicates, an object’s policy may test
the content of another object. We find this useful in
representing many policies, including mandatory ac-
cess logging (Section 4).

Additionally, contextual predicates provide infor-
mation specific to a policy rule. In read, this in-
formation includes the length of the read and its log-
ical and physical offsets. As a result of such fine-
grained information, confidentiality policies may be
specified at the granularity of bytes. In update,
contextual predicates provide information about the
current and new extents of the object, the cur-
rent and new object sizes, and access to the batch
cache through the predicates (off, len) willsay R

(the new content at offset off will be R) and
((off1, len1), . . . , (offn, lenn)) willHaveHash H (the new
bytes stored in the list of (off,len) pairs will have hash
H). This facilitates rich integrity policies that cor-
relate old and new object content as well as content
across two different parts of an object. Again, we
find this handy for many policies, including manda-
tory access logging. All available contextual predi-
cates are listed in Appendix B.

Finally, Guardat policies may contain arbitrary un-

interpreted predicates that are established through
signed third-party certificates. These include time-
server certificates to establish clock time. When a
third-party certificate is provided to Guardat through
the setCertificate() API call, Guardat checks its
signature using standard certificate chain verifica-
tion [11] and stores its content and its signer’s pub-
lic key in a certificate cache. This cache is available

9

during policy evaluation, through two types of unin-
terpreted predicates:
• Public key binding, key_is(k, a), which states

that public key k has attribute a. For example, a may
be “TimeServer”, suggesting that k is a time server’s
public key. The corresponding certificate must be
signed by a certifying authority (CA) or its delegatee.
• Signed relation, k signs r(t1, . . . , tn) at t: There

is a certificate verified by public key k and received
at timing counter value t, which contains the relation
r(t1, . . . , tn). (The suffix “at t” is optional; the timing
counter is explained below.)

The policy designer and certificate issuers must
agree on the meaning of the attribute a in the first
point and of the relation r in second point. Guardat
treats both a and r as bitstrings. Section 4 illustrates
this further.

To enforce time-sensitive policies, Guardat relies
on time-server certificates and an internal timing

counter. When a time-server certificate is received,
its cache entry is stamped with the value of the tim-
ing counter. Later, clock time can be estimated by
adding the difference of the then-value of the tim-
ing counter and the value of this stamp to the time
mentioned in the time-server certificate. This timing
counter need not be very precise because it can be
reset periodically to prevent a large drift. Whenever
the timing counter is reset, all time-server certificates
must be evicted from the cache.

To prevent certificate replay attacks, each certifi-
cate must include a Guardat-generated nonce, ob-
tained through the API call getNonce(). Guardat
waits for a certificate containing a nonce it generates
for a small period only. This wait time is an upper
bound on the delay between the issuance of a cer-
tificate and its acceptance by Guardat and, hence,
also an upper bound on the difference between the
clock time estimated by Guardat and the clock time
known to a time server. Nonces may be created using
a pseudorandom number generator.

Following our principle of economy in design, Guar-
dat does not include logic to contact third-parties to
obtain relevant policy certificates. Instead, populat-
ing the cache with relevant certificates before access is
the responsibility of the Guardat client. If required
certificates are missing, access is denied. (When a

certificate issuer is offline, access to objects that rely
on certificates from that issuer may be denied, but
access to other objects remains unaffected.)

4 Policy examples

We illustrate the capabilities of Guardat by present-
ing several example policies. For brevity, we intro-
duce the following convention to omit default policy
rules: If the rule for the read or update permissions
is omitted, then the permission is always allowed and
if the rule for the setpolicy or destroy permission
is omitted, then that permission is never allowed.

Protected executables For a binary file, it is de-
sirable to defend against accidental or malicious over-
writing or rollback to a prior version. A representa-
tive Guardat policy to accomplish this is shown be-
low. The policy states that the new content of the
binary after any update must be signed by the soft-
ware vendor (called “Vendor”) as being version 10 or
later. Moreover, any changes to the policy must be
certified with the administrator’s key, kad.

update :- object_name_is(O) ∧ new_length_is(L) ∧

(0, L) willHaveHash Nh ∧ key_is(K, “Vendor”) ∧

K signs ok_hash(O,N,Nh) ∧ (N ≥ 10)
setpolicy :- object_name_is(O) ∧ new_pol_hash_is(Nph) ∧

kad signs good_policy(O,Nph)

The first rule allows an update to the object only if
there is a public key K belonging to “Vendor” (condi-
tion key_is(K, “Vendor”)), which signs that the ob-
ject’s new content hash, Nh, is the Nth version of
the binary (condition K signs ok_hash(O,N,Nh))
and N ≥ 10. The uninterpreted predicates
key_is(K, “Vendor”) and K signs ok_hash(O,N,

Nhash) are verified from client-provided certificates
signed by a certifying authority and the vendor, re-
spectively. Because the vendor’s certificate contains
a single hash over the entire object content, atomic
update transactions are needed to satisfy this policy.

The second rule allows a change to the binary’s
policy only if the hash of the new policy, called Nph,
has been certified by the administrator (condition
kad signs good_policy(O,Nph)).

10

Properties: As long as the integrity of the vendor’s
and admin’s keys is maintained, files protected by
the policy cannot be overwritten except with con-
tent signed by the vendor and version ≥ 10, even if
the entire system is compromised (write integrity).
Moreover, a client operating system can make sure
it executes only trusted executables despite a com-
promised storage service (read integrity) as follows:
before executing a binary, it obtains an attestation
certificate for the file from the Guardat, verifies the
policy and object name (full path name) in the cer-
tificate, and compares the hash of the data delivered
by the storage system with that manifest in the cer-
tificate.

Append-only logs The following policy specifies
an append-only file that may be extended by any-
one but modified otherwise (e.g., rotated) only by an
administrator identified by the public key kad. The
policy would prevent accidental or malicious record
deletion from system log files.

update :- session_is(kad) ∨

(old_length_is(Lo) ∧ new_length_is(Ln) ∧ (Ln ≥ Lo) ∧

updated_locations_are(M) ∧ disjoint(M, [0, Lo]))

The policy allows an update if either the session
is authenticated by the administrator (condition
session_is(kad)) or the object’s new length Ln exceeds
its current length Lo and the first Lo bytes of the ob-
ject are not modified.
Properties: As long as the integrity of Guardat
and the admin’s key is maintained, append-only
writes are ensured for any file with the policy, even
if the entire remaining system is compromised.

Storage lease Backup files can be protected from
accidental or malicious modification for a fixed period
of time by attaching the following policy to them.

update :- key_is(K, “TimeServer”) ∧

K signs time(T) at Ti ∧

time_is(Tj) ∧ (T + Tj − Ti > endT)

The policy allows modification to the object only
if the current time exceeds a pre-determined time

endT. In detail, there should be a key K belonging to
a time server (condition key_is(K, “TimeServer”)),
which issued a certificate that the clock time was T

when the internal timing counter had value Ti (con-
dition K signs time(T) at Ti), the current counter
value is Tj (condition time_is(Tj)) and the current
clock time (calculated as T + Tj − Ti) exceeds the
lease end time endT.

Properties: As long as the integrity of the time
server and its signing key is maintained, a file with
this policy cannot be modified before the designated
time, even if the system, the admin’s and the file
owner’s private keys are compromised.

Mandatory access logging Legislation and orga-
nizational policies often mandate that all access —
read and write — to sensitive information like med-
ical records be logged to a separate file. Although
application-level solutions to enforce such mandatory
access logging (MAL) exist, enforcing the policy in
Guardat is desirable because it would result in a
smaller trusted computing base. We show here how
a MAL policy can be encoded in the Guardat policy
language. The representation is non-obvious and con-
tains several straightforward but mundane details, so
we focus on the high-level idea, but elide the details.
(An alternate design for MAL could add a “logging
rule” to the policy language. In line with our design
principles of a minimal language that specifies policy
but not mechanism, we rejected this design.)

For this exposition, let P be the sensitive object
which must be protected by MAL and let L be its
log object. We assume that the log object is append-
only, through the policy described earlier. The MAL
requirement is three-fold: 1) (Completeness) For ev-
ery read on P , an entry in L should describe who read
and from where in P . For every write, a similar en-
try must exist in L and it must additionally contain a
hash of the content written. 2) (Causality) Given two
write entries in L, the order in which they were ap-
plied to P should be evident and, similarly for a read
and a write entry. 3) (Precision) Call a write entry
in L dangling if it does not correspond to an actual
write on P . Then, either dangling entries should not

11

be allowed in L or they should be detectable.1

We start with an obvious strawman policy for P ,
which is complete, but does not provide causality and
precision. We refine the design later. We define two
kinds of entries for L: may_read(K,S), which indi-
cates that the client with public key K has poten-
tially read the set S of (off,len) ranges from P ; and
change(K,S,H), which states that content with hash
H has been written to the ranges in S. To force log-
ging of reads, we require in the read rule of P ’s policy
that if the range R is read by client K, then an entry
may_read(K,S) with R ⊆ S exist in L. Similarly,
write logging could be forced through P ’s update
rule.

This strawman policy for P can be expressed in
the Guardat policy language because the set R of lo-
cations read or updated is available through contex-
tual predicates in the policy language, the client K is
available through the predicate is_session(K) and L’s
content is available through the session cache (pred-
icate says). The policy can also be easily satisfied by
the client: Prior to reading or writing, the client could
append an appropriate entry to L and have it cached
for P ’s subsequent policy evaluation. Even though
this policy satisfies the MAL requirement of com-
pleteness, it does not satisfy causality and precision.
Nothing in L’s policy prevents the client from creat-
ing entries that are never used and such entries can-
not be distinguished from others (this violates preci-
sion). Moreover, nothing in P ’s policy prevents use
of L’s entries out-of-order, which violates causality.

To obtain causality and precision, we refine this
strawman design. We embed a counter in each entry
in L and enforce through L’s policy that the counter
increase by 1 at each successive change entry and re-
main the same at each may_read entry. We enforce
through P ’s policy that the value of the counter in the
last change entry that has already been applied to P

be written at a designated locus in P . Further, the
entry used to justify a read must have a counter num-
ber that matches the current counter in P . We de-
scribe below how we enforce these requirements. As-

1Dangling read entries are usually not a problem, because

it is in the client’s interest to establish that it did not read

certain data and, hence, not create dangling read entries. We

also describe later how read entries can be made precise.

suming that they have been enforced, both causality
and precision are satisfied. Causality holds because
the policies just described force that change entries
apply to P in increasing order of their counter num-
bers, and that a read corresponding to a may_entry

is used after all change entries with smaller or equal
counter numbers have been applied. Precision holds
because a change entry is dangling if and only if its
counter number is higher than the counter in P .

The log’s entries are revised to include counter
numbers. They take the forms may_read(N,K, S)
and change(N,K, S,H), where N denotes a counter.
We reserve a fixed locus in P for a counter, called C.
The log is initialized with a dummy entry with N = 0
and P is initialized with C = 0. We describe relevant
policies of L and P in words, omitting symbolic repre-
sentations for clarity. (We have formally represented
these policies in our prototype implementation; ex-
perimental results are presented in Section 5.)
L’s update policy: Only appends are allowed
and only entries of the two designated forms may
be added. If the added entry has the form
may_read(N, . . .), then N must be copied from the
previous entry and if the added entry has the form
change(N, . . .), then N must be one more than the
previous entry’s counter. (These requirements can be
represented in the Guardat policy language because
the previous entry and the new entry are accessible
through the session and batch caches, respectively,
during evaluation of the update rule.)
P ’s read policy: L must contain a may_read entry
with the same counter number as C and range set
larger than the actual range read. (L’s relevant en-
try and C are accessible through the session cache
during P ’s policy evaluation. In particular, C can be
referenced because Guardat supports byte-level ad-
dressing on objects and the locus of C is fixed in ad-
vance. The client is responsible for specifying which
entry of L in the session cache satisfies the policy.)
P ’s update policy: L must contain an entry describ-
ing the update precisely. The counter in the entry
must be one more than C. The update must also
increment C by 1. (When evaluating P ’s policy, L’s
relevant entry and the old value of C are accessible
through the session cache. The new value of C is
accessible through the batch cache.)

12

Properties: Our policies enforce all MAL require-
ments.
MAL client: The MAL client must perform some
bookkeeping steps to satisfy the MAL policy. Prior to
each access on P , appropriate log entries must be cre-
ated. When creating log entries, flags must be set to
buffer them in the content cache for use in P ’s policy
evaluation. A log entry’s cache record is also neces-
sary to create the next log entry. Similarly, when C

is updated, flags must be set to cache it for use in fu-
ture policy evaluations. This approach follows from
our design principle of placing the burden and com-
plexity of how to satisfy a policy on the untrusted
code.

The overhead of creating log entries for updates
can be reduced by committing batches less frequently
(and, hence, requiring fewer change entries). Simi-
larly, the overhead of creating log entries for reads can
be reduced by clubbing several anticipated reads into
a single may_read entry. The performance benefit of
these optimizations is substantial and we report on it
in Section 5. Applications that cannot accurately es-
timate their read-sets ahead of time can simply create
blanket may_read entries that cover the entire object
and periodically commit read-only batches accompa-
nied by special log entries that specify precisely what
has been read in the batch (the precise read set is
available to Guardat during end batch, so the log
entry’s accuracy can be verified). This mode of use
requires a second counter in log entries and the sensi-
tive object to count read-only batches. We elide the
details here.

5 Experimental evaluation

In this section, we present results of an experimental
evaluation of a Guardat prototype implementation in
a SAN server.

5.1 Prototype Implementation

Our prototype is a modified iSCSI Enterprise Target
(IET) SAN server. IET implements the server-side
iSCSI protocol, which provides SCSI block storage
access via Ethernet. IET is in production use and

available for many Linux distributions, e.g., SUSE,
RHEL and Debian.

IET consists of a kernel module, which imple-
ments block accesses, and a user-level daemon pro-
cess, which implements iSCSI management functions.
To implement Guardat, we extended the kernel mod-
ule and added a second user-level daemon process,
which implements the metadata structures, Guardat
API and policy evaluation. The kernel module per-
forms upcalls to determine if iSCSI block accesses
should be allowed. The server has access to an SSD
for storing Guardat metadata and one or more mag-
netic disks for payload data.

The Guardat daemon maintains two B-tree index
structures: a block-to-object index to find the ob-
ject and policy associated with a given disk location
(block id), and a name-to-object index to retrieve
the object information (set of extents, policy, etc.)
given an object name. For performance, the Guardat
daemon maintains a write-through DRAM cache of
B-tree nodes and policies, backed by the SSD.

When the kernel module receives a disk access re-
quest, it passes the access type (read/write) and lo-
cation (disk offset and length) to the multi-threaded
Guardat daemon. The daemon consults the block-
to-object index. If the disk location is not associated
with any object, the access is granted. Otherwise, the
daemon retrieves and evaluates relevant policies. The
result is returned to the kernel module. For read re-
quests, the disk read is performed while checking the
permission. This may result in some wasted work if
the read is denied, but results in lower latency if it is
not. During a write request, the disk write must be
deferred until the daemon grants the permission.

The Guardat daemon maintains certificate, session
and batch caches in DRAM. It denies access based on
a policy rule that refers to an evicted cache record.
The client may refresh the record using API calls to
regain access.

Our prototype’s attack surface consists of the IET
management interface, the block-device interface, the
Guardat interface extensions as well as the policy lan-
guage. Despite the relatively large IET codebase,
which includes a Linux kernel, the resulting attack
surface is likely to be significantly smaller than that
of the system built on top of Guardat in most cases.

13

Our Guardat implementation adds less than 13,000
LOC to the existing IET codebase, plus the OpenSSL
and glib libraries it relies on.

5.2 Experimental setup

In our setup, the Guardat enhanced IET SAN server
(based on version 1.4.20.3-9.6.1) [45] runs on a sepa-
rate physical server connected to the client via 10Gbit
Ethernet links. The client software runs on OpenSuse
Linux 12.1 (kernel version 3.1.10-1.16, x86-64). The
Linux iSCSI client connects to the IET server, and
appears to the Linux ext4 filesystem as a locally con-
nected SCSI block device.

The IET server and the Linux client each run on a
Dell Precision T1600 workstation with an Intel Xeon
3.1Ghz quad core CPU (AES and AVX instruction
set) and 8GB main memory. The server has a 500GB
disk drive with the server OS installation, and two
disks that are used for Guardat. Data is stored on a
Seagate Barracuda 2TB 7200 rpm hard drive with
a 64MB cache [38], and the Guardat metadata is
stored on a OCZ Deneva 2 C SLC 60GB (raw 64GB)
SSD [28]. Only 4GB of the SSD is actually used for
Guardat metadata; the remaining capacity is avail-
able for general use by clients.

The openSSL crypto library [29], Intel AES en-
cryption library [20], and Intel’s fast SHA256 imple-
mentation [21] are used for Guardat cryptographic
operations.

5.3 Microbenchmarks

We performed a series of microbenchmarks to quan-
tify the overheads incurred by the Guardat proto-
type in terms of storage space, read/write latency
and throughput, and Flash memory wear.

5.3.1 Space requirements for metadata

First, we quantify the metadata storage require-
ments. Because the metadata size depends on the
structure of the payload data, we analyzed the meta-
data space requirements for 70,825 filesystem snap-
shots collected by Agrawal et al. [1]. The snapshots
were taken from Windows systems within Microsoft

 0.01

 0.1

 1

 10

 100

RR LR SR RW LW SW

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Workload

iSCSI

Guardatempty

Guardatobject

Guardatpolicy

Figure 2: End-to-end I/O latency for synthetic work-
loads

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

RR LR SR RW LW SW

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

Workload

iSCSI

Guardatempty

Guardatobject

Guardatpolicy

Figure 3: Normalized I/O latency for synthetic work-
loads excluding disk access latency

corporation between 2000 and 2004, and contain be-
tween 30k and 90k files each with an average file size
between 108KB and 189KB. For evaluation purposes,
we give each file in each snapshot an integrity policy
that disallows modification prior to a given date.

As a point of reference, the ratio of solid state to
magnetic disk capacity in commercially available hy-
brid disks is at least 0.8% [39] at the time of this
writing. At this ratio, the required metadata can be
accommodated in the solid state memory for 99.99%
of the snapshots. Newer combinations of Flash/disk
devices like Apple’s Fusion Drive (128GB Flash/1TB
HDD) achieve much higher Flash to disk capacity ra-
tios, and would easily accommodate the metadata for
all snapshots.

5.3.2 Read/write latency

Next, we examine the read/write latency of the Guar-
dat prototype under synthetic workloads. For this ex-

14

periment, we fill the 2TB disk with 3.8 million files,
each spanning a single 512KB extent, and compare
the read/write latency of the Guardat prototype with
the original IET under three different configurations:
Guardat_empty: No objects are protected by a
policy. The overheads incurred by this configura-
tion are limited to the cost of communication between
the kernel module and the Guardat daemon, and the
(negative) check for any policy.
Guardat_object: An “allow all” policy is associ-
ated with each object. Each access to a disk block
requires the userspace Guardat daemon to lookup the
metadata associated with the corresponding object
and interpret the null policy.
Guardat_policy: Each object is protected by a
policy selected at random from a set of 40,000 dif-
ferent policies, each of which allows access after a
past date. The additional overhead includes fetching
and interpreting the different policies.

Each configuration is exercised with three different
access patterns (Sequential: blocks accessed in or-
der of increasing block id, Local: each accessed block
chosen randomly within 40,000 block ids of the previ-
ous block, Random: each accessed block chosen ran-
domly within the entire disk), and two access types
(Read and Write). Each access reads or writes a
512B disk block.

For the different configurations, access patterns
and types, Figure 2 show the absolute end-to-end ac-
cess latency. Five runs were performed with each
configuration, for a total of 100,000 accesses. Each
run was started at a randomly chosen block id as the
starting location. The bars show the average of the
total number of measured latencies; error bars indi-
cate the standard deviation.

The Guardat latency overheads for local and ran-
dom read/write accesses are all negligible (below 1%),
because they are dominated by the access latency
of the magnetic disk. The Guardat overheads are
more noticeable during the much faster sequential ac-
cesses (2.9% for SR and 4% for SW in the Guar-
dat_policy configuration). During sequential read
accesses, Guardat can partially hide the policy check
latency by issuing the disk read in parallel with the
policy check, and squashing the read if the check is
negative. Writes, on the other hand, cannot be sched-

uled safely until the policy check completes, thus the
higher overhead. There is room for further optimiza-
tion, for instance, by caching the results of previous
policy evaluations in the kernel module while they
remain valid, thus avoiding upcalls in the common
case.

To zoom in on the delays introduced by Guardat,
Figure 3 shows the measured end-to-end latencies ex-

cluding the disk access latency, and normalized to the
latency of the unmodified IET server without the disk
access latency. We see that the overheads relative
to the original IET are small, except during random
writes and, to a lesser extent, local writes. As noted
above, the policy checks cannot be overlapped with
the disk access during writes. Moreover, during ran-
dom and local writes, the Guardat metadata lookups
tend to miss the cache more often, leading to average
latencies of up to 930us compared to the IET latency
of 278us in the Guardat_policy configuration on ran-
dom writes (RW). However, this overhead has little
impact on the end-to-end latency, which is dominated
by disk access latency, as shown in Figure 2.

5.3.3 Read/write throughput

Next, we examine the read/write throughput of the
Guardat prototype, using the same configurations
used in the latency experiment. However, instead of
issuing 512B accesses sequentially, the test client is-
sues four 64KB requests concurrently, which suffices
to achieve maximal throughput in the experiment.

Figure 4 shows the absolute throughput of the vari-
ous configurations and workloads. The results shown
are the averages of 5 runs, each starting at a block
id picked randomly within the disk and containing
20,000 accesses. Error bars indicate the standard de-
viation of all 100,000 accesses. The Guardat over-
heads for all access patterns are negligible (below
0.6%), because the Guardat policy checks are largely
overlapped by disk accesses.

5.3.4 Flash memory wear

Flash memory can endure only a limited number of
erase/program cycles. It is important that Flash not
wear out before the expected lifetime of the magnetic

15

 0

 20

 40

 60

 80

 100

 120

 140

 160

RR LR SR RW LW SW

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Workload

iSCSI

Guardatempty

Guardatobject

Guardatpolicy

Figure 4: I/O throughput for synthetic workloads

disk; to be conservative, we assume that the Flash
must last at least 10 years. The lifetime is influenced
by the size of the metadata, the rate of metadata up-
dates (more updates require more Flash writes), and
the Flash capacity. (A smaller capacity causes the
Flash log to wrap around faster and leads to higher
utilization, which in turn reduces cleaning efficiency
and requires even more Flash writes.)

Under the configuration of Guardat_policy used
above in 5.3.2, we keep track of how much wear the
Flash experiences while presented with a series of
metadata updates, i.e., adding and removing extents
to a content file picked at random. Using only 4GB
of Flash memory with a nominal lifetime of 100,000
erase/program cycles, we can accommodate up to
19.5M updates per day (225 per second). This is
an extraordinarily high update rate and can accom-
modate even the most write-intensive applications.

5.4 Use case: Web server

Next, we study the capabilities and performance of
the Guardat prototype as part of a Web server. The
server holds a 220GB static snapshot of English lan-
guage Wikipedia articles from 2008 [50] and images
from 2005 [49], containing 15 million files with an
average file size of 15KB and maximum file size of
∼500KB.

We use three different machines connected by 10
Gbit Ethernet links to run the IET storage server, the
Apache Web server (version 2.2.23)[4] and Apache
HTTPAsyncClient for Java (version 4.0-beta-1)[5].
The Web server either fetches the contents from the

mounted iSCSI device or from Linux’s buffer cache.
Apache does not use a dedicated disk cache.

The HTTP client asynchronously requests HTML
pages from the Web server, using a workload based
on the actual access counts of Wikipedia pages during
one hour on April 1, 2012 [51]. Because our snapshot
is much older and had fewer articles at the time, we
ignore accesses to non-existing pages. In total, about
350,000 different pages were accessed in the trace, of
which 250,000 are part of the 2008 snapshot. Since
we do not have access to time stamps, we distributed
the individual accesses evenly within an hour, and
replayed the first 100,000 page requests.

We use the following Guardat policies: Static
content pages: Allow updates signed by a fixed
owner. We use 40,000 different owner identities and
randomly assign them to the content files. System
binaries: Allow updates signed by a special vendor
signature only.

The workload and policies used are particularly
challenging for Guardat, due to the large number of
small protected files and a disk intensive workload.

Figure 5 shows the average throughput of three
runs as a function of the number of concurrent HTTP
accesses. Each run loads 100,000 Wikipedia pages.
Results are shown for four different configurations:

iSCSI: The plain IET iSCSI implementation.

Guardat_content: Guardat protecting content
changes.

Guardat_content+binary: Guardat protecting
changes to content and Apache binaries (e.g.
apachectrl, httpd, libapr).

There is little difference (less than 1%) be-
tween the throughput achieved by the unmodified
IET server and the Guardat_content and Guar-
dat_content+binary configurations, confirming that
the Guardat overheads are mostly hidden by disk ac-
cess latencies in these configurations.

To summarize, the use of Guardat in the Web
server use case has negligible performance overhead.
In terms of functionality, Guardat protects content
files from tampering and corruption by unauthorized
parties, and prevents intruders from modifying exe-
cutables to install Trojan horses.

16

 210

 220

 230

 240

 250

 260

 270

 280

 290

 0 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(R

e
q

u
e

s
ts

/s
)

Number of concurrent HTTP requests

iSCSI
Guardatcontent

Guardatcontent+binary

Figure 5: Throughput of 100,000 page loads, as a
function of the number of concurrent accesses. Aver-
age of five runs, variations were below 0.6%

5.5 Use case: Mandatory access log-
ging (MAL)

In the final experiment, we perform accesses to a file
with a mandatory access logging policy. The MAL
policy requires adding the proper log entry to a sep-
arate log file in order for an access to be allowed by
Guardat. We use a 64MB file with or without the
MAL policy in place. The primary file and log file
reside on different disks attached to the same Guar-
dat IET server. The version counter embedded in
the primary file is stored in a block of available Flash
memory. The client connects to the Guardat device
and accesses the file as follows:

no_log: the unprotected file is accessed without any
logging.

log: the unprotected file is accessed and the accesses
are logged without policy enforcement.

Guardat_MAL: the policy-protected file is ac-
cessed and the accesses logged, as enforced by the
policy.

Figures 6 and 7 show the access latency for se-
quential 4KB reads and writes, respectively, of the
same location within the file. We vary the num-
ber of accesses per log entry. The bars show the
average latency of 100,000 accesses and the error
bars show the 98th percentile. In the case of a sin-
gle read/write, voluntary logging increases the la-
tency from 0.20/0.16ms to 0.78/0.79ms, and policy
enforcement increases the latency to 0.87/1.19ms.
The higher cost of enforced logged writes reflects the

 0.1

 1

1 2 4 8 16 32 64 128 256 512

R
e

a
d

 l
a

te
n

c
y
 (

m
s
)

Reads per log entry

log
Guardat_MAL

no_log

Figure 6: Read latency with MAL, voluntary and no
logging

 0.1

 1

1 2 4 8 16 32 64 128 256 512

W
ri
te

 l
a

te
n

c
y
 (

m
s
)

Writes per log entry

log
Guardat_MAL

no_log

Figure 7: Write latency with MAL, voluntary and no
logging

need to update the sequence number. In both cases,
the synchronous log write contributes a significant
part of the overhead; policy enforcement increases
the read/write latency by 11.5% and 50.6%, respec-
tively, for individually logged operations. As shown,
the cost of MAL can be amortized by logging several
operations with a single entry.

6 Conclusion

Guardat enforces confidentiality, integrity and access
accounting policies for persistent data at the storage
layer, and attests the state of stored objects. The
Guardat design is rich enough to enable powerful
policies, primitives and applications, yet is amenable
to an efficient implementation, as demonstrated by
an experimental evaluation. In future work, we in-
tend to extend Guardat to a distributed environment,
enabling policy enforcement, tracking and access ac-

17

counting for objects that migrate among Guardat de-
vices.

References
[1] Nitin Agrawal, William J. Bolosky, John R. Douceur, and

Jacob R. Lorch. A five-year study of file-system metadata.
Trans. Storage, 3(3), 2007.

[2] Marcos K. Aguilera, Minwen Ji, Mark Lillibridge, John Mac-
Cormick, Erwin Oertli, David G. Andersen, Mike Burrows,
Timothy Mann, and Chandramohan Thekkath. Block-level
security for network-attached disks. In Proceedings of the
2nd USENIX FAST, 2003.

[3] Amazon simple storage service (S3). http://aws.amazon.com/
s3/.

[4] Apache Software Foundation. Apache http server. http://
httpd.apache.org/, 2012.

[5] Apache Software Foundation. Apache httpasyncclient.
http://hc.apache.org/httpcomponents-asyncclient-dev/

index.html, 2012.

[6] Apple Inc. Time Machine. http://www.apple.com/osx/

what-is/.

[7] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon.
Design and semantics of a decentralized authorization lan-
guage. In 20th IEEE Computer Security Foundations Sym-
posium, 2007.

[8] Kevin Butler, Steve McLaughlin, Thomas Moyer, and Patrick
McDaniel. New security architectures based on emerging disk
functionality. IEEE Security and Privacy, 8(5):34–41, 2010.

[9] Kevin R. B. Butler, Stephen E. McLaughlin, and
Patrick Drew McDaniel. Rootkit-resistant disks. In ACM
Conference on Computer and Communications Security,
pages 403–416, 2008.

[10] Kevin R. B. Butler, Stephen E. McLaughlin, and
Patrick Drew McDaniel. Kells: a protection framework for
portable data. In ACSAC, pages 231–240, 2010.

[11] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley,
and W. Polk. Internet X.509 public key infrastructure certifi-
cate and certificate revocation list (CRL) profile. RFC 5280.
http://www.ietf.org/rfc/rfc5280.txt, 2008.

[12] John DeTreville. Binder, a logic-based security language. In
Proceedings of the IEEE Security and Privacy (S&P), 2002.

[13] Michael Factor, Dalit Naor, Eran Rom, Julian Satran, and
Sivan Tal. Capability based secure access control to net-
worked storage devices. In Proceedings of the 24th IEEE
Mass Storage Systems and Technologies (MSST), 2007.

[14] Deepak Garg and Frank Pfenning. A proof-carrying file sys-
tem. In Proceedings of the 31st IEEE Symposium on Secu-
rity and Privacy, 2010.

[15] Ron Garret. A Time Machine time bomb. http://blog.
rongarret.info/2009/09/time-machine-time-bomb.html.

[16] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler,
Fay W. Chang, Howard Gobioff, Charles Hardin, Erik Riedel,
David Rochberg, and Jim Zelenka. A cost-effective, high-
bandwidth storage architecture. In Proceedings of the 8th
ACM ASPLOS, 1998.

[17] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic
remote attestation: A virtual machine directed approach to
trusted computing. In Proceedings of the 3rd USENIX Vir-
tual Machine Research And Technology Symposium, 2004.

[18] Mark Hayakawa. WORM Storage on Magnetic Disks Using
SnapLock Compliance and SnapLock Enterprise. Technical
Report TR-3263, Network Appliance, 2007.

[19] Dave Hitz, James Lau, and Michael Malcolm. File system
design for an NFS file server appliance. In Proceedings of the
USENIX Winter Technical Conference, 1994.

[20] Intel Corp. AESNI library. http://software.intel.com/

en-us/articles/download-the-intel-aesni-sample-library/,
2011.

[21] Intel Corp. Fast SHA256. http://download.intel.com/
embedded/processor/whitepaper/327457.pdf, 2012.

[22] Ramakrishna Kotla, Tom Rodeheffer, Indrajit Roy, Patrick
Stuedi, and Benjamin Wester. Pasture: Secure offline data
access using commodity trusted hardware. In Proceedings of
the 10th USENIX OSDI, 2012.

[23] Ninghui Li and John C. Mitchell. Datalog with constraints: A
foundation for trust management languages. In Proceedings
of the 5th Symposium on Practical Aspects of Declarative
Languages, 2003.

[24] M. Mesnier, G.R. Ganger, and E. Riedel. Object-based stor-
age. Communications Magazine, 41(8), 2003.

[25] Michael Mesnier, Feng Chen, Tian Luo, and Jason B. Akers.
Differentiated storage services. In Proceedings of the 23rd
ACM SOSP, 2011.

[26] Microsoft Corp. What is volume shadow copy service?
http://technet.microsoft.com/en-us/library/cc757854(WS.

10).aspx.

[27] Microsoft Corp. Windows Backup and Restore.
http://www.microsoft.com/athome/setup/backupdata.aspx#
fbid=l7X90d97alI.

[28] OCZ Technology Inc. Deneva 2 data sheet. http://www.

oczenterprise.com/ssd-products/deneva-2-c-sata-6g-2.
5-slc.html, 2011.

[29] OpenSSL Cryptographic library. http://www.openssl.org/
docs/crypto/crypto.html, 2012.

[30] Oracle Corporation. Solaris ZFS. http://www.oracle.com/

us/products/servers-storage/storage/storage-software/
031857.htm.

[31] Bryan Parno, Jonathan M. McCune, and Adrian Perrig.
Bootstrapping trust in commodity computers. In Proceed-
ings of the 31st IEEE Symposium on Security and Privacy,
2010.

18

http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://httpd.apache.org/
http://httpd.apache.org/
http://hc.apache.org/httpcomponents-asyncclient-dev/index.html
http://hc.apache.org/httpcomponents-asyncclient-dev/index.html
http://www.apple.com/osx/what-is/
http://www.apple.com/osx/what-is/
http://www.ietf.org/rfc/rfc5280.txt
http://blog.rongarret.info/2009/09/time-machine-time-bomb.html
http://blog.rongarret.info/2009/09/time-machine-time-bomb.html
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://download.intel.com/embedded/processor/whitepaper/327457.pdf
http://download.intel.com/embedded/processor/whitepaper/327457.pdf
http://technet.microsoft.com/en-us/library/cc757854(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc757854(WS.10).aspx
http://www.microsoft.com/athome/setup/backupdata.aspx#fbid=l7X90d97alI
http://www.microsoft.com/athome/setup/backupdata.aspx#fbid=l7X90d97alI
http://www.oczenterprise.com/ssd-products/deneva-2-c-sata-6g-2.5-slc.html
http://www.oczenterprise.com/ssd-products/deneva-2-c-sata-6g-2.5-slc.html
http://www.oczenterprise.com/ssd-products/deneva-2-c-sata-6g-2.5-slc.html
http://www.openssl.org/docs/crypto/crypto.html
http://www.openssl.org/docs/crypto/crypto.html
http://www.oracle.com/us/products/servers-storage/storage/storage-software/031857.htm
http://www.oracle.com/us/products/servers-storage/storage/storage-software/031857.htm
http://www.oracle.com/us/products/servers-storage/storage/storage-software/031857.htm

[32] David A. Patterson, Garth Gibson, and Randy H. Katz. A
case for redundant arrays of inexpensive disks (RAID). In
Proceedings of ACM SIGMOD, 1988.

[33] Adam G. Pennington, John Linwood Griffin, John S. Bucy,
John D. Strunk, and Gregory R. Ganger. Storage-based in-
trusion detection. ACM Trans. Inf. Syst. Secur., 13(4):30:1–
30:27, December 2010.

[34] Andrew Pimlott and Oleg Kiselyov. Soutei, a logic-based
trust-management system. In Proceedings of the 8th Inter-
national Symposium on Functional and Logic Programming
(FLOPS), 2006.

[35] E. Riedel, C. Faloutsos, G.A. Gibson, and D. Nagle. Active
disks for large-scale data processing. IEEE Computer, 34(6),
2001.

[36] Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and
Stefan Saroiu. Policy-sealed data: A new abstraction for
building trusted cloud services. In Proceedings of the 21st
USENIX Security Symposium, 2012.

[37] Seagate Technology LLC. Self-encrypting hard disk drives in
the data center. Technical Report TP583, 2007.

[38] Seagate Technology LLC. Barracuda Data Sheet. http://
www.seagate.com/files/staticfiles/docs/pdf/datasheet/
disc/barracuda-xt-ds1696.3-1102us.pdf, 2011.

[39] Seagate Technology LLC. Momentus XT Data Sheet. http://
www.seagate.com/files/staticfiles/docs/pdf/datasheet/

disc/momentus-xt-data-sheet-ds1704-4-1209-us.pdf, 2012.

[40] G. Sivathanu, S. Sundararaman, and E. Zadok. Type-safe
disks. In Proceedings of the 7th USENIX OSDI, 2006.

[41] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I.
Popovici, Timothy E. Denehy, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Semantically-smart disk sys-
tems. In Proceedings of the 2nd USENIX FAST, 2003.

[42] Storage Work Group of the Trusted Computing Group.
Self-encrypting drives take off for strong data protec-
tion. http://www.trustedcomputinggroup.org/community/

2010/03/selfencrypting_drives_take_off_for_strong_data_
protection, 2011.

[43] Storage Work Group of the Trusted Computing Group.
TCG storage architecture core specification. http://

www.trustedcomputinggroup.org/resources/tcg_storage_
architecture_core_specification, 2011.

[44] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz,
Craig A. N. Soules, and Gregory R. Ganger. Self-securing
storage: Protecting data in compromised systems. In Pro-
ceedings of the 4th USENIX OSDI, 2000.

[45] The iSCSI Enterprise Target project. http://iscsitarget.

sourceforge.net/, 2011.

[46] Kevin Walsh and Fred B. Schneider. Costs of security in the
PFS file system. Technical report, Computing and Informa-
tion Science, Cornell University, 2012.

[47] Carsten Weinhold and Hermann Härtig. jVPFS: Adding ro-
bustness to a secure stacked file system with untrusted local
storage components. In Proceedings of the USENIX ATC,
2011.

[48] Carsten Weinhold and Herrmann Härtig. VPFS: Building a
virtual private file system with a small trusted computing
base. In Proceedings of the 3rd ACM/SIGOPS EuroSys,
2008.

[49] Wikimedia Foundation. Image Dump. http://archive.org/

details/wikimedia-image-dump-2005-11, 2005.

[50] Wikimedia Foundation. Static HTML dump. http://dumps.
wikimedia.org/, 2008.

[51] Wikimedia Foundation. Page view statistics April
2012. http://dumps.wikimedia.org/other/pagecounts-raw/

2012/2012-04/, 2012.

A Details of Guardat API calls

This section summarizes the Guardat API calls and
describes the session handshake protocol.

Session API We describe the handshake protocol
that authenticates the client and Guardat to each
other and establishes session keys. We use some ab-
breviations. C and G denote the client and Guardat
respectively. For a principal A, KA denotes its public
key and K−1

A denotes its corresponding private key.
Guardat’s public key KG is assumed to be known
to everyone (through a manufacturer-provided cer-
tificate). The client and Guardat use two freshly cho-
sen random nonces, denoted NC and NG respectively.
sig(K,M) denotes the signature on message M with
private key K. enc(K,M) denotes the encryption of
message M with public key K. (M1,M2) denotes
concatenation of messages M1 and M2. A → B : M
means that A sends message M to B. Our handshake
protocol is:

C → G : KC , sig(K−1

C , enc(KG, NC))
G → C : sig(K−1

G , (0, enc(KC , (NC , NG))))
C → G : sig(K−1

C , (1, enc(KG, (NC , NG))))

At the end of the protocol, both C and G have seen
their nonces signed by the other party; this authen-
ticates them to each other. The sequence numbers 0
and 1 in the second and third messages distinguish
the two messages from each other, preventing a man
in the middle from causing confusion through replays.
The session keys are derived by the client and Guar-
dat using key derivation functions on the concatena-
tion of the two nonces, (NC , NG).

19

http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-xt-ds1696.3-1102us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-xt-ds1696.3-1102us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-xt-ds1696.3-1102us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/momentus-xt-data-sheet-ds1704-4-1209-us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/momentus-xt-data-sheet-ds1704-4-1209-us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/momentus-xt-data-sheet-ds1704-4-1209-us.pdf
http://www.trustedcomputinggroup.org/community/2010/03/selfencrypting_drives_take_off_for_strong_data_protection
http://www.trustedcomputinggroup.org/community/2010/03/selfencrypting_drives_take_off_for_strong_data_protection
http://www.trustedcomputinggroup.org/community/2010/03/selfencrypting_drives_take_off_for_strong_data_protection
http://www.trustedcomputinggroup.org/resources/tcg_storage_architecture_core_specification
http://www.trustedcomputinggroup.org/resources/tcg_storage_architecture_core_specification
http://www.trustedcomputinggroup.org/resources/tcg_storage_architecture_core_specification
http://iscsitarget.sourceforge.net/
http://iscsitarget.sourceforge.net/
http://archive.org/details/wikimedia-image-dump-2005-11
http://archive.org/details/wikimedia-image-dump-2005-11
http://dumps.wikimedia.org/
http://dumps.wikimedia.org/
http://dumps.wikimedia.org/other/pagecounts-raw/2012/2012-04/
http://dumps.wikimedia.org/other/pagecounts-raw/2012/2012-04/

The handshake protocol is implemented using two
API calls, named handshake1 and handshake2. The
first call, handshake1, corresponds to the first mes-
sage in the protocol and its return value corresponds
to the second message. The second call, handshake2,
corresponds to the third message and its return value
is just a confirmation that the session has been estab-
lished. (The return value is irrelevant to security of
the protocol, but it is needed to tell the client to pro-
ceed.)

- handshake1(message): The message should be of
the form of the first message in the protocol. If
correct, the return value is the second message of
the protocol and a session id to link the second
call.

- handshake2(sessionId, message): The message
should be of the form of the third message in
the protocol. The return value is either success
or failure. If the value is success, then sessionId
is used as the identifier for the rest of the session.

The API call endSession(sessionId) ends a session.

Object API To allow flexible content hashing dur-
ing readBatched() and fresh() calls, Guardat provides
hash computation buffers to which the client can se-
lectively choose to add data during these calls. Once
the client has added all the data it needs to a buffer, it
finalizes the buffer, which moves the hash of the con-
tent in the buffer to either the session cache or the
batch cache (depending on whether the hash buffer
has current or new object content). In the implemen-
tation, each non-finalized hash buffer is an open hash
computation and newly appended content is hashed
immediately. Hash buffers are accessible through the
following API.

- initHash(batchId, currOrNew): Initialize a new
hash buffer for the object associated with the
open batch batchId. The Boolean flag cur-
rOrNew indicates whether the buffer will hold
a hash of the object’s current version or its up-
dated version. This choice is enforced in calls
that add to the buffer. Returns a unique identi-
fier for the hash buffer, hashId.

- closeHash(hashId): Finalize the hash buffer
hashId and move the hash in it to the session
cache if the buffer has current object content or
to the batch cache if the buffer has new object
content.

API calls to start and end batches and to read and
update objects were described in Section 3.1. We
summarize them below with details of caching flags
that we omitted from Section 3.1.

- openBatch(sessionId, objName): Start batch on
object with name objName in session identified
by sessionId. If objName does not exist, create
it. Returns a new batchId on success.

- readBatched(batchId, off, len, buf, cacheFlags,
cacheIntervals, hashId): Read len bytes from
logical offset off of the object associated with
batchId and return the result in buf. The
cacheFlags indicate whether or not the read con-
tent should be added to the session cache and
whether or not it should be added to a hash
buffer. If either is the case, then cacheIntervals
specifies which logical ranges of the read content
need to be added. If content is to be added to
a hash buffer, hashId identifies the buffer. This
call evaluates the read policy rule.

- reuse(batchId, off, len, off’): Take content in the
logical range [off,off+len-1] from the current ver-
sion of the object associated with batchId and
insert it at offset off’ in the new version.

- fresh(batchId, off, len, buf, off’, cacheFlags,
cacheIntervals, hashId): Write len bytes from
buffer buf to the extent starting at byte offset off
on disk and add the resulting extent to the new
version at offset off’. The arguments cacheFlags,
cacheIntervals and hashId have roles similar to
those in readBatched(), but the batch cache, and
not the session cache, is affected.

- setPolicy(batchId, new_policy): Set the policy
of the new version to new_policy.

- endBatch(batchId): Close the batch identified
by batchId. Evaluates the update policy rule

20

and, if the policy is being modified, also the set-
policy rule.

- destroy(objName): Destroy the metadata of the
empty object named objName. Evaluates the
destroy policy rule.

Certificate API The certificate API generates
nonces, attests content and forwards third-party cer-
tificates to Guardat for policy evaluation.

- getNonce(sessionId): Return a new nonce that is
to be embedded in a third-party certificate later.

- setCertificate(sessionId, certificate): Provide
certificate for use in later policy evaluation.

- attest(sessionId, objName, attestFlags, hashId,
nonce): Attest objName’s metadata and option-
ally a hash of selected content. The argument
attestFlags specifies which of the following need
to be attested: the list of physical extents, policy,
policy hash and content hash. If content hash is
to be attested, hashId points to an entry in the
session cache which has that hash. Guardat re-
turns a single certificate containing all requested
vectors and the client-provided nonce. The read
policy rule of objName is evaluated.

Backwards compatibility Standard block-device
API calls read(blk,cnt,buf) (read cnt disk blocks
starting at block blk into buffer buf) and
write(blk,cnt,buf) can be used to read and write disk
extents. The read or update policy rule of all ex-
tents that overlap the accessed extents is evaluated.

B Details of the Guardat policy

language

We summarize in this section predicates available in
the Guardat policy language. In addition to these
predicates, policies may use any uninterpreted pred-
icates established through third-party certificates.

The following universal predicates are available in
all policy rules.

- object_name_is(O): The object being accessed
has name O.

- session_is(K): The current session has been au-
thenticated with public key K.

- time_is(T): The internal timing counter is cur-
rently T .

- guardat_key_is(K): The public key of this Guar-
dat installation is K.

- Arithmetic, string comparison: t1 == t2, t1 <

t2, t1 ≤ t2.

- is_subset(R1, R2): Range set R1 is a subset of
range set R2.

- disjoint(R1, R2): Range sets R1 and R2 are dis-
joint.

- (obj, off, len) says C: The content at offset off in
object obj is C. (Based on the session cache.)

- (obj, ((off1, len1), . . . , (offn, lenn))) hasHash H :
The bytes stored in the given list of (off,len) pairs
in object obj have hash H . (Based on the session
cache.)

Specific contextual predicates are available in each
policy rule. We list these below, categorized by the
policy rules. The destroy rule admits no contextual
predicates.

Read rule The following predicates are available
in the read policy rule.

- isAttest(): True if the read rule is being evalu-
ated in an attest() call, and false otherwise.

- access_locations_are(R): The set of logical
(off,len) pairs read from the object is R.

- access_physical_extents_are(E): The set of phys-
ical extents read is E.

- access_length_is(L): The number of bytes read is
L.

21

Update/setpolicy rule The rules for update and
setpolicy evaluate in the same call, endBatch(), and,
hence, they admit the same contextual predicates
with only one exception that is shown later. When
the update rule evaluates in the call write(), some
of these predicates always evaluate to false. These
predicates are marked with ∗.

- isCreate∗(): True if and only if the batch executed
on an object that did not already exist.

- current_length_is(L): The length of the current
version of the object is L bytes.

- new_length_is∗(L): The length of the new ver-
sion of the object is L bytes.

- current_physical_extents_are(E): The current
version of the object spans the set E of physi-
cal extents.

- new_physical_extents_are∗(E): The new version
of the object spans the set E of physical extents.

- updated_locations_are(M): The set of logical (off,
len) pairs updated during the batch is M .

- read_locations_are∗(R): The set of logical (off,
len) pairs read during the batch is R.

- current_pol_hash_is(H): The current policy has
hash H .

- new_pol_hash_is∗(H): The new policy has hash
H .

- (off, len) willsay∗ C: The new content at offset off
is C. (Based on the batch cache.)

- ((off1, len1), . . . , (offn, lenn)) willHaveHash∗ H :
The new bytes stored in the given list of (off,len)
pairs have hash H . (Based on the batch cache.)

The following predicate is available only in the up-
date policy rule, not the setpolicy rule, and can be
used to distinguish evaluation of update in the end-
Batch() call from that in the write() call.

- isWrite(): True if and only if evaluation is part of
the write() call.

C Compatibility with existing

filesystems

We sketch how our Guardat prototype can be used
with an existing, unmodified filesystem, which is not
aware of Guardat and issues only ordinary block
reads and writes. In this compatibility mode, appli-
cations are linked with a library, which implements
the standard POSIX filesystem interface, and pro-
vides additional operations for applications to au-
thenticate, set a policy for a file, provide certificates
required by policies, and request attestations. The
library interacts with the Guardat userspace daemon
directly and makes API calls to associate block read
and write operations issued by the filesystem with
an object, client session and batch. We note that
the library is untrusted and does not require extra
privileges. In particular, the library only executes
Guardat calls on behalf of applications that the ap-
plications are allowed to execute themselves.

To determine if a block read operation is allowed,
the Guardat daemon maps the requested block num-
ber to the associated object (if one exists) using the
block-to-object B-tree. To further be able to map
the read operation to an authenticated session, we
impose the limitation that only a single batch or ses-
sion can be open for a given object at any given time
in compatibility mode.

Write operations may refer to an extent not cur-
rently associated with any object. (When a file is ex-
tended, the filesystem allocates new blocks.) There-
fore, prior to writing new data to a file, the appli-
cation library provides the Guardat daemon with a
vector of hashes of aligned blocks containing the new
data. This vector enables the daemon to associate
subsequent writes issued by the filesystem with the
correct object, offset, session and batch. In order to
avoid ambiguity, two blocks with the same hash value
may not be outstanding at the same time. The dae-
mon enforces this condition by temporarily refusing
to accept a block hash vector that contains an ele-
ment that is already present among the current set
of outstanding vectors.

When the kernel module receives a write command,
it computes the hash of blocks to be written, and

22

sends the hash to the daemon along with the request.
The daemon matches write requests with the list of
hashes provided by the compatibility library. Com-
puting hashes in the kernel avoids sending data from
the kernel to the userspace daemon.

The compatibility mode has limitations. As men-
tioned above, only a single session and batch may be
active for any given object, which can lead to some
loss of performance in workloads with concurrent ac-
cesses to the same file. Also, because the filesystem is
unaware of Guardat, any attempt by the filesystem to

relocate a file with an associated integrity policy may
fail. As a result, defragmentation of an unmodified
filesystem requires a modified defragmentation util-
ity. Object data encrypted with a session key must be
communicated between library and the Guardat dae-
mon without going through the iSCSI driver, to avoid
polluting the filesystem’s buffer cache with session-
encrypted data. These limitations can be lifted by
modifying a filesystem to use the extended Guardat
API, which is a subject of ongoing work.

23

	Introduction
	Background and related work
	Guardat design
	Guardat API
	Guardat policy language

	Policy examples
	Experimental evaluation
	Prototype Implementation
	Experimental setup
	Microbenchmarks
	Space requirements for metadata
	Read/write latency
	Read/write throughput
	Flash memory wear

	Use case: Web server
	Use case: Mandatory access logging (MAL)

	Conclusion
	Details of Guardat API calls
	Details of the Guardat policy language
	Compatibility with existing filesystems

