
Understanding the design tradeoffs for cooperative
streaming multicast

Animesh Nandi‡⋄, Bobby Bhattacharjee†, Peter Druschel⋄

⋄MPI-SWS ‡Rice University †University of Maryland

Technical Report MPI-SWS-2009-002
April 2009

ABSTRACT
Video streaming over the Internet is rapidly increasing in popular-
ity, but the availability and quality of the content is limited by the
high bandwidth cost for server-based solutions. Cooperative end-
system multicast (CEM) has emerged as a promising paradigm for
content distribution in the Internet, because the bandwidth over-
head of disseminating content is shared among the participants of
the CEM overlay network. Several CEM systems have been pro-
posed and deployed, but the tradeoffs inherent in the different de-
signs are not well understood.

In this work, we provide a common framework in which different
CEM design choices can be empirically and systematically evalu-
ated. Our results show that all CEM protocols are inherentlylim-
ited in certain aspects of their performance. We distill ourobserva-
tions into a novel model that explains the inherent tradeoffs of CEM
design choices and provides bounds on the practical performance
limits of any future CEM protocol. In particular, the model conjec-
tures that no CEM design can simultaneously achieve all three of
low overhead, low lag, and high streaming quality.

1. INTRODUCTION
Video delivery over the Internet using cooperative end-system

multicast (CEM) is increasingly popular, with a number of de-
ployed services (e.g. LiveStation [23], SopCast [33], BBC iPlayer [4]).
CEM systems are attractive primarily due to their low infrastructure
cost, and provide the least expensive entry into the Internet video
market.

The data plane for these systems can broadly be partitioned into
single-tree [11, 17, 35, 2], multi-tree [9, 29], mesh-based[43, 30,
25, 31] and hybrid [3, 39, 24, 18, 37, 41, 19] approaches. Re-
search in CEM has focused either on the design of new protocols
or on comparisons of complete systems. Prior research has led to
a number of partially verified “communal hypotheses”, e.g. that
mesh-based systems must incur high latencies and that tree-based
systems are not resilient to churn. Yet, we still lacks a fundamental
understanding of the CEM design space.

Gaining such an understanding is critical: the bandwidth re-
quired for streaming high quality video will remain near thelimits
of broadband network capabilities for the foreseeable future. From
the system- and network-designer’s perspective, the CEM protocol
should efficiently utilize all available bandwidth. From the end-
user’s perspective, the protocol should have perfect continuity (i.e.
streaming quality), low startup delay, and preferably low lag. Un-
fortunately, no single protocol meets all of these goals.

We conduct an in-depth and systematic empirical comparisonof
different CEM data delivery techniques, with the goal of under-
standing the inherent tradeoffs in CEM designs. Our approach dif-

fers from previous works that have compared CEM design choices
qualitatively [1, 21] or analytically [42, 44, 7, 22], and with those
that have compared specific CEM protocols empirically [26, 45].

It is not our intent to recommend any single approach or pro-
tocol. Instead, we explore the CEM design space, cleanly identify
the tradeoffs that apply to these systems, tease out different compo-
nents that are responsible for different aspects of observed behav-
ior, and partition deployment scenarios into regions wheredifferent
systems excel.

A systematic comparison of CEM systems is non-trivial. These
systems deliver data over a diversity of data topologies (tree, multi-
tree, mesh, and hybrids) which are constructed and maintained us-
ing different control and transport protocols. The overallsystem
performance depends both on the properties of the data topology
(how well it is able to use existing resources, how well it canwith-
stand failures), and on the control protocol (how quickly the data
topology is built/healed). By necessity, existing system implemen-
tations couple the data- and control-planes and often use different
transport protocols.

A full exploration of the of CEM design space would involve an-
alyzing the cartesian product of all feasible data and control planes.
Such a comparison is impractical. Instead, we present our best ef-
fort at an unbiased comparison between different data topologies,
by “factoring out” the effects of transport protocols and the control
plane. To neutralize the effects of the control plane, we present re-
sults using two different control protocols: first, we re-implement,
from scratch, representative single-tree, multi-tree, mesh-based, and
hybrid protocols in their entirety using the SAAR anycast primi-
tive [28]. The performance of our implementation is comparable to
“native” implementations of each of these protocols, and provides
a lower-bound on the real-world performance.

SAAR was developed exclusively as an efficient control mech-
anism (not in conjunction with any data plane). However, it may
still introduce an unintended bias in favor of a particular data plane
structure. Hence, we also experiment with an idealized control
plane with perfect knowledge and a configurable response time,
which allows us to control for any biases introduced by SAAR.

For each data plane we consider, we present results under di-
verse operating conditions, including different levels ofnode churn,
packet loss, and stream rates. Moreover, to model the resource
availability in real deployments, we rely on an empirical distribu-
tion of node forwarding bandwidths, which were obtained by mea-
suring broadband hosts in Europe and the US [12].

A clean-room re-implementation of many different protocols is
certainly labor intensive; however, we believe our approach has
fundamental benefits over black-box comparisons (in which com-
pletely third-party systems are run and the results compared) pre-
viously reported in the literature [45].

Our approach enables us to compare different approaches with-
out bias, since the control protocol used by each scheme isexactly
the same, and all other parameters (control latency, network topol-
ogy, queuing behavior, host behavior) are identical. Our exper-
iments indicate thatall CEM protocols are inherently limited in
certain aspects of their performance, i.e., these basic limitations
transcend parameter settings or control plane efficiency. We distill
these observations into a novel model that, we believe, (1) explains
the root causes that limit the performance of CEM protocols,and
(2) provides bounds on the practical performance limits of any fu-
ture CEM protocol.

The rest of the paper is organized as follows: In Section 2, we
describe related work. Section 3 provides background on existing
CEM designs. In Section 4, we present our methodology. Section 5
presents empirical results quantifying the tradeoffs in representa-
tive CEM design choices. In Section 6, we propose a model for
understanding the inherent constraints in CEM design. Finally, we
conclude in Section 7.

2. RELATED WORK

Qualitative comparison Abad et al. [1] classify thirteen differ-
ent CEM protocols according to their delivery topology (mesh or
tree), management protocol (distributed or centralized),scalability
(large or small group sizes), etc. They further describe a number
of different application scenarios including multi-player games and
media distribution. They conclude that no single protocol is best for
all applications. However, the paper contains no insight about why
a particular protocol might be more suited to a particular applica-
tion or scenario, or what advantages or disadvantages are inherent
in different designs.

Liu et al. [21] review the state-of-the-art of peer-to-peerInternet
video broadcast. They describe the basic taxonomy of peer-to-peer
broadcast and summarize the design and deployment of these sys-
tems. Although the paper examines the tree-based and the swarm-
ing overlays and some of their hybrid variants, their goal isnot to
empirically compare them under different scenarios.

A number of recent mesh-based data plane protocols [43, 25,
30] have argued that tree-based schemes are not robust to scale
and churn. At the same time, systems like Chunkyspread [37] and
SAAR [28] have demonstrated that multi-tree data planes canboth
be robust and scalable. Our work explores possible causes for these
discrepancies. In particular, we show that the efficiency ofthe un-
derlying control plane and parameter selection greatly affects the
performance observed by tree based data planes.

Empirical comparison of specific protocols Magharei et al. [26]
compare the multi-tree and mesh-based data planes, and conclude
that mesh-based systems perform better. However, their conclu-
sions are based on an artificial scenario where a number of peers
depart but the topology is not repaired. This is an extreme point in
the control space (no control protocol); in contrast, we experiment
with different scenarios in which theefficiencyof the control proto-
col is varied — this allows us to understand how efficient the con-
trol protocols must be for acceptable performance and how much
the control overhead must be at a given performance level.

We believe that the comparison in this paper is “fairer” since it
neutralizes the effect of the control plane (which turns outto be a
key factor in the performance of tree-based systems). We identify
parameters that allow trees to outperform meshes (and vice-versa).
Finally, we identify limitations with each approach that webelieve
are inherent, and cannot simply be overcome with better control
planes or parameter tweaking.

Zhu et al. [45] compare four CEM implementations (Scattercast,
Overcast, Narada, and ALMI) with respect to relative delay penalty,
normalized resource usage and stress. These protocols are simu-
lated over GT-ITM [14] topologies, after all nodes have joined and
without any churn (which ends up providing an unfair advantage
to tree-based protocols). In these experiments, the control proto-
col is different in each system, making it difficult to understand the
inherent properties of the data planes.

Analytical comparison
A number of papers [42, 44, 7, 22] analyze the inherent proper-

ties of different overlay delivery mechanisms. For instance, Tewari
et al. [34] use an analytical model to study BitTorrent-based live
video streaming, and demonstrate that the swarming protocol needs
a minimum number of blocks for effective utilization of peerup-
stream bandwidth. Bonald et al. [7] focus on the properties of
different push-based data diffusion schemes. Liu et al. [22] fo-
cus on the theoretical analysis and fundamental limitations of peer-
assisted live streaming using tree-based approaches.

Analytical approaches typically have to make simplifying as-
sumptions about the protocols and workloads in order to makethe
analysis tractable. Our empirical study captures the complexity of
real implementations and complements the insights offeredby anal-
ysis.

A short, two-page extended abstract of this work has previously
appeared in [27].

3. BACKGROUND
We present an overview of different overlay multicast data for-

warding approaches. We have implemented each of these data
planes using our common control plane.

Single-tree delivery In single-tree systems, the participating nodes
form a tree, such that there is a loop-free path from the multicast
source to each group member. The capacity of each tree link must
be at least the streaming rate. Content is forwarded (i.e., pushed)
along the established tree paths. The source periodically issues a
content packet to its children in the tree. Upon receiving a new
content packet, each node immediately forwards a copy to itschil-
dren.

Tree data planes provide low latency, but are unable to utilize
the forwarding bandwidth of all participating nodes because only
interior nodes contribute. When an interior node fails, thediscon-
nected subtree does not receive any data until the tree is repaired.
As a result, trees are highly sensitive to the efficiency of the con-
trol mechanism that is used to repair the tree when a node fails. In
particular, node failures or departures high up in the tree affect data
delivery adversely. As a result, tree protocols are often augmented
with additional, sophisticated recovery techniques. We describe
these recovery techniques in Section 4.2.4.

Examples of single-tree systems include ESM [11], Overcast[17],
ZIGZAG [35], and NICE [2].

Multi-tree delivery In multi-tree systems, each participating node
joins k different trees. The trees are constructed such that each
member hask loop-free (and optionally interior-node-disjoint) paths
to the multicast source. The multicast source splits the content into
k “stripes”. Each stripe is then disseminated in one of the trees, just
as in a single-tree system.

Each member node is an interior node in some tree(s), and a leaf
node in the remaining trees. Hence, as compared to a single tree,
the forwarding bandwidth of each member can be utilized, andthe
forwarding load can be distributed more fairly among all members.

Since each stripe is on the order of 1/kth the bandwidth of the orig-
inal stream, multi-trees are able to utilize forwarding bandwidths
that are a fraction of the stream rate.

The forest construction ensures that a single failure affects for-
warding on only a small number (possibly one) of thek stripe trees.
Moreover, if the source uses redundant coding like erasure cod-
ing [6, 8] or multiple description coding (MDC) [15], then the
effect of a stripe loss can be masked or limited to a reductionin
streaming content quality.

Since each stripe is on the order of 1/kth the bandwidth of the
original stream, individual nodes can support more children, and
the average tree depth is lower than in a single-tree system with
an identical distribution of member forwarding bandwidths. Lower
tree depth in turn reduces delivery delays and further increase re-
silience to faults.

SplitStream [9], CoopNet [29] and Chunkyspread [37] are exam-
ples of multi-tree systems.

Mesh-based delivery In mesh-based or swarming overlays, the
group members construct a random graph. Often, a node’s degree
in the mesh is proportional to the node’s forwarding bandwidth,
with a minimum node degree (typically five [43]) sufficient toen-
sure the mesh remains connected in the presence of churn.

The source periodically makes a new content block available.
Each node (including the source) buffers up tob of the most re-
cently published content blocks it has received. Everyr seconds, a
node advertises to each of its mesh neighbors a bitmap indicating
which of theb most recently published blocks it possesses (and is
willing to serve).

A missing block can be requested from any neighbor that ad-
vertises the block. Amongst the potential suppliers of the block, a
node is chosen randomly. As an optimization, the random choice
can be biased towards nodes with more available bandwidth. The
requests for blocks are piggybacked on the bitmap advertisements
to its neighbors.

Unlike in tree protocols, the randomization in the mesh data
propagation ensures that blocks are disseminated throughout the
mesh following random paths. Hence, mesh neighbors are likely to
have received different sets of blocks at any given time, which en-
ables them to exchange blocks. As a result, mesh-based protocols
are able to utilize the forwarding bandwidth of all nodes.

The failure of a node or a network link and the efficiency of
the control plane have little impact on the swarming protocol. The
neighbors of a failed node or link simply fetch blocks from other
mesh neighbors while they are choosing a new random overlay
member as a new mesh neighbor. The delay in acquiring a new
neighbor does not affect the efficiency of content dissemination (as
long as it is lower than the mean node lifetime).

Both the delivery delay and join delay in swarming protocolsare
proportional to the size of the content bufferb. The delivery delay
in meshes is larger than in tree-based systems, because blocks are
not immediately forwarded.

Examples of mesh-based systems are CoolStreaming [43], Chain-
saw [30], PRIME [25], and PULSE [31].

Hybrid tree-mesh delivery Hybrid data planes attempt to com-
bine the advantages of tree- and mesh-based systems by employing
a tree backbone and an auxiliary mesh structure. Typically,blocks
are “pushed” along the tree edges (as in a regular tree protocol) and
missing blocks are “pulled” from mesh neighbors (as in a regular
mesh protocol). The tree overlay could be either a single-tree or
a multi-tree, resulting in a single-tree-mesh or a multi-tree-mesh
hybrid.

Normally, blocks are delivered along the tree edges, yielding low
delay. Blocks that do not arrive via the tree due to failures are
recovered via the mesh, thereby increasing robustness. Moreover,
the forwarding bandwidth not used for transmitting packetsalong
tree edges can be utilized by the auxiliary mesh structure toprovide
missing blocks requested by mesh neighbors, thereby increasing
the bandwidth utilization.

Examples of single-tree-mesh systems are mTreeBone [39] and
Pulsar [24]. Bullet [18] is also a single-tree mesh but instead of
relying on the primary tree backbone to deliver the majorityof
blocks, random subsets of blocks are pushed along a given tree
edge and nodes recover the missing blocks via swarming. PRM [3]
is a probabilistic single-tree mesh system. Along with treedeliv-
ery, each node pushes data blocks to mesh neighbors with a config-
urable probability.

Chunkyspread [37], GridMedia [41] and Coolstreaming+ [20,
19] are multi-tree-mesh systems. In these systems, the multi-tree
structure is embedded in a random mesh; the stripe trees are not
interior-node-disjoint.

4. METHODOLOGY
We describe our experimental methodology including our imple-

mentation of a common control plane and the various data planes.
It was not clear to us, a priori, which specific data planes ought to
be implemented to provide a representative sampling of the many
overlay protocols that have been proposed. Instead of implement-
ing each different protocol, we have meticulously implemented three
basic data planes: single-tree, multi-tree and mesh-baseddelivery.
One (and sometimes a hybrid) of these three paradigms form the
basis for every protocol in the literature. The protocols differ in
their control (how the delivery structure is formed and maintained)
and in their recovery mechanisms (how missing data handled).

Along with the base protocols, we have implemented a range of
recovery strategies like ephemeral forwarding [3, 37], randomized
forwarding [3], and mesh recovery [39]. We experiment with tree-
based systems augmented with these recovery techniques (mesh-
based forwarding natively incorporates “recovery”). We study hy-
brid protocols that augment mesh-based systems with tree back-
bones to lower latency. And, we investigate protocols that combine
multiple recovery strategies, for instance, PRM [3] uses ephemeral
forwarding, randomized forwarding, and mesh recovery.

By combining these base protocols and recovery techniques,we
cover the major CEM protocols and approaches that have been pub-
lished. Table 1 shows the range of protocols our implementations
cover. We believe our results are representative of the state-of-the-
art in CEM protocol design.

By design, our data planes use a common control plane, because
the goal is to understand the inherent performance characteristics
of the data planes. Published performance results from the prior,
native implementations indicate that our common control plane is
comparable or better than the native implementations.

Our implementations can be executed on Planetlab [32], Emu-
lab [40], ModelNet [36], or deployed on the general Internet. The
implementations can also be run on top of a network emulator,
which executes the actual protocol code atop an emulated network
with a given distribution of link delays and bandwidths.

We next describe our control plane (Section 4.1) and data plane
(section 4.2) implementations, followed by a description of primi-
tives (such as heartbeats) that are common to all protocols.

4.1 Control planes
Virtually every CEM protocol deployed or described in the lit-

erature has its own control plane, making it difficult to isolate the

Recovery Strategy
Base Ephemeral Randomized Mesh

Protocol Data Plane Forwarding Forwarding Recovery
ESM [11], Overcast [17], ZIGZAG [35], NICE [2], FatNemo [5] Single-tree
Bullet [18], mTreeBone [39] Single-tree X

Pulsar [24] Single-tree X X

PRM [3] Single-tree X X X

SplitStream [9], CoopNet [29] Multi-tree
Chunkyspread [37] Multi-tree X

GridMedia [41], Coolstreaming+ [20, 19] Multi-tree X X

Coolstreaming [43], Chainsaw [30], PRIME [25], PULSE [31] Mesh

Table 1: CEM Protocols and Recovery Mechanisms

≤2

b Node with value b

Node failing predicate

≤2 ≤1

≤3

≤3

Non-group member

2 0 1

3

12

Aggregated value x≤ x

Figure 1: Anycast traversal example: Given an anycast request
issued at the leftmost interior node in the group spanning tree,
the anycast traverses the tree in a depth-first search. The search
only visits subtrees with members that satisfy the predicate and
whose value exceeds that of the current best known member.

performance of its data plane. Our goal is to present a realistic eval-
uation that neutralizes the effect of the control plane without affect-
ing data plane performance. Towards this end, we use SAAR [28]
as a common control plane that allows us to isolate the data plane
performance. SAAR implements a decentralized anycast primitive
for overlay neighbor acquisition, and can efficiently support multi-
cast overlays with diverse structures [28].

Our implementations are comparable (and often better) thanthe
native implementations of each data plane. Conservatively, SAAR
provides an upper bound on the achievable control overhead.(A
control plane implementation may exist that is more efficient or
produces better overlay neighbors). The resulting data plane perfor-
mance achieved by our implementations represent lower bounds.

We have also implemented a centralized control plane (for net-
work emulations only), which can respond to anycast requests with
a configurable anycast response time. Varying the anycast response
time enables us to infer the extent to which CEMs depend upon the
efficiency of the underlying control mechanisms.

4.1.1 SAAR
SAAR is a decentralized control plane based on a structured

overlay network. All nodes participate in the SAAR control over-
lay, regardless of which content they are currently receiving. This
overlay implements an anycast primitive, which in turn supports
efficient and flexible selection of data dissemination peers. The
SAAR overlay also performs efficient, proactive state dissemina-
tion and aggregation. This aggregate state is used to increase the
efficiency of the anycast primitive.

Group abstraction: The key abstraction provided by SAAR is a

group. A group represents a set of nodes that are members of one
data dissemination overlay, i.e., that subscribe to a particular data
channel. The group’s control state is managed via a spanningtree
that is embedded in the control overlay and rooted at a random
member of the control overlay.

A set of state variablesis associated with a group. Each group
member holds an instance of each state variable. Typical examples
of state variables are a node’s forwarding capacity, current load,
streaming loss rate, tree-depth in a single-tree data plane, etc.

SAAR can aggregate state variables in the spanning tree. Each
state variableg is associated with anupdate propagation frequency
fup, adownward propagation frequency fdown and anaggregation
operator A. The values of a state variable are periodically prop-
agated upwards towards the root of the group spanning tree, with
frequency at mostfup. (The propagation is suppressed if the value
of a variable has not changed). At each interior node, the values
received from each child are aggregated using the operatorA. The
aggregated value at the root of the spanning tree is propagated down
the tree with frequency at mostfdown. State variables for which no
aggregation operator is defined are propagated only one level up
from the leaf nodes.

Anycast: SAAR’s anycast operation takes as arguments agroup
identifier G, aconstraint p, anobjective function mand atraversal
threshold t. The primitive “inspects” group members whose state
variables satisfyp and returns the member whose state maximizes
the objective functionmamong the considered members. To bound
the anycast overhead, at mostt nodes are visited during a traversal
of a group control tree that SAAR maintains for each group. Ift =
⊥, the first considered node that satisfies the predicate is selected.
By default, the anycast primitive inspects candidate nodesin order
of increasing delay from the invoking node. Figure 1 illustrates an
example anycast traversal.

State aggregation allows SAAR to optimize its anycast. For in-
stance, when the aggregated state indicates that no memberswithin
a certain subtree satisfy the constraint, then the entire subtree can
be pruned from an anycast search. As a result, a search typically
considers many more nodes than it visits.

Example anycast traversal Figure 1 shows an example group
spanning tree. A new node wants to join the data overlay and seeks
a parent that maximizes the value of an integer state variable among
the nodes that satisfy a given constraint. There are six members that
satisfy the constraint. Given an anycast request issued at the left-
most interior node in the spanning tree, the anycast traverses the
tree in a DFS, pruning subtrees that contain no eligible members
with a value of the variable that exceeds that of the current best
known member. In the example shown, the anycast stops after vis-
iting five nodes, and yields the rightmost leaf node with the value

3. Had the anycast been invoked with a value oft < 5, then the
anycast would have stopped after visitingt nodes, and yielded the
leftmost leaf node with value 2.

4.2 Data plane implementations
We next describe our data plane implementations.

4.2.1 Single-tree data plane (sT)
Nodes use a SAAR anycast to select a parent when initially join-

ing the overlay, when replacing a failed or departed parent,and
when choosing a new parent to improve performance. The anycast
constraint ensures that the parent has spare forwarding capacity and
does not result in a loop. The objective function is chosen topref-
erentially select parents that have low depth in the tree. When a
node joins or recovers from a disconnect, it uses a traversalthresh-
old t = ⊥ to find an eligible parent as quickly as possible. A node
with forwarding bandwidthB and the streaming rate isS takes on
at most⌊B/S⌋ children.

In addition to the anycasts for tree repair, the nodes also issue
anycasts for preemption and periodic data plane optimizations to
improve tree quality (tree depth, biasing high bandwidth nodes to-
wards the top of the tree).

4.2.2 Multi-tree data plane (mT)
The multi-tree data plane maintainsk separate trees, each for-

warding a differentstripeof 1/kth of the stream rate. The constraint
and objective function is the same as in the single-tree dataplane.
A node joins allk trees but forwards data (i.e., accepts children)
only in its primary stripe. This construction ensures interior-node-
disjoint stripe trees: a node is an interior node in at most one stripe
tree and a leaf in all other stripe trees. If a node has forwarding
bandwidthB and the streaming rate isS, then the node takes on at
most⌊B/(S/k)⌋ children.

When a node joins, it biases its choice of a primary stripe to-
wards stripes with relatively low total forwarding capacity, in order
to balance the available forwarding capacity amongst the stripes.
In particular, amongst the stripes whose resourcesRi (i.e. total for-
warding capacity) are lower than the average stripe resourcesRavg,
a stripei is chosen as primary with a probability proportional to
(Ravg−Ri).

Even with this flexible choice of a primary stripe, it is stillpos-
sible that the departure of a node causes a stripe to be momentarily
left with no forwarding capacity until another node joins. We im-
plement the tree transformations described in SplitStream[9] to
address these cases. As a last resort, a child relaxes the predi-
cate to select a parent with forwarding capacity in a different stripe,
at the expense of interior-node-disjointedness. Our data plane be-
haves like SplitStream in this respect, except that the adaptive pri-
mary stripe selection significantly reduces the likelihoodof stripe
resource exhaustion.

4.2.3 Mesh-based data plane (pM)
In our mesh implementation, a node maintains neighbors pro-

portional to its forwarding bandwidth, or a minimumk (unless oth-
erwise stated,k = 5). Nodes use a SAAR anycast to maintain at
leastl neighbors of good quality and accept up tou neighbors. A
node with forwarding bandwidthB accepts at mostu = ⌊k∗B/S⌋
neighbors. However, in order to ensure that requests for neighbors
can be satisfied, the number of neighbors proactively established is
slightly lower than the maximum number of neighbors that canbe
supported. Therefore, nodes proactively establishl = Max(k,u−2)
neighbors.

We use a SAAR anycast to choose random mesh neighbors rather

than the commonly used random walk [38] or gossiping [13] tech-
niques, in order to ensure identical conditions for all dataplanes.
The anycast is deliberately not biased towards nearby nodes, to
provide high path diversity and to form a more robust mesh. In
addition, each node periodically refreshes its neighbor list, even if
it hasl or more neighbors of good quality. Without this periodic up-
date (and especially with low churn), nodes that joined early lack
links to nodes that joined late, resulting in low path diversity and
high mesh diameter.

The swarming algorithm operates as follows. The source pub-
lishes a new content block everyp seconds (typically,p= 1). Every
swarming intervalr, mesh neighbors exchange their list of available
blocks (using a bitmap) within a sliding window of blocks covering
b seconds (typically,b = 60). The leading edge of the window at
a given node is defined by the most recent block available at the
node’s mesh neighbors.

After exchanging the lists, each node chooses one random block
from the intersection of the set of blocks it is missing and the set of
nodes that are advertised by some neighbor. The choice of a spe-
cific neighbor from which to request the block is also random,but
biased towards the neighbors with the lowest bandwidth utilization.
The block requests to a neighbor are piggybacked on the periodic
bitmap advertisements.

4.2.4 Recovery Mechanisms
Tree-based protocols often use sophisticated recovery mecha-

nisms (Table 1) to mask delivery problems on the data path. We
next describe our implementation of these mechanisms. In each
case, we classify the recovery strategy as “reactive” (recovery starts
after a failure is detected) or “proactive” (recovery is part of base
forwarding).

Ephemeral forwarding (EF) [Reactive] EF was introduced in [3],
and attempts to provide an uninterrupted data stream while the data
plane is being repaired (after a node departs). In EF, when a noden
does not receive data from its parent, it tries to locate anephemeral
parent that can provide the data while the overlay reconstruction
protocol “fixes” the data plane. Obviously, EF is effective only if
it allows n to find a suitable ephemeral parent (one with sufficient
forwarding bandwidth) quicker than the standard overlay recovery
protocol can find a new parent.

In order to quickly locate an ephemeral parent, nodes maintain
a set of mesh neighbors. Upon detecting a disconnection (lack of
a data packet from the tree parent), the root of the disconnected
subtree (n) immediately tries to obtain the stream from its mesh
neighbors. EF (ephemeral forwarding) is successful as longas any
one of the mesh neighbors can temporarily supply the stream.Node
n chooses only one ephemeral parent if more than one mesh neigh-
bor is capable. (Noden continues to send heartbeats down its sub-
tree while locating an ephemeral parent to preclude nodes inthe
affected subtree from trying to institute their own recovery).

If none of noden’s mesh neighbors are able to provide a stream,
then noden sends a “delegate” message to its tree children, who
then try to find an ephemeral parent using their mesh neighbors.
Upon success, the child sends the ephemeral stream up ton (and
down into its own subtree). In this manner, one successful recovery
is sufficient for “patching” the entire subtree.

EF provides a quick fix for maintaining the tree while the data
plane recovers and finds the most suitable parent (one that might
optimize criteria such as latency and underlying bandwidthusage).
EF also enables the control protocol to use larger timeouts and re-
duces the latency demands on tree recovery.

Randomized forwarding (RF) [Proactive] Like EF, Random-
ized forwarding (RF) was introduced in PRM [3], and uses the
auxiliary mesh structure. In RF, each overlay node, with a small
probability (usually 1-3%), proactively forwards the datapackets
received on the tree to mesh neighbors. The intuition (proven in
PRM) is that if a large subtree is affected due to a node failure,
then, with high probability, a proactive recovery packet will be in-
cident upon at least one node in the subtree. When a node receives
a recovery packet (i.e. a packet not from its tree parent), itforwards
it down its subtree, and also up to its tree parent. This process re-
curses and a single RF recovery packet is sufficient for recovering
the entire affected subtree. RF recovery packets also serveas a
trigger for starting EF recovery. In our implementation, RFpackets
are sent only if a node has sufficient spare bandwidth left after it
forwards packets on the primary data path.

Mesh recovery (MR) [Reactive] Mesh recovery systems aug-
ment the primary tree backbone with a mesh. Blocks are “pushed”
down the tree links (as in a regular tree protocol), and missing
blocks are “pulled” from mesh neighbors (as in a regular meshpro-
tocol). In each case, the tree and mesh components are maintained
and used as described in the base mechanism descriptions, except
for the following differences.

In normal operation, no blocks are advertised and no blocks are
exchanged among mesh neighbors. MR piggybacks the buffer ad-
vertisement message on the heartbeat sent everyh (typically h = 1)
secs to keep the mesh neighbor connections alive. When a nodere-
alizes that a block from (one of) its parent(s) is overdue, itrequests
the block from a mesh neighbor that has the block. If it has no re-
cent buffer advertisements from the mesh neighbors, then itsends a
block advertisement to all of its mesh neighbors, who respond with
their own block advertisements.

As long as all blocks are delivered in a timely fashion withinthe
tree, MR systems behave like a pure tree-based plane, exceptthat a
small overhead is being incurred for maintaining mesh neighbors.
When a node misses a block in the tree, then after at most one
round-trip time, the node and its neighbors have the same informa-
tion as they would in a pure mesh-based data plane. As a result,
the behavior of MR approaches that of a pure tree-based data plane
under low loss or churn, and approaches that of a pure mesh-based
data plane under high loss or churn.

Source Coding A range of different coding schemes such as
Reed Solomon Codes [6], Digital Fountain codes [8], multi-descriptive
codes [15] have been used by different systems [29, 9]. Each cod-
ing scheme has a pre-defined overhead that inflates the streamband-
width. This overhead is proportional to the erasure tolerance of the
scheme (how many packets can be lost before there is loss in sig-
nal), processing overhead (order of the computation at the source
and especially receivers) and decoding latency (how many packets
must be received before decoding can commence). Unfortunately,
the wide variety of codes in terms of overhead, decoding latency,
and processing requirements (and for some codes, their availabil-
ity) rendered it infeasible for us to experiment with specific im-
plementations. Instead, in our experiments, we simply report the
number/fraction of bits received at each node without considering
the ultimate decodability of the video stream. This means that sys-
tems that rely on source coding are not penalized (in terms ofcod-
ing overhead) in our evaluation; we assume that the decodingal-
gorithm is able to extract useful information from every received
bit.

4.2.5 Combining recovery strategies

Many systems, for instance PRM [3] combine multiple of these
recovery strategies, and must choose how spare bandwidth isallo-
cated to these different recovery schemes.

When multiple recovery schemes are used, we prioritize them
as follows: ephemeral forwarding (EF) has the highest priority fol-
lowed by mesh recovery (MR) and finally randomized forwarding
(RF). EF has the highest priority because the data items recovered
via EF will be pushed down the primary data delivery path and can
potentially assist multiple nodes (the entire disconnected subtree).
MR is guaranteed to assist at least one node (whereas RF is not),
and hence MR has higher priority than RF.

4.3 Common Primitives
We conclude with a description of functions that are shared among

all data plane implementations.

Heartbeats In each data plane, overlay neighbors exchange heart-
beat messages everyh seconds (typicallyh = 1). However, if an-
other control message or data message has been sent to a neighbor
during the lasth seconds, then the heartbeat message is suppressed,
since the message counts as an implicit heartbeat. If a node has not
heard from its neighbor fort ∗h seconds (typically,t = 4), it pre-
sumes the neighbor has failed and it initiates an anycast operation
to locate a new neighbor.

Dynamic estimation of available forwarding bandwidth As
described in the previous sections, the number of tree- or mesh
neighbors a node accepts is based on the forwarding bandwidth
available for data traffic (i.e.B). Therefore, nodes have to account
for their control traffic in order to compute the available bandwidth
for data.

Each node’s control bandwidth usage is measured periodically
(typically every 5 sec) and rounded to an integral multiple of 4
kbps (i.e. 1% of a 400 kbps stream data rate). A node periodically
adjusts its estimate ofB based on the measured control traffic.

Uplink bandwidth sharing Our network emulator multiplexes
transmissions from multiple flows over the same network linkin
a round-robin fashion at a granularity of 1500 bytes (i.e typical IP
MTU). Since the emulator does not model TCP/UDP level packet
dynamics, the round robin scheduler is intended to approximate the
behavior of multiple TCP connections sharing the node’s uplink.

5. EXPERIMENTAL EVALUATION
In this section, we present the results of a systematic empirical

evaluation of different data plane designs for cooperativestreaming
multicast.

5.1 Experimental setup
We performed experiments using the FreePastry network emula-

tor and on PlanetLab. Unless otherwise noted, the results reported
here are from the emulator since it allowed us to explore many
configurations and parameters, including system sizes up to10,000
nodes.

Emulated network In our emulations, we assume that the net-
work core is well provisioned, that bottlenecks occur only on the
access links at the edge of the network, and that the upstreamlink
(rather than the downstream link) at the edge of the network limits
the available bandwidth. A backbone network connects 500 stub
nodes with unlimited bandwidth and with pair-wise delays drawn
from the King [16] data set of measured Internet delay data. That
delay set has a mean one-way delay of 79 ms. Each end node is

Stream rate (kbps) 437 400 350 300 262
Resulting RI 1.2 1.31 1.5 1.75 2.0

Table 2: Stream rates and resulting RIs (Monarch distribution)

connected to a randomly selected stub using a dedicated access
link with 1 ms delay, infinite downstream bandwidth and an up-
stream bandwidth assigned according to an empirical distribution
described below. The network emulator models unreliable packet
delivery via IP, but does not model TCP/UDP transport level ef-
fects.

Upstream bandwidth distributions We assigned upstream band-
widths to the access links using an empirical distribution,measured
by the Monarch [12] project. The distribution is based on measure-
ments of 1894 residential broadband hosts in Europe and North
America; the average (median) upstream bandwidth is 525 (381)
kbps, respectively. We use different stream rates (see Table 2) to
achieve a given resource index RI (i.e., the ratio of total supply of
upstream bandwidth to the total demand for bandwidth). In all ex-
periments, the multicast source has an upstream bandwidth that is
five times the stream rate.

Figure 2 shows the Monarch upstream bandwidth distribution
and the resulting node RI distribution when using a stream rate of
400 kbps (node RI is a node’s upstream bandwidth normalized to
the stream rate).

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000

 0.1 0.5 1 2 5 10

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 n
od

es

Node’s Upstream Bandwidth (logscale, kbps)

Node’s Resource Index (RI) (logscale)

Upstream-Bandwidth
RI (400kbps,AvgRI=1.31)

Figure 2: Upstream Bandwidths and RI assignment

Session time We model different rates of churn in the group
membership by varying the session time, i.e., the average time for
which a node remains subscribed to a group. Session times arecho-
sen from an exponential distribution with a mean ofSseconds and
a minimum of 1 second. We present results withS= 120 seconds
andS= 300 seconds. To maintain a large instantaneous group size,
nodes re-join the same channel 15 sec after leaving. The chosen
session time distribution is consistent with findings from arecent
analysis of an IPTV system [10], which shows that most sessions
are short due to channel surfing, and a small proportion of sessions
last tens of minutes or more.

Packet loss rate We model packet loss using an exponential dis-
tribution with a mean loss rate ofl . We experiment withl = 0, 1,
3, and 5%.

Control plane All data planes use the SAAR control plane to

acquire overlay neighbors. At the start of the experiment, anode
joins the shared control plane, and then joins data channelsfor a
time determined by the session time distribution. We pessimisti-
cally assume that nodes leave a data channel abruptly (i.e.,without
notifying their overlay neighbors). Nodes use a timeout of four sec-
onds to declare an unresponsive data overlay neighbor as dead and
then use a SAAR anycast to replace the dead neighbor.

Nodes remain in the shared SAAR control plane throughout our
experiments. This is the intended usage for SAAR. When users
switch channels, there is no need to leave the control plane.Even
when a user stops watching channels, there is no need to leavethe
control plane, because membership in the control plane has very
little overhead. In a real deployment, nodes sometimes leave the
control plane involuntarily due to node or network failure.To ac-
count for this and other factors that could impair the performance
of the control plane, we perform additional experiments with an
artificially inflated anycast response time.

Other parameters A single source node publishes the content
at intervals ofp sec. Unless otherwise stated, the number of multi-
tree stripes (5), minimal number of mesh neighborsk (5), swarming
interval r (1 sec), swarming buffer sizeb (45 blocks) and various
timeouts were set to reasonable values under the given conditions.
All network emulation experiments were repeated 3 times with dif-
ferent random number generator seeds. Each reported datapoint is
the mean of the measured values; we computed the 95% confidence
intervals and they were extremely tight (within 1% of the mean in
all cases). Therefore, they are not shown in the plots.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

sT
mT
pM

Figure 3: T-continuity as a function of playout lag
[N = 1000,RI = 1.5,S = 300, l = 0, p = 40 msec(sT,mT), p =
1 sec(pM), r = 1 sec,b = 45blocks]

5.2 Streaming quality
We first consider what proportion of the streamed content differ-

ent data planes are able to deliver within a given time period. This
proportion has a direct influence on the quality of the displayed
video, because it determines how much of the streamed informa-
tion is available to the player by the playout deadline. We use the
following metric:
T-continuity (T-C) For each session, T-C is the proportion of the
streamed bits that have arrived at the receiving node withinT sec-
onds of their first transmission by the source. Assume the source
generates independently decodable blocks once everyw seconds.
The instantaneous T-C measures what fraction of a block is avail-
able to a receiverT secs after the source finished transmitting the

Graceful departures Abrupt departures
SAAR C: 0.25 s C: 1 s C: 2 s C: 4 s SAAR C: 0.25 s C: 1 s C:2 s C:4 s

sT 81.8 81.7 79.8 77.9 75.6 79.8 79.2 77.1 75.2 71.0
mT 99.1 98.9 98.1 97.0 94.6 95.4 95.6 95.3 94.1 91.9
pM 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Table 3: Average T-continuity (T = 45sec) with different control planes (SAAR or centralized C: d wit h ’d’ sec of anycast response
time) [N = 1000,S= 300, l = 0, p = 40msec(sT,mT), p = 1 sec(pM), r = 1 sec,b = 45blocks]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 s
es

si
on

s

T-Join delay (T=45 sec) (sec)

sT
mT
pM

Figure 4: T-join delay [N = 1000,RI = 1.5,S= 300, l = 0, p =
40 msec(sT,mT), p = 1 sec(pM), r = 1 sec,b = 45blocks]

block. The parameterT can be interpreted as the lag with which
a receiver plays out the stream. T-C specifies how much of the
stream is available to the player for a given playout lagT. Theex-
pected T-continuityfor a session is the mean of the instantaneous
T-continuity values over the course of the session.

In our first set of experiments, we use a group size ofN = 1000, a
stream rate of 350kbps(which yields anRI = 1.5), a mean session
time S= 300 secand no packet loss. We use small data blocks
(p = 40 ms) in tree-based systems (sT and mT) and large data
blocks (p= 1 sec) in the mesh (i.e. pM). In the mesh, the swarming
intervalr = 1 secand the swarming buffer sizeb = 45 blocks.

Figure 3 shows the T-continuity as a function of the playout lag
T. The mesh (pM) achieves almost perfect continuity at a lag of45
seconds. The tree-based data planes (sT, mT), on the other hand,
cannot achieve a perfect T-C for any playout lag. sT maxes outat
80% T-continuity, mT at 95%. The primary reason is that churn
affects pure tree-based systems. In an otherwise identicalexper-
iment without churn, mT achieves 99.9% continuity; sT achieves
only 85.6%, but the reason is that it is resource-bound atRI = 1.5.
At an RI = 1.75 and no churn, sT also achieves an almost perfect
99.8%.

The mesh requires a playout lag that is almost an order of mag-
nitude higher than the tree-based data planes. This result shows
a fundamental tradeoff between pure tree-based systems andpure
swarming meshes: the former achieve low delay by pushing data
along optimized distribution paths, but suffer when these paths are
disrupted by churn. The latter route packets dynamically and op-
portunistically, which makes them less vulnerable to churnbut in-
curs higher delays.

Among the tree-based systems, the multi-tree achieves a higher
T-continuity than the single-tree at a marginally higher lag. Two
factors contribute to this result: (i) most node failures affects only
one stripe and (ii) a failure tends to affect fewer nodes. Because

 0

 20

 40

 60

 80

 100

1.2 1.31 1.5 1.75 2.0

A
ve

ra
ge

 T
-c

on
tin

ui
ty

 (
T

=
75

 s
ec

)

Resource Index (RI)

sT
mT
pM

Figure 5: Average T-continuity for T = 75 secsas a function
of the RI [N = 1000,S = 300, l = 0, p = 40 msec(sT,mT), p =
1 sec(pM), r = 1 sec,b = 45blocks]

most mT nodes contribute their entire forwarding bandwidthto a
single stripe, their degree exceeds that of the same node in sT by
a factors, the number of stripes. Thus, the stripe trees are shal-
lower and correspondingly morerobustthan the corresponding sin-
gle tree. This is because the expected number of nodes affected by
the failure of a random node decreases as the average interior node
degree in a tree increases. (Intuitively, the higher the average in-
terior node degree, the shallower a tree which implies that alarger
proportion of nodes are leaves or have few children.)

The mT’s greater robustness to churn follows from the (mostly)
interior-node-disjointedness of our multi-tree data plane. A multi-
tree data plane that does not maintain this property (e.g. Chunkyspread [37])
is not necessarily more robust to churn than a single tree (though it
still achieves much better resource utilization than a single tree).
To confirm this, we performed an experiment with a multi-tree
system that does not attempt to build interior-node-disjoint stripe
trees (mT-nind). In the same scenario as used in Figure 3, mT-nind
maxes out at a T-continuity of only 86.9%, as compared to 95%
with the interior-node-disjoint mT. As explained above, the deeper
stripe trees in mT-nind (with an average stripe tree depth of8.5 in
mT-nind, as compared to only 3.8 in mT) are more vulnerable to
churn.

5.3 Join delay
The delay required to join a given content channel is another

important aspect of CEM performance. In IPTV, for instance,users
expect to be able to switch between content channels rapidly. Thus,
a CEM system suitable for IPTV must be able to join and start
displaying the content of a channel quickly. We use the following
metric to evaluate join delay:
T-Join delay Elapsed time between the instant when a node initi-
ates the process of joining a channel to the instant when the node’s
instantaneous T-continuity first reaches a value within onestandard

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

p=1000, r=1000, b=45
p=200, r=1000, b=120
p=200, r=200, b=120
p=40, r=200, b=300
p=40, r=100, b=300
p=20, r=200, b=600

Figure 8: Mesh T-continuity: some examples of blocksize (p
msec), swarming interval (r msec) and swarming buffer size (b
blocks) [N = 1000,RI = 1.5,S= 300, l = 0]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 s
es

si
on

s

T-Join delay (T=45 sec) (sec)

p=1000, r=1000, b=45
p=200, r=1000, b=120
p=200, r=200, b=120
p=40, r=200, b=300
p=40, r=100, b=300
p=20, r=200, b=600

Figure 9: Mesh T-join delay: some examples of blocksize (p
msec), swarming interval (r msec) and swarming buffer size (b
blocks) [N = 1000,RI = 1.5,S= 300, l = 0]

deviation of the expected T-continuity over the course of a session.
Given a desired playout lag ofT seconds and the resulting expected
T-continuity in steady state, this metric shows how long it takes a
node to approach the steady state when joining a channel.

Figure 4 shows the cumulative distribution of T-Join delaysover
all sessions. The results show that the join delays for the tree-based
systems are an order of magnitude lower than those of the mesh.
About 65% of the sT session have a join delay that is slightly less
than that of mT. The reason is that unlike an sT node, which needs
to find one parent, an mT node needs to join several stripe trees in
parallel, and the slowest of the join events contributes to the join de-
lay. However, the remaining 35% of sT sessions had considerably
longer join delay than mT. The reason is that sT is resource-bound
at the relatively low RI=1.5 in this experiment, and these sTnodes
have difficulty finding a parent with sufficient forwarding capacity.

5.4 Varying conditions
Stream rates We repeated the previous experiments at different
stream rates (and consequently different amounts of available re-
sources). Figure 5 shows the average T-Continuity forT = 75 sec
as a function of the stream rate. We useT = 75 secin contrast to
theT = 45secused earlier, because at the low RI=1.2, pM does not

reach its maximum continuity at a lag of T=45 sec, but almost (i.e.
within 0.5% from the maximum) does so at T=75 sec. The results
show that the pure mesh is virtually unaffected by the streamrate
down to an RI of 1.2. The mT declines somewhat below an RI of
1.5, while sT deteriorates rapidly below an RI of 1.75. The reason
is that the data planes differ in their ability to utilize theavailable
forwarding bandwidth, as explained in Section 3. Note that the
trees cannot achieve perfect continuity even at an RI of 2.0—the
reason is that pure trees (without any recovery) cannot achieve per-
fect continuity under churn.

Interior-node-disjointednessAs in Section 5.2, we performed ex-
periments with mT-nind, the multi-tree system that does notattempt
to build interior-node-disjoint stripe trees. In contrastto mT, mT-
nind’s T-continuity benefits much more from an increased RI,since
the average fanouts of the stripe trees improve, resulting in shal-
lower stripe trees, which are more robust to churn. The average
T-continuity of mT-nind atRI = 1.2, 1.31, 1.5, 1.75 and 2.0 were
60.4, 75.1, 86.9, 89.6 and 90.1, respectively. The corresponding
average stripe tree depths were 11.6, 11.1, 8.5. 8.1 and 6.7,respec-
tively. In contrast, mT even at RI=1.31, had an average T-continuity
of 94.5 and a corresponding average stripe tree depth of only4.03.
These results demonstrate the benefit of the interior-node-disjoint
property in building shallower stripe trees that are more robust to
churn.

Churn and packet lossWe also experimented with higher churn
(S= 120 sec) and packet loss (l = 3%). The results confirm the
tradeoffs between continuity, lag and join delay for tree-based ver-
sus mesh data planes that we had identified in the previous exper-
iments. Higher churn, packet loss or fewer resources reducethe
continuity and slightly increase the lag and join delay of the tree-
based systems, while the mesh is not significantly affected.More
resources benefit particularly the single-tree, because its ability to
exploit available forwarding bandwidth is limited.

Anycast response timeFinally, we varied the anycast response
time of the control plane. We experiment with a response time
d = 0.25,1,2,4 secs. We also experiment with graceful depar-
tures where nodes send explicit departure notifications to its overlay
neighbors when leaving a group, rather then relying on the neigh-
bor detection timeout of 4 secs. Table 3 shows the results under
conditions identical to those used in Section 5.2, except for differ-
ences in the control plane. We see that the pM is not affected by
deteriorating control efficiency or abrupt departures, whereas the
trees are affected by both.

Our results raise the question as to whether the observed perfor-
mance trends of mesh and tree-based systems are fundamental, or
if they can be overcome with appropriate protocol design. More
specifically, we ask the following questions. Can the lag andjoin
delay in mesh-based systems be reduced to the level of tree-based
systems? Can the tree-based systems match the near-perfectconti-
nuity of a mesh by incorporating recovery strategies? We consider
these questions next.

5.5 Reducing mesh lag
We first consider swarming mesh systems. There are three ways

by which one could try to reduce the lag in the swarming mesh:
reduce the block sizep, reduce the swarming intervalr or reduce
the size of the swarming bufferb.

The results in Fig 6 show the impact of the block size (p) and
swarming buffer size (b) on the average T-continuity (forT = 45sec)
and the average delivery delay of blocks, respectively. We see that
reducing the size of the swarming buffer reduces the delivery delay

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

A
ve

ra
ge

 T
-c

on
tin

ui
ty

 (
T

=
45

 s
ec

)

Buffer Size ’b’ (number of blocks)

p = 20 ms, r = 500 ms
p = 40 ms, r = 500 ms

p = 200 ms, r = 500 ms
p = 500 ms, r = 500 ms

p = 1000 ms, r = 500 ms

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600

A
vg

. d
el

iv
er

y
de

la
y

of
 b

lo
ck

s
(s

ec
)

Buffer Size ’b’ (number of blocks)

p = 20 ms, r = 500 ms
p = 40 ms, r = 500 ms

p = 200 ms, r = 500 ms
p = 500 ms, r = 500 ms

p = 1000 ms, r = 500 ms

(b)

Figure 6: Effect of varying the swarming buffer size in mesh-based systems [N = 1000,RI = 1.5,S= 300, l = 0]

 0

 20

 40

 60

 80

 100

50 100 200 500 1000

A
ve

ra
ge

 T
-c

on
tin

ui
ty

 (
T

=
45

 s
ec

)

Swarming Interval ’r’ (msec)

p = 20 ms, b = 600 blocks
p = 40 ms, b = 300 blocks

p = 200 ms, b = 120 blocks
p = 500 ms, b = 50 blocks

p = 1000 ms, b = 45 blocks

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

50 100 200 500 1000

A
vg

. d
el

iv
er

y
de

la
y

of
 b

lo
ck

s
(s

ec
)

Swarming Interval ’r’ (msec)

p = 20 ms, b = 600 blocks
p = 40 ms, b = 300 blocks

p = 200 ms, b = 120 blocks
p = 500 ms, b = 50 blocks

p = 1000 ms, b = 45 blocks

(b)

Figure 7: Effect of varying block size and swarming intervalin mesh-based systems [N = 1000,RI = 1.5,S= 300, l = 0]

to a point, beyond which the continuity decreases. The reason is as
follows. A smaller buffer reduces the expected time until a block
is picked by a neighbor who needs it, thereby reducing per-hop de-
lays. However, the swarming buffer must have a certain minimal
size to ensure that the forwarding paths of different data blocks
are sufficiently randomized. Random forwarding paths in turn en-
sure that mesh neighbors tend to have disjoints sets of blocks avail-
able, which allows them to utilize their forwarding bandwidth to
exchange blocks. Therefore, the continuity diminishes when the
buffer becomes too small.

Figures 7 shows the impact of changing the block size (p) and the
swarming interval (r) on the average T-continuity (forT = 45sec)
and the average delivery delay of blocks, respectively. Foreach
data point, we set the size of the swarming buffer (b) so as to
achieve the minimal delay while not sacrificing continuity,as per
the results in Figure 6.

At a high level, the results show that the average delivery delay
(which affects lag) can be reduced by reducing the swarming inter-
val or employing smaller blocks down to a point, beyond whichthe
continuity decreases and delivery delay increases again. The reason
in each case is that smaller blocks or more frequent swarmingin-
crease overhead due to headers and control messages. When these
overheads become too large, they reduce the bandwidth available
for data transmissions.

Figure 8 shows the extent to which the performance of mesh-
based systems can be improved by an optimal choice of block size,
swarming interval and swarming buffer size. The figure shows
the T-continuity as a function of the playout lag in pM, for sev-
eral choices of block size, swarming interval and swarming buffer
size. The line ’p=1000, r=1000, b=45’ corresponds to a typical con-
figuration used in deployed mesh-based system like CoolStream-
ing [43]. As the results show, it is possible to reduce the lagby
a significant amount with an optimized configuration (see ’p=40,
r=200, b=300’).

In summary, an optimal configuration of the swarming mesh
yields a significant reduction in the delivery delay and lag.How-
ever, the delays remain significantly higher than those achieved by
tree-based systems.

5.6 Reducing join delays
Figure 9 shows that the T-Join delays can also be reduced sub-

stantially with the same configuration that minimizes the delivery
delay. Again, however, the delays remain significantly higher than
those achieved by tree-based systems.

We investigated if the join delays in mesh protocols can be fur-
ther reduced by incorporating ideas from tree-based protocols tar-
geted at reducing the join delay. Specifically, we implemented an
optimization that allows a joining node to use ephemeral tree par-

 0

 2

 4

 6

 8

 10

 12

 14

1.2 1.31 1.5 1.75 2.0

A
ve

ra
ge

 T
-J

oi
n

de
la

y
(T

=
75

 s
ec

)(
se

c)

Resource Index (RI)

p=1000,r=500,b=45
p=500,r=500,b=50
p=40,r=200,b=300

(a) pM

 0

 2

 4

 6

 8

 10

 12

 14

1.2 1.31 1.5 1.75 2.0

A
ve

ra
ge

 T
-J

oi
n

de
la

y
(T

=
75

 s
ec

)(
se

c)

Resource Index (RI)

p=1000,r=500,b=45
p=500,r=500,b=50
p=40,r=200,b=300

(b) pM with fast join optimization

Figure 10: Effect of fast mesh startup optimization [N = 1000,S= 300, l = 0]

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

sT
sT+EF
sT+RF

sT+MR
sT+RF+MR

(a) sT recovery

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

mT
mT+EF
mT+RF

mT+MR
mT+EF+MR

(b) mT recovery

Figure 11: sT and mT recovery strategies [N = 1000,RI = 1.5,S= 300, l = 0, p = 40msec, r = 500msec,b = 300blocks]

ents to quickly fill a prefix of its buffer, in order to start replay as
quickly as possible.

A joining node seeks to findk = 5 ephemeral parents, in addi-
tion to its mesh neighbors. As in a multi-tree protocol, the node
requests a different subset of the most recent blocks from each of
its ephemeral parents, while starting the swarming. To ensure that
the optimization does not interfere with the base swarming proto-
col, ephemeral parents prioritize mesh request over transmissions
to ephemeral children. The joining node discontinues the use of
ephemeral parents as soon as it reaches steady state or the swarm-
ing window has advanced by one full buffer sizeb. Also, a node
accepts ephemeral children only once it is in steady state.

Figure 10 shows the average T-Join delay (T = 75sec) for the
mesh, with and without the optimization, for different configura-
tions and a range of RIs. First, we see that regardless of the opti-
mization, the average join delay can be significantly improved with
an appropriate configuration of block size, swarming interval and
buffer size. Moreover, the same configuration that yields the best
continuity (Figure 8) also yields the best join delays.

Second, the fast join optimization yields a noticeable reduction
in average join delay across the board, between 11% and 63%.
However, at low RI, the join delays have high variance, because
only a fraction of the nodes are able to successfully acquireephemeral

parents.
Third, additional resources (higher RI) tend to reduce the average

join delays. With the optimization, additional resources reduce the
join delay for all configurations, while they only benefit thepoor
configurations without the optimization. With the best configura-
tion, the fast join optimization and an RI of 1.75 or more, thejoin
delay approaches that of tree-based systems.

We conclude that the fast join optimization allows meshes to
achieve low join delays that approach those of tree-based systems,
but these results can only be achieved when resources are abundant.

5.7 Improving tree continuity
Next, we investigate to what extent the continuity of tree-based

systems can be improved using different recovery strategies. Specif-
ically, we use the recovery techniques for tree-based systems de-
scribed in Section 4. Figure 11 shows the T-Continuity as a function
of lag for sT and mT with different recovery techniques atRI = 1.5.

All recovery strategies yield some increase in continuity,with
the exception of EF applied to the single-tree. The reason isthat
ephemeral parents in a single tree must have sufficient available
bandwidth to support the full stream rate. Due to the large number
of nodes with forwarding bandwidth less than the stream rate, there
is a shortage of eligible parents. Worse, “ephemeral children” can
occupy resources that could be used for permanent parents, which

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

mT
mT+EF
mT+RF

mT+MR
mT+EF+MR

(a) High Churn [N = 1000,S= 120, l = 0]

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

mT
mT+EF
mT+RF

mT+MR
mT+EF+MR

(b) Packet Loss [N = 1000,S= 300, l = 3%]

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

mT
mT+EF
mT+RF

mT+MR
mT+EF+MR

(c) Anycast RTT = approx. 4 sec [N = 1000,S= 300, l = 0]

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

mT
mT+EF
mT+RF

mT+MR
mT+EF+MR

(d) Large Scale [N = 10,000,S= 300, l = 0]

Figure 12: mT recovery under more severe conditions [RI = 1.5, p = 40 msec, r = 500msec,b = 300blocks]

explains the loss of performance with EF. In the multi tree sys-
tem, however, the bandwidth requirement for an ephemeral parent
is only the stream rate divided by the number of stripes, yielding
many more eligible parents.

Reactive mesh recovery (MR) achieves perfect continuity, but
only at a substantial lag. This is not surprising, because a mesh
is used to recover blocks that do not arrive via the tree. Random
forwarding (RF) is very effective with sT. The reason is thatthe
many leaf nodes in the single tree with available bandwidth below
the stream rate can contribute to the system via random forwarding.
However, the additional stream data received via RF comes with
additional lag.

Focusing on the upper left part of the plots (which shows what
fraction of the stream is delivered with low lag), we see thatephemeral
forwarding (EF) is the only recovery technique that increases the
proportion of the stream data delivered with low lag, when applied
to mT.

When optimizing for lag, EF is the best technique for mT and
RF is best for sT, under the given conditions. When optimizing
for continuity, MR is best. The combinations of EF+MR for mT
and RF+MR for sT constitute a compromise that achieves perfect
continuity, albeit at a larger lag.

5.8 Recovery under severe conditions
Figure 12 shows the results for mT recovery techniques undermore

severe conditions, namely high churn, packet loss, large group size
and inflated anycast response times. In general, the same trends
hold: EF remains the most effective technique when lag matters,
while MR remains most effective for continuity.

Random forwarding (RF) adds significant lag at large scale, be-
cause it increases the lengths of the forwarding paths. A slow
control plane (4 seconds anycast response time) affects thepure
tree-based data planes, because it increases tree repair time. EF,
however, does not depend on the control plane and masks the ef-
fects of a slow control plane almost completely. Large scalehas the
strongest effect on the lag, while packet loss has the strongest effect
on continuity. However, recovery remains effective in all cases.

Figure 13 shows how increasing the RI to 2.0 (i.e., lowering the
stream rate) affects the performance of the various recovery tech-
niques with the single-tree and multi-tree data plane. We use more
severe conditions of both high churn and packet loss in this experi-
ment, to see whether additional resources allow the recovery tech-
niques to mask these. The results show that all recovery techniques
are effective, but RF in particular is able to take advantageof the ad-
ditional resources. Moreover, the combination of the recovery tech-
niques works very well: sT+EF+RF+MR and mT+EF+RF+MR
approach almost perfect continuity at a lag of only 4 respectively
3 seconds under these harsh conditions! Also note that underan
RI=2.0, the performance of sT is not very different from thatof
mT, whereas at RI=1.5 the sT is resource bound because of its in-

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

sT
sT+EF
sT+RF

sT+EF+RF
sT+EF+RF+MR

sT+MR

(a) sT recovery

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

mT
mT+EF
mT+RF

mT+EF+RF
mT+EF+RF+MR

mT+MR

(b) mT recovery

Figure 13: sT and mT recovery strategies under high RI, high churn and packet loss [N = 1000,RI = 2.0,S= 120, l = 3%, p =
40 msec, r = 500msec,b = 300blocks]

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

sT
mT
pM

sT+RF
mT+EF

sT+RF+MR
mT+MR

(a) Planetlab results

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

E
xp

ec
te

d
T

-C
 a

ve
ra

ge
d

ov
er

 a
ll

se
ss

io
ns

Playout lag T (sec)

sT
mT
pM

sT+RF
mT+EF

sT+RF+MR
mT+MR

(b) Corresponding emulation results (l = 2%)

Figure 14: Planetlab vs emulation results: T-Continuity asa function of playout lag T[N = 350,RI = 1.5,S= 300,Monarch, p =
200msec, r = 1 sec,b = 120blocks]

ability to utilize resources effectively.

The overall conclusion we can draw is that although effective re-
covery techniques exist that can increase the continuity ofthe tree-
based systems, no combination of recovery techniques can simul-
taneously match, when resources are constrained, the near-perfect
continuity of a swarming mesh and the low delivery delay, lagand
join delay of a tree-based system. However, when resources are
abundant (e.g.RI = 2.0), then tree-based systems with recovery
can achieve low lag, join delay and high continuity even under ad-
verse conditions. Mesh-bases systems, on the other hand, achieve
high continuity under high churn, packet loss and constrained re-
sources, but at the expense of higher lag and join delay.

When lag and join delay are not an issue in a given application,
then pure mesh-based systems are superior to trees, becausethey
deliver almost perfect continuity under a wide range of conditions.
Tree-based systems are interesting when lag and join delay are im-
portant. Moreover, when resources are abundant, the combination
of tree-based techniques and recovery techniques can achieve low
lag, low join delay and high continuity.

5.9 Planetlab experiments
To validate our network emulation results, we also performed ex-

periments with a deployment on 325 nodes in the Planetlab testbed.
Planetlab is a live testbed with concurrent experiments that compete
for CPU and network bandwidth. Therefore, experiments are sub-
ject to some degree of packet loss. As a result, we compared the
Planetlab results with results of our network emulation at apacket
loss rate ofl = 2%. At this loss rate, the results of the two experi-
ments matched very well.

Among the set of Planetlab nodes (across all continents) with
reasonable load averages, we randomly chose 325 nodes. We limit,
using a token bucket, the upstream bandwidth of each node as per
the Monarch distribution. In addition, we had to cap bandwidths
in the Monarch distribution greater than 1 Mbps, because Planetlab
limits the per-node bandwidth available to an experiment. As a
result, we had to use a lower streaming rate of 300 kbps (instead of
the default of 350 kbps used in earlier experiments) to achieve an
RI = 1.5. We used the same bandwidth caps and streaming rates in
the corresponding emulation experiments. In the experiments, we
use a block sizep= 200msecand a swarming interval ofr = 1 sec.

Fig 14 shows T-continuity as a function of the playout lag, com-
paring the result obtained in Planetlab with the network emulation
results. In the Planetlab plots, each data point is the mean of five
runs, with the 95% confidence intervals shown in the error bars.

At a high level, the Planetlab results show the same trends asthe
network emulation. However, there is one noteworthy difference
across all data planes - the lag in the Planetlab experimentsis lower
than in our network emulations. This is because, most Planetlab
nodes have very high forwarding bandwidth, which results inmuch
lower transmission delays than in the network emulation.

We also observe that the continuity achieved by single-treebased
systems (i.e. sT and sT+RF) in Planetlab is lower than that achieved
in the network emulations. The reason for this was the higherany-
cast response time in the Planetlab environment (e.g. for sT, the
anycast response time was 2.54 sec in Planetlab versus 757 msec
in the emulations) due to overloaded Planetlab nodes. To confirm
this hypothesis, we performed an additional emulation experiment
in thes same configuration, but using the centralized control plane
with configurable response time. The results showed that thecon-
tinuity of single-tree based systems reduce by approximately 5%
when the anycast response time increases from 750 msec to 2.5
sec. A similar trend can be observed in Table 3.

Additionally, we investigated why the continuity of single-tree
based systems (both for Planetlab as well as emulations) wassig-
nificantly inferior than what we had observed in earlier experi-
ments (e.g. Section 5.2) that used the un-capped bandwidth dis-
tribution of Figure 2. Our hypothesis was that, as compared to the
un-capped bandwidth distribution, the capped-bandwidth distribu-
tion used here results in deeper trees, which are more vulnerable to
churn and packet loss. To verify this hypothesis, we looked at the
distribution of tree depths of nodes in the capped and un-capped
bandwidth distribution respectively. We observed that only 38%
of nodes were within tree depth of 4 in the capped distribution, as
compared to 62% of nodes within a tree depth of 4 in the un-capped
distribution.

In summary, accounting for unavoidable differences between the
PlanetLab testbed and our emulation environment, the PlanetLab
results confirm the trends we had observed in the emulation results.

6. DESIGN CONSTRAINTS IN CEMS
In Section 5, we have presented results of our experiments with

CEM systems. In this section, we distill our observations and rea-
soning into a simple model that identifies design constraints and
fundamental tradeoffs for CEM systems.

For instance, our results (regardless of parameter or protocol
variation) consistently indicate that in a resource constrained sys-
tem, tree-based data planes are not able to provide high continuity,
and mesh-based systems are not able to provide low lag. According
to our model, these limitations are inherent and are a by-product of
a set of underlying constraints that we describe next.

6.1 Model
Our model is based on a set of constraints that we assert no CEM

design can violate. The constraints are depicted in Figure 15 as a
pair of inter-related triangles. We begin with a description of the
vertices:

• High continuity : Continuity is a measure of the fraction of
playable bits received by a node. Higher continuity is prefer-
able.

• High resource utilization: Resource utilization specifies how
well global resources (forwarding bandwidth of all nodes in
the system) are utilized. High resource utilization is prefer-
able.

• Low lag: Lag is the delay from the instant when a data item
was first transmitted at the source to the instant when it is

Data + Control

Recovery

high resource

 utilization

 low

overhead

low

lag

 high

continuity

Figure 15: Constraint Model

played out by the media player at a given node. Lower lag is
preferable.

• Low overhead: Overhead measures the number of extra bits
transferred in the system, not counting the original data. Over-
head includes control messages, coding for data recovery,
and duplicate data packets. Lower overhead enables more
of the available bandwidth to be used for media delivery.

We conjecture that the triangles are, in fact,impossibilitytrian-
gles, in that CEM systems (and indeed any streaming system) can
choose to optimize at most two properties from each triangle, but
neverall three. A protocol may, however, trade off two (or more)
of the properties in either triangle.

The constraints are perhaps individually obvious; presented to-
gether, they provide a clear basis for putting our results incontext.
Moreover, they assert that no amount of parameter tweaking or pro-
tocol engineering will be sufficient to change some of the trends we
have observed. In the rest of this section, we discuss the constraints
imposed by each triangle, our explanation of why these constraints
arise, and how these constraints apply to the systems we havestud-
ied.

6.2 The constraint triangles
The Data + Control triangle states that no data plane design
can simultaneously achieve all three of low lag, high globalre-
source utilization, and low overhead.For example, a single tree
minimizes lag but cannot provide high utilization. As multiple trees
are introduced, resource utilization increases but so doesoverhead.
Meshes provide essentially perfect utilization, but must incur either
high overhead (due to frequent swarming exchanges) or high lag.
The underlying reason for this triangle is as follows: to achieve
high resource utilization, a data plane must bedynamic, i.e., be
able to use upload bandwidth of all nodes even during periodsof
high churn. Such a data plane cannot maintain statically computed
paths; the price for this flexibility must be paid in terms of coordi-
nation overhead on the data path. This overhead can be amortized
but doing so necessarily increases lag.

The Recovery triangle states that it is impossible to simultane-
ously achieve low overhead recovery, low lag, and high conti-
nuity. Reactive recovery strategies either incur high lag (since the
receiver must detect a missing packet or heartbeat) or high overhead
(lag can be reduced by increasing heartbeat frequency). Proactive
recovery strategies have relatively low lag but must perform “blind”

Data + Control

Recovery

high resource

 utilization

 low

overhead

low

lag

 high

continuity

Multi-tree

 +

 source

 coding
Vary number

 of stripes

Vary FEC

redundancy

(a) Multi-tree + source coding

Data + Control

Recovery

high resource

 utilization

 low

overhead

low

lag

 high

continuity

Mesh

Vary swarming

 interval

(b) Mesh

Data + Control

Recovery

high resource

 utilization

 low

overhead

low

lag

 high

continuity

 Single-tree

 +

randomized

 forwarding

Vary

randomized

forwarding

probability

Vary

randomized

forwarding

probability

(c) Single-tree + randomized forwarding

Data + Control

Recovery

high resource

 utilization

 low

overhead

low

lag

 high

continuity

Multi-tree

 +

 mesh

 recovery
Vary number

 of stripes

Vary swarming

 interval

(d) Multi-tree + mesh recovery

Figure 16: Constraint triangles for CEM protocols. A red dot on a vertex means that the protocol optimizes the associatedmetric. A
red dot on an edge connecting two vertices means that the protocol can trade off between the two metrics, by varying the indicated
protocol parameter.

repairs (without a-priori knowledge of what data was lost).Proac-
tive repair strategies that provide high continuity (without increas-
ing lag) necessarily incur high overhead.

Performance bounds for existing CEM protocols The con-
straint triangles allow us to reason about the inherent performance
limitations of all existing CEM protocols. These protocols(whether
by design or otherwise) choose specific “vertices” on the triangles
that largely determine their relative performance. We willdemon-
strate this using some example CEM protocols depicted in Fig-
ure 16.

Multi-tree systems, as shown in Figure 16(a), utilize resources
better than single-tree systems. However, this comes at thecost
of increased overhead for stripe tree maintenance. The multi-tree
system can trade off overhead and resource utilization in the data
triangle, by varying the number of stripes. As per the recovery tri-
angle, since the multi-tree is already optimized for low lag, in order
to get high continuity the multi-tree must incur high overhead. The
multi-tree can, however, trade off continuity and overheadby vary-
ing the amount of source coding (e.g. FEC) overhead.

Pure mesh systems, as shown in Figure 16(b), achieve high re-

source utilization (data triangle), but this means they must either
have high lag or incur high overhead on the data path. The mesh
can, however, trade off lag and overhead by varying the swarming
interval. Keeping continuity constant, the overhead in a mesh can
be decreased at the cost of lag (by increasing the swarming inter-
val). The recovery triangle and the data triangle both demonstrate
this tradeoff.

Single tree-based systems with randomized forwarding, as shown
in Figure 16(c), cannot match the low lag of the best tree-based
systems, but are able to trade off resource utilization, overhead and
continuity depending on how many packets are being proactively
forwarded.

Multi tree-based systems combined with mesh recovery, as shown
in Figure 16(d), exhibit a similar lag versus overhead tradeoff as a
pure mesh. They can reduce the lag of the packets recovered via
the auxiliary mesh by operating the mesh swarming protocol at a
higher swarming rate. This is not surprising, because the packets
recovered via the mesh are expected to show the same tradeoffs
of a pure mesh system. The multi-tree system combined with mesh
recovery also demonstrates a tradeoff similar to that of a pure multi-
tree system, wherein it can trade off the resources utilizedto push

tree packets and the overhead of tree maintenance, by varying the
number of stripe trees.

6.3 Implications for future protocols
The constraint triangles imply that existing and future hybrid

systems that combine trees and meshes cannotfundamentallyim-
prove performance since each component of the hybrid is subject to
the constraint triangles. For instance, packets in a single-tree with
mesh hybrid system follow the tree triangles for the packetsthat go
along the tree and the mesh triangles for packets that are recovered
using the mesh.

We note that the triangles do not preclude the design ofadap-
tive protocols that change the data topology from a tree to a mesh
depending on system conditions. Such a protocol can optimize for
current system conditions (e.g. provide low lag using a treewhen
churn is low and provide high resilience using a mesh when churn
is high), but will again be unable to simultaneously provideall of
low lag, high continuity, and low overhead.

The constraint triangles model we have presented was originally
inspired by observations based on our experiments. We used feed-
back from the model development to direct our experiments, and
the results from our experiments to refine the model. We believe
the triangles, as presented, reflect an accurate synopsis ofour re-
sults and intuitively present the reasons behind inherent limitations
of CEM data planes.

7. CONCLUSION
We have performed a systematic empirical study of CEM data

delivery techniques. By factoring out the control plane, wewere
able to isolate the inherent performance characteristic ofcompet-
ing data plane designs and recovery techniques. We evaluatethe
design choices under a range of conditions that are likely toarise
in a practical deployment.

Our study covers all basic dataplane designs, hybrid designs, and
all major recovery techniques. Moreover, we study new combina-
tions of recovery techniques and contribute a novel optimization
to reduce the join delay of mesh dataplanes. Our empirical results
demonstrate the inherent tradeoffs of CEM design choices. Al-
though some of these tradeoffs were expected, this is the first work
that systematically explores the design space to demonstrate that
these tradeoffs are inherent.

Finally, we condense our findings into a simple model that identi-
fies what we conjecture to be fundamental constraints that noCEM
design can violate. In particular, the model asserts that noCEM
design can simultaneously achieve all three of low overhead, low
lag, and high continuity.

8. REFERENCES
[1] C. Abad, W. Yurcik, and R. Campbell. A survey and

comparison of end-system overlay multicast solutions
suitable for network centric warfare.Proceedings of
SPIE’04, pages 215–226, 2004.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable
Application Layer Multicast. InProceedings of the Annual
Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM’02), August 2002.

[3] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan.
Resilient multicast using overlays. InProceedings of ACM
SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS’03), June
2003.

[4] BBC iPlayer.http://www.bbc.co.uk/iplayer/.

[5] S. Birrer, D. Lu, F.E. Bustamante, Y. Qiao, and P. Dinda.
Fatnemo: Building a resilient multi-source multicast fat-tree.
In Proceedings of 9th International Workshop on Web
Content Caching and Distribution, 2004.

[6] R.E. Blahut.Theory and Practice of Error Control Codes.
Addison Wesley, MA, 1994.

[7] T. Bonald, L. Massoulie, F. Mathieu, D. Perino, and
A. Twigg. Epidemic live streaming: Optimal performance
trade-offs. InProceedings of ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’08), June 2008.

[8] J. Byers, M. Luby, and M. Mitzenmacher. A digital fountain
approach to asynchronous reliable multicast.Proceedings of
IEEE Journal on Selected Areas in Communication
(JSAC’02), 20(8), October 2002.

[9] M. Castro, P. Druschel, A.M Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream: High-bandwidth
multicast in a cooperative environment. InProceedings of the
19th ACM Symposium on Operating Systems Principles
(SOSP’03), October 2003.

[10] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and
X. Amatriain. Watching television over an IP network. In
Proceedings of the ACM/USENIX Internet Measurement
Conference (IMC’08), October 2008.

[11] Y. Chu, A. Ganjam, T.S.E. Ng, S.G. Rao, K. Sripanidkulchai,
J. Zhan, and H. Zhang. Early Experience with an Internet
Broadcast System Based on Overlay Multicast. In
Proceedings of USENIX Annual Technical Conference
(USENIX’04), June 2004.

[12] M. Dischinger, A. Haeberlen, K.P. Gummadi, and S. Saroiu.
Characterizing residential broadband networks. In
Proceedings of the ACM/USENIX Internet Measurement
Conference (IMC’07), October 2007.

[13] A.J. Ganesh, A.M. Kermarrec, and L. Massoulie. Scamp:
Peer-to-peer lighweight membership service for large-scale
group communication. InProceedings of the 3rd
International Workshop on Networked Group
Communications (NGC’01), London, UK, November 2001.

[14] Geogia Tech Internet topology model.http://www.cc.
gatech/fac/Ellen.Zegura/graphs.html/.

[15] V.K. Goyal. Multiple description coding: Compression
meets the network.Proceedings of IEEE Signal Processing
Magazine, 18(5):74–93, September 2001.

[16] K.P. Gummadi, S.Saroiu, and S.D. Gribble. King: Estimating
latency between arbitrary Internet end hosts. InProceedings
of ACM SIGCOMM Internet Measurement Workshop
(IMW’02), November 2002.

[17] J. Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoek, and
J. W. O’Toole Jr. Overcast: Reliable Multicasting with an
Overlay Network. InProceedings of the 4th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI’00), October 2000.

[18] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
High Bandwidth Data Dissemination Using an Overlay
Mesh. InProceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP’03), 2003.

[19] B. Li, S. Xie, Y. Qu, G.Y. Keung, C. Lin, J. Liu, and
X. Zhang. Inside the new Coolstreaming: Principles,
measurements and performance implications. InProceedings
of the IEEE Conference on Computer Communications
(INFOCOM’08), April 2008.

[20] B. Li, K. Yik, S. Xie, J. Liu, I. Stoica, H. Zhang, and

X. Zhang. Emperical study of the Coolstreaming system. In
Proceedings of IEEE Journal on Selected Areas in
Communication (JSAC’07), Special Issues on Advance in
Peer-to-Peer Streaming Systems, 2007.

[21] J. Liu, S.G Rao, B. Li, and H. Zhang. Opportunities and
challenges of peer-to-peer internet video broadcast. In
Proceedings of IEEE, Special Issue on Recent Advances in
Distributed Multimedia Communications, 2007.

[22] S. Liu, R.Z. Shen, W. Jiang, J. Rexford, and M. Chiang.
Performance bounds for peer-assisted live streaming. In
Proceedings of ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS’08), June 2008.

[23] Livestation: Be there now.
http://www.livestation.com.

[24] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer.
Push-to-pull peer-to-peer live streaming. InProceedings of
International Symposium of Distributed Computing,
September 2007.

[25] N. Magharei and R. Rejaie. PRIME: Peer-to-peer
Receiver-drIven MEsh-based Streaming. InProceedings of
the IEEE Conference on Computer Communications
(INFOCOM’07), May 2007.

[26] N. Magharei, R. Rejaie, and Y. Guo. Mesh or multiple-tree:
A comparative study of live p2p streaming approaches. In
Proceedings of the IEEE Conference on Computer
Communications (INFOCOM’07), May 2007.

[27] A. Nandi, B. Bhattacharjee, and P. Druschel. What a mesh:
Understanding the design tradeoffs for streaming multicast.
In Proceedings of ACM SIGMETRICS Performance
Evaluation Review, special issue on the SIGMETRICS 2009
poster session, Seattle, WA, USA, June 2009.

[28] A. Nandi, A. Ganjam, P. Druschel, T.S.E. Ng, I. Stoica,
H. Zhang, and B. Bhattacharjee. SAAR: A shared control
plane for overlay multicast. InProceedings of the 4th
Symposium on Networked Systems Design and
Implementation (NSDI’07), April 2007.

[29] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai.
Distributing streaming media content using cooperative
networking. InProceedings of 12th International Workshop
on Network and Operating System Support for Digital Audio
and Video (NOSSDAV’02), Miami Beach, FL, USA, May
2002.

[30] V.S. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and
A.E. Mohr. Chainsaw: Eliminating trees from overlay
multicast. InProceedings of the 4th International Workshop
on Peer-to-Peer Systems (IPTPS ’05), Ithaca, NY. USA,
February 2005.

[31] F. Painese, D. Perino, J. Keller, and E. Biersack. PULSE: An
adaptive, incentive-based, unstructured p2p live streaming
system. InProceedings of IEEE Transactions on Multimedia,
Special Issue on Content Storage and Delivery in
Peer-to-Peer Networks, Volume 9, November 2007.

[32] Planetlab. http://www.planet-lab.org/.
[33] Sopcast.http://www.sopcast.com.
[34] S. Tewari and L. Kleinrock. Analytical model for

bittorrent-based live video streaming. InProceedings of
IEEE NIME 2007 Workshop, January 2007.

[35] D. Tran, K. Hua, and T. Do. ZIGZAG: An efficient
peer-to-peer scheme for media streaming. InProceedings of
the IEEE Conference on Computer Communications
(INFOCOM’03), 2003.

[36] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker. Scalability and accuracy in a
large-scale network emulator. InProceedings of the 5th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’02), December 2002.

[37] V. Venkataraman, K. Yoshida, and P. Francis. Chunkyspread:
Heterogeneous unstructured tree-based peer-to-peer
multicast. InProceedings of the 14th IEEE International
Conference on Network Protocols (ICNP ’06), November
2006.

[38] V. Vishnumurthy and P. Francis. On heterogeneous overlay
construction and random node selection in unstructured p2p
networks. InProceedings of the IEEE Conference on
Computer Communications (INFOCOM’06), Barcelona,
Spain, April 2006.

[39] F. Wang, Y. Xiong, and J. Liu. mTreebone: A hybrid
tree/mesh overlay for application-layer live video multicast.
In Proceedings of International Conference on Distributed
Computing Systems (ICDCS’07), June 2007.

[40] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. InProceedings of the 5th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI’02), Boston, MA, December 2002.

[41] M. Zhang, J.G. Luo, L. Zhao, and S.Q. Yang. A peer-to-peer
network for live media streaming - using a push-pull
approach. InProceedings of ACM Multimedia, 2005.

[42] M. Zhang, Q. Zhang, L. Sun, and S. Yang. Understanding the
power of pull-based streaming protocol: Can we do better ?
Proceedings of IEEE Journal on Selected Areas in
Communication (JSAC’07), Special Issue on Advances in
Peer-to-Peer Streaming Systems, 2007.

[43] X. Zhang, J. Liu, B. Li, and T.S.P. Yum.
Coolstreaming/DONet: A data-driven overlay network for
peer-to-peer live media streaming. InProceedings of the
IEEE Conference on Computer Communications
(INFOCOM’05), Miami, FL, USA, March 2005.

[44] Y. Zhou, D. Chiu, and J. Lui. A simple model for analysis
and design of p2p streaming protocols. InProceedings of
IEEE International Conference on Network Protocols
(ICNP’07), October 2007.

[45] Yan Zhu, Min-You Wu, and Wei Shu. Comparison study and
evaluation of overlay multicast networks. InICME ’03:
Proceedings of the 2003 International Conference on
Multimedia and Expo - Volume 3 (ICME’03), pages
493–496. IEEE Computer Society, 2003.

