
Extensional Equivalence and Singleton Types

CHRISTOPHER A. STONE

Harvey Mudd College

and

ROBERT HARPER

Carnegie Mellon University

We study the λ��S≤ calculus, which contains singleton types S(M) classifying terms of base type
provably equivalent to the term M . The system includes dependent types for pairs and functions
(� and �) and a subtyping relation induced by regarding singletons as subtypes of the base type.
The decidability of type checking for this language is non-obvious, since to type check we must be
able to determine equivalence of well-formed terms. But in the presence of singleton types, the
provability of an equivalence judgment � � M1 ≡ M2 : A can depend both on the typing context
� and on the particular type A at which M1 and M2 are compared.

We show how to prove decidability of term equivalence, hence of type checking, in λ��S≤ by
exhibiting a type-directed algorithm for directly computing normal forms. The correctness of nor-
malization is shown using an unusual variant of Kripke logical relations organized around sets;
rather than defining a logical equivalence relation, we work directly with (subsets of) the corre-
sponding equivalence classes.

We then provide a more efficient algorithm for checking type equivalence without constructing
normal forms. We also show that type checking, subtyping, and all other judgments of the system
are decidable.

The λ��S≤ calculus models type constructors and kinds in the intermediate language used by the
TILT compiler for Standard ML to implement the SML module system. The decidability of λ��S≤
term equivalence allows us to show decidability of type checking for TILT’s intermediate language.
We also obtain a consistency result that allows us to prove type safety for the intermediate language.
The algorithms derived here form the core of the type checker used for internal type checking in
TILT.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tions—applicative (functional) languages; F.3.3 [Logics and Meanings of Programs]: Studies

Parts of this work occurred while C. A. Stone was at Carnegie Mellon University.
This research was supported in part by the US Army Research Office under Grant No. DAAH04-
94-G-0289 and in part by the Advanced Research Projects Agency CSTO under the title “The Fox
Project: Advanced Languages for Systems Software,” ARPA Order No. C533, issued by ESC/ENS
under Contract No. F19628-95-C-0050.
The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the U.S. Government.
Authors’ addresses: C. A. Stone, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711;
email: stone@cs.hmc.edu; R. Harper, Computer Science Department, Carnegie Mellon University,
7113 Wean Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890; email: rwh@cs.cmu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1529-3785/06/1000-0676 $5.00

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006, Pages 676–722.

Extensional Equivalence and Singleton Types • 677

of Program Constructs—type structure; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—lambda calculus and related systems

General Terms: Languages, Theory

Additional Key Words and Phrases: Singleton types, logical relations, equivalence algorithms

1. INTRODUCTION

Lambda-calculus models of programming languages are of both theoretical and
practical importance. On the theory side they support formal reasoning about
the language, including type safety and equational properties. On the practical
side they support certifying compilation through type-directed translations be-
tween typed intermediate languages [Tarditi et al. 1996; Morrisett et al. 1997].

Conventional type systems such as F ω go a long way towards modeling pro-
gramming language constructs such as polymorphism, but they do not provide
an adequate account of type definitions. For example, although it is well known
how to define local definitions (let) in terms of function application, this does
not directly translate for definitions of type variables. If we have the polymor-
phic identity id : ∀α.α⇀α, then the expression

let α = int×int in id[α](3, 4)

seems unobjectionable, whereas the corresponding application

(α.id[α](3, 4))[int×int]

is ill-typed because its subterm 	α.id[α](3, 4) is not well formed.
More complex type definitions occur in the Standard ML module language,

where we can have a structure Set with the signature

sig
type elem = int
type set
type setpair = set * set

val empty : set
val insert : set * elem -> set
val member : set * elem -> bool
val union : setpair -> set
val intersect : setpair -> set

end

specifying definitions for the types Set.elem and Set.setpair, where the latter
has a dependency on the abstract type Set.set. Even if assume we have the rest
of the program available, i.e., that we are not doing separate compilation, we
cannot simply eliminate these definitions by syntactic substitution, replacing
all occurrences of Set.elem by int. Type components in SML can be referenced
indirectly. For example, if we were to define

structure Set2 = Set

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

678 • C. A. Stone and R. Harper

then the type components of Set2 are equal to those of Set. We must thereafter
treat Set2.elem as equal to Set.elem (hence equal to int), Set2.set as equal to
Set.set, and Set2.setpair as equal to Set.setpair. Functors (parameterized
modules) return modules whose types depend on the types in their argument,
and hence have even more complex type propagation behavior. The theory of
any such language must be able to track the relations between types.

One can formally define languages allowing definitions of type vari-
ables [Severi and Poll 1994], or allowing type definitions in module inter-
faces [Harper and Lillibridge 1994], or even allowing type definitions within
arguments of polymorphic abstractions [Minamide et al. 1996]. A more uni-
form approach is to allow definitions anywhere types are described, by making
definitions part of the kind system of the language. A natural way of doing so
is to add a kind S(τ) to classify exactly those types equal to τ .

Singletons can then be used to describe and control the propagation of type
definitions and sharing. The type τ has kind S(σ) if and only if the types τ and
σ are provably equivalent, so the hypothesis that a variable α has kind S(τ)
expresses that α is a type variable with definition τ . This models open-scope
(non-delimited) definitions in the source language.

Furthermore, singletons provide “partial” definitions for variables. If β is
a pair of type constructors with kind S(int)×
, then the first component of
this pair, π1β, is int. However, this kind tells us nothing about the identity of
the π2β, except that it has kind
, the kind of ordinary types. As in the above
example, partial definitions allow natural modeling of definitions in a modular
system, where some components of a module have known definitions and others
remain abstract.

The TILT compiler for Standard ML [Petersen et al. 2000] uses a typed in-
termediate language based on predicative Fω extended with singleton kinds.
Modules are represented in this language using a phase-splitting interpreta-
tion [Harper et al. 1990; Shao 1998]. The main idea is that modules can be split
into type constructor and a term, while signatures split in a parallel way into
a kind and a type. Singleton kinds are used to model definitions and type shar-
ing specifications in module signatures, dependent record kinds model the type
parts of structure signatures, dependent function kinds model the type parts of
functor signatures, and subkinding models (noncoercive) signature matching.

A crucial property of typed intermediate languages is that type checking be
decidable. For many languages this reduces to checking equivalence of types.
We are therefore concerned with establishing the decidability of equivalence
in the presence of singletons, ideally by showing the correctness of a practical
algorithm.

1.1 From Singleton Kinds to Singleton Types

Since ordinary expressions in the TILT typed intermediate language have no
effect on equivalence of type constructors, we abstract the problem to a simpler
two-level calculus λ��S

≤ and study term equivalence in a language with singleton
and dependent types. These levels correspond to the type constructors and kinds
of TILT, but λ��S

≤ is of general interest in its own right.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 679

In Section 2, we define the λ��S
≤ calculus. The fact that any two terms having

the same singleton type are equal is a form of extensionality, and so it seems
natural for λ��S

≤ to define equivalence of functions and pairs extensionally as
well.

This leads to a very interesting equational theory; for example, β-equivalence
becomes admissible. More importantly, whether two terms are provably equiv-
alent can depend on both the typing context and—less obviously—on the type
at which the terms are compared. The identity function and a function al-
ways returning some constant c are naturally inequivalent, but if we consider
them as functions of type S(c) → S(c), then extensionally the two functions are
equal; they return the same result for any argument of type S(c), that is, for
any argument equal to c. The common method of implementing equivalence via
context-insensitive rewrite rules is thus not directly applicable for our calculus.

Section 3 contains proofs for many standard properties of the λ��S
≤ calculus,

such as preservation of well typedness under substitutions and the admissibil-
ity of useful rules. We show that although the definition of λ��S

≤ includes only
restricted form of singleton type, more general singletons are definable.

In Section 4, we present an algorithm for computing normal forms of terms.
This is broadly similar to the algorithm used in Typed Operational Seman-
tics [Goguen 1994], but our algorithm is type-directed (normalization is guided
by the type at which we are normalizing rather than by the shape of the term),
and we compute what are essentially long normal forms.

We then show the correctness of this normalization algorithm. Our argument
relies on a novel form of set-based Kripke logical relation that can handle the
complications induced by singleton and dependent types. Intuitively, rather
than define a logical relation for equivalence, we work directly with subsets of
the corresponding equivalence classes.

Using the correctness of normalization, in Section 5 we present a more effi-
cient and more direct binary equivalence algorithm.

In Section 6, we sketch algorithms for deciding the remaining type and term-
level judgments (e.g., given a well formed context and a term M , determine
whether there is a type A such that M is well formed with type A). All the
algorithms are sound and complete with respect to the language definition,
and are terminating. These algorithms form the core of the TILT compiler’s
type checking implementation.

Finally, we survey the related literature and conclude.

For space reasons, some proofs, have been omitted or abbreviated; further
details can be found in the companion technical report [Stone and Harper 2004].

2. THE λ��S
≤ CALCULUS

2.1 Syntax of λ��S
≤

The abstract syntax of λ��S
≤ is shown in Figure 1. As usual, we work modulo

renaming of bound variables. The meaning of each construct is explained in
tandem with the static semantics (type system) of λ��S

≤ below.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

680 • C. A. Stone and R. Harper

Fig. 1. Syntax of the λ��S≤ calculus.

Fig. 2. Free-variable sets for types and terms.

2.1.1 Substitutions. The notation FV(phrase) refers to the set of free vari-
ables in phrase and is defined in Figure 2 by induction on syntax.

We use the metavariable γ to stand for an arbitrary mapping from term
variables to terms. The notation γ (phrase) is used to represent the result of
applying γ to all free variables in the phrase phrase, avoiding variable capture.
The substitution which sendsx to M and leaves all other variables unchanged
is written [M/x]. If γ is a substitution, then γ [x �→M] stands for the mapping
which sends x to M and behaves like γ for all other variables.

2.1.2 Typing Contexts. A typing context � (or simply context when this is
unambiguous) represents assumptions for the types of free term variables. It
is represented as a finite sequence of variable/classifier associations. Typing
contexts in λ��S

≤ are ordered sequences rather than sets because of the depen-
dencies introduced by singletons: types can refer to earlier term variables in
the context.

2.2 Judgments of λ��S
≤

The context validity judgment � � ok holds when a typing context � is well
formed; every type appearing in the context must be well formed with respect
to the preceding segment of the context.

The side-condition in Rule 2 ensures that variables are not bound in a context
more than once; dom(�) is the set of all term variables assigned types by �. It

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 681

Fig. 3. Judgments of λ��S≤ , continued.

follows that well-formed typing contexts can be used as finite functions: �(x)
represents the type associated withx in �. Because contexts are finite sequences,
there is an obvious definition for appending any two contexts and the result of
appending �1 and �2 is written �1, �2.

We define a (purely syntactic) inclusion order on contexts. The relation �1 ⊆
�2 on contexts holds if �1 appears as a (not necessarily consecutive) subsequence
of �2. Thus, if �1 ⊆ �2, then dom(�1) ⊆ dom(�2) and �1(x) = �2(x) for every
x ∈ dom(�1). We also write �2 ⊇ �1 to mean �1 ⊆ �2.

2.2.1 Types. The type validity judgment � � A specifies when a type A is
well formed with respect to a given typing context �. It is defined in Figure 3.

The premise � � ok in Rule 3 for the base type b helps ensure that in any
proof of a judgment � � A there is strict subderivation proving � � ok. A similar
property will hold for all of the judgments (Proposition 3.1).

Well-formed singleton types in λ��S
≤ are restricted to contain terms only of the

base type b, as shown in Rule 4. However, more general singleton types SA(M),
classifying terms equivalent to M at type A, are definable (see Section 2.3).

Rules (5) and (6) for � and � types (dependent types of functions of terms and
pairs of terms respectively) are standard. �x:A′. A′′ is the type of all functions
which map an argument x of type A′ to a result of type A′′, where A′′ may depend
on x. Similarly, �x:A′. A′′ is the type of all pairs of terms whose first component
x has type A′ and whose second component has type A′′, where A′′ may refer
to x. Both �x:A′. A′′ and �x:A′. A′′ bind the term variable x in A′′. We use the
usual notation A′×A′′ for �x:A′. A′′ and A′→A′′ for �x:A′. A′′ when x is not free
in A′′.

It is often convenient to be able to induct over types ignoring constituent
terms. We therefore define the size of a type to be a strictly positive integer,

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

682 • C. A. Stone and R. Harper

Fig. 4. Judgments of λ��S≤ , continued.

specified by induction on the structure of types:

size(b) = 1
size(S(M)) = 2
size(�x:A′. A′′) = size(A′) + size(A′′) + 1
size(�x:A′. A′′) = size(A′) + size(A′′) + 1

The size of a type depends only on “shape” and is thus invariant under substi-
tutions. The key properties of this measure are that size(S(M)) > size(b) and
that the size of a � or � is strictly greater than the sizes of all substitution
instances of its constituent types.

The subtyping judgment � � A1 ≤ A2 shown in Figure 4 defines a preorder
on types, which may be understood to say that A1 is less general (exposes more
information about a term) than A2; a term of type A1 will be acceptable in every
context requiring a term of type A2.

S(M) is the type of “all terms of type b equivalent to M ”, any such term
should be acceptable where a term of type b is expected. Thus, the key subtyping
rule is Rule (7) (where the premise of this rule helps ensure that S(M) is well
formed).

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 683

Fig. 5. Judgments of λ��S≤ , continued.

Subtyping between two singleton types coincides with equivalence because
a term of type b equivalent to M1 should appear in a context expecting a term
equivalent to M2 if and only if M1 and M2 are equivalent. Rule (9) helps en-
sure that subtyping is reflexive for all types, including b. The remaining sub-
typing rules lift the relation to � and � types, following the usual co- and
contravariance properties. The topmost premises in Rules (10) and (11) ensure
that � � A1 ≤ A2 implies � � A1 and � � A2.

Type equivalence, denoted � � A1 ≡ A2, is essentially a symmetrized version
of subtyping. We show later that � � A1 ≡ A2 if and only if � � A1 ≤ A2 and
� � A2 ≤ A1.

2.2.2 Terms. The term-validity judgment � � M : A, defined in Figure 5
specifies that the term M is well formed in context � with classifying type A.
Rules (16)–(22) are the usual rules for a a dependently-typed λ-calculus with
pairing, projections, and a base type.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

684 • C. A. Stone and R. Harper

Rule (23) is the obvious introduction form for singletons. Rules (24) and
(25) are somewhat less familiar, but analogous rules often appear in literature
studying Standard ML modules, including the nonstandard structure-typing
rule of Harper et al. [1990], the VALUE rules of Harper and Lillibridge’s
translucent sums [Harper and Lillibridge 1994], the strengthening operation of
Leroy’s manifest type system [Leroy 1994], the “self” rule of Leroy’s applicative
functors [Leroy 1995], and the REFL rule of Aspinall [2000]. The two rules can
be justified as reflexive instances of extensionality (Rules (35) and (36)) and en-
sure that a term has every type that its η-expansion does. In most dependently-
typed calculi these rules are admissible. However, in λ��S

≤ , they allow terms to
be given strictly more precise types.

For example, assume that x : b × b. In the absence of Rule (24), the most
precise (and only) type of x is b × b. Using Rule (24) though, we can show

x : b × b � x : S(π1x) × S(π2x).

That is, x has “the type of pairs whose first component is equal to the first
component of x and whose second component is equal to the second component
of x”. This type is much more precise and informative b × b, and it is entirely
reasonable that x itself ought to satisfy that type. (Extensionality will further
ensure that x is the only only pair with this type.) Rules (24) and (25) are critical
for encoding singleton types for arbitrary terms. The rules can be viewed as
extending singleton introduction to higher types.

We conjecture that the lower two premises in Rule (25) could be replaced
by the much simpler side-condition x
∈ FV(M), but we are then unable to
prove the existence of most-specific types (see Section 3.4). The formulation
here makes explicit that Rule (25) yields more-precise � types for terms only
by making the codomain more precise, rather than by weakening the domain
type.

The final term well-formedness rule is the standard subsumption rule,
Rule (26).

Term equivalence, defined in Figure 6, provides a notion of equality (inter-
changeability) for terms. The judgment � � M1 ≡ M2 : A says that M1 and M2
are equivalent terms of type A under context �. Equivalence is highly context-
sensitive, as whether � � M1 ≡ M2 : A is provable depends not only on M1
and M2, but also on the types in � and on the type A at which the terms are
compared.

Equivalence is first defined to be a reflexive, symmetric, and transitive rela-
tion (Rules (27)–(29)) and a congruence (Rules (30)–(34)).

There are two extensionality rules, Rule (35) and (36). If two functions or two
pairs cannot be distinguished by their uses, then they are considered equiva-
lent. In particular, two pairs are equivalent if they have equivalent first and
second components, and two functions are equivalent if they return equivalent
results for all arguments. If Rule (25) were simplified as discussed above then
the last two premises of these extensionality rules could be replaced with the
side condition x
∈ (FV(M1) ∪ FV(M2)).

We also have subsumption for equivalence, Rule (37), paralleling Rule (26).

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 685

Fig. 6. Judgments of λ��S≤ , continued.

Interestingly, an easy inductive argument shows that the rules given so far
merely define term equivalence to be syntactic identity up to renaming of bound
variables. However, adding Rule (38), the elimination rule for singleton types,
makes equivalence nontrivial and justifies the presence of each of the above
rules.

This completes the definition of term equivalence. It may be initially sur-
prising that there are no built-in rules for reducing function applications or
projections from pairs (i.e., β-like rules). It turns out that these are admissible
in the presence of singleton types and Rule (38). Full details are in Section 2.3
and Section 3.3, but we sketch one example here. It is clear that

� 〈c1, c2〉 : S(c1) × S(c2).

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

686 • C. A. Stone and R. Harper

Then, by Rule (21), it follows

� π1〈c1, c2〉 : S(c1)

and by Rule (38) and subsumption since S(c1) � b we have

� π1〈c1, c2〉 ≡ c1 : b.

This same argument can be generalized to projections from arbitrary pairs, and
in an analogous fashion to applications of λ-abstractions.

Given the β-rules, then, the extensionality Rules (35) and (36) imply that the
usual η-rules are admissible as well. It is well known that η-reduction is not
confluent in the presence of terminal (unit) types. As unit is a special case of a
singleton type, the same behavior appears here as well. For example:

x : b → S(c1) � x ≡ λy :b. c1 : b → b

holds, as does

x : S(c1) → b � x ≡ λy :S(c1). (x c1) : S(c1) → b.

All the terms in these judgments are normal with respect to βη-reduction;
compare the right-hand term in the last judgment with λy :S(c1). (xy), the η-
expansion of x.

A more obvious consequence of having singletons—and their original
motivation—is that they can be used to express definitions for variables. For
example, in the following judgment the context effectively defines x to be c1:

x : S(c1) � 〈x, c1〉 ≡ 〈c1, x〉 : b × b.

But the system is not restricted merely to giving simple definitions to variables.
In the provable judgment

x : b × S(c1) � π2x ≡ c1 : b.

the context only partially defines x; it is known to be a pair and its second
component is (equivalent to) c1, but this does not give a definition for x as a
whole. Alternatively, this could be thought of as giving π2x the definition c1
without giving a definition for π1x.

Similarly, in the two provable judgments

x : (� y :b.S(y)) � π1x ≡ π2x : b

x : (� y :b.S(y)) � x ≡ 〈π1x, π1x〉 : b × b.

the assumption governing x requires that it be a pair whose first component y
has type b and whose second component is equal to the first; that is, a pair with
two equal components of type b. This gives a definition only to π2x, namely as
being equal to π1x.

Now because of subtyping and subsumption, terms do not have unique types.
The equational system presented here has the relatively unusual property (for
a decidable system) that equivalence of two terms depends on the type at which

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 687

they are compared. Two terms may be equivalent at one type but not at another;
for example, one cannot prove

� λx:b. x ≡ λx:b. c1 : b → b.

However, by subsumption these two functions both have type S(c1) → b and
the judgment

� λx:b. x ≡ λx:b. c1 : S(c1) → b

is provable; the proof uses extensionality and the fact that the two functions
provably agree on all arguments of type S(c1), that is, when applied to only the
argument c1.

The classifying type at which terms are compared may depend on the con-
text of their occurrence. For example, it follows immediately from the previous
equation that

y : (S(c1) → b) → b � y (λx:b. x) ≡ y (λx:b. c1) : b

is also provable. The type of y guarantees that it will apply its argument only
to the term c1, so it cannot matter whether y is given λx:b. x or λx:b. c1. In
contrast, the judgment

y : (b → b) → b � y (λx:b. x) ≡ y (λx:b. c1) : b

is not provable because the context makes a weaker assumption about y .

2.3 Admissible Rules and Labeled Singletons

We next turn to a number of interesting and useful rules which are admissible
in our system, shown in Figure 7. Rules (39)–(41) are variant introduction and
elimination rules for singleton types.

Next, in λ��S
≤ the type S(M) is well formed if and only if M is of the base type

b. This initially seems restrictive, as one might expect to find labeled singleton
types of the form SA(M) representing the type of all terms equivalent to M when
compared at type A. These would be necessary, for example, to model definitions
of term-level functions. However, such labeled singletons are already definable
within λ��S

≤ .
One possible definition,1 defined by induction on the size of the type label, is

Sb(M) := S(M)
SS(M ′)(M) := S(M)
S�x:A1. A2 (M) := �x:A1. (SA2 (M x)) (where x
∈ FV(M)).
S�x:A1. A2 (M) := SA1 (π1M) × S[π1 M/x]A2 (π2M)

For example, if y has type b → b, then Sb→b(y) is �x:b.S(y x). This can
be interpreted as “the type of all functions that, when applied, yield the same
answer as y does”, or “the type of all functions that agree pointwise with y”.
By extensionality, any such function is provably equivalent to y . Rule (25) is
used to prove that y has this type.

1Since types only matter up to equivalence, these definitions are not unique. One could equally
well define SS(M ′)(M) to be S(M ′), or define S�x:A1 . A2 (M) to be �x:SA1 (π1 M).SA2 (π2 M).

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

688 • C. A. Stone and R. Harper

Fig. 7. Admissible rules.

Rules (42)–(47) are admissible, showing that the labeled singleton types do
behave appropriately; proofs are deferred to Section 3.3.

Because these labeled singletons are defined rather than primitive, one must
be careful to note that � � SA(M) does not imply � � M : A. For example,
if c1 and c2 are distinct constants, then, according to our definition, we have
SS(c2)(c1) = S(c1), and therefore � SS(c2)(c1) even though c1 cannot be shown to
have type S(c2). This explains the premise � � M2 : A in Rule (42).

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 689

Finally, as previously mentioned the β and η rules for pairs and functions
are admissible, Rules (48)–(52).

3. DECLARATIVE PROPERTIES

In this section, we present several basic properties of the λ��S
≤ calculus. From

these, we derive the definability of generalized singleton types, and the admis-
sibility of the rules given in Section 2.3, before moving on to the much more
interesting results of Section 4.

3.1 Preliminaries

We start with a number of very simple properties, each of which follows easily
by induction on derivations.

If we define typing-context-free judgment forms J :

J ::= ok | A | A1 ≤ A2 | A1 ≡ A2 | M : A | M1 ≡ M2 : A,

then given a context � one can construct a λ��S
≤ judgment � � J . The substi-

tution γJ is defined by applying the substitution to the individual types and
terms appearing in J , while the free variable computation FV(J) is similarly
defined as the union of the free variables of the phrases in J .

The first results all follow by induction on derivations.

PROPOSITION 3.1 (SUBDERIVATIONS)

(1) Every proof of � � J contains a subderivation � � ok.
(2) Every proof of �1, x:A, �2 � J contains a strict subderivation �1 � A.
(3) If � � M M ′ : B, then there is a strict subderivation of the form � � M : A

for some type A.
(4) If � � πi M : B, then there is a strict subderivation of the form � � M : A

for some type A.

PROPOSITION 3.2. If � � J , then FV(J) ⊆ dom(�).

PROPOSITION 3.3 (REFLEXIVITY)

(1) If � � A, then � � A ≡ A.
(2) If � � A, then � � A ≤ A.

PROPOSITION 3.4 (RENAMING). If �1, x:A, �2 � J, then there is a derivation, of
equal size and structure, of �1, x ′:A, [x ′/x]�2 � [x ′/x]J for every x ′
∈ dom(�1) ∪
dom(�2).

PROPOSITION 3.5 (WEAKENING)

(1) If �1 � J and �1 ⊆ �2 and �2 � ok, then �2 � J .
(2) If �1, x : A2, �2 � J and �1 � A1 ≤ A2 and �1 � A1, then �1, x : A1, �2 � J .

Later we show that the assumption �1 � A1 in the statement of Weakening
is redundant, being already implied by �1 � A1 ≤ A2.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

690 • C. A. Stone and R. Harper

Definition 3.6. The judgment θ � γ : � holds if and only if the following
conditions all hold:

(1) θ � ok
(2) ∀x ∈ dom(�). θ � γ x : γ (�(x))

PROPOSITION 3.7 (SUBSTITUTION)

(1) If � � J and θ � γ : �, then θ � γ (J).
(2) If �1, x : A, �2 � ok and �1 � M : A, then �1, [M/x]�2 � ok.

3.2 Validity and Functionality

We next show two highly useful properties of the calculus. Validity is the prop-
erty that any phrase appearing within a provable judgment is well formed (e.g.,
if � � M1 ≡ M2 : A then � � ok and � � A and � � M1 : A and � � M2 : A).
Functionality states that applying equivalent substitutions to phrases related
by equivalence or subtyping yields similarly related phrases.

The rules have been structured to assume validity for premises and guaran-
tee and preserve validity for conclusions. A simple proof, however, is hindered
by the presence of dependencies in types. The direct approach by induction on
derivations fails because of cases such as Rule (33):

� � M1 ≡ M2 : �x:A′. A′′

� � π2M1 ≡ π2M2 : [π1M1/x]A′′ .

Here we need to show � � π2M2 : [π1M1/x]A′′ but from the inductive hypoth-
esis and Rule (22) we have only � � π2M2 : [π1M2/x]A′′. The desired result
would follow if we knew that � � [π1M2/x]A′′ ≤ [π1M1/x]A′′. Since � � π1M2 ≡
π1M1 : A′, the subtyping judgment required follows from functionality.

This suggests one should first prove functionality. The most general form of
functionality cannot be directly proved in the absence of validity, but the proof
does go through for the restricted case of equivalent substitutions being applied
to a single phrase to obtain related results. This suffices to show validity, and
together these allow a simple proof of general functionality.

Definition 3.8. The judgment θ � γ1 ≡ γ2 : � holds if and only if the follow-
ing conditions all hold:

(1) θ � γ1 : � and θ � γ2 : �

(2) ∀x ∈ dom(�). θ � γ1x ≡ γ2x : γ1(�(x))

PROPOSITION 3.9 (SIMPLE FUNCTIONALITY)

(1) If � � ok and θ � γ1 ≡ γ2 : �, then θ � γ2 ≡ γ1 : �.
(2) If � � A and θ � γ1 ≡ γ2 : �, then θ � γ1 A ≡ γ2 A.
(3) If � � A and θ � γ1 ≡ γ2 : �, then θ � γ1 A ≤ γ2 A.
(4) If � � M : A and θ � γ1 ≡ γ2 : �, then θ � γ1M ≡ γ2M : γ1 A.

PROOF. By induction on the proofs of the first premise.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 691

PROPOSITION 3.10 (VALIDITY)

(1) If � � A1 ≤ A2, then � � A1 and � � A2.
(2) If � � A1 ≡ A2, then � � A1, � � A2, � � A1 ≤ A2, and � � A2 ≤ A1

(3) If � � M : A, then � � A.
(4) If � � M1 ≡ M2 : A, then � � M1 : A, � � M2 : A, and � � A.

PROOF. By induction on derivations. The only interesting cases are equiv-
alence rules which treat the left and right sides assymetrically. The assymet-
ric choice of substitutions in Rule (31) (where conclusion substitutes M ′

1 for x
rather than the provably equivalent term M ′

2) and Rule (33) are handled by
Proposition 3.9. The subtyping conclusions in Part (2) are a strengthening of
the inductive hypothesis to ensure that the cases for Rules (14), (15), and (30)
(which all put A′

1 in the typing context rather than A′
2) go through.

PROPOSITION 3.11 (ANTISYMMETRY OF SUBTYPING). � � A1 ≤ A2 and � �
A2 ≤ A1 if and only if � � A1 ≡ A2.

PROOF. The “if” direction was proved in Part (2). The “only if” direction
follows by induction on size(A1) + size(A2).

PROPOSITION 3.12 (SYMMETRY AND TRANSITIVITY OF TYPE EQUIVALENCE).

(1) If � � A1 ≡ A2, then � � A2 ≡ A1

(2) If � � A1 ≡ A2, and � � A2 ≡ A3 then � � A1 ≡ A3.

PROOF. By induction on derivations.

PROPOSITION 3.13 (TRANSITIVITY OF SUBTYPING). If � � A1 ≤ A2 and � �
A2 ≤ A3, then � � A1 ≤ A3.

PROOF. By induction on size(A1) + size(A2) + size(A3)

PROPOSITION 3.14 (FULL FUNCTIONALITY)

(1) If � � M1 ≡ M2 : A and θ � γ1 ≡ γ2 : �, then θ � γ1M1 ≡ γ2M2 : γ1 A.
(2) If � � A1 ≡ A2 and θ � γ1 ≡ γ2 : �, then θ � γ1 A1 ≡ γ2 A2.
(3) If � � A1 ≤ A2 and θ � γ1 ≡ γ2 : �, then θ � γ1 A1 ≤ γ2 A2.

PROOF. We show the proof for just the first part; the last two parts follow
similarly. Assume � � M1 ≡ M2 : A and θ � γ1 ≡ γ2 : �. By Proposition 3.7,
θ � γ1M1 ≡ γ1M2 : γ1 A. By Proposition 3.10, we have � � M2 : A, and so
by Proposition 3.9, θ � γ1M2 ≡ γ2M2 : γ1 A. By Proposition 3.12, θ � γ1M1 ≡
γ2M2 : γ1 A.

3.3 Proofs of Admissibility

We now have enough technical machinery to prove the admissibility of
Rules (39)–(52).

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

692 • C. A. Stone and R. Harper

LEMMA 3.15. γ (SA(M)) = Sγ A(γ M).

PROPOSITION 3.16. The rules from Section 2.3 are all admissible

PROOF.

—Rules (39)–(41). By Proposition 3.10, and subsumption.
—Rule (42).

� � M2 : A � � M1 : SA(M2)

� � M1 ≡ M2 : SA(M2)

By induction on the size of A.
—Case: A = b and SA(M2) = S(M2). By Rule (38), � � M1 ≡ M2 : S(M2).
—Case: A = S(N) and SA(M2) = S(M2). By Rule (38), � � M1 ≡ M2 : S(M2).
—Case: A = �x:A′. A′′ and SA(M2) = �x:A′.SA′′ (M2 x). By Rule (19) and

Proposition 3.5 and Lemma 3.15 we have �, x : A′ � M1 x : SA′′ (M2 x)
and �, x : A′ � M2 x : A′′. By the inductive hypothesis, �, x : A′ �
M1 x ≡ M2 x : SA′′ (M2 x). Therefore, by Rule (36), we have � � M1 ≡
M2 : �x:A′.SA′′ (M2 x).

—Case: A = �x:A′. A and SA(M2) = (SA′ (π1M2)) × (S[π1 M2/x]A′′ (π2M2)). Then
� � π1M1 : SA′ (π1M2) and � � π2M1 : S[π1 M1/x]A′′ (π2M2). � � π1M2 : A′

and � � π2M2 : [π1M2/x]A′, so by the inductive hypothesis, � � π1M1 ≡
π1M2 : SA′ (π1M2) and � � π2M1 ≡ π2M2 : S[π1 M1/x]A′′ (π2M2). By Propo-
sition 3.10, and Rule (35) we have � � M1 ≡ M2 : (SA′ (π1M2)) ×
(S[π1 M2/x]A′′ (π2M2)).

—Rule (43).

� � M1 ≡ M2 : A

� � M1 ≡ M2 : SA(M2)

By induction on the size of A.
—Case: A = b and SA(M2) = S(M2). � � M1 : S(M2) by Rule (39), so

� � M1 ≡ M2 : S(M2) by Rule (38).
—Case: A = S(N) and SA(M2) = S(M2). � � N : b by Proposition 3.10,

and inversion of Rule (4), so � � S(N) ≤ b. Then, � � M1 ≡ M2 : b by
subsumption, so � � M1 : S(M2) by Rule (39). Thus, � � M1 ≡ M2 :
S(M2) by Rule (38).

—Case: A = �x:A′. A′′ and SA(M2) = �x:A′.SA′′ (M2 x). By Proposition 3.5,
and Rule (31), �, x : A′ � M1 x ≡ M2 x : A′′. By the inductive hypothesis,
�, x : A′ � M1 x ≡ M2 x : SA′′ (M2 x). By Proposition 3.10, we have � �
M1 : �x:A′. A′′ and � � M2 : �x:A′. A′′. Therefore, by Rule (36), � �
M1 ≡ M2 : �x:A′.SA′′ (M2 x).

—Case: A = �x:A′. A′′ and SA(M2) = (SA′ (π1M2)) × (S[π1 M2/x]A′′ (π2M2)).
Then � � π1M1 ≡ π1M2 : A′ and � � π2M1 ≡ π2M2 : [π1M1/x]A′′.
By Proposition 3.9, and Rule (37), � � π2M1 ≡ π2M2 : [π1M2/x]A′′.
By the inductive hypothesis, � � π1M1 ≡ π1M2 : SA′ (π1M2) and
� � π2M1 ≡ π2M2 : S[π1 M2/x]A′′ (π2M2). (Note that size([π1M2/x]A′′)

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 693

= size(A′′) < size(A).) Therefore by Proposition 3.10, and Rule (35), we
have � � M1 ≡ M2 : (SA′ (π1M2)) × (S[π1 M2/x]A′′ (π2M2)).

—Rule (44).

� � M : A

� � SA(M) ≤ A

By induction on the size of A
—Case: A = b and SA(M) = S(M). By Rule (7), we have � � S(M) ≤ b.
—Case: A = S(N) and SA(M) = S(M). Then, � � M ≡ N : b so � �

S(M) ≤ S(N).
—Case: A = �x:A1. A2 and SA(M) = �x:A1.SA2 (M x). Then � � A1 and

�, x : A1 � M x : A2. By the inductive hypothesis, �, x : A1 � SA2 (M x) ≤
A2. Therefore, � � �x:A1.SA2 (M x) ≤ �x:A1. A2.

—Case: A = �x:A′. A′′ and SA(M) = (SA′ (π1M)) × (S[π1 M/x]A′′ (π2M)). By
Proposition 3.10, and inversion of Rule (6) we have �, x:A′ � A′′. Then
� � π1M : A′ so by the inductive hypothesis, � � SA′ (π1M) ≤
A′. Furthermore, � � π2M : [π1M/x]A′′. By the inductive hypothe-
sis, � � S[π1 M/x]A′′ (π2M) ≤ [π1M/x]A′′. Also, by Proposition 3.1, and
Proposition 3.5, �, x : SA′ (π1M) � A′′ ≤ A′′. By Rule (42), we have
�, x : SA′ (π1M) � x ≡ π1M : SA′ (π1M) so by Functionality, we have
�, x : SA′ (π1M) � [π1M/x]A′′ ≤ A′′. Therefore, using Proposition 3.13,
� � (SA′ (π1M)) × (S[π1 M/x]A′′ (π2M)) ≤ �x:A′. A′′.

—Rule (45).

� � M1 ≡ M2 : A1 � � A1 ≤ A2

� � SA1 (M1) ≤ SA2 (M2)

By induction on size(A1).
—Case: A1 = b or S(M1) and A2 = b or S(M2). Then SA1 (M1) = S(M1),

SA2 (M2) = S(M2), and the desired conclusion follows by Rule (8).
—Case: A1 = �x:A′

1. A′′
1 and A2 = �x:A′

2. A′′
2. SAi (Mi) = �x:A′

i.SA′′
i
(Mi x).

By inversion � � A′
2 ≤ A′

1 and �, x : A′
2 � A′′

1 ≤ A′′
2. Now �, x : A′

2 �
M1 x ≡ M2 x : A′′

1. By the inductive hypothesis, �, x : A′
2 � SA′′

1
(M1 x) ≤

SA′′
2
(M2 x). The conclusion follows by Rule (10).

—Case: A1 = �x:A′
1. A′′

1 and A2 = �x:A′
2. A′′

2. Then SA1 (M1) = �x : SA′
1

(π1M1).S[π1 M1/x]A′′
1
(π2M1) and SA2 (M2)= �x:SA′

2
(π1M2).S[π1 M2/x]A′′

2
(π2M2).

Now � � π1M1 ≡ π1M2 : A′
1 and � � π2M1 ≡ π2M2 : [π1M1/x]A′′

1.
By the inductive hypothesis, � � SA′

1
(π1M1) ≤ SA′

2
(π1M2). Since � �

[π1M1/x]A′′
1 ≤ [π1M2/x]A′′

2, the inductive hypothesis applies, yielding
� � S[π1 M1/x]A′′

1
(π2M1) ≤ S[π1 M2/x]A′′

2
(π2M2). (Here it is important that the

induction is on the size of A1 and not by induction on the proof � � A1 ≤
A2.) The desired result follows by Proposition 3.5, and Rule (11).

—Rules (46) and (47).
� � M : A

� � SA(M)

� � M : A

� � M : SA(M)

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

694 • C. A. Stone and R. Harper

Fig. 8. Rules for principal types.

Assume � � M : A. By Rule (27), � � M ≡ M : A. By Rule (43), � � M ≡
M : SA(M). By Proposition 3.10, � � SA(M) and � � M : SA(M).

—Rule (48).

�, x : A′ � M : A′′ � � M ′ : A′

� � (λx:A′. M) M ′ ≡ [M ′/x]M : [M ′/x]A′′

Assume �, x : A2 � M : A and � � M2 : A2. Then, �, x : A2 � M : SA(M),
so � � λx:A2. M : �x:A2.SA(M). By Rule (19) and Lemma 3.15 we have
� � (λx:A2. M) M2 : S[M2/x]A([M2/x]M). By Proposition 3.7, � � [M2/x]M :
[M2/x]A. Thus � � (λx:A2. M) M2 ≡ [M2/x]M : [M2/x]A by Rule (42).

—Rule (49).

� � M1 : A1 � � M2 : A2

� � π1〈M1, M2〉 ≡ M1 : A1

Assume � � M1 : A1 and � � M2 : A2. Then, � � M1 : SA1 (M1), so
� � 〈M1, M2〉 : SA1 (M1)×A2. Thus, � � π1〈M1, M2〉 : SA1 (M1) and � �
π1〈M1, M2〉 ≡ M1 : A1.

—Rule (50). Analogous to Rule (49).
—Rules (51)–(52). By the β-rules and extensionality.

It follows that a variable with a labeled singleton type is interchangeable
with the term appearing in the singleton:

LEMMA 3.17.

(1) If � � M : A and �, x : SA(M) � N : B, then �, x : SA(M) � N ≡ [M/x]N :
B.

(2) If � � M : A and �, x : SA(M) � B, then �, x : SA(M) � B ≡ [M/x]B.

PROOF. By admissible Rule (42) and Proposition 3.9.

3.4 Principal Types

It is useful to have an alternate, more syntax-directed characterization of the
typing judgment that avoids the subsumption and singleton rules by directly
computing most-specific types. (We use this in proving soundness for our algo-
rithms.) The definition appears in Figure 8. Although there is one rule for each
possible form of term, it does not define an algorithm because it still refers to the
subtyping relation, which in turn is defined in terms of term equivalence and

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 695

well formedness. A fully algorithmic version of well formedness appears later
in Section 6, once we have a correct algorithm for term equivalence in hand.

We will also refer to a term’s most-precise type as its principal type, since all
other types for the term can be derived from the principal type by subsumption.
Formally, A is principal for M in � if and only if � � M : A and whenever
� � M : B we have � � A ≤ B. By the antisymmetry of subtyping, principal
types are unique up to equivalence.

THEOREM 3.18 (PRINCIPAL TYPE SOUNDNESS). If � � ok and � � M ⇑ B,
then � � M : B.

PROOF. By induction on the proof of � � M ⇑ B.

LEMMA 3.19 (PRINCIPAL TYPE WEAKENING AND DETERMINISM). If � � M ⇑ A
and �′ ⊇ �, then �′ � M ⇑ B if and only if A = B.

THEOREM 3.20 (PRINCIPAL TYPE COMPLETENESS). If � � M : B, then there ex-
ists A (determined by � and M) such that � � M ⇑ A and � � A ≤ SB(M) (so
that � � A ≤ B).

PROOF. By induction on the proof of the assumption and cases on the last
rule used. The idea of replacing the general subsumption rule with a single use
of subtyping within applications is very common, so we show only a few cases
involving rules specific to λ��S

≤ .

—Case: Rule (23).

� � M : b

� � M : S(M)
.

By the inductive hypothesis, noting that SS(M)(M) = S(M). It is important
here that the induction hypothesis guarantees A ≤ SB(M) rather than just
A ≤ B.

—Case: Rule (24).
� � �x:B′. B′′

� � π1M : B′ � � π2M : [π1M/x]B′′

� � M : �x:B′. B′′

By the inductive hypothesis, � � π1M ⇑ A′and � � A′ ≤ SB′ (π1M).
Similarly, � � π2M ⇑ A′′ and � � A′′ ≤ S[π1 M/x]B′′ (π2M). By inver-
sion of the principal type rules, and the observation that they cannot pro-
duce a dependent � type, it must be that � � M ⇑ A′ × A′′. Since
S�x:B′. B′′ (M) = SB′ (π1M)×S[π1 M/x]B′′ (π2M), by Rule (11) and Proposition 3.5
we have � � A′×A′′ ≤ S�x:B′. B′′ (M).

—Case: Rule (25).
�, x : B′ � M x : B′′

� � M : �x:B′. B2
′′ � � �x:B′. B2

′′

� � M : �x:B′. B′′

By the inductive hypothesis, � � M ⇑ A, � � M : A, and � �
A ≤ S�x:B′. B′′

2
(M). Now S�x:B′. B′′

2
(M) = �x:B′.SB′′

2
(M x) so by inversion of

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

696 • C. A. Stone and R. Harper

Fig. 9. Normalization algorithm.

Rule (10), A = �x:A′. A′′ and � � B′ ≤ A′. Also by the inductive hypothesis,
�, x : B′ � M x ⇑ A′′

2, �, x : B′ � M x : A′′
2, and �, x : B′ � A′′

2 ≤ SB′′ (M x).
But by Lemma 3.19, we have A′′

2 = [x/x]A′′ = A′′. Now S�x:B′. B′′ (M) =
�x:B′.SB′′ (M x). Therefore, � � �x:A′. A′′ ≤ S�x:B′. B′′ (M).

4. NORMALIZATION OF TERMS AND TYPES

4.1 Introduction

Determining whether types and types are well formed is straightforward once
we have a method for checking equivalence of well-formed terms. The fact that
equivalence is sensitive both to the typing context and to the classifying type
makes it difficult to use context-insensitive rewrite rules such as β-reduction.
We therefore introduce a complete algorithm for computing the normal form
of a term given a context and a type; two terms are provably equivalent if and
only if they have the same normal form. (In Section 6, we show a more efficient
method for determining type equivalence.)

4.2 Normalization Algorithm

The components of the normalization algorithm are defined in Figure 9. The
algorithm uses the concepts of paths and elimination contexts. An elimination

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 697

context is a series of applications to and projections from “�”, which is called
the context’s hole.

E ::= �
| E M
| π1E
| π2E

If E is such a context, then E[M] represents the term resulting by replacing the
hole in E with M . If a term is of the form E[x] or E[c], then it is called a path,
denoted by p. Note that E[p] will also be a path.

The definitions in Figure 9 are “algorithmic” inference rules; they have been
carefully designed to be syntax-directed, so that proof search is determinis-
tic and no backtracking is required. To distinguish algorithmic rules from the
declarative rules of λ��S

≤ , we use the symbol � to separate the typing assump-
tions from the conclusion.

It seems reasonable to say that a variable x : b has no definition, but that
a variable x : S(c1) has the definition c1. Similarly, if y : b × S(c1) then y as a
whole has no definition, nor does π1 y , yet π2 y has the definition c1. This intu-
ition is formalized through the concept of a natural type. This is the most precise
type that can be assigned with standard typing rules, ignoring the singleton-
introducing Rules (23), (24), and (25), as these provide no “new” information
about the value of a term.

The natural type algorithmic relation is written

� � p ↑ A.

Given a well formed context � and a path p that is well formed in this con-
text, the natural type algorithm attempts to determine a type for the path by
taking the type of the head variable or constant and doing appropriate substi-
tutions and projections. A path is said to have a definition if its natural type is
a singleton type S(N); in this case N is said to be the definition of the path.

The natural type is not always the most-precise type. For example, x : b �
x ↑ b although the principal type of x in this context would be S(x). We show
later that SA(p) is principal for p, if A is the natural type of p.

The head reduction relation

� � M � N

takes � and M and returns the result of applying one step of head reduction if
M has such a redex. If the head of M is a path that has a definition then the
definition is returned. Otherwise, there is no head reduct.

The head normalization relation

� � M ⇓ N

takes � and M and repeatedly applies head reduction to M until a head normal
form is found. Head reduction and head normalization are deterministic, since
the head β-redex is always unique if one exists, and a path can yield at most
one definition. Because head reduction includes expansion of definitions, it is
possible to have paths—including single variables—that are not head normal.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

698 • C. A. Stone and R. Harper

It is easy to check that normalization is deterministic (up to renaming of
bound variables) and satisfies a weakening property.

LEMMA 4.1 (DETERMINACY)

(1) If � � p ↑ N1 and � � p ↑ N2, then N1 = N2.
(2) If � � M : A =⇒ N1 and � � M : A =⇒ N2, then N1 = N2.
(3) If � � p −→ p′

1 ↑ A1 and � � p −→ p′
2 ↑ A2, then p′

1 = p′
2 and A1 = A2.

(4) If � � A =⇒ B1 and � � A =⇒ B2, then B1 = B2.

LEMMA 4.2 (WEAKENING FOR TYPE RECONSTRUCTION). If �1 � p ↑ A and �1 ⊆
�2, then �2 � p ↑ A.

4.3 Soundness

LEMMA 4.3. If � � p : A, then there exists B, determined by � and p, such
that � � p ↑ B and � � p : B and � � SB(p) ≤ A.

PROOF. By induction on the proof of the assumption, and cases on the last
rule used.

COROLLARY 4.4. If � � E[p] : A and �� p ↑ S(M), then � � E[p] ≡ E[M] : A.

PROOF. By Lemma 4.3, � � E[p] ↑ B, � � E[p] : B, and � � SB(E[p]) ≤ A.
By the determinacy of natural types, the first of these can be reconciled with
� � p ↑ S(M) only if E = � and B = S(M). Thus, � � p ≡ M : b. and
SB(E[p]) = S(p). By inversion of subtyping, either A = b or A = S(M ′) with
� � p ≡ M ′ : b. In either case, � � p ≡ M : A.

PROPOSITION 4.5. If � � E[(λx:A′. M) M ′] : A then � � E[(λx:A′. M) M ′] ≡
E[[M ′/x]M] : A.

PROOF. By simultaneous induction on the proof of the assumption, and cases
on the last rule used.

—Case: Rule (19).

� � (λx:A′. M) : �x:A′
1. A′′

1 � � M ′ : A′
1

� � (λx:A′. M) M ′ : [M ′/x]A′′ ,

where A = [M ′/x]A′′
1 and E = �. By Theorem 3.20 and inversion, we have

� � A′, �, x : A′ � M ⇑ B′′, � � �x:A′. B′′ ≤ �x:A′
1. A′′

1, � � M ′ ⇑ B′,
and � � B′ ≤ A′

1. By inversion of Rule (10) we have � � A′
1 ≤ A′ and

�, x : A′
1 � B′′ ≤ A′′

1. By Theorem 3.18, we have �, x : A′ � M : B′′ and
by subsumption � � M ′ : A′, so by Rule (48) we have � � (λx:A′. M) M ′ ≡
[M ′/x]M : [M ′/x]B′′. By Proposition 3.7, � � [M ′/x]B′′ ≤ [M ′/x]A′′

1, so by
subsumption we have � � (λx:A′. M) M ′ ≡ [M ′/x]M : [M ′/x]A′′

1

—Case: Rule (23)

� � E[(λx:A′. M) M ′] : b

� � E[(λx:A′. M) M ′] : S(E[(λx:A′. M) M ′])
.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 699

By induction we have � � E[(λx:A′. M) M ′] ≡ E[[M ′/x]M] : b. By Rules (28)
and (40), we have � � E[[M ′/x]M] ≡ E[(λx:A′. M) M ′] : S(E[(λx:A′. M) M ′]),
so the desired result follows by another application of Rule (28).

—The remaining cases follow similarly by induction.
PROPOSITION 4.6.

(1) If � � E[π1〈M ′, M ′′〉] : A, then � � E[π1〈M ′, M ′′〉] ≡ E[M ′] : A.
(2) If � � E[π2〈M ′, M ′′〉] : A, then � � E[π2〈M ′, M ′′〉] ≡ E[M ′′] : A.

PROOF. Generally similar to the previous proposition, using the principal
type rules and Rules (49) and (50).

COROLLARY 4.7. If � � M : A and � � M ⇓ N, then � � M ≡ N : A.

PROOF. By Propositions 3.3, and 3.12, it suffices to show that if � � M : A
and � � M � N , then � � M ≡ N : A. But all possibilities for the reduction
step are covered by Corollary 4.4, Proposition 4.5, and Proposition 4.6.

PROPOSITION 4.8 (SOUNDNESS OF NORMALIZATION)

(1) If � � M : A and � � M : A =⇒ N, then � � M ≡ N : A.
(2) If � � p : A and � � p −→ p′ ↑ B, then � � p ≡ p′ : A.
(3) If � � A and � � A =⇒ B, then � � A ≡ B.

PROOF. By induction on algorithmic derivations.

COROLLARY 4.9.

(1) If � � M1 : A, � � M2 : A, � � M1 : A =⇒ N, and � � M2 : A =⇒ N,
then � � M1 ≡ M2 : A.

(2) If � � A1, � � A2, � � A1 =⇒ B, and � � A2 =⇒ B, then � � A1 ≡ A2.

4.4 Completeness of Normalization

The much more interesting question is whether two provably equivalent terms
are guaranteed to produce the same normal form.

It is instructive to see why the direct approach of proving completeness by
induction on the derivation of � � M1 ≡ M2 : A fails. We immediately run into
trouble with such rules as Rule (31):

� � M1 ≡ M2 : �x:A′. A′′ � � M ′
1 ≡ M ′

2 : A′

� � M1 M ′
1 ≡ M2 M ′

2 : [M ′
1/x]A′′

Here we would have by the induction hypothesis that M1 and M2 have a com-
mon normal form, as well as M ′

1 and M ′
2. However, there is no obvious way

to conclude that M1 M ′
1 and M2 M ′

2 have equal normal forms because normal-
ization of an application is not defined in terms of the normal forms of the
components.

Coquand [1991] proves the completeness of an equivalence algorithm for a
lambda calculus with � types using a form of Kripke logical relation. The key
idea is to prove completeness by defining a stronger “logical” relation that im-
plies algorithmic equivalence. For example, if two functions are logically related

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

700 • C. A. Stone and R. Harper

then their application to logically related arguments must yield logically related
applications. By proving inductively that declarative equivalence implies not
just algorithmic equivalence but logical equivalence, we have strengthened the
induction hypothesis enough to allow cases such as Rule (31) to go through.

To show the completeness and termination for the algorithm we use a mod-
ified Kripke-style logical relations argument. The primary difficulty is the
context-sensitive nature of normalization, which makes it difficult to define
a logical equivalence relation that guarantees common normal forms. For ex-
ample, if we have two terms M and N of type �x:A′. A′′ then a natural definition
for the logical equivalence relation would require both that π1M and π1N are
logically equivalent at type A′, and that π2M and π2N are logically equiva-
lent. But at what type should the latter pair be compared? The most obvious
choices are either [π1M/x]A′′ or [π1N/x]A′′. But even if we were to require that
π2M and π2N be logically equivalent at both types, this appears insufficient to
guarantee that M and N have equal normal forms: normalizing M and N at
the type �x:A′. A′′ will involve normalizing π2M at type [π1M/x]A′′ and nor-
malizing π2N at type [π1N/x]A′′. If the logical relation guarantees only that
at each common type the two projections have the same normal form, this is
too weak.2

We therefore move to a formulation that allows us to express the fact
that multiple terms considered at multiple types (and in multiple typing con-
texts) should all have a single common normal form. Our Kripke world � is a
nonempty set of contexts. The preorder � is defined as follow:

�1 � �2 : ⇐⇒ ∀θ2 ∈ �2.∃θ1 ∈ �1.θ1 ⊆ θ2.

where ⊆ is the inclusion ordering on contexts. That is, �1 � �2 if and only if
every context in �2 extends some context in �1.

We will use A and B to range over finite, nonempty sets of types, M and B to
range over finite, nonempty sets of terms, and G to range over finite, nonempty
sets of substitutions.

It turns out to be very convenient to define notation using sets of types where
one would normally use a single type, and sets of type terms where one would
normally use a single term, with the result being a set computed pointwise
(and, where it makes sense, unioned):

[M/x]A := {[M/x]A | M ∈ M}
[M/x]A := {[M/x]A | M ∈ M, A ∈ A}
MM′ := {M M ′ | M ∈ M, M ′ ∈ M′}
πiM := {πi M | M ∈ M}
G(M) := {γ (M) | γ ∈ G}
G(A) := {γ (A) | γ ∈ G, A ∈ A}
dom(G) := ⋃{dom(γ) | γ ∈ G}
rng(G) := ⋃{rng(γ) | γ ∈ G}
S(M) := {S(M) | M ∈ M}.

2Modifying the algorithm to substitute in the normal form of π1 M would resolve this problem, but
then later we must show that a term and its fully normalized form are logically equivalent, which
seems nonobvious.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 701

Fig. 10. Logical relations.

If A is a set {�x:A′
i. A′′

i | i ∈ I}, it is also useful to use a form of pattern-
matching: we write A = �x:A′.A′′ to mean that A′ = {A′

i | i ∈ I} and A′′ =
{A′′

i | i ∈ I}. The notation A = �x:A′.A′′ when A is a set of � types is defined
analogously.

The logical relations are then defined in Figure 10. Logically related sets of
types, written A ok [�], are those which can index our logical relation for sets
of terms. All elements of a logically related set of types must have the same
“shape” (and the same size). In the base case, a set just containing the base
type b is logically related, while a set of singleton types are logically related if
they have the same normal form in all contexts in the world. A set of � kinds
is logically related if their domains form a logically related set, and if substi-
tution instances of their codomains do too. The condition for a set of � kinds is
similar.

Logical relatedness for a set of terms is defined inductively on the common
size of the elements in a logically related set of types. In the base case, a set
of terms of the base type must have the same normal form under all contexts
in the world. Similarly, a set of terms is logically related with respect to a set
of singleton types if the terms in the set and those in the singletons all have a
common normal form. The definition for terms at a set of � types is the usual
Kripke logical relations definition lifted to sets: in all future worlds (a condition
required to obtain monotonicity [Crary 2005]), related arguments should yield
related results. Finally, a set of terms is logically related at a set of � types if
their first and second projections are each logically related.

The first property to be checked is that the logical relations are monotone
(preserved when passing to future worlds), which corresponds to weakening in
the algorithmic relations.

LEMMA 4.10 (ALGORITHMIC WEAKENING)

(1) If � � M � N and �′ � �, then �′ � M � N
(2) If � � M ↑ A and �′ � �, then �′ � M ↑ A.
(3) If � � M ⇓ p and �′ � �, then �′ � M ⇓ p.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

702 • C. A. Stone and R. Harper

(4) If � � M −→ A ↑ N and �′ � �, then �′ � M −→ A ↑ N.
(5) If � � M : A =⇒ N and �′ � �, then �′ � M : A =⇒ N.
(6) If � � A =⇒ B and �′ � �, then �′ � A =⇒ B.

PROOF. By induction on algorithmic derivations.

LEMMA 4.11 (MONOTONICITY)

(1) If A ok [�] and �′ � �, then A ok [�′].
(2) If M in A [�] and �′ � �, then M in A [�′].
(3) If G in � [�] and �′ � �, then G in � [�′].

PROOF. By induction on the size of types, using Lemma 4.10. It is important
here that the preorder on worlds is not merely a subset relation on sets of
contexts.

Next, we show that logical relatedness for sets acts like the property of “being
a subset of an equivalence class”. Subsets of a logically related set are logically
related, and any two overlapping logically related sets (i.e., “two subsets of the
same equivalence class”) have a union that is logically related (“have a union
that is a subset of a single equivalence class”).

LEMMA 4.12.

(1) If A2 ok [�] and A1 ⊆ A2, then A1 ok [�].
(2) If M2 in A2 [�] and M1 ⊆ M2 and A1 ⊆ A2, then M1 in A1 [�].
(3) If A1 ok [�] and A1 ∩ A2
= ∅ and A2 ok [�], then (A1 ∪ A2) ok [�].
(4) If M in A1 [�] and A1 ∩ A2
= ∅ and A2 ok [�], then M in (A1 ∪ A2) [�]. (In

particular, if A1 ⊆ A2 then M in A2 [�].)
(5) If M1 in A [�] and M1 ∩M2
= ∅ and M2 in A [�], then (M1 ∪M2) in A [�].

PROOF. By simultaneous induction on the sizes of the types involved.

(1) Assume A2 ok [�] and A1 ⊆ A2.
—Case: A2 = {b}. Since A1 is non-empty we have A1 = {b} = A2.
—Case: A2 = S(M2) and A1 = S(M1) with M1 ⊆ M2. Then M2 in {b} [�],
so inductively by Part (2), we have M1 in {b} [�]. Therefore, A1 ok [�].
—Case: A2 = �x:A′

2.A′′
2 and A1 = �x:A′

1.A′′
1 with A′

1 ⊆ A′
2 and A′′

1 ⊆ A′′
2.

Then A′
2 ok [�] so inductively by Part (1), we have A′

1 ok [�]. Now assume
�′ � � and M′ in A1 [�′]. Since A1
= ∅, inductively by Part (1), we have
M′ in A′

2 [�′], so [M′/x]A′′
2 ok [�′]. Inductively by Part (1) again, we have

[M′/x]A′′
1 ok [�′]. Therefore, A1 ok [�].

—Case: Case: A2 = �x:A′
2.A′′

2 and A1 = �x:A′
1.A′′

1 with A′
1 ⊆ A′

2 and
A′′

1 ⊆ A′′
2. Same argument as for the previous case.

(2) Assume M2 in A2 [�] and M1 ⊆ M2 and A1 ⊆ A2

—Case: A2 = {b}. Again, A1 must be nonempty and hence A1 = {b}. Since
all the types in M2 have a common normal form, then so do all the types in
the subset M1. Therefore, M1 in {b} [�].

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 703

—Case: A2 = ∗∗S(B2) and A1 = S(B1) for some B1 ⊆ B2. (M2 ∪B2) in {b} [�],
so inductively, by Part (2), we have (M1 ∪ B1) in {b} [�]. Therefore,
M1 in A1 [�].
—Case: A2 = �x:A′

2.A′′
2 and A1 = �x:A′

1.A′′
1 with A′

1 ⊆ A′
2 and A′′

1 ⊆ A′′
2.

Assume �′ � � and M′ in A′
1 [�′]. Now A′

2 ok [�′], so inductively, by
Part (4), we have M′ in A′

2 [�′], and hence (M2 M′) in [M′/x]A′′
2 [�′].

Inductively, by Part (2), we have (M1 M′) in [M′/x]A′′
1 [�′]. Therefore,

M1 in A1 [�].
—Case: Case: A2 = �x:A′

2.A′′
2 and A1 = �x:A′

1.A′′
1 with A′

1 ⊆ A′
2 and A′′

1 ⊆
A′′

2. Then, π1M2 in A′
2 [�] so inductively by Part (2), we have π1M1 in A′

1 [�].
Similarly, π2M2 in ([π1M2/x]A′′

2) [�] so inductively, by Part (2), we have
π2M1 in ([π1M1/x]A′′

1) [�]. Therefore, M1 in A1 [�].
(3) Assume A1 ok [�] and A1 ∩ A2
= ∅ and A2 ok [�]

—Case: A1 = {b} = A2. Then, {b} ok [�] by definition.
—Case: Case: A1 = S(B1) and A2 = S(B2) with B1 ∩ B2
= ∅. Then, all
elements of B1 and B2 must have the same common normal form and so
({S(M)} ∪ S(B1) ∪ S(B2)) ok [�].
—Case: A1 = �x:B′

1.B′′
1 and A2 = �x:B′

2.B′′
2 where B′

1 ∩ B′
2
= ∅ and B′′

1 ∩
B′′

2
= ∅. Inductively by Part (3), we have (B′
1 ∪ B′

2) ok [�]. Let �′ � � and
assume M′ in (B′

1 ∪ B′
2) [�′]. Inductively by Part (1), we have M′ in B′

1 [�′]
and M′ in B′

2 [�′], and hence ([M′/x]B′′
1) ok [�′] and ([M′/x]B′′

2) ok [�′].
Inductively by Part (3) again, we have ([M′/x](B′′

1 ∪ B′′
2)) ok [�′]. Therefore,

(A1 ∪ A2) ok [�].
—Case: A1 = �x:B′

1.B′′
1 and A2 = �x:B′

2.B′′
2 where B′

1∩B′
2
= ∅ and B′′

1 ∩B′′
2
=

∅. Same argument as for the previous case.
(4) Assume M in A1 [�] and A1 ∩ A2
= ∅ and A2 ok [�]. By the previous part

(noninductively), we know that (A1 ∪ A2) ok [�].
—Case: A1 = {b} = A2. Then M in {b} [�] holds by assumption.
—Case: A1 = S(B1) and A2 = S(B2) with B1 ∩B2
= ∅. Then, all the elements
of M and B1 and B2 have a common unique normal form, so M in (S(B1) ∪
S(B2)) [�].
—Case: A1 = �x:B′

1.B′′
1 and A2 = �x:B′

2.B′′
2 where B′

1∩B′
2
= ∅ and B′′

1 ∩B′′
2
=

∅. Since (A1 ∪ A2) ok [�] by the previous part, we have (B′
1 ∪ B′

2) ok [�].
Let �′ � � and assume M′ in (B′

1 ∪ B′
2) [�′]. Inductively by Part (2),

we have M′ in B′
1 [�′] and have M′ in B′

2 [�′]. Using the assumptions,
(MM′) in ([M′/x]B′′

1) [�′] and ([M′/x]B′′
2) ok [�′]. Inductively by Part (4),

we have (MM′) in ([M′/x](B′′
1 ∪ B′′

2)) [�′]. Therefore, M in (A1 ∪ A2) [�].
—Case: A1 = �x:B′

1.B′′
1 and A2 = �x:B′

2.B′′
2 where B′

1 ∩ B′
2
= ∅ and

B′′
1 ∩ B′′

2
= ∅. Since (A1 ∪ A2) ok [�], we have (B′
1 ∪ B′

2) ok [�]. Then since
π1M in B′

1 [�], inductively by Part (4), we have π1M in (B′
1 ∪ B′

2) [�]. Sim-
ilarly, π2M in ([π1M/x]B′′

1) [�], and ([π1M/x](B′′
1 ∪ B′′

2)) ok [�] and so in-
ductively by Part (4), we have π2M in ([π1M/x](B′′

1 ∪ B′′
2)) [�]. Therefore,

M in (A1 ∪ A2) [�].
(5) Assume M1 in A [�] and M1 ∩ M2
= ∅ and M2 in A [�]. By definition of

the logical relations, A ok [�].

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

704 • C. A. Stone and R. Harper

—Case: A = {b}. Then the elements of C1 have a common normal form, and
the elements of C2 have a common normal form, and by Lemma 4.1 these
normal forms must be identical. Therefore, (M1 ∪ M2) in {b} [�].
—Case: A = S(N). Then M1 and N have a common normal form as do M2
and N . Again these must be equal, so (M1 ∪ M2) in S(N) [�].
—Case: A = �x:A′.A′′. Assume �′ � � and M′ in A′ [�′]. Then
(M1 M′) in ([M′/x]A′′) [�′] and (M2 M′) in ([M′/x]A′′) [�′]. Since M′
= ∅,
(M1 M′) ∩ (M2 M′)
= ∅ and hence inductively by Part (5), we have
((M1 ∪ M2)M′) in ([M′/x]A′′) [�′]. Therefore, (M1 ∪ M2) in A [�].
—Case: A = �x:A′.A′′. Then π1M1 in A′ [�] and π1M2 in A′ [�] and
these two sets of terms overlap, so inductively by Part (5), we have
π1(M1 ∪ M2) in A′ [�]. Next, we have π2M1 in ([π1M1/x]A′′) [�] and
π2M2 in ([π1M2/x]A′′) [�] and ([π1(M1 ∪ M2)/x]A′′) ok [�], so, inductively
by Parts (4) and (5), we have π2(M1 ∪ M2) in ([π1(M1 ∪ M2)/x]A′′) [�].
Therefore, (M1 ∪ M2) in A [�].

We next show that the logical relation for terms is preserved under head
expansion.

LEMMA 4.13 (HEAD EXPANSION)

(1) If � � M ′ � M, then � � E[M ′] � E[M].
(2) If M2 in A [�] and ∀θ ∈ �, M1 ∈ M1. ∃M2 ∈ M2. θ � M1 � M2 (i.e., if in

all contexts in � everything in M1 head-reduces to something in M2) then
(M1 ∪ M2) in A [�].

PROOF.

(1) Obvious by definition of � � M � N .
(2) By induction on the size of A. Assume M2 in A [�] and ∀θ ∈ �, M1 ∈

M1. ∃M2 ∈ M2. θ � M1 � M2. By definition of the logical relation,
A ok [�].
—Case: A = {b}. Then, there is a type N such that ∀θ ∈ �, M ∈ M2. θ �
M : b =⇒ N . Let θ ∈ � and M1 ∈ M1 be given. By assumption, we may
choose M2 ∈ M2 such that θ � M1 � M2. Since θ � M2 : b =⇒ N , by
definition of normalization at type b we know that θ � M1 : b =⇒ N as
well. As θ and M1 were arbitrary, we have that (M1 ∪ M2) in {b} [�].
—Case: A = S(N) and there exists a type N such that ∀θ ∈ �, M2 ∈
(M2 ∪ N). θ � M2 : b =⇒ N . By exactly the same argument as for the
previous case, θ � M1 : b =⇒ N for every θ ∈ � and every M1 ∈ M1.
Therefore, (M1 ∪ M2) in S(N) [�].
—Case: A = �x:A′.A′′. Assume �′ � � and M′ in A′ [�′]. Then
(M2 M′) in ([M′/x]A′′) [�′]. Now by Part (1), ∀θ ∈ �, M1 ∈ M1, M ′ ∈
M′. ∃M2 ∈ M2. θ � (M1 M ′) � (M2 M ′). That is, ∀θ ∈ �, M3 ∈
(M1 M′). ∃M4 ∈ (M2 M′). θ � M3 � M4. Thus, by the induction

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 705

hypothesis, we have (M1 M′ ∪ M2 M′) in ([M′/x]A′′) [�′]. That is,
(M1 ∪ M2)M′ in ([M′/x]A′′) [�′]. Therefore, (M1 ∪ M2) in �x:A′.A′′ [�′].
—Case: A = �x:A′.A′′. Then π1M2 in A′ [�] and, by Part (1), we have
∀θ ∈ �.∀M3 ∈ π1M1. ∃M4 ∈ π1M2. θ � M3 � M4. Thus, by the induc-
tion hypothesis π1(M1 ∪ M2) in A′ [�]. An analogous argument starting
with π2M2 in ([π1M2/x]A′′) [�] gives us π2(M1 ∪ M2) in ([π1M2/x]A′′) [�].
Now since A ok [�], we know that ([π1(M1 ∪ M2)/x]A′′) ok [�]. Thus, by
Lemma 4.12 Part (4), we have π2(M1 ∪ M2) in ([π1(M1 ∪ M2)/x]A′′) [�].
Therefore, (M1 ∪ M2) in �x:A′.A′′ [�].

Following all this preliminary work, we can now show that equivalence under
the logical relations implies equality of normal forms. This requires a strength-
ened induction hypothesis: under suitable conditions variables (and more gen-
erally paths) are logically related.

LEMMA 4.14.

(1) If A ok [�], then there exists B such that for all θ ∈ � and all A ∈ A, we
have θ � A =⇒ B.

(2) If M in A [�], then there exists N such that for all θ ∈ � and all A ∈ A and
all M ∈ M we have θ � M : A =⇒ N.

(3) Assume M is a set of paths, that A ok [�] and there exists N such that

∀θ ∈ �, p ∈ M. ∃A ∈ A. θ � p −→ N ↑ A,

(i.e., the paths all have a common normal form and logically equivalent
natural types). Then, M in A [�].

PROOF. By simultaneous induction on the sizes of the types in A.

(1) Assume A ok [�]
—Case: A = {b} Then, we can take B := b.
—Case: A = S(N) and there exists a type N such that ∀θ ∈ �, M ∈ N . θ �
M : b =⇒ N . Put B := S(N).
—Case: A = �x:A′.A′′. Then, A′ ok [�], so inductively by Part (1) these
types have a common normal form B′. Now put �′ := { θ , x : A′ | θ ∈ �, A′ ∈
A′ }. Inductively by Part (3), we have that {x} in A′ [�′]. Thus, by definition of
the logical relation we have ([x/x]A′′) ok [�′], that is, A′′ ok [�′]. Inductively
by Part (1) again, the elements of A′′ have a common normal form B′′ in all
of the contexts in �′. But these contexts are a superset of the contexts that
the algorithm would use in normalizing these elements when normalizing
A, so we know that the elements of A therefore all have the common normal
form �x:B′. B′′.
—Case: A = �x:A′.A′′. Same argument as for the previous case.

(2) Assume M in A [�]
—Case: A = {b}. The desired result is exactly the definition of the logical
relation.
—Case: A = S(N). By definition of the logical relation, there exists N ′ such
that for all θ ∈ � and all A ∈ A and all M ∈ M, we have θ � M : b =⇒ N ′.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

706 • C. A. Stone and R. Harper

But by definition of the algorithm, normalization at a singleton type is the
same as normalization at type b, and so this last judgment is equivalent to
θ � M : S(N) =⇒ N ′ for every b ∈ N .
—Case: A = �x:A′.A′′. then A′ ok [�], so inductively by Part (1) these types
have a common normal form B′. Now put �′ := {θ , x : A′ | θ ∈ �, A′ ∈ A′}.
Inductively by Part (3), we have that {x} in A′ [�′]. Thus, by definition of
the logical relation we have M {x} in A′′ [�′]. Inductively by Part (2) these
applications have a common normal form N ′′. Therefore, by definition of
the algorithm we have that for all θ ∈ � and all A ∈ A and all M ∈ M, we
have θ � M : A =⇒ λx:B′. N ′′.
—Case: A = �x:A′.A′′. Then, π1M in A′ [�] so inductively by Part (2) these
types have a common normal form N ′. Similarly, π2M in ([π1M/x]A′) [�]
so inductively by Part (2) again these types have a common normal form
N ′′. Therefore, for all θ ∈ � and all A ∈ A and all M ∈ M, we have
θ � M : A =⇒ 〈N ′, N ′′〉.

(3) Assume M is a set of paths, that A ok [�] and N satisfies
∀θ ∈ �, p ∈ M. ∃A ∈ A. θ � p −→ N ↑ A.

—Case: A = {b}. Then for all θ ∈ � and all p ∈ M, we have θ � p ⇓ p,
and hence θ � p : b =⇒ N . Thus, by definition of the logical relation,
M in {b} [�].
—Case: A = S(N). Then for all θ ∈ � and p ∈ M, we have θ � p � N
for some N ∈ N . But N in {b} [�], so by Lemma 4.13 Part (2), we have
(M ∪ N) in {b} [�]. Therefore, M in S(N) [�].
—Case: A = �x:A′.A′′. Let �′ � � and assume M′ in A′ [�′]. Then in-
ductively by Part (2), we know that there exists a type N ′ such that for
every θ ∈ �′ and A′ ∈ A′ and M ′ ∈ M′, we have θ � M ′ : A′ =⇒ N ′.
Using Lemma 4.10, for all θ ∈ �′ and all p ∈ M and all M ′ ∈ M′, we have
θ � (p M ′) −→ (N N ′) ↑ [M ′/x]A′′ for some A′′ ∈ A′′. Now [M′/x]A′′ ok [θ ′],
and so inductively by Part (3) , we have MM′ in ([M′/x]A′′) [�′]. Therefore,
M in A [�].
—Case: A = �x:A′.A′′. Then, A′ ok [�] and by definition of the algorithm
for every θ ∈ � and p ∈ M, we have θ � π1 p −→ π1N ↑ A′ for some A′ ∈ A′.
Thus, inductively by Part (3), we have π1M in A′ [�].

Similarly, for every θ ∈ � and p ∈ M, we have θ � π2 p −→ π2N ↑
[π1 p/x]A′′ for some A′′ ∈ A′′. Since A ok [�], we have [π1M/x]A′′ ok [�],
so inductively by Part (3), we have π2M in [π1M/x]A′′ [�]. Therefore,
M in A [�].

One more lemma is used in our Fundamental Theorem:

LEMMA 4.15 (SUBSTITUTION EXTENSION). Assume G in � [�], and �, x : A � ok,
and x
∈ dom(G), and M in G(A) [�]. Then {γ [x �→M] | γ ∈ G, M ∈ M} in (�, x :
A) [�].

PROOF. Assume G in � [�], and �, x : A � ok, and x
∈ dom(G), and
M in G(A) [�], and put G ′ := {γ [x �→M] | γ ∈ G, M ∈ M}. Using Propositions 3.1,
and 3.2, x
∈ dom(�) and x
∈ FV(A). Thus, for all y ∈ dom(�), we have

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 707

G(y) in G(�(y)) [�], and G ′(y) = G(y), and G ′(�(y))) = G(�(y)), and (�, x :
A)(y) = �(y), and hence G ′(y) in G ′((�, x : A)(y)) [�]. Now G ′(A) = G(A) and by
definition G ′(x) = M, so G ′(x) in G ′((�, x : A)(x)) [�]. Thus, for all y ∈ dom(�, x :
A), we have G ′(y) in G ′((�, x : A)(y)) [�]. That is, G ′ in (�, x : A) [�].

Finally, we come to the Fundamental Theorem of Logical Relations, which
relates provable equivalence of terms to the logical relations.

THEOREM 4.16 (FUNDAMENTAL THEOREM)

(1) If � � A and G in � [�], then G(A) ok [�].
(2) If � � A1 ≤ A2 and G in � [�], then G(A1) ok [�] and G(A2) ok [�] and if

M in G(A1) [�], then M in G(A2) [�].
(3) If � � A1 ≡ A2 and G in � [�], then (G(A1) ∪ G(A2)) ok [�].
(4) If � � M : A and G in � [�], then G(M) in G(A) [�]
(5) If � � M1 ≡ M2 : A and G in � [�], then (G(M1) ∪ G(M2)) in G(A) [�]

PROOF. By induction on the hypothesized derivations.

Type Well-formedness Rules: � � A.

—Case: Rule (3), so A = b.
Then G(b) = b and {b} ok [�].

—Case: Rule (4), with A = S(M) because � � M : b.
By the inductive hypothesis, G(M) in G(b) [�]. That is, G(M) in {b} [�]. There-
fore, G(S(M)) ok [�].

—Case: Rule (5), with A = �x:A′. A′′ because �, x : A′ � A′′.
By Proposition 3.4, we may assume x
∈ dom(G) ∪ FV(rng(G)). By Proposi-
tion 3.1, there is a strict subderivation �, x : A′ � ok and by inversion a strict
subderivation � � A′. By the inductive hypothesis, G(A′) ok [�]. Let �′ � �

and assume that M in G(A′) [�′]. Put G ′ := {γ [x �→M] | γ ∈ G, M ∈ M}.
By Lemmas 4.11 and 4.15, G ′ in (�, x : A′) [�′], so by the inductive hy-
pothesis, we have G ′(A′′) ok [�′]. That is, [M/x](G(A′′)) ok [�′]. Therefore,
G(�x:A′. A′′) ok [�].

—Case: Rule (6), with A = �x:A′. A′′ because �, x : A′ � A′′. Analogous to the
previous case.

Subtyping Rules. � � A1 ≤ A2. In all cases, the proofs that G(A1) ok [�] and
G(A2) ok [�] follow essentially as in the proofs for the well formedness rules.
Assume M in G(A1) [�]. We must show that M in G(A2) [�].

—Case: Rule (7), with A1 = S(M) and A2 = b.
Then M in b [�] by the definition of the logical relations.

—Case: Rule (8). A1 = S(M1) and A2 = S(M2), with � � M1 ≡ M2 : b.
By the inductive hypothesis, we have (G(M1) ∪ G(M2)) in b [�]. Thus,
G(S(M1)) ∪ G(S(M2)) ok [�]. By Lemma 4.12, Parts (4) and (2), we have
M in G(S(M1)) ∪ G(S(M2)) [�] and hence M in G(S(M2)) [�] as required.

—Case: Rule (9), with A1 = A2 = b.
Trivial, since G(b) = b.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

708 • C. A. Stone and R. Harper

—Case: Rule (10), with A1 = �x:A′
1. A′′

1 and A2 = �x:A′
2. A′′

2 where � � A′
2 ≤

A′
1 and �, x : A′

2 � A′′
1 ≤ A′′

2.
By Proposition 3.4, we may assume x
∈ dom(G) ∪ FV(rng(G)). Let �′ � �

and assume M′ in G(A′
2) [�′]. By the inductive hypothesis, M′ in G(A′

1) [�′].
Hence (MM′) in [M′/x]G(A′′

1) [�′]. That is, (MM′) in G ′(A′′
1) [�′] where

G ′ := {γ [x �→M] | γ ∈ G, M ∈ M}. By Lemma 4.11, Proposition 3.1,
and Lemma 4.15, G ′ in (�, x : A′

2) [�′]. By the inductive hypothesis again,
(MM′) in G ′(A′′

2) [�′]. That is, (MM′) in [M′/x]G(A′′
2) [�′]. Therefore,

M in G(�x:A′
2. A′′

2) [�].
—Case: Rule (11). A1 = �x:A′

1. A′′
1 and A2 = �x:A′

2. A′′
2 with � � A′

1 ≤ A′
2 and

�, x : A′
1 � A′′

1 ≤ A′′
2.

By Proposition 3.4, we may assume x
∈ dom(G)∪FV(rng(G)). By the defini-
tions of the logical relations, π1M in G(A′

1) [�]. By the inductive hypothesis,
π1M in G(A′

2) [�]. Put G ′ := {γ [x �→M] | γ ∈ G, M ∈ π1M}. By Proposition 3.1,
and Lemma 4.15, we have G ′ in �, x : A′

1 [�]. Now π2M in [π1M/x](G(A′′
1)) [�],

that is, π2M in G ′(A′′
1) [�]. So, by the inductive hypothesis π2M in G ′(A′′

2)
[�]. That is, π2M in ([π1M/x]G(A2)) [�]. Therefore, M in G(�x:A′

2. A′′
2)

[�].

Type Equivalence Rules: � � A1 ≡ A2.

—Case: Rule (12). A1 = A2 = b.
{b} ok [�] by definition.

—Case: Rule (13). A1 = S(M1) and A2 = S(M2) with � � M1 ≡ M2 : b.
By the inductive hypothesis, (G(M1) ∪G(M2)) in b [�]. Therefore, by definition
of the logical relation, (G(S(M1)) ∪ G(S(M2))) ok [�].

—Case: Rule (14). A1 = �x:A′
1. A′′

1 and A2 = �x:A′
2. A′′

2 with � � A′
2 ≡ A′

1 and
�, x : A′

1 � A′′
1 ≡ A′′

2.
By Proposition 3.4, we may assume x
∈ dom(G) ∪ FV(rng(G)). By the
inductive hypothesis, (G(A′

1) ∪ G(A′
2)) ok [�]. Let �′ � � and assume

M in (G(A′
1) ∪ G(A′

2)) [�′]. By Lemma 4.12 Part (2), M in G(A′
1) [�′]. By

Lemma 4.11, Proposition 3.1, and Lemma 4.15, then, G ′ in (�, x : A′
1) [�′]

where G ′ := {γ [x �→M] | γ ∈ G, M ∈ M}. By the inductive hypothesis
again, (G ′(A′′

1) ∪ G ′(A′′
2)) ok [�]. That is, [M′/x](G(A′′

1) ∪ G(A′′
2)) ok [�]. There-

fore, (G(�x:A′
1. A′′

1) ∪ G(�x:A′
2. A′′

2)) ok [�].
—Case: Rule (15). Same proof as for previous case.

Term Validity Rules � � M : A.

—Case: Rule (16). M = ci and A = b. Then {b} ok [�] and θ � ci −→ ci ↑ b for
every θ ∈ �. Thus, by Lemma 4.14 Part (3), we have {ci} in b [�].

—Case: Rule (17). M = x and A = �x. By assumption, G(x) in G(�x) [�].
—Case: Rule (18). M = λx:A′. M ′′, A = �x:A′. A′′, and there is a sub-

derivation �, x : A′ � M ′′ : A′′. By Proposition 3.4, we may as-
sume x
∈ dom(G) ∪ FV(rng(G)). By Proposition 3.1, there is a strict
subderivation � � A′. By the inductive hypothesis, G(A′) ok [�]. Let
�′ � � and assume M′ in G(A′) [�′]. Put S′ := {γ [x �→M ′] | γ ∈

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 709

G, M ′ ∈ M′}. Then, by Lemma 4.11 and Proposition 3.1, and
Lemma 4.15, G ′ in (�, x : A′) [�′]. By the inductive hypothesis again,
G ′(M ′′) in G ′(A′′) [�′]. That is, [M′/x]G(M ′′) in [M′/x]G(A′′) [�′]. Now for ev-
ery θ ∈ �′ and every M ′ ∈ M′, θ � (G(λx:A′. M))(M ′) � [M ′/x]G(M ′′).
Thus, by Lemma 4.13, (G(λx:A′. M))(M′) in [M′/x]G(A′′) [�′]. Therefore,
G(λx:A′. M) in G(�x:A′. A′′) [�].

—Case: Rule (19). M = M ′′ M ′ where � � M ′′ : �x:A′. A′′ and � � M ′ : A′, and
A = [M ′/x]A′′. By Proposition 3.4, we may assume x
∈ dom(G) ∪ FV(rng(G)).
By the inductive hypothesis twice, we have G(M ′′) in �x:G(A′).G(A) [�]
and G(M ′) in G(A′) [�]. By definition of the logical relations,
G(M ′′ M ′) in [G(M ′)/x]G(A′′) [�]. Since [G(M ′)/x]G(A′′) ⊇ G([M ′/x]A′′),
by Lemma 4.12, we have G(M ′′ M ′) in G([M ′/x]A′′ [�] as required.

—Case: Rule (20). M = 〈M ′, M ′′〉 and A = �x:A′. A′′ where � � A, � � M ′ : A′

and � � M ′′ : [M ′/x]A′′. By Proposition 3.4, we may assume x
∈ dom(G) ∪
FV(rng(G)). By the inductive hypothesis, G(M ′) in G(A′) [�] and
G(M ′′) in G([M ′/x]A′′) [�] and G(�x:A′. A′′) ok [�]. Now, for every θ ∈ �, we
have θ � G(π1〈M ′, M ′′〉) � G(M ′) and θ � G(π2〈M ′, M ′′〉) � G(M ′′).
Thus, by Lemma 4.13, we have G(π1〈M ′, M ′′〉) in G(A′) [�] and
G(π2〈M ′, M ′′〉) in G([M ′/x]A′′) [�]. That is, π1(G(〈M ′, M ′′〉)) in G(A′) [�]
and π2(G(〈M ′, M ′′〉)) in G([M ′/x]A′′) [�].

Further, by definition of the type validity logical relation we have
[G(M ′)/x]G(A′′) ok [�]. Then [G(M ′)/x]G(A′′) ⊇ G([M ′/x]A′′), so Lemma 4.12
yields π2(G(〈M ′, M ′′〉)) in [G(M ′)/x]G(A′′) [�].

By definition of the logical relation, G(〈M ′, M ′′〉) in G(�x:A′. A′′) [�].
—Case: Rule (21). M = π1M ′ and � � M ′ : �x:A. A′′. By the inductive

hypothesis, G(M ′) in G(�x:A′. A′′) [�]. Therefore, by definition of the logical
relation, π1(G(M ′)) in G(A′) [�], i.e., G(π1M ′) in G(A′) [�].

—Case: Rule (22). M = π2M ′, A = [π1M ′/x]A′′, and � � M ′ : �x:A. A′′.
By Proposition 3.4, we may assume x
∈ dom(G) ∪ FV(rng(G)). By the
inductive hypothesis, G(M ′) in G(�x:A′. A′′) [�]. Therefore, by definition of
the logical relation, π2(G(M ′)) in [π1(G(M))/x]G(A′′) [�]. By Lemma 4.12,
G(π2M ′) in G([π1M/x]A′′) [�].

—Case: Rule (23). A = S(M) and � � M : b. By the inductive hypothesis,
G(M) in b [�]. Thus, by definition of the logical relation, G(M) in G(S(M)) [�].

—Case: Rule (24). A = �x:A′. A′′ and � � π1M : A′ and � � π2M : [π1M/x]A′′.
By the inductive hypothesis twice, π1(G(M)) in G(A′) [�] and
π2(G(M)) in G([π1M ′/x]A′′) [�].
Put S′ := {γ [x �→M ′] | γ ∈ G, M ′ ∈ π1G(M)}. Then, by Lemma 4.11 and
Proposition 3.1 and Lemma 4.15, G ′ in (�, x : A′) [�]. Now �, x : A′ � A′′, so by
the inductive hypothesis again, G ′(A′′) ok [�]. Since G ′(A′′) ⊇ G([π1M/x]A′′),
by Lemma 4.12, we have π2(G(M)) in G ′(A′′) [�]. By definition of the logical
relation, G(M) in G(�x:A. A′′) [�].

—Case: Rule (25). A = �x:A′. A′′ and �, x : A′ � M x : A′′. By Proposi-
tion 3.4, we may assume x
∈ dom(G) ∪ FV(rng(G)). Let �′ � � and assume
M′ in G(A′) [�′]. Put G ′ := {γ [x �→M ′] | γ ∈ G, M ′ ∈ M′}. By Lemma 4.11,
Proposition 3.1 and Lemma 4.15, G ′ in (�, x : A′) [�′]. By the inductive

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

710 • C. A. Stone and R. Harper

hypothesis, G ′(M x) in G ′(A′′) [�′]. That is, (G(M))M′) in [M′/x](G(A′′)) [�′].
Therefore, G(�x:A′. A′′) ok [�] and G(M) in G(�x:A′. A′′) [�].

—Case: Rule (26). There exist subderivations � � M : A1 and � � A1 ≤ A.
By the inductive hypothesis, G(M) in G(A1) [�]. So, applying the inductive
hypothesis to the other subderivation, we have G(M) in G(A) [�].

Term Equivalence Rules: � � M1 ≡ M2 : A.

—Case: Rule (27). M1 = M2 = M and � � M : A. Then G(M1)∪G(M2) = G(M),
and by the inductive hypothesis, we have G(M) in G(A) [�].

—Case: Rule (28). There is a subderivation � � M2 ≡ M1 : A. Then G(M1) ∪
G(M2) = G(M2) ∪ G(M1) and by the inductive hypothesis, we have (G(M2) ∪
G(M1)) in G(A) [�].

—Case: Rule (29). There are subderivations G � M1 ≡ M ′ : A and � � M ′ ≡
M2 : A.

By the inductive hypothesis twice, we have (G(M1) ∪ G(M ′)) in G(A) [�]
and (G(M ′) ∪ G(M2)) in G(A) [�]. By Lemma 4.12 Part (5), we have (G(M1) ∪
G(M ′) ∪ G(M2)) in G(A) [�], and therefore by Lemma 4.12 Part (2), we have
(G(M1) ∪ G(M2)) in G(A) [�].

—Case: Rules (30)–(36): Analogous to the proofs for the corresponding term
validity rules.

—Case: Rule (37). By the inductive hypotheses.
—Case: Rule (38). A = S(M2) and there is a subderivation � � M1 : S(M2).

By the inductive hypothesis,G(M1) inG(S(M2)) [�]. By definition of the logical
relation, (G(M1) ∪ G(M2)) in G(S(M2)) [�].

Finally, we need to know that the identity substitution satisfies the require-
ments of Theorem 4.16.

LEMMA 4.17. If � � ok then for all y ∈ dom(�), we have { y} in (�(y)) [{�}].
That is, {id} in � [{�}] where id is the identity function.

PROOF. By induction on the proof of � � ok.

—Case: Empty context. Vacuous.
—Case: �, x : A where � � A and x
∈ dom(�). By Proposition 3.1, there is

a subderivation � � ok, so by the inductive hypothesis, id in � [{�}]. By
Lemma 4.11, id in � [{�, x : A}]. Also, by Theorem 4.16, we have {A} ok [{�}],
and and by Lemma 4.11, {A} ok [{�, x : A}]. Now �, x : A � x −→ x ↑ A so
by Lemma 4.14, {x} in {A} [{�, x : A}]. Therefore, by Lemma 4.15, id in (�, x :
A) [{�, x : A}]
This yields the completeness result for the normalization algorithm:

COROLLARY 4.18 (COMPLETENESS)

(1) If � � A1 ≡ A2, then {A1, A2} ok [{�}]
(2) If � � M1 ≡ M2 : A, then {M1, M2} in {A} [{�}].
(3) If � � A1 ≡ A2, then there exists B such that � � A1 =⇒ B and � � A2 =⇒

B.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 711

Fig. 11. Definition of binary equivalence algorithms.

(4) If � � M1 ≡ M2 : A, then there exists N such that � � M1 : A =⇒ N and
� � M2 : A =⇒ N.

PROOF. By Lemma 4.17, Theorem 4.16, and Lemma 4.14.

COROLLARY 4.19 (DECIDABILITY). Equivalence for well-formed terms and
types is decidable.

PROOF. By Rule (27) and Corollary 4.18, normalization of any well-formed
type or term terminates. Decidability therefore follows by soundness and com-
pleteness of normalization.

We conclude with an application of completeness.

COROLLARY 4.20 (CONSISTENCY). Assume c1 and c2 are distinct term con-
stants. Then the judgment

� � c1 ≡ c2 : b

is not provable.

PROOF. We may assume without loss of generality that � � ok because
otherwise by Proposition 3.10 the equivalence cannot be proved. Therefore, the
constants are well formed but clearly algorithmically inequivalent, and so by
completeness they are not provably equivalent.

In proving soundness of the TILT compiler’s intermediate language, these
sorts of consistency properties are essential. The argument that, for example,
every closed value of type int is an integer constant would fail if the type int
were provably equivalent (through some long transitive chain, perhaps) to a
function type, a product type, or another base type.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

712 • C. A. Stone and R. Harper

5. BINARY EQUIVALENCE ALGORITHMS

Alternative algorithms for equivalence-checking that avoid explicit normaliza-
tion are shown in Figure 11.

The algorithmic type equivalence judgment

� � A1 ⇐⇒ A2

models declarative equivalence; given two types satisfying � � A1 and � � A2
it determines whether there is a proof � � A1 ≡ A2.

Similarly, the algorithmic term equivalence relation

� � M1 ⇐⇒ M2 : A

models the declarative judgment � � M1 ≡ M2 : A on well-formed terms. This
implements what is effectively simultaneous normalization and comparison of
the two types, but can be more efficient than the actual computation of normal
forms. We never have to simultaneously store both normal forms in memory,
and there are opportunities for short-circuiting. We can stop early if differences
are detected, or if two types are found to be identical up to names of bound
variables. As shown in Figure 11, when comparing two terms at a singleton
type the algorithm can immediately report success. And, there is no need to
normalize the type annotations in λ-abstractions.

This comparison judgment corresponding to path normalization is the algo-
rithmic path equivalence relation

� � p1 ←→ p2 ↑ A.

Given two well formed head-normal paths � � p1 : A1 and � � p2 : A2,
this should succeed, yielding A, if and only if � � p1 ≡ p2 : A and A is
the natural type of p1 with respect to �. The only question that arises when
writing down these rules is in the case for comparing two applications. If the
two function parts are recursively found to be equal, the two arguments must
then be compared. Since the two arguments need not be in normal form, they
must be compared using the ⇔ judgment; in this case we must decide at which
type the two arguments should be compared.

The right answer is the domain type of the principal type of the function
parts. Assume we want to compare p1 M1 and p2 M2 using the typing context
�, and that the principal type of p1 (which will be equivalent to the principal
type of p2 if they are structurally-equivalent paths, that is, with the same head
variable and with equivalent arguments in any applications) is �x:A′. A′′. Then
this is the least type at which the two paths are provably equal, and hence by
contravariance the domain type is greatest. By comparing M1 and M2 at type
A′, then, we have the best chance of proving them equal. (Two terms equivalent
at a subtype will be equivalent at a supertype, but not necessarily vice versa.)
Thus, to find as many equivalences as possible, A′ is intuitively the correct type
for the algorithm to compare function arguments. Conveniently, the natural
type agrees with the principal type in negative positions, so it suffices to look
at the domain of the natural type rather than computing the (generally larger)
principal type.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 713

As an example, let � be y : (S(c1)→b)→b. Then:

� � y (λx:b. x) ⇐⇒ y (λx:b. c1) : b
because � � y (λx:b. x) ⇓ y (λx:b. x)
and � � y (λx:b. c1) ⇓ y (λx:b. c1)
and � � y (λx:b. x) ←→ y (λx:b. c1) ↑ b

because � � y ←→ y ↑ (S(c1)→b)→b
and � � (λx:b. x) ⇐⇒ (λx:b. c1) : S(c1)→b

because �, x ′ : S(c1) � (λx:b. x) x ′ ⇐⇒ (λx:b. c1) x ′ : b
because �, x ′ : S(c1) � (λx:b. x) x ′ ⇓ c1

and �, x ′ : S(c1) � (λx:b. c1) x ′ ⇓ c1

and �, x ′ : S(c1) � c1 ←→ c1 ↑ b.

The soundness of the equivalence algorithm follows for essentially the same
reasons as the soundness of normalization.

PROPOSITION 5.1 (SOUNDNESS OF BINARY EQUIVALENCE)

(1) If � � A1, � � A2, and � � A1 ⇐⇒ A2, then � � A1 ≡ A2.
(2) If � � M1 : A, � � M2 : A, and � � M1 ⇐⇒ M2 : A, then � � M1 ≡ M2 : A.
(3) If � � p1 : A1, � � p2 : A2, and � � p1 ←→ p2 ↑ A, then � � p1 ≡ p2 : A.

Again, completeness is more interesting. It would have been preferable to
analyze the equivalence algorithm directly in the logical relations argument,
but it is neither obviously symmetric nor transitive. However, we can we can
reuse the soundness and completeness results for normalization to show this
algorithm is correct.

LEMMA 5.2

(1) If � � M1 ≡ M2 : A and � � M1 : A =⇒ N, then � � M1 ⇐⇒ M2 : A.
(2) If � � p1 : B1, � � p2 : B2, � � p1 −→ p ↑ A1, and � � p2 −→ p ↑ A2,

then � � p1 ←→ p2 ↑ A1 and � � A1 ≡ A2.
(3) If � � A1 ≡ A2 and � � A1 =⇒ B, then � � A1 ⇐⇒ A2

PROOF. By simultanous induction on the normalization assumptions (the
first such assumption in the case of Part (2)).

(1) Assume � � M1 ≡ M2 : A and � � M1 : A =⇒ N .
—Case: A = T , � � M1 ⇓ p1, and � � p1 −→ N ↑ b. By Proposition 3.10

and Rule (27) and Corollary 4.18 we know that � � M2 ⇓ p2 and � �
p2 −→ N ↑ b. By Propositions 4.8 and 3.10, � � p1 : b and � � p2 : b.
Inductively by Part (2), we have � � p1 ←→ p2 ↑ A1. Therefore, by
definition of the equivalence algorithm, � � M1 ⇐⇒ M2 : b.

—Case: A = S(M3). Then � � M1 ⇐⇒ M2 : S(M3) by definition of the
equivalence algorithm.

—Case: A = �x:A′. A′′ and �, x : A′ � M1 x : A′′ =⇒ N ′′. By Proposi-
tion 3.10 and inversion of Rule (5) we have � � A′. Thus, �, x : A′ � x ≡
x : A′ and so by admissible Rule (31), we have �, x : A′ � M1 x ≡ M2 x :

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

714 • C. A. Stone and R. Harper

A′′. Inductively by Part (1) we have �, x : A′ � M1 x ⇐⇒ M2 x : A′′. There-
fore, by definition of the equivalence algorithm we have � � M1 ⇐⇒ M2 :
�x:A′. A′′.

—Case: A = �x:A′. A′′ and � � π1M1 : A′ =⇒ N ′, and � � π2M1 :
[π1M1/x]A′′ =⇒ N ′′, and N = 〈N ′, N ′′〉. By Rules (32) and (33), we
have � � π1M1 ≡ π1M2 : A′ and � � π2M1 ≡ π2M2 : [π1M1/x]A′′.
Thus, inductively by Part (2) (twice), we have � � π1M1 ⇐⇒ π1M2 : A′

and � � π2M1 ⇐⇒ π2M2 : [π1M1/x]A′′. Therefore, by definition of the
equivalence algorithm, we have � � M1 ⇐⇒ M2 : �x:A′. A′′.

(2) Assume � � p1 : B1 and � � p2 : B2, and � � p1 −→ p ↑ A1 and
� � p2 −→ p ↑ A2. Path normalization is shape-preserving, so p1 and p2
and p must have the same structural form.
—The base cases where p1 and p2 and p are the same variable or same

constant all follow by definition of the equivalence algorithm.
—Case: p1 = π1 p′

1, and p2 = π1 p′
1, p = π1 p′ � � p′

1 −→ p′ ↑ �x:A′
1. A′′

1,
and � � p′

2 −→ p′ ↑ �x:A′
2. A′′

2, where A1 = A′
1 and A2 = A′

2. By
Proposition 3.1 there exist B′

1 and B′
2 such that � � p1 : B′

1 and � �
p2 : B′

2. Inductively by Part (2) we have � � p′
1 ←→ p′

2 ↑ �x:A′
1. A′′

1 and
� � �x:A′

1. A′′
1 ≡ �x:A′

2. A′′
2. Therefore, � � A′

1 ≡ A′
2, and by definition of

the equivalence algorithm, � � π1 p′
1 ←→ π1 p′

2 ↑ A′
1

—Case: p1 = π2 p′
1, and p2 = π2 p′

1, p = π2 p′, � � p′
1 −→ p′ ↑ �x:A′

1. A′′
1,

� � p′
2 −→ p′ ↑ �x:A′

2. A′′
2, A1 = [π1 p′

1/x]A′′
1, and A2 = [π1 p′

2/x]A′′
2.

By Proposition 3.1, there exist B′
1 and B′

2 such that � � p1 : B′
1 and

� � p2 : B′
2. Inductively, by Part (2), we have � � p′

1 ←→ p′
2 ↑ �x:A′

1. A′′
1

and � � �x:A′
1. A′′

1 ≡ �x:A′
2. A′′

2. Then, � � π2 p′
1 ←→ π2 p′

2 ↑ [π1 p′
1/x]A′′

1.
Finally, using Propositions 5.1 and 3.14 � � [π1 p′

1/x]A′′
1 ≡ [π1 p′

2/x]A′′
2.

—Case: p1 = p′
1 M ′

1, p2 = p′
2 M ′

2, p = p′ M ′, � � p′
1 −→ p′ ↑ �x:A′

1. A′′
1,

� � p′
2 −→ p′ ↑ �x:A′

2. A′′
2, � � M ′

1 : A′
1 =⇒ M ′, � � M ′

2 : A′
2 =⇒ M ′,

A1 = [M ′
1/x]A′′

1, and A2 = [M ′
2/x]A′′

2. By Proposition 3.1, there exist B′
1

and B′
2 such that � � p1 : B′

1 and � � p2 : B′
2. Inductively by Part (2),

� � p′
1 ←→ p′

2 ↑ �x:A′
1. A′′

1 and � � �x:A′
1. A′′

1 ≡ �x:A′
2. A′′

2. and so by
inversion of Rule (14), � � A′

1 ≡ A′
2. Using Propositions 4.8 and 3.11,

� � M ′
1 ≡ M ′

2 : A′
1, so by Proposition 3.14, � � [M ′

1/x]A′′
1 ≡ [M ′

1/x]A′′
2.

Inductively by Part (1) � � M ′
1 ⇐⇒ M ′

2 : A′
1. Therefore, by definition of

the equivalence algorithm we have � � p′
1 M ′

1 ←→ p′
2 M ′

2 ↑ [M ′
1/x]A′′

1.
(3) Assume � � A1 ≡ A2 and � � A1 =⇒ B.

—Case: A1 = B = b. Then A2 = b, and � � b ⇐⇒ b.
—Case: A1 = S(M1) and B = S(N) and � � M1 : b =⇒ N . Then A2 =

S(M2) with � � M1 ≡ M2 : b. Inductively, by Part (1), � � M1 ⇐⇒
M2 : b. Therefore, � � S(M1) ⇐⇒ S(M2).

—Case: A1 = �x:A′
1. A′′

1 and B = �x:B′. B′′ with � � A′
1 =⇒ B′ and

�, x : A′
1 � A′′

1 =⇒ B′′. Then, A2 = �x:A′
2. A′′

2 with � � A′
1 ≡ A′

2 and
�, x : A′

1 � A′′
1 ≡ A′′

2. Inductively by Part (3), � � A′
1 ⇐⇒ A′

2 and
�, x : A′

1 � A′′
1 ⇐⇒ A′′

2. Therefore, � � �x:A′
1. A′′

1 ⇐⇒ �x:A′
2. A′′

2.
—Case: A1 = �x:A′

1. A′′
1. Same as the previous case.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 715

Fig. 12. Algorithms for types.

COROLLARY 5.3 (COMPLETENESS FOR EQUIVALENCE)

(1) If � � M1 ≡ M2 : A, then � � M1 ⇐⇒ M2 : A.
(2) If � � A1 ≡ A2, then � � A1 ⇐⇒ A2.

Finally, the binary equivalence algorithms are terminating.

COROLLARY 5.4 (DECIDABILITY OF BINARY EQUIVALENCE)

(1) If � � M1 : A and � � M2 : A, then � � M1 ⇐⇒ M2 : A is decidable.
(2) If � � p1 : A and � � p2 : A, then � � M1 ←→ M2 ↑ A is decidable.
(3) If � � A1 and � � A2, then � � A1 ⇐⇒ A2 is decidable.

PROOF. The maximum number of ⇐⇒ and ←→ steps that can occur is
bounded by the number of =⇒ and and −→ steps required to normalize M1, p1,
or A1 as appropriate. Finally, we can rule out the only other possibility of non-
termination by observing that the algorithms preserve well-formedness, and so
head normalizations will always terminate.

6. DECIDING OTHER JUDGMENTS

Finally, we consider the other type and term-level judgments. Figure 12 gives
algorithms for determining type validity and subtyping. Each is specified as a
deterministic set of inference rules.

The algorithmic type validity judgment

� � A

models the declarative type validity judgment � � A. Viewed as an algorithm,
this takes a well-formed context � and a type A and determines whether there
is a proof of � � A. For any conclusion, at most one rule could apply; there is
one rule for each syntactic form that A might have. Since the premises involve
syntactically smaller kinds and terms, proof search for this judgment must
terminate and so the judgment is decidable.

The algorithmic subtyping judgment

� � A1 ≤ A2

models the declarative subtyping judgment � � A1 ≤ A2. As an algorithm,
given types satisfying � � A1 and � � A2 it determines whether there is a

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

716 • C. A. Stone and R. Harper

Fig. 13. Algorithms for term validity.

proof � � A1 ≤ A2. The rules are syntax-directed and the premises involve
syntactically smaller kinds, and we already know we can determine constructor
equivalence for well-formed types (the correctness of the particular form of
equivalence used here is shown below), so this judgment too is decidable.

Figure 13 shows the algorithms for term validity. The algorithmic type syn-
thesis judgment

� � M ⇒ A

combines term validity checking with principal type synthesis. As an algorithm,
given a well-formed context � and a term M it returns a principal type A of M
if M is well-formed (i.e., if it can be given any type at all) and fails otherwise.

Because all well formed terms have principal types, it is easy to define a
algorithmic type checking judgment

� � M ⇔ A.

which directly models the term validity checking. Given a context and type
satisfying � � A and term M , this algorithm determines whether � � M : A
holds. The rules are again syntax-directed, and the premises involve only strict
subterms.

THEOREM 6.1 (SOUNDNESS OF REMAINING ALGORITHMS)

(1) If � � A1, � � A2, and � � A1 ≤ A2, then � � A1 ≤ A2.
(2) If � � ok and � � A, then � � A.
(3) If � � ok and � � M ⇒ A, then � � M : A and � � M ⇑ A.
(4) If � � A and � � M ⇔ A, then � � M : A.

PROOF. By (simultaneous) induction on proofs of the algorithmic judgments
(i.e., by induction on the execution of the algorithms).

THEOREM 6.2 (COMPLETENESS)

(1) If � � M1 ≡ M2 : A, then � � M1 ⇐⇒ M2 : A.
(2) If � � A, then � � A.
(3) If � � A1 ≤ A2, then � � A1 ≤ A2.
(4) If � � A1 ≡ A2, then � � A1 ⇐⇒ A2.
(5) If � � M : A, then � � M ⇒ B and � � M ⇑ B.
(6) If � � M : A, then � � M ⇔ A.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 717

PROOF. By the completeness of algorithmic equivalence and induction on
derivations.

7. CONCLUSION

7.1 Related Work

7.1.1 Singletons and Definitions in Type Systems. The main previous study
of singleton types in the literature is due to Aspinall [1995, 1997]. He studied
term equivalence in a calculus λ≤{} containing singleton types, dependent func-
tion types, and β-equivalence. Labeled singletons are primitive notions in his
system; in the absence of η-equivalence the encoding of Section 2.3 is not pos-
sible. He conjectured that equivalence in λ≤{} was decidable, but gave no proof
or algorithm.

Aspinall’s system included a limited form of extensionality when comparing
two λ-abstractions, enough to make equivalence depend on classifier as well
as the typing context. More recently, Courant [2002] defined a language with
labeled singletons but no extensionality properties at all, so that equivalence
depended on definitions (singletons) in the typing context but not on the clas-
sifying kind. This permitted a more straightforward rewriting-based approach
to deciding equivalence.

Crary has made use of singleton types and singleton kinds in several con-
texts. His thesis [Crary 1998] includes a system whose kind system extends
the one presented here with subtyping and power kinds, and he conjectured
that type equivalence and type checking were decidable. Later, he used an ex-
tremely simple form of singleton type (with no elimination rule or subtyping)
in order to prove parametricity results [Crary 1999]. As one example, he shows
that any function f of type ∀α.α→α must act as a the identity because

f (S(v : τ))(v) : S(v : τ)

where S(v : τ) is the type classifying only the value v of type τ ; by soundness
of the type system any value returned by this application must be equal to v.
Furthermore, evaluation in his system does not depend upon type arguments to
polymorphic functions, so f must act as an identity function for every argument
of every type.

There are other ways to support equational information in a type system be-
sides singleton types [Stone 2005]. Severi and Poll [1994] study confluence and
normalization of βδ-reduction for a pure type system with definitions (let bind-
ings), where δ is the replacement of an occurrence of a variable with its defini-
tion. In this system, the typing context contains both the type for each variable,
and an optional definition. This calculus contains no notion of partial defini-
tion, no subtyping, and cannot express constraints on function arguments. This
approach may be sufficient to represent information needed for cross-module
inlining (particularly when based upon the lambda-splitting work of Blume
and Appel [1997] and Blume [1997]), but it cannot model sharing constraints
or definitions in a modular framework (where only some parts of a module have
known definition).

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

718 • C. A. Stone and R. Harper

Type theoretic studies of the SML module system have been studied
by Harper and Lillibridge under the name of translucent sums [Harper and
Lillibridge 1994; Lillibridge 1997] in which modules are first-class values, and
by Leroy [1994] under the name of manifest types in which modules are second-
class. These two systems are essentially similar: the calculus includes module
constructs, and corresponding signatures; as in Standard ML the type compo-
nents of signatures may optionally specify definitions. The key difference from
λ��S

≤ is that type definitions are specified at the type level, rather than at the
kind level. Because of this, type equivalence does depend on the typing context
but not on the (unique) classifying kind. Type checking for translucent sums
is undecidable (although type equivalence is decidable). No analogous result is
known for manifest types; modules lack most-specific signatures, prohibiting
standard methods for type checking.

A very powerful construct is the I -type of Martin-Löf ’s extensional type the-
ory [Martin-Löf 1984; Hofmann 1995]. A term of type I (e1, e2) represents a proof
that e1 and e2 are equivalent. This can lead to undecidable type checking very
quickly, as one can use this to add arbitrary equations as assumptions in the
typing context.

The language Dylan [Shalit 1996] contains “singleton types”, but these are
checked only at run-time (essentially pointer-equality) to resolve dynamic over-
loading.

7.1.2 Decidability of Equivalence and Type Checking. This algorithm was
(indirectly) inspired by Coquand’s approach to βη-equivalence for a type theory
with � types and one universe [Coquand 1991]. Coquand’s algorithm directly
decides equivalence, rather than being defined in terms of reduction or nor-
malization. However, unlike the type system studied by Coquand, λ��S

≤ terms
cannot be compared in isolation; equivalence depends both on the typing con-
text and on the type at which the terms are being compared. Thus, where Co-
quand maintains a set of bound variables, our algorithm maintains a full typing
context. Similarly, Coquand’s algorithm uses the shapes of terms to guide the
algorithm where our algorithm maintains the type. (For example, Coquand’s
would check for one of the terms being lambda-abstraction, whereas our algo-
rithm would check for comparison at a � type.) In our system, it is technically
more convenient to work with normalization, rather than direct equivalence,
because asymmetries in the natural binary equivalence algorithm make it dif-
ficult to show directly that it is symmetric and transitive. (These properties
were immediately evident in Coquand’s case.)

There are also similarities between our work and that of Compagnoni and
Goguen [2003], who also use a normalization algorithm and Kripke logical re-
lations argument for proving decidability of a subtyping algorithm for Fω

≤ , a
variant of F ω

<: with higher-order subtyping and the kernel Fun Rule [Cardelli
and Wegner 1985] for quantifier subtyping. They largely ignore the term level of
F ω

<:. Roughly speaking, our terms and types (dropping singletons and �) would
correspond to their types and kinds if we added an uninterpreted term constant
∀ (e.g., to represent polymorphic types using higher-order abstract syntax), de-
fined a relation � on our terms, and allowed � bounds on the domains of λ,

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 719

and �. In both λ��S
≤ and F ω

≤ there are no variables at the topmost level (i.e., no
variables whose value can be a �) and so there arise no issues of impredicativity.

There are a number of technical differences between the proofs. Their nor-
malization algorithm is not driven at all by the classifier (types have unique
kinds and the rules are entirely determined by the shapes of the types be-
ing normalized and/or the shapes of their normal form; the kind seems natu-
rally considered an output of the algorithm rather than an input), and in fact
Compagnoni and Goguen show that their normalization algorithm implements
and is invariant under untyped β-reduction. This allows a direct proof that
their logical relations are closed under normalization. We do not have a corre-
sponding rewrite rule and so must take a slightly different approach. It would
be interesting, however, to try to combine features of our normalization algo-
rithm and set-based logical relations with the core of their subtyping algorithm
to obtain the decidability of subtyping in F ω

≤ extended with singletons.
In previous work [Stone and Harper 2000] we used a different variant of

logical relations involving pairs rather than sets. The resulting definitions were
quite verbose (due to the lack of a natural transitivity property) and led to a
very large number of conditions to be checked in the proofs. Our generalization
here from ordered pairs to sets allows the logical relations and therefore the
proof of completeness to be substantially simpler and more elegant.

Crary [2000] has used the correctness of our algorithms to show that a lan-
guage with singleton kinds can be translated into a language without, in a
fashion which preserves well typedness. Although one can certainly “substitute
away” all of the definitions induced by singletons, because of partial definitions
the resulting term might still refer to variables classified by singletons. The fact
that all singleton kinds can thereafter be erased is a nontrivial strengthening
property. Crary obtains this property by working with the (more tractable) al-
gorithmic form of term equivalence for λ��S

≤ .
Recently a few researchers have been studying more direct approaches to sin-

gletons using very similar η and definition expansions. Coquand et al. [2003]
starts from a PER model to obtain a similar language of labeled singleton
types in which term equivalence can be decided by checking β-equivalence of
η-expanded and definition-expanded terms. This is a less practical method than
the binary equivalence algorithm of Section 5, but correctness of our algorithm
might be derivable. More recently, Goguen [2005] has given an equivalence al-
gorithm for a system more similar to ours, having labeled singletons but no
subtyping.

Several systems in which equivalence depends upon the typing context
were already mentioned. However, there appear to be relatively few decidabil-
ity results for other lambda calculi with typing-context-sensitive or classifier-
sensitive equivalences, perhaps because standard techniques of rewriting to
normal form are difficult to apply. Many calculi include subtyping but not sub-
kinding; in such cases either only type equivalence is considered (which is in-
dependent of subtyping) or else term equivalence is not affected by subtyping
and hence can be computed in a context-free manner.

One exception is the work of Curien and Ghelli [1994], who proved the de-
cidability of term equivalence in F≤ with βη-reduction and a Top type. Because

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

720 • C. A. Stone and R. Harper

their Top type is both terminal and maximal, equivalence depends on both
the typing context and the type at which terms are compared. They eliminate
context-sensitivity by inserting explicit coercions to mark uses of subsumption
and then give a rewriting strategy for the calculus with coercions; in total, their
proof involves translations among three different typed λ-calculi.

Our language is dependently typed, but has no polymorphism and no type
variables. It would be interesting to see if the approach used for λ��S

≤ could be
applied to their source language, avoiding the use of translations. Although
adapting the equivalence algorithm seems easy, an impredicative calculus
would require an extension of the logical relations, for example, as done by
Girard [1972].

7.2 Summary

In this article, we have presented the λ��S
≤ calculus, which models the con-

structors and kinds of the internal language used by the TILT compiler for
standard ML. We studied the equational and proof-theoretic properties of the
λ��S

≤ calculus, and have shown that type checking is decidable.
We have presented algorithms for implementing type checking; they form

the basis of the implementation of the type checker in the TILT compiler
[Petersen et al. 2000]. The equivalence algorithms employ a useful type-directed
framework. This is extremely well-suited for any case in which equivalence is
dependent upon the classifier. Examples of other such languages include those
with terminal types (where all terms of this type are equal), or calculi with
records and width subtyping (where equivalence of two records depends only
on the equivalence of the subset of fields mentioned in the classifying record
type). This approach can even be used for efficiency in the absence of subkinding
and singletons [Harper and Pfenning 1999].

The correctness proofs employ an new variant of Kripke logical relation,
working directly with (subsets of) equivalence classes instead of the more usual
binary relations. This permits a very straightforward proof of correctness for
the equivalence algorithms. We have found the logical relations approach to
proving completeness to be remarkably robust under changes to the definition
of the equational theory; even the addition of type analysis constructs [Harper
and Morrisett 1995] requires few changes [Stone 2000].

ACKNOWLEDGMENTS

We are grateful to Lars Birkedal for originally suggesting we not limit our-
selves to traditional formulations of Kripke logical relations. We also thank
Karl Crary, Derek Dreyer, Peter Lee, John Reynolds, and Jon Riecke for partic-
ularly detailed comments on earlier versions of this work, Perry Cheng, Mark
Lillibridge, Leaf Petersen, Frank Pfenning, and Rick Statman for many helpful
discussions, and Andreas Rossberg the anonymous referees for their comments.

REFERENCES

ASPINALL, D. 1995. Subtyping with singleton types. In Proceedings of the Computer Science Logic
(CSL ’94). Lecture Notes in Computer Science, vol. 933, Springer-Verlag, New York.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

Extensional Equivalence and Singleton Types • 721

ASPINALL, D. 1997. Type systems for modular programs and specifications. Ph.D. dissertation,
Department of Computer Science, University of Edinburgh.

ASPINALL, D. 2000. Subtyping with power types. In Proceedings of the Computer Science Logic
(CSL 2000). Lecture Notes in Computer Science, vol. 1862, Springer-Verlag, New York. 156–171.

BLUME, M. 1997. Hierarchical modularity and intermodule optimization. Ph.D. dissertation.
Princeton University, Princeton, NJ.

BLUME, M. AND APPEL, A. W. 1997. Lambda-splitting: A higher-order approach to cross-module
optimizations. In Proceedings 1997 ACM International Conference on Functional Programming
(ICFP ’97). 112–124.

CARDELLI, L. AND WEGNER, P. 1985. On understanding types, data abstraction and polymorphism.
ACM Comput. Surv. 17, 4, 471–522.

COMPAGNONI, A. AND GOGUEN, H. 2003. Typed operational semantics for higher-ordersubtyping.
Info. Comput. 184, 2 (Aug.), 242–297.

COQUAND, T. 1991. An algorithm for testing conversion in type theory. In Logical frameworks,
G. Huet and G. Plotkin, Eds. Cambridge University Press, Cambridge, MA, 255–277.

COQUAND, T., POLLACK, R., AND TAKEYAMA, M. 2003. A logical framework with dependently typed
records. In Proceedings of the Typed Lambda Calculi and Applications (TLCA 2003). 105–119.
(Available as LNCS 2701). Lecture Notes in Computer Science, vol. 2701, Springer-Verlag, New
York.

COURANT, J. 2002. Strong normalization with singleton types. In Proceeedings of the Second Work-
shop on Intersection Types and Related Systems (ITRS ’02). ENTCS, vol. 70.

CRARY, K. 1999. A simple proof technique for certain parametricity results. In Proceedings of the
1999 ACM International Conference on Functional Programming (ICFP ’99). ACM, New York,
82–89.

CRARY, K. 2000. Sound and complete elimination of singleton kinds. Tech. Rep. CMU-CS-00-104,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

CRARY, K. 2005. Logical relations and a case study in equivalence checking. In Advanced Topics
in Types and Programming Languages, B. C. Pierce, Ed. MIT Press, Cambridge, MA.

CRARY, K. F. 1998. Type-theoretic methodology for practical programming languages. Ph.D. dis-
sertation, Department of Computer Science, Cornell University.

CURIEN, P.-L. AND GHELLI, G. 1994. Decidability and confluence of βηtop≤ reduction in F≤. Info.
Comput. 1/2, 57–114.

GIRARD, J. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre
supérieur. Ph.D. dissertation, Université Paris 7.

GOGUEN, H. 1994. A typed operational semantics for type theory. Ph.D. dissertation, Department
of Computer Science, University of Edinburgh. (Available as Technical Report ECS-LFCS-94-
304).

GOGUEN, H. 2005. A syntactic approach to eta equality in type theory. In Proceedings of the 32nd
ACM Symposium on Principles of Programming Languages (POPL ’05). ACM, New York.

HARPER, R. AND LILLIBRIDGE, M. 1994. A type-theoretic approach to higher-order modules with
sharing. In Proceedings of the 21st ACM Symposium on Principles of Programming Languages
(POPL ’94). ACM, New York, 123–137.

HARPER, R., MITCHELL, J. C., AND MOGGI, E. 1990. Higher-order modules and the phase distinction. In
Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL ’90).
ACM, New York, 341–354.

HARPER, R. AND MORRISETT, G. 1995. Compiling polymorphism using intensional type analysis. In
Proceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL ’95).
ACM, New York, 130–141.

HARPER, R. AND PFENNING, F. 1999. On equivalence and canonical forms in the LF type theory.
In Proceedings of the Workshop on Logical Frameworks and Meta-Languages. Extended version
available as Tech. Rep. CMU-CS-99-159.

HOFMANN, M. 1995. Extensional concepts in intensional type theory. Ph.D. dissertation,
Edinburgh LFCS. (Available as Edinburgh LFCS Technical Report ECS-LFCS-95-327).

LEROY, X. 1994. Manifest types, modules, and separate compilation. In Proceedings of the
21st ACM Symposium on Principles of Programming Languages (POPL ’94). ACM, New York,
109–122.

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

722 • C. A. Stone and R. Harper

LEROY, X. 1995. Applicative Functors and Fully Transparent Higher-Order Modules. In Pro-
ceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL ’95).
ACM, New York, 142–153.

LILLIBRIDGE, M. 1997. Translucent Sums: A Foundation for Higher-Order Module Systems. Ph.D.
dissertation, School of Computer Science, Carnegie Mellon University. (Available as Technical
Report) CMU-CS-97-122.

MARTIN-LÖF, P. 1984. Intuitionistic Type Theory. Bibliopolis-Napoli.
MINAMIDE, Y., MORRISETT, G., AND HARPER, R. 1996. Typed closure conversion. In Proceedings of

the 23rd ACM Symposium on Principles of Programming Languages (POPL ’96). ACM, New
York, 271–283.

MORRISETT, G., WALKER, D., CRARY, K., AND GLEW, N. 1997. From system F to typed assembly
language. Tech. Rep. TR97-1651, Department of Computer Science, Cornell University.

PETERSEN, L., CHENG, P., HARPER, R., AND STONE, C. 2000. Implementing the TILT internal
language. Tech. Rep. CMU-CS-00-180, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA.

SEVERI, P. AND POLL, E. 1994. Pure Type Systems with definitions. In Proceedings of the
Logical Foundations of Computer Science ’94. Lecture Notes in Computer Science, vol. 813,
Springer-Verlag, New York.

SHALIT, A. 1996. The Dylan Reference Manual: The Definitive Guide to the New Object-Oriented
Dynamic Language. Addison-Wesley, Reading, MA.

SHAO, Z. 1998. Typed Cross-Module Compilation. In Proceedings of the 1998 ACM International
Conference on Functional Programming (ICFP ’98). ACM, New York, 141–152.

STONE, C. A. 2000. Singleton kinds and singleton types. Ph.D. dissertation. School of Com-
puter Science, Carnegie Mellon University. Pittsburgh, PA. (Available as Technical Report
CMU-CS-00-153.)

STONE, C. A. 2005. Type definitions. In Proceedings of the Advanced Topics in Types and
Programming Languages, B. C. Pierce, Ed. MIT Press, Cambridge, MA.

STONE, C. A. AND HARPER, R. 2000. Decidable type equivalence with singleton kinds. In Proceed-
ings of the 27th ACM Symposium on Principles of Programming Languages (POPL ’00). ACM,
New York, 214–227.

STONE, C. A. AND HARPER, R. 2004. Extensional equivalence and singleton types. Tech. Rep.
HMC-CS-04-100, Computer Science Department, Harvey Mudd College.

TARDITI, D., MORRISETT, G., CHENG, P., STONE, C., HARPER, R., AND LEE, P. 1996. TIL: A Type-Directed
Optimizing Compiler for ML. In Proceedings of the ACM 1996 Conference on Programming
Language Design and Implementation (PLDI ’96). ACM, New York, 181–192.

Received August 2002; revised January 2004; accepted July 2004

ACM Transactions on Computational Logic, Vol. 7, No. 4, October 2006.

