
Typed Operational Reasoning

Homework #3: Definitional Equivalence

Instructor: Derek Dreyer

Assigned: Thursday, 13 November 2008
Due: Thursday, 20 November 2008

1 Soundness of the Equivalence Algorithm (5 points)

Prove that the algorithm shown in class (and in Chapter 6 of ATTAPL) for deciding extensional
equivalence of terms in the presence of Unit is sound with respect to definitional equivalence, i.e.,

If Γ ` e1 : τ and Γ ` e2 : τ and Γ ` e1 ⇔ e2 : τ , then Γ ` e1 ≡ e2 : τ .

Hint: You may find it useful to rely on the fact that well-formed terms in this language have
unique types (assuming we annotate λ-bound variables with their types).

2 Completeness in the Presence of a Top Type (5 points)

Suppose we add a Top type to the language considered in Chapter 6. The idea is that Top is a
supertype (in the sense of subtyping) of every other type in the language, so every well-formed
term can also be given type Top by subsumption. For instance, if our language supported product
types (which would be a straightforward extension), the Top type might be useful for giving a
“record-polymorphic” type to the snd function: snd : Top × τ → τ

def= λx.π2(x). One could then
apply snd to any term of product type whose second component had type τ , without concern for
the type of the first component (since it’s guaranteed to be a subtype of Top).

Here are the extensions to the typing and equivalence judgments. They make use of a new
subtyping judgment ` τ1 ≤ τ2:

` τ ≤ τ ` τ ≤ Top

` τ ′
2 ≤ τ ′

1 ` τ ′′
1 ≤ τ ′′

2

` τ ′
1→ τ ′′

1 ≤ τ ′
2→ τ ′′

2

Γ ` e : σ ` σ ≤ τ
Γ ` e : τ

Γ ` e1 : Top Γ ` e2 : Top
Γ ` e1 ≡ e2 : Top

Γ ` e1 ≡ e2 : σ ` σ ≤ τ
Γ ` e1 ≡ e2 : τ

Note that all terms are equivalent when considered at type Top. The reason for this is simple: if
all you know about e1 and e2 is that they both have type Top, then there is nothing you can do
with them, so there is no way to distinguish them, and thus they are extensionally equivalent.

Problem: Extend the equivalence algorithm to handle Top and extend the logical relations
proof of completeness (i.e., that Γ ` e1 ≡ e2 : τ implies Γ ` e1 ⇔ e2 : τ) accordingly. You don’t
have to redo all the old parts of the proof; just show the new ones.

Hint: Top is kind of like Unit, so most of the new cases will be trivial. One will be non-trivial.



3 Adding Let to the Calculus with Definitions (5 points)

Suppose we add a let construct, let x= e1 in e2, to the calculus with (acyclic) definitions presented
in class, along with the following new typing and definitional equivalence rules:

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ
Γ ` let x= e1 in e2 : τ

Γ ` e1 : τ1 Γ, x : τ1 = e1 ` e2 ≡ e : τ Γ ` e : τ
Γ ` let x= e1 in e2 ≡ e : τ

Modify the algorithm so that it is sound and complete w.r.t. the new definitional equivalence, and
prove completeness. (As usual, you don’t have to redo the whole proof; just show the new parts.)

2


