Typed Operational Reasoning Homework #1: (Un-)Natural Language Processing

Instructor: Derek Dreyer

Assigned: Thursday, 23 October 2008 Due: Thursday, 30 October 2008

Recall the static semantics (typing rules) of the simply-typed λ -calculus with natural numbers:

$x : \tau \in \Gamma$	$n \in \mathbb{N}$	$_\Gamma, x : \tau \vdash e : \tau'$	$\Gamma \vdash e_1 : \tau_2 \to \tau \Gamma \vdash e_2 : \tau_2$
$\overline{\Gamma \vdash x:\tau}$	$\overline{\Gamma \vdash n: \texttt{nat}}$	$\Gamma \vdash \lambda x : \tau . e : \tau \to \tau'$	$\Gamma \vdash e_1(e_2) : \tau$

We will consider two versions of this language, a *natural* one and an *unnatural* one. The natural one is as defined above. The unnatural one is the same, except with natural numbers n (and their corresponding typing rule) removed. *Note:* The type **nat** is present in both the natural and unnatural languages; in the unnatural one, however, there are no values of type **nat**.

1 The Natural Language

The following problems concern the natural version of the language.

Warmup

Prove the well-known *substitution* lemma, which is needed in the proof of type preservation:

Suppose $\Gamma, x : \tau \vdash e' : \tau'$. Then, for all $e, \Gamma \vdash e : \tau$ implies $\Gamma \vdash e'[e/x] : \tau'$.

1.1 Inhabitation (1 points)

Prove that all types are *inhabited*, that is:

For all types τ , there exists a closed term e of type τ .

1.2 Anti-Substitution (5 points)

Prove or refute the converse of substitution, which we'll call anti-substitution. That is:

Suppose that, for all $e, \Gamma \vdash e : \tau$ implies $\Gamma \vdash e'[e/x] : \tau'$. Then, $\Gamma, x : \tau \vdash e' : \tau'$.

Your answer should make use of the inhabitation property proved above.

2 The Unnatural Language

The following problems concern the unnatural version of the language.

2.1 Uninhabitation (1 point)

It is clear that there are no closed *values* of type **nat** in this language. What is less immediately obvious is that there are no closed *terms* of type **nat**. For instance, there might be some term of the form $e_1(e_2)$ with type **nat**. Prove that this is not the case, *i.e.*, that the type **nat** is in fact *uninhabited*. Your proof should be a one-liner.

2.2 Uninhabitation, Statically (5 points)

Prove uninhabitation of nat, but this time *without* mentioning the dynamic semantics (reduction relation) of the λ -calculus.

2.3 Anti-Substitution Revisited (3 points)

Prove or refute anti-substitution, as stated in Problem 1.2. Your answer should make use of the uninhabitation of nat.