
Understanding and Evolving
the ML Module System

Derek Dreyer

May 2005
CMU-CS-05-131

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Robert Harper (co-chair)

Karl Crary (co-chair)
Peter Lee

David MacQueen (University of Chicago)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

c© 2005 Derek Dreyer

This research was sponsored in part by the Advanced Research Projects Agency CSTO under the title “The Fox
Project: Advanced Languages for Systems Software”, ARPA Order No. C533, issued by ESC/ENS under Contract
No. F19628-95-C-0050, and in part by the National Science Foundation under NSF grants CCR-9984812 and CCR-
0121633. Any opinions, findings, and conclusions or recommendations in this publication are those of the author and
do not reflect the views of these agencies.

Keywords: ML, module systems, type systems, functors, abstract data types, lambda calculus,
recursive modules, singleton kinds

Abstract

The ML module system stands as a high-water mark of programming language support for data
abstraction. Nevertheless, it is not in a fully evolved state. One prominent weakness is that module
interdependencies in ML are restricted to be acyclic, which means that mutually recursive functions
and data types must be written in the same module even if they belong conceptually in different
modules. Existing efforts to remedy this limitation either involve drastic changes to the notion of
what a module is, or fail to allow mutually recursive modules to hide type information from one
another. Another issue is that there are several dialects of ML (the most popular being SML and
O’Caml), and the module systems of these dialects differ in subtle yet semantically significant ways
that have been difficult to account for in any rigorous way. It is important to come to a clear
assessment of the existing design space and consolidate what is meant by “the ML module system”
before embarking on such a major extension as recursive modules.

In this dissertation I contribute to the understanding and evolution of the ML module system
by: (1) developing a unifying account of the ML module system in which existing variants may
be understood as subsystems that pick and choose different features, (2) exploring how to extend
ML with recursive modules in a way that does not inhibit data abstraction, and (3) incorporating
the understanding gained from (1) and (2) into the design of a new, evolved dialect of ML. I
formalize the language of part (3) using the framework of Harper and Stone, in which the meanings
of “external” ML programs are interpreted by translation into an “internal” type system.

In my exploration of the recursive module problem, I also propose a type system for statically
detecting whether or not recursive module definitions are “safe”—that is, whether they can be
evaluated without referring to one another prematurely—thus enabling more efficient compilation
of recursive modules. Future work remains, however, with regard to type inference and type system
complexity, before my proposal can be feasibly incorporated into ML.

For Constance and Benard Dreyer,
the most loving and supportive parents in the world

Acknowledgments

First and foremost, I would like to thank my thesis committee. Many of the ideas in this thesis were
developed together with my advisors, Bob Harper and Karl Crary, and my character as a researcher
has been influenced to a large degree by their rigorous approach to programming language research
and their profound sense of aesthetics. I would also like to thank Peter Lee for his warm guidance
as my former advisor and his continual encouragement of all my endeavors, and Dave MacQueen
for many fruitful discussions and for his extremely careful and thorough perusal of this dissertation.

There are many other friends and colleagues whom I would like to thank for making my ex-
perience at CMU such a memorable (and long!) journey. To name a few: Umut Acar, Mihai and
Raluca Budiu, Sharon Burks, Franklin Chen, Catherine Copetas, Kathy Copic, Nathaniel Daw,
Mark Fuhs, Anna Goldenberg, Jeff and Beth Helzner, Heather Hendrickson, Rose Hoberman, Yan
Karklin, Cathy Kelley, Adam Klivans, Sue Lee, Marius Minea, Adriana Moscatelli, Mike Mur-
phy, Tom Murphy VII, Aleks Nanevski, Leaf Petersen, Martha Petersen, Frank Pfenning, Chris
Richards, Chuck Rosenberg, Dan Spoonhower, Chris Stone, Dennis Strelow, Dave Swasey, Desney
Tan, Joe Vanderwaart, Dave Walker, Kevin Watkins.

I would like to give special thanks to Aleks Nanevski, my officemate of seven years, who is also
one of the most interesting (and obstinate!) people I have ever met. I will always remember our
spirited discussions about life, love, politics and programming languages with great fondness.

I would like to thank Kevin Watkins for initiating, and Dan Spoonhower for revamping, the
ConCert reading group. One of the strengths of CMU is its strong graduate student community,
and it was wonderful to be able to hash out the details of research papers with such an informed
and motivated group of colleagues.

I would like to thank Rose Amanda Hoberman for being my best friend over the past four and
a half years, for sharing the joys and struggles of graduate school with me, and for trying to teach
me how to cook. Keep trying!

Finally, I would like to thank my parents, Constance and Benard, for everything they have
given and continue to give me. At last, here is something tangible I can give back.

Contents

Introduction 1

I Understanding the ML Module System 5

1 The Design Space of ML Modules 7

1.1 Key Features of the ML Module System . 7

1.1.1 Structures and Signatures . 7

1.1.2 Data Abstraction via Sealing and Functors 9

1.1.3 Translucent Signatures . 10

1.2 Key Points and Axes in the Design Space of ML Modules 12

1.2.1 Precursors to Translucency . 13

1.2.2 First-Class vs. Second-Class, Higher-Order vs. First-Order 13

1.2.3 Harper and Lillibridge’s First-Class Modules 14

1.2.4 SML/NJ’s Higher-Order Functors . 15

1.2.5 Leroy’s Applicative Functors . 16

1.2.6 The Importance of Generativity . 17

1.2.7 Supporting Both Applicative and Generative Functors 18

1.2.8 Notions of Module Equivalence . 19

1.2.9 Conclusion . 20

2 A Unifying Account of ML Modules 21

2.1 An Analysis of ML-Style Modularity . 21

2.1.1 Projectibility and Purity . 21

2.1.2 Phase Separation . 23

2.1.3 Module Equivalence . 25

2.1.4 Total vs. Partial Functors . 25

2.1.5 Sealing as a Form of Information Hiding . 27

2.1.6 Squeezing the Balloon . 30

2.1.7 Projectibility and Transparency . 31

2.2 Fruits of the Analysis . 32

2.2.1 Understanding the Existing ML Module System Designs 32

2.2.2 A Unifying Design . 35

2.2.3 A Modular Design . 36

2.3 Comparison With a Previous Version of This Account 39

x CONTENTS

3 A Type System for ML Modules: Core Language 41
3.1 Type Constructors and Kinds . 41

3.1.1 Syntax . 41

3.1.2 Static Semantics . 43
3.1.3 Basic Structural Properties . 46
3.1.4 Other Declarative Properties . 47
3.1.5 Admissible Rules . 48
3.1.6 Kind Checking and Synthesis . 50
3.1.7 Deciding Constructor Equivalence . 51

3.2 Terms . 54
3.2.1 Syntax . 54
3.2.2 Static Semantics . 55
3.2.3 Declarative Properties . 56
3.2.4 Type Checking and Synthesis . 57
3.2.5 Dynamic Semantics and Type Safety . 58

4 A Type System for ML Modules: Module Language 59
4.1 Signatures . 59

4.1.1 Syntax . 59
4.1.2 Static Semantics . 62
4.1.3 Declarative Properties . 63
4.1.4 Signature Phase-Splitting . 67

4.2 Modules . 68
4.2.1 Syntax . 68
4.2.2 Projectible Modules . 70
4.2.3 Static Semantics . 72
4.2.4 Declarative Properties . 74
4.2.5 Signature Checking and Synthesis . 74
4.2.6 The Avoidance Problem . 77
4.2.7 Module Phase-Splitting . 80

II Recursive Modules 85

5 The Recursive Module Problem 87
5.1 Motivating Examples . 87
5.2 Key Issues in the Design of a Recursive Module Extension 92

5.2.1 Dynamic Semantics . 92
5.2.2 Recursively Dependent Signatures . 93
5.2.3 The Double Vision Problem . 97

5.2.4 Separate Compilation . 100
5.3 Existing Approaches to Recursive Modules . 101

5.3.1 A Foundational Account . 101
5.3.2 Moscow ML . 102
5.3.3 O’Caml . 104
5.3.4 Units . 107
5.3.5 Mixins . 108

5.4 A New Approach . 109

CONTENTS xi

5.4.1 Overview . 109

5.4.2 Elaboration of Recursive Modules . 110

6 Type-Theoretic Extensions for Recursive Modules 117

6.1 Constructor-Language Extensions . 117

6.2 Term-Language Extensions . 120

6.3 Signature-Language Extensions . 128

6.4 Module-Language Extensions . 132

7 Safe Recursion 137

7.1 Evaluability . 138

7.1.1 The Evaluability Judgment . 139

7.1.2 A Total/Partial Distinction . 139

7.1.3 Limitations of the Total/Partial Distinction 140

7.2 A Type System for Safe Recursion . 141

7.2.1 Syntax . 142

7.2.2 Static Semantics . 143

7.2.3 Separate Compilation, Non-strictness and Name Abstractions 145

7.2.4 Basic Declarative Properties . 148

7.2.5 Decidability of Typechecking . 148

7.2.6 Dynamic Semantics and Type Safety . 150

7.3 Adding Computational Effects . 154

7.4 Encoding Unrestricted Recursion . 155

7.5 Related Work . 158

7.6 Directions for Future Work . 160

7.6.1 Names and Type Inference . 160

7.6.2 Names and Modules . 161

III Evolving the ML Module System 165

8 Evolving the ML Internal Language 167

8.1 Overview . 167

8.1.1 Differences from the Simplified IL . 167

8.1.2 Differences from the Harper-Stone IL . 168

8.2 IL Syntax . 169

8.3 IL Static Semantics . 177

8.4 IL Dynamic Semantics . 187

9 Evolving the ML External Language 189

9.1 EL Syntax . 190

9.2 Overview of Elaboration . 194

9.2.1 Preliminaries . 194

9.2.2 Guide to the Elaboration Judgments . 197

9.3 Elaboration . 203

9.3.1 A Few More Preliminaries . 203

9.3.2 Main Translation Rules . 206

9.3.3 Canonical Implementations of Signatures . 220

xii CONTENTS

9.3.4 Coercive Signature Matching . 222
9.3.5 Signature Patching . 223
9.3.6 Signature Peeling . 224
9.3.7 Label Lookup . 225
9.3.8 Recursive Module Elaboration . 226

9.4 Notes on Implementation . 234

10 Conclusion and Future Work 237
10.1 Conclusion . 237
10.2 Future Work . 238

Bibliography 241

List of Figures

1.1 ML Module for Integer Sets . 8

1.2 ML Interface for Integer Sets . 8

1.3 ML Functor for Generic Sets . 9

1.4 Instantiating the Set Functor . 10

1.5 Generic ML Signature for Sets . 11

1.6 Sealed ML Functor for Generic Sets . 11

1.7 Higher-Order Functor Example . 15

1.8 Symbol Table Functor Example . 17

2.1 Scenario Illustrating Consequences of Projectibility 22

2.2 Classifications of Module Expressions . 24

2.3 Semantic Behavior of Different Types of Functors . 27

2.4 Semantic Effects of Sealing . 29

2.5 Correspondence Between Classifications in DCH and in This Chapter 40

3.1 Syntax of Type Constructors and Kinds . 42

3.2 Singletons at Higher Kinds . 43

3.3 Canonical Constructors of Transparent Kinds . 43

3.4 Inference Rules for Kinds and Static Contexts . 44

3.5 Inference Rules for Type Constructors . 45

3.6 Typing and Equivalence Judgments for Static Substitutions 47

3.7 Kind Checking and Principal Kind Synthesis . 51

3.8 Weak Head Normalization for Type Constructors . 52

3.9 Equivalence Algorithm for Constructors and Kinds 53

3.10 Syntax of Terms and Values . 55

3.11 Less Restrictive Versions of Term Constructs . 55

3.12 Inference Rules for Terms and Dynamic Contexts . 56

3.13 Type Checking and Type Synthesis . 57

3.14 Dynamic Semantics of the Core Language . 58

4.1 Syntax of Signatures . 60

4.2 Correspondence With ML Signatures . 60

4.3 Extracting the Static Part of a Signature . 61

4.4 Singleton Signatures . 62

4.5 Inference Rules for Signatures . 63

4.6 Signature Phase-Splitting and Definition of Package Type 67

4.7 Syntax of Modules . 69

xiv LIST OF FIGURES

4.8 Correspondence With ML Modules . 69
4.9 Extracting the Static Part of a Projectible Module 71
4.10 Inference Rules for Modules . 73
4.11 Signature Checking and Principal Signature Synthesis 75
4.12 Encoding of the Avoidance Problem in O’Caml . 79
4.13 Module, Term and Context Translation . 81
4.14 Module, Term and Context Translation (continued) 82

5.1 Mutually Recursive Modules Expr and Bind . 88
5.2 Parameterization Workaround for Separating Recursive Function Definitions 89
5.3 Backpatching Workaround for Separating Recursive Function Definitions 89
5.4 Bootstrapped Heap Example . 90
5.5 Encoding Polymorphic Recursion Using a Recursive Module 91
5.6 Example of Recursive Module with Effects . 93
5.7 Problematic Signature for Expr and Bind . 94
5.8 Recursively Dependent Signature for Expr and Bind 95
5.9 Rds for Expr and Bind with Mutually Recursive Datatype Specifications 96
5.10 The Double Vision Problem Arising in Expr and Bind 98
5.11 Attempted Separate Compilation of Expr and Bind 100
5.12 Expr and Bind in Moscow ML: First Try . 103
5.13 Expr and Bind in Moscow ML: Second Try . 103
5.14 Separate Compilation of Expr and Bind in Moscow ML 104
5.15 Signature for Expr and Bind in O’Caml . 105
5.16 Strange Behavior of O’Caml Recursive Module Typechecking 106
5.17 Closed Static Signature of Expr and Bind . 111
5.18 Canonical Implementation of Expr and Bind’s Closed Static Signature 112
5.19 Elaboration of Expr and Bind: First Try . 112
5.20 Elaboration of Expr and Bind: Second Try . 113
5.21 Elaboration of Expr and Bind With Sealing: First Try 113
5.22 Elaboration of Expr and Bind With Sealing: Second Try 114
5.23 Problematic Elaboration of Modified ExprBind Example 114
5.24 Meta-signature for Modified ExprBind . 115

6.1 Extensions to Type Constructor Syntax . 118
6.2 Inference Rules for Type Constructors . 118
6.3 Extensions to Kind Synthesis . 119
6.4 Extensions to Constructor Equivalence Algorithm . 119
6.5 Extensions to Term Syntax . 120
6.6 New Inference Rules for Terms . 120
6.7 Expandable Kinds and Types . 121
6.8 Extensions to Type Synthesis . 121
6.9 Abstract Machine Semantics With Explicit Store and Control Stack 126
6.10 Well-Formed Continuations . 126
6.11 Extensions to Signature Syntax and Related Functions 128
6.12 New Inference Rules for Signatures . 129
6.13 New Signature Phase-Splitting Rules . 131
6.14 Extensions to Module Syntax . 132
6.15 New Inference Rules for Modules . 133

LIST OF FIGURES xv

6.16 Extensions to Signature Synthesis . 134
6.17 New Module Phase-Splitting Rules . 135

7.1 Modified Example of Recursive Module With Effects 140
7.2 Syntax of Safe Recursion Language . 142
7.3 Static Semantics for Safe Recursion Language . 144
7.4 Revised Separate Compilation Scenario . 146
7.5 Recursive Module Example With Non-strict Functor Application 147
7.6 Typechecking Algorithm for Safe Recursion Language 149
7.7 Dynamic Semantics for Safe Recursion Language . 150
7.8 Well-Formed Continuations for Safe Recursion Language 152
7.9 Static Semantics Extensions for References and Continuations 154
7.10 Dynamic Semantics Extensions for References and Continuations 155
7.11 Static Semantics Extensions for Memoized Computations 156
7.12 Dynamic Semantics Extensions for Memoized Computations 157

8.1 IL Constructors and Kinds . 171
8.2 IL Values and Expressions . 172
8.3 IL Modules and Signatures . 173
8.4 IL Valuable Expressions . 174
8.5 IL Projectible Modules and Transparent Kinds/Signatures 174
8.6 IL Expandable Kinds and Recursive Type Paths . 175
8.7 IL Definition of Package Type . 175
8.8 IL Meta-level Function Definitions . 176

9.1 Syntax of the External Language . 191
9.2 Syntax of the External Language (continued) . 192
9.3 Derived Forms . 205

Introduction

Nearly all programming languages that are intended for the implementation of real-world appli-
cations provide some facility for structuring programs as a network of smaller modules. While
structuring a program in this fashion typically incurs some initial development overhead, it also
reaps several huge rewards. First, it allows multiple programmers to work on different modules of
the same program simultaneously. Second, it delineates the high-level structure of the program,
which in turn makes the program easier to understand and maintain. Third, it can make the
program significantly more reliable through the use of data abstraction.

The idea of data abstraction is that the weaker the dependencies between program modules,
the more robust the program structure will be. In particular, for the purpose of enforcing program
invariants, it is useful for the implementor of a module to be able to hide information from clients
of the module regarding the structure of data that it operates on. For example, the correctness
of a module implementing binary search trees as red-black trees depends on the invariant that the
trees it operates on have no two adjacent red nodes. The tree operations provided by the module
assume this invariant about the trees they are given as input and preserve this invariant for the
trees they produce as output. To ensure that the input assumptions are valid, the implementor
should be able to restrict the clients of the module so that they may only construct red-black
trees via the invariant-preserving operations that the module provides. Such a restriction, which
constitutes a weakening of the dependency between the module and its clients, also makes the client
code more reusable. One may make arbitrary changes to the implementation of the binary search
tree module without precipitating changes to its clients, so long as the external functionality of the
module—i.e., the set of operations it provides—remains the same.

Many modern programming languages provide some form of support for data abstraction. For
example, in mainstream object-oriented languages like C++ and Java, “classes” support data
abstraction by allowing certain fields or methods of a class to be designated as “private” and
therefore invisible to the clients of the class. However, classes also embody a host of other features
of object-oriented programming, such as inheritance, subtyping and dynamic dispatch. The subtle
and sometimes undesirable interplay of these features makes classes a tricky object for formal study.

In this dissertation I will be exploring an altogether different approach to modular program-
ming, namely that of the ML module system. Unlike the class mechanism in object-oriented
languages, the module mechanism in ML is focused entirely on supporting data abstraction. It
ensures implementor-side data abstraction by allowing the implementor of a module to “seal” it
behind an abstract interface, thereby hiding information about its internal data representation from
its clients. Furthermore, ML’s notion of an interface is very flexible, enabling one to reveal partial
information about the identity of an abstract data type or to express equivalences between abstract
data types exported by different modules. ML also exploits a form of client-side data abstraction
through the “functor” mechanism. Functors, which are functions at the level of modules, allow one
to develop and compile a module independently from the modules on which it depends, given only

2 INTRODUCTION

abstract interfaces for them. These dependencies can then be instantiated with multiple different
modules during the execution of the program, enabling a powerful form of code reuse.1

Nevertheless, despite its strengths, the ML module system is not in a fully evolved state. One
prominent weakness is that module interdependencies in ML are restricted to be acyclic, which
means that mutually recursive functions and data types must be written in the same module even
if they belong conceptually in different modules. In addition to hindering independent development
of mutually recursive components, this restriction inhibits data abstraction because it prevents mu-
tually recursive components from hiding implementation details from one another. Furthermore,
although there are justifications for ML’s restriction, it still seems rather unintuitive to most new-
comers to the language, who are accustomed to languages like Java and C++ that do allow cyclic
dependencies between program components. As a consequence, support for mutually recursive
modules has been one of the most frequently requested extensions to ML.

In response, there has been much work in recent years on extending ML and other functional
languages with recursive modules. Most of the current proposals suggest replacing ML modules
with some alternative mechanism such as “units” or “mixins,” which are subject to severe syntactic
restrictions but, as a result, are easier to recursively link [20, 16]. The only concrete proposals that
remain within the framework of ML modules are Russo’s extension to the Moscow ML compiler [66]
and Leroy’s extension to the Objective Caml compiler [44]. Both of these are based to a large extent
on Crary et al.’s foundational account of recursive modules [6]. Neither extension, however, provides
full support for data abstraction between, or separate compilation of, mutually recursive modules.

Before we can consider ways of improving on the existing proposals for extending ML with
recursive modules, there are two more basic questions that need to be addressed. First, what
language should we be extending? There is not just one language called ML; there are several
dialects of ML, the most popular being Standard ML (SML) [52] and Objective Caml (O’Caml) [41].
These implemented dialects are both the result of and inspiration for a large body of research on
the theoretical underpinnings of ML and in particular its module system. However, as these formal
accounts of the ML module system employ a variety of different formalisms, the relationships and
tradeoffs between different designs have been difficult to understand or compare in a rigorous way.
It is important that we come to a clear assessment of the existing design space and consolidate what
is meant by “the ML module system” before embarking on such a major extension as recursive
modules.

Second, once we decide on the basis for our extension, what is the right way to go about defining
the extension? Type theory and operational semantics have proven to be an ideal setting for defin-
ing and reasoning about fundamental concepts like polymorphism, data abstraction and subtyping,
with established methods for proving properties like type safety and decidability of typechecking.
However, while there exist a number of type-theoretic accounts of ML-style modularity, they typ-
ically describe some idealized subset of the ML language. On the other hand, the Standard ML
dialect has been given a full formal definition, and the very existence of the Definition of SML [52]
has encouraged the development of independent implementations of the language while providing
stability of SML code across those implementations. The flip side of that stability is that the
Definition is closely tailored to the needs of SML, often to the point of seeming ad hoc from a more
general semantic perspective. For example, it is not clear how the “semantic object” language that
the Definition uses to formalize SML’s static semantics corresponds to traditional type structures.

The approach I take in this dissertation follows the work of Harper and Stone [33], who give an
alternative interpretation of Standard ML by translating well-formed SML programs into a type

1I will give concrete examples of how ML’s sealing and functor mechanisms are used in Chapter 1. For a detailed
comparison of the ML approach and the object-oriented approach to modularity, see MacQueen [48].

INTRODUCTION 3

theory. The Harper-Stone approach provides one with a flexible method of evolving a full-fledged
programming language. The key concepts of the language are modeled at the level of the type
theory, where they can be more clearly understood. The features of the language that are not so
much semantically interesting as syntactically convenient—e.g., type inference, pattern matching,
the open’ing of a module’s namespace—are handled by the translation (called elaboration), which
formalizes how these features are to be de-sugared into more basic constructs.

Another advantage of the Harper-Stone approach is that it fits neatly into the model of type-
directed compilation [31, 77, 70, 68]. In traditional compilers, type information is discarded after
typechecking. In type-directed compilers, the intermediate languages of the compiler are typed
so as to enable optimizations that rely on type information. For instance, the TILT compiler for
SML developed at CMU [77, 74, 61] maintains type information throughout compilation in order
to implement intensional type analysis [31] and tag-free garbage collection [55]. Thus, regardless of
how ML programs are typechecked, a type-directed ML compiler will at some point need to translate
them into an internal typed language. TILT performs this translation as part of typechecking, based
closely on Harper and Stone’s elaboration algorithm.

In summary, the goal of this dissertation is to contribute to the evolution of the ML module
system in the following ways:

Part I: To develop a unifying account of existing variants of the ML module system that can serve
as a basis for future research on module systems.

Part II: To explore the problem of extending ML with recursive modules, with the goal of emend-
ing the deficiencies of existing proposals.

Part III: To formally define a language based on the work of Parts I and II within the type-
theoretic framework of Harper and Stone.

The document is structured as follows:

Part I: In Chapter 1, I give an overview of the design space of ML modules, as well as a discussion of
the key ideas and motivations behind a variety of existing designs. In Chapter 2, I give a high-level
semantic analysis of what makes ML-style data abstraction work, leading to a unifying framework
in which several variants of the ML module system can be understood as subsystems that pick
and choose different features. I also describe the design of a type system, based on this unifying
framework, that harmonizes and improves on the existing designs. This type system is formally
defined in Chapters 3 and 4: the first chapter presents the “core” language of the type system, and
the second chapter presents the “module” language. In addition to providing detailed discussion of
the rationale behind various typing rules, these chapters present the key meta-theoretic properties
of the core and module languages, which include type safety and decidability of typechecking.

Part II: In Chapter 5, I give an overview of the design space of existing recursive module exten-
sions to ML and discuss the deficiencies of these proposals, which suggest two key directions for
improvement. One direction for improvement involves the interaction of recursive modules and data
abstraction. I describe (in Chapter 5) an intuitive semantics that allows for real data abstraction
between recursive modules. Some aspects of this semantics can be captured in type theory, and in
Chapter 6 I show how to extend the type theory of Chapters 3 and 4 accordingly. However, there is
a significant component of my intuitive semantics for recursive modules that I do not know how to
account for directly in type theory. I formalize it instead in Part III using elaboration techniques.
The other direction for improvement on existing recursive module designs involves statically detect-
ing whether a recursive module is “safe.” In Chapter 7, I explore this direction in the context of the

4 INTRODUCTION

simply-typed λ-calculus, setting aside the orthogonal issues involving type components in modules.
At the end of the chapter, I discuss what would be involved in scaling my proposed approach to
the level of modules with type components.

Part III: In Chapters 8 and 9, I use the Harper-Stone framework as a starting point for defining
a new dialect of ML. Following Harper-Stone, the language is defined in two parts. The “internal”
language, defined in Chapter 8, is a type system based very closely on the work of Chapters 3, 4
and 6. The “external” programmer-level language, defined in Chapter 9 by translation into the
internal language, is an evolved dialect of Standard ML that supports recursive and higher-order
modules. Finally, in Chapter 10, I conclude and suggest directions for future work.

Part I

Understanding
the ML Module System

Chapter 1

The Design Space of ML Modules

What is the ML module system? It is difficult to say. There are several dialects of the ML language,
and while the module systems of these dialects are certainly far more alike than not, there are
important and rather subtle differences among them, particularly with regard to the semantics of
data abstraction. The goal of Part I of this thesis is to offer a new way of understanding these
differences, and to derive from that understanding a unifying module system that harmonizes and
improves on the existing designs.

In this chapter, I will give an overview of the existing ML module system design space. I begin
in Section 1.1 by developing a simple example—a module implementing sets—that establishes some
basic terminology and illustrates some of the key features shared by all the modern variants of the
ML module system. Then, in Section 1.2, I describe several dialects that represent key points in
the design space, and discuss the major axes along which they differ.

1.1 Key Features of the ML Module System

1.1.1 Structures and Signatures

In ML, code and data are grouped together in modules. The basic module construct is called a
structure, and Figure 1.1 shows an example of a structure implementing integer sets.1 The structure
IntSet is defined by a structure expression struct ... end, which contains a sequence of bindings.
The first binding defines the type name set as an abbreviation for the type int list of integer lists,
thus indicating that sets are being implemented by this module as lists. Type bindings are much
like typedefs in C; the type set and the type int list are interchangeable. The second binding in
IntSet is a value binding, defining emptyset to be the empty list [], which has type set because
it has type int list. The remaining bindings are function bindings: an insert operation that
takes an integer and a set and returns the result of pushing the integer onto the front of the list
representing the set, and a member operation that checks whether an integer belongs to a set by
performing a sequential search on the list representing the set.2 Although this example does not
illustrate it, structures in ML may also contain substructure bindings, thereby allowing modules to
be built up as composites of other modules and enabling flexible namespace management.

Now that we have defined this module IntSet, we can use it essentially as we would use an
object in Java or a struct in C—by projecting out its components using the “dot notation.” For

1This example, as well as the others in this section, is written in Standard ML syntax.
2Note that, in keeping with functional programming style, this is a persistent implementation of sets, e.g., inserting

an integer into a set does not modify the input set but merely returns a new set containing the integer.

8 CHAPTER 1. THE DESIGN SPACE OF ML MODULES

structure IntSet =

struct

type set = int list

val emptyset : set = []

fun insert (x : int, S : set) : set = x::S

fun member (x : int, S : set) : bool = ...

...

end

Figure 1.1: ML Module for Integer Sets

signature INT SET =

sig

type set

val emptyset : set

val insert : int * set -> set

val member : int * set -> bool

...

end

Figure 1.2: ML Interface for Integer Sets

instance, we might define the set S by the following value binding:

val S : IntSet.set = IntSet.insert(5, IntSet.emptyset)

This defines S by inserting 5 into the empty set. A distinguishing feature of ML modules is that,
in addition to having data and function components, they have type components, such as the set

type component of IntSet. Correspondingly, we can also use the dot notation to project out the
type IntSet.set, which is the return type of IntSet.insert and thus the type of S.

As mentioned above, IntSet.set is merely an abbreviation for int list. However, there is no
need for clients of the IntSet module to know this. In the interest of data abstraction, we would
thus like to hide the knowledge that IntSet.set is equivalent to int list. This is achieved by
first defining an interface that describes what the clients do need to know. In ML, interfaces are
called signatures, and Figure 1.2 shows an appropriately abstract signature for integer sets.

The signature INT SET is defined by a signature expression sig . . . end, which contains a list of
specifications for the components of the IntSet module. The specifications for emptyset, insert
and member are straightforward, assigning to each value component a type. (In a functional lan-
guage like ML, function components are just value components with arrow types.) The interesting
specification is the one for the set type, which holds its definition abstract. A more precise interface
for the IntSet module would replace INT SET’s abstract specification of the set component with
the transparent specification type set = int list, which exposes the implementation of sets as
lists. ML allows one to specify type components in interfaces with or without their definitions, thus
providing fine-grained control over the propagation of type information (see Section 1.1.3). In this
case, however, the abstract INT SET interface is a more appropriate description of sets, as it does
not allow clients to depend on any particular implementation strategy.

1.1. KEY FEATURES OF THE ML MODULE SYSTEM 9

signature COMPARABLE =

sig

type item

val compare : item * item -> order

end

functor Set (Item : COMPARABLE) =

struct

type set = Item.item list

val emptyset : set = []

fun insert (x : int, S : set) : set = x::S

fun member (x : int, S : set) : bool =

... Item.compare(x,y) ...

...

end

Figure 1.3: ML Functor for Generic Sets

1.1.2 Data Abstraction via Sealing and Functors

Just defining the INT SET signature does not do anything by itself. To ensure that the clients’ view
of IntSet is limited to what appears in INT SET, we must seal IntSet with INT SET, as follows:

structure IntSet = IntSet :> INT SET

Given this new definition for IntSet, we may still project out the type IntSet.set, but it is not
known to be equivalent to int list. Consequently, the only way clients of IntSet can create
values of type IntSet.set is by using insert and emptyset (and presumably other operations like
union and intersection), which are explicitly specified in INT SET. Although the IntSet example
does not illustrate it, sealing can also be used to hide the existence of certain value components in
a module. We will see an example of this in Section 1.2.6.

Another distinguishing feature of the ML module system is its functor mechanism. Functors
are simply functions from modules to modules. Much as functions allow a piece of code to be reused
with different instantiations of its parameters, functors allow a module to be reused with different
instantiations of the modules it depends on. To continue the IntSet example, the implementation
of sets is largely indifferent to the type of items stored in the sets and would be more useful if it
were not restricted to sets of integers. The only reason the type of items matters at all is that the
implementation of a function like member assumes an ordering on items. Functors allow us to make
the implementation of sets generic with respect to the item type, as shown in Figure 1.3.

First, we define a signature COMPARABLE describing what the set module needs to know about
the item type. This signature characterizes modules that provide some type item—which one it is
is irrelevant—together with a function compare for ordering values of that type. The Set module
is then defined as a functor that takes as input a module Item of signature COMPARABLE and
returns a module implementing sets containing items of type Item.item. Note that the set type
is now defined as Item.item list, and the member function invokes Item.compare for ordering
Item.item’s instead of relying on integer comparison.

We can now generate sets of different item types very easily. For example, as shown in Fig-
ure 1.4, we can reproduce the functionality of our original IntSet module by first defining a module

10 CHAPTER 1. THE DESIGN SPACE OF ML MODULES

structure IntItem =

struct

type item = int

fun compare (x,y) = Int.compare(x,y)

end

structure StringItem =

struct

type item = string

fun compare (x,y) = String.compare(x,y)

end

structure IntSet = Set(IntItem)

structure StringSet = Set(StringItem)

Figure 1.4: Instantiating the Set Functor

IntItem, which provides int as the item type along with the built-in integer comparison function,
and then applying Set to IntItem. If we want to generate an implementation of integer sets based
on a different ordering of the integers, we can apply the Set functor to an item module with the
same definition of the item type but with a different comparison function. A module implementing
sets of strings or any other type can also be generated in a similar manner.

To summarize, we have seen two mechanisms that ML provides for supporting data abstraction.
First, the sealing mechanism supports implementor-side data abstraction by allowing the imple-
mentor of the set module to hide information about the implementation of sets from its clients.
Second, by thinking of the set module as itself being a client of an item module with an abstract
interface, we see that ML functors exploit the idea of client-side data abstraction to provide a
powerful form of code reuse.

1.1.3 Translucent Signatures

The natural next step in the development of the Set example is to combine ML’s two forms of
data abstraction by sealing the body of the Set functor with an abstract signature that hides
the implementation of sets as lists. The question is what signature to use. Now that we have
generalized the implementation of sets to support an arbitrary item type, the INT SET signature is
no longer applicable. The most obvious answer is to use a signature that replaces all occurrences
of int in INT SET with references to Item.item. However, the type Item.item only makes sense
inside the body of the Set functor, and we would like to be able to define a generic signature for
sets separately from this particular implementation of them.

One way to define a generic interface for sets would be to allow a signature to be parameterized
by a module [37], in which case one could define a parameterized signature SET as follows:

signature SET (Item : COMPARABLE) =

sig

type set

...

val insert : Item.item * set -> set

...

end

1.1. KEY FEATURES OF THE ML MODULE SYSTEM 11

signature SET =

sig

type item

type set

val emptyset : set

val insert : item * set -> set

val member : item * set -> bool

...

end

Figure 1.5: Generic ML Signature for Sets

functor Set (Item : COMPARABLE) =

struct

type item = Item.item

type set = item list

... (* same as before *) ...

end

:> SET where type item = Item.item

Figure 1.6: Sealed ML Functor for Generic Sets

The body of the Set functor could then be sealed with the signature SET(Item).

In fact, however, one need not introduce an explicit form of parameterized signature in order
to characterize a generic interface for sets. ML provides implicit support for parameterized sig-
natures through the idea of translucency. As we have seen, type components in ML signatures
may be specified “opaquely” (e.g., type set), but they may also be specified “transparently”
(e.g., type set = int list). Signatures that support both kinds of specifications are known as
“translucent.”

Figure 1.5 shows the signature for generic sets that one would write in the ML style. Instead
of making the item type a parameter of the SET signature, the ML approach is to include item as
an abstract type component in the signature. In other words, a module implementing sets carries
the type of items along with it, whatever that type may be, thus enabling the generic interface for
sets to be self-contained.

Figure 1.6 shows how the implementation of the Set functor is made abstract. The item

component of the Item argument is copied into the body of the functor; the body is then sealed with
the signature SET where type item = Item.item, which is shorthand in ML for the signature
formed by taking the abstract SET signature and making the item component transparently equal
to Item.item. Thus, the signature with which the body of the Set functor is sealed is translucent—
it reveals the identity of the item type, which is necessary in order for the resulting set module to
be of any use, but it holds the identity of the set type abstract.

Translucency subsumes the utility of parameterized signatures, but it is useful for other reasons
as well. First, it allows one to reveal partial information about the identity of a type. For instance,
suppose a module exports a type t which is defined internally to be int * string, and the imple-
mentor of the module wishes to reveal that values of type t are pairs whose first component is an
integer, but does not wish to reveal that the second component is a string. Then the implementor

12 CHAPTER 1. THE DESIGN SPACE OF ML MODULES

can seal the module with a signature containing an opaque type u, which is defined internally to
be string, and a transparent type t = int * u.

In addition, the support for transparent type specifications in signatures means that for most
modules in ML there is a principal signature, i.e., a most-specific signature that encapsulates all that
can be observed about the module during typechecking.3 For example, the principal signature of the
module IntItem defined in Figure 1.4 is COMPARABLE where type item = int. The existence of
principal signatures is advantageous for modular program development because it allows a program
to be divided at relatively arbitrary points, with the assurance that all the typing information about
any one component of the program is expressible in the form of a signature that the programmer
can write independently of the implementation of that component.

Lastly, translucency accounts naturally for the concept of type sharing. It often happens that
one wants to take as input to a functor two modules (call them A and B), each of which provides a
type component t, and in order for the body of the functor to make any sense it is necessary that
A.t is equal to B.t. ML supports such a “type sharing” constraint by letting the programmer attach
sharing type A.t = B.t to the specification of the functor arguments. In earlier versions of ML,
such as SML ’90, type sharing constraints provided an increase in expressive power that proved
difficult to account for in type-theoretic studies of the module system [47, 29]. In modern dialects
of ML, however, type sharing can be seen as just an instance of translucency. The constraint
sharing type A.t = B.t can be seen as syntactic sugar that has the effect of modifying the
signature of argument B so that its type component t is specified transparently as type t = A.t.4

For further illustrations of the power of translucent signatures, I refer the reader to one of the
more pedagogical treatments of ML programming that are available, such as Harper [26].

1.2 Key Points and Axes in the Design Space of ML Modules

Since its inception [46], the ML module system has been associated with the mechanisms of sig-
natures, structures and functors. The sealing mechanism5 was proposed early on by MacQueen
in the form of an abstraction binding, which was implemented in 1993 in an early version of
the SML/NJ compiler (version 0.93) [71]. Translucent signatures were also implemented in version
0.93 of SML/NJ, but were not treated formally until 1994, when Harper and Lillibridge [28] and
Leroy [42] independently proposed similar formalisms for them at the same POPL symposium.

Although the formal accounts prior to that point still provide much valuable insight—particularly
Harper, Mitchell and Moggi’s work on higher-order modules [30], which introduces the concept of
phase separation that underlies much of the analysis in Chapter 2 and the formal system in Chap-
ter 4—I am focused in this thesis on accounting for the semantic variations among the “modern”
variants of the ML module system that support all of the features described in Section 1.1, includ-
ing translucency. In this section I will describe several such variants and how they relate to one
another in the design space of ML modules. I will begin, though, with a bit of historical context.

3As we will see in Section 4.2.6, due to the “avoidance problem,” not all modules in ML have principal signatures,
but there is a considerable subset of ML in which modules do have principal signatures. Also, to avoid confusion, it
is worth noting that the Commentary on the original Definition of SML [50] also uses the term principal signature,
but to describe a concept unrelated to the notion of fully-descriptive signature intended here.

4Or, if module B comes before A in the order of the functor arguments, modifying the signature of A so that its
type component t is specified transparently as type t = B.t. For details on how type sharing constraints may be
desugared in general, see Chapter 9.

5I mean sealing here in its “opaque” form (:>), as described in Section 1.1.2. In contrast, the “transparent” form
of sealing (:) was part of the Definition from the beginning, but does not provide full support for data abstraction
and is not present in other dialects of ML, such as O’Caml. For further discussion of the difference between opaque
and transparent sealing, see Section 9.3.2.

1.2. KEY POINTS AND AXES IN THE DESIGN SPACE OF ML MODULES 13

1.2.1 Precursors to Translucency

The idea of translucency present in modern variants of ML arose in response to a bifurcation that
had developed in the late ’80s and early ’90s in the semantics of modularity. On one hand there
was the approach taken by SML ’90 [51], which is modeled in formal accounts by MacQueen [47]
and Harper et al. [29, 30] in terms of “strong sum” types. While it supports client-side data
abstraction via functors, SML ’90 does not fully support implementor-side data abstraction. In
particular, sealing in SML ’90 is “transparent,” that is, sealing a module with a signature limits
which components of the module are externally visible but does not hide the definitions of any
visible type components, even those that are specified opaquely in the signature. (Lillibridge
correspondingly termed the SML ’90 approach the “transparent” approach to modularity [45].) In
addition, as I have already mentioned, the type-theoretic treatments of SML ’90-style modularity
were not able to account for the idea of type sharing constraints in signatures.

On the other hand there was the “opaque” approach, due to Mitchell and Plotkin [53], in
which abstract data types are modeled as existential types. Existentials provide an elegant logical
foundation for type abstraction and, unlike the transparent approach, provide full support for
implementor-side data abstraction. They are awkward, however, as a basis for modular program
construction. In particular, a value of existential type is not as flexible as an ML module. One
cannot refer to the abstract types and associated operations provided by such a value via the
standard “dot notation” (e.g., IntSet.insert) used for modules. Rather, in order to use a value
v of type ∃α.C, one must “open” or “unpack” v—as in the expression “open v as [α, x] in e”—in
which case the scope of the abstract type α and of the associated operations represented by x (of
type C) is limited to the expression e. In contrast, unless otherwise delimited, the scope of the
types and values provided by an ML module is “the rest of the program,” which may not even have
been written yet. Furthermore, whereas the transparent approach suffers from allowing too much
type information to be propagated, the opaque approach suffers from not allowing enough. For
example, if one applies the identity function id to a value v of type ∃α.C, there is no way to tell
that v and id(v) share their abstract type component because there is no way to even refer to v’s
abstract type component. In contrast, applying the identity functor to the IntSet module in ML
(even in SML ’90) will result in a module whose set type is transparently equal to IntSet.set.

As illustrated in Section 1.1.3, translucent signatures and opaque sealing address the deficiencies
of both the opaque and the transparent approaches to modularity, combining the flexibility of
ML-style modules with the support for implementor-side abstraction provided by existentials.6

Although Harper and Lillibridge [28] and Leroy [42] differ in their terminology, the former speaking
of “translucent sums” and the latter of “manifest types,” the basic idea of translucency put forth
by both papers is the same. The key point that distinguishes these two accounts is that Harper
and Lillibridge’s supports first-class modules whereas Leroy’s supports second-class modules.

1.2.2 First-Class vs. Second-Class, Higher-Order vs. First-Order

The primary feature that distinguishes functional programming languages from other kinds of
languages is that in functional languages functions are treated as “first-class” entities, i.e., they
may be produced as the result of arbitrary computations and stored inside data structures, just
like any other kind of data. As a consequence of being first-class, functions are also “higher-order,”
i.e., they can take functions as arguments and return functions as results.

Unlike functions, modules are not treated as first-class entities in most dialects of the ML module

6See Chapters 2 and 3 of Lillibridge’s thesis for more discussion and examples of this [45].

14 CHAPTER 1. THE DESIGN SPACE OF ML MODULES

system. They are “second-class” in the sense that the module language exists on a separate plane
from the so-called “core” language of ML. Modules may not be passed as arguments to or results
from core-language functions, nor can they be stored in data structures. In some sense this is
justified by thinking about modules as primarily serving to structure code in a pre-existing core
language.

A less defensible aspect of the Standard ML module system in particular—and one not shared
by all dialects of ML—is that functors are restricted to be “first-order,” meaning that they may
only be defined at the top level of the program, not as components of other modules, and thus
functors cannot be parameterized over other functors or return other functors as results. It is
difficult to explain why functions at the module level of SML are restricted in a way that functions
at the core level are not. As a consequence, whether or not they treat modules in general as first- or
second-class, most modern variants of ML—including most implementations of Standard ML—do
provide support for higher-order functors. The semantics of higher-order functors, however, is an
axis in the design space of modules along which we will find considerable variety.

1.2.3 Harper and Lillibridge’s First-Class Modules

Harper and Lillibridge’s “translucent sums” calculus does not distinguish the language of modules
from the core language of terms, thus treating modules as first-class values. The fusion of the
module and term levels leads to a pleasantly economical design, in which structures are merely
records, and functors are merely functions. In addition, the first-class status of modules allows
one to choose between different implementations of an abstract data type at run time based on
information that may only be available dynamically.

To steal an example from Lillibridge’s thesis [45], suppose one is defining a module implementing
dictionaries. Depending on the size of the dictionaries that one will be creating, one may wish to use
different implementations. For large dictionaries, a hash table implementation may be appropriate,
but for small ones, a linked list implementation will be more space-efficient. If the size is not known
statically, first-class modules enable one to make this choice at run time by defining the dictionary
module with a conditional expression:

structure Dictionary = if n < 20 then LinkedList else HashTable

At the same time, however, merging the core and module levels also complicates the type
structure of the core language, interfusing it with notions of dependent types and subtyping. As a
result, typechecking in the Harper-Lillibridge system is proven undecidable, and moreover it is not
clear how ML-style type inference could be adapted to it. For the moment, though, I will ignore
the more practical problems with the Harper-Lillibridge approach, in favor of exposing a lack of
expressiveness with respect to higher-order functors.

Since functors are just functions in the Harper-Lillibridge system, they are naturally higher-
order. Consider, however, a simple canonical example of a higher-order functor, namely the Apply

functor shown in Figure 1.7. Apply takes a functor argument F of signature SIG -> SIG and a
structure argument X of signature SIG—where SIG is a signature with an opaque specification of
some type t—and it applies F to X. Ideally, Apply(F)(X) should be semantically indistinguishable
from F(X). Unfortunately, this turns out not to be the case.

First of all, what is the type (i.e., signature) of Apply? The obvious answer—and the one
given in Harper and Lillibridge’s system—is (SIG -> SIG) -> (SIG -> SIG). Given this type, if
we instantiate Apply with any arguments of the appropriate types, regardless of what they are, we
get out a structure of signature SIG. In particular, if we apply Apply to the identity functor Ident,
also defined in Figure 1.7, and a particular structure Arg of type SIG, then the result Res1 has type
SIG as well, giving us no indication that its type component t is in fact equal to Arg.t.

1.2. KEY POINTS AND AXES IN THE DESIGN SPACE OF ML MODULES 15

signature SIG = sig type t ... end

functor Apply (F : SIG -> SIG) (X : SIG) = F(X)

functor Ident (X : SIG) = X

structure Res1 = Apply(Ident)(Arg)

(* Res1.t 6= Arg.t *)

structure Res2 = Ident(Arg)

(* Res2.t = Arg.t *)

Figure 1.7: Higher-Order Functor Example

On the other hand, consider what happens when we apply Ident to Arg directly and bind
the result to Res2. Although Ident does indeed match the type SIG -> SIG, its principal type is
(X:SIG) -> (SIG where type t = X.t). (This is a dependent function type, where the argument
X is bound in the right-hand side of the arrow.) Thus, substituting Arg for X, we see that the type
of Res2 is SIG where type t = Arg.t, from which we can infer that Res2.t = Arg.t. In order
to observe this equivalence for Res1, we would need to require that Apply’s functor argument have
the more specific type of Ident, but that would in turn place a rather arbitrary restriction on the
potential arguments to Apply.

1.2.4 SML/NJ’s Higher-Order Functors

One approach to remedying this problem was proposed by MacQueen and Tofte [49] and incor-
porated into the SML/NJ compiler. Their solution is to “re-typecheck” the body of the Apply

functor at every application site, exploiting knowledge of Apply’s actual arguments to propagate
more type information. Thus, under their semantics, typechecking the Res1 module in Figure 1.7
prompts a re-typechecking of Apply given the knowledge that F in this instance has a more specific
type, namely the principal type of Ident. Given this added information, the typechecker can then
observe that Res1.t = Arg.t.7

MacQueen and Tofte essentially argue that since ML’s signature language is too weak to express
the dependency between the result of Apply and its argument, one must inspect the implementation
instead. This is a sensible argument when one has access to Apply’s implementation. In the
context of separate compilation, however, it is inapplicable, as Apply’s implementation may not
be available. Moreover, the MacQueen-Tofte solution is fundamentally non-type-theoretic, in the
sense that signatures in their language do not encapsulate the information about a higher-order
functor that may be needed during typechecking.8 As I am ultimately concerned with developing
an account of ML modules that can be formalized in type theory and that makes sense in the
presence of separate compilation, I will focus attention in this thesis on the following alternative
approach to higher-order functors.

7In practice, the SML/NJ compiler does not actually re-typecheck the body of a higher-order functor every time
it is applied. Rather, it employs an implementation technique that mimics re-typechecking without actually doing
it. This technique, described by Crégut and MacQueen [7], produces a static representation for each functor that
contains all information concerning the “compile-time behavior” of the functor.

8In the SML/NJ implementation, the static representation of a functor (described in the previous footnote)
does encapsulate all information needed about it during typechecking. However, this static representation may not
correspond to any signature that the ML programmer can write. Furthermore, Crégut and MacQueen do not provide
any formal semantics for it [7].

16 CHAPTER 1. THE DESIGN SPACE OF ML MODULES

1.2.5 Leroy’s Applicative Functors

Leroy’s “manifest types” calculus, while second-class, suffers from the same problem as Harper
and Lillibridge’s with respect to poor propagation of type information in higher-order functors
like Apply. In a follow-up paper the following year, however, Leroy [43] presents a solution to the
problem that is quite different from SML/NJ’s. He proposes an “applicative” semantics for functors
as an alternative to Standard ML’s “generative” semantics.

Functors in SML, as well as in the translucent sum and manifest type calculi, behave “genera-
tively,” in the sense that every time a functor is applied it generates fresh abstract types. In other
words, if a functor F is applied to the same argument twice, and the results are bound to A and B,
then A.t and B.t will be considered distinct for any type component t that is specified opaquely
in the result signature of F. For example, since the argument F of the Apply functor has signature
SIG -> SIG, the application of F in the body of Apply results in a module with a fresh abstract
type t. According to this generative semantics, it makes sense that Res1.t is distinct from Arg.t,
because every application of Apply produces a new type t, distinct from all others. Nevertheless,
as I have argued, this is not the desired behavior for the Apply functor.

Leroy proposes instead that, when a functor is applied to the same argument module more
than once, it should produce the same abstract types in each result module. In order to realize
this “applicative” semantics for functors, Leroy extends the dot notation so that, in addition to
projecting types from named structures, one can project types from functor applications.

For example, given that F has signature SIG -> SIG, the principal signature for F(X) in Leroy’s
applicative functor calculus is SIG where type t = F(X).t, which indicates that the type t in
the result of Apply is precisely the one obtained by applying F to X. Thus, substituting Ident for
F and Arg for X, we see that Res1 (defined as Apply(Ident)(Arg)) can under Leroy’s semantics
be given the signature SIG where type t = Ident(Arg).t. The signature of Ident allows us, in
turn, to observe that Ident(Arg).t = Arg.t, so that Res1.t = Arg.t as desired.

It is natural to ask whether Leroy’s solution carries over to the setting of a first-class module
system like Harper and Lillibridge’s. The answer is that it does not, and the reason is that in a
first-class module system it does not in general make sense to write a type like F(X).t. For instance,
in the Harper-Lillibridge system, a functor of signature SIG -> SIG, when applied, may very well
consult some dynamically changing condition—e.g., whether a mouse button is pressed—and the
identity of the type components in the module it returns may depend on that condition. Thus, one
evaluation of F(X) may result in a module whose t component is defined to be int and another
may result in one whose t component is defined to be string. Since the evaluation of F(X) does
not always produce the same t component, it is senseless to refer to the type F(X).t.

This is not an issue, however, for a second-class system like Leroy’s, which obeys the principle of
phase separation. A module system obeying phase separation is one in which every module can be
split into a static part (comprising its type components) and a dynamic part (comprising its term
components), such that the static part does not depend on the dynamic part. In such a system, the
type components of modules cannot depend on any dynamic conditions—they are the same every
time the module is evaluated. Phase separation is ensured in the case of Leroy’s system by the
restricted “second-class” nature of the language in which modules are written. A consequence of
phase separation is that it makes sense to talk about the type F(X).t because the type components
of F(X) are guaranteed to be the same every time it is evaluated.

Although Leroy’s calculus, which serves as the basis of the Objective Caml module system, has
succeeded in popularizing the idea of applicative functors, both the concepts of phase separation
and applicative functor semantics were actually introduced in earlier work by Harper, Mitchell and
Moggi [30]. While their calculus admittedly lacks any account of sealing or translucency, it has

1.2. KEY POINTS AND AXES IN THE DESIGN SPACE OF ML MODULES 17

signature SYMBOL TABLE =

sig

type symbol

val string2symbol : string -> symbol

val symbol2string : symbol -> string

...

end

functor SymbolTable () =

struct

type symbol = int

val table : HashTable.t =

(* allocate internal hash table *)

HashTable.create (initial size, NONE)

fun string2symbol x =

(* lookup (or insert) x *) ...

fun symbol2string n =

(case HashTable.lookup (table, n) of

SOME x => x

| NONE => raise (Fail "bad symbol"))

...

end

:> SYMBOL TABLE

structure ST1 = SymbolTable()

structure ST2 = SymbolTable()

Figure 1.8: Symbol Table Functor Example

been a strong influence on other module languages, not least on the design of my own type system
for modules. I will discuss their calculus’ relationship to mine in more detail in Section 2.2.3.

1.2.6 The Importance of Generativity

The discussion so far might lead one to the conclusion that the applicative semantics for functors is a
clear improvement over the generative semantics, but this is not the case—the two are incomparable.
As we have seen, the applicative semantics allows for the desired propagation of type information in
higher-order functors. For other kinds of functors, however, generativity is essential for guaranteeing
the desired degree of data abstraction.

Consider, for example, the SymbolTable functor shown in Figure 1.8, which takes no arguments
but, when applied, generates a module implementing a symbol table as a hash table. The module
represents symbols as integer indices into the hash table, and thus defines the symbol type to be
int. It defines the hash table itself by invoking the create function from the standard library
HashTable module and binding the result to table. It then defines two functions for converting
between strings and symbols: string2symbol, which inserts a string into the table and returns the
corresponding symbol, and symbol2string, which looks up a symbol in the table and returns the
corresponding string. The latter function raises a Fail exception if the given symbol is invalid.

18 CHAPTER 1. THE DESIGN SPACE OF ML MODULES

Finally, the body of the SymbolTable functor is sealed with the SYMBOL TABLE signature. The
sealing serves two purposes. One is to prevent the actual table from being exported, so that the
implementation in terms of a hash table is not revealed. The other is to prevent the clients of the
functor from being able to observe that symbol is equal to int and attempting to pass off arbitrary
integers as valid indices into the hash table.

The intention of this implementation is that the Fail exception should never be raised because
the only values of type symbol that clients should ever have access to are those obtained through
calls to string2symbol, which are clearly valid symbols. Under an applicative functor semantics,
however, this intention will not be upheld. Specifically, suppose that structures ST1 and ST2

are both defined by calls to SymbolTable, as shown in Figure 1.8. According to the applicative
semantics, ST1.symbol = ST2.symbol because both types are equal to SymbolTable().symbol.
As a result, symbols generated by calls to ST1.string2symbol may be passed as arguments to
ST2.symbol2string, even though such symbols are not necessarily valid indices into ST2’s hash
table and may cause its symbol2string function to raise the Fail exception. Therefore, although
it is perfectly sound to consider the SymbolTable functor applicative, the functor ought to be
considered generative. Every symbol type it produces classifies valid indices into a newly generated
symbol table and is thus semantically incompatible with every other symbol type.

On the other hand, for a functor like the Set functor defined in Figure 1.6, the applicative seman-
tics is perfectly appropriate. Suppose we apply Set to the same item module—e.g., IntItem—twice
and bind the results to IntSet1 and IntSet2. The types IntSet1.set and IntSet2.set both de-
scribe sets of integers ordered according to the same IntItem.compare function, so there is no
reason to distinguish them.

1.2.7 Supporting Both Applicative and Generative Functors

Each of the major dialects of ML, SML and O’Caml, supports only one semantics for functors:
generative or applicative, but not both. The analysis above, however, suggests that since each
semantics is appropriate in different circumstances, it would be preferable to have a module language
that does support both.

The module system of the Moscow ML dialect [56], based to a large extent on Russo’s thesis
work [65], represents one such hybrid design. In Moscow ML, the programmer can choose, when
defining a functor, whether it should behave applicatively or generatively. While the simplicity of
this approach is appealing, it is semantically problematic. In particular, one would expect that
every application of a generative functor produces distinct abstract types, but this is not the case.
For example, if one were to define the SymbolTable functor from Figure 1.8 in Moscow ML and label
it generative, there would be nothing to prevent one from defining another functor SymbolTable’ as
the eta-expansion of SymbolTable—i.e., functor SymbolTable’() = SymbolTable()—and then
labeling SymbolTable’ as applicative. Consequently, different instances of SymbolTable’ would be
considered to have equivalent symbol types, even though “under the hood” they are really different
instances of SymbolTable, which according to generativity should have distinct symbol types. What
is even more troublesome is that the ability to subvert the generativity of SymbolTable in this way
can be further exploited to break the soundness of the type system [9].

The problems with Moscow ML suggest that in order to guarantee that generativity is respected
by the type system, one must restrict the class of functors that may behave applicatively. This is
precisely what Shao does in his type system for ML-style modules [69]. Like Moscow ML, Shao’s
calculus supports both applicative and generative functors. The key idea in Shao’s system is to only
allow functors to be treated as applicative if their bodies are transparent. (Correspondingly, Shao

1.2. KEY POINTS AND AXES IN THE DESIGN SPACE OF ML MODULES 19

refers to applicative functors as “transparent” and generative functors as “opaque.”) As a result,
the eta-expansion of SymbolTable from the previous paragraph could not be labeled as applicative
in Shao’s system because the principal signature of its body is SYMBOL TABLE, which specifies the
symbol type opaquely.

Although Shao’s approach ensures that generativity is respected, I argue that it is overly re-
strictive. For example, the Set functor from Figure 1.6 could not be treated as applicative in Shao’s
system, at least not as written, because its body is sealed with an abstract interface. In the case
of our implementation of sets as lists, we can work around this problem by hoisting the sealing
outside of the functor. In other words, we can leave the body of the functor alone and instead seal
the functor itself with the signature

(Item : COMPARABLE) -> SET where type item = Item.item

Since the sealing no longer occurs inside the functor body, the body has a transparent signature,
and thus Shao’s system will treat the functor as applicative.

However, this technique does not always apply. For instance, suppose that we define a new
functor implementation of sets, Set’, in which the set type is defined by an ML datatype dec-
laration instead of as an abbreviation for item list. Types defined by datatype declarations in
ML are abstract and distinct from all other types. Therefore, even without explicitly sealing it, the
body of the Set’ functor will contain an opaque set type, and Shao’s type system will treat Set’
as generative. Semantically speaking, however, there is no reason why Set’ should not behave
applicatively, since repeated application of Set’ to the same item module produces modules with
perfectly compatible set types.

To summarize, whereas Moscow ML allows one to write too many applicative functors, Shao’s
language allows one to write too few.

1.2.8 Notions of Module Equivalence

In the above discussion, I have defined applicative semantics of functors informally by saying that
a functor behaves applicatively if, when applied to the same module twice, it produces results with
equivalent type components. I have implicitly taken for granted in this definition that “the same
module” has some agreed-upon meaning. In fact, however, the manner in which equivalence of
modules is defined is yet another axis along which several variants of the ML module system differ.

In Leroy’s applicative functor calculus (and hence in O’Caml), module equivalence is syntactic:
two modules are equivalent only if they have the same name. For example, module X is equivalent to
itself but not to any other module Y, even if Y is defined by the module binding structure Y = X.
Consequently, supposing that functor F returns an opaque type t in its result, then F(X).t is
equivalent to itself, but not to F(Y).t. This is unfortunate, as bindings like structure Y = X are
commonly used in ML programming in order to give an abbreviated name to a module that will
be frequently referred to. Distinguishing between a module name and its abbreviation, based not
on any semantic distinction but on a purely syntactic consideration, makes for a somewhat brittle
semantics.9

Connected to Leroy’s syntactic characterization of module equivalence is his requirement that
functor applications appearing inside types be in “named form.” For example, F(X).t is a well-
formed type, but F(struct ... end).t is not. This named form restriction is useful in order to
avoid having the well-formedness of a program depend on the syntactic equivalence of arbitrary
module expressions, which is a rather fragile property.

9See Section 4.2.6 for another example of peculiar behavior due to the syntactic nature of O’Caml typechecking.

20 CHAPTER 1. THE DESIGN SPACE OF ML MODULES

A consequence of the restriction, however, is that there are some higher-order functors which
cannot be given fully expressive signatures in O’Caml. For instance, to take an example from
Leroy [43], suppose we tweak the Apply functor so that instead of returning F(X), it returns
F(struct type t = X.t * X.t; val x = (X.x,X.x) end). Due to the named form restriction,
the best result signature we can give to this version of the Apply functor is the opaque SIG, which
is precisely how the functor body would be classified in the absence of applicative functors. Thus,
in some cases at least, the named form restriction defeats the purpose of introducing applicative
functors in the first place.

An approach several people have suggested for remedying this problem is to abandon the named
form restriction and employ a more semantic definition of module equivalence. But which definition
is best? One is full observational equivalence, or some conservative approximation thereof, but such
a definition complicates the type structure significantly by making type equivalence depend on a
notion of term equivalence. An alternative, which is employed by Shao [69], Russo [65], and Harper,
Mitchell and Moggi [30] in their respective module languages, is to treat module equivalence as
purely “static,” meaning that it only looks at the type components of modules, not their value
components, and thus deems two modules equivalent if their type components are equivalent.10

Static module equivalence is sensible in the presence of phase separation, discussed above in
Section 1.2.5. If modules obey phase separation, then the identity of a type of the form F(M).t,
even where M is an arbitrary module expression (such as struct ... end), depends only on the
static parts of F and M. As the static part of F is clearly equivalent to itself, the equivalence
of F(M).t and F(N).t may be decided just by looking at the static parts of M and N, i.e., by
comparing M and N according to a notion of static module equivalence.

In addition to avoiding the need for truly dependent types, static module equivalence is the
most liberal notion of module equivalence that is still sound. While Shao and Russo both take it
as axiomatic that this implies that static module equivalence is the “right” notion, I would argue
that this is not necessarily the case. For an example, let us return once again to our trusty Set

functor. Say that we apply Set to two different item modules, which both define the type item

to be int, but which provide different integer comparison functions. According to static module
equivalence, the set types in the resulting modules should be equivalent, because they result from
applying the same Set functor to modules whose type components are equivalent. In fact, however,
the resulting set types are not compatible because they describe sets ordered in different ways.
Sets constructed from one module will not necessarily meet the representation invariants assumed
by the operations of the other module. Thus, treating the two set types as equivalent is clearly,
in some sense, a violation of data abstraction. It is not a complete violation of data abstraction,
though, because the implementation of sets as lists remains hidden to clients of the Set functor.
So what kind of violation is it? One of the key contributions of the following chapter is to give a
clear and satisfying answer to this question.

1.2.9 Conclusion

The goal of this section has been to give the reader a sense of the key questions that arise in the
design of the ML module system, as well as some of the answers that have been proposed. If the
debates about first-class vs. second-class modules, applicative vs. generative functor semantics, and
syntactic vs. static module equivalence leave one’s head spinning with tradeoffs, that is a completely
natural response to the diverse, fragmented state of the module system literature. The next chapter
should hopefully provide an antidote.

10The manner in which one extracts the “type components” of arbitrary module expressions (including functors)
is called “phase-splitting” and will be made precise in Chapter 4.

Chapter 2

A Unifying Account of ML Modules

The previous chapter gave a brief survey of several concepts that stand as key points of contention
in the design of the ML module system, including applicative functors, generativity, and first-class
modules. In this chapter I will go deeper, in an attempt to understand from first principles how
the data abstraction afforded by the ML module system actually works. This analysis will produce
a unifying account of ML modules within which the differences between existing dialects can be
more coherently understood. This account will then guide the design of my type system for ML
modules, which I describe at a high level in Section 2.2 and more formally in Chapters 3 and 4.

2.1 An Analysis of ML-Style Modularity

As illustrated in a number of examples from Chapter 1, a central feature of ML modules that
distinguishes them from modularity mechanisms in most other languages is that they contain
type components. Each type component of a module may be exported either with or without its
definition (that is, “opaquely” or “transparently”). Furthermore, the type components of a module
may be projected out from it in order to form type expressions such as IntSet.set.

The analysis in this section is centered around the following simple question:

From which modules should one be allowed to project out the type components?

As we have already seen, this is a question to which different variants of the ML module system give
different answers. Standard ML, for instance, restricts the answer to modules that are in named
form (e.g., A.B.C), whereas O’Caml extends SML’s answer to include functor applications whose
constituent expressions are in named form, like Set(IntItem). Shao and Russo extend this further
to allow projections from general module expressions such as Set(struct ... end).

The question is one that arises naturally in the design of a module system. It is typically
addressed, however, not in its own right, but only insofar as is necessary in order to bolster other
design decisions, such as whether the module language is to support applicative or generative
semantics for functors or whether it is to treat modules as first- or second-class. In this section I
will attempt instead to broach the question directly, independent of any particular design goals, in
the hope of achieving a more general, more satisfying answer.

2.1.1 Projectibility and Purity

Let us say that a module expression is considered “projectible” if one is permitted to project out its
type components in order to form types. Projectibility is not an absolute condition; in designing our

22 CHAPTER 2. A UNIFYING ACCOUNT OF ML MODULES

structure X = M
...

structure Y = M
...

M is projectible ⇐⇒ X.t = M.t = Y.t

Figure 2.1: Scenario Illustrating Consequences of Projectibility

module language we may define it as we like. The goal here is to understand what considerations
should inform our definition.

To begin with, is there any reason not to allow all modules to be treated as projectible? Well,
if the type M.t is to have any meaning in a call-by-value language, then it is “the type bound to
t in the module value resulting from evaluating M.” Since type equivalence is reflexive, it can only
make sense to write M.t if we are sure that every time we evaluate M we will in fact get the same
type component t in the result, i.e., if we are sure that M.t is really equal to M.t. At least in the
context of a first-class module language, not every module expression M has this property.1

For example, consider the following modified version of the first-class module example from
Section 1.2.3:

if buttonIsSelected() then LinkedList else HashTable (MGUI)

This expression checks whether a button in a GUI has been selected and, based on that information,
returns one module implementing dictionaries or another. Assume both LinkedList and HashTable

export some type—let’s call it t—that will serve as the type of dictionaries, and assume as well
that each module implements this type differently. The type MGUI.t does not make any sense.
One evaluation of MGUI may occur at a time when the button in the GUI is selected and may thus
produce LinkedList, while another evaluation may occur at a time when the button in the GUI
is not selected, resulting in HashTable. As these module values have different bindings for t, the
type MGUI.t is not well-defined.

So we see that there are certain module expressions like MGUI that it does not make sense to treat
as projectible. Why is this interesting? Because, for modules that can be considered projectible,
more propagation of type information is possible. In particular, consider the programming scenario
shown in Figure 2.1, which plays such an important, recurring role in my analysis that I present it
here in a somewhat generic form. In this scenario, there are two module variables X and Y that are
defined in separate places in a program by the same module expression M, which provides a type
component t. The point of this scenario is the following: In a call-by-value language like ML, the
module variables X and Y will be bound to the module value resulting from the evaluation of M. If
M is a projectible expression, then every time it is evaluated we can be assured that the resulting
module value contains the same binding for the t component, and thus the types X.t and Y.t can
be considered equivalent because they are both equal (by definition) to M.t. Conversely, if we
were to substitute the non-projectible module expression MGUI (defined above) in place of M, then
it would be unsound to treat X.t and Y.t as equivalent types.

1It should be understood that M here is not necessarily a module variable/name like IntSet, but may stand for
any expression in the language of modules, examples of which we will see shortly. The distinction between module
variables and arbitrary module expressions will be denoted by writing the former in typewriter font and representing
the latter with metavariables like M written in roman font.

2.1. AN ANALYSIS OF ML-STYLE MODULARITY 23

In general, how can we decide whether it is sound to consider a module expression M projectible?
One approach is to require that M be “pure,” i.e., free of all computational effects, in which case
each evaluation of M should in fact compute the same module value. The module expression MGUI

is not pure because, each time it is evaluated, it consults the state of the GUI; like dereferencing a
pointer to a mutable memory cell, this constitutes an effectful operation.

What kinds of module expressions are pure? All module values are clearly pure, including
anonymous structure values such as

struct type t = int; val x = 3 end (MVAL)

as well as module variables like LinkedList, since variables are values in a call-by-value language.
Projections from pure module expressions are pure as well, such as M.Substructure where M is
a pure expression.

It is not really necessary, though, for a module expression to be completely pure in order for it
to be soundly considered projectible. For example, the structure expression

struct type t = int; val x = ref 3 end (MREF)

is clearly not pure in the usual sense. Specifically, the binding for the x component has the effect of
allocating a new memory cell and returning a pointer to it, and every time ref 3 is evaluated it will
return a different pointer. Nonetheless, it is fine to treat MREF as projectible, as its t component
will always be defined by the same type int.

This example illustrates that, for the purpose of gauging whether it is sound to project the
type components from a module expression, all that really matters is purity with respect to the type
components. Let us thus distinguish two notions of purity, “dynamic purity” and “static purity.”
A dynamically pure module is completely free of computational effects. A statically pure module,
on the other hand, may have computational effects, but the presence of effects does not influence
the identities of the module’s type components. Dynamic purity clearly entails static purity, but
static purity is all that is required in order for a module to be soundly considered projectible.2

2.1.2 Phase Separation

The astute reader may have noticed that the module expression MGUI shown above is subtly
different from Lillibridge’s example, which I presented in Section 1.2.3. The original version is as
follows:

if n < 20 then LinkedList else HashTable (MDICT)

The difference in the conditional test between MGUI and MDICT is a significant one. Instead of
querying the state of the GUI, MDICT checks whether n is less than 20, which is a pure operation!
Consider plugging MDICT in for M in the scenario of Figure 2.1 (where I assume static scoping, so
that both copies of MDICT are referring to the same variable n.) Variables are values, so although
it is impossible to tell statically whether X.t and Y.t will equal LinkedList.t or HashTable.t,
it is clear that they will both be defined by the same one. This example illustrates that the static
purity of an expression may depend on the dynamic purity of its free variables; the static purity of
MDICT depends on the dynamic purity of n, i.e., that n is instantiated by some value.

2A previous version of this work (Dreyer et al. [12]) used the terms “statically pure” and “dynamically pure”
to mean something completely different, an unfortunate artifact of the overloadability of the terms “static” and
“dynamic.” For those familiar with the terminology of our previous work, see Section 2.3 for a detailed comparison.

24 CHAPTER 2. A UNIFYING ACCOUNT OF ML MODULES

GUI

DICTREF VAL

Dynamically Pure

Statically Pure

MM M

M

Separable

Figure 2.2: Classifications of Module Expressions

My analysis thus far implies that it is sound to treat this pure version of the dictionary module
expression as projectible. However, permitting one to project the type t from this expression
means that the language we are designing must support a form of dependent type, that is, a type
whose identity depends on run-time information (e.g., the value of n) and cannot be determined
statically.3 Dependent types severely complicate the type structure of a language, and ML does
not support them. To introduce them vicariously by allowing module expressions like MDICT to
be considered projectible would constitute a major extension to the power and complexity of ML,
which is not the purpose of the module system.

To avoid the need for true dependent types, one can place an additional requirement on pro-
jectible module expressions, which I call “phase-separability” (or “separability,” for short). A
module expression is phase-separable if the identities of its type components do not depend, even
in a pure manner, on any dynamic values.4 Separability ensures not only that a module expression
is soundly projectible, but also that its type components are statically well-determined and may
thus be projected out without fundamentally expanding the type structure of ML. Of the module
expression examples examined above, MVAL and MREF are separable, while MGUI and MDICT are
not.

To summarize the discussion so far, Figure 2.2 illustrates the relationships between the classes
of statically pure, dynamically pure, and separable module expressions, as well as how the modules
MGUI through MDICT fit into the picture. (It is probably worth the reader’s while to stop and
check that Figure 2.2 is fully understood before continuing.5)

All the variants of the ML module system that I have considered in Chapter 1 require projectible
modules to be separable, and the type system for modules that I will describe in Chapters 3 and 4
makes this requirement as well. For the remainder of my high-level analysis, however, I will ignore
the practical concern that motivates this requirement, namely the desire to avoid dependent types.
I will study how both static purity and separability are preserved (or not preserved) by the features

3One may ask: Aren’t all types of the form M.t dependent types, since M may contain arbitrary code? The answer
is no: M.t is not really dependent unless the identity of M’s t component relies on the evaluation of code in M, as is
the case for MDICT.t.

4The term phase-separable originates from Harper, Mitchell and Moggi’s view of modules as having a compile-time
phase (or static part) and a run-time phase (or dynamic part) [30]. For structures, the static part comprises the type
components and the dynamic part comprises the term components. For functors, the static and dynamic parts are a
bit trickier to define, but I will do so precisely in Chapter 4.

5I leave it as an (easy) exercise to the reader to concoct an example of a module expression that is statically pure,
but neither separable nor dynamically pure. The picture in Figure 2.2 makes room for this class of modules, but they
do not play an interesting role in the analysis.

2.1. AN ANALYSIS OF ML-STYLE MODULARITY 25

of the ML module system, but I will only require projectible modules to be statically pure, not
necessarily separable. Tracking both static purity and separability affords us a richer set of module
classifications, which in turn allows for a more nuanced account of data abstraction. Precisely what
I mean by “more nuanced” will be made clear in the next few sections. By giving ourselves more
freedom within this theoretical analysis, we will be able to see more clearly (in Section 2.2.1) what
is lost by restricting projectibility in practice to separable modules.

2.1.3 Module Equivalence

This analysis has been driven by the question of how to define projectibility, but an important,
closely related question is how to define type equivalence. Suppose we are given two projectible
modules M and N, which both provide a type component t. How do we determine if M.t = N.t?
If the signatures of M and N specify the identity of t to be transparently equal to types A and B,
respectively, then the problem can be reduced to asking whether A and B are equivalent.

Suppose, though, that the signatures of M and N specify t opaquely. In that case, the an-
swer is that M.t = N.t so long as M and N are “statically equivalent,” i.e., they evaluate to
modules with equivalent type components. In fact, the notion of static equivalence has already
been introduced implicitly in the definition of static purity—statically pure modules are precisely
those modules that are statically equivalent to themselves. An alternative, more restrictive notion
of module equivalence is “dynamic equivalence.” Let us say that two modules are “dynamically
equivalent” if they evaluate to module values that are equivalent both in their type and value compo-
nents. Dynamic equivalence was implicitly introduced above when I defined the notion of dynamic
purity—dynamically pure modules are precisely those modules that are dynamically equivalent to
themselves.

Just as the static purity of an expression may depend in general on the dynamic purity of
its free variables, static equivalence depends on dynamic equivalence. For example, the module
expression MDICT defined above is statically (and dynamically) equivalent to itself, but only under
dynamically equivalent instantations of its free variable n.6 The type components of separable
module expressions, on the other hand, are by definition indifferent to the dynamic components
of their free variables. As a result, a separable module is statically equivalent to itself under
instantiations of its free variables that are statically equivalent, regardless of whether they are
dynamically equivalent.

In order to keep the analysis at a rather informal, intuitive level, I have been deliberately
vague about exactly what it means to have “equivalent type components” or “equivalent value
components,” assuming some general intuition on the part of the reader. In Chapter 4, we will see
a concrete module calculus in which these notions are given formal, albeit syntactic and necessarily
conservative, realizations. In the meantime, terms like “separable” and “statically equivalent”
should be taken for the conceptual picture they paint, but not for anything more formally semantic.

2.1.4 Total vs. Partial Functors

How do the module properties of purity and separability interact with the mechanisms that are
shared by all dialects of the ML module system, namely sealing and functors? Let us begin with
functors.

6One can think of the integer n here as a module that just contains a single value component of type int.
Correspondingly, any two integers are trivially statically equivalent because they have no type components at all. To
be dynamically equivalent, however, they must be equal integers.

26 CHAPTER 2. A UNIFYING ACCOUNT OF ML MODULES

To track purity/separability of module expressions in the presence of functors, the chief difficulty
is deciding whether a functor application is pure/separable or not, given just the signature of the
functor but not its implementation. A common method for tracking purity and effects in the
presence of ordinary functions is to distinguish between the types of “total” and “partial” functions,
where total functions are those whose bodies are pure and partial functions are those whose bodies
are (potentially) impure.

Lifting this idea to the module level, let us distinguish four types of functors, corresponding to
the four different module classifications depicted in Figure 2.2:

1. “separably total” functors, whose bodies are separable but may be dynamically impure

2. “dynamically total” functors, whose bodies are dynamically pure but may be inseparable

3. “statically total” functors, whose bodies are statically pure but may be inseparable and/or
dynamically impure

4. “partial” functors, whose bodies may be statically impure

It should be clear from this definition that these functor classifications satisfy the same subset
relations among themselves as do the properties of separability, dynamic purity, static purity, and
static impurity, respectively.

A pleasing property of the total/partial classification is that it corresponds precisely to the
distinction between applicative and generative semantics for functors described in Chapter 1. To
begin with, say we have a functor variable F whose implementation is compiled separately but whose
result signature specifies an opaque type component t, and say that we apply F to a separable
module expression N.7 If F’s type is known to be separably total, that means the type components
of F’s body are statically well-determined, assuming the type components of its argument are as
well. Thus, since N is separable, F(N) is separable, too. On the other hand, if F’s type is only
known to be partial, then F(N) may be impure, let alone inseparable.

Plugging F(N) in for M in our scenario from Figure 2.1, we see that it is sound to consider X.t
equal to Y.t when F is separably total, but potentially unsound to do so when F is partial. In other
words, separably total functors behave applicatively, and partial functors behave generatively. It
is reassuring that one of the major axes in the design space of modules can be understood simply
in terms of total vs. partial functions.

Now what about functors that are statically total, but not separably total? Interestingly,
statically total functors also exhibit applicative semantics, but only when applied to dynamically
pure arguments! To see this, suppose that we have the same scenario as above with F and N, except
where F is statically total and N is statically pure. We might imagine that, just as separably total
functors take separable arguments to separable results, statically total functors take statically pure
arguments to statically pure results. But this is not the case. To see why, let N be the expression

if buttonIsSelected()

then struct val n = 10 end

else struct val n = 30 end

and let F be defined by the declaration

functor F(Arg : sig val n : int end) =

let val n = Arg.n in MDICT end

7In general, the functor being applied need not be a variable, it may be an arbitrary expression F of functor type.
I restrict attention here to the case when F is a variable, mainly for the sake of simplicity, and also because it forces
us to look at F’s interface and not at its implementation to determine whether its application is pure.

2.1. AN ANALYSIS OF ML-STYLE MODULARITY 27

If F is: And N is: Then F(N) is:
separably total separable separable
separably total statically pure statically pure

dynamically total dynamically pure dynamically pure
statically total dynamically pure statically pure

If F is: And N1 and N2 are: Then F(N1) and F(N2) are:
separably total statically equivalent statically equivalent

dynamically total dynamically equivalent dynamically equivalent
statically total dynamically equivalent statically equivalent

Figure 2.3: Semantic Behavior of Different Types of Functors

Recall that MDICT tests whether n is less than 20 and, depending on the result, returns either
LinkedList or HashTable. This functor F is statically total because its body is statically pure.
Since the argument N does not have any type components, N is trivially statically pure as well.
However, the application F(N) is not pure in any sense; depending on whether the GUI button is
selected, it may return LinkedList or it may return HashTable, which differ in both their static
and dynamic components.

The intuitive reason that statically total functors do not preserve the static purity of their
arguments is simple. As pointed out in Section 2.1.2, the static purity of an expression may
depend on the dynamic purity of its free variables; in particular, the static purity of MDICT rests
on the dynamic purity of Arg.n. Thus, so long as a statically total functor like F is applied to a
dynamically pure argument (which N in this example was not), the result will be statically pure
and the functor will behave applicatively. Similarly, it is easy to see that the application of a
dynamically total functor to a dynamically pure argument yields a dynamically pure result; but
nothing, for instance, can be said about the application of a statically or dynamically total functor
to a separable argument.

Figure 2.3 summarizes the behavior of different types of functors on different types of arguments.
The table only lists functor-argument pairs for which something positive can be stated about the
result. In addition to the cases mentioned so far, the table includes the application of a separably
total functor to a statically pure argument. Such an application must produce a statically pure
result, because the separability of the functor body ensures that the type components of the result
can only depend on the type components of the argument, which by assumption are pure.

Figure 2.3 also describes how total functors preserve equivalence of their arguments, which is
unsurprisingly in a direct correspondence with how they preserve purity of their arguments. For
example, just as statically total functors take dynamically pure arguments to statically pure results,
they also take dynamically equivalent arguments to statically equivalent results. Clearly, though, a
statically total functor like the one defining F above will not necessarily produce statically equivalent
results given arguments that are merely statically equivalent.

2.1.5 Sealing as a Form of Information Hiding

Now let us turn to the sealing mechanism. Returning to the scenario from Figure 2.1, suppose we
plug in for M the sealed module expression

28 CHAPTER 2. A UNIFYING ACCOUNT OF ML MODULES

struct type set = int list ... end :> INT SET (MSEAL)

where the signature INT SET holds the definition of the set type abstract. This expression was
used to define the IntSet module in Chapter 1. As the sealing in MSEAL does not have any actual
run-time effect, the evaluation of MSEAL will always result in a module value that defines set to
be the same type, int list. Thus, MSEAL is an example of a separable module expression, and it
is perfectly sound to treat it as projectible.

Unfortunately, as the scenario also illustrates, treating MSEAL as projectible has the effect of
violating data abstraction! Specifically, X.set and Y.set will be deemed equivalent, even though
nothing about the interface INT SET with which X’s and Y’s implementations were independently
sealed indicates anything that would connect their respective set types. In order to make any
claim that our type system provides support for data abstraction, we must therefore ensure that
sealed module expressions like MSEAL, regardless of whether they are separable, are not considered
projectible. Indeed, as one would expect, no actual variants of the ML module system permit such
sealed module expressions to appear inside types.

How can we account for this dissonance between separability and projectibility with respect to
sealed module expressions? One view is to say that the whole point of sealing is to prevent one from
using a module in ways that are perfectly sound, but that violate abstraction. It should therefore
not come as a surprise that sealing forces a distinction to be made between the class of projectible
modules, from which one is allowed to project types, and the class of pure/separable modules, from
which it would be sound to be able to project types.

Another way to account for the dissonance is to assert that in fact we have made a mistake:
sealed module expressions like MSEAL should not even be considered pure, let alone projectible.
Sealing should render a module expression statically impure, because every time one evaluates a
sealed module expression at run time, one generates new and different abstract types. That sealed
module expressions must be considered non-projectible then follows as a matter of soundness.

The point of dispute between these views, i.e., the question of whether or not sealing should be
treated as an effectful operation, is not merely a pedantic one. It makes a real difference because it
affects whether functors that contain sealing in their bodies are deemed total or partial. Under the
first interpretation of sealing as a no-op that has no effect on the purity of a module expression,
one can employ arbitrary sealing in the body of a functor, and the functor may still be considered
total/applicative, so long as its body is otherwise pure. Under an effectful interpretation of sealing,
however, any sealing in the body of a functor renders the functor partial/generative because its
body is considered impure.

The dispute could be settled quite easily if one of the interpretations led to a semantics for
functor-sealing interaction that was clearly preferable, but neither one does. We have already seen
examples in Chapter 1 to support this observation. Take the Set functor, for example. Its body is
sealed, and yet, as I argued in Section 1.2.7, it is appropriate to consider the functor applicative.
On the other hand, recall the SymbolTable functor from Section 1.2.6. Its body is sealed as well,
but it is necessary for the functor to be considered generative in order to guarantee the program
invariant that the Fail exception will never be raised.

The solution that I propose, then, is to accept that there are multiple varieties of sealing, which
are distinguished from one another by how much information they hide about the module being
sealed. Figure 2.4 illustrates the semantic effects of several varieties of sealing when applied to a
separable module M.

The weakest form of sealing, which I call “basic sealing” and denote by M :> SIG, seals M with
the signature SIG but does not hide any information about M’s separability. The only effect of

2.1. AN ANALYSIS OF ML-STYLE MODULARITY 29

M :> SIG

Statically Pure

impure(M :> SIG)Separable

insep(M :> SIG)Projectible

M

Figure 2.4: Semantic Effects of Sealing

basic sealing is to render the module non-projectible, thus ensuring that the identities of any type
components specified opaquely in the signature SIG are held abstract. In contrast, the strongest
form of sealing, which I call “impure sealing” and denote by impure(M :> SIG), not only renders
the module non-projectible, but also hides the fact that it is statically pure. Consequently, while
basic sealing may be used in the body of a separably total functor, impure sealing may only be
used in the body of a partial functor.

While the semantics of the basic and impure forms of sealing correspond precisely to the two
interpretations of sealing discussed above, thinking about sealing as a form of information hiding
suggests yet another form of sealing in between them, which I call “inseparable sealing” and denote
by insep(M :> SIG). As one might surmise from the name, inseparable sealing hides the fact that
M is separable, but does not obscure the knowledge that M is statically or dynamically pure.8 As
a result, employing inseparable sealing in the body of a functor forces the functor to be considered
at best statically or dynamically total, but not separably total.

Each of these three different forms of sealing can be semantically desirable in different circum-
stances. Consider, for instance, the SymbolTable functor. Every time the body of that functor
is evaluated, it generates a new hash table in memory and, along with it, a new type of integer
symbols that work as valid indices into that particular hash table. Of course, there is no way
in ML to define a subtype of integers that only contains valid indices into a hash table. Impure
sealing, however, allows us to mimic such a definition. By using impure sealing in the body of the
SymbolTable functor, we will not only hide the definition of the symbol type, but also indicate
that the symbol type is dependent, at least notionally, on a data structure created at run time by
an effectful operation.

What about the Set functor? The purpose of sealing its body is not to tie the set type to any
run-time state, for the Set functor is purely functional and has no run-time state. Thus, impure
sealing is inappropriate. In writing the Set functor, we would really like to define set as the type
of Item.item list’s that are ordered according to the Item.compare function. We cannot write
such a type definition, of course, because ML lacks dependent types. Inseparable sealing, however,
allows us to mimic it. By using inseparable sealing in the body of the Set functor, we not only
hide the definition of the set type, but also “give the impression” that the set type depends on

8One can imagine another intermediate form of sealing, “dynamically impure sealing,” which hides the fact that
the underlying module is dynamically pure—if that is even true in the first place—but does not obscure whether the
module is separable or statically pure. I have not included this variety of sealing in the analysis only because I have
not yet seen any practical use for it.

30 CHAPTER 2. A UNIFYING ACCOUNT OF ML MODULES

the entire functor argument, not only on the item type but also on the compare function, i.e.,
that set is a dependent type. As a consequence, the Set functor will be considered statically (but
not separably) total, and thus it will only return equivalent set types when given dynamically
equivalent arguments, i.e., when given equivalent item types and equivalent compare functions.

If we were to use basic sealing instead of inseparable sealing in the body of the Set functor, then
the functor would be considered separably total and would return statically equivalent results when
given merely statically equivalent arguments. As pointed out in Section 1.2.6, this can lead to what
amounts to a violation of data abstraction. In particular, if we were to apply the functor to two item
modules, IntLt and IntGt, which both define the item type to be int, but which provide different
comparison functions on integers (one < and one >), then Set(IntLt).set and Set(IntGt).set

would be deemed equivalent types. They are not, however, semantically compatible types: values
of the first type are integer lists ordered by < and values of the second type are integer lists ordered
by >. Although passing values of type Set(IntLt).set to the insert function from Set(IntGt)

does not constitute a violation of soundness, it does constitute a violation of abstraction.

In short, the inseparable and impure forms of sealing are useful for pretending that a type is
dependent on a dynamic value or on the result of a dynamic effectful computation, respectively.
Conversely, basic sealing is useful when no pretensions of dependent types are required and the sole
purpose of the sealing is to hide the identity of a type. One such situation arises when sealing a
module that is completely self-contained and does not depend at all on the context in which it is
defined. Another example is the type-theoretic interpretation of ML datatype declarations given
by Harper and Stone [32]. To encode the semantics that each datatype declaration in ML generates
a distinct abstract type, Harper and Stone translate datatype declarations into bindings of sealed
modules. These modules have a highly restricted form: they provide a single recursive type, along
with two coercion functions, one a “fold” into the recursive type and the other an “unfold” out of
the recursive type. While a datatype module may depend on other types, it cannot depend on any
dynamic values. The purpose of sealing it is solely to hide the implementation of the underlying
data type as a recursive type, so the best choice for interpreting datatype declarations would be
to use basic sealing.

To conclude this discussion, it is worth noting a complaint that is sometimes leveled against both
the basic and inseparable forms of sealing, namely that they interact strangely with beta-reduction.
For example, if we plug Set(IntLt) in for M in our scenario from Figure 2.1, then X.set will equal
Y.set. If on the other hand we substitute for M the result of beta-reducing Set(IntLt), then X.set

will not equal Y.set, because each set type will result from a separately sealed implementation of
sets. As a consequence, in the presence of basic and/or inseparable sealing, beta-reduction of total
functor applications is not guaranteed to be type-preserving.

From a methodological standpoint, the interaction of basic and inseparable sealing with beta-
reduction is admittedly somewhat unpleasant. I would argue, however, that this deficiency is
mitigated by the more accurate propagation of type information that these sealing constructs
afford (when the full power of impure sealing is not required). Moreover, as far as type safety
of the module language is concerned, the lack of type preservation in the presence of basic and
inseparable sealing is not a serious issue—sealing has no actual run-time effect, so we can simply
erase all uses of it before executing the program.

2.1.6 Squeezing the Balloon

I have argued that several different levels of information hiding, expressed by different varieties
of sealing, are useful and appropriate in different circumstances. In the interest of minimality,

2.1. AN ANALYSIS OF ML-STYLE MODULARITY 31

though, it is reasonable to ask whether such an explosion of sealing constructs is truly necessary.
In particular, I have motivated the different kinds of sealing in terms of how they force different
classifications for the functors in whose bodies they appear—using inseparable sealing in the body
of the Set functor forces it to be classified as statically total, using impure sealing in the body of
the SymbolTable functor forces it to be classified as partial, etc. Instead, why not dispense with
the multiple forms of sealing, and instead allow the Set (resp. SymbolTable) functor to be declared
as statically total (resp. partial) directly?

The answer is that this is a perfectly valid, and essentially equivalent, alternative. If we assume
inseparable and impure sealing mechanisms as primitive (as we have), then we can encode a stati-
cally total or partial functor declaration as one that implicitly seals its body with the appropriate
level of sealing. Conversely, if we assume basic sealing as the only primitive form of sealing, but
allow different primitive forms of functor declaration, then we can encode impure(M :> SIG) as

let partialfunctor F() = M :> SIG in F() end

and we can encode insep(M :> SIG) analogously using a statically total functor declaration. In
short, there is more than one way to squeeze the balloon when it comes to supporting different
levels of information hiding. Under the latter approach, however, it is important that basic sealing
is the one we take as primitive, for that is the weakest form of sealing and it cannot be encoded
directly in terms of the other forms of sealing.

The main reason I have chosen to distinguish different forms of sealing is to emphasize the fact
that, while each modern variant of the ML module system supports exactly one form of sealing, there
is no universally accepted semantics of sealing. In some dialects “sealing” means basic sealing, and
in other dialects it means impure sealing. (See Section 2.2.1 for examples.) The semantic framework
I have developed here clarifies how the different interpretations of the “sealing” construct relate to
one another.

2.1.7 Projectibility and Transparency

Based on the analysis thus far, we can say that a module expression is projectible whenever it
is statically pure and free of sealing. This final section of my analysis of ML modularity shows
how we may also characterize projectibility in terms of transparency. It is based on the following
observation: it is fine to treat any module expression as projectible if it has a transparent signature.

The basis for this observation is simple: if a module expression M has a transparent signature,
then that signature uniquely specifies the identities of M’s type components. As the type compo-
nents of M must therefore be the same every time it is evaluated, M may at least be considered
statically pure. Furthermore, if we plug M into the scenario from Figure 2.1, then we see that it
doesn’t really matter whether M is considered projectible or not because, either way, the trans-
parent definition of t in M’s signature ensures that X.t will equal Y.t. Certainly, treating M as
projectible does not break any abstraction guarantees.

Although it is unclear whether treating transparent modules as projectible serves any practical
purpose, the observation that such modules are statically pure is definitely important. For example,
suppose there is some functor of partial signature called F, and say that we define the following
functors that make use of it:

functor G (X : SIG) = (struct ... F(X) ... end :> TSIG)

functor OpaqueG (X : SIG) = G(X) :> OSIG

Here, TSIG is a transparent signature and OSIG is a signature with some opaque type specifications.
The idea here is that G’s body may be impure in the sense that its calls to F may have computational

32 CHAPTER 2. A UNIFYING ACCOUNT OF ML MODULES

effects and result in the creation of abstract types, but none of these impurities or abstract types
are visible to the outside of G because its body is sealed with the transparent signature TSIG. It is
therefore safe to treat G as total, and consequently it is safe to treat OpaqueG as total, too.

The reader may wonder: what is the point of OpaqueG in this example? Well, in some sense,
whether G is treated as total or partial does not matter very much for G itself—regardless, appli-
cations of G will result in modules with equivalent type components because its result signature is
transparent. Not so, however, for OpaqueG. If G is considered partial, i.e., if we do not observe that
transparent modules are pure, then the body of OpaqueG will be considered impure as well, and
OpaqueG will be treated as partial. In that case, repeated applications of OpaqueG will not result in
modules with equivalent type components because OpaqueG’s result signature is not transparent.
This example illustrates that treating transparent modules as pure is not merely a pedantic issue,
it can have an actual effect on the semantics of data abstraction.

We have seen that transparent modules may be considered projectible. What about the con-
verse: can projectible modules always be given transparent signatures? Indeed. To take a simple
example, if M is a projectible module with signature sig type t end, then clearly M can also
be given the transparent signature sig type t = M.t end, since M’s t component is certainly
equal to M.t. In type-theoretic accounts of ML modules, the act of giving a projectible module a
transparent signature is often referred to as “signature strengthening” [69] or “selfification” [28]. It
is primarily useful in computing a most-precise (or “principal”) signature for M when the identities
of M’s type components cannot otherwise be discerned by examining it, e.g., when M is a variable.

In conclusion, I have shown that projectibility and transparency are ultimately equivalent prop-
erties. This gives us an alternative perspective on projectibility, but it does not mean that we should
abandon our previous characterization of it and use transparency instead as the sole criterion. For
certain modules, notably variables, their transparency is predicated on the existing knowledge that
they are projectible, not the other way around. Nevertheless, if a module does have a transparent
signature, treating it as statically pure is semantically valid and in some cases desirable.

2.2 Fruits of the Analysis

The first section of this chapter has developed informally what one might call an “ML module super-
system” in which distinctions are made between several interesting types of module expressions,
functors, and sealing mechanisms. This super-system is not itself a language design, but it is
useful because it provides a unifying conceptual framework—different dialects of the ML module
system may be understood as conservative approximations of the super-system that only recognize
certain distinctions and only support certain subsets of features. The conservativity of the existing
dialects is due partly to practical concerns such as decidability of typechecking, and partly to
actual weaknesses in these dialects that the super-system enables us to articulate more clearly. In
Section 2.2.1, I will show how the design points discussed in Chapter 1 may be situated in this
chapter’s conceptual framework. In Sections 2.2.2 and 2.2.3, I will describe a new module system
design that is less conservative and supports more features of the super-system than any of the
existing designs while still admitting effective typechecking.

2.2.1 Understanding the Existing ML Module System Designs

Before re-examining the existing ML dialects individually, it is important to note that there is one
sense in which they are all conservative—namely, they all require projectible modules to be not just
statically pure but also phase-separable. As discussed in Section 2.1.2, this requirement ensures that

2.2. FRUITS OF THE ANALYSIS 33

types projected from module expressions are normal, non-dependent types. As a result, however,
modules like MDICT that are statically pure but inseparable are treated the same as modules
like MGUI that are impure. In other words, the distinction between “inseparable” and “impure”
becomes moot. Inseparable sealing has the same effect as impure sealing, and the only functor
classifications worth tracking are “separably total” and “partial.” (Hence, for the remainder of
this section, I will use “total” as shorthand for “separably total.”) Furthermore, static equivalence
of separable modules only depends on the static equivalence of their free variables, so dynamic
equivalence does not play a part in the static semantics of the existing dialects. This makes sense:
module equivalence is only relevant to deciding type equivalence; since types are non-dependent in
the existing dialects, whether two types are equivalent cannot depend on the equivalence of any
dynamic values.

While restricting projectibility to separable modules clearly simplifies the static semantics of
the language, it also induces a loss of expressiveness. Specifically, it restricts the sealing mechanism
to two variants: basic and inseparable/impure. (The latter variant I will refer to hereafter simply
as “impure.”) This is problematic in cases like the Set functor, for which, in the full super-system,
inseparable sealing provided a superior intermediate choice to the two extremes of basic and impure
sealing. In the absence of dependent types, the programmer must choose between one of the less
appealing extremes, and neither one is clearly preferable to the other.

First-Class vs. Second-Class Modules Harper and Lillibridge’s first-class module calculus [28]
(hereafter, HL) employs a very conservative judgment of separability. Specifically, it considers a
module to be separable if and only if it is a value.9 The reason for this conservativity is that in HL
module expressions are freely intermingled with “core” ML expressions, and it is difficult to track
the purity of core ML expressions effectively. Since neither functor applications nor sealed module
expressions are values, both kinds of expressions are considered inseparable. In other words, HL
treats all functors as partial/generative and only supports the impure form of sealing.

In the remaining variants of the ML module system, the module language is “second-class” in
the sense that it exists on a separate layer from the core language and provides a restricted set of
constructs. In particular, aside from impure sealing, these second-class languages are so restricted
that they do not even provide a way to write an inseparable module. (For example, the inseparable
module expressions MGUI and MDICT defined earlier in this chapter are not expressible in any of the
existing dialects except HL.) It is much easier to accurately decide whether modules are separable
in a second-class module system than in a first-class one, because the only source of inseparability
is the impure sealing mechanism.

Standard ML Nevertheless, Leroy’s “manifest types” calculus [42], which among the type-
theoretic accounts of ML modules is the one that most closely approximates the Standard ML
’97 module system, axiomatizes separability in essentially the same manner as the HL calculus.
The only difference is that Leroy, as well as SML, only allows projections of types from modules
that are in named form, i.e., variables and projections from variables, also known as “paths.” In
terms of actual programming, this does not result in any fundamental loss of expressiveness be-
cause types projected from arbitrary module values may always be beta-reduced either to core ML
types or to paths. However, given that the SML module language is second-class, its judgment of
separability and its assumption that all functors are partial are both unnecessarily conservative.

9The notion of value that Harper and Lillibridge use extends the traditional call-by-value notion of value to include
projections from values.

34 CHAPTER 2. A UNIFYING ACCOUNT OF ML MODULES

Objective Caml Leroy’s “applicative functor” calculus [43] (along with Objective Caml, which
is based on it [41]) exhibits one way of addressing this deficiency. It is identical to the manifest
types calculus except that, instead of treating all functors as partial/generative, it assumes that
all functors are total/applicative. This assumption is only justifiable so long as all modules are
separable, which in turn is only true in the absence of impure sealing. Thus, O’Caml’s treatment
of all functors as total implies that it only supports the basic form of sealing.

While all modules are separable in O’Caml, not all modules are projectible. O’Caml imposes a
named form restriction on projectible modules, which extends SML’s notion of “path” to include
functor applications where the functor and argument are both paths. For instance, while both
Set(IntLt) and Set(struct ... end) are considered separable in O’Caml, only the former is
considered projectible. One way to account for the named form restriction in the terms of this
chapter is to imagine that every structure expression struct ... end in O’Caml implicitly contains
a sealed submodule defining an abstract type. Hence, the only projectible module expressions are
those that do not contain struct expressions, i.e., those in named form.

Another notable facet of the O’Caml module system is its notion of syntactic module equiv-
alence. The super-system dictates that static equivalence is to be used when comparing the ar-
guments of separably total functors (see Figure 2.3). While syntactic equivalence is indeed a
conservative approximation of static equivalence, it is also in many cases a conservative approx-
imation of dynamic equivalence. In particular, if we restrict attention to module paths in the
SML sense (i.e., not including functor applications), then syntactic equivalence implies dynamic
equivalence because SML paths are always values. On the other hand, the O’Caml path F(X) is
syntactically and statically equivalent to itself, but there is nothing to imply that it is dynami-
cally equivalent to itself because its evaluation may have computational effects. The implication
of the sometimes-static/sometimes-dynamic nature of syntactic equivalence is that, when applied
to certain arguments, functors in O’Caml behave as if they were separably total, while on other
arguments they behave as if they were statically total.

Russo In his thesis, Russo defines two module languages [65]. The first language closely follows
SML, supporting only partial/generative functors and impure sealing. The second language, which
Russo describes in a chapter on “higher-order modules,” is much like O’Caml, supporting only
total/applicative functors and basic sealing. Unlike O’Caml, though, it uses full static equivalence
to compare functor arguments. For example, IntLt and IntGt are considered equivalent in Moscow
ML despite having inequivalent value components.

The module system in Moscow ML is a problematic merging of the two module languages from
Russo’s thesis—problematic in the sense that it does not correctly track separability. Specifically,
as mentioned in Section 1.2.7, the generativity of a partial functor may be defeated in Moscow
ML by eta-expanding it into a total/applicative functor. This is clearly a mistaken design, since in
general a partial functor cannot soundly be coerced into a total signature. It has also been shown
to lead to an unsoundness in the language [9].

Shao Shao’s type system for modules [69] is the only existing design to correctly support both
total and partial functors in one language. It only provides one sealing mechanism, however, and it
is the impure form of sealing. As a result, when sealing is used in the body of a functor, it forces the
functor to be treated as partial/generative. This severely limits the kind of total functors one can
write in practice because the presence of any sealed submodule—even a datatype declaration—in
the body of a functor will be considered an instance of impure sealing and thus render the functor
partial. The one exception to this rule is that, when the body of a functor can be given a transparent

2.2. FRUITS OF THE ANALYSIS 35

signature, Shao’s calculus will allow the functor to be considered total/applicative. As explained in
Section 2.1.7, this exception is semantically justified because transparency implies purity. Finally,
like Moscow ML, Shao employs full static equivalence when comparing functor arguments.

Summary and Discussion All of the existing dialects of ML described in Chapter 1 take sepa-
rability as a precondition for projectibility. By doing this, they avoid the need for dependent types,
but they conflate the notions of inseparability and impurity as far as typechecking is concerned.
Consequently, there are only two kinds of functors recognized by these dialects—separably total
and partial—and only two kinds of sealing—basic and impure. The inability to support statically
total functors and inseparable sealing is a fundamental limitation of the ML module system which
I will not attempt to address in this thesis. Whether these features can be supported without the
need for true dependent types remains an open question, one for which I suggest some potential
solutions in Chapter 10 on future work.

With the exception of Harper and Lillibridge’s calculus, all the existing dialects treat the module
language as second-class, meaning that there is no way to write a module expression that is truly
impure or inseparable. There is a basic tradeoff here: a first-class module language like the HL
calculus provides more expressive power in terms of the kinds of modules one can write, but it is
easier to track separability accurately in second-class languages.

Each existing dialect treats its functors as being either always separably total or always partial,
with the exception of Shao’s calculus, which recognizes both kinds of functors. In addition, all the
dialects support either the basic or the impure form of sealing, but none supports both. There is
no particular reason, however, why a module language could not support both forms of sealing.

Among the dialects in which total functors exist, the arguments to total functors are compared
in Russo’s and Shao’s languages using static equivalence and in O’Caml using syntactic equivalence.
While the super-system indicates that static equivalence is appropriate when comparing arguments
to separably total functors, the O’Caml semantics has the effect of making functors behave as if
they were statically total on certain common kinds of arguments, namely SML-style paths. For
functors like Set that we would like to treat as statically total for purposes of data abstraction,
the O’Caml semantics at least provides something closer to statically total behavior than the other
ML dialects do, but it is still not the real thing. On the downside, as argued in Section 1.2.8,
syntactic equivalence is rather brittle in the sense that two modules will be deemed inequivalent
even if one is just a renaming of the other (e.g., structure X = Y). Furthermore, for functors
that the programmer wants to treat as separably total, syntactic equivalence is an unnecessarily
conservative way of comparing their arguments.

2.2.2 A Unifying Design

In this thesis I propose a new dialect of ML whose module system design is based closely on the
super-system set forth in this chapter. This section sketches the high-level design of the language,
with comparisons to the existing designs. The following section gives more details regarding the
structure of the language definition.

Like the existing ML dialects, my new design avoids the need for dependent types by assuming
separability, instead of static purity, as a precondition for projectibility. Consequently, like Shao’s
calculus, my language distinguishes between separably total functors and partial functors, but does
not recognize the intermediate classification of statically total functors. I compare arguments to
total functors using full static equivalence as in Shao’s calculus, because it is less conservative than
O’Caml’s syntactic equivalence and more semantically consistent with the super-system. Unlike

36 CHAPTER 2. A UNIFYING ACCOUNT OF ML MODULES

any existing dialect, however, my language gives the programmer access to both the basic and
impure forms of sealing, each of which we have seen can be useful in different circumstances. It
does not support the inseparable form of sealing, but neither does any existing dialect.

With respect to the flexibility of the module language, my new design combines the benefits of
first-class and second-class module systems. It is structured like a second-class system in that the
language of module expressions is kept separate from that of core ML expressions. It differs from
existing second-class dialects, though, in that it allows one to express impure/inseparable modules
as well as separable ones. This is accomplished by providing coercions between expressions in the
module and core languages. In particular, I introduce a new “package type” 〈|S|〉, which is used to
classify a module of signature S that has been packaged as (i.e., coerced to the level of) a core-
language term. Modules are coerced into the term level by a pack operation, and expressions of
package type are coerced back to the module level by an unpack operation.

For example, the module expressions MGUI and MDICT defined in Sections 2.1.1 and 2.1.2 would
be encoded in my type system as

unpack(if ... then (pack LinkedList as SIG) else (pack HashTable as SIG))

The module variables LinkedList and HashTable must first be coerced via pack operations to the
common package type 〈|SIG|〉, where SIG is an opaque signature matched by both implementations;
then the result of the core-level conditional expression is coerced back to the module level via
unpacking. Since the type components of an unpacked module expression may depend on the result
of a core-level dynamic computation, I conservatively treat all unpacked expressions as inseparable.

This hybrid approach offers the practical benefits of second-class systems along with the ex-
pressive power of first-class systems. It provides the option of intermingling module and core
expressions when so desired. However, compared to a purely first-class language like Harper and
Lillibridge’s, it has the advantage that it avoids the insinuation of module-level subtyping into the
core ML language, and it enables more accurate tracking of separability for strictly second-class
module expressions that do not involve unpacking.

2.2.3 A Modular Design

The design I have sketched above will serve as the basis of a new ML dialect, to be defined formally
in Part III. As explained in the Introduction, I define this new dialect in the style of Harper and
Stone [33]. That is, the programmable “external” language (EL) is defined by an “elaboration”
translation into the “internal” language (IL), which is in turn defined by a type system. In the
chapters that follow, I will present a slightly simplified version of this IL type system. In order to
make the meta-theory a bit less cumbersome, I will omit certain inessential details of the full IL,
such as its primitives for exception handling and its treatment of structure’s as labeled (instead
of unlabeled) records. I will also omit the extensions relevant to recursive modules, which will be
studied in Part II, but all the other key features of the language remain. In addition, I will give a
decidable typechecking algorithm for this simplified IL that scales straightforwardly to handle the
full IL defined in Part III.

As explained above, the IL has two layers: the core language of types and terms, and the
module language of signatures and modules. In existing ML dialects, the module language does
not merely serve as a means of “programming in the large,” it also adds fundamental expressive
power to the language. For instance, while the core language of Standard ML only supports prenex
polymorphism, one can encode a second-class form of higher-kinded and rank-2 polymorphism using

2.2. FRUITS OF THE ANALYSIS 37

functors.10 There is good practical justification for sharing the expressive power of the language
in this way between the core and module languages, namely that it is necessary to place certain
limitations on the power of the core language in order to make ML-style type inference possible.
At the level of the explicitly-typed internal language, however, this is not a concern.

Therefore, in the interest of modularizing the design of the internal language, I have structured
its type system in such a way that all the expressive power of the language is contained within
the core language, and the sole purpose of the module language is to provide more convenient
mechanisms for structuring core-language code and enforcing data abstraction. Organizing the IL
in this way means that the type structure of the core language is self-contained and the module
language does not add anything to it. This has several interesting implications.

First, since the language of types is well-defined independently of the module language, there
can be no type constructor of the form M.t! Instead, observe that M.t is only a sensible type
if M is separable. Separability means precisely that the type components of M may be separated
out from the rest of the module—there is no way they can really depend on the term components.
Correspondingly, in Chapter 4, I define a meta-level function, called for historical reasons Fst(M),
that computes a type constructor representing the “static part” of M. When M is a module
variable X, Fst(M) is a constructor variable Xc, which I take to represent the static part of whatever
module will instantiate X. For other module expressions, Fst(M) is definable in terms of the existing
type structure of System Fω. For example, when M is a structure, Fst(M) will be a record of type
constructors, each of which represents the static part of one of M’s components. When M is a total
functor, Fst(M) will be a function (at the level of type constructors) that takes as input the static
part of M’s argument and returns as output the static part of its result.11 With this Fst function
in hand, we can replace M.t by the core-language type Fst(M).t, which projects the t component
from the record of types Fst(M) representing M’s static part.

Second, when building the module language, the notion of static module equivalence comes
“for free” in the sense that it is definable directly in terms of core-language type equivalence. Two
modules M1 and M2 are statically equivalent precisely when their static parts Fst(M1) and Fst(M2)
are equivalent type constructors. Since module equivalence is only needed by the type system in
order to define type equivalence, it makes sense that the core language should have it built in.

Third, just as the static parts of modules are expressible in the core language of type construc-
tors, the static parts of signatures are correspondingly expressible in the core language of kinds. To
compute the static part of a signature S, I define another Fst function, this time mapping signatures
to kinds, which satisfies the property that whenever M has signature S, Fst(M) has kind Fst(S) as
well. The definition of Fst on signatures is much as one would expect. In particular, the static
part of a structure signature is a record kind describing the static part of each component, and
the static part of a total functor signature is an arrow kind. If signatures only contained opaque
type specifications, then the kind structure of Fω would suffice. But how do we faithfully compute
the static part of a signature like sig type t = int end? That is, how can we ensure that the
resulting kind only characterizes the static parts of modules whose t component is int?

In order to encode such transparent specifications in the kind language, I employ Stone and
Harper’s “singleton” kinds [74]. Whereas kinds in Fω only provide structural information about the
constructors that inhabit them, kinds in the singleton calculus can provide information regarding

10Specifically, higher-kinded polymorphism can be encoded by parameterizing over a module containing a type
component of higher kind, and rank-2 polymorphism can be encoded by parameterizing over a module containing a
value component of polymorphic type.

11When M is a partial functor, it has no static part because its body is potentially inseparable. Formally, Fst(M)
is defined to be the trivial unit constructor.

38 CHAPTER 2. A UNIFYING ACCOUNT OF ML MODULES

the identity of their inhabitants. For a type C of base kind T, the singleton calculus allows us to give
it the more precise kind s(C), which only classifies types that are equivalent to C. Consequently,
when processing a type definition like type t = C, we indicate that t is shorthand for C by binding
it in the context with kind s(C).

As singleton kinds make the kind language dependent on the constructor language, the Stone-
Harper calculus also supports dependent product and arrow kinds. The kind Σα:K1.K2 classifies
a pair of type constructors with kinds K1 and K2, where K2 may refer to the first component
of the pair via the constructor variable α. Similarly, the kind Πα:K1.K2 classifies a constructor
function whose result kind K2 may depend on the identity of the argument α. For instance, the
kind Πα:T.s(α) uniquely characterizes the identity function on types.

By combining dependent kinds, singleton kinds, and the standard “opaque” kind T, the Stone-
Harper calculus faithfully models the flexibility of ML’s translucent signatures. For example, the
kind Σα:T.s(int× α) is a direct analogue of the signature sig type t; type u = int * t end.
That the two should be in such close correspondence is no coincidence. The Stone-Harper calculus
was designed as a target of type-directed compilation for SML, with the goal of preserving the
benefits and semantics of translucency in the absence of modules.

One of the major advantages of using the Stone-Harper singleton calculus as the basis of the
IL’s core language is that it isolates the meta-theoretic complications of translucency in a language
that has been well-studied. Proving that type equivalence is decidable in the presence of singleton
kinds is highly non-trivial, but Stone and Harper have already done it. By modularizing the IL
so that the module language does not extend the type structure of the core language, I am able
to reuse the Stone-Harper meta-theory “off the shelf,” so to speak, greatly easing the burden of
proving module typechecking decidable.

It should be noted that organizing the IL in this way is not an original idea. It was first
propounded by Harper, Mitchell and Moggi in their “phase distinction” calculus [30]. The major
difference is that my language supports the modern ML features of translucency and sealing, which
theirs, dating back to 1990, does not. Correspondingly, the type structure of their core language
does not include singleton kinds. In addition, they treat Fst(M) as a primitive type constructor,
albeit one that is always reducible to some module-free core-language constructor. Treating Fst(M)
as primitive, however, requires them to build a whole equational theory around it. My approach of
defining Fst via a meta-level macro is a simpler, more lightweight solution.

Shao [69], in his type system for modules, employs a technique similar to my Fst function for
extracting the static parts of modules and signatures (he calls it the “flexroot” function). His
calculus is not organized, though, in the fashion that I have advocated: translucency is modeled in
his calculus directly at the module level, not through the kind structure, so the equational theory
of types is dependent on the module language. As I have argued, I believe my approach makes the
language definition more elegant and modular.

The two chapters that follow give the formal definition of the (simplified) IL, Chapter 3 pre-
senting the core language and Chapter 4 the module language.

2.3. COMPARISON WITH A PREVIOUS VERSION OF THIS ACCOUNT 39

2.3 Comparison With a Previous Version of This Account

This final section relates the work of this chapter to an earlier, published version by Dreyer, Crary
and Harper (hereafter, DCH) [12]. While many of the ideas are the same, the present account
makes a more refined set of distinctions than DCH does, and the structure of the IL described in
the previous section marks a significant change from (and simplification of) the structure of the
DCH module system. There are also some unfortunate clashes of terminology between the two
accounts that warrant clarification.

Conceptual Comparison The most important conceptual difference between the two accounts
is that the present account makes a distinction between the properties of static purity and separa-
bility, while DCH does not. Correspondingly, DCH only observes the distinction between separably
total and partial functors, and only recognizes the basic and impure forms of sealing. Although
the language design I propose in this thesis suffers from precisely the same limitations as the DCH
language, I have attempted to make it clear that this is out of a practical necessity—avoiding
dependent types—rather than a semantic one. By starting with a richer set of module classifica-
tions and then paring it down, we can better understand what exactly the ML module system is
missing—namely, statically total functors and inseparable sealing—and why it is missing them.

In the absence of a distinction between purity and separability, my present account recognizes
three module classifications: projectible (and hence separable), separable but not projectible, and
inseparable (and hence not projectible). DCH makes precisely these classifications as well, although
it describes their genesis in a rather different way. (Actually, DCH makes a fourth classification,
but as I explain below it is essentially superfluous.)

The basic tenet of DCH is that a module is projectible if and only if it is pure, where the term
“pure” means something other than what I have to taken it to mean in this chapter. DCH considers
a module expression to be pure if it is free of certain “effects” that result in the creation of new
types. There are two kinds of such effects, which DCH terms “dynamic” and “static.”12

Dynamic effects are ordinary computational (run-time) effects that affect the identities of a
module’s type components, such as the call to buttonIsSelected in the module expression MGUI

from Section 2.1.1. Dynamic effects are also induced, notionally, by sealing a module using impure
sealing, which DCH refers to as “strong” sealing. Despite the use of the word “effect,” there are
modules that are computationally pure, such as MDICT from Section 2.1.2, that DCH considers
to be dynamically impure. In short, the meaning of “dynamically impure” in DCH corresponds
directly in the present account to “inseparable and possibly impure.” One of the chief advances of
the present account over DCH is the observation that there is an important semantic distinction to
be made between truly impure modules, like MGUI, and pure but inseparable modules, like MDICT.

Static effects, on the other hand, are induced by sealing, both by the impure form and by the
basic form, which DCH calls “weak” sealing. One can think of static effects as occurring at compile
time instead of at run time (hence the name static). For this reason, while static effects do render a
module non-projectible, they are permitted to occur in the body of a total functor because totality
is only a property of the functor’s dynamic behavior. In the present account, I have moved away
from any discussion of static effects. I now simply point out that data abstraction requires all
modules that contain sealing to be treated as non-projectible (unless they are transparent). Since
sealing a module using weak/basic sealing does not result in any loss of information about its
separability, it is fine for a separable, weakly sealed module to appear inside a total functor.

12Do not confuse DCH’s static and dynamic effects with the notions of static and dynamic (im-)purity set forth in
this chapter—they mean completely different things! Apologies for any headaches this may cause.

40 CHAPTER 2. A UNIFYING ACCOUNT OF ML MODULES

DCH Classification

Dynamic effects? Static effects? in the Present Account

no no separable and projectible

no yes separable, but not projectible

yes yes inseparable, and thus not projectible

yes no ??

Figure 2.5: Correspondence Between Classifications in DCH and in This Chapter

DCH classifies module expressions based on whether they engender both, one or neither kind
of effect. This results in four module classifications, three of which correspond directly to the
classifications of the present account. These correspondences are shown in Figure 2.5. The fourth
classification, which DCH denotes with the purity classification of S (for “Statically pure, but
dynamically effectful”), is an odd one. Modules that have dynamic effects in DCH are inseparable
and must therefore be non-projectible, so what does it matter whether or not they have static
effects? Indeed it does not, and I claim this classification is essentially superfluous. It was only
included due to a technicality, for more discussion of which see footnote 9 in Section 4.2.2.

Structural Comparison The type system of DCH is structured in the style of traditional type-
theoretic accounts of ML modules (excepting Harper, Mitchell and Moggi’s) in the sense that
the module language and the type structure of the core language are mutually dependent. In
addition, there is an explicit judgment of module equivalence, which is not definable in terms
of type equivalence. DCH is similar to my present approach (outlined in Section 2.2.3) in that it
employs singletons to model translucency, but instead of singleton kinds it uses singleton signatures.
The singleton signature sS(M) classifies modules of signature S that are (statically) equivalent to
M. Under my present approach, singleton signatures are definable using singleton kinds, whereas
in DCH they are primitive.

There are two main reasons why I prefer the present organization to that of DCH. The first is
that lifting singletons to the signature level requires one to reprove much of the Stone-Harper meta-
theory in the context of the module language. While not fundamentally difficult, it is nonetheless
painstaking work. It is much simpler to use the existing Stone-Harper type system as is.

The second, more subtle reason concerns language extensions. Particularly in the context of
recursive modules, one would like to add features to the module language that offer new functionality
but do not alter the type structure of the language. Under the DCH approach, any change to the
module language requires one to go through carefully and check that the new cases do not adversely
affect the rather complex proof of decidability of type equivalence. Under my present approach,
so long as the “static parts” of any new module and signature constructs are definable in terms of
the existing type structure, no theorems regarding decidability of type equivalence will need to be
extended or re-examined.

One respect in which the type system I present in the following chapters is not as flexible as
DCH’s is that I employ a somewhat more restrictive definition of subtyping for functors. The
specific ways in which it is more restrictive are detailed in Section 4.1.2, and the reasons for these
restrictions are explained in Section 4.1.4. This does not, however, amount to any fundamental
expressiveness gap: for any signatures that DCH considers to be in a subtyping relationship, that
relationship may be witnessed in my present type system by an explicit module coercion, which
the elaboration algorithm I define in Chapter 9 infers automatically.

Chapter 3

A Type System for ML Modules:
Core Language

In this chapter, I will present the core language of my type system for ML modules. As described in
Section 2.2.3, I have lifted my core language almost entirely from the work of Stone and Harper [74]
(and also Stone’s thesis [72]) on a calculus of singleton kinds. This chapter will therefore be to a
large extent a review of Stone and Harper’s calculus and its meta-theoretic properties, intended
mainly for the reader who is not familiar with their work.

In Section 3.1, I will present the type structure of the core language, i.e., the language of type
constructors and kinds, and describe the Stone-Harper algorithm for deciding equivalence of type
constructors in the presence of singleton kinds. In Section 3.2, I will present the term structure of
the core language and give a type checking algorithm and dynamic semantics for terms.

3.1 Type Constructors and Kinds

3.1.1 Syntax

The syntax of type constructors and kinds is given in Figure 3.1. The language of type constructors
(represented by the metavariable C) is a completely standard variant of Fω.1 It contains a set of
base types b—in particular, unit, product, arrow, universal and existential types—as well as unit,
pairing and function operators (and corresponding elimination forms) for building type constructors
of higher kind. Constructor variables, written α, are drawn from some countably infinite set
ConVars . Although a let construct is not included as primitive, it is easily encodable. I will
sometimes write “let α = C1 in C2” as shorthand for π2〈α =C1,C2〉.

2

A word about variable bindings: Throughout this thesis, I employ the standard technique
of syntactically identifying any two expressions that differ only in their choice of bound variable
names. Unless otherwise specified, all the binding constructs I use look like “〈x= e1, e2〉”, “let x =
e1 in e2”, or “x:e1.e2”, where x is some variable (be it constructor, term or module variable), and
the e’s are syntactic expressions of some form (be they kinds, constructors, etc.). In all of these

1The expressive power of ML only requires us to use the predicative form of Fω [61], but I have chosen for simplicity
to make this language impredicative.

2The Stone-Harper calculus only provides a pair construct of the form 〈C1, C2〉. The one I employ here, which
binds α to C1 inside C2, is not strictly necessary, but I have found it to be rather convenient. In Dreyer et al. [11]
I verified that Stone and Harper’s meta-theory is essentially unchanged when one allows this variant of the pair
construct. In a similar vein, Stone and Harper do not include a unit kind either, but supporting it requires only a
trivial and obvious extension to their meta-theory (again verified in Dreyer et al. [11]).

42 CHAPTER 3. A TYPE SYSTEM FOR ML MODULES: CORE LANGUAGE

Constructor Variables α, β ∈ ConVars
Kinds K,L ::= 1 | T | s(C) | Σα:K1.K2 | Πα:K1.K2

Transparent Kinds K, L ::= 1 | s(C) | Σα:K1.K2 | Πα:K1.K2

Type Constructors C,D ::= α | b | 〈〉 | 〈α =C1,C2〉 | πiC | λα:K.C | C1(C2)
Base Types b ::= unit | C1 ×C2 | C1 →C2 | ∀α:K.C | ∃α:K.C
Static Contexts ∆ ::= ∅ | ∆, α:K

Figure 3.1: Syntax of Type Constructors and Kinds

cases, x is assumed to be bound in e2. Thus, for example: In the pair constructor 〈α =C1,C2〉,
the variable α stands for the constructor C1 inside C2. In the function constructor λα:K.C, the
argument variable α, whose kind is K, is bound in the body C. In addition, I will use the notation
e[e1, · · · , en/x1, · · · , xn] to denote the simultaneous capture-avoiding substitution of e1, · · · , en for
x1, · · · , xn, respectively, in e.

Now for the interesting part: the kind language. Let us look at the different kind forms one at
a time. The unit kind 1 classifies only one type constructor, namely the unit constructor 〈〉, not
to be confused with the base type unit. The base kind T, which in many presentations of Fω is
written as ∗ or Ω, classifies those types which themselves classify terms. In a closed program, every
type constructor of base kind will be reducible to a syntactic base type b.

The other base kind is the singleton kind s(C), a subkind of T that classifies precisely those
type constructors that are equivalent to C. As explained in Section 2.2.3, singletons allow one to
support a notion of “type definition” within a regular kind structure. Furthermore, the combination
of the “opaque” base kind T and the “transparent” singleton kind s(C) provide a natural basis for
translucent signatures in the module language.

The dependent pair kind Σα:K1.K2 classifies pairs of constructors whose first component has
kind K1 and whose second component has kind K2, where α stands for the first component. In
other words, a constructor C has kind Σα:K1.K2 if and only if π1C has kind K1 and π2C has kind
K2[π1C/α]. When the bound variable α does not appear free in K2, I will sometimes write the pair
kind as K1 ×K2.

The dependent arrow kind Πα:K1.K2 classifies constructor functions that take an argument of
kind K1 and return a result of kind K2, where α stands for the argument. Thus, a constructor C
has kind Πα:K1.K2 if and only if, whenever D has kind K1, C(D) has kind K2[D/α]. When the
bound variable α does not appear free in K2, I will sometimes write the arrow kind as K1 →K2.

While the primitive singleton kind s(C) is only valid when C has kind T, singletons at higher
kind are in fact definable in terms of the primitive kinds. Figure 3.2 defines a meta-level function
sK(C), which returns a subkind of K classifying precisely those constructors that are equivalent
to C (assuming C actually has kind K).3 At the base kinds T and s(D), sK(C) is defined as just
the primitive singleton s(C). The definition of sK(C) at the remaining kinds reflects the fact that
constructor equivalence in the Stone-Harper calculus is extensional, i.e., if two constructors are
impossible to distinguish by their uses then they are as good as equivalent. Specifically, if we read
D’s membership in sK(C) as “D is equivalent to C at kind K,” then we see from the definition
of sK(C) that (1) D is equivalent to C at pair kind when π1D is equivalent to π1C and π2D is
equivalent to π2C, (2) D is equivalent to C at arrow kind when D(α) is equivalent to C(α), and (3)

3The function sK(C) is defined inductively on the size of the kind K using the size metric given in Definition 3.1.6.

3.1. TYPE CONSTRUCTORS AND KINDS 43

s1(C)
def

= 1

sT(C)
def

= s(C)

ss(D)(C)
def

= s(C)

sΣα:K1.K2
(C)

def

= sK1
(π1C)×sK2[π1C/α](π2C)

sΠα:K1.K2
(C)

def

= Πα:K1.sK2
(C(α))

Figure 3.2: Singletons at Higher Kinds

Can(1)
def

= 〈〉

Can(s(C))
def

= C

Can(Σα:K1.K2)
def

= 〈α =Can(K1),Can(K2)〉

Can(Πα:K1.K2)
def

= λα:K1.Can(K2)

Figure 3.3: Canonical Constructors of Transparent Kinds

all constructors of unit kind are equivalent because they are all equally useless.

The definition of higher-order singletons given in Figure 3.2 is not the only possible one. For in-
stance, ss(D)(C) and sΣα:K1.K2

(C) could just as well be defined as s(D) and Σα:sK1
(π1C).sK2

(π2C),
respectively. It is also likely possible to make sK(C) a primitive kind instead of a macro, and to
build in the definitional equations in Figure 3.2 as kind equivalence rules. This would have the
slight disadvantage, however, of losing the property that kind equivalence and subtyping (discussed
below) are syntax-directed. For simplicity, I have avoided any complications by defining sK(C)
precisely as Stone and Harper do.

Higher-order singletons are a special case of a more general subclass of kinds that I call “trans-
parent” and denote by the metavariable K. The syntax of transparent kinds, given in Figure 3.1,
requires essentially that no instances of the opaque base kind T appear on the right-hand side of an
arrow. A transparent kind K has the property that any two constructors of kind K are equivalent,
and in fact transparent kinds are the only kinds to enjoy this property. Consequently, given any
transparent kind K, Figure 3.3 shows how to construct a “canonical” constructor Can(K) of kind
K, which is guaranteed to be equivalent to any other inhabitant of K. Transparent kinds will be
needed primarily in order to define a notion of transparent signatures in Chapter 4.

Finally, I define a notion of static contexts, written ∆, which bind constructor variables to their
kinds. I call these contexts static so as to distinguish them from dynamic contexts Γ that also
bind value and module variables. For all forms of contexts, I require that all variables bound in a
context be distinct in order for the context to be syntactically valid. I will also sometimes treat a
context as a (meta-level) function from variables to classifiers, e.g., if α:K ∈ ∆, then ∆(α) = K.

3.1.2 Static Semantics

Figure 3.4 shows the inference rules for the judgments of well-formed contexts, well-formed kinds,
kind equivalence and kind subtyping. The rules for the first three of these judgments are fairly

44 CHAPTER 3. A TYPE SYSTEM FOR ML MODULES: CORE LANGUAGE

Well-formed static contexts: ∆ ` ok

∅ ` ok
(1) ∆ ` K kind

∆, α:K ` ok
(2)

Well-formed kinds: ∆ ` K kind

∆ ` ok
∆ ` 1 kind

(3) ∆ ` ok
∆ ` T kind

(4)
∆ ` C : T

∆ ` s(C) kind
(5)

∆, α:K′ ` K′′ kind

∆ ` Σα:K′.K′′ kind
(6)

∆, α:K′ ` K′′ kind

∆ ` Πα:K′.K′′ kind
(7)

Kind equivalence: ∆ ` K1 ≡ K2

∆ ` ok
∆ ` 1 ≡ 1

(8) ∆ ` ok
∆ ` T ≡ T

(9)
∆ ` C1 ≡ C2 : T

∆ ` s(C1) ≡ s(C2)
(10)

∆ ` K′
1 ≡ K′

2 ∆, α:K′
1 ` K′′

1 ≡ K′′
2

∆ ` Σα:K′
1.K

′′
1 ≡ Σα:K′

2.K
′′
2

(11)
∆ ` K′

2 ≡ K′
1 ∆, α:K′

2 ` K′′
1 ≡ K′′

2

∆ ` Πα:K′
1.K

′′
1 ≡ Πα:K′

2.K
′′
2

(12)

Kind subtyping: ∆ ` K1 ≤ K2

∆ ` ok
∆ ` 1 ≤ 1

(13) ∆ ` ok
∆ ` T ≤ T

(14)
∆ ` C1 ≡ C2 : T

∆ ` s(C1) ≤ s(C2)
(15) ∆ ` C : T

∆ ` s(C) ≤ T
(16)

∆ ` K′
1 ≤ K′

2 ∆, α:K′
1 ` K′′

1 ≤ K′′
2 ∆ ` Σα:K′

2.K
′′
2 kind

∆ ` Σα:K′
1.K

′′
1 ≤ Σα:K′

2.K
′′
2

(17)

∆ ` K′
2 ≤ K′

1 ∆, α:K′
2 ` K′′

1 ≤ K′′
2 ∆ ` Πα:K′

1.K
′′
1 kind

∆ ` Πα:K′
1.K

′′
1 ≤ Πα:K′

2.K
′′
2

(18)

Figure 3.4: Inference Rules for Kinds and Static Contexts

obvious. The only point of note is that, following Stone-Harper, for any derivation of a judgment
of the form ∆ ` J , the static semantics ensures that the well-formedness of the context (∆ ` ok)
appears as a subderivation. This explains, for instance, why there is no need for extra premises
∆ ` ok and ∆ ` K′ kind in Rules 2 and 7, respectively.

The rules for kind subtyping are also fairly straightforward. For base kinds, subtyping is just
equivalence with the addition of Rule 16. This rule allows one to coerce a constructor from the
transparent base kind s(C) to the opaque base kind T, thereby forgetting that the constructor is
equivalent to C. The remaining rules lift this forgetful subtyping to higher kinds, in the standard
co- and contra-variant manner. The only point of note here is that, in Rules 17 and 18, the third
premise is included in order to ensure Validity (Proposition 3.1.8 below).

Figure 3.5 shows the inference rules for the judgments of well-formed constructors and con-
structor equivalence. Concerning the former, most of the rules are completely standard for a
dependently-typed calculus. The three rules that merit special attention are Rules 31–33. Taken
together, these rules enable any type constructor C to be given a most-specific transparent kind

3.1. TYPE CONSTRUCTORS AND KINDS 45

Well-formed constructors: ∆ ` C : K

∆ ` ok α:K ∈ ∆
∆ ` α : K

(19) ∆ ` ok
∆ ` unit : T

(20)
∆ ` C′ : T ∆ ` C′′ : T

∆ ` C′×C′′ : T
(21)

∆ ` C′ : T ∆ ` C′′ : T
∆ ` C′→C′′ : T

(22)
∆, α:K ` C : T

∆ ` ∀α:K.C : T
(23)

∆, α:K ` C : T

∆ ` ∃α:K.C : T
(24)

∆ ` ok
∆ ` 〈〉 : 1

(25)

∆ ` C′ : K′ ∆, α:K′ ` C′′ : K′′

∆ ` 〈α =C′,C′′〉 : Σα:K′.K′′ (26) ∆ ` C : Σα:K′.K′′

∆ ` π1C : K′ (27) ∆ ` C : Σα:K′.K′′

∆ ` π2C : K′′[π1C/α]
(28)

∆, α:K′ ` C : K′′

∆ ` λα:K′.C : Πα:K′.K′′ (29) ∆ ` C : Πα:K′.K′′ ∆ ` D : K′

∆ ` C(D) : K′′[D/α]
(30)

∆ ` C : T
∆ ` C : s(C)

(31)
∆ ` π1C : K′ ∆ ` π2C : K′′

∆ ` C : K′×K′′ (32)

∆, α:K′ ` C(α) : K′′ ∆ ` C : Πα:K′.L

∆ ` C : Πα:K′.K′′ (33)
∆ ` C : K′ ∆ ` K′ ≤ K

∆ ` C : K
(34)

Constructor equivalence: ∆ ` C1 ≡ C2 : K

∆ ` C : K
∆ ` C ≡ C : K

(35)
∆ ` C2 ≡ C1 : K
∆ ` C1 ≡ C2 : K

(36)
∆ ` C1 ≡ C2 : K ∆ ` C2 ≡ C3 : K

∆ ` C1 ≡ C3 : K
(37)

∆ ` C′
1 ≡ C′

2 : T ∆ ` C′′
1 ≡ C′′

2 : T

∆ ` C′
1 ×C′′

1 ≡ C′
2 ×C′′

2 : T
(38)

∆ ` C′
1 ≡ C′

2 : T ∆ ` C′′
1 ≡ C′′

2 : T

∆ ` C′
1 →C′′

1 ≡ C′
2 →C′′

2 : T
(39)

∆ ` K1 ≡ K2 ∆, α:K1 ` C1 ≡ C2 : T

∆ ` ∀α:K1.C1 ≡ ∀α:K2.C2 : T
(40)

∆ ` K1 ≡ K2 ∆, α:K1 ` C1 ≡ C2 : T

∆ ` ∃α:K1.C1 ≡ ∃α:K2.C2 : T
(41)

∆ ` C′
1 ≡ C′

2 : K′ ∆, α:K′ ` C′′
1 ≡ C′′

2 : K′′

∆ ` 〈α =C′
1,C

′′
1〉 ≡ 〈α =C′

2,C
′′
2〉 : Σα:K′.K′′ (42)

∆ ` C1 ≡ C2 : Σα:K′.K′′

∆ ` π1C1 ≡ π1C2 : K′ (43)
∆ ` C1 ≡ C2 : Σα:K′.K′′

∆ ` π2C1 ≡ π2C2 : K′′[π1C1/α]
(44)

∆ ` K′
1 ≡ K′

2 ∆, α:K′
1 ` C1 ≡ C2 : K′′

∆ ` λα:K′
1.C1 ≡ λα:K′

2.C2 : Πα:K′
1.K

′′ (45)
∆ ` C1 ≡ C2 : Πα:K′.K′′ ∆ ` D1 ≡ D2 : K′

∆ ` C1(D1) ≡ C2(D2) : K′′[D1/α]
(46)

∆ ` C1 : 1 ∆ ` C2 : 1
∆ ` C1 ≡ C2 : 1

(47)
∆ ` C1 : s(C) ∆ ` C2 : s(C)

∆ ` C1 ≡ C2 : s(C)
(48)

∆ ` π1C1 ≡ π1C2 : K′ ∆ ` π2C1 ≡ π2C2 : K′′

∆ ` C1 ≡ C2 : K′×K′′ (49)

∆, α:K′ ` C1(α) ≡ C2(α) : K′′ ∆ ` C1 : Πα:K′.L1 ∆ ` C2 : Πα:K′.L2

∆ ` C1 ≡ C2 : Πα:K′.K′′ (50)

∆ ` C1 ≡ C2 : K′ ∆ ` K′ ≤ K
∆ ` C1 ≡ C2 : K

(51)

Figure 3.5: Inference Rules for Type Constructors

46 CHAPTER 3. A TYPE SYSTEM FOR ML MODULES: CORE LANGUAGE

whose only inhabitant is C. This is often referred to as “selfification.” Perhaps the easiest way to
read the rules is to observe how they allow one to assign to any constructor C the transparent kind
sK(C), given that C has kind K to begin with. While it is possible that one could simply replace
Rules 31–33 with one rule involving higher-order singletons, I have chosen as before to follow Stone
and Harper’s presentation.

As for constructor equivalence: Rules 35–37 establish that it is an equivalence relation, a prop-
erty that is admissible for kinds but must be made explicit for constructors. Rules 38–46 establish
that constructor equivalence is a congruence, i.e., constructors that are structurally similar and
whose component parts are equivalent are themselves equivalent. Rules 47–48 exhibit that all in-
habitants of unit kind 1 are equivalent (to 〈〉), and similarly all inhabitants of a singleton kind
s(C) are equivalent (to C). Rules 49–50 ensure that equivalence is extensional, as discussed in the
previous section. The extra premises in Rule 50 ensure that α is not free in C1 and C2. Finally,
Rule 51 enables subsumption for the constructor equivalence judgment.

It is easy to see that constructor equivalence in this calculus, unlike constructor equivalence in
System Fω, is highly dependent on the context in which constructors are compared. In Fω, two
distinct constructor variables α and β will never be considered equivalent, whereas in the presence
of singletons α and β may very well be equivalent if, say, they are both bound in the context with
kind s(C). What is perhaps less obvious is that the equivalence of two constructors also depends
on the kind at which they are compared, that is, C1 and C2 may be equivalent at one kind but
not another. The canonical example of this is when C1 = λα:T.α and C2 = λα:T.unit. When C1

and C2 are compared at T→T, they are not considered equivalent, as they give different results
when applied to any type other than unit. However, when compared at the superkind s(unit)→T,
they are indeed extensionally equivalent: the only valid argument to a function of this superkind
is unit, for which C1 and C2 return equivalent results. As a consequence, the algorithm presented
in Section 3.1.7 for deciding constructor equivalence is both kind- and context-sensitive.

Lastly, the reader may have noticed that the equivalence rules do not include any standard
β- or η-equivalence rules. This is because these rules are admissible in the presence of singletons
and extensional equivalence. In the case of β-equivalence, this is easy to see by example. Suppose
that C and D are constructors of kind T. Then, λα:T.C can be given kind Πα:T.s(C). The
application rule (Rule 30) tells us then that (λα:T.C)(D) has kind s(C[D/α]) and is therefore
equal to C[D/α]. This reasoning lifts easily to constructors of higher kind (see Proposition 3.1.13).
As for η-equivalence, it is essentially just another way of phrasing the concept of extensionality.

3.1.3 Basic Structural Properties

In this section I state several basic structural properties concerning the language of constructors and
kinds described above. Throughout I will write ∆ ` J to denote any judgment with right hand side
J , and FV(J) to denote the set of variables that appear free in one or more syntactic components
of J . In addition, I use the “=” sign to indicate syntactic equality (modulo α-equivalence).

Proposition 3.1.1 (Subderivations)
1. Every proof of ∆ ` J contains a subderivation of ∆ ` ok.

2. Every proof of ∆1, α:K,∆2 ` J contains a strict subderivation of ∆1 ` K kind.

Proposition 3.1.2 (Free Variable Containment)
If ∆ ` J , then FV(J) ⊆ dom(∆).

3.1. TYPE CONSTRUCTORS AND KINDS 47

• ∆′ ` γ : ∆ iff

1. ∆′ ` ok

2. ∀α:K ∈ dom(∆). ∆′ ` γ(α) : γ(K)

• ∆′ ` γ1 ≡ γ2 : ∆ iff

1. ∆′ ` γ1 : ∆ and ∆′ ` γ2 : ∆

2. ∀α:K ∈ dom(∆). ∆′ ` γ1(α) ≡ γ2(α) : γ1(K)

Figure 3.6: Typing and Equivalence Judgments for Static Substitutions

Definition 3.1.3 (Context Extension)
The context ∆2 is defined to extend the context ∆1 (written ∆2 ⊇ ∆1) if the contexts viewed as
partial functions give the same result for every variable bound in dom(∆1). (Note that this is a
purely syntactic condition and does not imply that either context is well-formed.)

Proposition 3.1.4 (Weakening)
1. If ∆1 ` J , ∆2 ⊇ ∆1, and ∆2 ` ok, then ∆2 ` J .

2. If ∆1, α:K2,∆2 ` J , ∆1 ` K1 ≤ K2 and ∆1 ` K1 kind, then ∆1, α:K1,∆2 ` J .

Static substitutions γ are defined as maps from constructor variables to constructors, which may
be applied (in the usual capture-avoiding manner) to arbitrary syntactic expressions. We denote
the identity substitution as id and substitution extension as γ[α 7→C]. Figure 3.6 defines typing
and equivalence judgments for substitutions.

Proposition 3.1.5 (Substitution)
1. If ∆ ` J and ∆′ ` γ : ∆, then ∆′ ` γ(J).

2. If ∆1, α:K,∆2 ` J and ∆1 ` C : K, then ∆1,∆2[C/α] ` J [C/α].

3.1.4 Other Declarative Properties

In this section I state several other useful declarative properties, the most important being Validity
and Functionality. Validity ensures that all constructors or kinds mentioned inside a derivable
judgment are well-formed. Functionality ensures that applying equivalent substitutions to two
sides of a ≡ or ≤ judgment does not affect the derivability of the judgment. I also establish that
kind equivalence is an equivalence relation and kind subtyping is a partial order.

First, it is useful for purposes of induction to have a measure of the “size” of a kind that is
invariant under substitution, i.e., such that size(K) = size(γK) for any γ and K.

48 CHAPTER 3. A TYPE SYSTEM FOR ML MODULES: CORE LANGUAGE

Definition 3.1.6 (Sizes of Kinds)
Let the size of a kind K, written size(K), be defined inductively as follows:

size(1)
def

= 1

size(T)
def

= 1

size(s(C))
def

= 2

size(Σα:K1.K2)
def

= 1 + size(K1) + size(K2)

size(Πα:K1.K2)
def

= 1 + size(K1) + size(K2)

Proposition 3.1.7 (Reflexivity)
If ∆ ` K kind, then ∆ ` K ≡ K and ∆ ` K ≤ K.

Proposition 3.1.8 (Validity)
1. If ∆ ` K1 ≡ K2, then ∆ ` K1 kind and ∆ ` K2 kind.

2. If ∆ ` K1 ≤ K2, then ∆ ` K1 kind and ∆ ` K2 kind.

3. If ∆ ` C : K, then ∆ ` K kind.

4. If ∆ ` C1 ≡ C2 : K, then ∆ ` C1 : K, ∆ ` C2 : K, and ∆ ` K kind.

Proposition 3.1.9 (Symmetry and Transitivity of Kind Equivalence)
1. If ∆ ` K1 ≡ K2, then ∆ ` K2 ≡ K1.

2. If ∆ ` K1 ≡ K2 and ∆ ` K2 ≡ K3, then ∆ ` K1 ≡ K3.

Proposition 3.1.10 (Antisymmetry and Transitivity of Kind Subtyping)
1. ∆ ` K1 ≡ K2 if and only if ∆ ` K1 ≤ K2 and ∆ ` K2 ≤ K1.

2. If ∆ ` K1 ≤ K2 and ∆ ` K2 ≤ K3, then ∆ ` K1 ≤ K3.

Proposition 3.1.11 (Functionality)
Suppose ∆′ ` γ1 ≡ γ2 : ∆.

1. If ∆ ` K kind, then ∆′ ` γ1K ≡ γ2K.

2. If ∆ ` K1 ≡ K2, then ∆′ ` γ1K1 ≡ γ2K2.

3. If ∆ ` K1 ≤ K2, then ∆′ ` γ1K1 ≤ γ2K2.

4. If ∆ ` C : K, then ∆′ ` γ1C ≡ γ2C : γ1K.

5. If ∆ ` C1 ≡ C2 : K, then ∆′ ` γ1C1 ≡ γ2C2 : γ1K.

3.1.5 Admissible Rules

Here I enumerate some important admissible rules, which fall into three categories. First, Proposi-
tion 3.1.12 states that the inference rules involving singleton kinds extend to higher-order singletons
(as defined in Figure 3.2). Since the well-formedness of sK(C) does not necessarily imply that C
has kind K, the latter must be added as a premise to the higher-order variants of some of the rules.

Second, Proposition 3.1.13 states that β- and η-equivalence rules for functions and products are
admissible, and also gives an alternative formulation of the typing, equivalence and extensionality
rules for products. The notation 〈C1,C2〉 is shorthand for 〈α =C1,C2〉, where α 6∈ FV(C2).

3.1. TYPE CONSTRUCTORS AND KINDS 49

Third, Proposition 3.1.14 gives several properties of transparent kinds, the most important of
which is that any two constructors of a transparent kind are equivalent at that kind. As discussed
in Section 3.1.2, this does not imply that the constructors are equivalent at all kinds. I give a proof
only for this third proposition, as proofs for the first two can be found in Stone’s thesis [72].

Proposition 3.1.12 (Higher-Order Singleton Rules)
1. γ(sK(C)) = sγK(γC).

2. If ∆ ` C1 ≡ C2 : K, then ∆ ` C1 ≡ C2 : sK(C2).

3. If ∆ ` C : K, then ∆ ` sK(C) kind and ∆ ` C : sK(C).

4. If ∆ ` C1 : sK(C2) and ∆ ` C2 : K, then ∆ ` C1 ≡ C2 : sK(C2).

5. If ∆ ` C : K, then ∆ ` sK(C) ≤ K.

6. If ∆ ` C1 ≡ C2 : K1 and ∆ ` K1 ≤ K2, then ∆ ` sK1
(C1) ≤ sK2

(C2).

Proposition 3.1.13 (Admissibility of Beta, Eta, and Alternative Product Rules)
1. If ∆, α:K′ ` C : K′′ and ∆ ` C′ : K′, then ∆ ` (λα:K′.C)(C′) ≡ C[C′/α] : K′′[C′/α].

2. If ∆, α:K′ ` C1 ≡ C2 : K′′ and ∆ ` C′
1 ≡ C′

2 : K′,
then ∆ ` (λα:K′.C1)(C

′
1) ≡ C2[C

′
2/α] : K′′[C′

1/α].

3. If ∆ ` C1 : K1 and ∆, α:K1 ` C2 : K2, then ∆ ` π1〈α = C1,C2〉 ≡ C1 : K1

and ∆ ` π2〈α = C1,C2〉 ≡ C2[C1/α] : K2[C1/α].

4. If ∆ ` C1 ≡ C′
1 : K1 and ∆, α:K1 ` C2 ≡ C′

2 : K2, then ∆ ` π1〈α = C1,C2〉 ≡ C′
1 : K1

and ∆ ` π2〈α = C1,C2〉 ≡ C′
2[C

′
1/α] : K2[C

′
1/α].

5. If ∆ ` C : Πα:K′.K′′, then ∆ ` C ≡ λα:K′.C(α) : Πα:K′.K′′.

6. If ∆ ` C : Σα:K′.K′′, then ∆ ` C ≡ 〈π1C, π2C〉 : Σα:K′.K′′.

7. If ∆ ` Σα:K′.K′′ kind, ∆ ` C′ : K′, and ∆ ` C′′ : K′′[C′/α], then ∆ ` 〈C′,C′′〉 : Σα:K′.K′′.

8. If ∆ ` Σα:K′.K′′ kind, ∆ ` C′
1 ≡ C′

2 : K′, and ∆ ` C′′
1 ≡ C′′

2 : K′′[C′
1/α],

then ∆ ` 〈C′
1,C

′′
1〉 ≡ 〈C′

2,C
′′
2〉 : Σα:K′.K′′.

9. If ∆ ` Σα:K′.K′′ kind, ∆ ` π1C1 ≡ π1C2 : K′, and ∆ ` π2C1 ≡ π2C2 : K′′[π1C1/α],
then ∆ ` C1 ≡ C2 : Σα:K′.K′′.

Proposition 3.1.14 (Properties of Transparent Kinds)
1. If ∆ ` C : K, then ∆ ` sK(C) ≡ K.

2. If ∆ ` C1 : K and ∆ ` C2 : K, then ∆ ` C1 ≡ C2 : K.

3. If ∆ ` K′ ≤ K, then K′ is transparent.

4. sK(C) is transparent.

5. If ∆ ` K kind, then ∆ ` Can(K) : K.

50 CHAPTER 3. A TYPE SYSTEM FOR ML MODULES: CORE LANGUAGE

Proof:

1. By induction on the size of K.

• Case: K = 1. Trivial.

• Case: K = s(D). Since ∆ ` C : s(D), we have ∆ ` C ≡ D : T,
and thus ∆ ` s(C) ≡ s(D).

• Case: K = Σα:K1.K2.

(a) Since ∆ ` π1C : K1, by induction ∆ ` sK1
(π1C) ≡ K1.

(b) Since ∆ ` π2C : K2[π1C/α], by induction ∆ ` sK2[π1C/α](π2C) ≡ K2[π1C/α].

(c) By Proposition 3.1.12, ∆, α:sK1
(π1C) ` π1C ≡ α : sK1

(π1C).

(d) By Functionality, ∆, α:sK1
(π1C) ` K2[π1C/α] ≡ K2.

(e) Thus, ∆ ` sK1
(π1C)×sK2[π1C/α](π2C) ≡ Σα:K1.K2.

• Case: K = Πα:K1.K2.

(a) Since ∆, α:K1 ` C(α) : K2, by induction ∆, α:K1 ` sK2
(C(α)) ≡ K2.

(b) Thus, ∆ ` Πα:K1.sK2
(C(α)) ≡ Πα:K1.K2.

2. (a) By Part 1, ∆ ` sK(C1) ≡ K and ∆ ` sK(C2) ≡ K, and thus ∆ ` sK(C1) ≡ sK(C2).

(b) By Part 3 of Proposition 3.1.12, ∆ ` C1 : sK(C1), and thus ∆ ` C1 : sK(C2).

(c) By Part 4 of Proposition 3.1.12, ∆ ` C1 ≡ C2 : sK(C2), and thus ∆ ` C1 ≡ C2 : K.

3–5. Straightforward.

�

3.1.6 Kind Checking and Synthesis

Figure 3.7 shows Stone and Harper’s algorithm for synthesizing the principal (most-precise) kind
for a given type constructor. Checking whether a constructor has a certain kind is then simply a
matter of checking whether the constructor’s principal kind is a subtype of it. The algorithm itself
follows the typing rules for constructors fairly closely, except that it only performs selfification in
the variable and base type cases, and it only uses subsumption when checking a function argument
against the domain kind of the function. In addition, unlike the declarative rules, the algorithm
requires as a precondition that the context it is given is well-formed. Here I state several properties
of kind synthesis, including that it is sound, complete and deterministic:

Proposition 3.1.15 (Soundness and Other Properties of Kind Checking/Synthesis)
Assume ∆ ` ok.

1. If ∆ ` C ⇒ K or ∆ ` C ⇐ K, then ∆ ` C : K.

2. Synthesis is deterministic, i.e., if ∆ ` C ⇒ K1 and ∆ ` C ⇒ K2, then K1 = K2.

3. If ∆ ` C ⇒ K, then K is transparent.

4. For J ranging over any judgment defined in Figure 3.7,
if ∆ ` J and ∆′ ⊇ ∆ and ∆′ ` ok, then ∆′ ` J .

3.1. TYPE CONSTRUCTORS AND KINDS 51

Kind checking: ∆ ` C ⇐ K

∆ ` C ⇒ K′ ∆ ` K′ ≤ K
∆ ` C ⇐ K

Base type well-formedness: ∆ ` b ok

∆ ` unit ok
∆ ` C1 ⇐ T ∆ ` C2 ⇐ T

∆ ` C1 ×C2 ok
∆ ` C1 ⇐ T ∆ ` C2 ⇐ T

∆ ` C1 →C2 ok

∆ ` K kind ∆, α:K ` C ⇐ T

∆ ` ∀α:K.C ok

∆ ` K kind ∆, α:K ` C ⇐ T

∆ ` ∃α:K.C ok

Principal kind synthesis: ∆ ` C ⇒ K

α:K ∈ ∆
∆ ` α ⇒ sK(α)

∆ ` b ok
∆ ` b ⇒ s(b)

∆ ` C′ ⇒ K′ ∆, α:K′ ` C′′ ⇒ K′′

∆ ` 〈α =C′,C′′〉 ⇒ Σα:K′.K′′
∆ ` C ⇒ Σα:K′.K′′

∆ ` π1C ⇒ K′
∆ ` C ⇒ Σα:K′.K′′

∆ ` π2C ⇒ K′′[π1C/α]

∆ ` K′ kind ∆, α:K′ ` C ⇒ K′′

∆ ` λα:K′.C ⇒ Πα:K′.K′′
∆ ` C ⇒ Πα:K′.K′′ ∆ ` D ⇐ K′

∆ ` C(D) ⇒ K′′[D/α]

Figure 3.7: Kind Checking and Principal Kind Synthesis

Proposition 3.1.16 (Completeness of Kind Checking)
If ∆ ` C : K, then ∆ ` C ⇐ sK(C) (and therefore ∆ ` C ⇐ K as well).

As the kind checking algorithm is syntax-directed, showing that it terminates reduces to finding
decision procedures for the kind well-formedness and subtyping judgments. Both of these are
syntax-directed as well, but the latter requires a method of deciding constructor equivalence in the
case of Rule 15. The proof that such a method exists is quite difficult and constitutes Stone and
Harper’s chief contribution. I discuss their algorithm and proof of correctness in the next section.

3.1.7 Deciding Constructor Equivalence

The Stone-Harper algorithm for deciding constructor equivalence is shown in Figures 3.8 and 3.9.
It comprises a number of interlocking judgments, on which I will attempt now to impose some
narrative structure.

First of all, suppose we are given two well-formed constructors C1 and C2 to be compared
at kind K in context ∆. The main judgment ∆ ` C1 ⇔ C2 : K determines whether they are
equivalent by dividing the problem into a series of subproblems at base kinds. This makes sense
due to extensionality: C1 and C2 are equivalent at pair kind precisely when their first projections
are equivalent and their second projections are equivalent, and they are equivalent at arrow kind
precisely when, for any argument α of the domain kind, C1(α) is equivalent at C2(α) at the result
kind. At the unit and singleton base kinds, the algorithm trivially returns a positive answer because
all constructors are equivalent at one of those kinds. At kind T, however, we must actually look
at the constructors!

52 CHAPTER 3. A TYPE SYSTEM FOR ML MODULES: CORE LANGUAGE

Elimination Contexts E ::= • | E(C) | πiE
Constructor Paths P ::= b | E{α}

Natural kind extraction: ∆ ` P ↑ K

∆ ` b ↑ T
∆ ` α ↑ ∆(α)
∆ ` P(C) ↑ K′′[C/α] if ∆ ` P ↑ Πα:K′.K′′

∆ ` π1P ↑ K′ if ∆ ` P ↑ Σα:K′.K′′

∆ ` π2P ↑ K′′[π1P/α] if ∆ ` P ↑ Σα:K′.K′′

Weak head reduction: ∆ ` C1
wh
−→ C2

∆ ` E{(λα:K′.C)C′}
wh
−→ E{C[C′/α]}

∆ ` E{π1〈α = C′,C′′〉}
wh
−→ E{C′}

∆ ` E{π2〈α = C′,C′′〉}
wh
−→ E{C′′[C′/α]}

∆ ` P
wh
−→ C if ∆ ` P ↑ s(C)

Weak head normalization: ∆ ` C
wh
=⇒ D

∆ ` C
wh
=⇒ D if ∆ ` C

wh
−→ C′ and ∆ ` C′ wh

=⇒ D

∆ ` C
wh
=⇒ C otherwise

Figure 3.8: Weak Head Normalization for Type Constructors

When comparing two constructors at kind T, the algorithm first reduces the constructors to
weak head normal form (WHNF) [62]. Since the constructors have kind T, their WHNF’s will not
be λ-abstractions, but rather paths, whose syntax is described at the top of Figure 3.8. A path P
is either a base type or a sequence of eliminations (i.e., projections and applications) rooted at a
constructor variable. The notation E{C} used in the definition of paths in Figure 3.8 signifies the
substitution of C into the single hole • in the elimination context E .

The first three rules in the weak head reduction judgment ∆ ` C1
wh
−→ C2 are completely

standard β-reduction. The fourth rule is non-standard—it says that being a path is not equivalent
to being in WHNF; to be in WHNF a path must also be abstract. For example, if α is bound
in the context with kind T, then α is an abstract type. If α is bound with s(C), however, then
α is transparently equal to C and may thus be reduced to it. One can think of this reduction
step as “looking up the definition of a type variable.” Whether a path has a “definition” or not
is determined by a judgment called “natural kind extraction” and written ∆ ` C ↑ K. Intuitively,
the natural kind of a constructor is the kind you would synthesize for it if the selfification rules did
not exist. This intuition is reflected in the following fact, connecting principal and natural kinds.

Proposition 3.1.17 (Connection Between Natural and Principal Kinds)
If ∆ ` P ⇒ K, then ∆ ` P ↑ L, ∆ ` P : L, and K = sL(P).

The natural kind of a path will be of the form s(C) if and only if it has a definition in the context

3.1. TYPE CONSTRUCTORS AND KINDS 53

Algorithmic kind equivalence: ∆ ` K1 ⇔ K2

∆ ` 1 ⇔ 1
∆ ` T ⇔ T
∆ ` s(C1) ⇔ s(C2) if ∆ ` C1 ⇔ C2 : T
∆ ` Πα:K′

1.K
′′
1 ⇔ Πα:K′

2.K
′′
2 if ∆ ` K′

1 ⇔ K′
2 and ∆, α:K′

1 ` K′′
1 ⇔ K′′

2

∆ ` Σα:K′
1.K

′′
1 ⇔ Σα:K′

2.K
′′
2 if ∆ ` K′

1 ⇔ K′
2 and ∆, α:K′

1 ` K′′
1 ⇔ K′′

2

Algorithmic constructor equivalence: ∆ ` C1 ⇔ C2 : K

∆ ` C1 ⇔ C2 : 1
∆ ` C1 ⇔ C2 : s(C)

∆ ` C1 ⇔ C2 : T if ∆ ` C1
wh
=⇒ P1, ∆ ` C2

wh
=⇒ P2,

and ∆ ` P1 ↔ P2 ↑ T
∆ ` C1 ⇔ C2 : Πα:K′.K′′ if ∆, α:K′ ` C1(α) ⇔ C2(α) : K′′

∆ ` C1 ⇔ C2 : Σα:K′.K′′ if ∆ ` π1C1 ⇔ π1C2 : K′

and ∆ ` π2C1 ⇔ π2C2 : K′′[π1C1/α]

Algorithmic path equivalence: ∆ ` P1 ↔ P2 ↑ K

∆ ` α ↔ α ↑ ∆(α)
∆ ` unit ↔ unit ↑ T
∆ ` C′

1 ×C′′
1 ↔ C′

2 ×C′′
2 ↑ T if ∆ ` C′

1 ⇔ C′
2 : T and ∆ ` C′′

1 ⇔ C′′
2 : T

∆ ` C′
1 →C′′

1 ↔ C′
2 →C′′

2 ↑ T if ∆ ` C′
1 ⇔ C′

2 : T and ∆ ` C′′
1 ⇔ C′′

2 : T
∆ ` ∀α:K1.C1 ↔ ∀α:K2.C2 ↑ T if ∆ ` K1 ⇔ K2 and ∆, α:K1 ` C1 ⇔ C2 : T
∆ ` ∃α:K1.C1 ↔ ∃α:K2.C2 ↑ T if ∆ ` K1 ⇔ K2 and ∆, α:K1 ` C1 ⇔ C2 : T
∆ ` P1(C1) ↔ P2(C2) ↑ K′′[C1/α] if ∆ ` P1 ↔ P2 ↑ Πα:K′.K′′ and ∆ ` C1 ⇔ C2 : K′

∆ ` π1P1 ↔ π1P2 ↑ K′ if ∆ ` P1 ↔ P2 ↑ Σα:K′.K′′

∆ ` π2P1 ↔ π2P2 ↑ K′′[π1P1/α] if ∆ ` P1 ↔ P2 ↑ Σα:K′.K′′

Figure 3.9: Equivalence Algorithm for Constructors and Kinds

(namely, C). It is worth noting that this is the only place in the whole equivalence algorithm where
the context ∆ is actually consulted.

Finally, now that we have reduced C1 and C2 to WHNF’s P1 and P2, we compare the two paths
structurally with the judgment ∆ ` P1 ↔ P2 ↑ K. In several cases, structural path comparison
requires recursive calls to the main equivalence judgment when it encounters subterms, such as
function arguments, that are not necessarily paths. The kind K in the path equivalence judgment
is the natural kind of P1. It is used in the function application case to synthesize the kind K′ at
which the arguments C1 and C2 are to be compared.

The proof that this algorithm is sound is fairly straightforward. The proof that it is complete,
however, is quite complicated, the chief difficulty being that the algorithm itself is not obviously
symmetric or transitive! Specifically, in the pair kind case of the main equivalence judgment, the
second recursive call compares π2C1 and π2C2 at the kind K′′[π1C1/α]. This does not clearly
imply that the two constructors are also algorithmically equivalent at the kind K ′′[π1C2 /α], which
is needed to prove symmetry and transitivity. Similar asymmetries in the kinds pop up in the

54 CHAPTER 3. A TYPE SYSTEM FOR ML MODULES: CORE LANGUAGE

application and second projection cases of path equivalence.

This problem seems to require one to come up with a variant of the algorithm that is equivalent
to it but more obviously symmetric and transitive. Stone and Harper have proposed two such
variants. The first, described in their POPL paper [74], overcomes the asymmetries of the original
algorithm by working with two equivalent contexts (∆1 and ∆2) and two equivalent kinds (K1 and
K2) in addition to the two constructors. The idea is to divide the algorithmic judgments into two
halves, such that each Ci only ends up “infecting” the kind Ki and context ∆i on its own half of
the judgment. The proof that this algorithm is complete involves a Kripke-style logical relations
argument that is fairly straightforward aside from the fact that, like the algorithm, it also deals
with two contexts and two kinds.

The clunky nature of the six-place algorithm leads its proof of completeness to be rather ver-
bose. More recently, Stone discovered an alternative algorithm/proof that is, I believe, much easier
to follow. While structured like the original algorithm, it takes the form of a normalization pro-
cedure for constructors that is both context- and kind-dependent. Two constructors are deemed
equivalent if they have the same normal form, so symmetry and transitivity fall out trivially. More
interesting is the logical relation used, which has the form C in K [D], where D, C and K are sets
of contexts, constructors and kinds, respectively. The logical relation has the property that all of
the constructors in C, when compared at any of the kinds in K and under any of the contexts in D,
have the same normal form. The strengthened induction hypothesis implied by this logical relation
results in a completeness proof that is considerably more elegant and readable than the original.
It is described in detail in Stone and Harper’s forthcoming journal version of their paper [75].

Given soundness and completeness, it is not hard to show that the equivalence algorithm is decid-
able. One consequence of decidability is that all well-formed constructors have (unique) WHNF’s.
This is useful particularly when proving decidability of type synthesis (see Section 3.2.4 below).

Theorem 3.1.18 (Soundness, Completeness and Decidability of Equivalence Algorithm)
1. If ∆ ` K1 kind and ∆ ` K2 kind, then ∆ ` K1 ≡ K2 if and only if ∆ ` K1 ⇔ K2,

which is decidable.

2. If ∆ ` C1 : K and ∆ ` C2 : K, then ∆ ` C1 ≡ C2 : K if and only if ∆ ` C1 ⇔ C2 : K,
which is decidable.

3. If ∆ ` P1 : K1 and ∆ ` P2 : K2 and ∆ ` P1 ↔ P2 ↑ K, then ∆ ` P1 ≡ P2 : K.

Proposition 3.1.19 (Well-Formed Constructors Have Weak Head Normal Forms)
If ∆ ` C : K, then there exists a unique D such that ∆ ` C

wh
=⇒ D, and moreover ∆ ` C ≡ D : K.

3.2 Terms

In this section, I present the term layer of my core language. Unlike the constructor and kind
languages, this term language is a completely standard explicitly-typed variant of the term language
of Fω.

3.2.1 Syntax

Figure 3.10 gives the syntax of terms and values. I have organized the language so that all intro-
duction forms are values and all values are introduction forms, except for value variables x. A term
e is either a value v, an elimination form, or a let-expression. There are two kinds of let-expressions.

3.2. TERMS 55

Value Variables x, y ∈ ValVars
Values v, w ::= x | 〈〉 | 〈v1, v2〉 | fun x(x1:C1):C2. e |

Λα:K.e | pack [C, v] as D
Terms e, f ::= v | πiv | v1(v2) | v[C] | let [α, x] = unpack v in (e : C) |

let α = C in e | let x = e1 in e2

Dynamic Contexts Γ ::= ∅ | Γ, α:K | Γ, x:C

Figure 3.10: Syntax of Terms and Values

〈e1, e2〉
def

= let x1 = e1 in let x2 = e2 in 〈x1, x2〉

πie
def

= let x = e in πix

e1(e2)
def

= let x1 = e1 in let x2 = e2 in x1(x2)

e[C]
def

= let x = e in x[C]

pack [C, e] as D
def

= let x = e in pack [C, x] as D

let [α, y] = unpack e in (e′ : C)
def

= let x = e in let [α, y] = unpack x in (e′ : C)

Figure 3.11: Less Restrictive Versions of Term Constructs

The first, let α = C in e, binds C to α inside e. This construct is in fact encodable as (Λα:K.e)[C],
where K is the principal kind of C. As this is not a direct syntactic encoding, however, I have
included the construct as primitive for convenience. The second let construct, let x = e1 in e2,
evaluates e1 to a value v, which is then bound to x inside e2. Using this construct, we can easily
define less restrictive versions of several of the term constructs (shown in Figure 3.11) in which the
subterms are permitted to be arbitrary terms and are evaluated in left-to-right order.

Note that the elimination form for existentials, let [α, x] = unpack v in (e : C), includes a type
annotation C on the result which must be well-formed in the ambient context of the term, i.e., C
may not refer to the local type variable α. To eliminate clutter, I will sometimes omit the type
annotation C when it is clear from context what it should be.

Finally, Figure 3.10 also defines the syntax of dynamic contexts, which extend static contexts
with bindings of value variables to their types. There is a straightforward erasure of dynamic
contexts into static contexts, defined by the following Fst(·) function:

Fst(∅)
def

= ∅

Fst(Γ, α:K)
def

= Fst(Γ), α:K

Fst(Γ, x:C)
def

= Fst(Γ)

3.2.2 Static Semantics

Figure 3.12 shows the inference rules for the judgments of well-formed terms and dynamic contexts,
all of which are straightforward. The only point of note is that the premises of some rules refer
to constructor and kind judgments using dynamic contexts Γ in place of static contexts ∆. The
meaning of these premises is explained by the following definition:

56 CHAPTER 3. A TYPE SYSTEM FOR ML MODULES: CORE LANGUAGE

Well-formed dynamic contexts: Γ ` ok

∅ ` ok
(52) Γ ` K kind

Γ, α:K ` ok
(53) Γ ` C : T

Γ, x:C ` ok
(54)

Well-formed terms: Γ ` e : C

Γ ` ok x:C ∈ Γ
Γ ` x : C

(55)
Γ ` ok

Γ ` 〈〉 : unit
(56)

Γ ` v′ : C′ Γ ` v′′ : C′′

Γ ` 〈v′, v′′〉 : C′×C′′ (57)
Γ ` v : C1 ×C2 i ∈ {1, 2}

Γ ` πiv : Ci
(58)

Γ, x:C′ →C′′, x′:C′ ` e : C′′

Γ ` fun x(x′:C′):C′′. e : C′→C′′ (59) Γ ` v : C′→C Γ ` v′ : C′

Γ ` v(v′) : C
(60)

Γ, α:K ` e : C

Γ ` Λα:K.e : ∀α:K.C
(61)

Γ ` v : ∀α:K.C Γ ` D : K
Γ ` v[D] : C[D/α]

(62)

Γ ` D ≡ ∃α:K.C′ : T Γ ` C : K Γ ` v : C′[C/α]

Γ ` pack [C, v] as D : D
(63)

Γ ` v : ∃α:K.C′ Γ, α:K, x:C′ ` e : C Γ ` C : T

Γ ` let [α, x] = unpack v in (e : C) : C
(64)

Γ ` C : K Γ, α:K ` e : D

Γ ` let α = C in e : D[C/α]
(65)

Γ ` e′ : C′ Γ, x:C′ ` e : C

Γ ` let x = e′ in e : C
(66) Γ ` e : C′ Γ ` C′ ≡ C : T

Γ ` e : C
(67)

Figure 3.12: Inference Rules for Terms and Dynamic Contexts

Definition 3.2.1 (Static Judgments with Dynamic Contexts)
For any judgment form J (except “ok”) defined in Figures 3.4 and 3.5,
let Γ ` J be shorthand for the conjunction of Γ ` ok and Fst(Γ) ` J .

3.2.3 Declarative Properties

It is easy to check that all the propositions stated in Sections 3.1.3 and 3.1.4 involving static contexts
may be restated using dynamic contexts instead (i.e., by syntactically replacing all instances of a ∆
with a corresponding instance of a Γ), and that all the structural properties (except Substitution)
concerning an arbitrary judgment J apply to the term typing judgment as well. Additionally, we
have the following new properties:

Proposition 3.2.2 (Subderivations)
Every proof of Γ1, x:C,Γ2 ` J contains a strict subderivation of Γ1 ` C : T.

Proposition 3.2.3 (Weakening)
If Γ1, x:C2,Γ2 ` J and Γ1 ` C1 ≡ C2 : T, then Γ1, x:C1,Γ2 ` J .

Proposition 3.2.4 (Validity)
If Γ ` e : C, then Γ ` C : T.

3.2. TERMS 57

Type checking: Γ ` e ⇐ C

Γ ` e ⇒ C′ Γ ` C′ ≡ C : T
Γ ` e ⇐ C

Normalized type synthesis: Γ ` e
wh
=⇒ C

Γ ` e ⇒ C′ Γ ` C′ wh
=⇒ C

Γ ` e
wh
=⇒ C

Type synthesis: Γ ` e ⇒ C

x:C ∈ Γ
Γ ` x ⇒ C Γ ` 〈〉 ⇒ unit

Γ ` v1 ⇒ C1 Γ ` v2 ⇒ C2

Γ ` 〈v1, v2〉 ⇒ C1 ×C2

Γ ` v
wh
=⇒ C1 ×C2

Γ ` πiv ⇒ Ci

Γ ` C′→C′′ : T Γ, x:C′ →C′′, x′:C′ ` e ⇐ C′′

Γ ` fun x(x′:C′):C′′. e ⇒ C′→C′′
Γ ` v

wh
=⇒ C′→C Γ ` v′ ⇐ C′

Γ ` v(v′) ⇒ C

Γ ` K kind Γ, α:K ` e ⇒ C

Γ ` Λα:K.e ⇒ ∀α:K.C
Γ ` v

wh
=⇒ ∀α:K.C Γ ` D : K
Γ ` v[D] ⇒ C[D/α]

Γ ` D : T Γ ` D
wh
=⇒ ∃α:K.C′ Γ ` C : K Γ ` v ⇐ C′[C/α]

Γ ` pack [C, v] as D ⇒ D

Γ ` v
wh
=⇒ ∃α:K.C′ Γ, α:K, x:C′ ` e ⇐ C Γ ` C : T

Γ ` let [α, x] = unpack v in (e : C) ⇒ C

Γ ` C ⇒ K Γ, α:K ` e ⇒ D

Γ ` let α = C in e ⇒ D[C/α]

Γ ` e′ ⇒ C′ Γ, x:C′ ` e ⇒ C

Γ ` let x = e′ in e ⇒ C

Figure 3.13: Type Checking and Type Synthesis

3.2.4 Type Checking and Synthesis

Figure 3.13 gives an algorithm for synthesizing the type of a term, which is unique modulo type
equivalence. It is completely straightforward. The only point of note is that in several places I
make use of weak head normalization in order to reduce a given or synthesized type C into the
form of a base type b. Here I state several properties of type synthesis, including that it is sound,
complete and deterministic. Decidability is easy to show, as the algorithm is syntax-directed.

Proposition 3.2.5 (Soundness and Other Properties of Type Checking/Synthesis)
Assume Γ ` ok.

1. If Γ ` e ⇐ C or Γ ` e ⇒ C or Γ ` e
wh
=⇒ C, then Γ ` e : C.

2. Type synthesis is deterministic, i.e., if Γ ` e ⇒ C1 and Γ ` e ⇒ C2, then C1 = C2.

3. For J ranging over any judgment defined in Figure 3.13,
if Γ ` J and Γ′ ⊇ Γ and Γ′ ` ok, then Γ′ ` J .

58 CHAPTER 3. A TYPE SYSTEM FOR ML MODULES: CORE LANGUAGE

Small-step semantics: e 7→ e′

πi〈v1, v2〉 7→ vi

v = fun x(x′:C′):C′′. e

v(v′) 7→ e[v/x][v′/x′] (Λα:K.e)[C] 7→ e[C/α]

let [α, x] = unpack (pack [C, v] as D) in (e : C′) 7→ e[C/α][v/x]

let α = C in e 7→ e[C/α]

e1 7→ e′1
let x = e1 in e2 7→ let x = e′1 in e2 let x = v in e 7→ e[v/x]

Figure 3.14: Dynamic Semantics of the Core Language

Proposition 3.2.6 (Completeness of Type Checking)
If Γ ` e : C, then Γ ` e ⇐ C.

3.2.5 Dynamic Semantics and Type Safety

Figure 3.14 gives the dynamic semantics for the core language, in the form of a small-step opera-
tional semantics. Again, it is completely standard.

The proof of type safety is done in the usual manner, via preservation and progress theorems,
which rely respectively on the substitution and canonical forms lemmas stated below. The proofs
of the following properties, except for Substitution, use the type synthesis algorithm of the previous
section in order to regularize the structure of term typing derivations.

Lemma 3.2.7 (Substitution for Term Typing Judgment)
1. If Γ1, α:K,Γ2 ` e : D and Γ1 ` C : K, then Γ1,Γ2[C/α] ` e[C/α] : D[C/α].

2. If Γ1, x:C,Γ2 ` e : D and Γ1,Γ2 ` v : C, then Γ1,Γ2 ` e[v/x] : D.

Lemma 3.2.8 (Canonical Forms)
Suppose ∅ ` v : C. Then:

1. If C is of the form unit, then v is of the form 〈〉.

2. If C is of the form C1 ×C2, then v is of the form 〈v1, v2〉.

3. If C is of the form C1 →C2, then v is of the form fun x(x′:C′):C′′. e.

4. If C is of the form ∀α:K.C, then v is of the form Λα:K′.e.

5. If C is of the form ∃α:K.C, then v is of the form pack [C′, v′] as D.

Theorem 3.2.9 (Progress)
If ∅ ` e : C, then either e is a value or there exists a unique e′ such that e 7→ e′.

Theorem 3.2.10 (Preservation)
If ∅ ` e : C and e 7→ e′, then ∅ ` e′ : C.

Chapter 4

A Type System for ML Modules:
Module Language

In this chapter, I will present the module language of my type system for ML modules, built on
top of the core language of Chapter 3. The high-level design of this module language has already
been motivated and outlined in Chapter 2. The goal of the present chapter is to explain the formal
details and meta-theoretic properties of the language.

In Section 4.1, I will present the language of signatures, which serve as the types of modules.
Thanks to the inclusion of singleton kinds in the type structure of the core language, the concept
of translucent signatures is very easy to account for. I will state and prove a number of properties
of signatures, and I will also show how to interpret signatures in terms of core-language kinds and
types, via a translation known as “phase-splitting.” In Section 4.2, I will present the language of
modules itself. While modules do extend the term structure of the core language in order to allow
the projection of value components from modules, they do not extend the type structure of the core
language and thus do not complicate the problem of deciding type equivalence. I will give a sound
and complete signature checking algorithm for the module language, and I will also show how to
phase-split modules into core-language type constructors and terms, which may then be evaluated
according to the core-language dynamic semantics given in Section 3.2.5.

4.1 Signatures

4.1.1 Syntax

The syntax of signatures is given in Figure 4.1. Figure 4.2 illustrates how the constructs in the
signature language correspond roughly to the signatures one finds in ML code.1 Let us look at the
signature forms shown in Figure 4.1 one at a time.

The unit signature 1 corresponds to an empty signature with no specifications. The kind
signature [[K]] corresponds to a signature with a single specification of a type constructor with kind
K. The type signature [[C]] models a signature with a single specification of a value component
whose type is C.

The pair signature ΣX:S1.S2 describes a module consisting of a pair of submodules. The sig-
nature S2 of the second submodule may refer to type components of the first submodule, whose

1This is only a loose correspondence, meant to provide some intuition. A more precise correspondence will be
given in the definition of my new ML dialect in Part III.

60 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

Module Variables X,Y ∈ ModVars
Totality Classifiers τ ::= tot | par

Signatures S,R ::= 1 | [[K]] | [[C]] | ΣX:S1.S2 | ΠτX:S1.S2

Transparent Signatures S, R ::= 1 | [[K]] | [[C]] | ΣX:S1.S2 | ΠtotX:S1.S2 | ΠparX:S1.S2

Figure 4.1: Syntax of Signatures

1 ≈ sig end

[[T]] ≈ sig type t end

[[Tn →T]] ≈ sig type (’a1,...,’an) t end

[[s(C)]] ≈ sig type t = C end

[[C]] ≈ sig val x : C end

ΣX:S1.S2 ≈ sig

structure X : S1

structure Y : S2

end

ΠτX:S1.S2 ≈ functor (X : S1) -> S2

Figure 4.2: Correspondence With ML Signatures

signature is S1, through the module variable X. The analogy between ΣX:S1.S2 and the corre-
sponding ML signature shown in Figure 4.2 is not quite precise: in ML submodules are accessed
by name, whereas in this calculus submodules are accessed by position. Hence, while the variable
name X is alpha-convertible in ΣX:S1.S2, changing X to X′ in the corresponding ML signature
results in an inequivalent signature.

Lastly, the functor signature ΠτX:S1.S2 describes a functor with argument signature S1 and
result signature S2, where S2 may refer to type components of the argument module through
the variable X. The τ is a “totality classifier,” which is either tot or par depending on whether
the functor is total or partial, respectively. I will sometimes write ΠX:S1.S2 as shorthand for
ΠtotX:S1.S2. When X 6∈ FV(S2), I will also sometimes use S1 ×S2 and S1

τ
−→ S2 as shorthand for

ΣX:S1.S2 and ΠτX:S1.S2, respectively.

Of course, real ML signatures do not have as restricted a form as the signatures in this calculus—
they may specify an arbitrary sequence of types, values and submodules. The signature forms in this
type system are intended to represent a convenient and concise abstraction of the expressive power
of ML signatures, and what they lack in programming flexibility they make up for in simplicity.

There are several points to observe about this signature language. First, in practice, the K in
the kind signature [[K]] will only range over a restricted class of kinds: type constructors at the ML
source level are either monomorphic (like unit), in which case they have kind T, or polymorphic,
(like list), in which case they are functions that take some number of arguments n of kind T and
return a type of kind T. ML’s “opaque” type specifications thus correspond to kind signatures of
the form [[T]] or [[Tn →T]], which do not reveal any information about the type constructors that

4.1. SIGNATURES 61

Fst(1)
def

= 1

Fst([[K]])
def

= K

Fst([[C]])
def

= 1

Fst(ΣX:S1.S2)
def

= ΣXc:Fst(S1).Fst(S2)

Fst(ΠtotX:S1.S2)
def

= ΠXc:Fst(S1).Fst(S2)

Fst(ΠparX:S1.S2)
def

= 1

Figure 4.3: Extracting the Static Part of a Signature

inhabit them (besides their arity n).2 ML’s “transparent” type specifications, in turn, correspond
to kind signatures [[K]] where K is a transparent—in particular a singleton—kind.

Second, while the pair and functor signature constructs contain binding sites for module vari-
ables, I have failed to provide a way for signatures, constructors or kinds to ever refer to those
module variables! To remedy this situation, I assume an injection (·)c from ModVars into ConVars ,
that is, for every module variable X, there is a corresponding constructor variable Xc, with the prop-
erty that X = Y if and only if Xc = Yc. In addition, wherever X is bound, Xc is implicitly bound
as well. The idea is that, if X stands for a module M, then Xc is a constructor variable representing
the type components of M. Then, instead of projecting types from X directly, which would require
extending the type language, we project them from the constructor Xc.

The introduction of Xc begs the question: if a module variable X has signature S, what is the
kind of Xc? The answer is given by the meta-level function Fst(S), defined in Figure 4.3. Intuitively,
if X has S, then Fst(S) describes the ways in which type components may be extracted from X
(or rather, from Xc). If S = [[K]], then Xc is the one and only constructor component of X, so it
has kind K. If S = [[C]], then X has a single value component and no type components, so Xc is
equivalent to 〈〉 and has kind 1. For unit and pair signatures, Fst(S) is defined in the obvious way.

The definition of Fst(S) gets slightly tricky when S is a functor signature. When S = ΠtotY:S1.S2,
type components may be extracted from X by first applying it to a module with signature S1 and
then projecting types from the result. Since X is a separably total functor, however, we know
that the type components in X’s result can only depend on the type components in its argument.
Correspondingly, Xc is a constructor function from the static part of its argument to the static part
of its result and has kind ΠYc:Fst(S1).Fst(S2). On the other hand, when S = ΠparY:S1.S2, there is
no way to extract type components from X because any application of X will be deemed impure
and therefore non-projectible. Consequently, Xc is useless—to indicate this, I equate it with the
unit constructor 〈〉 and define Fst(ΠparY:S1.S2) to be 1. In the proofs of several properties of the
module language, it is convenient to group together signatures S for which Fst(S) is the unit kind,
namely signatures of the form 1, [[C]] or ΠparY:S1.S2. I will refer to these signature forms as unitary.

Finally, analogous to the notion of higher-order singleton kinds, Figure 4.4 defines a notion of
singleton signatures.3 Intuitively, the singleton signature sS(C) describes precisely those modules
of signature S whose static parts (of kind Fst(S)) are equivalent to C. Given this intuition, the
formal definition itself is fairly straightforward. Singleton signatures will come in very handy in

2
T

n here stands for T× · · · × T
︸ ︷︷ ︸

n times

.

3Similarly to higher-order singleton kinds, sS(C) is defined inductively on the size of the signature S, using the
size metric of Definition 4.1.2.

62 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

s1(C)
def

= 1

s[[K]](C)
def

= [[sK(C)]]

s[[D]](C)
def

= [[D]]

sΣX:S1.S2
(C)

def

= sS1
(π1C)×sS2[π1C/Xc](π2C)

sΠtotX:S1.S2
(C)

def

= ΠtotX:S1.sS2
(C(Xc))

sΠparX:S1.S2
(C)

def

= ΠparX:S1.S2

Figure 4.4: Singleton Signatures

formalizing the idea of selfification at the level of modules in much the same way that higher-order
singleton kinds formalize selfification at the level of type constructors.

Singleton signatures are a special case of a more general subclass of transparent signatures,
written S, whose syntax is defined in Figure 4.1. Conceptually, a transparent signature is a signature
in which the type components (if there are any) are fully specified, i.e., have transparent kinds. More
formally, S is a transparent signature if and only if Fst(S) is a transparent kind. One consequence
of this definition is that all unitary signatures are considered transparent—in particular, a partial
functor signature is considered transparent, even if its result signature is not. This makes sense:
since no type components may be extracted from a partial functor, it is indeed the case that
all zero of them are transparently specified. The ability to syntactically distinguish transparent
signatures is useful both in the typing judgment for modules (presented in Section 4.2.3) and in
the meta-theory of the module language.

4.1.2 Static Semantics

Figure 4.5 shows the inference rules for the judgments of well-formed signatures, signature equiva-
lence and signature subtyping. The important thing to note about all three judgments is that they
employ a static context ∆, not a dynamic context Γ. Thus, in the cases of Σ and Π signatures,
instead of binding the module variable X in the context4 with signature S1, we bind Xc in the
context with Fst(S1). As explained in the previous section, this is feasible because S2 only needs
to refer to the type components of X, which are represented by Xc. I have defined the judgments
in this way so as to emphasize the point that signatures are purely static entities, which may only
depend on other static entities such as constructors and kinds, not on dynamic values.

The well-formedness and equivalence judgments are completely straightforward. The subtyping
judgment, however, requires a bit of explanation. The point of signature subtyping in this calculus
is to allow the identities of a module’s type components to be forgotten when coercing the module
from a more transparent signature to a more opaque signature. This is not as liberal as signature
matching in ML, which additionally permits both the dropping and reordering of components and
the specialization of polymorphic value components. These other features of ML’s signature match-
ing are important, but they can be supported by generating explicit coercions between signatures
(see Chapter 9 for details).

The subtyping defined in Figure 4.5 allows for the forgetting of a module’s type components via
Rule 79, which uses kind subtyping to implement the forgetfulness. Subtyping is defined at pair

4The ability to bind module variables in the context will be introduced in Section 4.2.1.

4.1. SIGNATURES 63

Well-formed signatures: ∆ ` S sig

∆ ` ok
∆ ` 1 sig

(68)
∆ ` K kind
∆ ` [[K]] sig

(69) ∆ ` C : T
∆ ` [[C]] sig

(70)

∆ ` S′ sig ∆,Xc:Fst(S′) ` S′′ sig

∆ ` ΣX:S′.S′′ sig
(71)

∆ ` S′ sig ∆,Xc:Fst(S′) ` S′′ sig

∆ ` ΠτX:S′.S′′ sig
(72)

Signature equivalence: ∆ ` S1 ≡ S2

∆ ` ok
∆ ` 1 ≡ 1

(73)
∆ ` K1 ≡ K2

∆ ` [[K1]] ≡ [[K2]]
(74)

∆ ` C1 ≡ C2 : T

∆ ` [[C1]] ≡ [[C2]]
(75)

∆ ` S′
1 ≡ S′

2 ∆,Xc:Fst(S′
1) ` S′′

1 ≡ S′′
2

∆ ` ΣX:S′
1.S

′′
1 ≡ ΣX:S′

2.S
′′
2

(76)
∆ ` S′

2 ≡ S′
1 ∆,Xc:Fst(S′

2) ` S′′
1 ≡ S′′

2

∆ ` ΠτX:S′
1.S

′′
1 ≡ ΠτX:S′

2.S
′′
2

(77)

Signature subtyping: ∆ ` S1 ≤ S2

∆ ` ok
∆ ` 1 ≤ 1

(78)
∆ ` K1 ≤ K2

∆ ` [[K1]] ≤ [[K2]]
(79)

∆ ` C1 ≡ C2 : T

∆ ` [[C1]] ≤ [[C2]]
(80)

∆ ` S′
1 ≤ S′

2 ∆,Xc:Fst(S′
1) ` S′′

1 ≤ S′′
2 ∆ ` ΣX:S′

2.S
′′
2 sig

∆ ` ΣX:S′
1.S

′′
1 ≤ ΣX:S′

2.S
′′
2

(81)

∆ ` S′
2 ≡ S′

1 ∆,Xc:Fst(S′
2) ` S′′

1 ≤ S′′
2

∆ ` ΠtotX:S′
1.S

′′
1 ≤ ΠtotX:S′

2.S
′′
2

(82)
∆ ` S′

2 ≡ S′
1 ∆,Xc:Fst(S′

2) ` S′′
1 ≡ S′′

2

∆ ` ΠparX:S′
1.S

′′
1 ≤ ΠparX:S′

2.S
′′
2

(83)

Figure 4.5: Inference Rules for Signatures

signatures in the standard covariant manner. For functor signatures, though, subtyping is very
restrictive: total functor signatures are not considered subtypes of partial functor signatures, and
subtyping for both kinds of signatures is invariant, not contravariant, in the argument. In fact,
for partial signatures, subtyping is even invariant in the result. I will explain the specific technical
reasons for these restrictions in Section 4.1.4, but essentially they are due to the lack of subtyping—
at the level of types, not kinds—in the core language. Nevertheless, as with the other features of
ML’s signature matching, it is possible to define a more standard co- and contra-variant formulation
of functor subtyping by means of explicit module coercions, and I will do so in Chapter 9.

4.1.3 Declarative Properties

Unlike the core language of Chapter 3, the module language of this chapter is presented here in a
new formulation for which the meta-theory has not previously been written down. I will therefore
give proofs of any theorems that are not entirely straightforward. Fortunately, there are not many.

First, it is easy to check that the basic structural properties stated in Section 3.1.3 (Proposi-
tions 3.1.1, 3.1.2, 3.1.4, and 3.1.5) all hold for the new signature judgments defined above. The
Substitution property relies on the fact that substitution commutes with Fst(S) and sS(C), as
stated by the following proposition:

64 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

Proposition 4.1.1 (Substitution Commutes With Fst(S) and sS(C))
1. γ(Fst(S)) = Fst(γS).

2. γ(sS(C)) = sγS(γC).

With the structural properties in hand, we now state some basic facts about Fst(S) and sS(C),
namely: that they commute with each other, that they take well-formed arguments to well-formed
results, and that Fst preserves the equivalence/subtyping relationships of its arguments.5 It is
useful to prove these facts before anything else, since Fst(·) at least is ubiquitous in the signature
judgments. Luckily, this is completely straightforward. The proofs of these and other properties of
signatures are by induction on the size of signatures, as defined by the following metric:

Definition 4.1.2 (Sizes of Signatures)
Let the size of a signature S, written size(S), be defined inductively as follows:

size(1)
def

= 1

size([[K]])
def

= 2

size([[C]])
def

= 2

size(ΣX:S1.S2)
def

= 1 + size(S1) + size(S2)

size(ΠτX:S1.S2)
def

= 1 + size(S1) + size(S2)

Note that size(sS(C)) = size(S) for all S and C.

Proposition 4.1.3 (Facts About Fst(S) and sS(C))
1. If ∆ ` C : Fst(S), then ∆ ` Fst(sS(C)) ≡ sFst(S)(C).

2. If ∆ ` S sig, then ∆ ` Fst(S) kind.

3. If ∆ ` S sig and ∆ ` C : Fst(S), then ∆ ` sS(C) sig.

4. If ∆ ` S1 ≡ S2, then ∆ ` Fst(S1) ≡ Fst(S2).

5. If ∆ ` S1 ≤ S2, then ∆ ` Fst(S1) ≤ Fst(S2).

Proof: By induction on the size of the given signature(s). �

The following properties of signatures, which are all analogous to properties of kinds, also admit
completely straightforward proofs by induction on the sizes of the given signatures. Those familiar
with the Stone-Harper meta-theory may be surprised that the proofs of validity and functionality
for signatures are completely straightforward, since at the kind level they are not. At the kind level,
validity and functionality are intertwined: kind-level validity depends on constructor-level validity,
which in turn depends on kind-level functionality, and the proof of functionality itself depends on
validity. This cycle can be broken, but it requires some work (the Stone-Harper technical report [73]
and Stone’s thesis [72] show two different ways to do it). Such a cycle does not occur, however, at
the signature level: signature-level validity depends only on constructor-level validity and kind-level
validity, both of which have already been proven.

Proposition 4.1.4 (Reflexivity)
If ∆ ` S sig, then ∆ ` S ≡ S and ∆ ` S ≤ S.

5The singleton signature macro also preserves the equivalence/subtyping relationships of its arguments, but it is
easier to prove this later (see Proposition 4.1.9).

4.1. SIGNATURES 65

Proposition 4.1.5 (Validity)
If ∆ ` S1 ≡ S2 or ∆ ` S1 ≤ S2, then ∆ ` S1 sig and ∆ ` S2 sig.

Proposition 4.1.6 (Symmetry and Transitivity of Signature Equivalence)
1. If ∆ ` S1 ≡ S2, then ∆ ` S2 ≡ S1.

2. If ∆ ` S1 ≡ S2 and ∆ ` S2 ≡ S3, then ∆ ` S1 ≡ S3.

Proposition 4.1.7 (Antisymmetry and Transitivity of Signature Subtyping)
1. ∆ ` S1 ≡ S2 if and only if ∆ ` S1 ≤ S2 and ∆ ` S2 ≤ S1.

2. If ∆ ` S1 ≤ S2 and ∆ ` S2 ≤ S3, then ∆ ` S1 ≤ S3.

Proposition 4.1.8 (Functionality)
Suppose ∆′ ` γ1 ≡ γ2 : ∆.

1. If ∆ ` S sig, then ∆′ ` γ1S ≡ γ2S.

2. If ∆ ` S1 ≡ S2, then ∆′ ` γ1S1 ≡ γ2S2.

3. If ∆ ` S1 ≤ S2, then ∆′ ` γ1S1 ≤ γ2S2.

The proofs of the following properties of singleton and transparent signatures are completely
analogous to the proofs of Propositions 3.1.12 and 3.1.14 given in Section 3.1.5. The only sub-
stantively new cases are the type-specification signature [[K]], for which the proof follows directly
from the propositions just named, and the unitary signatures, for which the proof is trivial because
sS(C) = S when S is unitary. The proofs implicitly make use of the fact that Fst commutes with
the singleton signature macro (Proposition 4.1.3 above).

Proposition 4.1.9 (Singleton and Transparent Signature Rules)
1. If ∆ ` S sig and ∆ ` C : Fst(S), then ∆ ` sS(C) ≤ S.

2. If ∆ ` S sig and ∆ ` C : Fst(S), then ∆ ` sS(C) ≡ S.

3. If ∆ ` S1 ≤ S2 and ∆ ` C1 ≡ C2 : Fst(S1), then ∆ ` sS1
(C1) ≤ sS2

(C2).

4. If ∆ ` S1 ≡ S2 and ∆ ` C1 ≡ C2 : Fst(S1), then ∆ ` sS1
(C1) ≡ sS2

(C2).

5. If ∆ ` S1 ≤ S2, then S1 is transparent.

6. sS(C) is transparent.

7. S is transparent if and only if Fst(S) is transparent.

Proof: By induction on the size of the given signature(s).

1. • Case: S is unitary. Trivial, by reflexivity.

• Case: S = [[K]]. By Proposition 3.1.12, ∆ ` sK(C) ≤ K, so ∆ ` [[sK(C)]] ≤ [[K]].

• Case: S = ΣX:S′.S′′.

(a) By inversion, ∆ ` S′ sig and ∆,Xc:Fst(S′) ` S′′ sig.

(b) Since ∆ ` π1C : Fst(S′), by induction ∆ ` sS′(π1C) ≤ S′,

(c) and by Substitution, ∆ ` S′′[π1C/Xc] sig.

66 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

(d) Since ∆ ` π2C : Fst(S′′)[π1C/Xc], by induction ∆ ` sS′′[π1C/Xc](π2C) ≤ S′′[π1C/Xc].

(e) By Proposition 3.1.12, ∆,Xc:sFst(S′)(π1C) ` π1C ≡ Xc : sFst(S′)(π1C).

(f) By Functionality, ∆,Xc:Fst(sS′(π1C)) ` S′′[π1C/Xc] ≤ S′′.

(g) Thus, ∆ ` sS′(π1C)×sS′′[π1C/Xc](π2C) ≤ ΣX:S′.S′′.

• Case: S = ΠX:S′.S′′.

(a) Since ∆,Xc:Fst(S′) ` S′′ sig, and ∆,Xc:Fst(S′) ` C(Xc) : Fst(S′′),

(b) by induction ∆,Xc:Fst(S′) ` sS′′(C(Xc)) ≤ S′′.

(c) Thus, ∆ ` ΠX:S′.sS′′(C(Xc)) ≤ ΠX:S′.S′′.

2. • Case: S is unitary. Trivial, by reflexivity.

• Case: S = [[K]]. By Proposition 3.1.14, ∆ ` sK(C) ≡ K, so ∆ ` [[sK(C)]] ≡ [[K]].

• Case: S = ΣX:S′.S′′.

(a) By inversion, ∆ ` S
′ sig and ∆,Xc:Fst(S′) ` S

′′ sig.

(b) Since ∆ ` π1C : Fst(S′), by induction ∆ ` sS′(π1C) ≡ S
′,

(c) and by Substitution, ∆ ` S
′′[π1C/Xc] sig.

(d) Since ∆ ` π2C : Fst(S′′)[π1C/Xc], by induction ∆ ` sS′′[π1C/Xc](π2C) ≡ S
′′[π1C/Xc].

(e) By Proposition 3.1.12, ∆,Xc:sFst(S′)(π1C) ` π1C ≡ Xc : sFst(S′)(π1C).

(f) By Functionality, ∆,Xc:Fst(sS′(π1C)) ` S
′′[π1C/Xc] ≡ S

′′.

(g) Thus, ∆ ` sS′(π1C)×sS′′[π1C/Xc](π2C) ≡ ΣX:S′.S′′.

• Case: S = ΠX:S′.S′′.

(a) Since ∆,Xc:Fst(S′) ` S
′′ sig, and ∆,Xc:Fst(S′) ` C(Xc) : Fst(S′′),

(b) by induction ∆,Xc:Fst(S′) ` sS′′(C(Xc)) ≡ S
′′.

(c) Thus, ∆ ` ΠX:S′.sS′′(C(Xc)) ≡ ΠX:S′.S′′.

3. • Case: S1 and S2 are unitary. Trivial, by assumption.

• Case: Si = [[Ki]]. By Proposition 3.1.12, ∆ ` sK1
(C1) ≤ sK2

(C2),
so ∆ ` [[sK1

(C1)]] ≤ [[sK2
(C2)]].

• Case: Si = ΣX:S′
i.S

′′
i .

(a) By inversion, ∆ ` S′
1 ≤ S′

2 and ∆,Xc:Fst(S′
1) ` S′′

1 ≤ S′′
2.

(b) Since ∆ ` π1C1 ≡ π1C2 : Fst(S′
1), by induction ∆ ` sS′

1
(π1C1) ≤ sS′

2
(π1C2),

(c) and by Functionality, ∆ ` S′′
1[π1C1/X

c] ≤ S′′
2[π1C2/X

c].

(d) Since ∆ ` π2C1 ≡ π2C2 : Fst(S′′
1)[π1C1/X

c],

(e) by induction ∆ ` sS′′

1
[π1C1/Xc](π2C1) ≤ sS′′

2
[π1C2/Xc](π2C2).

(f) Thus, ∆ ` sS′

1
(π1C1)×sS′′

1
[π1C1/Xc](π2C1) ≤ sS′

2
(π1C2)×sS′′

2
[π1C2/Xc](π2C2).

4. By Antisymmetry, Part 3 of this proposition, and Part 4 of Proposition 4.1.3.

5–7. Straightforward.

�

4.1. SIGNATURES 67

Signature phase-splitting: S⇒ [[α:K.C]]

1⇒ [[α:1.unit]] [[K]]⇒ [[α:K.unit]] [[C]]⇒ [[α:1.C]]

S1 ⇒ [[Xc:K1.C1]] S2 ⇒ [[α2:K2.C2]]

ΣX:S1.S2 ⇒ [[α:(ΣXc:K1.K2).C1[π1α/Xc]×C2[π1α/Xc][π2α/α2]]]

S1 ⇒ [[Xc:K1.C1]] S2 ⇒ [[α2:K2.C2]]

ΠtotX:S1.S2 ⇒ [[α:(ΠXc:K1.K2).∀Xc:K1.C1 →C2[α(Xc)/α2]]]

S1 ⇒ [[Xc:K1.C1]] S2 ⇒ [[α2:K2.C2]]

ΠparX:S1.S2 ⇒ [[α:1.∀Xc:K1.C1 →∃α2:K2.C2]]

〈|S|〉
def

= ∃α:K.C, where S⇒ [[α:K.C]]

Figure 4.6: Signature Phase-Splitting and Definition of Package Type

4.1.4 Signature Phase-Splitting

In this section, I define a so-called “phase-splitting” translation from the signature language into
the type structure of the core language, and show that it is sound and preserves equivalence
and subtyping relations. The phase-splitting translation shown in Figure 4.6 takes the form of
a judgment S⇒ [[α:K.C]], where S is the signature being translated, K represents the “static” part
of S (i.e., the specifications of S’s type components) and C represents the “dynamic” part of the
signature (i.e., the specifications of S’s value components), which may refer to the type components
through the constructor variable α. Note that the static part K is precisely Fst(S). Figure 4.6 also
defines the “package type” 〈|S|〉 to be the existential type formed from packaging together the static
and dynamic parts of S. Package types will be used in the next section to classify modules that
have been pack’ed as core-language terms.

The phase-splitting translations of unit, kind and type signatures are all self-explanatory. The
translations of the remaining signatures6 are easiest to think of in terms of how they guide the
phase-splitting of modules, which will be formalized in Section 4.2.7. For a module M of pair
signature, the translation joins the static parts of M’s first and second components as a pair of
constructors, and joins the dynamic parts as a pair of terms. For a total functor F of signature
ΠtotX:S1.S2, the fact that “total” here means “separably total” tells us that the static part of F’s
result only depends on the static part of its argument, so the static part of F itself is a constructor
function of kind ΠXc:Fst(S1).Fst(S2). The dynamic part of F’s result, however, may depend on
both the static and dynamic parts of its argument, so F’s dynamic part is a polymorphic function
taking both a type and a value argument. When F is a partial functor, the static part of its result
cannot be hoisted out, because it may depend on effectful operations that produce different results
at each application of F. Correspondingly, F is translated as a polymorphic function returning
an existential package whose static part is unknown. Note that the result type of this function is
precisely 〈|S2|〉.

The following proposition states a number of properties of signature phase-splitting, namely

6The rules for pair and total functor signatures follow exactly the non-standard signature equivalence rules em-
ployed by Harper, Mitchell and Moggi in their phase-distinction calculus [30].

68 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

that: (1) it commutes with substitution, (2) the static part of S is precisely Fst(S), (3) well-formed
signatures phase-split to well-formed results, (4) equivalent signatures phase-split to equivalent
results, and (5) if S1 is a subtype of S2, then the dynamic parts of the signatures are equivalent,
but Fst(S1) is only a subkind of Fst(S2).

Part 5, which I need in order to prove soundness of module phase-splitting in Section 4.2.7, is
what motivates my restrictive definition of functor subtyping. Specifically, for any functor signature
S = ΠτX:S1.S2, the static part of S1 leaks into the dynamic part of S, so the dynamic parts of two
functor signatures will only be equivalent if their argument signatures have equivalent static parts.
This condition will not be met if the argument signatures are merely in a contravariant subtyping
relationship. In the case that S is partial, the static part of S2 leaks into the dynamic part of S as
well, so the dynamic parts of two partial functor signatures will only be equivalent if their result
signatures have equivalent static parts. This condition will not be met if the result signatures are
merely in a covariant subtyping relationship.

It is worth noting that if the core language supported subtyping in addition to subkinding,
and if Part 5 were weakened to only require that C1 be a subtype of C2, then the restrictions I
have imposed on functor subtyping could be avoided. For simplicity, however, I have chosen not to
introduce subtyping into the core language.

Proposition 4.1.10 (Soundness and Other Properties of Signature Phase-Splitting)
1. If S⇒ [[α:K.C]], then γS⇒ [[α:γK.γC]].

2. If S⇒ [[α:K.C]], then K = Fst(S).

3. If ∆ ` S sig, then ∆ ` 〈|S|〉 : T.

4. If ∆ ` S1 ≡ S2, then ∆ ` 〈|S1|〉 ≡ 〈|S2|〉 : T.

5. If ∆ ` S1 ≤ S2 and S1 ⇒ [[α:K1.C1]] and S2 ⇒ [[α:K2.C2]],
then ∆ ` K1 ≤ K2 and ∆, α:K1 ` C1 ≡ C2 : T.

Proof: By straightforward induction on the size of the given signature(s). �

4.2 Modules

4.2.1 Syntax

The syntax of modules is given in Figure 4.7, along with extensions to the syntax of terms. Dynamic
contexts are also extended with a new binding form that assigns signatures to module variables.
Figure 4.8 illustrates how some of the module constructs correspond to module expressions one
finds in dialects of ML.

The unit module containing no bindings is written 〈〉. The constructor module [C] contains
a single binding of a constructor component defined as C. The term module [e] contains a single
binding of a value component defined by evaluating the term e. The new term-level construct
Term(M) allows one to extract the single value component from a module M of signature [[C]].

The pair module 〈X=M1,M2〉 consists of a pair of modules, wherein the second module M2

may refer to the first (or rather, to the result of evaluating the first) by the variable X. As
with pair signatures, the ML analogue for 〈X= M1,M2〉 shown in Figure 4.8 is not quite precise
because projections from modules are done here by position—π1M and π2M are the first and second

4.2. MODULES 69

Purity Classifiers κ ::= P | I
Terms e ::= · · · | Term(M) | pack M as S
Modules M,N,F ::= X | 〈〉 | [C] | [e] | 〈X=M1,M2〉 | πiM |

λtotX:S.M | Ftot(M) | λpar(X:S1):S2.M | Fpar(M) |
M :>κ S | purify(M) | unpack M as S | let X=M′ in (M : S)

Projectible Modules M, N, F ::= X | 〈〉 | [C] | [e] | 〈X= M1, M2〉 | πiM |
λtotX:S.M | F

tot(M) | λpar(X:S1):S2.M
Dynamic Contexts Γ ::= · · · | Γ,X:S

Figure 4.7: Syntax of Modules

〈〉 ≈ struct end

[C] ≈ struct type t = C end

[e] ≈ struct val x = e end

〈X=M1,M2〉 ≈ struct

structure X = M1

structure Y = M2

end

λtotX:S1.M ≈ functor (X : S1) -> M
λpar(X:S1):S2.M ≈ functor (X : S1) :> S2 -> M

Figure 4.8: Correspondence With ML Modules

projections of M—whereas in ML they are done by name. Correspondingly, X is alpha-convertible
in 〈X=M1,M2〉, but changing X to X′ in the ML analogue results in a module with a different
signature. I will sometimes write 〈M1,M2〉 as shorthand when X 6∈ FV(M2).

Total functors are written λtotX:S.M, where X is the argument variable, S the argument signa-
ture, and M the functor body. The application of a total functor F to an argument M is written
Ftot(M). The syntax for partial functor introduction and elimination is similar, except that the
partial functor introduction form λpar(X:S1):S2.M also includes a result signature S2. The result
signature is needed in order to ensure that modules have principal signatures. If a result signature
were not required, then λparX:S1.M could be assigned a range of different signatures ΠparX:S1.S2,
with S2 ranging over different signatures for M. Even if M has a principal signature SM, the
signature ΠparX:S1.SM would not be principal for λparX:S1.M because partial functor subtyping
is invariant in the result signature. In practice, however, this is not an important issue—in the
language design I present in Part III, the result signatures of partial functors are simply inferred.

Sealed module expressions are written M :>κ S, where κ is a purity classifier that can either be P
for “pure” or I for “impure.” Recall that we are not differentiating here between (static) purity and
separability, so P and I may also be read as “separable” and “inseparable,” respectively. M :>P S
corresponds to the basic form of sealing, while M :>I S corresponds to the impure form of sealing.
The motivation for these two forms was described in Section 2.1.5. As noted in Section 2.1.6,
M :>I S may be encoded via partial functors as follows: (λpar(X:1):S.M)(〈〉). I am not aware of

70 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

any similar, purely syntactic encoding of basic sealing, although Shan [67] has described a rather
complex global program transformation that effectively translates uses of basic sealing into uses of
impure sealing.

As I explained in Section 2.1.7, modules that can be given transparent signatures should be
considered pure. For simplicity, however, my module typing judgment implements this semantics
somewhat lazily: it will not necessarily consider all transparent modules to be pure, but if one
wants a transparent module M to be considered pure, one can indicate this by writing purify(M).
The purify expression has no run-time effect, it merely forces the module to be considered pure.

The new term-level construct pack M as S and module-level construct unpack e as S serve as
coercions between modules and terms. The former packages a module M of signature S as a term
of package type 〈|S|〉, and the latter unpackages a term e of type 〈|S|〉 into a module of signature S.7

This enables support for first-class module programming when desired.

Lastly, I also include a let-expression at the module level, let X=M1 in (M2 : S). The signature
annotation S is present to ensure that the let module has a principal signature. (This issue will
be discussed further in Section 4.2.6.) The type system treats let X= M1 in (M2 : S) as if its
body contained an instance of basic sealing (i.e., M2 :>P S). I will sometimes omit the S when it
is obvious from context what it should be.

4.2.2 Projectible Modules

Figure 4.7 also defines a syntactic subclass of projectible modules, written M. The criterion here for
projectibility is based on the analysis of Chapter 2: projectible modules are essentially those mod-
ules which are pure/separable and which do not contain any uses of sealing. While this description
is mostly accurate, it does not tell the complete story.

First of all, I only treat as projectible those modules which the type system considers pure
without the aid of purify coercions. The reason for this is primarily technical: I want to be able
to extract the static part of a projectible module—a constructor comprising the module’s type
components—in a purely syntactic, context-free manner, and for certain morally projectible mod-
ules this is not possible. For example, suppose that X is a variable bound in the context with a
partial functor signature ΠparY:S1.S2, where S2 is transparent. Applying X to some projectible
module M results in a transparent module, which is morally projectible. However, there is no way
to tell that Xpar(M) is projectible (or even pure), and certainly no way to extract its static part,
without knowing the signature that X is bound with. I argue that not being able to project types
from transparent modules like Xpar(M) does not result in any fundamental loss of expressiveness
anyway—for any type component t in a transparent module N, the signature of N will contain a
specification type t = C that indicates a well-formed type C to which N.t is equivalent.

Second, what does it mean for a functor to be projectible? The answer is that the definition of
projectibility in this calculus is a bit more general than the definition given at the start of Chapter 2:
a module is considered projectible in this language if one may extract types from it, not necessarily
by direct projection. In the case of a functor, extracting types means first applying the functor and
then projecting (or extracting) types from the result.8 Hence, total functors are projectible so long
as their bodies are projectible, and total functor applications are projectible so long as the functor
and the argument are both projectible.

Given this generalization of projectibility, one may be surprised to find that all partial functor

7The package type 〈|S|〉 was defined above, in Figure 4.6, in terms of the existing type structure of the core language.
8Perhaps “extractability” would have been a better word to use than “projectibility” from the beginning, but the

latter has the advantage of being the same term that we used in Dreyer et al. [12].

4.2. MODULES 71

Fst(X)
def

= Xc

Fst(〈〉)
def

= 〈〉

Fst([C])
def

= C

Fst([e])
def

= 〈〉

Fst(〈X= M1, M2〉)
def

= 〈Xc =Fst(M1),Fst(M2)〉

Fst(πiM)
def

= πi(Fst(M))

Fst(λtotX:S.M)
def

= λXc:Fst(S).Fst(M)

Fst(Ftot(M))
def

= Fst(F)(Fst(M))

Fst(λpar(X:S1):S2.M)
def

= 〈〉

Figure 4.9: Extracting the Static Part of a Projectible Module

expressions λpar(X:S1):S2.M are considered projectible. The reason for this is simple. The type
system will never allow a partial functor expression to be applied inside a pure module, let alone
a projectible module, so any appearance that a partial functor makes inside a pure/projectible
module expression will be useless as far as the extraction of type components is concerned. Since
partial functors can only make useless appearances inside projectible modules, there is no good
reason to banish them.9 The same goes for the unit module 〈〉 and term module [e], neither of
which has any type components that could be extracted. Note that these three module forms—unit,
term and partial functor—are precisely those which inhabit the “unitary” signatures S for which
Fst(S) is the unit kind.

As explained in Section 2.2.3, I have chosen in this calculus not to introduce any new type-
level construct for projecting types from modules. Instead, I define a meta-level function Fst(M)
(shown in Figure 4.9) that computes a type constructor representing the static part of M. The type
components of M may then be projected (or, more generally, extracted) from Fst(M), rather than
from M itself. Given the above discussion, the definition of Fst(M) should be fairly self-explanatory:
the only unusual cases are the modules M for which Fst(M) is always unit, and these are precisely
the modules from which no type components can be extracted.

The definition of Fst(M) ensures that, when checking equivalence of types projected from mod-
ules, arguments to total functors are compared via static equivalence. For example, supposing
that the result signature of a functor F were [[T]], the types Fst(Ftot(M1)) and Fst(Ftot(M2)) will be
equivalent whenever Fst(M1) and Fst(M2) are equivalent, i.e., whenever M1 and M2 have equivalent
type components.

9For those familiar with the previous version of this type system (Dreyer, Crary and Harper [12], described in
Section 2.3): it is worth noting here that the desire to treat partial functor expressions as projectible is the only
motivation for why DCH’s strange “S” purity class exists. In the DCH type system, a module is only considered
projectible if it is pure and free of any sealing. Thus, while DCH considers all functors to be pure (because they
are values), it considers a partial functor λpar(X:S1):S2.M to be projectible only if the body M is also free of sealing.
However, since this is a partial functor we are talking about, M is still permitted to be impure. The “S” purity class
describes precisely those modules that are potentially impure but free of sealing, so λpar(X:S1):S2.M is projectible in
DCH if and only if M can be given purity classification S. My present approach, which is to just treat all partial
functor expressions as projectible, seems much simpler.

72 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

4.2.3 Static Semantics

Figure 4.10 shows the inference rules for the judgment of well-formed modules, as well as new rules
for the judgments of well-formed terms and dynamic contexts. The module judgment Γ ` M :κ S
says that M has signature S and purity κ. If κ = P, then M is pure; if κ = I, then M may be
impure. I will sometimes make use of meets (u) and joins (t) in the two-point lattice P v I.

As I have extended the syntax of dynamic contexts, I will also extend the erasure function
mapping dynamic contexts to static contexts as follows:

Fst(Γ,X:S)
def

= Fst(Γ),Xc:Fst(S)

As in the term well-formedness judgment of Chapter 3, some of the inference rules in Figure 4.10
refer in their premises to the judgments involving constructors, kinds and signatures, except with
a dynamic context Γ in place of a static context ∆. The meaning of these premises is the same one
given before by Definition 3.2.1, namely that Γ ` J is shorthand for the conjunction of Γ ` ok and
Fst(Γ) ` J .

Some notational conveniences: Since module variables X cannot appear directly in signatures
(only their static parts Xc can), S[M/X] should be taken as shorthand for S[Fst(M)/Xc]. Similarly,
the notation sS(M) is shorthand for the signature sS(Fst(M)), which classifies precisely those
modules of signature S which are statically equivalent to M, i.e., whose static parts are equivalent
to Fst(M).

Now for the rules, many of which should appear very similar to the rules for well-formed
constructors. Rules 84–90 are completely straightforward. For Rule 90, recall that the purity
of [e] relates to the module’s lack of type components and does not imply anything about the
computational purity of the term e. Rules 91, 92 and 101 say that pairs, first projections and
let-expressions are as pure as their component modules.

Rule 93, however, requires that second projections only be made from projectible (and thus
pure) modules. The reason for this restriction is that the signature of π2M is formed by substituting
Fst(π1M) in for Xc in the signature S′′ of M’s second component. Fst(π1M) is only a valid operation
when π1M is a projectible module, which in turn implies that M itself must be projectible. One
potential way to ameliorate this restriction would be to require that the signature of M be a
non-dependent pair signature S′×S′′. The signature of π2M would then be simply S′′, requiring
no substitutions. Unfortunately, as I will explain in Section 4.2.6, this approach runs afoul of
something called the “avoidance problem.” In practice, though, this restriction does not seem to
be a major issue since all existing ML dialects impose it.

Rules 94 and 96 say that total and partial functors are pure expressions (of course, because they
are values), but that total functors must in addition have pure bodies. Rule 95 says that a total
functor application Ftot(M) is as pure as F and M are, whereas Rule 97 says that partial functor
applications Fpar(M) are always considered impure. Note that in both cases the functor argument
M is required to be projectible, for the same reason that second projections are only permitted
from projectible modules. The signature of Fτ (M) requires Fst(M) to be substituted for Xc in the
result signature S′′, which is only valid if M is projectible.

Rule 98 joins the rules for basic and impure sealing into one. When κ = P, the sealed module
M :>κ S has the same purity as M; when κ = I, the sealed module will be impure regardless. In
either case, the sealed module does not belong to the syntax of projectible module expressions.
Rule 99 says that purify(M) is well-formed and pure, regardless of M’s inferred purity level, so long
as M can be given a transparent signature.

Rule 100 says that unpacking a term of package type into a module expression results in a
potentially impure module, because the type components of the module may depend on core-

4.2. MODULES 73

New rules for well-formed dynamic contexts: Γ ` ok

Γ ` S sig

Γ,X:S ` ok
(84)

New rules for well-formed terms: Γ ` e : C

Γ ` M :κ [[C]]

Γ ` Term(M) : C
(85)

Γ ` M :κ S

Γ ` pack M as S : 〈|S|〉
(86)

Well-formed modules: Γ ` M :κ S

Γ ` ok X:S ∈ Γ
Γ ` X :P S

(87)
Γ ` ok

Γ ` 〈〉 :P 1
(88) Γ ` C : K

Γ ` [C] :P [[K]]
(89) Γ ` e : C

Γ ` [e] :P [[C]]
(90)

Γ ` M′ :κ S′ Γ,X:S′ ` M′′ :κ S′′

Γ ` 〈X= M′,M′′〉 :κ ΣX:S′.S′′ (91)
Γ ` M :κ ΣX:S′.S′′

Γ ` π1M :κ S′ (92)
Γ ` M :P ΣX:S′.S′′

Γ ` π2M :P S′′[π1M/X]
(93)

Γ,X:S′ ` M :P S′′

Γ ` λtotX:S′.M :P ΠtotX:S′.S′′ (94)
Γ ` F :κ ΠtotX:S′.S′′ Γ ` M :P S′

Γ ` Ftot(M) :κ S′′[M/X]
(95)

Γ,X:S′ ` M :I S′′

Γ ` λpar(X:S′):S′′.M :P ΠparX:S′.S′′ (96)
Γ ` F :κ ΠparX:S′.S′′ Γ ` M :P S′

Γ ` Fpar(M) :I S′′[M/X]
(97)

Γ ` M :κ′ S

Γ ` (M :>κ S) :κtκ′ S
(98)

Γ ` M :κ S

Γ ` purify(M) :P S
(99)

Γ ` e : 〈|S|〉 Γ ` S sig

Γ ` unpack e as S :I S
(100)

Γ ` M′ :κ S′ Γ,X:S′ ` M :κ S Γ ` S sig

Γ ` let X=M′ in (M : S) :κ S
(101)

Γ ` M :P S

Γ ` M :P sS(M)
(102)

Γ ` M :P S

Γ ` M :I S
(103)

Γ ` M :κ S′ Γ ` S′ ≤ S

Γ ` M :κ S
(104)

Figure 4.10: Inference Rules for Modules

language computational effects. Note that the second premise of the rule is needed because the
well-formedness of the type 〈|S|〉 does not necessarily imply that S is a well-formed signature.

Rule 102 implements selfification, also known as signature strengthening. It says that a pro-
jectible module M with signature S may also be assigned the (potentially) more precise signature
sS(M). This rule is critical to ensuring principal signatures for modules. It is primarily useful
when M is a variable X. For example, if X has signature ΣY:[[T]].[[Yc]], which corresponds to the
ML signature sig type t ; val v : t end, then the selfification rule assigns X the more precise
[[s(π1X

c)]]× [[π1X
c]], which corresponds in ML to sig type t = X.t ; val v : X.t end. This

“selfified” signature encapsulates all that is known statically about X.

Finally, Rule 103 allows the purity of a module to be forgotten, and Rule 104 implements
subsumption.

74 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

4.2.4 Declarative Properties

It is easy to check that the declarative properties of the core language continue to hold under the
extension of dynamic contexts with module variable bindings, and that all the structural properties
except Substitution apply to the module well-formedness judgment as well. Additionally, we have
the following new properties:

Proposition 4.2.1 (Subderivations)
Every proof of Γ1,X:S,Γ2 ` J contains a strict subderivation of Γ1 ` S sig.

Proposition 4.2.2 (Weakening)
If Γ1,X:S2,Γ2 ` J and Γ1 ` S1 ≤ S2, then Γ1,X:S1,Γ2 ` J .

Proposition 4.2.3 (Fst(M) Preserves Well-Formedness)
If Γ ` M :κ S, then Γ ` M :P S and Γ ` Fst(M) : Fst(S).

Proof: By induction on derivations. �

Proposition 4.2.4 (Validity)
If Γ ` M :κ S, then Γ ` S sig.

Proof: By induction on derivations, with straightforward uses of Proposition 4.2.3. �

4.2.5 Signature Checking and Synthesis

Figure 4.11 defines a signature checking algorithm for modules. To check whether a module M has a
given signature S and purity level κ, the algorithm synthesizes the principal signature S ′ and minimal
purity level κ′ of M, and checks whether S′ and κ′ are smaller than S and κ, respectively. Like
the kind synthesis algorithm, the signature synthesis algorithm is very similar to the declarative
system, except that (1) it expects the context it is given to be well-formed, (2) it only selfifies
variables, and (3) it restricts the use of subsumption to functor arguments and sealed modules.

Here I give several properties of signature synthesis, including that it is sound and complete,
and that the principal signatures of projectible modules are always transparent. This last fact
comes in handy in proving Part 3 of the completeness theorem.

Proposition 4.2.5 (Soundness and Other Properties of Signature Checking/Synthesis)
Assume Γ ` ok.

1. If Γ ` M ⇒κ S or Γ ` M ⇐κ S, then Γ ` M :κ S.

2. If Γ ` M ⇒κ1
S1 and Γ ` M ⇒κ2

S2, then S1 = S2 and κ1 = κ2.

3. If Γ ` M ⇒P S, then S is transparent.

4. For J ranging over any judgment defined in Figure 4.11,
if Γ ` J and Γ′ ⊇ Γ and Γ′ ` ok, then Γ′ ` J .

Proof: By straightforward induction on the algorithm. �

4.2. MODULES 75

Signature checking: Γ ` M ⇐κ S

Γ ` M ⇒κ′ S′ Γ ` S′ ≤ S κ′ v κ

Γ ` M ⇐κ S

Signature synthesis: Γ ` M ⇒κ S

X:S ∈ Γ
Γ ` X ⇒P sS(X) Γ ` 〈〉 ⇒P 1

Γ ` C ⇒ K
Γ ` [C] ⇒P [[K]]

Γ ` e ⇒ C
Γ ` [e] ⇒P [[C]]

Γ ` M′ ⇒κ′ S′ Γ,X:S′ ` M′′ ⇒κ′′ S′′

Γ ` 〈X= M′,M′′〉 ⇒κ′tκ′′ ΣX:S′.S′′

Γ ` M ⇒κ ΣX:S′.S′′

Γ ` π1M ⇒κ S′

Γ ` M ⇒P ΣX:S′.S′′

Γ ` π2M ⇒P S′′[π1M/X]

Γ ` S′ sig Γ,X:S′ ` M ⇒P S′′

Γ ` λtotX:S′.M ⇒P ΠtotX:S′.S′′

Γ ` F ⇒κ ΠtotX:S′.S′′ Γ ` M ⇐P S′

Γ ` Ftot(M) ⇒κ S′′[M/X]

Γ ` S′ sig Γ,X:S′ ` M ⇐I S′′

Γ ` λpar(X:S′):S′′.M ⇒P ΠparX:S′.S′′

Γ ` F ⇒κ ΠparX:S′.S′′ Γ ` M ⇐P S′

Γ ` Fpar(M) ⇒I S′′[M/X]

Γ ` M ⇒κ′ S′ Γ ` S′ ≤ S

Γ ` (M :>κ S) ⇒κtκ′ S

Γ ` M ⇒κ S

Γ ` purify(M) ⇒P S

Γ ` S sig Γ ` e ⇐ 〈|S|〉

Γ ` unpack e as S ⇒I S

Γ ` M′ ⇒κ′ S′ Γ,X:S′ ` M ⇒κ′′ S′′ Γ,X:S′ ` S′′ ≤ S Γ ` S sig

Γ ` let X=M′ in (M : S) ⇒κ′tκ′′ S

New type synthesis rules: Γ ` e ⇒ C

Γ ` M ⇒κ [[C]]

Γ ` Term(M) ⇒ C

Γ ` M ⇐κ S

Γ ` pack M as S ⇒ 〈|S|〉

Figure 4.11: Signature Checking and Principal Signature Synthesis

Theorem 4.2.6 (Completeness of Signature Checking)
1. If Γ ` e : C, then Γ ` e ⇐ C.

2. If Γ ` M :κ S, then Γ ` M ⇐κ S.

3. If Γ ` M :P S, then Γ ` M ⇐P sS(M).

Proof: By induction, first on the structure of the module M (or term e), and second on the
structure of the derivation of the premise. The proof of Parts 1 and 2 are by cases on the structure
of the input derivation and are completely straightforward, but I will write out most of the cases
anyway (see below). There are only two cases, Rules 91 and 101, in which induction is applied to
a derivation that is not a subderivation of the input derivation. It is these cases, however, that
necessitate induction first on the structure of M.

The proof of Part 3 follows easily from Part 2: If Γ ` M :P S, then by Part 2, Γ ` M ⇒P R, where
Γ ` R ≤ S (and R is transparent due to Part 3 of Proposition 4.2.5). By Soundness, Γ ` M :P R.
Then, by Proposition 4.1.9, Γ ` R ≡ sR(M) and Γ ` sR(M) ≤ sS(M). Thus, by Transitivity,
Γ ` R ≤ sS(M) as desired.

• Case: Rules 55–67. Same as in proof of Proposition 3.2.6.

76 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

• Case: Rules 85–88. Straightforward.

• Case: Rule 89. By Proposition 3.1.16.

• Case: Rule 90. Straightforward.

• Case: Rule 91.

1. By induction, Γ ` M′ ⇒κ′ R′, where Γ ` R′ ≤ S′ and κ′ v κ.

2. By Weakening, Γ,X:R′ ` M′′ :κ S′′.

3. By induction, Γ,X:R′ ` M′′ ⇒κ′′ R′′, where Γ,X:R′ ` R′′ ≤ S′′ and κ′′ v κ.

4. Thus, Γ ` 〈X=M′,M′′〉 ⇒κ′tκ′′ ΣX:R′.R′′,

5. and Γ ` ΣX:R′.R′′ ≤ ΣX:S′.S′′, and κ′ t κ′′ v κ.

• Case: Rule 92.

1. By induction, Γ ` M ⇒κ′ ΣX:R′.R′′, where Γ ` R′ ≤ S′, Γ,X:R′ ` R′′ ≤ S′′ and κ′ v κ.

2. Thus, Γ ` π1M ⇒κ′ R′.

• Case: Rule 93.

1. By induction, Γ ` M ⇒P ΣX:R′.R′′, where Γ ` R′ ≤ S′ and Γ,X:R′ ` R′′ ≤ S′′.

2. Thus, Γ ` π1M :P R′ and Γ ` π2M ⇒P R′′[π1M/X].

3. By Substitution, Γ ` R′′[π1M/X] ≤ S′′[π1M/X].

• Case: Rule 94.

1. By induction, Γ,X:S′ ` M ⇒P R′′, where Γ,X:S′ ` R′′ ≤ S′′.

2. Thus, Γ ` λtotX:S′.M ⇒P ΠtotX:S′.R′′, and Γ ` ΠtotX:S′.R′′ ≤ ΠtotX:S′.S′′.

• Case: Rule 95.

1. By induction, Γ ` F ⇒κ′ ΠtotX:R′.R′′, where Γ ` R′ ≡ S′, Γ,X:R′ ` R′′ ≤ S′′ and κ′ v κ.

2. By induction, Γ ` M ⇐P S′ and so Γ ` M ⇐P R′.

3. Thus, Γ ` Ftot(M) ⇒κ′ R′′[M/X], and by Substitution, Γ ` R′′[M/X] ≤ S′′[M/X].

• Case: Rule 96.

1. By induction, Γ,X:S′ ` M ⇐I S′′.

2. Thus, Γ ` λpar(X:S′):S′′.M ⇒P ΠparX:S′.S′′.

• Case: Rule 97.

1. By induction, Γ ` F ⇒κ′ ΠparX:R′.R′′, where Γ ` R′ ≡ S′, Γ,X:R′ ` R′′ ≡ S′′ and κ′ v κ.

2. By induction, Γ ` M ⇐P S′ and so Γ ` M ⇐P R′.

3. Thus, Γ ` Fpar(M) ⇒I R′′[M/X], and by Substitution, Γ ` R′′[M/X] ≡ S′′[M/X].

• Case: Rule 98.

1. By induction, Γ ` M ⇒κ′′ R, where Γ ` R ≤ S and κ′′ v κ′.

4.2. MODULES 77

2. Thus, Γ ` M :>κ S ⇒κtκ′′ S, and κ t κ′′ v κ t κ′.

• Case: Rule 98.

1. By induction, Γ ` M ⇒κ′ R, where Γ ` R ≤ S.

2. By Proposition 4.1.9, R is transparent.

3. Thus, Γ ` purify(M) ⇒P R.

• Case: Rule 100. Straightforward.

• Case: Rule 101.

1. By induction, Γ ` M′ ⇒κ′ R′, where Γ ` R′ ≤ S′ and κ′ v κ.

2. By Weakening, Γ,X:R′ ` M :κ S.

3. By induction, Γ,X:R′ ` M ⇒κ′′ R′′, where Γ,X:R′ ` R′′ ≤ S and κ′′ v κ.

4. Thus, Γ ` let X=M′ in (M : S) ⇒κ′tκ′′ S, and κ′ t κ′′ v κ.

• Case: Rule 102. By induction, using Part 3.

• Case: Rules 103 and 104. Straightforward.

�

The soundness and completeness of the signature checking algorithm allow us to observe that
sealed module expressions are truly abstract in the following sense. Suppose a well-formed program
contains within it the module expression M :>κ S. The algorithm regularizes the typing derivation
of the program so that there is a unique subderivation of the well-formedness of M :>κ S. The
last rule applied in this subderivation is Rule 98, and it has conclusion Γ ` (M :>κ S) :κtκ′ S and
premise Γ ` M :κ′ S, where Γ is some suitable context in which M is well-formed. Now, for any other
implementation M′ of S for which Γ ` M′ :κ′ S, we can clearly swap M′ :>κ S in for M :>κ S and
the program will still be well-formed. Thus, there is no way for the part of the program outside of
this sealed module expression to depend on the identities of any type components that are specified
opaquely by S, as they may differ between M and M′.

Finally, since the signature checking algorithm, the context well-formedness judgment and all
the signature judgments in Figure 4.5 are syntax-directed, it follows easily that the entire type
system is decidable.

4.2.6 The Avoidance Problem

The type system for ML modules that I have presented in this chapter does not give a complete
account of the ML module system, nor is it intended to. Rather, the goal of this type system
is to capture what I believe are the most important and interesting aspects of the ML module
system—sealing, functors and translucency—in an elegant type-theoretic framework. In addition,
the type system illustrates that it is easy to support both total and partial functors, and both the
basic and impure forms of sealing, within a single unified language design.

There are several features of ML that are difficult to account for directly in type theory but which
will be dealt with formally in the language design of Part III using elaboration techniques. Most of
these features are syntactic conveniences, whose practical importance should not be discounted but
which are not very interesting from a type-theoretic point of view. As I discussed in Section 4.1.2,

78 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

one particularly important one is ML’s notion of signature matching, which is considerably more
permissive than the signature subtyping judgment of this type system.

Another one, which is the subject of this section, is not so much a feature of ML as an issue
that arises in a number of different guises and can be seen as affecting the typing rules for several
different constructs in my type system. Recall that, for both second projections π2M and functor
applications Fτ (M), the submodule M must be projectible in order for the whole module to be
considered well-formed. One way to address this restriction is to support a variant of each of
these constructs that permits the module M to be non-projectible, even impure, at the expense
of requiring a signature annotation. In other words, consider extending the language with the
constructs (π2M : S) and (Fτ (M) : S), for both of which the principal signature will be S. These
annotated constructs are in fact already expressible as derived forms:

π2(M) : S
def

= let X=M in (π2X : S)

Fτ (M) : S
def

= let X1 = F in let X2 =M in (X1
τ (X2) : S)

In practice, however, the signature annotation may constitute an unacceptable amount of syntactic
overhead. We would like to have some way of inferring the signature S.

Unfortunately, it is not always possible to do so. As the above derived forms illustrate, the
problem boils down to the desire for an unannotated let-module construct. Suppose that we had
such a construct, written let X = M1 in M2, with exactly the same typing rule as annotated let’s
(Rule 101). Then clearly the above derived forms, minus the signature annotations, would give us
a way of encoding second projections and functor applications in which the constituent module M
need not be projectible.

The difficulty comes in computing the principal signature of let X = M1 in M2. Say that the
principal signature of Mi is Si. The signature S2 may refer to the variable X. To construct a
principal signature for the let, we need to find a minimal supersignature of S2 that avoids reference
to X. The “avoidance problem” [22, 45] is that such a minimal supersignature does not always
exist. The same problem arises at the level of constructors and kinds as well: given a kind K that
refers to a constructor variable α, there is not necessarily any minimal superkind of K that avoids
α. For example, consider the kind K = (T→s(α))×s(α), which refers to a variable α bound with
kind T. One obvious superkind of K that avoids α is (T→T)×T, but there are more precise ones.
Specifically, for any type C of kind T that does not mention α, the kind Σβ:(T→T).s(β(C)) is an
α-avoiding superkind of K. For different choices of C, however, the superkinds are incomparable,
and there is no minimal one.

Going back to the original problem of allowing second projections and functor applications
involving non-projectible modules, there is an alternative solution employed by Harper and Lil-
libridge [28] in their module type system. The idea is to allow π2M and Fτ (M), even when M is
not projectible, so long as in the first case M can be given a non-dependent pair signature S1 ×S2,
and in the second case F can be given a non-dependent functor signature S1

τ
−→S2. In both cases,

the signature of the result is merely S2, avoiding any need to substitute a non-projectible module
for a variable. Nevertheless, Harper and Lillibridge’s type system still runs afoul of the avoidance
problem. For instance, take the π2M case. The principal signature of M may be a dependent pair
signature S = ΣX:S1.S2. Computing the principal signature of π2M will thus require finding a min-
imal non-dependent supersignature of S. This is tantamount to finding a minimal supersignature
of S2 that avoids mentioning Xc, which is precisely the avoidance problem.

Different dialects of ML handle the avoidance problem—or do not handle it—in different ways.
The type system of this chapter sidesteps the avoidance problem by requiring signature annotations
on let-modules and restricting arguments to functors and second projections to be projectible.

4.2. MODULES 79

module type S = sig type t end

module F = functor (X : S) ->

struct type u = X.t type v = X.t end

module G = functor (X : S) ->

struct type u = X.t type v = u end

module AppF = F((struct type t = int end : S))

module AppG = G((struct type t = int end : S));;

(* Output of the Objective Caml 3.07+2 compiler *)

module type S = sig type t end

module F : functor (X : S) ->

sig type u = X.t and v = X.t end

module G : functor (X : S) ->

sig type u = X.t and v = u end

module AppF : sig type u and v end

module AppG : sig type u and v = u end

Figure 4.12: Encoding of the Avoidance Problem in O’Caml

Shao’s type system makes similar restrictions, and these enable his language to support principal
signatures [69].

On the other hand, both the Harper-Lillibridge “translucent sums” calculus [28] and Leroy’s
“manifest types” calculus [42] do not attempt to work around the avoidance problem at all, and thus
lack principal signatures. Objective Caml, based on Leroy’s work, also lacks principal signatures.
Most of the time this does not cause serious problems, but on occasion it leads to unpredictable
typechecking, as illustrated in the O’Caml code shown in Figure 4.12. Two functors F and G are
defined that have equivalent, transparent principal signatures. Yet when the functors are applied
to the same sealed module expression, the signatures of the results AppF and AppG differ rather
arbitrarily, based on some purely syntactic discrepancy between the signatures of F and G.

The semantics of Standard ML, as described by Harper and Stone [32], addresses the avoidance
problem differently, and in such a way that avoids the unpredictability of O’Caml typechecking.
SML interprets the unannotated let X = M1 in M2 as if it were the pair module 〈X=M1,M2〉,
and then ensures via elaboration techniques that the second component of this pair is the only
one visible from outside the let. Applications of functors to non-projectible modules are handled
by first rewriting them in terms of let-expressions (via the encoding given earlier in this section)
and then interpreting the let’s as pairs. (Second projections may be rewritten similarly, but SML
chooses to only permit projections from paths.)

Do modules in SML have principal signatures? Yes and no. Under the Harper-Stone interpreta-
tion of SML, SML modules are translated to internal-language (IL) modules, and these IL modules
do have principal signatures in the IL. However, the principal IL signature of an IL module does not
necessarily correspond to any SML signature, so one cannot always write the principal signature
of an SML module in SML itself. (As Shao would say, SML lacks “fully syntactic” signatures.)
Returning to the example in Figure 4.12, if we were to write this code in SML, then AppF would
receive the IL signature sig type u = ?.t and v = ?.t end, where ?.t stands for the abstract
t component of the unnamed argument module. There is no way to write this signature in SML
itself, but at least we can count on the fact that AppF.u = AppF.v, which is not true in O’Caml.

80 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

There is a simple, reasonable tradeoff here: SML modules written without the use of unanno-
tated let’s (and the other features encoded in terms of them) will have principal signatures in SML,
whereas modules that employ the more flexible let construct may not. The language I define in
Part III follows the SML/Harper-Stone approach to dealing with the avoidance problem.

4.2.7 Module Phase-Splitting

In this final section, I define a phase-splitting translation for modules to match the one for signatures
given in Section 4.1.4. The module translation explains how modules may be interpreted in terms
of core-language constructs, avoiding the need to give a separate dynamic semantics and type
safety proof for the module language itself. The translation does not, however, preserve all the
data abstraction guarantees of the module language. In particular, it ignores basic sealing, in
the sense that if M is a pure module then M and M :>P S phase-split to the same result. I also
define translations for terms and dynamic contexts that interpret the new term-level constructs
and context binding forms introduced in this chapter in terms of existing core-language constructs.

The translations for modules, terms and contexts are shown in Figures 4.13 and 4.14. All of
these translations produce syntactic objects that are well-formed in the type system of the core
language of Chapter 3. I will refer to such syntactic objects as “core” objects.

The translation of dynamic contexts has the form Γ⇒ Γ′, mapping a module-language dynamic
context Γ to a core context Γ′. For any core bindings of constructor variables α or value variables
x, the translation is the identity. For a module variable binding X:S, the translation splits X into
a constructor variable Xc (representing the static part of X) and a value variable Xr (representing
the dynamic part of X).10 The kind and type with which Xc and Xr are bound, respectively, are
determined by phase-splitting X’s signature S.

The translation of modules involves two judgments, one for pure modules and one for impure
modules. These judgments are patterned on the signature synthesis algorithm of Figure 4.11, in
the sense that the derivation of the translation of M, be it pure or impure, matches precisely the
structure of the signature synthesis derivation for M. The difference between the pure and impure
translation judgments is in their output. The pure judgment, written Γ ` M ⇒P S⇒ [C, e], splits
M into a constructor C (representing the static part of M) and a term e (representing the dynamic
part of M). It is modeled closely on the non-standard module equivalence rules set forth by Harper,
Mitchell and Moggi [30] in their phase-distinction calculus. Impure modules, on the other hand,
have the property that they cannot necessarily be phase-split in this way—the identities of their
type components may not be knowable until run time. Therefore, the impure translation judgment
has the form Γ ` M ⇒I S ⇒ e, where e is a core term with package type 〈|S|〉.11 This judgment
does not really “split” M, it packages M as a term, so I call it an “impure packaging” judgment.

In a number of the translation rules—especially those for modules, like pairs, whose submodules
may or may not be pure—it is very convenient to be able to implicitly coerce the result of pure
module phase-splitting, which has the form [C, e], into the result of impure module packaging,
which is just a term. This coercion is implemented by the judgment Γ ` M ⇒P S ⇒ e, shown
at the bottom of Figure 4.13. It merely takes the result [C, e] of phase-splitting M and pack’s it
with type 〈|S|〉. This “pure packaging” judgment, together with the impure packaging judgment,
defines a single packaging judgment of the form Γ ` M ⇒κ S ⇒ e. This packaging judgment has
the property that the output term e has package type 〈|S|〉, where S is the principal signature of M.

10The use of Xc and Xr is due to Harper, Mitchell and Moggi [30]—the “c” in Xc stands for “compile-time,” and
the “r” in Xr stands for “run-time.”

11Note that this package type 〈|S|〉 is really a core type because 〈|S|〉 is just a macro—the module language of this
chapter has not extended the core language of types in any way.

4.2. MODULES 81

Context phase-splitting: Γ⇒ Γ′

∅⇒ ∅

Γ⇒ Γ′

Γ, α:K⇒ Γ′, α:K

Γ⇒ Γ′

Γ, x:C⇒ Γ′, x:C

Γ⇒ Γ′ S⇒ [[Xc:K.C]]

Γ,X:S⇒ Γ′,Xc:K,Xr:C

Pure module phase-splitting: Γ ` M ⇒P S⇒ [C, e]

X:S ∈ Γ
Γ ` X ⇒P sS(X)⇒ [Xc,Xr] Γ ` 〈〉 ⇒P 1⇒ [〈〉, 〈〉]

Γ ` C ⇒ K
Γ ` [C] ⇒P [[K]]⇒ [C, 〈〉]

Γ ` e ⇒ C
Γ ` [e] ⇒P [[C]]⇒ [〈〉, e]

Γ ` M1 ⇒P S1 ⇒ [C1, e1] Γ,X:S1 ` M2 ⇒P S2 ⇒ [C2, e2]

Γ ` 〈X= M1,M2〉 ⇒P ΣX:S1.S2 ⇒ [〈Xc =C1,C2〉, let Xc = C1 in let Xr = e1 in 〈Xr, e2〉]

Γ ` M ⇒P ΣX:S1.S2 ⇒ [C, e]

Γ ` π1M ⇒P S1 ⇒ [π1C, π1e]

Γ ` M ⇒P ΣX:S1.S2 ⇒ [C, e]

Γ ` π2M ⇒P S2[π1M/X]⇒ [π2C, π2e]

Γ ` S1 ⇒ [[Xc:K1.C1]] Γ,X:S1 ` M ⇒P S2 ⇒ [C, e]

Γ ` λtotX:S1.M ⇒P ΠtotX:S1.S2 ⇒ [λXc:K1.C, ΛXc:K1.λXr:C1.e]

Γ ` F ⇒P ΠtotX:S1.S2 ⇒ [C1, e1] Γ ` M ⇒P S⇒ [C2, e2] Γ ` S ≤ S1

Γ ` Ftot(M) ⇒P S2[M/X]⇒ [C1(C2), e1[C2](e2)]

Γ ` S1 ⇒ [[Xc:K1.C1]] Γ,X:S1 ` M ⇒κ S⇒ e Γ,X:S1 ` S ≤ S2

Γ ` λpar(X:S1):S2.M ⇒P ΠparX:S1.S2 ⇒ [〈〉, ΛXc:K1.λXr:C1.coerce e to 〈|S2|〉]

Γ ` M ⇒P S′ ⇒ [C, e] Γ ` S′ ≤ S

Γ ` M :>P S ⇒P S⇒ [C, e]

Γ ` M ⇒κ S⇒ e S⇒ [[α:K.C]]

Γ ` purify(M) ⇒P S⇒ [Can(K), let [α, x] = unpack e in (x : C[Can(K)/α])]

Γ ` M1 ⇒P S1 ⇒ [C1, e1] Γ,X:S1 ` M2 ⇒P S2 ⇒ [C2, e2] Γ,X:S1 ` S2 ≤ S Γ ` S sig

Γ ` let X=M1 in (M2 : S) ⇒P S⇒ [let Xc = C1 in C2, let Xc = C1 in let Xr = e1 in e2]

Pure module packaging: Γ ` M ⇒P S⇒ e

Γ ` M ⇒P S⇒ [C, e]

Γ ` M ⇒P S⇒ pack [C, e] as 〈|S|〉

Figure 4.13: Module, Term and Context Translation

82 CHAPTER 4. A TYPE SYSTEM FOR ML MODULES: MODULE LANGUAGE

Impure module packaging: Γ ` M ⇒I S⇒ e

Γ ` M1 ⇒κ1
S1 ⇒ e1 Γ,X1:S1 ` M2 ⇒κ2

S2 ⇒ e2 κ1 t κ2 = I

Γ ` 〈X1 =M1,M2〉 ⇒I ΣX1:S1.S2 ⇒

let [Xc
1,X

r
1] = unpack e1 in let [Xc

2,X
r
2] = unpack e2 in pack [〈Xc

1,X
c
2〉, 〈X

r
1,X

r
2〉] as 〈|ΣX1:S1.S2|〉

Γ ` M ⇒I ΣX:S1.S2 ⇒ e

Γ ` π1M ⇒I S1 ⇒ let [α, x] = unpack e in pack [π1α, π1x] as 〈|S1|〉

Γ ` F ⇒I ΠtotX:S1.S2 ⇒ e Γ ` M ⇒P S⇒ [C, e′] Γ ` S ≤ S1

Γ ` Ftot(M) ⇒I S2[M/X]⇒ let [α, x] = unpack e in pack [α(C), x[C](e′)] as 〈|S2[M/X]|〉

Γ ` F ⇒κ ΠparX:S1.S2 ⇒ e Γ ` M ⇒P S⇒ [C, e′] Γ ` S ≤ S1

Γ ` Fpar(M) ⇒I S2[M/X]⇒ let [, x] = unpack e in (x[C](e′) : 〈|S2[M/X]|〉)

Γ ` M ⇒κ′ S′ ⇒ e Γ ` S′ ≤ S κ t κ′ = I

Γ ` (M :>κ S) ⇒I S⇒ coerce e to 〈|S|〉

Γ ` S sig Γ ` e ⇒ C⇒ e′ Γ ` C ≡ 〈|S|〉 : T

Γ ` unpack e as S ⇒I S⇒ e′

Γ ` M1 ⇒κ1
S1 ⇒ e1 Γ,X:S1 ` M2 ⇒κ2

S2 ⇒ e2

Γ,X:S1 ` S2 ≤ S Γ ` S sig κ1 t κ2 = I

Γ ` let X=M1 in (M2 : S) ⇒I S⇒ let [Xc,Xr] = unpack e1 in coerce e2 to 〈|S|〉

Term translation: Γ ` e ⇒ C⇒ e′

Γ ` M ⇒κ [[C]]⇒ e

Γ ` Term(M) ⇒ C⇒ let [, x] = unpack e in (x : C)

Γ ` M ⇒κ S′ ⇒ e Γ ` S′ ≤ S

Γ ` pack M as S ⇒ 〈|S|〉⇒ coerce e to 〈|S|〉

All other term phase-splitting rules are defined in the obvious inductive manner, e.g.,

Γ ` v1 ⇒ C1 ⇒ v′1 Γ ` v2 ⇒ C2 ⇒ v′2
Γ ` 〈v1, v2〉 ⇒ C1 ×C2 ⇒ 〈v′1, v

′
2〉

Figure 4.14: Module, Term and Context Translation (continued)

4.2. MODULES 83

The term translation judgment has the form Γ ` e ⇒ C⇒ e′, where e′ is guaranteed to be core
and still have e’s type C. For all the core term constructs, this term translation simply recurses on
the subterms. The translation only does something for the term constructs involving modules.

Both the term and module translation judgments make frequent use of the following syntactic
sugar for coercing from one package type to another:

coerce e to 〈|S|〉
def

= let [α, x] = unpack e in pack [α, x] as 〈|S|〉

It is easy to check that the term coerce e to 〈|S|〉 is well-formed (with type 〈|S|〉) whenever e has type
〈|S′|〉 and S′ is a subtype of S.

As for the rules themselves: I have already described how most of the pure module phase-
splitting rules work in my discussion of signature phase-splitting in Section 4.1.4. The only one
that requires special comment here is the rule for purify(M). In this case, the module M may be
impure, so the premise requires only that M translate to the package e. Ordinarily this does not give
us a way of phase-splitting M. However, since M’s signature S is transparent, we know that there
is a canonical constructor12 Can(Fst(S)) of kind Fst(S), which can be used to represent the static
part of M. Then, to obtain M’s dynamic part, we simply unpack e into α and x, and then export
x. There is no problem with the constructor variable α escaping its scope because Can(Fst(S)) is
equivalent to α and can thus be substituted for α in the type of x.

The packaging rules for impure modules are not fundamentally that different from the phase-
splitting rules for pure modules. The rule for pair modules, for instance, pairs the static parts of the
two submodules into one constructor and pairs their dynamic parts into one term. The difference
is that the static parts of the submodules are not statically known. All we have for each submodule
Mi is its translation as the package ei. We must therefore first unpack each ei into Xc

i and Xr
i

before we can pair the static parts together and the dynamic parts together. In the end, the result
must be packaged up again as a term. Nearly all the packaging rules follow this same procedure:
unpack, then phase-split, then pack.

Finally, here is a proposition summarizing soundness and related properties of the translations
defined in this section. The proof goes through by straightforward induction.

Proposition 4.2.7 (Properties of Module, Term and Context Translation)
Assume Γ ` ok. Then, Γ⇒ Γ′ and:

1. Γ′ ` ok and Γ′ is core.

2. Fst(Γ) = Fst(Γ′). Thus, for all static judgments J , Γ ` J if and only if Γ′ ` J .

3. Γ ` e ⇒ C if and only if there exists a core e′ such that Γ ` e ⇒ C⇒ e′.

4. If Γ ` e ⇒ C⇒ e′, then Γ′ ` e′ : C. Also, if e is a value, then e′ is a value.

5. Γ ` M ⇒κ S if and only if there exists a core e such that Γ ` M ⇒κ S⇒ e.

6. If Γ ` M ⇒κ S⇒ e, then Γ′ ` e : 〈|S|〉.

7. Γ ` M ⇒P S if and only if there exist core C and e such that Γ ` M ⇒P S⇒ [C, e].

8. If Γ ` M ⇒P S⇒ [C, e] and S⇒ [[α:K.D]], then Γ′ ` C : K and Γ′ ` e : D[C/α].

9. If Γ ` M ⇒P S⇒ [C, e], then C = Fst(M).

Proof: By straightforward induction on the translation. �

12Canonical constructors Can(K) were defined in Section 3.1.1.

Part II

Recursive Modules

Chapter 5

The Recursive Module Problem

Recursive modules are one of the most frequently requested extensions to the ML languages. After
all, the ability to have cyclic dependencies between pieces of code written in separate files is a
feature that is commonplace in mainstream languages like C and Java, languages which are not
nearly as expressive as ML in other ways. From the programmer’s perspective, it seems very strange
that the ML module system should provide such powerful mechanisms for data abstraction and
code reuse, and yet not provide any support for recursive modules. Certainly, for simple examples
of recursive modules, it is difficult to convincingly argue why ML could not be extended to allow
them. However, when one considers the semantics of a general recursive module mechanism, one
runs into a host of interesting problems for which the “right” solutions are far from obvious.

In this chapter, I explore at a high level the problem of extending ML with recursive modules. I
begin in Section 5.1 by giving several examples of how recursive modules would constitute a useful
extension to ML. In Section 5.2, I lay out the key concepts and issues that arise in the design of a
recursive module extension. Many of the ideas in this section are based on previous work by Crary,
Harper and Puri [6], but there are a number of new observations as well. In Section 5.3, I examine
a number of existing recursive module proposals, and weigh their advantages and disadvantages.
Finally, in Section 5.4, I describe my own proposal for a recursive module extension to ML, which
I will formalize fully in Part III.

While much of my proposed semantics for recursive modules relies on elaboration techniques,
it also involves some extensions to my type system for modules from Chapters 3 and 4. These
extensions are presented in Chapter 6. In addition, there is one aspect of recursive modules—
namely, the static detection of “unsafe” (or “ill-founded”) recursive definitions—that I discuss only
briefly in the present chapter. This topic is examined more thoroughly in Chapter 7.

5.1 Motivating Examples

There are several reasons why recursive modules would be useful to have in ML. The primary one
is to enhance the language’s support for data abstraction. One of the main methodological goals
of modules is to help the programmer weaken the dependencies between program components by
breaking them into separate modules. However, if f and g are mutually recursive functions, then the
ML programmer is forced to write their definitions together in the same module. This restriction is
unfortunate because it means that there is no way to hide information about the implementation
of f from the implementation of g or vice versa—they are typechecked in the same typing context.
Similarly, if t and u are mutually recursive datatype’s, then the ML programmer is forced to define

88 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

structure rec Expr :> sig type t ; val eval : t -> t ; ... end =

struct

datatype t = VarExpr of var | LetExpr of Bind.t * t | ...

fun eval (e : t) : t =

case e of ...

| LetExpr (b,e) => ... Bind.eval(b) ...

...

end

and Bind :> sig type t ; val eval : t -> (var * Expr.t) list ; ... end =

struct

datatype t = ... | ValBind of var * Expr.t | ...

fun eval (b : t) : (var * Expr.t) list =

case b of ...

| ValBind (v,e) => [(v,Expr.eval(e))]

...

end

Figure 5.1: Mutually Recursive Modules Expr and Bind

them together as well. Forcing program components to be written together, regardless of whether
they belong together conceptually, contradicts the ideals of data abstraction and code reuse.

Figure 5.1 shows a canonical example of where it might be desirable to break mutually recursive
types and functions into separate modules. There are two modules, Expr and Bind. Each module
provides a type t representing a different syntactic class—“expressions” in one case, “bindings” in
the other—in the abstract syntax of some language, along with an eval function that implements
the dynamic semantics of that language. For Expr, the eval function evaluates an expression
(represented by its argument) to a value, and returns the piece of abstract syntax (of type Expr.t)
corresponding to that value. For Bind, the eval function evaluates the binding(s) represented by
its argument, and returns a list of variable-value pairs.

Note that the types Expr.t and Bind.t have mutually recursive definitions, as do the functions
Expr.eval and Bind.eval. One of the benefits of breaking these types and functions into separate
modules is that the implementation of Expr cannot rely on how Bind.t is defined, nor can Bind

rely on how Expr.t is defined, because each module is sealed with an opaque interface that hides
the definition of its t component. This ensures that the implementation of each module will remain
well-typed under changes to the other module, so long as those changes do not affect its interface.
Admittedly, for this example to make any sense, we do need to provide some extra functionality
in these interfaces so that one may actually create a value of type Expr.t or Bind.t, but doing so
does not require us to reveal the definitions of those types.

There are at least two common techniques that programmers use in practice to work around
ML’s restrictions and make up for the lack of a structure rec construct. Let’s say we are trying
to break up functions f and g into separate modules A and B. One technique, shown in Figure 5.2,
is to first define a preliminary module PreA that defines f as parameterized over a definition for g
since g has not been defined yet. The module B can then define g, with references to “f” replaced
by PreA.f(g). Finally, we can write the real module A, which “ties the recursive knot” by defining
the real f as the instantiation of the preliminary PreA.f with the real B.g. One can similarly
break up mutually recursive datatype definitions by parameterizing one type over the other and

5.1. MOTIVATING EXAMPLES 89

structure PreA = struct

fun f g x = ... g(...) ...

end

structure B = struct

fun g y = let val f = PreA.f g in ... f(...) ...

end

structure A = struct

val f = PreA.f B.g

end

Figure 5.2: Parameterization Workaround for Separating Recursive Function Definitions

structure A = struct

local

val ref g : (C1 -> C2) ref = ref (fn => raise Error)

fun g x = (!ref g) x

in

fun install g real g = (ref g := real g)

fun f x = ... g(...) ...

end

end

structure B = ... (* defines g directly in terms of A.f *) ...

val = A.install g B.g

Figure 5.3: Backpatching Workaround for Separating Recursive Function Definitions

instantiating it later on. This parameterization technique is rather awkward, though, as it requires
the definition of a whole extra module (PreA).

Figure 5.3 illustrates an alternative workaround, which is similar to Scheme’s “backpatching”
semantics for recursive definitions [38]. The idea is to define in module A a reference cell ref g

containing a dummy function, which will eventually be updated (backpatched) with the real B.g.
Uses of g inside the body of A.f will first dereference ref g to obtain the real g and then apply the
result. The module B can then define g directly in terms of A.f. Once B is defined, A’s ref g can
be backpatched via the install g function that A provides. Despite its use of mutable state, this
approach is somewhat cleaner than the parameterization workaround because it does not require
one to define two versions of the module A. In addition, it localizes the dirty work to module A;
module B is written as if its reference to A.f were strictly hierarchical. On the other hand, it is
limited in that it does not help in separating mutually recursive datatype’s.

The above techniques are essentially stopgap solutions—they work acceptably on a small scale,
but are no substitute for a real recursive module mechanism. Moreover, there are examples that
are only expressible in the presence of recursive modules. The best-known such example is an
implementation of “bootstrapped heaps” from Okasaki’s thesis [59]. A stripped-down version of
this example (adapted from Russo [66]) is shown in Figure 5.4.

The Bootstrap functor takes as input a functor MkHeap providing an implementation of heaps,
and a module Ord providing some type of ordered elements. It returns a module implementing heaps

90 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

signature ORDERED = sig type t ; val leq : t * t -> bool end

signature HEAP = sig

structure Elem : ORDERED

type t

val empty : t

val insert : Elem.t * t -> t

val merge : t * t -> t

val findMin : t -> Elem.t option

end

functor Bootstrap (functor MkHeap : (X : ORDERED) ->

HEAP where type Elem.t = X.t

structure Ord : ORDERED)

:> HEAP where type Elem.t = Ord.t =

struct

structure Elem = Ord

structure rec Boot :>

sig

datatype t = E | H of Elem.t * Heap.t

val leq : t * t -> bool

end =

struct

datatype t = E | H of Elem.t * Heap.t

fun leq (H(x,), H(y,)) = Elem.leq(x,y)

end

and Heap :> HEAP where type Elem.t = Boot.t =

MkHeap(Boot)

open Boot (* type t = Boot.t *)

val empty = E

fun merge (E,h) = h

| merge (h,E) = h

| merge (h1 as H(x,p1), h2 as H(y,p2)) =

if Elem.leq(x,y) then H(x,Heap.insert(h2,p1)

else H(y,Heap.insert(h1,p2)

fun insert (x,h) = merge (H(x,Heap.empty),h)

fun findMin E = NONE

| findMin (H(x,)) = SOME x

end

Figure 5.4: Bootstrapped Heap Example

5.1. MOTIVATING EXAMPLES 91

datatype ’a t = A | B of ’a * ’a t t

structure rec X :> sig val collect : ’a t -> ’a list end =

struct

fun collect (A) = []

| collect (B(x,TT)) = (* x : C, TT : C * C t t *)

let val TL = X.collect TT (* X.collect : C t t -> C t list *)

val LL = map collect TL (* collect : C t -> C list *)

val L = flatten LL (* flatten : C list list -> C list *)

in x::L end

end

Figure 5.5: Encoding Polymorphic Recursion Using a Recursive Module

of Ord.t’s, for which the merge and findMin operations are constant-time, assuming that those
operations were O(log n) and that insert was constant-time in MkHeap’s original implementation.

A “bootstrapped” heap, i.e., a value of this new heap type, is either the empty heap, E, or
a node H(x,h), where x is the minimum element in the heap, and h is a heap (implemented by
MkHeap) containing the rest of the elements. However, this internal heap h is not a heap of Ord.t’s,
it is a heap of bootstrapped heaps! In other words, the type of bootstrapped heaps is defined in
terms of heaps of itself. There is no way to define such a type in existing dialects of ML, because
there is no way to write a datatype definition that is recursive with a functor application. This is
completely straightforward, though, in the presence of recursive modules.

It is worth noting that, in the type system for modules I presented in Chapters 3 and 4, the
bootstrapped heap example can be encoded without the use of module-level recursion, thanks to
the concept of phase separation. Assuming that MkHeap is a total/applicative functor, the type
Boot.t could be defined recursively as follows:

datatype t = E | H of Elem.t * MkHeap c(t).t

Recall that MkHeap c is the type constructor representing the static part of the MkHeap functor. It
only takes the type of elements as its argument, not the comparison function, and the t component it
returns describes heaps of those elements. By employing this definition for the type of bootstrapped
heaps, we can break the dependency of the Boot structure on the Heap structure. Nevertheless,
one can easily imagine a modified version of this example in which the dynamic part of Boot (i.e.,
Boot.leq) referred recursively to the Heap structure as well. In that case, phase separation would
not suffice to break the cyclic dependency.

Another example of how recursive modules fundamentally increase the language’s expressive-
ness is that they enable polymorphic recursion, i.e., the ability to write recursive polymorphic
functions that instantiate their type arguments differently at different recursive calls. While ML
allows polymorphic datatype’s to be “non-uniform”—meaning that their definitions may contain
instantiations of themselves at different types—there is no way to write functions that recur over
non-uniform datatypes because ML does not support polymorphic recursion. (Type inference is
undecidable in the presence of full polymorphic recursion [34, 39].)

With recursive modules, however, polymorphic recursion comes for free. Figure 5.5 shows an
illustrative, if somewhat contrived, example of a type ’a t whose definition is similar to that of
’a list, except that the tail of an ’a t has type ’a t t instead of ’a t. The recursive structure

92 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

X defines a function collect that collects all the values of type ’a stored within an ’a t and
forms an ’a list of them. Within the definition of collect, the type variable ’a is fixed to
some particular unknown type—call it C—and the variable collect has the monomorphic type
C t -> C list. Yet, in the intermediate step defining the variable TL, we need collect to have
type C t t -> C t list. Instead we can make use of X.collect, which has the polymorphic
type ∀ ’a. ’a t -> ’a list. By implicitly instantiating the type argument of X.collect with
C t, we obtain a value of the desired type.

What the recursive module is essentially doing for us in this example is giving us a place to
write down the type of X.collect. Polymorphic recursion could just as easily be added directly to
the core ML language, if polymorphically recursive functions were required to be annotated with
their types. Nonetheless, recursive modules seem to be useful in a number of situations, and they
provide an elegant way of encoding various paradigms that are either awkward or impossible to
implement in existing dialects of ML.

5.2 Key Issues in the Design of a Recursive Module Extension

In the motivating examples of the previous section, I made use of a make-believe “structure rec”
binding of the form

structure rec X1 : S1 = M1 and ... and Xn : Sn = Mn

but I was deliberately vague about both the static and dynamic semantics of this binding form,
relying instead on the reader’s intuition. In this section we will delve deeper into the semantics of
recursive modules and discover that it is in fact quite difficult to explain formally what the “right”
semantics should be. Along the way, I will introduce the reader to a number of key concepts and
issues that arise in the design of a recursive module extension. These will serve as helpful guides
in the discussion of the existing recursive module proposals in Section 5.3 and of my own recursive
module proposal in Section 5.4.

5.2.1 Dynamic Semantics

Consider extending the module system of Chapter 4 with a new recursive construct rec(X : S.M).1

The idea is that X is the module variable by which the module M refers to itself recursively. The
signature S is needed for two reasons: (1) to know what signature to assign to X while typechecking
M, and (2) to have a signature to assign to the recursive module itself, since the principal signature
of M may very well refer to the bound variable X. (Note: this implies that S should be well-formed
outside the recursive module and therefore not refer to X.) Some terminology: I will refer to X as
the recursive (module) variable, S as the declared signature, and M as the recursive module body.

Let us begin by focusing on the dynamic semantics of this recursive construct. Formally speak-
ing, in the way I have organized my module type system, modules are evaluated by first phase-
splitting them and then evaluating the results according to the core-language dynamic semantics.
However, that is primarily a technical device, allowing me to describe module compilation and
prove type safety in one fell swoop. There should always be some intuitive way of explaining how
modules are evaluated.

So, intuitively, how should rec(X : S.M) be evaluated? Under the standard interpretation of re-
cursion via a fixed-point operator, rec(X : S.M) should evaluate to its “unrolling” M[rec(X : S.M)/X].

1While this construct only defines a single recursive module, mutually recursive modules are definable by writing
them as substructures of a single recursive module. Examples of this are shown below.

5.2. KEY ISSUES IN THE DESIGN OF A RECURSIVE MODULE EXTENSION 93

rec (X : SIG.

struct

structure A = struct

val debug = ref false

fun f(x) = ...X.B.g(x-1)...

end

structure B = struct

val trace = ref false

fun g(x) = ...X.A.f(x-1)...

end

end)

Figure 5.6: Example of Recursive Module with Effects

Such a fixed-point semantics has the property that M is effectively re-evaluated at every recursive
reference to X.

There is nothing inherently wrong with this behavior, and it will work fine for some purely
functional recursive modules, such as the examples I gave in Section 5.1. It is undesirable, though,
for recursive modules that contain computational effects. For example, consider the definition of two
mutually recursive structures A and B shown in Figure 5.6. Here, debug and trace are externally-
accessible debugging flags used by f and g, respectively. Under a fixed-point semantics for recursive
modules, every recursive reference between f and g prompts a re-evaluation of the entire module,
including the creation of brand new ref cells for debug and trace. In other words, each recursive
call operates in an entirely different mutable state, so setting debug to true externally would not
alter the fact that !debug is false during all recursive calls to X.A.f and X.B.g.

An alternative semantics for recursion that exhibits more appropriate behavior with respect
to computational effects is the backpatching semantics used by Scheme [38], in which rec(X : S.M)
would evaluate as follows: First, X is bound to a fresh location containing an undefined value;
then, M is evaluated to a module value V; finally, X is backpatched with V. If the evaluation of M
attempts to access the value of X, an error is reported. I described backpatching in Section 5.1 as
one of the workarounds that programmers use in the absence of recursive modules, but here it is
employed “behind the scenes,” not explicitly by the programmer. Unlike the fixed-point semantics,
backpatching has the advantage that it ensures the effects in M will only happen once.

Under a backpatching semantics, the question arises: How should we ensure that the recursion
is “safe,” i.e., that the evaluation of M will not attempt to use the recursive variable X? Should
we try to determine it statically, reporting an error at compile time if we cannot, or should we
just insert a dynamic check at each use of X to make sure it has been backpatched? There is a
common tradeoff here. The static approach allows for more efficient implementation, and compile-
time detection is certainly preferable. On the other hand, any static method for ensuring safe
recursion is bound to be conservative and may rule out perfectly safe recursive modules. For the
time being, let us assume dynamic detection. I will explore static detection further in Chapter 7.

5.2.2 Recursively Dependent Signatures

Recall the example of the Expr and Bind modules from Figure 5.1. These mutually recursive
modules may be encoded in terms of rec(X : S.M) by having M be a pair module whose first

94 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

sig

structure Expr : sig

type t

(* makeLetExpr(b,e) constructs "let b in e" *)

val makeLetExpr : Bind.t * t -> t

(* matchLetExpr(e) returns SOME(b,e1) if e is of the form "let b in e1" *)

val matchLetExpr : t -> (Bind.t * t) option

...

val eval : t -> t

end

structure Bind : sig

type t

(* makeValBind(v,e) constructs "val v = e" *)

val makeValBind : var * Expr.t -> t

(* matchValBind(b) returns SOME(v,e) if b is of the form "val v = e" *)

val matchValBind : t -> (var * Expr.t) option

...

val eval : t -> (var * Expr.t) list

end

end

Figure 5.7: Problematic Signature for Expr and Bind

component is Expr and whose second component is Bind. Joined into a single module, Expr and
Bind can refer recursively to each other by projecting from the recursive variable X; that is, Expr
can refer to Bind as X.Bind, and Bind can refer to Expr as X.Expr. In this case, Bind may also
just refer to Expr directly, since Expr is defined first.

This encoding handles mutually recursive dependencies between the modules, but what do we
do about recursive dependencies in the signatures? In other words, what do we do if the signature
of each module refers to type components defined in the other module? These signatures, which
are presumably part of the declared signature S, cannot contain references to the recursive variable
X because S needs to be well-formed outside of the recursive module.

For example, suppose that, in addition to the eval function, the Expr module were to provide
functions makeLetExpr and matchLetExpr for constructing and deconstructing let expressions
of type Expr.t; and that the Bind module were similarly to provide functions makeValBind and
matchValBind for constructing and deconstructing val bindings of type Bind.t. Figure 5.7 shows
the resulting signature of the recursive module defining Expr and Bind. Note that the types of
several function components of each submodule refer to the t component of the other submodule.
The boxed references to Bind.t in the signature of Expr are not well-formed, since Bind is specified
after Expr in the signature.

This problem was pointed out first by Crary et al. [6], who propose as a solution the introduction
of a new signature form called a “recursively dependent signature” (or “rds”), written ρX.S. The
idea is that the bound variable X in ρX.S is a stand-in for the module that the signature is
describing. In other words, a module M belongs to ρX.S precisely when it belongs to S[M/X]. Note
that this definition only applies when M is projectible, for otherwise the substitution of Fst(M) for
Xc in S is not valid. If M is not projectible, we can coerce it to an rds ρX.S by first let-binding it

5.2. KEY ISSUES IN THE DESIGN OF A RECURSIVE MODULE EXTENSION 95

ρ X. sig

structure Expr : sig

type t

val makeLetExpr : X.Bind.t * t -> t

val matchLetExpr : t -> (X.Bind.t * t) option

...

end

structure Bind : sig

type t

...

end

end

Figure 5.8: Recursively Dependent Signature for Expr and Bind

to a variable Y, which is projectible. That is, we can expand M into let Y =M in (Y : ρX.S).

Figure 5.8 shows a recursively dependent signature that can be used as the declared signature
for the Expr and Bind modules. The rds provides a way for the signature of Expr to refer to Bind.t,
namely by projecting it from the bound variable X.

Recursively dependent signatures clearly add some power to ML’s signature language, since the
signature of Expr and Bind is not expressible without them. The question is: do rds’s merely add
flexibility to the signature language, or does the type structure of ML’s core language need to be
enhanced in some way in order to be able to support them, i.e., to phase-split them? The answer
to this question depends, perhaps unsurprisingly, on whether we place any restrictions on the kinds
of recursive references to X that are permitted to occur in ρX.S.

Suppose that we place no restrictions, and consider the following rds:

ρ X. sig type t = int * X.t end

A module M will inhabit this rds precisely when it also inhabits sig type t = int * M.t end,
in which case we will be able to observe that M.t is equivalent to int * M.t. The only known way
to account for this sort of recursive type equivalence is through the use of so-called “equi-recursive”
type constructors [6]. An equi-recursive type constructor µα:K.C has the property that it is the
unique fixed-point of the constructor function λα:K.C, assuming one exists. In other words, µα:K.C
is equivalent to C[µα:K.C/α], and if D is equivalent to C[D/α], then D is equivalent to µα:K.C.
Using equi-recursive types, the rds displayed above could be encoded as [[s(µα:T.int × α)]].

Unfortunately, equi-recursive type constructors complicate the decision procedure for con-
structor equivalence [2], and their interaction with singleton kinds is not well understood. Fur-
thermore, although the underlying type structure of ML must support some form of recursive
type constructor in order to interpret recursive datatype definitions, equi-recursive types pro-
vide more type equivalences than necessary for this purpose. A datatype definition such as
“datatype t = Cons of int * t” creates a new abstract type t, and the coercions between t

and int * t are always witnessed at the programming level by an application of, or pattern match
against, Cons. It is therefore not important to be able to observe that t and int * t are equivalent.

For the purpose of supporting ML’s recursive types, “iso-recursive” type constructors are suffi-
cient. Under an iso-recursive semantics, a type like µα:T.int × α is not equivalent to its unfolding,

96 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

ρ X. sig

structure Expr : sig

datatype t = VarExpr of var | LetExpr of X.Bind.t * t | ...

...

end

structure Bind : sig

datatype t = ... | ValBind of var * Expr.t | ...

...

end

end

Figure 5.9: Rds for Expr and Bind with Mutually Recursive Datatype Specifications

int × (µα:T.int × α), but the two types are isomorphic in the sense that values of either type can
be coerced into the other type by a “fold” or “unfold” operation.2 Iso-recursive type constructors
have the advantage that they rely on a very simple equational theory, which is easy to incorporate
into a core language with singleton kinds. They are not capable, however, of supporting the equa-
tional reasoning implied by unrestricted rds’s like the one shown above. If we want to avoid the
need for equi-recursive types, we need to impose some restrictions on rds’s.

A simple restriction to ρX.S that was suggested by Crary et al. [6] as a way of avoiding equi-
recursive types is to only permit references to X in S if they occur within the types of value
components—references to X in the (singleton) kinds of type components are disallowed. This
prevents one from writing the unrestricted rds shown above, since that rds contains a reference to
X in the transparent specification—i.e., the singleton kind—of the t component.

Viewed in the terms of my module type system, this restriction has the effect that Xc cannot
appear in the free variables of Fst(S). As a result, it is possible to phase-split such rds’s into the
core language without requiring any recursive types. In particular, here is the phase-splitting rule:

S⇒ [[α:K.C]]

ρX.S⇒ [[α:K.C[α/Xc]]]

To understand why this rule makes sense, observe that the restriction described above requires all
references to Xc in S to be from types appearing in C (the dynamic part of S) to types specified by
K (the static part of S). (Crary et al. refer to this restriction as a “dynamic-on-static” restriction.)
Thus, when we phase-split S, and the static and dynamic parts of S are separated, what were once
“recursive” references to Xc in C can be replaced by direct references to α.

How prohibitive is the dynamic-on-static restriction? The original rds for Expr and Bind shown
in Figure 5.8 is well-formed under it, but what about the rds shown in Figure 5.9, in which the
datatype definitions of Expr.t and Bind.t are exposed? Since this signature contains a recursive
reference to X in the specification of the type Expr.t, it would appear to be disallowed under the
dynamic-on-static restriction.

Fortunately, though, it is not disallowed, because a datatype specification is not the same
as a transparent type specification. Rather, as discussed above, datatype’s are abstract—an ML
datatype specification for t may be viewed as an opaque type specification type t, together with a

2At higher kind, the semantics of iso-recursive type constructors becomes more difficult to explain, but I will do
so precisely in Chapter 6.

5.2. KEY ISSUES IN THE DESIGN OF A RECURSIVE MODULE EXTENSION 97

sequence of value specifications for each of the constructors—i.e., the branches—of the datatype.3

The datatype specification for Expr.t implicitly introduces a value specification for each of its
data constructors, including one for the function LetExpr, which has type X.Bind.t * t -> t. It
is in the specification of LetExpr (and the other data constructors) that the recursive references
to X occur, not in the specification of the type component t itself. Thus, we see that “datatype-
on-static” recursive dependencies are really just a special case of dynamic-on-static dependencies.
This makes dynamic-on-static rds’s flexible enough to encode the signatures for all the motivating
examples from Section 5.1.

Nevertheless, there are rds’s that are understandable in terms of the existing ML core language—
i.e., without requiring the addition of equi-recursive types—but which the dynamic-on-static re-
striction does not permit. For instance, consider the following rds:

ρ X. sig

structure A : sig type t ; type u = X.B.u ; ... end

structure B : sig type t ; type u = A.t * t ; ... end

end

While the definition of A.u refers to X, it does not introduce any truly cyclic dependencies at the
level of individual type components. Specifically, A.u depends on B.u, but B.u only depends on the
opaque types A.t and B.t, not on A.u. Correspondingly, some recursive module proposals loosen
the dynamic-on-static restriction to permit recursive dependencies in transparent type specifications
as well, so long as they are fundamentally acyclic.

On the other hand, the vanilla dynamic-on-static restriction has the benefit that it is very
simple to explain type-theoretically. In particular, the well-formedness rule for dynamic-on-static
rds’s can be written as follows:

∆,Xc:Fst(S) ` S sig

∆ ` ρX.S sig

Note that the premise of this rule implies that the context ∆,Xc:Fst(S) is well-formed. This in
turn implies that Fst(S) is well-formed in the ambient context ∆, which is the essence of the
dynamic-on-static restriction.

5.2.3 The Double Vision Problem

Having considered the well-formedness of recursively dependent signatures, let us now consider the
well-formedness of recursive modules. A natural typing rule for rec(X : S.M) would be

Γ,X ↑ S ` M :κ S

Γ ` rec(X : S.M) :κ S

which checks that the recursive module body matches its declared signature. The new context
binding form X ↑ S is needed because recursive variables are compiled differently from ordinary
variables. In particular, X is represented not as a value of signature S, but as a memory location
that will eventually be backpatched with a value of signature S. Correspondingly, references to X
in M are not values either—they are computations that must implicitly check whether X has been
backpatched and, if so, return its contents.

3In addition, a datatype specification implicitly specifies a function that enables a value of type t to be pattern-
matched. The interpretation of ML datatype specifications presented here, which is based on Harper and Stone’s
treatment of SML semantics, will be formalized explicitly in the language definition of Chapter 9.

98 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

rec (X : EXPR BIND.

let structure Body =

struct

structure Expr :> sig type t ... end = struct

datatype t = VarExpr of var | LetExpr of X.Bind.t * t | ...

...

fun makeLetExpr (b : X.Bind.t , e : t) : t = LetExpr(b,e)

...

fun eval (e : t) : t =

case e of ...

| LetExpr (b,e) =>

let val (vs,es) = List.unzip (X.Bind.eval b)

(* vs : var list, es : X.Expr.t list *)

in ...

end

...

end

structure Bind :> sig type t ... end = ...

end

in Body :> EXPR BIND

end)

Figure 5.10: The Double Vision Problem Arising in Expr and Bind

Unfortunately, this rule is too simple—it fails to accept many recursive modules whose declared
signatures contain opaque type specifications, including both the ExprBind example and the boot-
strapped heap example from Section 5.1. Consider the code excerpt from the recursive module
defining Expr and Bind, shown in Figure 5.10. In this version, the recursive module body is let-
bound to a variable Body, which is then sealed with the declared rds EXPR BIND. I have written the
example this way primarily so that we have explicit names for the types defined in the body, e.g.,
Body.Expr.t and Body.Bind.t. The declared signature EXPR BIND is meant to stand for either
one of the rds’s given in Figures 5.8 and 5.9. Whichever rds is used, the type specifications in it are
opaque. Consequently, when typechecking the recursive module body, there is no way to connect
the abstract type components of the recursive variable X—namely, X.Expr.t and X.Bind.t—with
the corresponding type components of Body. This results in several serious typing difficulties.

In order to understand these typing difficulties, let us first clarify what the typing rule actually
requires. Assuming that the rds EXPR BIND has the form ρ X.S, the typing rule says that Body

must match ρ X.S, which means in turn that Body must match the signature S[Body/X].

The first problem is that the Body.Expr.makeLetExpr function does not match its required
type. This function constructs a let expression of type Body.Expr.t from a binding of type
X.Bind.t and an expression of type Body.Expr.t. However, in order for Body to match S[Body/X],
the first argument of Body.Expr.makeLetExpr must have type Body.Bind.t, not X.Bind.t. There
is no simple way of addressing this problem—at the point where makeLetExpr is defined, the type
Body.Bind.t does not even exist yet! One might suggest switching the order of Expr and Bind, so
that Expr can refer to Bind directly, but then the same problem would rear its head again when
matching Body.Bind.makeValBind against its required type.

5.2. KEY ISSUES IN THE DESIGN OF A RECURSIVE MODULE EXTENSION 99

A second, more subtle problem arises in typechecking the body of the Expr.eval function.
When the input to this function is of the form LetExpr(b,e), the function makes a recursive
call to X.Bind.eval in order to process the binding b. The return type of X.Bind.eval is
(var * X.Expr.t) list; this list is then unzipped into a list (vs) of the variables bound by b,
and a list (es) of the value expressions to which they are bound. That the expressions in es have
type X.Expr.t is problematic for several reasons.

For one, the implementation of eval may want to deconstruct these expressions. Since they have
type X.Expr.t, however, the only way to deconstruct them is to call the match functions provided by
X.Expr, which is not as efficient or convenient as case-analyzing a value of the datatype t directly.
Moreover, this problem forces the Expr module to provide deconstructor functions (or else expose
the datatype definition of t) in its interface, regardless of whether it otherwise needs to.

In addition, suppose that the body e of the input expression LetExpr(b,e) has the form
VarExpr(v), where v is one of the variables bound in b. Presumably, in this case, the eval function
should return the value expression in es that corresponds to v. Yet, the type of that expression
will be X.Expr.t, whereas the required return type of eval is Body.Expr.t. The interface of X
does not provide any way to coerce a value from X.Expr.t to Body.Expr.t or vice versa.

All of these typing difficulties are symptoms of what I call the “double vision problem.” This
problem is easiest to understand by thinking of Expr and Bind as being written, respectively, by two
“agents” (or “principals”) Alice and Bob [24]. Alice knows that the type Expr.t is implemented by
the datatype definition shown in Figure 5.10, but Bob does not know this because it is not revealed
in the interface for Expr that Alice provides. Similarly, Bob knows how Bind.t is implemented,
but Alice does not.

In order to allow recursive references between the two modules, we have introduced the recursive
variable X. Intuitively, since X will ultimately be backpatched with the result of evaluating the body,
what either agent knows about the type components of X should coincide with what she knows
about the definitions of the corresponding type components in the body. Thus, Alice should be
allowed to know that X.Expr.t is implemented in the same way that she has implemented Expr.t

in the body, and Bob should be allowed to know that X.Bind.t is implemented in the same way
that he has implemented Bind.t in the body. Neither agent, however, should be allowed to know
how the other agent’s submodule of X is implemented. In addition, since Bob can refer to Expr.t

in two ways—either directly or through X—he should be able to observe that the two types Expr.t
and X.Expr.t coincide, without knowing what their underlying definition is.

The double vision problem is that the simple typing rule given at the beginning of this section
fails to realize this intuition. Alice and Bob are shown the same interface for the recursive variable.
If Alice wants to hide the identity of X.Expr.t from Bob, she must also hide it from herself. As a
result, she “sees double”—that is, she sees X.Expr.t as being distinct from her own definition of
Expr.t, and she cannot tell that they are really one and the same type. Bob also sees two versions
of Expr.t, although he is not privy to a definition for either type.

One way to keep the simple typing rule and avoid double vision is to require that the declared
signature of the recursive module be transparent. For example, if X.Expr.t were revealed in the de-
clared signature to equal some type C, then Alice would be able to observe that X.Expr.t coincides
with its implementation C. Of course, Bob would be able to observe this as well. Transparency
addresses the double vision problem, but at the expense of preventing Expr and Bind from hiding
type information from each other. Furthermore, this solution assumes that the programmer is able
to write a transparent declared signature. In the case of Expr and Bind, the best that we can do is
modify EXPR BIND so that it exposes the datatype definitions of Expr.t and Bind.t. According
to ML semantics, though, datatype specifications are opaque.

100 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

functor F Expr (X : EXPR BIND) = ...

...

functor F Bind (X : EXPR BIND) = ...

...

structure Link = rec (X : EXPR BIND.

struct

structure Expr = F Expr(X)

structure Bind = F Bind(X)

end

Figure 5.11: Attempted Separate Compilation of Expr and Bind

The double vision problem is one of the most serious hurdles to overcome in designing a recursive
module extension. In Section 5.3, I will discuss the conservative ways in which the existing recursive
module proposals deal with it. A key contribution of my own recursive module design, which I
describe in Section 5.4, is to provide a more general and effective cure for double vision.

5.2.4 Separate Compilation

One of the main motivations for recursive modules is to allow mutually recursive functions and
data types to be broken into separate, mutually recursive modules. The recursive module construct
rec(X : S.M) makes it possible to write mutually recursive modules, but the modules must still be
written together in one place. What is often desired in practice, however, is something stronger:
the ability to compile mutually recursive modules separately.

Separate compilation is supported in ML via the functor mechanism. If a module A depends on
a module B of signature SIG B, then A can be separately compiled from B by defining it as a functor
F A parameterized over a module of signature SIG B. Later, when the program components are
to be linked together, the A module can be defined by applying F A to the actual B module.

Suppose that we try compiling Expr and Bind separately, as shown in Figure 5.11, by turning
each module into a functor that is parameterized over the recursive variable X. To link the modules,
we write a recursive module whose substructures Expr and Bind are defined by instantiating the
respective functors with the actual recursive variable X.

One problem with this approach is that, since ML is call-by-value, the occurrences of the
recursive variable X as an argument to F Expr and F Bind will result in an attempt to evaluate
X before the body of Link is finished evaluating. Thus, according to the backpatching semantics
for recursive modules, the evaluation of the Link module will raise an error indicating that the
recursion is unsafe. The issue here is that, under the dynamic semantics I described in Section 5.2.1,
the memory location to which X is bound is implicitly dereferenced wherever X appears in the
recursive module body. In the separate compilation scenario, though, this is clearly not the intended
semantics. Instead, where X is passed to F Expr and F Bind, we would like to pass the memory
location to which X is bound without dereferencing it.

There is a relatively simple way of addressing this problem, which is to make the act of deref-
erencing a recursive variable explicit. First, we introduce a new signature maybe(S) describing
modules of signature S that may or may not be defined. A value of signature maybe(S) is a mem-
ory location whose contents (of signature S) are in the process of being computed. Then, rather
than treating the recursive variable X in rec(X : S.M) as a (non-value) module expression of signa-

5.3. EXISTING APPROACHES TO RECURSIVE MODULES 101

ture S, we can treat X as a value of signature maybe(S) that must be explicitly dereferenced by
writing fetch(X).

Given this new form of signature, we can rewrite the recursive module typing rule from Sec-
tion 5.2.3 as follows:

Γ,X:maybe(S) ` M :κ S

Γ ` rec(X : S.M) :κ S

With this semantic modification, the Link module in Figure 5.11 will no longer attempt to deref-
erence X. In order for the functor applications defining Expr and Bind to be well-formed, though,
we must: (1) change the argument signature of F Expr and F Bind to maybe(EXPR BIND), and
(2) replace references to X in the bodies of those functors with fetch(X).

Unfortunately, this new typing rule still runs afoul of the double vision problem. In particular,
just as when Expr and Bind were defined together in Figure 5.10, there is no way in the body
of F Expr to connect X.Expr.t with the implementation of t that the body of F Expr provides.
Separate compilation certainly does not make the problem any easier.

5.3 Existing Approaches to Recursive Modules

In Sections 5.3.1–5.3.3, I describe the existing proposals for extending ML with recursive modules.
I will discuss the strengths and weaknesses of these proposals in terms of how they cope with the
issues surveyed in the previous section, especially the double vision problem. In Sections 5.3.4
and 5.3.5, I survey some alternative approaches to cross-module recursion that involve replacing
ML’s mechanisms for modular composition with something significantly different.

5.3.1 A Foundational Account

Crary, Harper and Puri [6] (hereafter, CHP) give a foundational, type-theoretic account of the
recursive module problem. They are responsible for a number of the important ideas presented in
Section 5.2. In particular, they introduced the concept of recursively dependent signatures, and
were the first to identify the double vision problem (although they do not call it that).

The actual type system that CHP define is more of a language sketch than it is a full-fledged
ML extension. It is built on top of Harper, Mitchell and Moggi’s phase-distinction calculus [30]. It
supports translucency, as I did in Chapter 3, by extending the HMM core language with singleton
kinds, but it does not support any form of sealing. The type system also includes equi-recursive
type constructors, but the question of decidability of type checking is left to future work.

The CHP type system employs a fixed-point semantics for recursion, which is made possible by
their restriction that the body of a recursive module be “valuable,” i.e., effect-free and terminating.
This places a significant limitation on the kinds of recursive modules one can write. For example,
the recursive module in Figure 5.6 is not expressible.

CHP’s approach to the double vision problem is to require that the declared signature of a
recursive module be transparent. In order to allow datatype specifications to occur in a trans-
parent signature, CHP rely on a “transparent interpretation” of ML datatype’s. Under such an
interpretation, a datatype specification for t specifies the type t as being transparently equal to a
particular recursive type, instead of leaving the identity of t abstract. First of all, it is difficult to
reconcile the transparent interpretation of datatype’s with ML’s semantics, in which datatype’s
are abstract types. (See Vanderwaart et al. [79] for a thorough analysis of this issue.) Moreover,
requiring the signature of a recursive module to be transparent stymies the enforcement of any data
abstraction between mutually recursive submodules, like Expr and Bind.

102 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

CHP propose the use of functors for separate compilation of recursive modules, in the manner
of the example from Figure 5.11. As I argued in Section 5.2.4, this approach only works if we
introduce a distinction between the types of recursive variables and the types of ordinary variables,
and make the dereferencing of recursive variables explicit. CHP do not do this, and consequently
their example of how to support separate compilation does not typecheck. It would not be hard
to fix this problem—by extending their system with a new maybe(S) signature as I proposed in
Section 5.2.4. Still, due to the double vision problem, their approach would only enable the separate
compilation of recursive modules with transparent signatures.

In short, CHP’s main contribution has been to provide a conceptual framework in which the
recursive module problem may be discussed coherently. Their main limitation is that they do not
resolve the double vision problem in a satisfactory way.

5.3.2 Moscow ML

Russo [66] has implemented a recursive module extension to ML in the context of the Moscow ML
compiler [56]. This is the first recursive module extension to be actually implemented. Inspired
by CHP, Russo’s extension introduces a recursive module construct and an rds construct. The
rds construct is subject to the relaxed form of the dynamic-on-static restriction (described in
Section 5.2.2), in which recursive references in transparent type specifications are permitted, but
only if they are acyclic. Russo’s rds construct is written rec(X:S1)S2, where S1 serves as the
signature of X when checking the well-formedness of S2. It is not clear why the programmer is
required to write S1 instead of simply having the type system infer it from S2.

4

Russo’s recursive module construct has the same form as the one studied in Section 5.2. He
employs a backpatching semantics and relies on dynamic checks to ensure that the recursion is
safe. The body of a recursive module may therefore have arbitrary computational effects, and
these effects are guaranteed to only happen once.

Russo’s typing rule for rec(X : S.M) differs from any of the typing rules considered in Section 5.2.
First, it allows M to provide components that are not specified explicitly in S. In other words, S
is used merely as a “forward declaration” of those components that will be needed recursively; it
does not represent the signature of the whole module. Second, M is required to be coercible5 to
the signature sS(X). This requirement is Russo’s way of avoiding the double vision problem: if M
is coercible to sS(X), then for any type component t specified by S, the definition for t given by
M must coincide with the type X.t.

Russo’s solution to double vision is, for the most part, the same as requiring that S be trans-
parent. To illustrate this, suppose that we try to write the ExprBind example in Moscow ML.
Figure 5.12 shows a first attempt, in which the declared signature EXPR BIND hides the datatype

definitions of Expr.t and Bind.t. Since there is no way to connect the datatype definitions in the
body to the abstract types X.Expr.t and X.Bind.t, the module does not typecheck. Generally
speaking, under Russo’s typing rule, if the declared signature contains an opaque specification of
the form type u, the only way the body of the recursive module will be allowed to define u is
by writing type u = X.u, in which case u never gets defined! Thus, opaque type specifications in
declared signatures are essentially useless.

In order to write recursive modules like Expr and Bind in Moscow ML, the programmer is
forced to expose the datatype definitions of Expr.t and Bind.t in the declared signature, as
shown in Figure 5.13. We rely in this version of ExprBind on a little-known feature of Standard

4As, for example, Leroy’s extension to O’Caml does (described below).
5According to ML’s notion of coercive signature matching, formalized in Section 9.3.4.

5.3. EXISTING APPROACHES TO RECURSIVE MODULES 103

signature EXPR BIND =

sig

structure Expr : sig type t ... end

structure Bind : sig type t ... end

end

structure ExprBind = rec (X : EXPR BIND)

struct

structure Expr = struct datatype t = ... end

(* Type error: Expr.t 6≡ X.Expr.t *)

structure Bind = struct datatype t = ... end

(* Type error: Bind.t 6≡ X.Bind.t *)

end

Figure 5.12: Expr and Bind in Moscow ML: First Try

signature EXPR BIND =

rec (X : sig structure Expr : sig type t end

structure Bind : sig type t end end)

sig

structure Expr : sig datatype t = ... end

structure Bind : sig datatype t = ... end

end

structure ExprBind = rec (X : EXPR BIND)

struct

structure Expr = struct datatype t = datatype X.Expr.t ... end

structure Bind = struct datatype t = datatype X.Bind.t ... end

end

Figure 5.13: Expr and Bind in Moscow ML: Second Try

ML, namely the datatype replication binding. By writing datatype t = datatype X.Expr.t,
the Expr module defines the type t as equivalent to X.Expr.t, and also binds local copies of all
of X.Expr.t’s data constructors. With this binding, the double vision problem is clearly avoided,
and the example typechecks.

The astute reader may have noticed that, even in this successful attempt at Expr and Bind,
the types Expr.t and Bind.t are still never defined anywhere. The declared signature provides
datatype specifications for them, which indicates what the types of their data constructors are,
but the types themselves are abstract because datatype specifications are opaque. Russo is not
clear on this point. My interpretation is that, when a datatype specification (or any opaque
type specification) appears in the declared signature of a recursive module, the compiler implicitly
defines the type in some canonical way that matches the specification. Since the type is abstract, the
program will typecheck regardless of which canonical implementation is chosen. See Section 9.3.3
for further discussion of how to construct canonical implementations of certain specifications.

To summarize, Russo’s extension makes it possible to encode all of the motivating examples from
Section 5.1, but prevents the programmer from hiding type information between mutually recursive
modules. This limitation is alleviated slightly by the fact that the body of a recursive module is

104 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

functor F Expr (X : EXPR BIND) = ...

...

functor F Bind (X : EXPR BIND) = ...

...

structure ExprBind = rec (X : EXPR BIND)

struct

structure EtaX = struct

structure Expr = struct

datatype t = datatype X.Expr.t

fun eval e = X.Expr.eval e

... (* define eta-expansion for every function *)

end

structure Bind = ... (* similarly for Bind *)

end

structure Expr = F Expr(EtaX)

structure Bind = F Bind(EtaX)

end

Figure 5.14: Separate Compilation of Expr and Bind in Moscow ML

allowed to define additional type components that are not specified in the declared signature. For
example, Expr and Bind are free to define type components other than t and to hold their identities
abstract, but only if those type components do not need to be forward-declared in the signature
of X. It is hard to say how useful this flexibility would be in practice.

Lastly, with regard to separate compilation, Russo proposes the use of functors. Unlike CHP,
he correctly observes that the separate compilation scenario of Figure 5.11 does not work. Instead,
he suggests an alternative solution that only works when all the value components of the recursive
variable X are functions. His solution, shown in Figure 5.14, is to define (in the linking module) a
structure called EtaX whose type components are copies of the type components of X and whose
value components are eta-expansions of the value components of X. The modules Expr and Bind

can then be defined by applying F Expr and F Bind, respectively, to EtaX instead of X. While this
solution does work in the particular case of Expr and Bind, it does not constitute a general solution.
Moreover, from an aesthetic standpoint, it is not much of an improvement on the recursive module
workarounds discussed in Section 5.1.

5.3.3 O’Caml

Leroy has implemented recursive modules as an experimental extension to the O’Caml language,
available in version 3.07 of the compiler and later [41]. O’Caml does not have a formal definition,
and neither does its recursive module extension, but Leroy has made an informal description of his
extension available on the web [44].

Leroy introduces rds’s via a recursively dependent module rec specification. Figure 5.15 shows
how the EXPR BIND signature would be written in O’Caml. Similarly to Moscow ML, Leroy avoids
the need for equi-recursive type constructors by prohibiting cyclic dependencies from occurring in
transparent type specifications.

For recursive modules, Leroy introduces a module rec binding, whose syntax is almost identical

5.3. EXISTING APPROACHES TO RECURSIVE MODULES 105

module type EXPR BIND =

sig

module rec Expr : sig

type t

val makeLetExpr : Bind.t * t -> t

...

end

and Bind : sig

type t

val makeValBind : var * Expr.t -> t

...

end

end

Figure 5.15: Signature for Expr and Bind in O’Caml

to the structure rec binding I used in the motivating examples of Section 5.1. The binding

module rec X1 : S1 = M1 and ... and Xn : Sn = Mn

defines a bundle of n mutually recursive modules, M1,. . . ,Mn, that refer to one another as X1,. . . ,Xn.
The binding is evaluated according to backpatching semantics. Leroy imposes a restriction on re-
cursive modules, though, that enables him to implement backpatching more efficiently. Specifically,
in Leroy’s semantics, a module may only be depended on recursively if all of the value components
in its interface have “pointed” type, i.e., they are all functions or lazy computations, for which
there is a canonical bottom (⊥) element.6 As a result, the recursive modules A and B in Figure 5.6
are not encodable in O’Caml because both modules have value components of the non-pointed type
bool ref. On the other hand, O’Caml does allow one to write all of the motivating examples from
Section 5.1.

To see why Leroy’s restriction enables more efficient implementation of backpatching, consider
the single binding module rec X : S = M. Under the general backpatching semantics, the con-
tents of the location X are uninitialized during the evaluation of M. Thus, in order to ensure type
safety, we must prevent X from being dereferenced until its contents have been initialized via back-
patching. There are various ways to ensure that X does not get dereferenced, but they all involve
some run-time cost.7 However, if S only specifies values of pointed type, then there is a canonical
way of constructing a “dummy” module N of signature S such that, if any of the functions in N
are applied (or any of the lazy computations in N are forced), an “unsafe recursion” exception will
be raised. This dummy module N gives us a way of safely initializing the contents of X before
evaluating M, so there is no need to dynamically protect against the dereferencing of X.

Aside from the pointed-type restriction, Leroy’s typing rule for recursive modules is precisely
the simple typing rule suggested at the beginning of Section 5.2.3. As we know, this typing rule runs
afoul of the double vision problem. Leroy’s solution is somewhat ad hoc and is easiest to explain
in terms of the ExprBind example. When we are typechecking the body of Expr and encounter

6To be precise, Leroy requires that there be some evaluation ordering of the recursive modules, M1,. . . ,Mn, such
that all “forward” references (i.e., references to modules that have not been evaluated yet) are to modules whose
components have pointed type. For more in-depth discussion, see also Hirschowitz, Leroy and Wells [36].

7See the beginning of Chapter 7 for more discussion of this point.

106 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

module type S = sig

type t

val f : t -> t

end

module rec X : sig module A : S end = struct

module A : S = struct

type t = C of int

let f (x : t) : t = X.A.f x

end

end

Figure 5.16: Strange Behavior of O’Caml Recursive Module Typechecking

the datatype definition of t, the O’Caml typechecker adds to the context the assumption that t is
equivalent to X.Expr.t. This enables the body of Expr to know that X.Expr.t is implemented as
t, even though the signature of X does not reveal this. It also allows Expr and Bind to be written
in O’Caml without forcing their datatype definitions to be exposed in their signatures.

Leroy’s approach to the double vision problem is admirable in that, of the existing approaches,
it comes closest to realizing the Alice-and-Bob intuition that I gave in Section 5.2.3 for describing
how recursive module typechecking should interact with data abstraction. Yet there are two serious
problems with it. One is that it only appears to work for type components that are implemented
internally by datatype definitions.8 For instance, if Expr.t were defined in the body of Expr by
an ordinary type definition like type t = int, then the typechecker would not add to the context
the assumption that X.Expr.t was equivalent to int. Thus, O’Caml’s recursive modules do not
avoid the double vision problem in general. This runs counter to intuition and gives preferential
treatment to types implemented by datatype definitions for no clear reason.

Another problem is that no type-theoretic explanation is provided for what it means to “add
a type-equivalence assumption to the context” during the typechecking of the recursive module
body. In Section 5.4.2, I will provide such an explanation in the context of my own recursive
module proposal. In the absence of such an explanation, though, the O’Caml approach can be
easily shown to exhibit strange behavior. For instance, consider the simple, contrived recursive
module shown in Figure 5.16. The O’Caml type definition type t = C of int corresponds to
datatype t = C of int in SML. According to the semantics Leroy describes, once this type defi-
nition is processed, we are able to observe that t is equivalent to X.A.t. This is important because
the well-formedness of f depends on the equivalence of t and X.A.t. However, if the t annotations
on the domain and range types of the function f are replaced by X.A.t (or omitted altogether),
the O’Caml typechecker complains that the type of f is X.A.t -> X.A.t and that this type is not
equivalent to t -> t. Given Leroy’s informal semantics, this type error does not make any sense.

In conclusion, Leroy’s O’Caml extension improves on previous work in that it allows for recursive
modules to hide type information from one another. However, in order to avoid the double vision
problem, the types whose identities are hidden must be defined internally as datatype’s. Leroy’s
extension also supports more efficient implementation of recursive modules, but this comes at the
cost of not being able to write perfectly reasonable recursive modules such as the one in Figure 5.6.
Leroy does not address the issue of separate compilation.

8Note: datatype definitions are written in O’Caml using the same keyword (type) as ordinary type definitions,
but for expository purposes, I prefer to stick with SML syntax and refer to them as datatype definitions.

5.3. EXISTING APPROACHES TO RECURSIVE MODULES 107

5.3.4 Units

As is surely evident at this point, extending ML with recursive modules is a difficult endeavor. A
number of researchers have thus investigated ways of replacing ML’s notion of module with some
alternative mechanism for which recursive linking is the norm and hierarchical linking a special
case. The two best-known alternative mechanisms are units and mixins.

Flatt and Felleisen [20] introduced units as the foundation of a module system for the Scheme
language. At first glance, a unit appears to be roughly like an ML functor: it requires some imports
and provides some exports. Unlike functors, however, two units can be linked recursively to form
a compound unit, with the exports of each unit being used to satisfy the import requirements of
the other unit. Eventually, once enough units have been compounded together that the resulting
unit requires no more imports, the compound unit can be “invoked,” resulting in the execution of
its initialization routine.

Aside from the ability to link units recursively, one fundamental difference between units and
ML modules is that the interdependencies between units can only be described externally to the
modules themselves. In ML, the implementor of a module A may wish to use the implementation of
sets provided by a particular module FastSet, and the implementor can indicate this by referring
to FastSet directly and projecting out its components. With units, the implementor of A can only
specify that it wants some set module as an import. The burden of ensuring that A actually gets
linked to FastSet is shifted to whoever wants to use A. It is worth noting that the unit approach of
external linking is encodable in ML. In particular, one can write every module in an ML program
as a functor parameterized over its imports, and use functor application to perform explicit linking.
This is referred to as programming in “fully functorized” style. ML’s direct implementation-on-
implementation dependencies, on the other hand, are not encodable using units.

Another fundamental difference is that units are first-class. They may be compiled separately
and then linked dynamically based on run-time information. In the context of a dynamically-typed
language like Scheme, a first-class module system is ideal, and units have been deployed successfully
in the development of the DrScheme programming environment [19]. In the context of ML, though,
where modules have type components, having a purely first-class module system makes it difficult
to track the propagation of type information effectively.9 Flatt and Felleisen consider the extension
of Scheme’s units to include ML-style type definitions, but their extension does not include support
for translucency in unit interfaces. Translucency is a key feature of the ML module system that is
not worth abandoning just in order to support first-class, recursive modules.

Having said that, it is also worth pointing out that Flatt and Felleisen’s extension of units to
include type components does not seem to suffer from double vision. In particular, one way to
phrase the double vision problem is that the types classifying a recursive module’s value imports
may need to depend on the abstract types that the module exports. With recursive ML-style
modules, it is not obvious how to allow a module’s imports to depend on types that the module
has not yet defined. With “type-enhanced” units, though, this is not an issue. A unit must give
explicit names to both its type imports and its type exports, and the types that classify a unit’s
value imports and exports are allowed to refer to any of the type imports or exports. As a result,
double vision is avoided. This comes, however, at the cost of a rather restrictive and unwieldy
syntax, and of a type system whose inference rules are very large and complex. It remains an
interesting direction for future work to determine whether there exists a simple type-theoretic way
of explaining what units are doing, as well as a compromise design that balances the elegance and
translucency of ML modules with the unit approach to avoiding double vision.

9See Section 1.2.3 for further discussion of this point.

108 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

5.3.5 Mixins

The term “mixin” refers to a variety of modularity constructs, all of which are intended to support
recursive composition in something resembling an object-oriented (OO) style. Different notions of
mixins attempt to adapt different aspects of OO languages to a functional-language setting.

It is well-known that functional and OO languages provide orthogonal forms of extensibility.
Functional languages make it easy to define new functions that operate over a datatype, while OO
languages make it easy to extend an existing datatype with new branches. Duggan and Sourelis [15]
propose a mixin module extension to SML, whose goal is to provide OO-style extensibility by
making it possible to split the definition of a single function or datatype across module boundaries.
A mixin module is like an ML structure but is divided into three parts: a prelude, a body, and
an initialization section. The body may only contain only datatype and fun bindings. When two
mixin modules are composed, datatype (or fun) bindings in the bodies of each mixin that define
types (or functions) of the same name are merged together into a single datatype (or fun) binding.
The other sections of the mixin are not restricted, and may have arbitrary effects, but they are not
involved in the recursive merging.

The functionality provided by Duggan and Sourelis’ mixin modules is orthogonal to the func-
tionality of recursive modules studied in this chapter. I have been concerned here with the ability
to split mutually recursive functions and datatype’s into separate modules, not to split different
cases of a single function or datatype definition into separate modules. In later work [16], the
authors propose the introduction of a second “mixlink” mechanism for mixin composition that
is closer in aim to the form of recursive module linking studied here. This mixlink construct is
accompanied, though, by a rather baroque set of restrictions on the structure of the participating
mixin modules. An advantage of the recursive module extension I describe in Section 5.4 is that the
restrictions it imposes on the programmer are easy to explain. It is difficult to comment further on
Duggan and Sourelis’ mixlink, as the authors describe its semantics only informally and provide
no implementation with which to experiment.

In more recent work, Duggan [14] has developed a language of “recursive DLL’s” that diverges
significantly from the ML module system. This is an intermediate language, not a source-level
language, whose main goal is to support dynamic linking and loading of shared libraries. Duggan
addresses the double vision problem in a manner similar to O’Caml, but the problem is simplified
by the fact that Duggan’s language only supports opaque datatype-like bindings, not transparent
type bindings.

Ancona and Zucca [4] propose a very different kind of mixin module construct in their CMS cal-
culus. CMS’s mixins are actually very similar to Flatt and Felleisen’s units. The main difference is
that CMS also supports “overriding with late binding” of module components, a feature commonly
associated with OO-style inheritance. CMS itself is somewhat impractical: it is purely functional
and call-by-name, and its mixin modules do not contain type components or provide the ability
to define abstract data types. These simplifications allow CMS to avoid dealing with the complex
issues surrounding the interaction of recursion with effects and the double vision problem. There
have been several proposals for making CMS more realistic—adding support for computational
effects [3], and transferring CMS to a call-by-value setting [35]—but none has yet attempted to
extend mixin modules with type components.

5.4. A NEW APPROACH 109

5.4 A New Approach

In this section, I describe at a high level my own proposal for extending ML with recursive modules.
The main distinction between my proposal and the existing proposals described in Section 5.3 is
that mine offers a more satisfying solution to the double vision problem.

5.4.1 Overview

Like the existing recursive module extensions, my extension introduces two new constructs: one
for recursive modules and one for recursively dependent signatures. For coherence of notation, I
will write these constructs using syntax similar to Moscow ML’s. Recursive modules have the form
rec(X:S)M, and recursively dependent signatures have the form rec(X)S.10

The dynamic semantics for the recursive module construct rec(X:S)M is a straightforward
backpatching semantics. I do not make any restrictions on the declared signature as O’Caml does,
nor do I attempt to statically detect that the recursion is safe, i.e., that X will not be dereferenced
during the evaluation of M. The problem of statically ensuring safe recursion will be considered in
Chapter 7.

For recursively dependent signatures rec(X)S, I impose the dynamic-on-static restriction de-
scribed in Section 5.2.2. That is, I do not allow any recursive references to X within the specifications
of type components in S, even if such references do not introduce any cyclic type specifications.
The main reason for this is simplicity. Dynamic-on-static rds’s constitute a relatively straightfor-
ward extension to my type system for modules. (For more details, see Chapter 6.) Finding a way
to type-theoretically account for O’Caml’s more general rds’s—in which recursive dependencies in
type specifications are permitted so long as they essentially acyclic—remains a worthwhile direction
for future work. Nevertheless, the more restricted form of rds that I provide is sufficient to encode
all of the motivating examples given in this chapter.

Where my proposal differs most from the existing designs is in the typechecking of recursive
modules. Given a recursive module rec(X:S)M, I make two simple restrictions on the body M,
described below. As long as M obeys these restrictions, my static semantics ensures that the double
vision problem never arises.

The first restriction I place on M is a kind of dynamic-on-static restriction analogous to the one
imposed on rds’s. For an rds rec(X)S, references to X may occur in datatype specifications, but
not in transparent type specifications. Similarly, in the recursive module rec(X:S)M, I allow X to
be referenced inside datatype bindings, but not inside transparent type bindings, like type t = C.

This restriction is motivated by the desire to avoid the double vision problem in all cases.
Suppose that the following code, in which a recursive reference to X occurs in a transparent type

binding, were permitted:

rec (X : sig type t ... end)

struct

type t = int * X.t

...

end

In order for my semantics to avoid double vision here, it would have to somehow ensure that the
body of the module is typechecked in a context where X.t = t = int * X.t. This cyclic type
equivalence would require the introduction of equi-recursive types into the core language. The
dynamic-on-static restriction allows me to get by without extending the core language.

10Note that, unlike Moscow ML, I do not require any signature annotation on X in the rds construct.

110 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

The second restriction on the recursive module body is that it be phase-separable, i.e., that it
have purity classifier P according to the type system of Chapter 4. Thus, the only way that data
abstraction may be enforced in the body of the recursive module is through the use of basic sealing.
The reason for this restriction is that, in my formalization of recursive module typechecking, I need
to be able to phase-split the recursive module body and extract its static part. In general, this is
only possible if the body is separable.

How significant are these restrictions? It is difficult to say without more experimentation. At
the very least, they do not pose a problem for any of the motivating examples given in Section 5.1.
With only superficial syntactic modifications, all of these examples are expressible in my extension.

Moreover, in return for its restrictions, my semantics improves on both the Moscow ML and
O’Caml approaches in terms of its support for data abstraction within recursive modules. For
instance, consider our running ExprBind example. In Moscow ML, Expr.t and Bind.t must have
their datatype definitions exposed in the declared signature in order for the example to even
typecheck. In O’Caml, Expr.t and Bind.t need not have their datatype definitions exposed, but
in order to avoid the double vision problem, they must be implemented by datatype bindings.
Under my approach, Expr.t and Bind.t need not have their definitions exposed, and they may
be implemented either by datatype bindings or by transparent type bindings. Furthermore, my
proposal is formally defined, whereas the O’Caml extension is not.

Finally, like the existing recursive module extensions, my proposal does not, in its current form,
provide support for separate compilation of mutually recursive modules. The reason is that, in
order to avoid the double vision problem, the body of a recursive module is typechecked in a very
special way, as I describe below. If two mutually recursive modules A and B are compiled separately,
then whatever mechanism we use to compile them must employ this special form of typechecking
as well. (In particular, as discussed in Section 5.2.4, if we just try to use functors, we run into the
double vision problem all over again.) Thus, in order to support separate compilation of recursive
modules, we must introduce a new separate compilation mechanism that is aware of recursive
module typechecking. In Chapter 10, I propose as future work to incorporate such a mechanism
into the design of a general compilation management language, built on top of ML.

5.4.2 Elaboration of Recursive Modules

Recall that, under the Harper-Stone approach to formalizing ML, there are two languages: the
external language (EL), namely ML (or the extension of it that we are defining), and the internal
language type system (IL), into which the EL is elaborated. The purpose of the IL is to encapsulate
in type theory as much of ML semantics as is possible.

After studying recursive modules for some time, the only way I have found to cleanly avoid the
double vision problem in type theory is the original approach I suggested in Section 5.2.3, namely
to require that the declared signature of a recursive module be transparent. Thus, in the IL of my
new ML dialect, I provide a recursive module construct rec(X : S.M), which syntactically restricts
the declared signature to be transparent. The typing rule for rec(X : S.M) is as follows:

Γ,X:maybe(S) ` M :P S

Γ ` rec(X : S.M) :P S

This is the same as the typing rule given in Section 5.2.4, except that here I also require that
M be pure/separable.11 This purity condition poses no burden, for if M is impure and has the
transparent signature S, then we can always coerce M’s purity classifier to P by writing purify(M).

11I have taken the approach of binding X with the signature maybe(S), instead of employing a special recursive

5.4. A NEW APPROACH 111

signature CSS = ρ X. sig

structure Expr : sig

datatype t = ... | LetExpr of X.Bind.t * t | ...

end

structure Bind : sig

datatype t = ... | ValBind of var * Expr.t | ...

end

end

Figure 5.17: Closed Static Signature of Expr and Bind

In contrast, my EL recursive module construct rec(X:S)M does not require S to be transparent.
This shifts the burden of avoiding the double vision problem onto the elaboration algorithm. The
goal of the final section of this chapter is to provide an informal understanding of how recursive
module elaboration works. The formal details are presented in Chapter 9.

The “Easy” Case

Suppose that we are given a recursive EL module rec(X:S)M, whose body M obeys the dynamic-
on-static and separability restrictions described above. Let us begin by considering how this module
is elaborated in the “easy” case where M does not contain any explicit uses of sealing. That is,
assume that the only abstract types in M arise from datatype definitions. An example of such a
module is the version of ExprBind shown in Figure 5.12. The figures accompanying the following
discussion illustrate the output of elaboration for this version of the ExprBind module.

In the absence of sealing, the basic idea in elaborating rec(X:S)M is to construct a transparent
signature S

′ that fills in the opaque type specifications of S with the definitions of those type
components provided by M. In essence, S

′ will be equivalent to sS(Fst(M)). If we use S
′ as the

declared signature of X (instead of S), then we will avoid double vision because we will be able to
observe that Fst(X) is equivalent to Fst(M).

Unfortunately, in reality, we cannot directly use sS(Fst(M)) as the declared signature of X,
because M may contain datatype bindings with recursive references to X. The solution is to
first define a module, called Static, which resolves the recursive dependencies among M’s type
components while ignoring its term components. We can then use Static in place of Fst(M) in the
declared signature of X.

To compute Static, we begin by generating a signature R, which contains as precise a speci-
fication of M’s type components as possible and ignores its value components. That is, for every
type binding in M, type t = C, there will be a type specification in R of the form type t = C;
for every datatype binding in M, the corresponding datatype specification will appear in R as
well. For every val or fun binding in M, no specification appears in R. I will refer to R as the
“static signature” of M.

The static signature R may have free recursive references to X. However, thanks to the dynamic-
on-static restriction on M, these recursive references may only appear within datatype specifica-
tions, not within transparent type specifications. Consequently, the recursively dependent signature

variable binding X ↑ S, both to simplify the module meta-theory and make the construct more amenable to the
eventual support of separate compilation. Correspondingly, the dereferencing of X must be indicated explicitly in the
body M by writing fetch(X).

112 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

structure Static :> CSS =

let

datatype Expr t = ... | LetExpr of Bind t * t | ...

and Bind t = ... | ValBind of var * Expr t | ...

in

struct

structure Expr = struct

datatype t = datatype Expr t

end

structure Bind = struct

datatype t = datatype Bind t

end

end

end

Figure 5.18: Canonical Implementation of Expr and Bind’s Closed Static Signature

structure ExprBind = rec (X : sEXPR BIND(Static))
struct

structure Expr = struct

datatype t = ... | LetExpr of X.Bind.t * t | ...

(* Double vision: t 6≡ X.Expr.t *)

end

structure Bind = struct

datatype t = ... | ValBind of var * Expr.t | ...

(* Double vision: t 6≡ X.Bind.t *)

end

end

Figure 5.19: Elaboration of Expr and Bind: First Try

ρX.R is guaranteed to be well-formed. I will refer to this rds as the “closed static signature” of M.
The closed static signature of ExprBind is shown in Figure 5.17.

Given the closed static signature ρX.R of M, we may now define Static as the “canonical”
module implementing this signature. The details of computing canonical implementations of signa-
tures are given in Section 9.3.3, but the basic idea is straightforward. We first resolve the recursive
references to X in the datatype specifications of R by joining all the type components of the module
in a big datatype binding. Once we have done this, we can copy the types into the appropriate
substructures. Figure 5.18 illustrates this construction in the case of Expr and Bind.

Having defined Static, we can now use sS(Static) as the declared signature of the recursive
module. There is one last tricky point, however, regarding datatype’s. Figure 5.19 shows what
goes wrong in the ExprBind example if we use sS(Static) as the declared signature but leave the
recursive module body unchanged. Specifically, any datatype bindings in the body will generate
fresh abstract types that are not equivalent to the corresponding components of X or Static. The
solution is simple: replace every datatype binding in the recursive module body with a datatype

replication binding that copies the corresponding datatype component from Static instead of

5.4. A NEW APPROACH 113

structure ExprBind = rec (X : sEXPR BIND(Static))
struct

structure Expr = struct

datatype t = datatype Static.Expr.t

end

structure Bind = struct

datatype t = datatype Static.Bind.t

end

end

Figure 5.20: Elaboration of Expr and Bind: Second Try

structure ExprBind = rec (X : sEXPR BIND(Static))
struct

structure Expr :> sig type t ... end =

struct ... (* same as in Figure 5.20 *) ... end

structure Bind :> sig type t ... end =

struct ... (* same as in Figure 5.20 *) ... end

end

Figure 5.21: Elaboration of Expr and Bind With Sealing: First Try

defining a fresh one. Figure 5.20 shows how this is done for Expr and Bind.

This completes the discussion of recursive module elaboration in the case where M contains
no sealing. In the interest of expository simplicity, I have glossed over a few technical issues. For
instance, it is possible that the recursive module body M defines more type components than are
specified in the declared signature S or that it defines them in a different order than S does. In this
case, while M will be coercible to S according to ML’s notion of signature matching, the signature
sS(Static) will not be well-formed because the kind of Fst(Static) will not be an IL subkind of
Fst(S). This is not a problem in practice, however. As long as M is coercible to S, we can generate
a type constructor Static’ that copies and reorders (some of) the type components of Static

in order to match Fst(S) precisely. We can then use sS(Static’) instead of sS(Static) for the
declared signature of the recursive module. I will leave discussion of other technical subtleties until
Section 9.3.8, in which recursive module elaboration is formalized.

The General Case

We now turn attention to the general problem of elaborating rec(X:S)M, where the body M may
contain uses of (basic) sealing. To make the problem concrete, consider how we might elaborate
our key motivating example, namely the version of the ExprBind module in which Expr and Bind

are sealed with signatures that hide the data constructors of Expr.t and Bind.t.

A first attempt at elaborating this version of ExprBind is shown in Figure 5.21. The static part
of ExprBind is the same as it was before, so the definitions of Static and CSS remain unchanged
from their definitions in Figures 5.17 and 5.18. The only change here is that the definitions of Expr
and Bind are sealed with opaque signatures. This is problematic because it means that the body
of the recursive module does not match the transparent declared signature sEXPR BIND(Static).

114 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

structure ExprBind = rec (X : sEXPR BIND(Static))
struct

structure Expr :> sig type t = Static.Expr.t ... end =

struct ... (* same as in Figure 5.20 *) ... end

structure Bind :> sig type t = Static.Bind.t ... end =

struct ... (* same as in Figure 5.20 *) ... end

end

Figure 5.22: Elaboration of Expr and Bind With Sealing: Second Try

signature CSS = sig

structure Expr : sig type t = C end

structure Bind : sig type t = D end

end

structure Static :> CSS = ...

structure ExprBind = rec (X : sEXPR BIND(Static))
struct

structure Expr :> sig type t = Static.Expr.t ... end =

struct type t = C ... end

structure Bind :> sig type t = Static.Bind.t ... end =

struct type t = D ... end

end

Figure 5.23: Problematic Elaboration of Modified ExprBind Example

Figure 5.22 shows how the elaborator can address this issue by modifying the sealing signatures
so that they expose the equivalence of their t components with Static.Expr.t and Static.Bind.t,
respectively. This technique is similar to the one used to transform datatype definitions in the
recursive module body (cf. Figure 5.20). Here, however, it results in a loss of data abstraction. In
particular, the implementation of Bind in Figure 5.22 is able to observe that Expr.t is equivalent
to Static.Expr.t, whose data constructors are exposed in the signature CSS.

In the case of ExprBind, it turns out that this loss of data abstraction is actually irrelevant.
The data constructors of Expr.t are not visible in the signature of Expr or X.Expr, only in the
signature of Static.Expr. Since Static is an internal, elaborator-generated module variable name,
the implementation of Bind has no way of projecting from Static directly. Consequently, while
Bind gets to “know” that Expr.t is implemented as a datatype, it has no way of exploiting this
knowledge. Thus, for all intents and purposes, Expr.t is an abstract type. (Similarly, as far as
Expr is concerned, Bind.t is effectively abstract as well.)

Unfortunately, the elaboration approach of Figure 5.22 only succeeds in enforcing data abstrac-
tion boundaries between Expr and Bind because Expr.t and Bind.t are implemented by datatype

definitions. To illustrate this point, let us consider hypothetically how the elaboration of ExprBind
would differ if Expr.t and Bind.t were implemented internally by the transparent type bindings
type t = C and type t = D, respectively, instead of by datatype bindings. Figure 5.23 illus-
trates how the closed static signature and the elaborated recursive module body would change
accordingly. (Note that, in order to obey the dynamic-on-static restriction, it must be the case

5.4. A NEW APPROACH 115

metasig

structure Expr : {public = sig type t end,

private = sig type t = C end}
structure Bind : {public = sig type t end,

private = sig type t = D end}
end

Figure 5.24: Meta-signature for Modified ExprBind

that neither C nor D refers to the recursive variable X.)

The problem with this elaboration is that the signature CSS reveals the identities of Expr.t
and Bind.t to the implementations of both modules. In order for data abstraction to be enforced,
Expr should not be able to see how Static.Bind.t is defined, nor should Bind be able to see how
Static.Expr.t is defined. On the other hand, in order to avoid double vision, the implementation
of Expr needs to know that Static.Expr.t is equivalent to C, and the implementation of Bind
needs to know that Static.Bind.t is equivalent to D.

What this tells us is that the implementations of Expr and Bind really ought to be typechecked
under different typing contexts. In other words, the elaborator needs to be able to actively change
the signature with which Static is bound in the typing context, depending on what part of the
recursive module body it is currently elaborating. This kind of “context switching” is not supported
directly by the IL type system, so the elaboration algorithm must implement it in some ad hoc way.

To implement context switching, my elaboration algorithm employs a novel mechanism called a
“meta-signature.” Meta-signatures are a superclass of ordinary IL signatures in which the specifi-
cations of submodule components are allowed to provide both a “public” and a “private” signature.
The purpose of meta-signatures is to encapsulate the type information that is known at different
points during the typechecking of a recursive module.

For example, Figure 5.24 shows a meta-signature describing the knowledge of type information
within the ExprBind module. In this meta-signature, the public signatures of Expr and Bind

indicate what is publicly known about their type components, whereas the private signatures of
Expr and Bind indicate what is privately known within the modules themselves. Note that the
closed static signature CSS of ExprBind is obtainable from its meta-signature by ignoring the public
signatures and just looking at the private ones.

The purpose of ExprBind’s meta-signature is to tell the elaborator how the signature of Static
should change at different points during the typechecking of ExprBind. When elaborating the
implementation of Expr, the meta-signature indicates that the signature of Static should use the
private signature for Expr and the public signature for Bind. When elaborating the implementation
of Bind, the private and public signatures are reversed.

Although the ExprBind example does not illustrate it, the meta-signature approach also allows
for proper treatment of data abstraction in the presence of nested sealing. For example, suppose
that Expr contained a sealed substructure Sub providing an abstract type component u implemented
internally as int. This would be reflected in the meta-signature of ExprBind by having the private
signature of Expr be itself a meta-signature:

116 CHAPTER 5. THE RECURSIVE MODULE PROBLEM

metasig

type t = C
structure Sub : {public = sig type u end,

private = sig type u = int end}
end

Correspondingly, during the typechecking of Expr.Sub, the signature of Static.Expr would be

sig

type t = C
structure Sub : sig type u = int end

end

whereas during the typechecking of Expr outside of Sub, the signature of Static.Expr would be

sig

type t = C
structure Sub : sig type u end

end

This ensures that the identity of Static.Expr.t is known to all of Expr, but the identity of
Static.Expr.Sub.u is only known to Expr.Sub.

Finally, it should be understood that meta-signatures are purely an elaboration mechanism. The
elaborator uses them, as part of typechecking, to ensure that Expr and Bind respect each other’s
abstraction boundaries. Once that is verified, the elaborator throws away the meta-signature and
translates ExprBind precisely as shown in Figure 5.23. Thus, the meta-signature technique does
not require any extensions to the IL type system.

Chapter 6

Type-Theoretic Extensions for
Recursive Modules

In this chapter, I extend my module type system of Chapters 3 and 4 with support for recursive type
constructors, recursively dependent signatures, and recursive modules. The type system resulting
from these extensions will serve as the basis of the internal language (IL) of the new ML dialect
presented in Chapter 8.

As explained in Chapter 5, all of the new recursive constructs are restricted in various ways,
so that their inclusion in the IL does not significantly complicate typechecking. Recursive type
constructors are iso-recursive, meaning that the type system requires the use of explicit coercions
to mediate between a recursive type and its unfolding. Recursively dependent signatures must obey
a dynamic-on-static restriction, prohibiting recursive dependencies from within the specifications
of type components. Recursive modules are required syntactically to have transparent declared
signatures in order to avoid the double vision problem. As a result, none of the extensions presented
in this chapter poses any major technical difficulties. Sections 6.1 through 6.4 present the extensions
to the languages of type constructors, terms, signatures, and modules, in that order.

There are a few subtleties, however, that may be of general interest. One point of note is
the subtyping rule for recursively dependent signatures, which relies on singleton signatures in
an unexpected way. Another is that, in the presence of both singleton kinds and recursive type
constructors of higher kind, there exist recursive types—or, more precisely, projections from recur-
sive type constructors—whose expansions are not well-formed under the iso-recursive form of type
equivalence. To address this issue, I identify a simple restriction on the kind of a recursive type
constructor, which guarantees that its expansion will be well-formed. While this is not the weakest
restriction possible, it is easy to explain and general enough to support the elaboration of all the
recursive module examples from Chapter 5.

6.1 Constructor-Language Extensions

Figure 6.1 shows the extensions to the syntax of the constructor language from Chapter 3, and
Figure 6.2 shows the well-formedness and equivalence rules for the new type constructors. The
recursive type constructor µα:K.C is iso-recursive. This means that µα:K.C is not equivalent
to its fixed-point expansion C[µα:K.C/α]. In addition, two recursive constructors µα:K1.C1 and
µα:K2.C2 are only equivalent if the Ki are equivalent and the Ci are equivalent.

In order to coerce between a recursive constructor and its expansion, I will introduce in Sec-

118 CHAPTER 6. TYPE-THEORETIC EXTENSIONS FOR RECURSIVE MODULES

Type Constructors C,D ::= · · · | µα:K.C
Base Types b ::= · · · | C1 C2 | maybe(C)

Figure 6.1: Extensions to Type Constructor Syntax

Well-formed constructors: ∆ ` C : K

∆, α:K ` C : K

∆ ` µα:K.C : K
(105)

∆ ` C′ : T ∆ ` C′′ : T
∆ ` C′ C′′ : T

(106) ∆ ` C : T
∆ ` maybe(C) : T

(107)

Constructor equivalence: ∆ ` C1 ≡ C2 : K

∆ ` K1 ≡ K2 ∆, α:K1 ` C1 ≡ C2 : K1

∆ ` µα:K1.C1 ≡ µα:K2.C2 : K1
(108)

∆ ` C′
1 ≡ C′

2 : T ∆ ` C′′
1 ≡ C′′

2 : T

∆ ` C′
1 C′′

1 ≡ C′
2 C′′

2 : T
(109)

∆ ` C1 ≡ C2 : T

∆ ` maybe(C1) ≡ maybe(C2) : T
(110)

Figure 6.2: Inference Rules for Type Constructors

tion 6.2 explicit foldC and unfoldC coercion functions. The “coercion” base type C1 C2 describes
the types of these functions. For instance, if we were to add sum types to the language, the type
of integer lists could be represented as D = µα:T.(unit + int × α). In this case, foldD would have
type (unit + int × D) D, and unfoldD would have type D (unit + int × D).

This example shows how foldD and unfoldD coerce between a recursive type and its expansion,
but what about a general recursive constructor of higher kind? There is no way for a term-level
coercion to witness the conversion of D = µα:K.C to/from C[D/α] directly if K 6= T. However,
what fold and unfold can witness is the conversion of E{D} to/from E{C[D/α]}, where E is some
elimination context that drives K down to T. For instance, if K = T×T, in which case D defines
a pair of mutually recursive types, then we can fold or unfold at either π1D or π2D. If K = T → T,
in which case D is a polymorphic recursive type, then we can fold or unfold at any instantiation of
D, i.e., at D(C′) for any type C′ (of kind T). The typing of foldC and unfoldC will be studied in
Section 6.2.

While it is not necessary to distinguish the type of coercion functions from the arrow type of
ordinary functions, there is a practical benefit in doing so. If values of a recursive type C are
represented in a compiler in the same way as values of C’s expansion, applications of foldC and
unfoldC may be erased during code generation because they will have no run-time effect. Since
foldC and unfoldC are the only closed values of coercion type, applications of all values of coercion
type—including variables or, more generally, paths—may be erased during code generation as well.

Vanderwaart et al. [79] have shown that coercion types thus provide a type-preserving way of
making datatype constructor and destructor applications more efficient. The issue is as follows. In
a type-preserving compiler for ML, since datatype’s are opaque, a call to a datatype constructor
defined in a separately compiled module cannot safely be inlined because it is not known what
recursive type is used to implement the datatype (there is more than one possibility). However,

6.1. CONSTRUCTOR-LANGUAGE EXTENSIONS 119

Base type well-formedness: ∆ ` b ok

∆ ` C1 ⇐ T ∆ ` C2 ⇐ T
∆ ` C1 C2 ok

∆ ` C ⇐ T
∆ ` maybe(C) ok

Principal kind synthesis: ∆ ` C ⇒ K

∆ ` K kind ∆, α:K ` C ⇐ K

∆ ` µα:K.C ⇒ sK(µα:K.C)

Figure 6.3: Extensions to Kind Synthesis

Recursive Type Paths Q ::= E{µα:K.C}
Constructor Paths P ::= · · · | Q

Natural kind extraction: ∆ ` P ↑ K

∆ ` µα:K.C ↑ K

Algorithmic path equivalence: ∆ ` P1 ↔ P2 ↑ K

∆ ` µα:K1.C1 ↔ µα:K2.C2 ↑ K1 if ∆ ` K1 ⇔ K2 and ∆, α:K1 ` C1 ⇔ C2 : K1

∆ ` C′
1 C′′

1 ↔ C′
2 C′′

2 ↑ T if ∆ ` C′
1 ⇔ C′

2 : T and ∆ ` C′′
1 ⇔ C′′

2 : T
∆ ` maybe(C1) ↔ maybe(C2) ↑ T if ∆ ` C1 ⇔ C2 : T

Figure 6.4: Extensions to Constructor Equivalence Algorithm

if the datatype’s constructor and destructor have coercion type, then the compiler may eliminate
all calls to them during code generation. This saves datatype constructor and destructor applica-
tions from incurring the overhead of a function call. My language definition in Chapter 9 adopts
Vanderwaart et al.’s approach in its interpretation of datatype’s.

The base type maybe(C) describes memory locations that may or may not contain a value
of type C. This is the type analogue of the signature maybe(S), whose utility was discussed in
Section 5.2.4, and which will be formally added to the language in Section 6.3. The type maybe(C)
is needed so that we can phase-split the signature maybe(S) into the core language.

Figures 6.3 and 6.4 show the extensions to the kind synthesis and constructor equivalence
algorithms. Both extensions are completely straightforward. It is worth noting, though, that the
recursive type constructor introduces a new irreducible constructor path of the form E{µα:K.C}. I
call this a “recursive type path” and denote it with the metavariable Q. While Q = E{µα:K.C} is
potentially a WHNF, it is not necessarily one. For example, if K = Σα:T.s(α×α), then π2Q will
not be a WHNF, since the natural kind of π2Q will be s(π1Q×π1Q). Rather, π2Q will reduce to
π1Q×π1Q.

I omit proof that these extensions do not disturb the Stone-Harper meta-theory, but I have
verified as much on paper. The proof is easy, primarily because we have not made any changes
to the kind structure. The only interesting aspect of the extension is the µ-constructor. The
iso-recursive nature of µ-equivalence makes the extension tantamount to adding an infinite set of

120 CHAPTER 6. TYPE-THEORETIC EXTENSIONS FOR RECURSIVE MODULES

Values v ::= · · · | foldC | unfoldC | foldC〈〈v〉〉
Terms e ::= v1〈〈v2〉〉 | fetch(v) | rec(x : C. e)

e1〈〈e2〉〉
def

= let x1 = e1 in let x2 = e2 in x1〈〈x2〉〉

fetch(e)
def

= let x = e in fetch(x)

Figure 6.5: Extensions to Term Syntax

expand(Q)
def

= E{C[µα:K.C/α]}, where Q = E{µα:K.C}

Well-formed terms: Γ ` e : C

Γ ` C ≡ Q : T Γ ` Q expands

Γ ` foldC : expand(Q) Q
(111)

Γ ` C ≡ Q : T Γ ` Q expands

Γ ` unfoldC : Q expand(Q)
(112)

Γ ` v : C′ C Γ ` v′ : C′

Γ ` v〈〈v′〉〉 : C
(113)

Γ ` v : maybe(C)

Γ ` fetch(v) : C
(114)

Γ, x:maybe(C) ` e : C

Γ ` rec(x : C. e) : C
(115)

Figure 6.6: New Inference Rules for Terms

primitive constants µK to the language, where µK has kind (K → K) → K, and µK(C) is equivalent
to µK(D) if and only if C is equivalent to D at K → K. Extending the language with constructor
constants is not problematic—they behave just like variables. Given such an extension, µα:K.C
may be viewed as a more concise way of writing µK(λα:K.C).

6.2 Term-Language Extensions

Figure 6.5 shows the extensions to the syntax of terms. New term forms include the foldC and
unfoldC coercion values and the coercion application v1〈〈v2〉〉. The application of foldC to a value
is also considered a value—in fact, foldC〈〈v〉〉 is the canonical form inhabiting recursive types Q.
The terms fetch(v) and rec(x : C. e) are the term analogues of the module constructs fetch(M) and
rec(X : S.M), which will be introduced in Section 6.4. The former dereferences the memory location
represented by v, raising a (run-time) error if v’s contents are undefined; the latter allocates a fresh
location x of type maybe(C), evaluates e to a value v, and then backpatches x with v.

Figure 6.6 gives the typing rules for these new term constructs. Rules 113–115 are straightfor-
ward. Rules 111 and 112 for the foldC and unfoldC values make use of a new macro, expand(Q), and
a new judgment, ∆ ` Q expands. First, expand(Q) is the constructor produced by replacing Q’s
head, which has the form µα:K.C, with its fixed-point expansion C[µα:K.C/α]. If C is equivalent
to a recursive type path Q, then foldC will be a coercion function from expand(Q) to Q, and unfoldC

will coerce in the opposite direction.

The judgment ∆ ` Q expands, invoked in the second premise of Rules 111 and 112, is defined in
Figure 6.7. The purpose of this premise is to ensure (1) that foldC and unfoldC have unique types,
and (2) that their types are well-formed. I will demonstrate first how both of these conditions may

6.2. TERM-LANGUAGE EXTENSIONS 121

Singleton-Free Kinds k, ` ::= 1 | T | k1 × k2 | k1 → k2

Expandable Kinds K,L ::= K | T | Σα:K1.K2 | Πα:k1.K2

Expandable recursive types: ∆ ` Q expands

∆ ` Q : T ∆ ` Q ↑ T Q = E{µα:K.C}

∆ ` Q expands

Figure 6.7: Expandable Kinds and Types

Type synthesis: Γ ` e ⇒ C

Γ ` C : T Γ ` C
wh
=⇒ Q Γ ` Q expands

Γ ` foldC ⇒ expand(Q) Q

Γ ` C : T Γ ` C
wh
=⇒ Q Γ ` Q expands

Γ ` unfoldC ⇒ Q expand(Q)

Γ ` v ⇒ C′ C Γ ` v′ ⇐ C′

Γ ` v〈〈v′〉〉 ⇒ C

Γ ` v ⇒ maybe(C)

Γ ` fetch(v) ⇒ C

Γ ` C : T Γ, x:maybe(C) ` e ⇐ C

Γ ` rec(x : C. e) ⇒ C

Figure 6.8: Extensions to Type Synthesis

fail in the absence of this premise, and second how the definition of ∆ ` Q expands in Figure 6.7
ensures that they do not.

Suppose that the second premise of Rules 111 and 112 were omitted. The first problem is
that, by singleton reasoning, every type C is equivalent to a recursive type Q, namely the type
Q = µα:s(C).C. In this case, expand(Q) is precisely C, so foldC and unfoldC could always be given
the type C C. Of course, C might be equivalent to a “real” recursive type, such as µβ:T.D, in
which case foldC could also be given the type D[C/β] C. Since C is not equivalent to D[C/β], we
would therefore lose unicity of types.

The second problem is that the well-formedness of Q does not imply the well-formedness of
expand(Q). For example, consider the following set of contrived, yet illustrative, definitions:

K
def

= Σβ:T.s(β)→T

C
def

= µα:K.〈unit, λα′:s(unit).unit〉

Q
def

= (π2C)(π1C)

Note that Q has the form E{C}, where E = (π2(•))(π1C). As C has kind K, it is clear that Q is
a well-formed type. However, expand(Q) = (π2(expand(C)))(π1C) is not well-formed. Specifically,
π2(expand(C)) has arrow kind s(π1(expand(C)))→T, whose argument kind is not matched by π1C.
This problem does not arise under an equi-recursive account of constructor equivalence—in that
setting, C would be considered equivalent to expand(C), so expand(Q) would be well-formed. Of
course, in an equi-recursive setting, foldC and unfoldC are not necessary in the first place.

The judgment, ∆ ` Q expands, addresses the unicity-of-types problem by requiring Q to be in
weak head normal form. Formally, this means that Q is a type path rooted at a µ-constructor and
its natural kind is T. This restriction prevents one from passing off any type as a recursive type,

122 CHAPTER 6. TYPE-THEORETIC EXTENSIONS FOR RECURSIVE MODULES

since µα:s(C).C is not in WHNF (its natural kind is s(C), so it reduces to C). Only types whose
WHNF’s have the form Q may be used as the parameter to fold and unfold. As this marks the
first intrusion of natural kind extraction into the core language type system, it is important to show
that natural kind extraction for recursive type paths obeys weakening and substitution. In fact,
this turns out to be trivial, since the procedure for extracting the natural kind of a recursive type
path never even inspects the typing context! Only paths rooted at variables require inspection of
the typing context.

Proposition 6.2.1 (Natural Kind Extraction for Recursive Type Paths)
If ∆ ` Q ↑ K, then ∆′ ` γQ ↑ γK for any ∆′ and γ.

As for the second problem, the most obvious solution would be for the judgment ∆ ` Q expands

to require that ∆ ` expand(Q) : T. This is clearly a necessary condition. While I conjecture that
it is also a sufficient one, I have been unable to prove that the resulting type checking algorithm
(Figure 6.8) is complete. In particular, the completeness proof relies on the property, stated below in
Theorem 6.2.5, that if Q and Q′ are equivalent WHNF types and ∆ ` Q expands, then expand(Q′)
is well-formed as well and equivalent to expand(Q). In order to prove this theorem, I impose a
stronger condition on ∆ ` Q expands than the well-formedness of expand(Q)—I require that Q be
syntactically expandable.

Figure 6.7 defines a recursive type path Q to be expandable if Q’s head has the form µα:K.C,
where K is a syntactically expandable kind. The definition of expandable kinds is motivated
conversely by the desire to ensure that all expandable constructors have well-formed expansions,
i.e., that ∆ ` Q expands implies ∆ ` expand(Q) : T. Toward this end, the only restriction placed
on an expandable kind K is that, for any arrow kind within K of the form Πα:K1.K2, either the
result kind K2 must be transparent or the argument kind K1 must be singleton-free. This avoids
precisely the sort of counterexample given above, in which the kind K of the µ-constructor took
the form Σβ:T.s(β)→T. In essence, it is a “monster-barring” restriction (cf. Lakatos [40, 27]).

Intuitively, the reason the restriction works is that it prevents the well-formedness of an ex-
pandable type Q = E{µα:K.C} from depending on the fact that its head is µα:K.C as opposed to
any other constructor of kind K. That is, if Q is well-formed, then E{D} will be well-formed for
any D that has kind K. This includes expand(Q) = E{C[µα:K.C/α]}.

While the syntactic restriction on expandable kinds is more conservative than absolutely nec-
essary, it has the advantage of being easy to define and understand.1 Furthermore, it enables us
to support the elaboration of all the recursive module examples from Chapter 5. The only sorts of
recursive modules whose elaboration it prevents are those that contain datatype definitions in the
bodies of functor bindings. As I have not yet seen any compelling examples of recursive functors,
I suspect that this is not a great loss. (See Section 9.3.8 for more detailed discussion of this issue.)

I will now proceed to prove the critical Theorem 6.2.5. The proof relies on a technical “head
replacement” lemma (Lemma 6.2.4), whose statement depends on a notion of structural similarity
of kinds. Two kinds are structurally similar if they appear identical when one ignores the contents
of their constituent singleton kinds. Here is the formal definition, followed by a proposition enu-
merating several properties of structural similarity that are provable by straightforward induction.

1In addition, as I expect in future work to be able to eliminate a syntactic condition on Q altogether and replace
it with the minimal requirement that expand(Q) be well-formed, I see little point in developing finer, more complex
approximations of expandability, only to discard them in the near future.

6.2. TERM-LANGUAGE EXTENSIONS 123

Definition 6.2.2 (Structural Similarity of Kinds)
Kinds K1 and K2 are structurally similar (written K1 ≈ K2) if:

• K1 = K2

• Or, K1 = s(C1) and K2 = s(C2)

• Or, K1 = Σα:K′
1.K

′′
1 and K2 = Σα:K′

2.K
′′
2 and K′

1 ≈ K′
2 and K′′

1 ≈ K′′
2

• Or, K1 = Πα:K′
1.K

′′
1 and K2 = Πα:K′

2.K
′′
2 and K′

1 ≈ K′
2 and K′′

1 ≈ K′′
2

Proposition 6.2.3 (Properties of Structural Similarity)
1. Structural similarity is an equivalence relation.

2. If K1 ≈ K2 and K1 is singleton-free, then K1 = K2.

3. If K1 ≈ K2 and K1 is expandable, then K2 is expandable.

4. If K1 ≈ K2, then γ1K1 ≈ γ2K2 for any γ1 and γ2.

5. If ∆ ` K1 ≡ K2, then K1 ≈ K2.

The head replacement lemma has two parts. The first part says that if E{P} is a well-formed
type in WHNF, and if P has an expandable natural kind L, then we can replace P by any other
path P′ of kind L, and the resulting type E{P′} will be well-formed. The second part says that
if E1{P1} and E2{P2} are algorithmically equivalent paths of kind T, and the natural kind of P1

is the expandable L, then we can replace the Pi by any other pair of algorithmically equivalent
constructors P′

i of kind L, and the resulting Ei{P
′
i} will be algorithmically equivalent as well. The

lemma is stated in a somewhat more general fashion in order to make the induction go through.

Lemma 6.2.4 (Head Replacement)
1. Suppose ∆ ` P ↑ L and ∆ ` P′ : L′, where L ≈ L′.

If E{P} is well-formed in ∆ and ∆ ` E{P} ↑ K, where K is not transparent,
then there exists K′ such that ∆ ` E{P′} : K′ and K ≈ K′.

2. Suppose ∆ ` P1 ↔ P2 ↑ L and ∆ ` P′
1 ↔ P′

2 ↑ L′, where L ≈ L′.
If ∆ ` E1{P1} ↔ E2{P2} ↑ K, where K is not transparent,
then there exists K′ such that ∆ ` E1{P

′
1} ↔ E2{P

′
2} ↑ K′ and K ≈ K′.

Proof: By induction on the structure of E in Part 1, and E1 and E2 in Part 2.

1. • Case: E = •. Trivial.

• Case: E = π1E
′.

(a) We have ∆ ` E{P} ↑ K1, where ∆ ` E ′{P} ↑ Σα:K1.K2.

(b) By induction, ∆ ` E ′{P′} : Σα:K′
1.K

′
2, where K1 ≈ K′

1 and K2 ≈ K′
2.

(c) Thus, ∆ ` E{P′} : K′
1.

• Case: E = π2E
′.

(a) We have ∆ ` E{P} ↑ K2[π1E
′{P}/α], where ∆ ` E ′{P} ↑ Σα:K1.K2.

(b) By induction, ∆ ` E ′{P′} : Σα:K′
1.K

′
2, where K1 ≈ K′

1 and K2 ≈ K′
2.

(c) Thus, ∆ ` E{P′} : K′
2[π1E

′{P′}/α].

(d) By Proposition 6.2.3, K2[π1E
′{P}/α] ≈ K′

2[π1E
′{P′}/α].

124 CHAPTER 6. TYPE-THEORETIC EXTENSIONS FOR RECURSIVE MODULES

• Case: E = E ′(C).

(a) We have ∆ ` E{P} ↑ K2[C/α], where ∆ ` E ′{P} ↑ Πα:K1.K2.

(b) Since E{P} is well-formed in ∆, by Proposition 3.1.17, ∆ ` C : K1.

(c) By induction, ∆ ` E ′{P′} ↑ Πα:k′
1.K

′
2, where K1 ≈ k′

1 and K2 ≈ K′
2.

(d) By Proposition 6.2.3, K1 = k′
1, so ∆ ` C : k′

1.

(e) Thus, ∆ ` E{P′} : K′
2[C/α].

(f) By Proposition 6.2.3, K2[C/α] ≈ K′
2[C/α].

2. • Case: Ei = •. Trivial.

• Case: Ei = π1E
′
i.

(a) We have ∆ ` E1{P1} ↔ E2{P2} ↑ K1, where ∆ ` E ′
1{P1} ↔ E ′

2{P2} ↑ Σα:K1.K2.

(b) By induction, ∆ ` E ′
1{P

′
1} ↔ E ′

2{P
′
2} ↑ Σα:K′

1.K
′
2, where K1 ≈ K′

1 and K2 ≈ K′
2.

(c) Thus, ∆ ` E1{P
′
1} ↔ E2{P

′
2} ↑ K′

1.

• Case: Ei = π2E
′
i.

(a) We have ∆ ` E1{P1} ↔ E2{P2} ↑ K2[π1E
′
1{P1}/α],

where ∆ ` E ′
1{P1} ↔ E ′

2{P2} ↑ Σα:K1.K2.

(b) By induction, ∆ ` E ′
1{P

′
1} ↔ E ′

2{P
′
2} ↑ Σα:K′

1.K
′
2, where K1 ≈ K′

1 and K2 ≈ K′
2.

(c) Thus, ∆ ` E1{P
′
1} ↔ E2{P

′
2} ↑ K′

2[π1E
′
1{P

′
1}/α].

(d) By Proposition 6.2.3, K2[π1E
′
1{P1}/α] ≈ K′

2[π1E
′
1{P

′
1}/α].

• Case: Ei = E ′
i(Ci).

(a) We have ∆ ` E1{P1} ↔ E2{P2} ↑ K2[C1/α],
where ∆ ` E ′

1{P1} ↔ E ′
2{P2} ↑ Πα:K1.K2 and ∆ ` C1 ⇔ C2 : K1.

(b) By induction, ∆ ` E ′
1{P

′
1} ↔ E ′

2{P
′
2} ↑ Πα:k′

1.K
′
2, where K1 ≈ k′

1 and K2 ≈ K′
2.

(c) By Proposition 6.2.3, K1 = k′
1, so ∆ ` C1 ⇔ C2 : k′

1.

(d) Thus, ∆ ` E1{P
′
1} ↔ E2{P

′
2} ↑ K′

2[C1/α].

(e) By Proposition 6.2.3, K2[C1/α] ≈ K′
2[C1/α].

�

Theorem 6.2.5 (Equivalent Expandable Types Have Equivalent Expansions)
If ∆ ` Q ≡ Q′ : T and ∆ ` Q expands and ∆ ` Q′ ↑ T,
then ∆ ` Q′ expands and ∆ ` expand(Q) ≡ expand(Q′) : T.

Proof:

1. Let Q = E{µα:K.C} and Q′ = E ′{µα:K′.C′}.

2. By the equivalence algorithm, ∆ ` µα:K.C ≡ µα:K′.C′ : K,
∆ ` K ≡ K′ and ∆, α:K ` C ≡ C′ : K.

3. By functionality, ∆ ` C[µα:K.C/α] ≡ C′[µα:K′.C′/α] : K.

4. Since ∆ ` Q expands, K is expandable. By Proposition 6.2.3, K′ is expandable and K ≈ K′.

5. Thus, ∆ ` Q′ expands.

6. Let ∆′ = ∆, β:K. We have ∆′ ` β : K, ∆′ ` µα:K.C ↑ K and ∆′ ` µα:K′.C′ ↑ K′.

6.2. TERM-LANGUAGE EXTENSIONS 125

7. By Part 1 of Lemma 6.2.4, ∆′ ` E{β} : T and ∆′ ` E ′{β} : T.

8. By the equivalence algorithm, ∆′ ` Q ↔ Q′ ↑ T, ∆′ ` β ↔ β ↑ K,
and ∆′ ` µα:K.C ↔ µα:K′.C′ ↑ K.

9. By Part 2 of Lemma 6.2.4, ∆′ ` E{β} ↔ E ′{β} ↑ T.

10. By soundness of the equivalence algorithm, ∆′ ` E{β} ≡ E ′{β} : T.

11. By functionality, ∆ ` E{C[µα:K.C/α]} ≡ E ′{C′[µα:K′.C′/α]} : T.

12. In other words, ∆ ` expand(Q) ≡ expand(Q′) : T.

�

Corollary 6.2.6 (Well-Formed Expandable Types Have Well-Formed Expansions)
If ∆ ` Q expands, then ∆ ` expand(Q) : T.

Proof: By Theorem 6.2.5, Reflexivity, and Validity. �

Given Theorem 6.2.5, it is easy to prove that the type synthesis algorithm, the new cases of
which are shown in Figure 6.8, is complete.

Proposition 3.2.6 (Completeness of Type Checking)
If Γ ` e : C, then Γ ` e ⇐ C.

Proof: Interesting new cases: Rules 111 and 112. I will show the former, the latter is analogous.

1. We have Γ ` foldC : expand(C) C, where Γ ` C ≡ Q : T and Γ ` Q expands.

2. By Proposition 3.1.19, Γ ` C
wh
=⇒ P and Γ ` C ≡ P : T.

3. Thus, Γ ` Q ≡ P : T, Γ ` Q ↑ T and Γ ` P ↑ T.

4. By the equivalence algorithm, Γ ` Q ↔ P ↑ T, so P must have the form Q′.

5. By Theorem 6.2.5, Γ ` Q′ expands and Γ ` expand(Q) ≡ expand(Q′) : T.

6. Thus, Γ ` foldC ⇒ expand(Q′) Q′, and Γ ` expand(Q′) Q′ ≡ expand(Q) Q : T.

�

In order to formalize the evaluation of the recursive term construct rec(x : C. e), it is useful to
generalize the structural operational semantics of Section 3.2.5 to an abstract machine semantics
with an explicit store and control stack.2 Figure 6.9 illustrates how this is done.

Machine stores ω are mappings from a finite set of variables x (representing memory locations)
to the contents stored at those locations. The contents of location x, written ω(x), is either a value
(v) or undefined junk (?). By ω[x 7→ · · ·] (resp. ω[x := · · ·]) I denote the result of extending (resp.
updating) the store ω with the binding of x to · · ·. The empty store is denoted ε.

A machine state Ω is either the error state (Error) or a normal state of the form (ω; C; e),
where ω is the current store, C is the current continuation, and e is the term currently being
evaluated. A continuation C consists of a stack of continuation frames F . There are only two forms
of continuation frames in the language: one is pushed onto the continuation stack when evaluating
a let binding, the other when evaluating the body of a recursive term.

2An abstract machine semantics also makes it easier to formalize exception handling in the full IL of Chapter 8.

126 CHAPTER 6. TYPE-THEORETIC EXTENSIONS FOR RECURSIVE MODULES

Machine Stores ω
Machine States Ω ::= (ω; C; e) | Error

Continuations C ::= • | C ◦ F
Continuation Frames F ::= let x = • in e | rec(x : C. •)

Small-step semantics: Ω 7→ Ω′

(ω; C; let x = e′ in e) 7→ (ω; C ◦ let x = • in e; e′) (ω; C ◦ let x = • in e; v) 7→ (ω; C; e[v/x])

x 6∈ dom(ω)

(ω; C; rec(x : C. e)) 7→ (ω[x 7→ ?]; C ◦ rec(x : C. •); e)

x ∈ dom(ω)

(ω; C ◦ rec(x : C. •); v) 7→ (ω[x := v]; C; v)

(ω; C; unfoldC〈〈foldD〈〈v〉〉〉〉) 7→ (ω; C; v)

x ∈ dom(ω) ω(x) = v

(ω; C; fetch(x)) 7→ (ω; C; v)

x ∈ dom(ω) ω(x) = ?

(ω; C; fetch(x)) 7→ Error

For all other rules of the form e 7→ e′ from Figure 3.14, we now have:

(ω; C; e) 7→ (ω; C; e′)

Figure 6.9: Abstract Machine Semantics With Explicit Store and Control Stack

Well-formed continuations: Γ ` C : C cont

Γ ` • : C cont
Γ ` F : C ⇒ D Γ ` C : D cont

Γ ` C ◦ F : C cont
Γ ` C : D cont Γ ` D ≡ C : T

Γ ` C : C cont

Well-formed continuation frames: Γ ` F : C1 ⇒ C2

Γ, x:C1 ` e : C2

Γ ` let x = • in e : C1 ⇒ C2

x:maybe(C) ∈ Γ

Γ ` rec(x : C. •) : C ⇒ C

Figure 6.10: Well-Formed Continuations

The definition of well-formed machine state, given below in Definition 6.2.9, relies naturally on
a notion of well-formed continuation and well-formed machine store. The former is formalized in
Figure 6.10 in a fairly typical way.3 The latter depends in turn on a notion of “run-time” context,
which is a context that only binds variables at types classifying locations in the store. Run-time
contexts and well-formed stores are formalized as follows:

Definition 6.2.7 (Run-Time Contexts)
A context Γ is run-time if the only bindings in Γ have the form x:maybe(C).

3N.B. The only oddity perhaps is the premise x:maybe(C) ∈ Γ in the recursive term frame rule, which is needed in
order to prove progress for the recursive backpatching step. The important point here is that the frame rec(x : C. •)
does not bind the variable x. When this frame comes into existence, x refers to a location that has been created in
the machine store, and thus it must be bound in the context Γ.

6.2. TERM-LANGUAGE EXTENSIONS 127

Definition 6.2.8 (Well-Formed Machine Stores)
A machine store ω is well-formed, denoted Γ ` ω, if:

1. Γ is run-time and dom(ω) = dom(Γ)

2. ∀x:maybe(C) ∈ Γ. either ω(x) = ? or ω(x) = v, where Γ ` v : C

We can now define a notion of well-formed machine state, which requires that the type of the term
currently being evaluated is the same as the type that the current continuation expects:

Definition 6.2.9 (Well-Formed Machine States)
A machine state Ω is well-formed, denoted Γ ` Ω, if either Ω = Error or Ω = (ω; C; e), where:

1. Γ ` ω

2. ∃C. Γ ` C : C cont and Γ ` e : C

We can now state the preservation and progress theorems leading to type safety.

Theorem 6.2.10 (Preservation)
If Γ ` Ω and Ω 7→ Ω′, then ∃Γ′. Γ′ ` Ω′.

Definition 6.2.11 (Terminal States)
A machine state Ω is terminal if it has the form Error or (ω; •; v).

Definition 6.2.12 (Stuck States)
A machine state Ω is stuck if it is non-terminal and there is no state Ω′ such that Ω 7→ Ω′.

Theorem 6.2.13 (Progress)
If Γ ` Ω, then Ω is not stuck.

Corollary 6.2.14 (Type Safety)
If ∅ ` e : C, then the evaluation of (ε; •; e) never enters a stuck state.

Lastly, the proof of progress relies on the following extension of the canonical forms lemma from
Section 3.2.5:

Lemma 6.2.15 (Canonical Forms)
Suppose that Γ is run-time and Γ ` v

wh
=⇒ C.

1. If C is of the form maybe(D), then v is of the form x.

2. If C is of the form C1 C2, then v is of the form foldD or unfoldD.

3. If C is of the form Q, then v is of the form foldD〈〈v
′〉〉.

4. All other cases are the same as in Lemma 3.2.8.

128 CHAPTER 6. TYPE-THEORETIC EXTENSIONS FOR RECURSIVE MODULES

Signatures S,R ::= · · · | maybe(S) | ρX.S
Transparent Signatures S, R ::= · · · | maybe(S) | ρX.S

Fst(maybe(S))
def

= Fst(S)

Fst(ρX.S)
def

= Fst(S), assuming Xc 6∈ FV(Fst(S))

smaybe(S)(C)
def

= maybe(sS(C))

sρ X.S(C)
def

= ρ (sS[C/Xc](C))

Figure 6.11: Extensions to Signature Syntax and Related Functions

6.3 Signature-Language Extensions

Figure 6.11 shows the extensions to the language of signatures from Chapter 4. There are two
new signature forms: the maybe(S) signature used to classify recursive module variables, and the
recursively dependent signature ρX.S. I will write ρ (S) as shorthand for ρX.S when Xc 6∈ FV(S),
i.e., when the rds is “degenerate.”

Figure 6.11 also gives the corresponding extensions to the definitions of Fst(S) and sS(C). Let
us begin with maybe(S). Extensionally speaking, a module M of signature maybe(S) is like a functor

of signature 1
tot
−→S. There is only one thing we can do with it—fetch it, which may raise a run-time

error—just as there is only one thing we can do with a functor with unit argument, and that is
to apply it to 〈〉. The analogy is to a total, rather than a partial, functor, because every fetch(M)
returns the same module value with the same type components, if it returns at all. This analogy
would suggest that Fst(maybe(S)) be defined as 1→ Fst(S), and smaybe(S)(C) as maybe(sS(C〈〉)).
The definition in Figure 6.11 takes the extra step of reducing Fst(maybe(S)) from 1→ Fst(S) to
Fst(S), as the two kinds are isomorphic.

The rds construct ρX.S describes modules M of signature S[M/X]. The dynamic-on-static
restriction (discussed extensively in Chapter 5) ensures that Fst(S) may not refer to Xc and therefore
that Fst(S[M/X]) = Fst(S). Correspondingly, Fst(ρX.S) is defined simply as Fst(S). As for the
singleton signature sρX.S(C), it is intended to describe modules M of signature S[M/X] whose
static part Fst(M) is equivalent to C—that is, modules M of signature sS[M/X](C). This latter
signature is in turn equivalent to sS[C/Xc](C), since Fst(M) is equivalent to C.

Note that the definition of sρ X.S(C) in Figure 6.11 places sS[C/Xc](C) inside a degenerate rds
ρ (·). Morally, for any S, the signatures S and ρ (S) are equivalent. In this calculus, however, I have
chosen to distinguish them and introduce explicit introduction and elimination forms for rds’s (see
Section 6.4 below).4 This approach allows us to maintain the syntax-directed nature of signature
equivalence/subtyping, which simplifies the meta-theory. Since rds’s are only considered subtypes
of other rds’s, the definition of sρ X.S(C) is wrapped in a degenerate rds in order to preserve the
property that sS(C) is a subtype of S.

Figure 6.12 gives the well-formedness, equivalence and subtyping rules for the new signature
constructs. The rules for maybe(S) signatures are all obvious. As for rds’s, the well-formedness
rule (Rule 117) is precisely the one given in Section 5.2.2 of the previous chapter. The rds sub-
typing and equivalence rules, though, are rather unusual: what are singleton signatures doing in

4The programmer of the external language defined in Chapter 9 will not have to write these explicit coercions
herself—the elaborator infers them as part of signature matching.

6.3. SIGNATURE-LANGUAGE EXTENSIONS 129

Well-formed signatures: ∆ ` S sig

∆ ` S sig

∆ ` maybe(S) sig
(116)

∆,Xc:Fst(S) ` S sig

∆ ` ρX.S sig
(117)

Signature equivalence: ∆ ` S1 ≡ S2

∆ ` S1 ≡ S2

∆ ` maybe(S1) ≡ maybe(S2)
(118)

∆ ` ρX.S1 sig ∆ ` ρX.S2 sig
∆ ` Fst(S1) ≡ Fst(S2) ∆,Xc:Fst(S1) ` sS1

(Xc) ≡ sS2
(Xc)

∆ ` ρX.S1 ≡ ρX.S2
(119)

Signature subtyping: ∆ ` S1 ≤ S2

∆ ` S1 ≤ S2

∆ ` maybe(S1) ≤ maybe(S2)
(120)

∆ ` ρX.S1 sig ∆ ` ρX.S2 sig
∆ ` Fst(S1) ≤ Fst(S2) ∆,Xc:Fst(S1) ` sS1

(Xc) ≤ sS2
(Xc)

∆ ` ρX.S1 ≤ ρX.S2
(121)

Figure 6.12: New Inference Rules for Signatures

the last premise? Wouldn’t a more natural premise (in the rds subtyping rule, for instance) be
∆,Xc:Fst(S1) ` S1 ≤ S2?

The problem with this simpler, more obvious premise is that it is considerably more restrictive
than necessary. For example, consider the signatures R1 = ρX.S1 and R2 = ρX.S2, where

S1
def

= ΣY:[[T]].[[π1X
c ×Yc]]

S2
def

= ΣY:[[T]].[[Yc ×π1X
c]]

Written in pseudo-ML syntax, these would correspond to

R1
def

= ρ X. sig type t ; val x : X.t * t end

R2
def

= ρ X. sig type t ; val x : t * X.t end

Intuitively, when checking whether R1 is a subsignature of R2, t and X.t should be treated as
equivalent because they are really different ways of referring to the same type component. However,
the premise ∆,Xc:Fst(S1) ` S1 ≤ S2 does not identify them; it simply compares S1 and S2 directly,
and in the above example S1 and S2 are incomparable.

Rules 119 and 121 address this limitation by comparing sS1
(Xc) and sS2

(Xc) instead of S1 and
S2. In terms of the example above, this approach eliminates the distinction between t and X.t. For-
mally, R1 and R2 will be deemed equivalent since sS1

(Xc) = sS2
(Xc) = [[s(π1X

c)]]× [[π1X
c ×π1X

c]].

The new signature forms introduced in this section do not cause any meta-theoretic problems.
Nonetheless, since the subtyping and equivalence rules for rds’s are so unusual, I will give here the

130 CHAPTER 6. TYPE-THEORETIC EXTENSIONS FOR RECURSIVE MODULES

proofs for the rds cases in several of the declarative properties from Section 4.1.3. I will omit the
proofs for the maybe(S) cases, which are all straightforward.

Definition 4.1.2 (Sizes of Signatures)

size(maybe(S))
def

= 1 + size(S)

size(ρX.S)
def

= 1 + size(S)

Proposition 4.1.3 (Facts About Fst(S) and sS(C))

1. If ∆ ` C : Fst(S), then ∆ ` Fst(sS(C)) ≡ sFst(S)(C).

3. If ∆ ` S sig and ∆ ` C : Fst(S), then ∆ ` sS(C) sig.

Proof: New case: S = ρX.R, so Fst(S) = Fst(R) and Xc 6∈ FV(Fst(R)).

1. (a) By definition, Fst(sS(C)) = Fst(ρ (sR[C/Xc](C))) = Fst(sR[C/Xc](C)).

(b) By induction, ∆ ` Fst(sR[C/Xc](C)) ≡ sFst(R)[C/Xc](C).

(c) Since Xc 6∈ FV(Fst(R)), we have sFst(R)[C/Xc](C) = sFst(S)(C).

3. (a) By definition, we need to show that ∆ ` ρ (sR[C/Xc](C)) sig.

(b) First, Fst(R[C/Xc]) = Fst(R), so by assumption, ∆ ` Fst(R[C/Xc]) kind.

(c) Second, since ∆,Xc:Fst(R) ` R sig and ∆ ` C : Fst(R),

(d) By Substitution, ∆ ` R[C/Xc] sig.

(e) By induction, ∆ ` sR[C/Xc](C) sig, so ∆ ` ρ (sR[C/Xc](C)) sig.

�

Proposition 4.1.4 (Reflexivity)
If ∆ ` S sig, then ∆ ` S ≡ S and ∆ ` S ≤ S.

Proof: By induction on size(S). New case: S = ρX.R.

1. By assumption, ∆,Xc:Fst(R) ` R sig.

2. By Reflexivity, ∆ ` Fst(R) ≡ Fst(R).

3. By Part 3 of Proposition 4.1.3, ∆,Xc:Fst(R) ` sR(Xc) sig.

4. Since size(sR(Xc)) = size(R) < size(S), by induction, ∆,Xc:Fst(R) ` sR(Xc) ≡ sR(Xc).

5. Thus, ∆ ` ρX.R ≡ ρX.R.

The proof of ∆ ` ρX.R ≤ ρX.R is similar. �

Proposition 4.1.9 (Singleton and Transparent Signature Rules)

1. If ∆ ` S sig and ∆ ` C : Fst(S), then ∆ ` sS(C) ≤ S.

2. If ∆ ` S sig and ∆ ` C : Fst(S), then ∆ ` sS(C) ≡ S.

3. If ∆ ` S1 ≤ S2 and ∆ ` C1 ≡ C2 : Fst(S1), then ∆ ` sS1
(C1) ≤ sS2

(C2).

6.3. SIGNATURE-LANGUAGE EXTENSIONS 131

Signature phase-splitting: S⇒ [[α:K.C]]

S⇒ [[α:K.C]]

maybe(S)⇒ [[α:K.maybe(C)]]

S⇒ [[α:K.C]]

ρX.S⇒ [[α:K.C[α/Xc]]]

Figure 6.13: New Signature Phase-Splitting Rules

Proof: New case: S = ρX.R, Si = ρX.Ri. The proof makes use inductively of Corollary 6.3.1,
shown below.

1. (a) Let R
′ = sR[C/Xc](C).

(b) Since sS(C) = ρ (R′), we need to show that ∆ ` ρ (R′) ≤ ρX.R.

(c) First, by Proposition 4.1.3, ∆ ` Fst(R′) ≡ sFst(R)(C).

(d) By Proposition 3.1.12, ∆ ` sFst(R)(C) ≤ Fst(R).

(e) Thus, by Transitivity, ∆ ` Fst(R′) ≤ Fst(R).

(f) Second, by Proposition 4.1.3 and Reflexivity, ∆,Xc:Fst(R′) ` sR(Xc) ≡ sR(Xc).

(g) Since ∆,Xc:Fst(R′) ` C ≡ Xc : Fst(R′), by Functionality, ∆,Xc:Fst(R′) ` R
′ ≡ sR(Xc).

(h) By induction, ∆,Xc:Fst(R′) ` sR(Xc) ≤ R.

(i) Thus, by Transitivity, ∆,Xc:Fst(R′) ` R
′ ≤ R.

(j) Inductively, by Corollary 6.3.1, ∆ ` ρ (R′) ≤ ρX.R.

2. Analogous to the proof of Part 1, replacing occurrences of ≤ with ≡.

3. (a) Let R
′
i = sRi[Ci/Xc](Ci).

(b) Since sSi
(Ci) = ρ (R′

i), we need to show that ∆ ` ρ (R′
1) ≤ ρ (R′

2).

(c) By assumption, ∆ ` Fst(R1) ≤ Fst(R2) and ∆,Xc:Fst(R1) ` sR1
(Xc) ≤ sR2

(Xc).

(d) Since ∆ ` C1 ≡ C2 : Fst(R1), by Functionality, ∆ ` R
′
1 ≤ R

′
2.

(e) Inductively, by Corollary 6.3.1, ∆ ` ρ (R′
1) ≤ ρ (R′

2).

�

Corollary 6.3.1 (Admissible Rds Rules)
Suppose ∆ ` ρX.S1 sig and ∆ ` ρX.S2 sig.

1. If ∆ ` Fst(S1) ≡ Fst(S2) and ∆,Xc:Fst(S1) ` S1 ≡ S2, then ∆ ` ρX.S1 ≡ ρX.S2.

2. If ∆ ` Fst(S1) ≤ Fst(S2) and ∆,Xc:Fst(S1) ` S1 ≤ S2, then ∆ ` ρX.S1 ≤ ρX.S2.

Proof: Follows directly from Part 3 of Proposition 4.1.9. �

Figure 6.13 presents the phase-splitting rules for the new signature constructs. The rule for
maybe(S) makes clear that the maybe only applies to the dynamic part of S. The rule for ρX.S is
the same as the one given in Section 5.2.2; thanks to the dynamic-on-static restriction, all recursive
references to X in S appear in the dynamic part of S, so the phase-splitting rule can replace them

132 CHAPTER 6. TYPE-THEORETIC EXTENSIONS FOR RECURSIVE MODULES

Modules M,N,F ::= · · · | rec(X : S.M) | fetch(M) | roll(M) | unroll(M)
Projectible Modules M, N, F ::= · · · | rec(X : S.M) | fetch(M) | roll(M) | unroll(M)

Fst(rec(X : S.M))
def

= Can(Fst(S))

Fst(fetch(M))
def

= Fst(M)

Fst(roll(M))
def

= Fst(M)

Fst(unroll(M))
def

= Fst(M)

Figure 6.14: Extensions to Module Syntax

with direct references to the variable α. I give here the proof of the one new and interesting case
in the soundness theorem.

Proposition 4.1.10 (Soundness and Other Properties of Signature Phase-Splitting)

5. If ∆ ` S1 ≤ S2 and S1 ⇒ [[α:K1.C1]] and S2 ⇒ [[α:K2.C2]],
then ∆ ` K1 ≤ K2 and ∆, α:K1 ` C1 ≡ C2 : T.

Proof:

5. New case: Si = ρX.Ri and Si ⇒ [[α:Ki.Ci[α/Xc]]], where Ri ⇒ [[α:Ki.Ci]].

(a) By assumption, ∆ ` Fst(R1) ≤ Fst(R2) and ∆,Xc:Fst(R1) ` sR1
(Xc) ≤ sR2

(Xc).

(b) By Part 2 of this proposition, Ki = Fst(Ri), so ∆ ` K1 ≤ K2.

(c) By induction, sRi
(Xc)⇒ [[α:Li.Di]],

(d) where ∆,Xc:K1 ` L1 ≤ L2 and ∆,Xc:K1, α:L1 ` D1 ≡ D2 : T.

(e) By Proposition 4.1.9, ∆,Xc:K1 ` sRi
(Xc) ≤ Ri.

(f) By induction, ∆,Xc:K1 ` Li ≤ Ki and ∆,Xc:K1, α:Li ` Di ≡ Ci : T.

(g) By Transitivity, ∆,Xc:K1, α:L1 ` C1 ≡ C2 : T.

(h) By Substitution, ∆, α:K1 ` C1[α/Xc] ≡ C2[α/Xc] : T.

�

6.4 Module-Language Extensions

Figure 6.14 shows the extensions to the syntax of modules. The recursive module construct
rec(X : S.M) requires the declared signature to be transparent. As explained in Chapter 5, this is
the only simple, type-theoretic approach I know of for addressing the double vision problem. Since
rec(X : S.M) is transparent, it is considered projectible as well. The static part of rec(X : S.M) is
defined as the canonical implementation of Fst(S), although any implementation of Fst(S) will do.

The module fetch(M) evaluates M to a memory location and then dereferences the memory
location. If the contents of the location are undefined, then a run-time error is raised. As discussed
in Section 6.3, Fst(maybe(S)) = Fst(S). Correspondingly, fetch(M) is projectible so long as M is,
and Fst(fetch(M)) = Fst(M).

6.4. MODULE-LANGUAGE EXTENSIONS 133

Well-formed modules: Γ ` M :κ S

Γ,X:maybe(S) ` M :P S

Γ ` rec(X : S.M) :P S
(122)

Γ ` M :κ maybe(S)

Γ ` fetch(M) :κ S
(123)

Γ ` M :κ S

Γ ` roll(M) :κ ρ (S)
(124)

Γ ` M :P ρX.S

Γ ` unroll(M) :P S[M/X]
(125)

Figure 6.15: New Inference Rules for Modules

The modules roll(M) and unroll(M) are the introduction and elimination forms for rds’s, re-
spectively. They are merely signature coercions and have no run-time effect. Thus, as the phase-
splitting rules for modules will evidence, roll(M) and unroll(M) have exactly the same core-language
interpretation as M does, and Fst(roll(M)) = Fst(unroll(M)) = Fst(M).

Figure 6.15 gives the typing rules for these new module constructs. Rule 122 for rec(X : S.M)
requires that M have signature S, assuming X is a location that will eventually store the result of
evaluating M. Rule 123 says that fetch(M) is pure if M is. Rule 124 for roll(M) coerces M into
an rds by wrapping the signature of M in a degenerate rds. Rule 125 restricts the argument of
unroll(M) to be projectible, so that Fst(M) may be substituted for Xc in the body of the rds ρX.S
classifying M.

It is easy to show that the declarative properties of modules given in Section 4.2.4 are preserved
by the present extensions. One point of note: the rule for rds introduction given here as Rule 124
is simpler than the rule suggested initially in Section 5.2.2. That earlier rule, which was essentially
the inversion of the unroll rule, is admissible in the present system:

Proposition 6.4.1 (Admissible Roll Rule)
If Γ ` ρX.S sig and Γ ` M :P S[M/X], then Γ ` roll(M) :P ρX.S.

Proof:

1. Let R = sS[Fst(M)/Xc](Fst(M)).

2. Since Γ ` M :P S[M/X], by Rule 102, Γ ` M :P R.

3. Thus, by Rule 124, Γ ` roll(M) :P ρ (R). We need to show that Γ ` ρ (R) ≤ ρX.S.

4. First, since Γ ` ρX.S sig, we have Γ ` Fst(S) kind.

5. Thus, Xc 6∈ FV(Fst(S)), and Fst(S[M/X]) = Fst(S)[M/X] = Fst(S).

6. By Proposition 4.1.3, Γ ` Fst(R) ≡ sFst(S)(Fst(M)).

7. By Proposition 4.2.3, Γ ` Fst(M) : Fst(S).

8. Thus, by Proposition 3.1.12, Γ ` Fst(M) : Fst(R) and Γ ` Fst(R) ≤ Fst(S).

9. By Proposition 3.1.14, Γ,Xc:Fst(R) ` Fst(M) ≡ Xc : Fst(R).

10. Since Γ,Xc:Fst(R) ` sS(X
c) ≤ S, by Functionality, Γ,Xc:Fst(R) ` R ≤ S.

11. Thus, by Corollary 6.3.1, Γ ` ρ (R) ≤ ρX.S.

�

134 CHAPTER 6. TYPE-THEORETIC EXTENSIONS FOR RECURSIVE MODULES

Signature synthesis: Γ ` M ⇒κ S

Γ ` S sig Γ,X:maybe(S) ` M ⇐P S

Γ ` rec(X : S.M) ⇒P S

Γ ` M ⇒κ maybe(S)

Γ ` fetch(M) ⇒κ S

Γ ` M ⇒κ S

Γ ` roll(M) ⇒κ ρ (S)

Γ ` M ⇒P ρX.S

Γ ` unroll(M) ⇒P S[M/X]

Figure 6.16: Extensions to Signature Synthesis

Figure 6.16 shows how to extend the signature synthesis algorithm to handle the new module
constructs. All the new synthesis rules are straightforward. Here are the new cases in the proof
that the signature checking algorithm is complete:

Theorem 4.2.6 (Completeness of Signature Checking)
If Γ ` M :κ S, then Γ ` M ⇐κ S.

Proof:

• Case: Rules 122 and 123. Trivial.

• Case: Rule 124.

1. By induction, Γ ` M ⇒κ′ R, where Γ ` R ≤ S and κ′ v κ.

2. Thus, Γ ` roll(M) ⇒κ′ ρ (R), and by Corollary 6.3.1, Γ ` ρ (R) ≤ ρ (S).

• Case: Rule 125.

1. By induction, Γ ` M ⇒P ρX.R and Γ ` ρX.R ≤ ρX.S.

2. Thus, Γ ` unroll(M) ⇒P R[M/X].

3. By Soundness and Proposition 4.1.3, Γ ` Fst(M) : Fst(R).

4. By inversion on subtyping, Γ ` Fst(R) ≤ Fst(S) and Γ,Xc:Fst(R) ` sR(Xc) ≤ sS(Xc).

5. By Proposition 4.1.9, Γ,Xc:Fst(R) ` R ≡ sR(Xc) and Γ,Xc:Fst(R) ` sS(Xc) ≤ S.

6. By Transitivity, Γ,Xc:Fst(R) ` R ≤ S.

7. By Substitution, Γ ` R[M/X] ≤ S[M/X].

�

Finally, Figure 6.17 gives the phase-splitting rules for the new module constructs. The rules
for roll(M) and unroll(M) show that these are merely retyping operations, which have no effect on
either the static or dynamic part of M. The rules for fetch(M) show that the only part of M that
actually needs to be fetched from memory is its dynamic part. The rule for recursive modules
illustrates that the recursion only applies to the dynamic part of the recursive module body, since
the static part is fully specified by the transparent declared signature. It is easy to check that these
new cases preserve the soundness of phase-splitting (Proposition 4.2.7).

6.4. MODULE-LANGUAGE EXTENSIONS 135

Pure module phase-splitting: Γ ` M ⇒P S⇒ [C, e]

Γ ` S⇒ [[Xc:K.C]] Γ,X:maybe(S) ` M ⇒P R⇒ [D, e] Γ,X:maybe(S) ` R ≤ S

Γ ` rec(X : S.M) ⇒P S⇒ [Can(K), let Xc = Can(K) in rec(Xr : C. e)]

Γ ` M ⇒P maybe(S)⇒ [C, e]

Γ ` fetch(M) ⇒P S⇒ [C, fetch(e)]

Γ ` M ⇒P S⇒ [C, e]

Γ ` roll(M) ⇒P ρ (S)⇒ [C, e]

Γ ` M ⇒P ρX.S⇒ [C, e]

Γ ` unroll(M) ⇒P S[M/X]⇒ [C, e]

Impure module packaging: Γ ` M ⇒I S⇒ e

Γ ` M ⇒I maybe(S)⇒ e

Γ ` fetch(M) ⇒I S⇒ let [α, x] = unpack e in pack [α, fetch(x)] as 〈|S|〉

Γ ` M ⇒I S⇒ e

Γ ` roll(M) ⇒I ρ (S)⇒ e

Figure 6.17: New Module Phase-Splitting Rules

Chapter 7

Safe Recursion

I argued in Section 5.2.1 that the backpatching semantics for recursive modules is superior to a
fixed-point semantics, because it ensures that any computational effects in the recursive module
body will only happen once and not be repeated at each use of the recursive module variable.
However, in the recursive module proposal that I sketched in Section 5.4 (and that I will formalize
in Part III), the typechecker makes no attempt to detect statically whether or not recursion is
safe.1 That is, given a recursive module rec(X : S.M), the typechecker cannot guarantee that the
evaluation of M will not prompt the dereferencing of X before it has been backpatched. As a result,
whenever X is dereferenced (by fetch(X)), there is a possibility that it has not yet been backpatched,
in which case a run-time error must be raised.

While dynamic detection of unsafe recursion has the benefit of simplicity, compile-time detection
would be preferable if it could be done in a manner that is not overly conservative. Furthermore,
statically ensuring safe recursion would allow recursive modules to be implemented more efficiently.
In the absence of static detection, there are two well-known implementation choices: 1) the recursive
variable X can be implemented as a pointer to a value of option type (initially NONE), in which
case every dereference of X must also perform a tag check to see if it has been backpatched yet, or
2) X can be implemented as a pointer to a thunk (initially fn () => raise Error), in which case
dereferencing X does not require a tag check but instead incurs a function call. Either way, mutually
recursive functions defined across module boundaries may be noticeably slower than ordinary ML
functions. If recursion is statically determined to be safe, though, the value pointed to by X will
be needed only after X has been backpatched, so each fetch(X) will require only a single pointer
dereference.

In this chapter, I consider the problem of statically detecting whether recursion under a back-
patching semantics is safe. In order to simplify matters and isolate orthogonal concerns, I will
ignore the issues involving type components in recursive modules and focus attention on their dy-
namic components. In particular, I will consider the semantics of a safe recursive term construct
saferec(x : C. e) in the context of the simply-typed λ-calculus. Even in the limited setting of the
simply-typed λ-calculus, the safe recursion problem is quite interesting and difficult, and there has
been little previous work on it.

The chapter is structured as follows: In Section 7.1, I introduce the property of evaluability,
which guarantees that a term is safe to evaluate even if it has free references to undefined recur-
sive variables. I consider a simple straw-man approach to tracking evaluability, and illustrate by

1In Dreyer [10], I used the term well-founded recursion instead of safe recursion. Both terms appear in the
literature, but the former gives the impression of similarity to well-founded induction when there is none. I have
therefore opted to use the latter term in this chapter.

138 CHAPTER 7. SAFE RECURSION

examples why a more sophisticated approach is required.

In Section 7.2, I propose a type-theoretic approach to resolving these problems. The basic idea
is to model recursive variables statically as names, and to use names to track the set of recursive
variables that a piece of code may attempt to dereference when evaluated.2 Names are useful for
two purposes: (1) tracking uses of multiple recursive variables in the presence of nested recursion,
and (2) supporting separate compilation of safe recursive terms/modules. An equally important
feature of my approach is that recursive terms/modules may invoke “legacy” functions defined
in existing ML code without requiring them to be changed or recompiled to account for name
reasoning. Nevertheless, as I discuss in Section 7.2.3, there are useful recursive module idioms for
which instrumentation of existing ML code appears to be unavoidable if one wants to statically
ensure that the recursion is safe.

Interestingly, while computational effects are what necessitate the backpatching semantics of
recursion, all of the subtleties involving names are explored in Section 7.2 in the setting of the
pure λ-calculus. Section 7.3 introduces computational effects into the language in the form of
mutable state and continuations, but these extensions turn out to be rather simple, orthogonal,
and oblivious to the presence of names.

In Section 7.4, I show how the unrestricted recursive term construct rec(x : C. e) (whose seman-
tics was formalized in Section 6.2 of the previous chapter) may be encoded in terms of the safe
recursive construct saferec(x : C. e) by extending the language with memoized computations. While
the unrestricted construct does not statically ensure safe recursion, it is useful to have as a fallback
in circumstances where the type system is too weak to observe that a safe recursive term is in fact
safe.

In Section 7.5, I compare my approach with related work on safe recursion and backpatching
semantics. Finally, in Section 7.6, I discuss the key issues and difficulties I foresee in scaling my
approach to the level of a realistic ML extension.

7.1 Evaluability

Recall the recursive construct rec(x : C. e) introduced in Section 6.2. The typing rule for rec(x : C. e)
checks that e has type C in a context where x has type maybe(C). To dereference x, we write
fetch(x).

Now consider a “safe” recursive construct of the form saferec(x : C. e). What must we require
of e to ensure that saferec(x : C. e) is in fact safe? Crary et al. [6] require that e be valuable (that
is, pure and terminating) in a context where x is not. Let us generalize their notion of valuability
to one permitting effects, which I will call evaluability. A term may be judged “evaluable” if its
evaluation does not dereference any undefined (i.e., unbackpatched) recursive variable. Thus, to
ensure saferec(x : C. e) is safe, the expression e must be evaluable in a context where dereferences of
the variable x are considered non-evaluable. A term can be non-evaluable and still be well-formed,
but only evaluable expressions are safe to evaluate in the presence of undefined recursive variables.

Formally, we might incorporate evaluability into the type system by dividing the typing judg-
ment into one classifying evaluable terms (Γ ` e ↓ C) and one classifying non-evaluable terms
(Γ ` e ↑ C). (There is an implicit inclusion of the former in the latter.) The typing rule for

2My use of names is inspired by the work of Nanevski on a core language for metaprogramming and symbolic
computation [57], although it is closer in detail to his work (concurrent with mine) on using names to model control
effects [58].

7.1. EVALUABILITY 139

saferec(x : C. e) might then be as follows:

Γ, x:box(C) ` e ↓ C

Γ ` saferec(x : C. e) ↓ C

To stress the distinction between safe and unsafe recursion, I have chosen here to bind x with a
new type, box(C), instead of maybe(C). To dereference a location v of type box(C), we will write
unbox(v).

It is important to understand that the distinction between box(C) and maybe(C), and between
unbox’ing and fetch’ing, is not merely pedantic. The implementation of fetch(v) must check to
make sure that v has been backpatched, whereas the implementation of unbox(v) need not perform
any such check—the static semantics will guarantee that v will not be unbox’ed until it has been
backpatched. To validate this guarantee, the typing rule for unbox(v) must be conservative and
treat all unboxing operations as potentially non-evaluable:

Γ ` v ↓ box(C)

Γ ` unbox(v) ↑ C

7.1.1 The Evaluability Judgment

While true evaluability is clearly an undecidable property, there are certain kinds of expressions that
we can expect the type system to recognize as evaluable. Certainly all values and projections from
values should be considered evaluable, as should all let-expressions whose constituent expressions are
evaluable. There is no reason to limit evaluability to pure expressions either. For instance, the ML
expressions ref(e), !e, and e1:= e2 should all be evaluable as long as their constituent expressions
are. Given this characterization, we can already observe that the effectful recursive module example
in Figure 5.6 from Chapter 5 is safe. Evaluability is thus independent of computational purity in
the traditional sense.

There is, however, a correspondence between non-evaluability and computational im-purity in
the sense that both are hidden by λ-abstractions and unleashed by function applications. In ML we
assume (for the purpose of the value restriction on let-polymorphism) that all function applications
are potentially impure. In the current setting we might similarly assume for simplicity that all
function applications are potentially non-evaluable.

Unfortunately, this assumption has one major drawback: it implies that we can never evaluate
a function application inside the body of a recursive term! Furthermore, it is usually unnecessary:
while functions defined inside a recursive term may very well be concealing references to an unde-
fined recursive variable, functions defined in existing ML code will not. For example, suppose we
were to modify the example of Figure 5.6 in the manner shown in Figure 7.1. Instead of defining
A.debug as a boolean flag (ref false), the new version defines it as a mutable array, by a call
to the array creation function Array.array. The call to Array.array is perfectly evaluable. In
contrast, a call to the function A.f from within the recursive module would not be, since the body
of A.f makes a recursive call to unbox(X).B.g. Lumping them together and assuming the worst
makes the evaluability judgment overly conservative.

7.1.2 A Total/Partial Distinction

At the very least, then, we should make a type distinction between functions whose bodies are
evaluable and those whose bodies are not. Thinking of non-evaluability as a sort of computational

effect, let us refer to the first type of function as “total” (written C1
tot
−→C2) and to the latter type

140 CHAPTER 7. SAFE RECURSION

saferec (X : SIG.

struct

structure A = struct

val debug = Array.array(n,0)

fun f(x) = ...unbox(X).B.g(x+1)...

...

end

structure B = struct ... end

end)

Figure 7.1: Modified Example of Recursive Module With Effects

as “partial” (written C1
par
−→C2).

3 The typing rules for total and partial λ-abstractions would then
be as follows:

Γ, x : D ` e ↓ C

Γ ` λx : D. e ↓ D
tot
−→ C

Γ, x : D ` e ↑ C

Γ ` λx : D. e ↓ D
par
−→ C

Correspondingly, applications of total functions will be deemed evaluable, whereas applications of
partial functions will be assumed non-evaluable:

Γ ` v1 ↓ D
tot
−→ C Γ ` v2 ↓ D

Γ ` v1(v2) ↓ C

Γ ` v1 ↓ D
par
−→ C Γ ` v2 ↓ D

Γ ` v1(v2) ↑ C

The total/partial distinction addresses the concerns discussed in the previous section, to an extent.
Existing ML functions can now be classified as total, and the arrow type C1 ->C2 in ML proper
is synonymous with a total arrow. Thus, we may now evaluate calls to existing ML functions in
the presence of undefined recursive variables, as those function applications will be known to be
evaluable. Nonetheless, some serious problems remain.

7.1.3 Limitations of the Total/Partial Distinction

First, consider what happens if we use the safe recursive construct to define a single recursive
function, such as factorial:

saferec(f : int
par
−→ int. fn x => ... x * unbox(f)(x-1) ...)

Note that we are forced to give the recursive expression a partial arrow type because the body
of the factorial function unboxes the recursive variable f. Nonetheless, exporting factorial as a
partial function is bad because it means that no application of factorial can ever be evaluated
inside another recursive expression!

To mend this problem, we observe that while the factorial function is indeed partial during the
evaluation of the general recursive expression defining it, it becomes total as soon as f is backpatched
with a definition. One way to incorporate this observation into the type system is to revise the
typing rule for recursive terms saferec(x : C. e) so that we ignore partial/total discrepancies when
matching the declared type C with the actual type of e. For example, in the factorial definition

3Note: This total/partial distinction is completely unrelated to the total/partial distinction on functors from
Chapter 4, which corresponds to applicative vs. generative behavior.

7.2. A TYPE SYSTEM FOR SAFE RECURSION 141

above, we would allow f to be declared with a total arrow int
tot
−→ int, since the body of the

definition has an equivalent type modulo a partial/total mismatch.

Unfortunately, such a revised typing rule is only sound if we prohibit nesting of recursive terms.
Otherwise, the rule may allow a truly partial function to be erroneously assigned a total type, as
the following code illustrates:

saferec (x : C.
let

val f = saferec(y : unit
tot
−→ C. fn () => unbox(x))

in

f()

end

)

The trouble here is that the evaluation of the recursive term defining f results only in the back-
patching of y, not x. It is therefore unsound for that term to make the type of fn () => unbox(x)

total. In short, the problem is that the total/partial dichotomy is too coarse because it does not
distinguish between the dereferencing of different recursive variables. In the type system of Sec-
tion 7.2, we will be able to give f a more appropriate type specifying that f will dereference x when
applied, but not y.

Another problem with the total/partial distinction arises in the use of higher-order functions.
Suppose we wish to use the Standard Basis map function for lists, which can be given the following
type (for any D and C):

val map : (D
tot
−→ C)

tot
−→ (D list

tot
−→ C list)

Since the type of map is a pure ML type, all the arrows are total, which means that we cannot
apply map to a partial function, as in the following:

saferec (X : SIG.

let

val f : D
par
−→ C = ...

val g : D list
par
−→ C list = map f

...

)

Given the type of map, this is reasonable: unless we know how map is implemented, we have no way
of knowing that evaluating map f will not try to apply f, resulting in a potential dereference of X.

Nevertheless, we should at least be able to replace map f with fn xs => map f xs, its eta-
expansion, which is clearly evaluable since it is a value. Even its eta-expansion is ill-typed, however,
because the type of f still does not match the argument type of map. The way I propose to
resolve this problem is to view a partial/total type mismatch not as a sign that the offending
expression (in this case, map f) is ill-typed, but merely that it is potentially non-evaluable. The
type system of Section 7.2 will reflect this intuition, and will correspondingly consider the function
fn xs => map f xs to be well-typed with a partial arrow, but not a total one.

7.2 A Type System for Safe Recursion

In this section I present a type system for safe recursion that addresses both of the problems
enumerated in the previous section. To address the nested recursion problem, I generalize the

142 CHAPTER 7. SAFE RECURSION

Variables x, y, z ∈ Variables
Names X ,Y,Z ∈ Names
Supports S, T ∈ Pfin(Names)

Types C,D ::= unit | C1 × C2 | C1
S

−→ C2 | ∀X .C | boxS(C)
Values v ::= x | 〈〉 | 〈v1, v2〉 | λSx : C. e | λX .e
Terms e, f ::= v | πi(v) | v1(v2) | v(S) | boxS(v) | unbox(v) |

let x = e1 in e2 | saferec(X . x : C. e)
Typing Contexts Γ ::= ∅ | Γ, x : C | Γ,X

Figure 7.2: Syntax of Safe Recursion Language

judgment of evaluability to one that tracks uses of individual recursive variables. I achieve this by
introducing along with each recursive variable x a name X that is used as a static representative
of the variable. The new evaluability judgment has the form Γ ` e : C [S], with the interpretation
“under context Γ, term e has type C and is evaluable modulo the names in set S”. In other
words, e will evaluate without dereferencing any recursive variables except possibly those whose
associated names appear in S. Following Nanevski [57], I call a finite set of names a support. Our
previous judgment of evaluability (Γ ` e ↓ C) can be understood as evaluability modulo the empty
support (Γ ` e : C [∅]), while non-evaluability (Γ ` e ↑ C) corresponds to evaluability modulo some
non-empty support.

Similarly, I will generalize the types of functions to bear a support indicating which particular
recursive variables may be dereferenced in their bodies. Thus, the total arrow type of the previous
section becomes an arrow type bearing empty support, while the partial arrow type corresponds to
an arrow type bearing some non-empty support.

To address the higher-order function problem, I employ a novel judgment of type equivalence
modulo a support, which allows type mismatches in an expression to be ignored so long as they
only involve names that are in the support of the expression. The intuition behind this judgment
is as follows. If a name X is in the support of an expression e, then the evaluation of e may
dereference the recursive variable x to which X corresponds. The type system must therefore
ensure that x is backpatched before e is ever evaluated. Once x is backpatched, however, the effect
of dereferencing it becomes benign, and the name X can subsequently be ignored. Thus, since e
will only be evaluated after x has been backpatched, type mismatches regarding X are irrelevant
as far as the typechecking of e is concerned.

7.2.1 Syntax

The syntax of the language is given in Figure 7.2. I assume the existence of countably infinite
sets of names (Names) and variables (Variables), and use S and T to range over supports. I will
sometimes write the name X as shorthand for the singleton support {X}.

The type structure of the language is as follows. Unit (unit) and pair types (C1 × C2) require

no explanation. An arrow type (C1
S

−→ C2) bears a support S on the arrow, which indicates the
names whose associated recursive variables must be backpatched before a function of this type may
be applied. Similarly, λ-abstractions λT x : D. e explicitly specify the support T required for them

to be applied. I will write C1 → C2 (resp. λx : D. e) as shorthand for C1
∅

−→ C2 (resp. λ∅x : D. e).

7.2. A TYPE SYSTEM FOR SAFE RECURSION 143

The language also provides the ability to abstract a term over a name. The type ∀X .C classifies
name abstraction values λX .e. Application of a name abstraction, v(S), allows the name parameter
of v to be instantiated with a support S, not just a single name. The reasons for allowing names
to be instantiated with supports are discussed in Section 7.2.3.

Lastly, the location type boxS(C) classifies a memory location that will contain a value of type C
once the recursive variables associated with the names in S have been backpatched. Locations are
most commonly introduced by recursive terms. The recursive term construct saferec(X . x : C. e)
binds both the name X and the variable x in e. The type of x will be boxX (C), indicating that
x may only be unboxed by an expression with support containing X . The boxS(C) type may
also be introduced by boxS(v), which creates a new memory location and stores v at it. As this
is an effectful operation, boxS(v) is not a value—the only values of box type are variables. The
elimination form for box types is unbox(v), which dereferences the location v. I will sometimes
write box(C) (resp. box(v)) as shorthand for box∅(C) (resp. box∅(v)).

For notational convenience, I will enforce several implicit requirements on the syntactic well-
formedness of contexts and judgments. A context Γ is well-formed if (1) it does not bind the same
variable/name twice, and (2) for any prefix of Γ of the form Γ′, x : C, the free names of C are bound
in Γ′. A judgment of the form Γ ` J is well-formed if (1) Γ is well-formed, and (2) any free names
appearing in J are bound in Γ. I assume and maintain the implicit invariant that all contexts and
judgments are well-formed.

7.2.2 Static Semantics

The main typing judgment has the form Γ ` e : C [S]. The support S represents the set of
names whose associated recursive variables we may assume have been backpatched by the time e is
evaluated. Put another way, the only recursive variables that e may dereference are those associated
with the names in S. The static semantics is carefully designed to validate this assumption.

The rules of the type system, shown in Figure 7.3, are designed to make admissible the principle
of support weakening, which says that if Γ ` e : C [S] then Γ ` e : C [T] for any T ⊇ S. Thus,
for instance, since a variable x does not require any support, Rule 1 allows x to be assigned any
support S ⊆ dom(Γ), not just the empty support.

The remainder of the rules may be summarized as follows. Unit, pairs and projections need no

support (Rules 2, 3 and 4). A function λT x : D. e has type D
T
−→ C in any support S, so long as the

body e is well-typed under the addition of support T (Rule 5). To evaluate a function application
v1(v2), the support S must contain the support T on v1’s arrow type (Rule 6).

Although a name abstraction λX .e suspends the evaluation of e, the body is typechecked under
the same support as the abstraction itself (Rule 7). In other words, one can view ∀X .C as another
kind of arrow type that always bears empty support (compare with Rule 5 when T = ∅). Note also
that the assumptions about the well-formedness of judgments ensure that the support S cannot
contain X , since S ⊆ dom(Γ) and X 6∈ dom(Γ). Restricting name abstractions in this way is
motivated by the fact that, in all my intended uses of name abstractions (see Section 7.2.3 below),
the body of the abstraction is a value (with empty support).

Instantiating a name abstraction v of type ∀X .C with a support T has the type resulting from
substituting T for X in C (Rule 8). The substitution C[T /X] is defined by replacing every support
S appearing in C with S[T /X], which is in turn defined as follows:

S[T /X]
def

=

{
S ∪ T − {X} if X ∈ S
S if X 6∈ S

144 CHAPTER 7. SAFE RECURSION

Well-formed terms: Γ ` e : C [S]

x : C ∈ Γ
Γ ` x : C [S]

(1)
Γ ` 〈〉 : unit [S]

(2)

Γ ` v1 : C1 [S] Γ ` v2 : C2 [S]

Γ ` 〈v1, v2〉 : C1 × C2 [S]
(3)

Γ ` v : C1 × C2 [S]

Γ ` πi(v) : Ci [S]
(4)

Γ, x : D ` e : C [S ∪ T]

Γ ` λT x : D. e : D
T
−→ C [S]

(5) Γ ` v1 : D
T
−→ C [S] Γ ` v2 : D [S] T ⊆ S

Γ ` v1(v2) : C [S]
(6)

Γ,X ` e : C [S]

Γ ` λX .e : ∀X .C [S]
(7)

Γ ` v : ∀X .C [S]

Γ ` v(T) : C[T /X] [S]
(8)

Γ ` v : C [S ∪ T]

Γ ` boxT (v) : boxT (C) [S]
(9)

Γ ` v : boxT (C) [S] T ⊆ S

Γ ` unbox(v) : C [S]
(10)

Γ ` e1 : D [S] Γ, x : D ` e2 : C [S]

Γ ` let x = e1 in e2 : C [S]
(11)

Γ,X , x : boxX (C) ` e : D [S] Γ,X ` D ≡ C [X]

Γ ` saferec(X . x : C. e) : C [S]
(12)

Γ ` e : D [S] Γ ` D ≡ C [S]

Γ ` e : C [S]
(13)

Type equivalence: Γ ` C1 ≡ C2 [S]

Γ ` unit ≡ unit [S]
(14)

Γ ` D1 ≡ D2 [S] Γ ` C1 ≡ C2 [S]

Γ ` D1 × C1 ≡ D2 × C2 [S]
(15)

S ∪ S1 = T = S ∪ S2 Γ ` D1 ≡ D2 [T] Γ ` C1 ≡ C2 [T]

Γ ` D1
S1−→ C1 ≡ D2

S2−→ C2 [S]
(16)

Γ,X ` C1 ≡ C2 [S]

Γ ` ∀X .C1 ≡ ∀X .C2 [S]
(17)

S ∪ S1 = T = S ∪ S2 Γ ` C1 ≡ C2 [T]

Γ ` boxS1
(C1) ≡ boxS2

(C2) [S]
(18)

Figure 7.3: Static Semantics for Safe Recursion Language

Boxing a value requires no support (Rule 9). Unboxing a value v of type boxT (C) is only
permitted if the recursive variables associated with the names in T have been defined, i.e., if T is
contained in the support S (Rule 10). Let-terms have the support of their constituent expressions.

Rules 12 and 13 are the most interesting rules in the type system since they both make use
of the judgment of type equivalence modulo a support, also defined in Figure 7.3. The judgment
Γ ` C1 ≡ C2 [S] means that C1 and C2 are equivalent types modulo the names in support S, i.e.,
that C1 are C2 are identical types if we ignore all occurrences of the names in S. For example,

the types D
∅

−→ C and D
X
−→ C are equivalent modulo any support containing X . In addition,

when checking equivalence of arrow types D1
S1−→ C1 and D2

S2−→ C2 modulo S, we compare the
argument types and result types at the extended modulus S ∪S1 = S ∪S2 instead of S. This makes

7.2. A TYPE SYSTEM FOR SAFE RECURSION 145

sense because a function of one of these types may only be applied with S ∪S1 in the support. The
rule for box can be justified similarly.

This notion of equivalence modulo a support is critical to the typing of recursive terms (Rule 12).
Recall the factorial example from Section 7.1.2, adapted to the present type system:

saferec (X . f : int
∅

−→ int.

fn x => ... x * unbox(f)(x-1) ...)

The issue here is that the declared type of f does not match the type of the body, int
X
−→ int.

Once f is backpatched, however, the two types do match modulo X .
Correspondingly, the typing rule for recursive terms saferec(X .x : C. e) works as follows. First,

the context Γ is extended with the name X , as well as the recursive variable x of type boxX (C).
This location type binds the name and the variable together because it says that X must be in
the support of any expression that attempts to dereference (unbox) x. The rule then checks that
e has some type D in this extended context, under a support S that does not include X (since x
is undefined while evaluating e). Finally, it checks that D and C are equivalent modulo X . It is
easiest to understand this last step as a generalization of our earlier idea of ignoring discrepancies
between partial and total arrows when comparing D and C. The difference here is that we ignore
discrepancies with respect to a particular name X instead of all names, so that the rule behaves
properly in the presence of multiple names (nested recursion).

In contrast, Rule 13 appears rather straightforward, allowing a term with type D and support
S to be assigned a type that is equivalent to D modulo the names in S. In fact, this rule solves
the higher-order function problem described in Section 7.1.2! Recall that we wanted to apply an
existing higher-order ML function like map to a partial function, i.e., one whose arrow type bears
non-empty support:

saferec (X . x : SIG.

let

val f : D
X
−→ C = ...

val g : D list
X
−→ C list = fn xs => map f xs

...

)

The problem here is that the type of f does not match the argument type D
∅

−→ C of map.
Intuitively, though, this code ought to typecheck: if we are willing to add X to the support of g’s
arrow type, then x must be backpatched before g is ever applied, so X should be ignored when
typing the body of g.

Rule 13 encapsulates this reasoning. Since g is specified with type D list
X
−→ C list, we

can assume support X when typechecking its body (map f xs). Under support X , Rule 13 allows

us to assign f the type D
∅

−→ C, as it is equivalent to f’s type modulo X . Thus, g’s body is
well-typed under support X .

7.2.3 Separate Compilation, Non-strictness and Name Abstractions

In this section, I will give some motivation for the feature of name abstractions, λX .e. Recall that
the original reason for making the unboxing (or fetching) of a recursive variable an explicit operation
was to support separate compilation of recursive modules. In the separate compilation scenario
(Figure 5.11) described in Section 5.2.4, the modules Expr and Bind were separately compiled as
functors F Expr and F Bind, and linked together as follows:

146 CHAPTER 7. SAFE RECURSION

F Expr = λX . λx : boxX (EXPR BIND). ...

F Bind = λX . λx : boxX (EXPR BIND). ...

saferec (X . X : EXPR BIND.

struct

structure Expr = F Expr{X}(X)
structure Bind = F Bind{X}(X)

end)

Figure 7.4: Revised Separate Compilation Scenario

saferec (X . X : EXPR BIND.

struct

structure Expr = F Expr(X)

structure Bind = F Bind(X)

end

For the purposes of this chapter, since we are ignoring the issues involving type components in
modules, let us ignore the problems with using functors for separate compilation of recursive mod-
ules (for instance, the double vision problem). Instead, consider the following question: how can
we ensure that this recursive module linking Expr and Bind is safe?

In order for the linking module to be safe, it must be the case that F Expr and F Bind, when
applied, do not attempt to dereference their argument. That is to say, F Expr and F Bind must
be non-strict functors. What types can we give to F Expr and F Bind to reflect the property
that they are non-strict? Suppose that F Expr’s return type is EXPR. We would like to assign it

the type boxX (EXPR BIND)
∅

−→ EXPR, so that (1) its argument type matches the type of X, and
(2) the absence of X on the arrow indicates that F Expr can be applied under empty support.
However, this type makes no sense at the place where F Expr is defined, because the name X is
not in scope outside of the recursive module.

This is where name abstractions come in. To show that F Expr is non-strict, it is irrelevant
what particular support is required to unbox its argument, so we can use a name abstraction
to allow any name or support to be substituted for X. Figure 7.4 shows the resulting well-typed

separate compilation scenario, in which the type of F Expr is ∀X .boxX (EXPR BIND)
∅

−→ EXPR.
The recursive term construct is still not quite as flexible for separate compilation purposes as

one might like. In particular, suppose that we wanted to parameterize F Expr over just F Bind

instead of both F Expr and F Bind. There is no way in our system to extract a value of type
boxX (BIND) from X without unboxing it. It would be easy to remedy this problem, however, by
generalizing the recursive construct to an n-ary one, saferec(~X . ~x : ~C. ~e), where each of the n
recursive variables xi is boxed separately with type boxXi

(Ci).
Name abstractions can also be used to express non-strictness of general-purpose ML functors,

which in turn allows better static detection of safe recursion in certain cases. For instance, the
recursive module in Figure 7.5 provides a type C.t, which is defined in terms of sets of itself.
(This is a greatly simplified variant of the “bootstrapped heap” example from Section 5.1.) The
definition of module C refers recursively to the CSet module, which is defined by applying the
MakeSet functor to the C module. The only way we can be sure that the recursion is safe is
if we know that the application of the MakeSet functor will not attempt to apply the partial

7.2. A TYPE SYSTEM FOR SAFE RECURSION 147

structure rec C : ORDERED = struct

datatype t = ...CSet.set...

fun compare (x,y) = ...CSet.compare(a,b)...

end

and CSet = MakeSet(C)

Figure 7.5: Recursive Module Example With Non-strict Functor Application

function C.compare, i.e., that the MakeSet functor is non-strict. With name abstractions, we
can instrument the implementation of MakeSet in order to assign it a non-strict type4 such as

∀X .boxX (ORDERED)
∅

−→ SET.
Similarly, name abstractions can be used to give more precise types to core-level ML functions.

For instance, suppose we had access to the code for the map function. By wrapping the definition
of map in a name abstraction, we could assign the function the type

∀X. (D
X
−→ C)

∅
−→ (D list

X
−→ C list)

This type indicates that map will turn a value of any arrow type into a value of an arrow type
bearing the same support, but will not apply its argument in the process. Given this type for map,
we can write our recursive module example involving map the way we wanted to write it originally
in Section 7.1.3:

saferec (X . x : SIG.

let

val f : D
X
−→ C = ...

val g : D list
X
−→ C list = map {X} f

...

)

The more precise non-strict type for map allows us to avoid eta-expanding map f, but it also
requires having access to the implementation of map. Furthermore, it requires us to modify the
type of map, infecting the existing ML infrastructure with names. It is therefore important that, in
the absence of this solution, our type system is strong enough (thanks to Rule 13) to typecheck at
least the eta-expansion of map f, without requiring changes to existing ML code. Unfortunately,
there is no corresponding way to eta-expand the functor application MakeSet(C) in the example
from Figure 7.5. To statically ensure that the recursion in that example is safe, it appears that
one must have access to the implementation of the MakeSet functor in order to instrument it with
name abstractions and assign it a more precise non-strict interface.

This example also illustrates why it is useful to be able to instantiate a name abstraction with

a support instead of a single name. In particular, suppose that f’s type were D
S

−→ C for some
non-singleton support S. The definition of g would become map S f, which is only possible given
the ability to instantiate map with a support.

Finally, note that while my system does not contain any notion of subtyping, it is impor-
tant to be able to coerce a non-strict function into an ordinary (potentially strict) arrow type.
The coercion from ∀X .boxX (D) → C to D → C[∅/X] is easily encodable within the language as
λf.λx.f(∅)(box(x)).

4For simplicity, I am ignoring here that the result signature SET really depends on the type components of the
functor argument.

148 CHAPTER 7. SAFE RECURSION

7.2.4 Basic Declarative Properties

Here I give some basic declarative properties of the safe recursion language, for which the proofs
are by straightforward induction. Note that, in Part 3 of Weakening and Part 1 of Substitution,
the invariant T ⊆ S is maintained inductively because the supports of the premises in every typing
rule are supersets of the support of the conclusion.

Proposition 7.2.1 (Type Equivalence is an Equivalence Relation)
Type equivalence modulo S is an equivalence relation on well-formed types.

Proposition 7.2.2 (Weakening)
Suppose Γ is a prefix of Γ′, and S ⊆ S ′.

1. If Γ ` e : C [S], then Γ′ ` e : C [S ′].

2. If Γ ` C1 ≡ C2 [S], then Γ′ ` C1 ≡ C2 [S ′].

3. If Γ, x : C1,Γ
′ ` e : C [S] and Γ ` C1 ≡ C2 [T] and T ⊆ S, then Γ, x : C2,Γ

′ ` e : C [S].

Proposition 7.2.3 (Substitution)
1. If Γ, x : C,Γ′ ` e : D [S] and Γ ` v : C [T] and T ⊆ S, then Γ,Γ′ ` e[v/x] : D [S].

2. If Γ, x : C,Γ′ ` C1 ≡ C2 [S], then Γ,Γ′ ` C1 ≡ C2 [S].

3. If Γ,X ,Γ′ ` e : C [S] and T ⊆ dom(Γ), then Γ,Γ′[T /X] ` e[T /X] : C[T /X] [S[T /X]].

4. If Γ,X ,Γ′ ` C1 ≡ C2 [S] and T ⊆ dom(Γ), then Γ,Γ′[T /X] ` C1[T /X] ≡ C2[T /X] [S[T /X]].

7.2.5 Decidability of Typechecking

Figure 7.6 shows a straightforward typechecking algorithm for the safe recursion language. The
algorithm takes as input a context Γ, a term e and a support S, and synthesizes the unique type
of e under the given support. As with the typing judgments, I make implicit assumptions about
the well-formedness of the algorithmic judgments defined in Figure 7.6, e.g., that all free names to
the right of the turnstile are bound in the context.

The algorithm relies heavily on the fact that terms are explicitly-typed, and in particular that λ-
abstractions specify the support of their bodies. The problem of inferring types for implicitly-typed
terms is discussed in Section 7.6.1.

Decidability of the explicitly-typed system follows from the fact that the synthesis algorithm is
syntax-directed, sound and complete. To prove soundness of the synthesis algorithm, we need the
following technical lemma. Alternatively, we could modify the second premise of the typing rule
for recursive terms (Rule 12) to be Γ ` D ≡ C [S ∪X], in order to match the second premise of the
corresponding synthesis rule. The lemma just shows that that modified version of the typing rule
is already admissible.

Lemma 7.2.4 (Division of Support)
If S = S1 ∪ S2 and Γ ` C1 ≡ C2 [S], then there exists a type C such that Γ ` C ≡ C1 [S1] and
Γ ` C ≡ C2 [S2].

7.2. A TYPE SYSTEM FOR SAFE RECURSION 149

Type checking: Γ ` e ⇐ C [S]

Γ ` e ⇒ D [S] Γ ` D ≡ C [S]

Γ ` e ⇐ C [S]

Type synthesis: Γ ` e ⇒ C [S]

x : C ∈ Γ
Γ ` x ⇒ C [S] Γ ` 〈〉 ⇒ unit [S]

Γ ` v1 ⇒ C1 [S] Γ ` v2 ⇒ C2 [S]

Γ ` 〈v1, v2〉 ⇒ C1 × C2 [S]

Γ ` v ⇒ C1 × C2 [S]

Γ ` πi(v) ⇒ Ci [S]

Γ, x : D ` e ⇒ C [S ∪ T]

Γ ` λT x : D. e ⇒ D
T
−→ C [S]

Γ ` v1 ⇒ D
T

−→ C [S] Γ ` v2 ⇐ D [S] T ⊆ S

Γ ` v1(v2) ⇒ C [S]

Γ,X ` e ⇒ C [S]

Γ ` λX .e ⇒ ∀X .C [S]

Γ ` v ⇒ ∀X .C [S]

Γ ` v(T) ⇒ C[T /X] [S]

Γ ` v ⇒ C [S ∪ T]

Γ ` boxT (v) ⇒ boxT (C) [S]

Γ ` v ⇒ boxT (C) [S] T ⊆ S

Γ ` unbox(v) ⇒ C [S]

Γ ` e1 ⇒ D [S] Γ, x : D ` e2 ⇒ C [S]

Γ ` let x = e1 in e2 ⇒ C [S]

Γ,X , x : boxX (C) ` e ⇒ D [S] Γ,X ` D ≡ C [S ∪ X]

Γ ` saferec(X . x : C. e) ⇒ C [S]

Figure 7.6: Typechecking Algorithm for Safe Recursion Language

Proof: By induction on derivations. The only interesting cases are when C1 and C2 carry a
support, e.g., when Ci is of the form boxTi

(Di). In this case, define T := (T1 − S1) ∪ (T2 − S2).
First we need to show that T ∪ Si = Ti ∪ Si. We will show this for i = 1, the proof for i = 2 is

completely symmetric. We are given that T2 ∪ (S1 ∪S2) = T1 ∪ (S1 ∪ S2). Thus, T2 ⊆ T1 ∪ S1 ∪S2.
Subtracting S2 from both sides, T2 − S2 ⊆ (T1 ∪ S1 ∪ S2) − S2 ⊆ T1 ∪ S1. Now, expanding out the
definition of T , we have that T ∪ S1 = (T1 ∪ S1) ∪ (T2 − S2). Then since T2 − S2 ⊆ T1 ∪ S1, the
right-hand side is equal to T1 ∪ S1.

We are given also that Γ ` D1 ≡ D2 [S ∪ T1]. Expanding out T it is clear that S ∪ T =
S ∪ T1 ∪ T2 = S ∪ T1 = S ∪ T2. Now define S ′

i := Si ∪ T . Clearly, S ′
1 ∪ S ′

2 = S ∪ T . By induction,
there exists D such that Γ ` D ≡ Di [S ′

i]. Define C := boxT (D). By Rule 18, Γ ` C ≡ boxTi
(Di) [Si].

�

Theorem 7.2.5 (Soundness of Algorithm)
If Γ ` e ⇒ C [S] or Γ ` e ⇐ C [S], then Γ ` e : C [S].

Proof: By straightforward induction on the algorithm. The only interesting case is the synthesis
rule for recursive terms. For that case, we know by induction that Γ,X , x : boxX (C) ` e : D [S]. By
Lemma 7.2.4, since Γ,X ` D ≡ C [S ∪X], we know that there exists D′ such that Γ,X ` D ≡ D′ [S]
and Γ,X ` D′ ≡ C [X]. By Rule 13, Γ,X , x : boxX (C) ` e : D′ [S], so the desired result follows by
Rule 12. �

150 CHAPTER 7. SAFE RECURSION

Machine States Ω ::= (ω; C; e)
Continuations C ::= • | C ◦ F
Continuation Frames F ::= let x = • in e | saferec(X . x : C. •)

Small-step semantics: Ω 7→ Ω′

(ω; C;πi〈v1, v2〉) 7→ (ω; C; vi)
(19)

(ω; C; (λT x : C. e)(v)) 7→ (ω; C; e[v/x])
(20)

(ω; C; (λX .e)(T)) 7→ (ω; C; e[T /X])
(21)

x 6∈ dom(ω)

(ω; C; boxT (v)) 7→ (ω[x 7→ v]; C;x)
(22)

x ∈ dom(ω) ω(x) = v

(ω; C; unbox(x)) 7→ (ω; C; v)
(23)

(ω; C; let x = e′ in e) 7→ (ω; C ◦ let x = • in e; e′)
(24)

(ω; C ◦ let x = • in e; v) 7→ (ω; C; e[v/x])
(25)

X , x 6∈ dom(ω)

(ω; C; saferec(X . x : C. e)) 7→ (ω[X 7→x][x 7→ ?]; C ◦ saferec(X . x : C. •); e)
(26)

x ∈ dom(ω)

(ω; C ◦ saferec(X . x : C. •); v) 7→ (ω[x := v]; C; v)
(27)

Figure 7.7: Dynamic Semantics for Safe Recursion Language

Theorem 7.2.6 (Completeness of Algorithm)
If Γ ` e : C [S], then Γ ` e ⇐ C [S].

Proof: By straightforward induction on derivations. Again, the only interesting case is the typing
rule for recursive terms. By induction, Γ,X , x : boxX (C) ` e ⇒ D′ [S] and Γ ` D′ ≡ D [S]. Since
the second premise of the typing rule tells us that Γ ` D ≡ C [X], we have by Weakening that
Γ ` D′ ≡ C [S ∪ X]. Thus, by definition of synthesis, Γ ` saferec(X . x : C. e) ⇒ C [S]. (It is
critical here that the second premise of the synthesis rule for recursive terms use the modulus S∪X
instead of just X .) �

7.2.6 Dynamic Semantics and Type Safety

I formalize the dynamic semantics for safe recursive terms in Figure 7.7, using an abstract machine
semantics very similar to the one developed in Section 6.2. The main differences are as follows.

First, there is no need for the machine state Error in the present semantics. Since the type
system ensures that a recursive variable will never be unboxed before it has been backpatched, the
Error state will never arise. Formally speaking, there is only one rule in the dynamic semantics
for unbox(v) (Rule 23), and that rule only applies if the contents of location v are defined. If the
contents of v are not defined, the machine will get stuck, and the type safety theorem guarantees
that this cannot happen.

Second, in order to connect names X to their associated locations, machine stores ω now contain
mappings for both locations (represented as variables) and names. As in Section 6.2, variables are

7.2. A TYPE SYSTEM FOR SAFE RECURSION 151

mapped to either values (v) or junk (?). Names, in turn, are mapped to variables. I will write
ω[X 7→x] to indicate the extension of ω with the mapping of X to x, and ω(X) to indicate the
variable to which X is mapped in ω. Thus, in Rule 26 for evaluating recursive terms, x is added to
the store with a binding to junk, and X is added to the store with a binding to x.5

Otherwise, the dynamic semantics of Figure 7.7 should be self-explanatory.

Before proving type safety, I would like to stress an important point about the practical im-
plementation of this semantics. Formally, my dynamic semantics treats values of type boxS(C) as
memory locations that will eventually contain values of type C. It is quite likely, though, that
values of type C (i.e., the kinds of values one wants to define recursively) have a naturally boxed
representation. For instance, in the case of recursive modules, C will typically be a record type,
and a module value of type C will be represented as a pointer to a record stored on the heap.

Only one level of pointer indirection is needed to implement backpatching. Thus, a direct
implementation of my semantics that represents all values of type boxS(C) as pointers to values of
type C will introduce an unnecessary level of indirection when values of type C are already pointers.
My semantics, however, does not require one to employ such a näıve representation. Indeed, for
types C with naturally boxed representations, a realistic implementation should represent values
of type boxS(C) the same as values of type C and should compile the unbox’ing of such values as
a no-op. (See Hirschowitz et al. [36] for an example of such a compilation strategy.) At the level
of the type system, though, there is still an important semantic distinction to be made between C
and boxS(C) that transcends such implementation details.

To prove type safety, I will again follow the approach of Section 6.2 quite closely.

Definition 7.2.7 (Run-Time Contexts)
A context Γ is run-time if the only entries in Γ have the form X or x : boxT (C).

Definition 7.2.8 (Machine Store Well-formedness)
A machine store ω is well-formed, denoted Γ ` ω [S], if:

1. Γ is run-time and dom(ω) = dom(Γ)

2. ∀X ∈ Γ. ω(X) = x if and only if Γ = Γ′,X , x : boxX (C),Γ′′ for some C

3. ∀x : boxT (C) ∈ Γ. either (ω(x) = v, where Γ ` v : C [S ∪ T])
or (ω(x) = ?, and ∃X 6∈ S. ω(X) = x)

Like the machine store well-formedness judgment defined in Section 6.2, the judgment defined
in Definition 7.2.8 uses a typing context Γ to describe the store ω. As stores now bind names as
well as variables, the second condition of the judgment asserts that the location x to which a name
X is mapped in the store is the same as the variable to which it is associated (by juxtaposition) in
the typing context. Incidentally, this condition also guarantees that the store maps every name to
a different recursive variable.

The store well-formedness judgment differs from the earlier one in that it also includes a support
S. The idea is that a name X will only appear in the support S if the recursive variable associated
with that name has been backpatched. Correspondingly, the third condition of the judgment asserts
that for every location x in the store, the only way that x may be bound to junk is if its associated
name is not in the support S.

5In reality, names can be erased during code generation, so the store does not actually have to create bindings for
them, but it is useful for semantic purposes to view the store as doing so.

152 CHAPTER 7. SAFE RECURSION

Well-formed continuations: Γ ` C : C cont [S]

Γ ` • : C cont [S]
(28)

Γ ` F : C ⇒ D [S] Γ ` C : D cont [S]

Γ ` C ◦ F : C cont [S]
(29)

Γ ` C : D cont [S] Γ ` D ≡ C [S]

Γ ` C : C cont [S]
(30)

Well-formed continuation frames: Γ ` F : C1 ⇒ C2 [S]

Γ, x:C1 ` e : C2 [S]

Γ ` let x = • in e : C1 ⇒ C2 [S]
(31)

Γ = Γ′,X , x : boxX (C),Γ′′ Γ ` D ≡ C [X]

Γ ` saferec(X . x : C. •) : D ⇒ C [S]
(32)

Figure 7.8: Well-Formed Continuations for Safe Recursion Language

Figure 7.8 defines well-formedness of continuations and continuation frames. The only rule that
is slightly unusual is Rule 32 for recursive frames saferec(X . x : C. •). This frame is not a binder
for X or x; rather, Rule 32 requires that X , x : boxX (C) appear in the context. This is a safe
assumption since saferec(X .x : C. •) only gets pushed on the stack after bindings for X and x have
been added to the store.

We can now define a notion of well-formedness for a machine state, and prove type safety. I
only show the proof for the interesting cases, i.e., recursive terms and unboxing. For full proofs, I
refer the reader to Dreyer et al. [13].

Definition 7.2.9 (Machine State Well-formedness)
A machine state Ω is well-formed, denoted Γ ` Ω [S], if Ω = (ω; C; e), where:

1. Γ ` ω [S]

2. ∃C. Γ ` C : C cont [S] and Γ ` e : C [S]

Proposition 7.2.10 (Weakening for Continuations)
Suppose Γ is a prefix of Γ′, and S ⊆ S ′.

1. If Γ ` C : C cont [S], then Γ′ ` C : C cont [S ′].

2. If Γ ` F : C1 ⇒ C2 [S], then Γ′ ` F : C1 ⇒ C2 [S ′].

Theorem 7.2.11 (Preservation)
If Γ ` Ω [S] and Ω 7→ Ω′, then ∃Γ′,S ′. Γ′ ` Ω′ [S ′].

Proof: By cases on the second premise.

• Case: Rule 23.

1. By assumption, Γ ` ω [S], Γ ` C : C cont [S], Γ ` unbox(x) : C [S], and ω(x) = v.

2. By inversion on synthesis, x : boxT (D) ∈ Γ, where T ⊆ S, and Γ ` C ≡ D [S].

3. By condition 3 of Γ ` ω [S], since ω(x) = v, we have Γ ` v : C [S].

7.2. A TYPE SYSTEM FOR SAFE RECURSION 153

• Case: Rule 26.

1. By assumption, Γ ` ω [S], Γ ` C : C cont [S], and Γ ` saferec(X . x : C. e) : C [S].

2. Let Γ′ = Γ,X , x : boxX (C).

3. By inversion on synthesis, there exists D such that Γ′ ` e : D [S] and Γ′ ` D ≡ C [X].

4. By Weakening, Γ′ ` C : C cont [S].

5. By Rule 32, Γ′ ` C ◦ saferec(X . x : C. •) : D cont [S].

6. By Weakening and since X 6∈ S, we have Γ′ ` ω[X 7→x][x 7→ ?] [S].

• Case: Rule 27.

1. By assumption, Γ ` ω [S], Γ ` C : C cont [S], Γ ` v : D [S], Γ ` D ≡ C [X] and
Γ = Γ′,X , x : boxX (C),Γ′′.

2. By Weakening and Rule 13, Γ ` C : C cont [S ∪ X] and Γ ` v : C [S ∪ X].

3. Thus, also by Weakening, Γ ` ω[x := v] [S ∪ X].

�

Lemma 7.2.12 (Canonical Forms)
Suppose that Γ is run-time and Γ ` v : C [S].

1. If C = unit, then v is of the form 〈〉.

2. If C = C1 × C2, then v is of the form 〈v1, v2〉.

3. If C = C1
T

−→ C2, then v is of the form λS′

x : D. e.

4. If C = ∀X .D, then v is of the form λX .e.

5. Otherwise, v is a variable x.

Definition 7.2.13 (Terminal States)
A machine state Ω is terminal if it has the form (ω; •; v).

Definition 7.2.14 (Stuck States)
A machine state Ω is stuck if it is non-terminal and there is no state Ω′ such that Ω 7→ Ω′.

Theorem 7.2.15 (Progress)
If Γ ` Ω [S], then Ω is not stuck.

Proof: Assume Ω = (ω; C; e). By assumption, Γ ` ω [S]. The proof is by cases on C and e.

• Case: e = unbox(v).

1. By assumption, Γ ` C : C cont [S] and Γ ` unbox(v) : C [S].

2. By inversion on synthesis and Canonical Forms, v has the form x,
where x : boxT (D) ∈ Γ and T ⊆ S and Γ ` D ≡ C [S].

3. By condition 1 of Γ ` ω [S], x ∈ dom(ω).

4. By condition 2 of Γ ` ω [S], if there exists X such that ω(X) = x, then X ∈ S.

154 CHAPTER 7. SAFE RECURSION

Types C ::= · · · | ref(C) | cont(C)
Terms e ::= · · · | ref(v) | get(v) | set(v1, v2) | callccC(x. e) | throwC(v1, v2)

Γ ` C1 ≡ C2 [S]

Γ ` ref(C1) ≡ ref(C2) [S]
(33)

Γ ` v : C [S]

Γ ` ref(v) : ref(C) [S]
(34)

Γ ` v : ref(C) [S]

Γ ` get(v) : C [S]
(35)

Γ ` v1 : ref(C) [S] Γ ` v2 : C [S]

Γ ` set(v1, v2) : 1 [S]
(36)

Γ ` C1 ≡ C2 [S]

Γ ` cont(C1) ≡ cont(C2) [S]
(37)

Γ, x : cont(C) ` e : C [S]

Γ ` callccC(x. e) : C [S]
(38)

Γ ` v1 : cont(D) [S] Γ ` v2 : D [S]

Γ ` throwC(v1, v2) : C [S]
(39)

Figure 7.9: Static Semantics Extensions for References and Continuations

5. Then, by condition 3 of Γ ` ω [S], it cannot be the case that ω(x) = ?.

6. Thus, there exists v′ such that ω(x) = v′, and Ω makes a step by Rule 23.

• Case: e = saferec(X . x : C. e′). Ω makes a step by Rule 26.

• Case: e = v, and C = C ′ ◦ saferec(X . x : C. •).

1. By assumption, since C is well-formed, we have Γ = Γ′,X , x : boxX (C),Γ′′.

2. By condition 1 of Γ ` ω [S], x ∈ dom(ω), so Ω makes a step by Rule 27.

�

Corollary 7.2.16 (Type Safety)
If ∅ ` e : C [∅], then the evaluation of (ε; •; e) will not get stuck.

7.3 Adding Computational Effects

Since I have modeled the semantics of backpatching in terms of a mutable store, it is easy to
incorporate some actual computational effects into the language. Figure 7.9 extends the syntax
and static semantics of the safe recursion language with mutable state and continuations. The
primitives for the former are ref, get and set, and the primitives for the latter are callcc and throw,
all with the standard typing rules. Ref cells and continuations are allocated in the store, so the
values of types ref(C) and cont(C) are variables representing locations in the store.

If we think of a continuation as a kind of function with no return type, it may seem surprising
that the typing rules for continuations are oblivious to names. Moreover, while the arrow type

C1
S

−→ C2 specifies the support S required to call a function of that type, the continuation type
cont(C) does not specify a support, and no support is required in order to throw to a continuation.
(One can view cont(C) as always specifying empty support.)

To see why a support is unnecessary, consider what the machine state looks like when we are
about to evaluate a callcc: it has the form Ω = (ω; C; callccC(x. e)). Assuming that Ω is well-formed
(Γ ` Ω [S]), we know that Γ ` C : C cont [S] and Γ ` callccC(x. e) : C [S]. The current continuation

7.4. ENCODING UNRESTRICTED RECURSION 155

x 6∈ dom(ω)

(ω; C; ref(v)) 7→ (ω[x 7→ v]; C;x)
(40)

x ∈ dom(ω) ω(x) = v

(ω; C; get(x)) 7→ (ω; C; v)
(41)

x ∈ dom(ω)

(ω; C; set(x, v)) 7→ (ω[x := v]; C; 〈〉)
(42)

x 6∈ dom(ω)

(ω; C; callccC(x. e)) 7→ (ω[x 7→ C]; C; e)
(43)

x ∈ dom(ω) ω(x) = Cx

(ω; C; throwC(x, v)) 7→ (ω; Cx; v)
(44)

Figure 7.10: Dynamic Semantics Extensions for References and Continuations

is C and that is what callcc will bind to x before evaluating e. Then what is the “type” of C?
Although explicit continuations are not part of our language, we can nonetheless think of C as a
function with argument type C that, when applied, may dereference any of the recursive variables

associated with the names in S. Thus, the most appropriate arrow-like type for C would be C
S

−→ D

for some return type D. Under support S, though, this arrow type is equivalent to C
∅

−→ D, or in
other words cont(C).

Figure 7.10 gives the extensions to the dynamic semantics for mutable state and continuations.
We extend stores ω to contain mappings from locations x to continuations C. The rules for mutable
state are completely straightforward. The rules for continuations are also fairly straightforward,
since the machine state already makes the current continuation explicit. Proving type safety for
these extensions requires only a simple, orthogonal extension of the proof framework from Sec-
tion 7.2.6. The definition of run-time contexts is extended to include variables of type ref(C) and
cont(C), and the definition of store well-formedness is extended as follows:

Definition 7.3.1 (Run-Time Contexts)
A context Γ is run-time if the only bindings in Γ have the form X , x : boxT (C), x : ref(C) or
x : cont(C).

Definition 7.3.2 (Machine Store Well-formedness)
A store ω is well-formed, denoted Γ ` ω [S], if Γ ` ω [S] according to Definition 7.2.8 and also:

1. ∀x : ref(C) ∈ Γ. ∃v. ω(x) = v and Γ ` v : C [S]

2. ∀x : cont(C) ∈ Γ. ∃C. ω(x) = C and Γ ` C : C cont [S]

7.4 Encoding Unrestricted Recursion

Despite all the efforts of the type system, there will always be recursive terms saferec(X . x : C. e)
for which we cannot statically determine that e can be evaluated without dereferencing x. For such
cases it is important for the programmer to have the fallback approach of using the unrestricted
recursive term construct rec(x : C. e) defined in Chapter 6, with the understanding that dereferences
of x will be saddled with a corresponding run-time cost in order to guarantee type safety.

The point of this section is to illustrate that the unrestricted rec(x : C. e) may be encoded in
terms of saferec(X . x : C. e) if we extend the language with primitives for memoized computations.
The syntax and static semantics of this extension are given in Figure 7.11. First, we introduce a

156 CHAPTER 7. SAFE RECURSION

Types C ::= · · · | compS(C)
Terms e ::= · · · | delayS(e) | force(v)

S ∪ S1 = T = S ∪ S2 Γ ` C1 ≡ C2 [T]

Γ ` compS1
(C1) ≡ compS2

(C2) [S]
(45)

Γ ` e : C [S ∪ T]

Γ ` delay(e) : compT (C) [S]
(46)

Γ ` v : compT (C) [S] T ⊆ S

Γ ` force(v) : C [S]
(47)

Figure 7.11: Static Semantics Extensions for Memoized Computations

type compS(C) of locations storing memoized computations. A value of this type is essentially a

thunk of type unit
S

−→ C whose result is memoized after the first application.

The primitive delayS(e) creates a memoized location x in the store bound to the suspended
term e. When x is forced (by force(x)), the expression e stored at x is evaluated to a value v, and
then x is backpatched with v. During the evaluation of e, the location x is bound to junk; if x is
forced again during this stage, the machine raises an error. Thus, every force of x must check to
see whether it is bound to an expression or junk. Despite the difference in operational behavior,
the typing rules for memoized computations appear just as if compS(C), delayS(e) and force(v)

were shorthand for unit
S

−→ C, λSx : unit. e and v 〈〉, respectively. I use comp(C) and delay(e) as
shorthand for comp∅(C) and delay∅(e), respectively.

We can now encode an unrestricted form of recursion. This construct has a typing rule similar
to the one given in Section 6.2:

Γ, x : comp(C) ` e : C [S]

Γ ` rec(x : C. e) : C [S]

The recursive variable x is dereferenced by writing force(x) (similar to fetch(x)). The encoding is
as follows:

rec(y : C. e)
def

= force(saferec(X . x : comp∅(C). delayX (let y = unbox(x) in e)))

It is easiest to understand this encoding by stepping through it. First, a new recursive location
x is created, bound to junk. Then, the delay creates a new memoized location z bound to the
expression let y = unbox(x) in e. Next, the saferec backpatches x with the value z and returns
z. Finally, z is forced, resulting in the evaluation of let y = unbox(x) in e, which steps to e[z/y].
Assuming this evaluates to a value v, the location z will then be backpatched with v. If z is
dereferenced during the evaluation of e[z/y] (by an invocation of force(y) in the original e), then a
run-time error will be reported.

Essentially, one can view the saferec in this encoding as tying the recursive knot on the mem-
oized computation, while the memoization resulting from the force is what actually performs the
backpatching. Observe that if we were to give comp(C) a non-memoizing semantics, i.e., to consider
it synonymous with unit → C, the above encoding would have precisely the fixed-point semantics

7.4. ENCODING UNRESTRICTED RECURSION 157

Machine States Ω ::= · · · | Error

Continuation Frames F ::= · · · | fill x with •

x 6∈ dom(ω)

(ω; C; delayS(e)) 7→ (ω[x 7→ e]; C;x)
(48)

x ∈ dom(ω) ω(x) = e

(ω; C; force(x)) 7→ (ω[x := ?]; C ◦ fill x with •; e)
(49)

x ∈ dom(ω)

(ω; C ◦ fill x with •; v) 7→ (ω[x := v]; C; v)
(50)

x ∈ dom(ω) ω(x) = ?

(ω; C ◦ force(•);x) 7→ Error
(51)

Γ ` x : comp(C) [S]

Γ ` fill x with • : C ⇒ C [S]
(52)

Figure 7.12: Dynamic Semantics Extensions for Memoized Computations

of recursion. Memoization ensures that the effects in e only happen once, at the first force of the
recursive computation.

The dynamic semantics for this extension is given in Figure 7.12. To evaluate delayS(e), we
create a new memoized location in the store and bind e to it (Rule 48). To evaluate force(x),
we proceed to evaluate the term e to which x is bound, pushing on the continuation stack a
memoization frame (fill x with •) to remind us that the result of evaluating e should be memoized
at x (Rules 49 and 50). If x is instead bound to junk, then we must be in the middle of evaluating
another force(x), so we step to an Error state which halts the program (Rule 51).

Extending the type safety proof to handle memoized computations is straightforward. Con-
tinuation frame well-formedness is extended with Rule 52 for memoization frames. We must also
update the definition of run-time contexts to include memoized location bindings, well-formed and
terminal states to include Error, and store well-formedness to account for memoized locations:

Definition 7.4.1 (Run-Time Contexts)
A context Γ is run-time if the only bindings in Γ take the form X , x : boxT (C), x : ref(C),
x : cont(C) or x : compT (C).

Definition 7.4.2 (Machine State Well-formedness)
A machine state Ω is well-formed if either Ω = Error or Ω is well-formed according to Definition 7.2.9.

Definition 7.4.3 (Terminal States)
A machine state Ω is terminal if either Ω = Error or Ω is terminal according to Definition 7.2.13.

Definition 7.4.4 (Store Well-formedness)
A store ω is well-formed, denoted Γ ` ω [S], if Γ ` ω [S] according to Definition 7.3.2 and also:

• ∀x : compT (C) ∈ Γ. either ω(x) = ?, or ω(x) = e and Γ ` e : C [S ∪ T]

158 CHAPTER 7. SAFE RECURSION

7.5 Related Work

Safe Recursion Boudol [5] proposes a type system for safe recursion that, like mine, employs a
backpatching semantics. Boudol’s system tracks the degrees to which expressions depend on their
free variables, where the degree to which e depends on x is 1 if x appears in a guarded position
in e (i.e., under an unapplied λ-abstraction), and 0 otherwise. What I call the “support” of an
expression corresponds in Boudol’s system to the set of variables on which the expression depends
with degree 0. Thus, while there is no distinction between recursive and ordinary variables in
Boudol’s system, his equivalent of saferec(X . x : C. e) ensures that the evaluation of e will not
dereference x by requiring that e depend on x with degree 1.

In my system an arrow type indicates the recursive variables that may be dereferenced when a
function of that type is applied. An arrow type in Boudol’s system indicates the degree to which the

body of a function depends on its argument. Thus, D
0

−→ C and D
1

−→ C classify functions that
are strict and non-strict in their arguments, respectively. As I discussed in Section 7.2.3, the ability
to identify non-strict functions is especially important for purposes of separate compilation. For
example, in order to typecheck the separate compilation scenario from Figure 5.11, it is necessary
to know that the separately-compiled functors F Expr and F Bind are non-strict.

In contrast to my system, which requires the code from Figure 5.11 to be rewritten as shown
in Figure 7.4, Boudol’s system can typecheck the code in Figure 5.11 essentially as is. The reason
is that function applications of the form f(x) (where the argument is a variable) are treated as a
special case in his semantics: while the expression “x” depends on the variable x with degree 0,
the expression “f(x)” merely passes x to f without dereferencing it. This implies that ordinary
λ-bound variables may be instantiated at run time with recursive variables. Thus, viewed in terms
of my semantics, Boudol’s system treats all variables as implicitly having box type.

The simplicity of Boudol’s system is achieved at the expense of being rather conservative. In
particular, a function application f(e) is considered to depend on all the free variables of f with
degree 0. Suppose that f is a curried function λy.λz.e′, where e′ dereferences a recursive variable x.
In Boudol’s system, even a single application of f will be considered to depend on x with degree 0
and thus cannot appear unguarded in the recursive term defining x.

To address the limitations of Boudol’s system, Hirschowitz and Leroy [35] propose a general-
ization of it, which they use as the target language for compiling a call-by-value mixin module
calculus. Specifically, they extend Boudol’s notion of degrees to be arbitrary integers: the degree
to which e depends on x becomes, roughly, the number of unapplied λ-abstractions under which x
appears in e. Thus, continuing the above example, the function λy.λz.e′ would depend on x with
degree 2, so instantiating the first argument would only decrement that degree to 1, not 0.

Nevertheless, Hirschowitz and Leroy’s system still suffers from a paucity of types. Consider
the same curried function example, except where we let-bind λy.λz.e′ first instead of applying it
directly: let f = λy.λz.e′ in f(e). The most precise degree-based type one can give to f when

typing the body of the let is C1
1

−→ C2
0

−→ C3. This type tells us nothing about the degree to
which f depends on the recursive variable x dereferenced by e′. Thus, Hirschowitz and Leroy’s
system must conservatively assume that f(e) may dereference x. In contrast, my type system can

assign f a more expressive type such as C1
∅

−→ C2
X
−→ C3, which would allow its first argument

(but not its second) to be instantiated under the empty support.

I believe the let expression above is representative of code that one might want to write in the
body of a recursive module, which suggests that my name-based approach is a more appropriate
foundation for recursive modules. However, the weaknesses of the degree-based approaches are
not necessarily problematic in the particular applications for which they were developed. For

7.5. RELATED WORK 159

the purpose of compiling mixin modules, the primary feature required of Hirschowitz and Leroy’s
target language is the ability to link mutually recursive λ-abstractions that have been compiled
separately. As I have illustrated in Section 7.2.3, my language supports this feature as well, via
name abstractions.

Weak Polymorphism and Effect Systems There seems to be an analogy between the ap-
proaches discussed here for tracking safe recursion and the work on combining polymorphism and
effects in the early days of ML. Boudol’s 0-1 distinction is reminiscent of Tofte’s distinction between
imperative and applicative type variables [78]. Hirschowitz and Leroy’s generalization of Boudol is
similar to the idea of weak polymorphism [23] (implemented by MacQueen in earlier versions of the
SML/NJ compiler), wherein a type variable α carries a numeric “strength” representing, roughly,
the number of function applications required before a ref cell is created storing a value of type α.
My system has ties to effect systems in the style of Talpin and Jouvelot [76], in which an arrow
type indicates the set of effects that may occur when a function of that type is applied. For safe
recursion, the effect in question is the dereferencing of an undefined recursive variable.

A common criticism leveled at both effect systems and weak polymorphism is that functional
and imperative implementations of a polymorphic function have different types, and it is impossible
to know which type to expect when designing a specification for a module separate from its imple-
mentation [82]. To a large extent, this criticism does not apply to my type system: names infect
types within recursive modules, but the external interface of a module will be the same regardless
of whether or not the module is implemented recursively. To ensure that certain recursive modules
(like the one in Figure 7.5) are safe, however, one needs to observe that a general-purpose functor
(like the MakeSet functor) is non-strict, and it is debatable whether the (non-)strictness of such a
functor should be reflected in its specification. Choosing not to expose strictness information in
the specification of a functor imposes fundamental limitations on how the functor can be used, not
just in my system, but in any type system for safe recursion.

Strictness Analysis One can think of static detection of safe recursion as a kind of non-strictness
analysis, in contrast to the well-known problem of strictness analysis [1]. Both problems are
concerned with identifying whether an expression, such as the body of a function, will access
the value of a particular variable when evaluated. Strictness analysis, however, is used as an
optimization technique for lazy languages, in which any function may be conservatively classified
as non-strict. In call-by-value languages, on the other hand, functions are strict by default—
observing that a function is non-strict requires us to explicitly treat its argument as boxed and to
show that applying the function will not unbox it. It is thus unclear how techniques from strictness
analysis might be applied to the safe recursion problem.

Names The idea of using names in my type system is inspired by Nanevski’s work on using a
modal logic with names to model a “metaprogramming” language for symbolic computation [57].
(His use of names was in turn inspired by Pitts and Gabbay’s FreshML [64].) Nanevski uses names
to represent undefined symbols appearing inside expressions of a modal � type. These expressions
can be viewed as pieces of uncompiled syntax whose free names must be defined before they can
be compiled.

My use of names is conceptually closer to Nanevski’s more recent work on using names to model
control effects for which there is a notion of handling [58]. One can think of the dereferencing of a
recursive variable as an effect that is in some sense “handled” by the backpatching of the variable.

160 CHAPTER 7. SAFE RECURSION

Formally, though, Nanevski’s system is quite different, not least in that it does not employ any
judgment of type equivalence modulo a support, which plays a critical role in my system.

Monadic Recursion There has been considerable work recently on adding effectful recursion to
Haskell. Since effects in Haskell are isolated in monadic computations, adding a form of recursion
over effectful expressions requires an understanding of how recursion interacts with monads. Erkök
and Launchbury [17] propose a monadic fixed-point construct mfix for defining recursive computa-
tions in monads that satisfy a certain set of axioms. They later show how to use mfix to define a
recursive form of Haskell’s do construct [18]. Friedman and Sabry [21] argue that the backpatch-
ing semantics of recursion is fundamentally stateful, and thus defining a recursive computation in
a given monad requires the monad to be combined with a state monad. This approach allows
recursion in monads that do not obey the Erkök-Launchbury axioms, such as the continuation
monad.

The primary goal of my type system is to statically ensure safe recursion in an impure call-by-
value setting, and thus the work on recursive monadic computations for Haskell (which avoids any
static analysis) is largely orthogonal to mine. Nevertheless, the dynamic semantics of my language
borrows from the work of Moggi and Sabry [54], who give an operational semantics for the monadic
metalanguage extended with the Friedman-Sabry mfix.

7.6 Directions for Future Work

In this chapter, I have studied the safe recursion problem at the level of the simply-typed λ-calculus.
In order to incorporate the ideas from this calculus into a viable recursive module extension to ML,
there are at least two significant issues that must be broached: (1) Do names and supports change
the meaning of “principal” type schemes for ML terms? and (2) How should names be integrated
into the ML module system? The first issue is clearly important, since type inference is one of
ML’s most notable features. The second issue is important as well, since the main motivation for
safe recursion is to support more efficient recursive modules, not terms. I discuss these issues in
Sections 7.6.1 and 7.6.2, respectively.

7.6.1 Names and Type Inference

The safe recursion language developed in this chapter requires explicit type and support annotations
on λ-abstractions. In contrast, the ML language does not require the programmer to annotate
function arguments (or any other variables) with their types; it infers the most general type scheme
for a function argument by looking at how it is used in the function body. Is there a way to adapt
Damas-Milner type inference [8] to infer principal type schemes in the presence of names?

Let us view inference as a procedure that takes an implicitly-typed external-language (EL) pro-
gram and translates it into an explicitly-typed internal-language (IL) program. The main difficulty
is that, if EL functions are not annotated with supports, there may be several incomparable ways
to translate them. To take a simple example, say we are given a function f with input type C and
output type D. If the body of f is well-typed under the empty support, then we can annotate f

so that it has the type C
∅

−→ D, but we can also annotate it to have the type C
S

−→ D for any
well-formed support S.

Name abstractions provide a potential solution to this problem. If the support of an arrow
type is under-specified, a name abstraction can be used to generalize it. For example, if f has the

form λx.e, then we can generalize f’s type to ∀X .C
X
−→ D by enclosing f in a name abstraction

7.6. DIRECTIONS FOR FUTURE WORK 161

(i.e., λX .λXx : C. e). This type scheme for f is principal in the sense that any valid type for f may
be produced by instantiating X in the type scheme with a particular support. As with ML-style
let-polymorphism, it is important that we only generalize the types of terms that are valuable
(i.e., pure and terminating)—otherwise, generalization could change the meaning of a term by
suspending its effects.

While the generalized type for f is straightforward to understand, it is easy to construct terms
for which the principal type scheme, or even the existence of one, is far from obvious. Consider a
function h, defined as fn (f,g) => fn x => f(fn y => x + g(x) + g(y)). By simple inference
reasoning, the use of addition implies that, modulo supports, x has type int, g has type int→int,
and f has type (int → int) → int. One might therefore imagine inferring the following name-
polymorphic type scheme for h:

∀X1,X2,X3.(((int
X1−→ int)

X2−→ int) × (int
X1−→ int))

X3−→ (int
X2−→ int)

The support on g’s arrow type and the support on f’s argument’s arrow type are matched up (X1);
the support on the result arrow type equals the support on f’s arrow type (X2); and, since the
body of h is a value, the support on h’s arrow type can be anything (X3).

Unfortunately, as complicated as it already is, this type scheme is not principal. In particular,
assuming the existence of a name X , the following is a valid type assignment for h which is not an
instance of the above type scheme:

(((int
∅

−→ int)
∅

−→ int) × (int
X
−→ int))

∅
−→ (int

X
−→ int)

The point here is that it is fine for the support on g’s arrow to differ from the support on f’s
argument’s arrow, so long as the symmetric difference of the two supports is included in the result
arrow. Correspondingly, here is a type scheme for h that I conjecture (but do not know) is principal:

∀X1,X2,X3,X4,X5,X6.(((int
{X1,X2}
−→ int)

X3−→ int)× (int
{X1,X4}
−→ int))

X6−→ (int
{X2,X3,X4,X5}

−→ int)

The supports on g’s arrow and f’s argument’s arrow are permitted to differ ({X2,X4}), and the
result arrow is allowed to contain arbitrary extra names (X5). The type assignment for h given above
can be produced by instantiating the principal type scheme with X4 = X and Xi = ∅ otherwise.

Determining whether principal type schemes exist in general in the presence of names is a key
direction for future work. However, the possibly principal type scheme for h is a classic example
of why people tend to be wary of effect inference. The inferred type is huge, hard to understand,
and probably much more general than necessary. In fact, it is quite possible that the programmer
will only use h at instances where all the Xi are set to ∅. I suspect therefore that, even if principal
type schemes exist in the presence of names, it may nevertheless be a good idea to assume that
λ-abstractions are annotated with the empty support unless specified otherwise, and to treat name
abstraction and instantiation as explicit programmer-level operations.

7.6.2 Names and Modules

Another key direction for future work is to scale the type system presented in this chapter to the
level of modules. In the process of preparing this thesis, I spent some time exploring this direction.
I sketched the semantics and meta-theory of a safe recursive module construct, as an extension to
the DCH language [12] (discussed in Section 2.3). The extension was rather complex and required
global changes to the DCH type system. Some of this complexity appears to be unavoidable, but

162 CHAPTER 7. SAFE RECURSION

I believe that some of it was also due to limitations of the DCH formalism. In this section, I will
describe at a high level some of the issues that arise in building a safe recursive module extension
to the type system of Chapters 3 and 4, and how we may deal with them. Working out the full
details of such an extension remains important and non-trivial future work.

In order to scale the work of this chapter to the level of modules with type components, the first
thing we must do is integrate names and supports into the core language of Chapter 3. This requires
us to adapt the notion of type equivalence modulo a support to account for type constructors of
higher kinds and singleton kinds. I believe this step is relatively straightforward, but it involves
a global change to the language, which in turn necessitates a reproof of the entire Stone-Harper
meta-theory!

The global change is essentially to add a support [S] to the end of every core-language judgment.
The support of a judgment indicates the set of names that the derivation of the judgment can simply
ignore. Thus, aside from the typing and type equivalence rules given in this chapter, all other rules
will have the same support S in the premises as in the conclusion. Note that, because of singletons,
supports must be added even to the well-formedness judgments for constructors and kinds. For
instance, a constructor C has kind s(D) if and only if C is equivalent to D at kind T. If the two
types are only equivalent modulo support S, then C will only have kind s(D) under support S.
Consequently, since the well-formedness of a singleton kind s(C) depends on the well-formedness
of C, s(C) will only be well-formed under whatever support C requires to be well-formed.

The next step is to integrate names and supports into the module language. This may be done
in an analogous way, adding supports to the end of every module and signature judgment form, with
the interpretation that the names in the support may be ignored in the derivation of the judgment.
On the surface, this seems straightforward, as the effect of “static purity” or “separability” tracked
by the module system is completely orthogonal to the effect of dereferencing a recursive variable.

We must introduce a saferec(X . X : S.M) module construct, as well as a boxT (S) signature for
classifying recursive module variables. Functors and functor signatures must be annotated with
the support of their bodies. The rules for these constructs will combine their typing rules from
Chapter 4 with the rules for their term-level counterparts given in this chapter. For example, a
natural typing rule for total functors would be:

Γ,X:S′ ` M :P S′′ [S ∪ T]

Γ ` λT
totX:S′.M :P ΠT

totX:S′.S′′ [S]

This is very similar to the typing rule for term-level λ-abstractions (Rule 5 of this chapter).
On closer inspection, however, an interesting problem arises with regard to the following ques-

tion: what is the static part of a functor or functor signature bearing support T , i.e., how should we
define Fst(λT

totX:S.M) and Fst(ΠT
totX:S1.S2)? Since λ’s at the constructor level do not have supports,

the only obvious answer is to ignore the support T , defining Fst(λT
totX:S.M) as λXc:Fst(S).Fst(M)

and Fst(ΠT
totX:S1.S2) as ΠXc:Fst(S1).Fst(S2).

To illustrate the problem with this answer, consider the functor F = λX
tot :1.[int

X
−→ int],

which takes unit argument and returns a module with a single type component, int
X
−→ int. By the

typing rule for functors given above, F can be assigned the signature S = ΠX
tot :1.[[s(int

∅
−→ int)]]

under the empty support. The point here is that the body is typechecked under the extended

support {X}, and under that support the type int
X
−→ int can be given the kind s(int

∅
−→ int).

Unfortunately, while F may have signature S under the empty support, Fst(F) = λ :1.int
X
−→ int

does not have kind Fst(S) = Π :1.s(int
∅

−→ int) under the empty support. This breaks an
important hygienic property of the Fst function.

7.6. DIRECTIONS FOR FUTURE WORK 163

The problem is that the functor typing rule allows the well-formedness of the static part of
F’s body to depend on support X , whereas the body of Fst(F) may not depend on that support.
To address this problem, we must either redefine the Fst function or change the module typing
judgment. It is not clear how to redefine Fst without first changing the core-language type system
so that constructor-level functions may bear supports. While it is possible such an approach could
work, it would require a more significant and less obvious change to the equational theory of types
than what I described above.

An easier approach, I believe, is to rethink the module typing judgment Γ ` M :κ S [S]. Instead
of ignoring the names in S in the whole typing derivation for M, suppose that we only ignore them
when typechecking the dynamic part of M and that we typecheck the static part of M under empty
support. For instance, the typing rules for atomic type and term modules might differ as follows:

Γ ` C : K [∅]

Γ ` [C] :P [[K]] [S]

Γ ` e : C [S]

Γ ` [e] :P [[C]] [S]

The first rule would prevent the body of the functor F, [int
X
−→ int], from being assigned the

signature [[s(int
∅

−→ int)]]. More generally, the Fst function would regain the property that, if M
has signature S under support S, then Fst(M) has kind Fst(S) under the empty support.

To validate this re-interpretation of the module typing judgment, we also have to change the
subsumption rule:

Γ ` M :κ S′ [S] Γ ` S′ ≤ S [S]

Γ ` M :κ S [S]

This rule is problematic because, for example, it allows a module of signature [[s(C)]] to be coerced
to the signature [[s(D)]], where C and D are only equivalent modulo support S. An easy way to
remedy this problem is to add to the subsumption rule an extra premise, Γ ` Fst(S ′) ≤ Fst(S) [∅],
requiring that the static part of S′ match the static part of S under the empty support.6

Aside from this issue, I believe the integration of names and supports into my module type
system should be fairly straightforward. It should be clear from this discussion, though, that
supporting static detection of safe recursion involves a non-trivial, pervasive extension to the in-
frastructure and meta-theory of the language. It is not so clear whether the added benefit such an
extension offers in terms of recursive module efficiency and reliability is worth the added complexity.

6In extending DCH, which did not have any notion of a Fst function, it was necessary to modify the signature
subtyping judgment so that Γ ` S1 ≤ S2 [S] only ignored the names in S when matching the dynamic parts of S1

against those of S2.

Part III

Evolving the ML Module System

Chapter 8

Evolving the ML Internal Language

Parts I and II of this thesis have been devoted to achieving a clearer understanding of the ML module
system and of the problem of extending ML with recursive modules. Based on this understanding,
I described in Section 2.2 a proposal for unifying the existing variants of the ML module system,
and in Section 5.4 a proposal for extending ML with recursive modules. It is time to make those
proposals concrete.

In this and the next chapter, I will use the Harper-Stone interpretation of Standard ML [33]
as the framework and starting point for defining a new, evolved dialect of ML. As described in
Section 2.2.3, the Harper-Stone framework (hereafter, HS) defines SML by translating (or “elabo-
rating”) the programmer-level “external” language (EL) into an “internal” language (IL), which is
defined by a type system. Following their approach, I will formalize my internal language in the
present chapter and my external language in the next chapter.

My internal language is based very closely on the module type system I developed in Chapters 3
and 4 and extended in Chapter 6, which I will refer to as the “simplified IL.” The differences between
the simplified and actual IL’s are mostly superficial. For instance, to facilitate the understanding
of my new design by one who is already familiar with HS, I have chosen in most cases to use the
HS conventions for naming metavariables rather than my own naming conventions from earlier in
the thesis (e.g., I use the metavariables mod and sig here instead of M and S to stand for modules
and signatures).

There are a few non-trivial differences, however, which I discuss in Section 8.1. For those familiar
with the details of Harper and Stone’s formalism, I also discuss the ways in which my IL differs
from theirs. Sections 8.2, 8.3 and 8.4 present the syntax, static semantics and dynamic semantics
of my IL, respectively. As the IL is for the most part very similar to the simplified IL, I do not give
an explicit typechecking algorithm or repeat the meta-theoretic development of Chapters 3, 4 and
6. Adapting them to the actual IL is completely straightforward.

8.1 Overview

8.1.1 Differences from the Simplified IL

Modulo naming conventions, the only substantive differences between the simplified and actual IL’s
are as follows.

First, instead of unlabeled pair kinds and pair signatures, whose components are indexed by
position (π1 or π2), the actual IL provides n-ary labeled record kinds and record signatures, whose
components are indexed by label. The generalization from pairs to n-ary records is a common,

168 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

straightforward one. The generalization to labeled indexing is also straightforward.

It is important to understand that the labels on a record’s components are not alpha-convertible.
Each component of a record constructor or module has attached to it a label, by which it is referred
to externally, and a variable, by which it is referred to internally, i.e., by the other components
defined after it in the record. Records are identified up to alpha-renaming of their bound variables,
but not their labels.

As the subtyping relations on record kinds and signatures do not permit reordering or dropping
of components, there is no significant semantic difference between these record kinds/signatures and
the pair kinds/signatures of the simplified IL. The only differences are in the number of components
in a record and how they are indexed. I use record kinds/signatures here instead of pairs primarily
in order to model ML structure’s more faithfully and to hew closer to Harper-Stone.

Second, whereas in the simplified IL I modeled type and val bindings in structures as bindings
of atomic modules [C] and [e], the actual IL allows one to bind types and terms directly as sub-
components of record modules without encasing them in their own atomic modules. Again, this is
not a matter of semantic importance, merely one of convenience.

Third, the actual IL provides a richer set of base types than the simplified IL. These include
sum types, n-ary record types, mutable reference types, and an extensible sum type Tagged. The
introduction and elimination forms for sums, records, and refs are standard. The type Tagged

models the ML type of exceptions, exn. A value of type Tagged is a pair of a value val of type
con and a “tag” of type con Tag. An ML exception binding like exception E of int results in
the creation of a new tag of type intTag by invoking the primitive IL construct new tag[int].
Values val of type Tagged may be pattern-matched against tags of type con Tag by the primitive
IL construct iftagof val is val ′ then val ′′ else exp. This checks whether val ′ is the tag of val : if so, it
passes the underlying value of val to the function val ′′; if not, it proceeds to evaluate the term exp ′.

8.1.2 Differences from the Harper-Stone IL

The Harper-Stone IL is based on the Harper-Lillibridge (HL) type system [28] but only supports
second-class modules. Thus, most of the differences between my IL and the Harper-Stone IL corre-
spond to the differences between my system and HL’s (see Section 2.2.1). For instance, HL model
translucency through an explicit distinction between opaque and transparent type specifications
in signatures, whereas I support translucency at the core-language level via singleton kinds. HL
support only generative functors and impure sealing, whereas I support two forms of functors and
two forms of sealing.

There are a variety of other small differences, including:

• The HS IL supports polymorphism only indirectly, through the module system, as a way of
emphasizing the second-class character of polymorphism in ML. That is, to write a polymor-
phic function, one must write a functor that takes as input a module with one type component
and returns as output a module with one monomorphic function component. My IL supports
polymorphism directly in the core language in the style of System Fω.

• The HS IL distinguishes between total and partial functions and functors, but what HS
mean by “total” and “partial” is different from what those terms mean in my IL. A total
function/functor in HS is one whose body is valuable, i.e., effect-free and terminating. The
bodies of total functors in my IL may have arbitrary effects as long as they are separable.

HS track totality for two reasons. First, datatype constructors need to be given total ar-
row types so that one may observe that datatype constructor applications are valuable and

8.2. IL SYNTAX 169

thus eligible for polymorphic generalization. I address this issue in my language by giving
datatype constructors coercion types, and by observing that coercion applications are always
valuable. Second, HS model polymorphic functions as total functors in order to observe that
the instantiation of a type abstraction is a valuable operation. In my language, I require the
body of a type abstraction to be valuable, and therefore consider type instantiation to always
be a valuable operation.

• HS characterize valuable expressions by means of a valuability judgment (Γ ` exp ↓ con),
whereas I simply characterize them as a syntactic subclass, which I write vexp. The only
reason I can do this and HS cannot is that HS do not make a syntactic distinction between
total and partial function application.

• The HS dynamic semantics employs a standard call-by-value left-to-right evaluation scheme.
In contrast, my IL requires all sequencing of term-level operations to be made explicit through
the use of a let expression. Thus, for instance, function application requires both the function
and its argument to be values. As I illustrated in Sections 3.2 and 6.2, it is completely
straightforward to use let expressions to define less restrictive versions of most constructs,
wherein subterms are not required to be values and are evaluated left to right.

• For the purpose of defining its dynamic semantics, the HS IL introduces explicit syntactic
classes of memory locations (loc) and extensible sum tags (tag), whereas I model these no-
tions directly in terms of variables. On the other hand, HS join constructor variables, term
variables and module variables under one syntactic class (var). For clarity, I make a syntactic
distinction between cvar ’s, evar ’s and mvar ’s, although I sometimes use var to signify any
kind of variable.

• Lastly, my IL fixes a number of bugs and omissions in the HS IL.

8.2 IL Syntax

Figures 8.1–8.8 present the syntax of my internal language. I assume the following notational
conventions:

• For any syntactic class (e.g., labeled bindings, represented by the metavariable lbnd), I use
the plural of the metavariable (e.g., lbnds) to denote a sequence of zero or more elements of
the original class, separated by commas.

• Names for metavariables are complicated but logical. I use the letter p to mean projectible, the
letter t to mean transparent, the letter c to mean constructor, the letter v to mean valuable,
and the letter l to mean labeled. For instance, tlcdec denotes a transparent, labeled constructor
declaration (see Figure 8.5). For those familiar with Harper-Stone, the metavariables lbnds
and ldecs replace HS’s sbnds and sdecs.

• Sequences of syntactic objects are assumed to be ordered, unless they appear inside curly
braces, in which case they are identified up to reordering. The only instances of unordered
sequences are in the syntax of record and sum types.

• I sometimes write (phrase i)
n
i=1, where phrase i is some syntactic phrase that depends on i, to

denote the sequence phrase1, · · · , phrasen.

170 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

• I assume as a precondition for syntactic well-formedness that, in any sequence of bind-
ings/declarations (e.g., lab1.var1:sig1, · · · , labn.varn:sign), all the labels lab1, · · · , labn are
distinct, and all the variables var 1, · · · , varn are distinct. Furthermore, I treat each var i as
being bound in the bindings/declarations that come after it. Sometimes I omit the variables
and simply write lab1:sig1, · · · , labn:sign, when I have no need to refer to the variable names.

• As in the simplified IL, I write phrase ′[phrase/var] to denote the capture-avoiding substi-
tution of phrase for var in phrase ′. When the phrase being substituted is a pmod (i.e., a
projectible module), phrase ′[pmod/mvar] is shorthand for phrase ′[Fst(pmod)/mvar c], where
mvar c is the injection of mvar into the class of constructor variables. I will sometimes write
phrase ′[phrase i/var i]

n
i=1 as shorthand for phrase ′[phrase1/var1] · · · [phrasen/varn].

• As in the simplified IL, I write ρ(sig) as shorthand for ρ(mvar).sig when mvar c 6∈ FV(sig).

8.2. IL SYNTAX 171

knd ::= T kind of types
| s(con) singleton kind
| [[lcdecs]] record kind
| Π(cvar :knd).knd ′ arrow kind

bcon ::= Int |Float | · · · base types
| {rdecs} record type
| con Ref reference type
| con → con ′ function type
| con con ′ coercion type
| Tagged extensible sum type
| con Tag exception-tag type
| Σ{rdecs} sum type
| ∀(cvar :knd).con universal type
| ∃(cvar :knd).con existential type
| maybe(con) recursive variable type

con ::= bcon constructors of base kind T
| cvar constructor variable
| µ(cvar :knd).con iso-recursive constructor
| λ(cvar :knd).con constructor-level function
| con(con ′) constructor application
| [lcbnds] record of constructors
| con .lab record projection

rdec ::= lab:con record field type

lcbnd ::= lab.cbnd labeled constructor binding
cbnd ::= cvar=con constructor binding

lcdec ::= lab.cdec labeled constructor declaration
cdec ::= cvar :knd constructor declaration

elim ::= • elimination head
| elim.lab projection
| elim(con) application

cpath ::= bcon base type
| elim{cvar} path rooted at variable
| recpath recursive type path

recpath ::= elim{µ(cvar :knd).con} path rooted at µ-constructor

Figure 8.1: IL Constructors and Kinds

172 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

val ::= scon constant
| evar expression variable
| {rbnds} record value
| fix k fbnds end recursive function
| injconlab val sum injection
| tag(val , val ′) extensible type injection
| foldcon fold coercion
| unfoldcon unfold coercion
| foldcon〈〈val 〉〉 coercion application
| Λ(cvar :knd).vexp type abstraction
| pack [con , val] as con ′ existential introduction

exp ::= val value
| πlab val record projection
| val val ′ application
| handle exp with val handle exception
| raisecon val raise exception
| ref val allocate new ref cell
| get val dereference a ref cell
| set (val , val ′) update a ref cell
| val〈〈val ′〉〉 coercion application
| val [con] type instantiation
| case val of (lab i 7→val i)

n
i=1 end sum case analysis

| new tag[con] extend type Tagged

| iftagof val is val ′ then val ′′ else exp exception tag case analysis
| let [cvar , evar] = unpack val in (exp : con) existential elimination
| let cvar=con in exp cvar -binding let expression
| let evar=exp ′ in exp evar -binding let expression
| letmvar=mod in (exp : con) mvar -binding let expression
| rec(evar :con.exp) recursive expression
| fetch(val) dereference a recursive variable
| mod .lab module projection
| pack mod as sig first-class module packing

rbnd ::= lab=val record field binding

fbnd ::= evar ′(evar :con):con ′=exp (recursive) function binding

Figure 8.2: IL Values and Expressions

8.2. IL SYNTAX 173

mod ::= mvar module variable
| [lbnds] structure
| mod .lab projection from structure
| λtot(mvar :sig).mod total functor
| λpar(mvar :sig):sig ′.mod partial functor
| mod tot(mod ′) total functor application
| mod par(mod ′) partial functor application
| mod :>P sig basic (weak) sealing
| mod :>I sig impure (strong) sealing
| unpack exp as sig first-class module unpacking
| purify(mod) purification of transparent module
| letmvar=mod in (mod ′ : sig) let module
| roll(mod) rds introduction
| unroll(mod) rds elimination
| fetch(mod) dereference a recursive module variable
| rec(mvar :tsig .mod) recursive module

lbnd ::= lab.bnd labeled binding
bnd ::= cvar=con constructor binding

| evar=exp expression binding
| mvar=mod module binding

sig ::= [[ldecs]] structure signature
| Πtot(mvar :sig).sig ′ total functor signature
| Πpar(mvar :sig).sig ′ partial functor signature
| ρ(mvar).sig recursively dependent signature (rds)
| maybe(sig) memoized computation signature

ldec ::= lab.dec labeled declaration
dec ::= cvar :knd constructor declaration

| evar :con expression declaration
| mvar :sig module declaration

var ::= cvar constructor variable
| evar expression variable
| mvar module variable

Figure 8.3: IL Modules and Signatures

174 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

vexp ::= val
| πlab vexp
| vexp〈〈vexp ′〉〉
| vexp[con]
| injconlab vexp
| tag(vexp, vexp ′)
| vmod .lab

vmod ::= mvar
| [vlbnds]
| vmod .lab
| λtot(mvar :sig).mod
| λpar(mvar :sig):sig ′.mod
| roll(vmod)
| unroll(vmod)

vlbnd ::= lab.vbnd
vbnd ::= cvar=vexp

| evar=con
| mvar=vmod

Figure 8.4: IL Valuable Expressions

pmod ::= mvar
| [plbnds]
| pmod .lab
| λtot(mvar :sig).pmod
| λpar(mvar :sig):sig ′.mod
| pmod tot(pmod ′)
| roll(pmod)
| unroll(pmod)
| rec(mvar :tsig .mod)
| fetch(pmod)

plbnd ::= lab.pbnd
pbnd ::= cvar=con

| evar=exp
| mvar=pmod

tknd ::= s(con)
| [[tlcdecs]]
| Π(cvar :knd).tknd ′

tlcdec ::= lab.tcdec
tcdec ::= cvar :tknd

tsig ::= [[tldecs]]
| Πtot(mvar :sig).tsig ′

| Πpar(mvar :sig).sig ′

| ρ(mvar).tsig
| maybe(tsig)

tldec ::= lab.tdec
tdec ::= cvar :tknd

| evar :con
| mvar :tsig

Figure 8.5: IL Projectible Modules and Transparent Kinds/Signatures

8.2. IL SYNTAX 175

sfknd ::= T
| [[lab1:sfknd 1, · · · , labn:sfkndn]]
| sfknd→sfknd ′

eknd ::= tknd
| T
| [[lab1:eknd1, · · · , labn:ekndn]]
| Π(cvar :sfknd).eknd

` µ(cvar :knd).con ↑ knd

` recpath ↑ [[· · · , lab:knd , · · ·]]

` recpath .lab ↑ knd

` recpath ↑ Π(cvar :knd ′).knd

` recpath(con) ↑ knd

` recpath ↑ T recpath = elim{µ(cvar :eknd).con}

` recpath expands

expand(elim{µ(cvar :knd).con})
def

= elim{con [µ(cvar :knd).con/cvar]}

Figure 8.6: IL Expandable Kinds and Recursive Type Paths

` [[·]]⇒ [[cvar :[[·]].{·}]]

` [[ldecs]]⇒ [[cvar :[[lcdecs]].{rdecs}]]

` [[lab.cvar ′:knd , ldecs]]⇒ [[cvar :[[lab.cvar ′:knd , lcdecs]].{rdecs}[cvar .lab/cvar ′]]]

` [[ldecs]]⇒ [[cvar :[[lcdecs]].{rdecs}]]

` [[lab.evar :con , ldecs]]⇒ [[cvar :[[lcdecs]].{lab:con, rdecs}]]

` sig ⇒ [[mvar c:knd .con]] ` [[ldecs]]⇒ [[cvar :[[lcdecs]].{rdecs}]]

` [[lab.mvar :sig, ldecs]]⇒ [[cvar :[[lab.mvar c:knd , lcdecs]].{lab:con, rdecs}[cvar .lab/mvar c]]]

` sig ⇒ [[mvar c:knd .con]] ` sig ′ ⇒ [[cvar ′:knd ′.con ′]]

` Πtot(mvar :sig).sig ′ ⇒ [[cvar :Π(mvar c:knd).knd ′.∀(mvar c:knd).con → con ′[cvar(mvar c)/cvar ′]]]

` sig ⇒ [[mvar c:knd .con]] ` sig ′ ⇒ [[cvar ′:knd ′.con ′]]

` Πpar(mvar :sig).sig ′ ⇒ [[cvar :[[·]].∀(mvar c:knd).con →∃(cvar ′:knd ′).con ′]]

` sig ⇒ [[cvar :knd .con]]

` ρ(mvar).sig ⇒ [[cvar :knd .con [cvar/mvar c]]]

` sig ⇒ [[cvar :knd .con]]

` maybe(sig)⇒ [[cvar :knd .maybe(con)]]

〈|sig |〉
def

= ∃(cvar :knd).con , where ` sig ⇒ [[cvar :knd .con]]

Figure 8.7: IL Definition of Package Type

176 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

Can(tknd) Can(s(con)) = con
Can([[tlcdecs]]) = [Can(tlcdecs)]
Can(Π(cvar :knd).tknd ′) = λ(cvar :knd).Can(tknd ′)

Can(tlcdecs) Can(·) = ·
Can(lab.cvar :tknd , tlcdecs) = lab.cvar=Can(tknd),Can(tlcdecs)

Fst(sig) Fst([[ldecs]]) = [[Fst(ldecs)]]

Fst(Πtot(mvar :sig).sig ′) = Π(mvar c:Fst(sig)).Fst(sig ′)
Fst(Πpar(mvar :sig).sig ′) = [[·]]
Fst(ρ(mvar).sig) = Fst(sig), where mvar c 6∈ FV(Fst(sig))
Fst(maybe(sig)) = Fst(sig)

Fst(ldecs) Fst(·) = ·
Fst(lab.cvar :knd , ldecs) = lab.cvar :knd ,Fst(ldecs)
Fst(lab.evar :con , ldecs) = Fst(ldecs)
Fst(lab.mvar :sig , ldecs) = lab.mvar c:Fst(sig),Fst(ldecs)

Fst(pmod) Fst(mvar) = mvar c

Fst([plbnds]) = [Fst(plbnds)]
Fst(pmod .lab) = Fst(pmod).lab
Fst(λtot(mvar :sig).pmod) = λ(mvar c:Fst(sig)).Fst(pmod)
Fst(λpar(mvar :sig):sig ′.mod) = [·]
Fst(pmod tot(pmod ′)) = Fst(pmod)(Fst(pmod ′))
Fst(roll(pmod)) = Fst(pmod)
Fst(unroll(pmod)) = Fst(pmod)
Fst(fetch(pmod)) = Fst(pmod)
Fst(rec(mvar :tsig .mod)) = Can(Fst(tsig))

Fst(plbnds) Fst(·) = ·
Fst(lab.cvar=con , plbnds) = lab.cvar=con,Fst(plbnds)
Fst(lab.mvar=pmod , plbnds) = lab.mvar c=Fst(pmod),Fst(plbnds)
Fst(lab.evar=exp, plbnds) = Fst(plbnds)

s(con : knd) s(con :T) = s(con)
s(con : s(con ′)) = s(con)
s(con : [[lcdecs]]) = [[s(con : lcdecs)]]
s(con : Π(cvar :knd).knd ′) = Π(cvar :knd).s(con(cvar) : knd ′)

s(con : sig) s(con : [[ldecs]]) = [[s(con : ldecs)]]

s(con : Πtot(mvar :sig).sig ′) = Πtot(mvar :sig).s(con(mvar c) : sig ′)
s(con : Πpar(mvar :sig).sig ′) = Πpar(mvar :sig).sig ′

s(con : ρ(mvar).sig) = ρ(s(con : sig [con/mvar c]))
s(con : maybe(sig)) = maybe(s(con : sig))

s(con : ldecs) s(con : ·) = ·
s(con : lab.cvar :knd , ldecs) = lab:s(con .lab : knd),

s(con : ldecs [con .lab/cvar])
s(con : lab.evar :con , ldecs) = lab:con ,s(con : ldecs)
s(con : lab.mvar :sig , ldecs) = lab:s(con .lab : sig),

s(con : ldecs [con .lab/mvar c])

Figure 8.8: IL Meta-level Function Definitions

8.3. IL STATIC SEMANTICS 177

8.3 IL Static Semantics

As in the simplified IL, wherever “static” judgments J (i.e., judgments about kinds, constructors or
signatures, wherein the context is a sequence of cdecs instead of decs) are invoked with “dynamic”
contexts decs , this is shorthand for the conjunction of ` decs ok and Fst(decs) ` J .

Well-formed Declarations

` decs ok

` · ok
(8.1)

decs ` dec ok

` decs , dec ok
(8.2)

decs ` dec ok

decs ` knd : Kind cvar 6∈ dom(decs)

decs ` cvar :knd ok
(8.3)

decs ` con : T evar 6∈ dom(decs)

decs ` evar :con ok
(8.4)

decs ` sig : Sig mvar 6∈ dom(decs)

decs ` mvar :sig ok
(8.5)

Well-formed Bindings

decs ` bnd :κ dec

decs ` con : knd

decs ` cvar=con :P cvar :knd
(8.6)

decs ` exp : con

decs ` evar=exp :P evar :con
(8.7)

decs ` mod :κ sig

decs ` mvar=mod :κ mvar :sig
(8.8)

Well-formed Kinds

cdecs ` knd : Kind

` cdecs ok

cdecs ` T : Kind
(8.9)

cdecs ` con : T

cdecs ` s(con) : Kind
(8.10)

cdecs ` lcdecs ok

cdecs ` [[lcdecs]] : Kind
(8.11)

cdecs , cvar :knd ` knd ′ : Kind

cdecs ` Π(cvar :knd).knd ′ : Kind
(8.12)

178 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

Kind Equivalence

cdecs ` lcdecs ≡ lcdecs ′

` cdecs ok

cdecs ` · ≡ ·
(8.13)

cdecs ` knd ≡ knd ′ cdecs , cvar :knd ` lcdecs ≡ lcdecs ′

cdecs ` lab.cvar :knd , lcdecs ≡ lab.cvar :knd ′, lcdecs ′
(8.14)

cdecs ` knd ≡ knd ′

` cdecs ok

cdecs ` T ≡ T
(8.15)

cdecs ` con ≡ con ′ : T

cdecs ` s(con) ≡ s(con ′)
(8.16)

cdecs ` lcdecs ≡ lcdecs ′

cdecs ` [[lcdecs]] ≡ [[lcdecs ′]]
(8.17)

cdecs ` knd 1 ≡ knd ′
1 cdecs , cvar :knd 1 ` knd2 ≡ knd ′

2

cdecs ` Π(cvar :knd 1).knd 2 ≡ Π(cvar :knd ′
1).knd ′

2

(8.18)

Kind Subtyping

cdecs ` lcdecs ≤ lcdecs ′

` cdecs ok

cdecs ` · ≤ ·
(8.19)

cdecs ` knd ≤ knd ′ cdecs , cvar :knd ` lcdecs ≤ lcdecs ′

cdecs ` lab.cvar :knd , lcdecs ≤ lab.cvar :knd ′, lcdecs ′
(8.20)

cdecs ` knd ≤ knd ′

` cdecs ok

cdecs ` T ≤ T
(8.21)

cdecs ` con ≡ con ′ : T

cdecs ` s(con) ≤ s(con ′)
(8.22)

cdecs ` con : T

cdecs ` s(con) ≤ T
(8.23)

cdecs ` lcdecs ≤ lcdecs ′

cdecs ` [[lcdecs]] ≤ [[lcdecs ′]]
(8.24)

cdecs ` Π(cvar :knd 1).knd2 : Kind

cdecs ` knd ′
1 ≤ knd1 cdecs , cvar :knd ′

1 ` knd2 ≤ knd ′
2

cdecs ` Π(cvar :knd 1).knd 2 ≤ Π(cvar :knd ′
1).knd ′

2

(8.25)

8.3. IL STATIC SEMANTICS 179

Well-formed Constructors

cdecs ` con : knd

` cdecs ok cvar :knd ∈ cdecs

cdecs ` cvar : knd
(8.26)

` cdecs ok

cdecs ` Tagged : T
(8.27)

cdecs ` con : T

cdecs ` con Ref : T
(8.28)

cdecs ` con : T

cdecs ` con Tag : T
(8.29)

cdecs ` con : T cdecs ` con ′ : T

cdecs ` con → con ′ : T
(8.30)

cdecs ` con : T cdecs ` con ′ : T

cdecs ` con con ′ : T
(8.31)

cdecs ` con : T

cdecs ` maybe(con) : T
(8.32)

` cdecs ok ∀i ∈ 1..n : cdecs ` con i : T

cdecs ` {lab1:con1, . . . , labn:conn} : T
(8.33)

` cdecs ok ∀i ∈ 1..n : cdecs ` con i : T

cdecs ` Σ{lab1:con1, . . . , labn:conn} : T
(8.34)

cdecs , cvar :knd ` con : T

cdecs ` ∀(cvar :knd).con : T
(8.35)

cdecs , cvar :knd ` con : T

cdecs ` ∃(cvar :knd).con : T
(8.36)

cdecs , cvar :knd ` con : knd

cdecs ` µ(cvar :knd).con : knd
(8.37)

cdecs ` lcbnds : lcdecs

cdecs ` [lcbnds] : [[lcdecs]]
(8.38)

cdecs ` con : [[· · · , lab i.cvar i:knd i, · · ·]]

cdecs ` con .labi : knd i[con .labj/cvar j]
i−1
j=1

(8.39)

cdecs , cvar :knd ` con : knd ′

cdecs ` λ(cvar :knd).con : Π(cvar :knd).knd ′ (8.40)

cdecs ` con : Π(cvar :knd ′).knd cdecs ` con ′ : knd ′

cdecs ` con(con ′) : knd [con ′/cvar]
(8.41)

cdecs ` con : T

cdecs ` con : s(con)
(8.42)

180 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

cdecs ` con : [[(lab i.cvar i:knd ′
i)

n
i=1]] ∀i ∈ 1..n : cdecs ` con .lab i : knd i

cdecs ` con : [[(lab i:knd i)ni=1]]
(8.43)

cdecs ` con : Π(cvar :knd).knd ′ cdecs , cvar :knd ` con(cvar) : knd ′′

cdecs ` con : Π(cvar :knd).knd ′′ (8.44)

cdecs ` con : knd ′ cdecs ` knd ′ ≤ knd

cdecs ` con : knd
(8.45)

Constructor Equivalence

cdecs ` lcbnds ≡ lcbnds ′ : lcdecs

` cdecs ok

cdecs ` · ≡ · : ·
(8.46)

cdecs ` con ≡ con ′ : knd cdecs , cvar :knd ` lcbnds ≡ lcbnds ′ : lcdecs

cdecs ` lab.cvar=con, lcbnds ≡ lab.cvar=con ′, lcbnds ′ : lab.cvar :knd , lcdecs
(8.47)

cdecs ` con ≡ con ′ : knd

cdecs ` con : knd

cdecs ` con ≡ con : knd
(8.48)

cdecs ` con ′ ≡ con : knd

cdecs ` con ≡ con ′ : knd
(8.49)

cdecs ` con ≡ con ′ : knd
cdecs ` con ′ ≡ con ′′ : knd

cdecs ` con ≡ con ′′ : knd
(8.50)

cdecs ` con1 : s(con) cdecs ` con2 : s(con)

cdecs ` con1 ≡ con2 : s(con)
(8.51)

cdecs ` con1 ≡ con2 : T cdecs ` con ′
1 ≡ con ′

2 : T

cdecs ` con1 → con ′
1 ≡ con2 → con ′

2 : T
(8.52)

cdecs ` con1 ≡ con2 : T cdecs ` con ′
1 ≡ con ′

2 : T

cdecs ` con1 con ′
1 ≡ con2 con ′

2 : T
(8.53)

cdecs ` con ≡ con ′ : T

cdecs ` con Ref ≡ con ′ Ref : T
(8.54)

cdecs ` con ≡ con ′ : T

cdecs ` con Tag ≡ con ′ Tag : T
(8.55)

` cdecs ok ∀i ∈ 1..n : cdecs ` con i ≡ con ′
i : T

cdecs ` {lab1:con1, · · · , labn:conn} ≡ {lab1:con ′
1, · · · , labn:con ′

n} : T
(8.56)

` cdecs ok ∀i ∈ 1..n : cdecs ` con i ≡ con ′
i : T

cdecs ` Σ{lab1:con1, . . . , labn:conn} ≡ Σ{lab1:con
′
1, . . . , labn:con ′

n} : T
(8.57)

8.3. IL STATIC SEMANTICS 181

cdecs ` knd ≡ knd ′ cdecs , cvar :knd ` con ≡ con ′ : T

cdecs ` ∀(cvar :knd).con ≡ ∀(cvar :knd ′).con ′ : T
(8.58)

cdecs ` knd ≡ knd ′ cdecs , cvar :knd ` con ≡ con ′ : T

cdecs ` ∃(cvar :knd).con ≡ ∃(cvar :knd ′).con ′ : T
(8.59)

cdecs ` con ≡ con ′ : T

cdecs ` maybe(con) ≡ maybe(con ′) : T
(8.60)

cdecs ` knd ≡ knd ′ cdecs , cvar :knd ` con ≡ con ′ : knd

cdecs ` µ(cvar :knd).con ≡ µ(cvar :knd ′).con ′ : knd
(8.61)

cdecs ` lcbnds ≡ lcbnds ′ : lcdecs

cdecs ` [lcbnds] ≡ [lcbnds ′] : [[lcdecs]]
(8.62)

cdecs ` con ≡ con ′ : [[· · · , lab i.cvar i:knd i, · · ·]]

cdecs ` con.lab i ≡ con ′.lab i : knd i[con .labj/cvar j]
i−1
j=1

(8.63)

cdecs ` knd ≡ knd ′ cdecs , cvar :knd ` con ≡ con ′ : knd ′′

cdecs ` λ(cvar :knd).con ≡ λ(cvar :knd ′).con ′ : Π(cvar :knd).knd ′′ (8.64)

cdecs ` con1 ≡ con2 : Π(cvar :knd ′).knd cdecs ` con ′
1 ≡ con ′

2 : knd ′

cdecs ` con1(con ′
1) ≡ con2(con ′

2) : knd [con ′
1/cvar]

(8.65)

cdecs ` con ′ : [[(lab i.cvar i:knd ′
i)

n
i=1]] cdecs ` con ′′ : [[(labi.cvar i:knd ′′

i)
n
i=1]]

∀i ∈ 1..n : cdecs ` con ′.lab i ≡ con ′′.lab i : knd i

cdecs ` con ′ ≡ con ′′ : [[(lab i:knd i)ni=1]]
(8.66)

cdecs ` con1 : Π(cvar :knd).knd 1 cdecs ` con2 : Π(cvar :knd).knd 2

cdecs , cvar :knd ` con1(cvar) ≡ con2(cvar) : knd ′

cdecs ` con1 ≡ con2 : Π(cvar :knd).knd ′ (8.67)

cdecs ` con1 ≡ con2 : knd ′ cdecs ` knd ′ ≤ knd

cdecs ` con1 ≡ con2 : knd
(8.68)

Well-formed Expressions

decs ` exp : con

` decs ok

decs ` scon : type(scon)
(8.69)

` decs ok evar :con ∈ decs

decs ` evar : con
(8.70)

decs ` val : con ′→ con decs ` val ′ : con ′

decs ` val val ′ : con
(8.71)

∀i ∈ 1..n : decs , (evar ′
j :conj → con ′

j)
n
j=1, evar i:con i ` expi : con ′

i

decs ` fix k (evar ′i(evar i:con i):con ′
i=exp i)

n
i=1 end : conk → con ′

k

(8.72)

182 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

` decs ok ∀i ∈ 1..n : decs ` val i : con i

decs ` {lab1=val1, · · · , labn=valn} : {lab1:con1, · · · , labn:conn}
(8.73)

decs ` val : {rdecs , lab:con , rdecs ′}

decs ` πlab val : con
(8.74)

decs ` exp : con decs ` val : Tagged→ con

decs ` handle exp with val : con
(8.75)

decs ` val : Tagged decs ` con : T

decs ` raisecon val : con
(8.76)

decs ` con : T

decs ` new tag[con] : con Tag
(8.77)

decs ` val : con

decs ` ref val : con Ref
(8.78)

decs ` val : con Ref

decs ` get val : con
(8.79)

decs ` val : con Ref

decs ` val ′ : con

decs ` set (val , val ′) : {}
(8.80)

decs ` con ≡ recpath : T ` recpath expands

decs ` foldcon : expand(recpath) recpath
(8.81)

decs ` con ≡ recpath : T ` recpath expands

decs ` unfoldcon : recpath expand(recpath)
(8.82)

decs ` val : con ′ con decs ` val ′ : con ′

decs ` val〈〈val ′〉〉 : con
(8.83)

decs , cvar :knd ` vexp : con

decs ` Λ(cvar :knd).vexp : ∀(cvar :knd).con
(8.84)

decs ` val : ∀(cvar :knd).con ′ decs ` con : knd

decs ` val [con] : con ′[con/cvar]
(8.85)

decs ` con ′ ≡ ∃(cvar :knd).con ′′ : T
decs ` con : knd decs ` val : con ′′[con/cvar]

decs ` pack [con , val] as con ′ : con ′
(8.86)

decs ` val : ∃(cvar :knd).con ′

decs , cvar :knd , evar :con ′ ` exp : con decs ` con : T

decs ` let [cvar , evar] = unpack val in (exp : con) : con
(8.87)

decs ` con ≡ Σ{lab:con ′, · · ·} : T decs ` val : con ′

decs ` injconlab val : con
(8.88)

8.3. IL STATIC SEMANTICS 183

decs ` val : Σ{lab1:con1, . . . , labn:conn} ∀i ∈ 1..n : decs ` val i : con i → con

decs ` case val of (lab i 7→val i)ni=1 end : con
(8.89)

decs ` val : con Tag decs ` val ′ : con

decs ` tag(val , val ′) : Tagged
(8.90)

decs ` val : Tagged decs ` val ′ : con Tag

decs ` val ′′ : con → con ′ decs ` exp : con ′

decs ` iftagof val is val ′ then val ′′ else exp : con ′
(8.91)

decs ` con : knd decs , cvar :knd ` exp : con ′

decs ` let cvar=con in exp : con ′[con/cvar]
(8.92)

decs ` exp : con decs , evar :con ` exp ′ : con ′

decs ` let evar=exp in exp ′ : con ′
(8.93)

decs ` mod :κ sig decs ,mvar :sig ` exp : con decs ` con : T

decs ` letmvar=mod in (exp : con) : con
(8.94)

decs , evar :maybe(con) ` exp : con

decs ` rec(evar :con .exp) : con
(8.95)

decs ` val : maybe(con)

decs ` fetch(val) : con
(8.96)

decs ` pmod :P [[· · · , labi.var i:con i, · · ·]]

decs ` pmod .labi : con i[pmod .labj/var j]
i−1
j=1

(8.97)

decs ` mod :κ sig

decs ` pack mod as sig : 〈|sig |〉
(8.98)

decs ` exp : con ′ decs ` con ′ ≡ con : T

decs ` exp : con
(8.99)

Well-formed Signatures

cdecs ` ldecs ok

` cdecs ok

cdecs ` · ok
(8.100)

cdecs , dec ` ldecs ok

cdecs ` lab.dec, ldecs ok
(8.101)

184 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

cdecs ` sig : Sig

cdecs ` ldecs ok

cdecs ` [[ldecs]] : Sig
(8.102)

cdecs ` sig : Sig cdecs ,mvar c:Fst(sig) ` sig ′ : Sig

cdecs ` Πtot(mvar :sig).sig ′ : Sig
(8.103)

cdecs ` sig : Sig cdecs ,mvar c:Fst(sig) ` sig ′ : Sig

cdecs ` Πpar(mvar :sig).sig ′ : Sig
(8.104)

cdecs ,mvar c:Fst(sig) ` sig : Sig

cdecs ` ρ(mvar).sig : Sig
(8.105)

cdecs ` sig : Sig

cdecs ` maybe(sig) : Sig
(8.106)

Signature Equivalence

cdecs ` ldecs ≡ ldecs ′

` cdecs ok

cdecs ` · ≡ ·
(8.107)

cdecs ` knd ≡ knd ′ cdecs , cvar :knd ` ldecs ≡ ldecs ′

cdecs ` lab.cvar :knd , ldecs ≡ lab.cvar :knd ′, ldecs ′
(8.108)

cdecs ` con ≡ con ′ : T cdecs ` ldecs ≡ ldecs ′

cdecs ` lab.evar :con , ldecs ≡ lab.evar :con ′, ldecs ′
(8.109)

cdecs ` sig ≡ sig ′ cdecs ,mvar c:Fst(sig) ` ldecs ≡ ldecs ′

cdecs ` lab.mvar :sig , ldecs ≡ lab.mvar :sig ′, ldecs ′
(8.110)

cdecs ` sig ≡ sig ′

cdecs ` ldecs ≡ ldecs ′

cdecs ` [[ldecs]] ≡ [[ldecs ′]]
(8.111)

cdecs ` sig1 ≡ sig2 cdecs ,mvar c:Fst(sig1) ` sig ′
1 ≡ sig ′2

cdecs ` Πtot(mvar :sig1).sig
′
1 ≡ Πtot(mvar :sig2).sig

′
2

(8.112)

cdecs ` sig1 ≡ sig2 cdecs ,mvar c:Fst(sig1) ` sig ′
1 ≡ sig ′2

cdecs ` Πpar(mvar :sig1).sig
′
1 ≡ Πpar(mvar :sig2).sig

′
2

(8.113)

cdecs ` Fst(sig1) ≡ Fst(sig2)
cdecs ,mvar c:Fst(sig1) ` s(mvar c : sig1) ≡ s(mvar c : sig2)
cdecs ` ρ(mvar).sig 1 : Sig cdecs ` ρ(mvar).sig 2 : Sig

cdecs ` ρ(mvar).sig 1 ≡ ρ(mvar).sig2

(8.114)

cdecs ` sig1 ≡ sig2

cdecs ` maybe(sig1) ≡ maybe(sig2)
(8.115)

8.3. IL STATIC SEMANTICS 185

Signature Subtyping

cdecs ` ldecs ≤ ldecs ′

` cdecs ok

cdecs ` · ≤ ·
(8.116)

cdecs ` knd ≤ knd ′

cdecs , cvar :knd ` ldecs ≤ ldecs ′ cdecs , cvar :knd ′ ` ldecs ′ ok

cdecs ` lab.cvar :knd , ldecs ≤ lab.cvar :knd ′, ldecs ′
(8.117)

cdecs ` con ≡ con ′ : T cdecs ` ldecs ≤ ldecs ′

cdecs ` lab.evar :con , ldecs ≤ lab.evar :con ′, ldecs ′
(8.118)

cdecs ` sig ≤ sig ′

cdecs ,mvar c:Fst(sig) ` ldecs ≤ ldecs ′ cdecs ,mvar c:Fst(sig ′) ` ldecs ′ ok

cdecs ` lab.mvar :sig , ldecs ≤ lab.mvar :sig ′, ldecs ′
(8.119)

cdecs ` sig ≤ sig ′

cdecs ` ldecs ≤ ldecs ′

cdecs ` [[ldecs]] ≤ [[ldecs ′]]
(8.120)

cdecs ` sig1 ≡ sig2 cdecs ,mvar c:sig1 ` sig ′
1 ≤ sig ′

2

cdecs ` Πtot(mvar :sig1).sig
′
1 ≤ Πtot(mvar :sig2).sig

′
2

(8.121)

cdecs ` sig1 ≡ sig2 cdecs ,mvar c:sig1 ` sig ′
1 ≡ sig ′

2

cdecs ` Πpar(mvar :sig1).sig
′
1 ≤ Πpar(mvar :sig2).sig

′
2

(8.122)

cdecs ` Fst(sig1) ≤ Fst(sig2)
cdecs ,mvar c:Fst(sig1) ` s(mvar c : sig1) ≤ s(mvar c : sig2)
cdecs ` ρ(mvar).sig 1 : Sig cdecs ` ρ(mvar).sig 2 : Sig

cdecs ` ρ(mvar).sig 1 ≤ ρ(mvar).sig2

(8.123)

cdecs ` sig1 ≤ sig2

cdecs ` maybe(sig1) ≤ maybe(sig2)
(8.124)

Well-formed Modules

decs ` lbnds :κ ldecs

` decs ok

decs ` · :κ ·
(8.125)

decs ` bnd :κ dec decs , dec ` lbnds :κ ldecs

decs ` lab.bnd , lbnds :κ lab.dec, ldecs
(8.126)

186 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

decs ` mod :κ sig

` decs ok mvar :sig ∈ decs

decs ` mvar :P sig
(8.127)

decs ` lbnds :κ ldecs

decs ` [lbnds] :κ [[ldecs]]
(8.128)

decs ` pmod :P [[· · · , lab i.var i:sig i, · · ·]]

decs ` pmod .lab i :P sig i[pmod .labj/var j]
i−1
j=1

(8.129)

decs ,mvar :sig ` mod :P sig ′

decs ` λtot(mvar :sig).mod :P Πtot(mvar :sig).sig ′ (8.130)

decs ,mvar :sig ` mod :κ sig ′

decs ` λpar(mvar :sig):sig ′.mod :P Πpar(mvar :sig).sig ′ (8.131)

decs ` mod :κ Πtot(mvar :sig ′).sig decs ` pmod ′ :P sig ′

decs ` mod tot(mod ′) :κ sig [pmod ′/mvar]
(8.132)

decs ` mod :κ Πpar(mvar :sig ′).sig decs ` pmod ′ :P sig ′

decs ` mod par(mod ′) :I sig [pmod ′/mvar]
(8.133)

decs ` mod :κ sig

decs ` mod :>P sig :κ sig
(8.134)

decs ` mod :κ sig

decs ` mod :>I sig :I sig
(8.135)

decs ` sig : Sig decs ` exp : 〈|sig |〉

decs ` unpack exp as sig :I sig
(8.136)

decs ` mod :κ tsig

decs ` purify(mod) :P tsig
(8.137)

decs ` mod 1 :κ sig1 decs ,mvar :sig1 ` mod 2 :κ sig decs ` sig : Sig

decs ` letmvar=mod 1 in (mod 2 : sig) :κ sig
(8.138)

decs ` mod :κ sig

decs ` roll(mod) :κ ρ(sig)
(8.139)

decs ` pmod :P ρ(mvar).sig

decs ` unroll(pmod) :P sig [pmod/mvar]
(8.140)

decs ` mod :κ maybe(sig)

decs ` fetch(mod) :κ sig
(8.141)

decs ,mvar :maybe(tsig) ` mod :P tsig

decs ` rec(mvar :tsig .mod) :P tsig
(8.142)

8.4. IL DYNAMIC SEMANTICS 187

decs ` pmod :P sig

decs ` pmod :P s(pmod : sig)
(8.143)

decs ` mod :P sig

decs ` mod :I sig
(8.144)

decs ` mod :κ sig ′ decs ` sig ′ ≤ sig

decs ` mod :κ sig
(8.145)

8.4 IL Dynamic Semantics

As in the simplified IL, the dynamic semantics is only defined for the core language. As the module
language of the actual IL is almost identical to that of the simplified IL, adapting the phase-splitting
translation of Sections 4.2.7 and 6.4 to the present setting is completely straightforward.

Ω ::= (ω, C, exp) normal machine state
| Error error state

C ::= • empty continuation stack
| C ◦ F non-empty continuation stack

F ::= let evar= • in exp sequencing frame
| rec(evar :con .•) recursive backpatching frame
| handle •with val exception handling frame

Let D denote a continuation stack that does not contain any exception handling frames.

Small-Step Operational Semantics

Ω 7→ Ω′

(ω, C, πlab {rbnds , lab=val , rbnds ′}) 7→ (ω, C, val)
(8.146)

fbnds = (evar ′i(evar i:con i):con
′
i=expi)

n
i=1

(ω, C, (fix k fbnds end)(val)) 7→ (ω, C, expk[val/evark][fix i fbnds end/evar ′i]
n
i=1)

(8.147)

(ω, C, handle exp with val) 7→ (ω, C ◦ handle •with val , exp)
(8.148)

(ω, C ◦ (handle •with val ′), val) 7→ (ω, C, val)
(8.149)

(ω, C ◦ (handle •with val ′) ◦ D, raisecon val) 7→ (ω, C, val ′ val)
(8.150)

(ω,D, raisecon val) 7→ Error
(8.151)

evar 6∈ dom(ω)

(ω, C, ref val) 7→ (ω[evar 7→val], C, evar)
(8.152)

188 CHAPTER 8. EVOLVING THE ML INTERNAL LANGUAGE

evar ∈ dom(ω) ω(evar) = val

(ω, C, get evar) 7→ (ω, C, val)
(8.153)

evar ∈ dom(ω)

(ω, C, set (evar , val)) 7→ (ω[evar :=val], C, {})
(8.154)

(ω, C, unfoldcon 〈〈foldcon ′

〈〈val〉〉〉〉) 7→ (ω, C, val)
(8.155)

(ω, C, (Λ(cvar :knd).vexp)[con]) 7→ (ω, C, vexp[con/cvar])
(8.156)

(ω, C, case injconlabk
val of (labi 7→val i)ni=1 end) 7→ (ω, C, val k val)

(8.157)

evar 6∈ dom(ω)

(ω, C, new tag[con]) 7→ (ω[evar 7→?], C, evar)
(8.158)

(ω, C, iftagof tag(evar , val) is evar then val ′ else exp) 7→ (ω, C, val ′ val)
(8.159)

evar 6= evar ′

(ω, C, iftagof tag(evar , val) is evar ′ then val ′ else exp) 7→ (ω, C, exp)
(8.160)

(ω, C, let [cvar , evar] = unpack (pack [con , val] as con ′) in (exp : con ′′)) 7→
(ω, C, exp [con/cvar][val/evar])

(8.161)

(ω, C, let cvar=con in exp) 7→ (ω, C, exp[con/cvar])
(8.162)

(ω, C, let evar=exp ′ in exp) 7→ (ω, C ◦ let evar= • in exp, exp ′)
(8.163)

(ω, C ◦ let evar= • in exp, val) 7→ (ω, C, exp [val/evar])
(8.164)

evar 6∈ dom(ω)

(ω, C, rec(evar :con .exp)) 7→ (ω[evar 7→?], C ◦ rec(evar :con .•), exp)
(8.165)

evar ∈ dom(ω)

(ω, C ◦ rec(evar :con .•), val) 7→ (ω[evar :=val], C, val)
(8.166)

evar ∈ dom(ω) ω(evar) = val

(ω, C, fetch(evar)) 7→ (ω, C, val)
(8.167)

evar ∈ dom(ω) ω(evar) = ?

(ω, C, fetch(evar)) 7→ Error
(8.168)

Chapter 9

Evolving the ML External Language

With the internal language type system in hand, I can now define my external language. The main
goal of the external language is to make life easier for the programmer. Thus, like Standard ML,
which serves as the external language in Harper and Stone’s framework (HS), my language supports
type inference, pattern matching, datatype definitions, coercive signature matching, etc. These are
features of convenience, not necessity. The main departure from this view of the external language
is in the recursive module extension. As explained in Section 5.4, my elaboration translation
for recursive modules supports data abstraction between recursive modules in a manner that is
considerably more sophisticated than what is available in the internal language type system.

My external language is based closely on the syntax and semantics of Standard ML. It extends
SML with support for higher-order modules, total and partial functors, basic and impure sealing,
the packaging (and unpackaging) of modules as first-class values, recursive modules and recursively
dependent signatures. However, it is not a conservative extension:

• There are a number of minor syntactic differences. For example, following O’Caml, I have
chosen to replace structure and functor bindings with a single module binding form. In an
actual implementation, it may be desirable to also support the SML syntax for purposes of
backward compatibility, but I will ignore such concerns here.

• There are some features, such as type and structure sharing constraints on signatures, that
I have chosen to interpret in a different manner than SML does, because I find the SML
semantics to be problematic. I discuss the reasons for such instances of semantic divergence
at the appropriate points in the chapter.

• There are some features of SML, such as infix declarations, that affect parsing but are not
interesting from a semantic point of view. Following HS, my elaboration translation assumes
that source-level programs have already been parsed into the abstract syntax of the external
language, so I do not bother to account for such parsing-related features.

• There is one feature of Standard ML that I have chosen not to support at all in my language,
namely the overloading of the equality operator. I assume that equality operators are defined
for some fixed set of base types, and do not permit equality tests at other types. In my
experience programming in SML and working on the TILT compiler, I have found overloaded
equality to be of little use, yet it disproportionately complicates the semantics of the language.
Incorporating a general form of overloading into ML (using type classes, for instance [25]) is
a worthwhile endeavor, but it is beyond the scope of this thesis.

190 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

As in HS, the elaboration translation is defined by a set of judgments, whose inference rules are
presented in declarative fashion but admit an algorithmic interpretation. The primary judgments
have the form

Γ ` EL-phrase ; IL-phrase : IL-classifier

where the context Γ and EL-phrase may be viewed as inputs, and IL-phrase and IL-classifier
as outputs. For some auxiliary judgments, the inputs and outputs are slightly less obvious. In
Section 9.2, I describe how to interpret all the elaboration judgments, and I also stipulate several
invariants that are assumed and maintained by the elaboration rules. Some of these invariants are
described rather informally. For instance, if you see a module containing a field labeled “tag,” then
that module must be the output of elaborating an exception binding.

The most basic invariant, which I do state formally in Section 9.2, is soundness of the trans-
lation: if elaboration succeeds, it generates well-formed output (assuming in some cases certain
preconditions on the input). Soundness is proved by straightforward induction on the elaboration
rules. While I attest to having checked soundness for every rule, the sheer quantity and complexity
of the elaboration rules prevents me from having total confidence that I have not overlooked some
bug, serious or otherwise. In the process of preparing these rules, I uncovered many bugs in the
original HS elaboration translation, and it is quite possible that my revisions and extensions have
introduced new ones. Formalizing HS in the meta-logical framework Twelf [63], so that soundness
may be checked mechanically, is a topic of current research at CMU.

Another desirable property is that elaboration be deterministic. Unfortunately, due to type
inference this is not the case. For instance, an underconstrained EL phrase such as fn x => x may
elaborate to an identity function at any type, con → con—the generalization to the polymorphic
type ∀(cvar :T).cvar → cvar only occurs once the function is bound to a variable. HS argue infor-
mally that this element of nondeterminism is acceptable because valid outputs for the same input
should only differ in ways that do not affect evaluation. As my extensions and revisions do not
introduce any new sources of nondeterminism beyond what is already present in HS elaboration, I
refer the reader to HS for further discussion of this point.

The chapter is structured as follows: In Section 9.1, I present the syntax of my external language.
In Section 9.2, I give an overview of the judgments that comprise the elaboration translation, their
interpretations and their soundness properties. In Section 9.3, I define the translation itself. Finally,
in Section 9.4, I discuss the implementation of a variant of this external language that I undertook
in the context of the TILT compiler.

9.1 EL Syntax

The syntax of the external language is shown in Figures 9.1 and 9.2. Optional elements are enclosed
in angle brackets 〈· · ·〉. All optional choices are independent. Some points of note:

• I assume the existence of several (disjoint) base syntax classes, including: base (a fixed
set of base types, including int, float, unit, etc.), scon (syntactic constants, same as in
the IL), tyvar (type variables), reclab (record labels), expid (term identifiers), conid (type
constructor identifiers), modid (module identifiers), and sigid (signature identifiers). For
id ∈ {expid , conid ,modid}, there is a corresponding “long” class longid , defined as

longid ::= id | modid.longid

• Tuple types (of length n) are not supported explicitly, but are encodable as record types
whose components are labeled 1 to n. (The class of reclab’s includes the natural numbers.)

9.1. EL SYNTAX 191

ty ::= base
| tyvar
| {reclab1 : ty1, · · · ,reclabn : tyn}

| ty -> ty ′

| (ty1, · · · ,tyn) 〈modexp.〉conid

expr ::= scon
| expid
| modexp.expid
| {reclab1 = expr1, · · · ,reclabn = exprn}

| let bindings in expr end

| expr expr ′

| expr : ty
| expr handle match
| raise expr
| fn match
| pack modexp as longconid

bindings ::= ·
| binding 〈;〉 bindings

binding ::= val (tyvar 1, · · · ,tyvarn) pat = expr
| fun (tyvar 1, · · · ,tyvarn) funbinds
| open longmodid 1 · · · longmodid n

| exception expid
| exception expid of ty
| exception expid = longexpid
| local bindings1 in bindings2 end

| type tybind
| datatype datbinds
| datatype conid = datatype longconid
| packtype conid = sigexp
| signature sigid = sigexp
| module modid = modexp

funbinds ::= expid = fn match 〈and funbinds〉
tybind ::= (tyvar 1, · · · ,tyvarn) conid = ty

branches ::= expid 〈of ty〉 〈| branches〉
datbind ::= (tyvar 1, · · · ,tyvarn) conid = branches

datbinds ::= datbind 1 〈and · · · and datbindn〉
〈withtype tybind 1 and · · · and tybindm〉

Figure 9.1: Syntax of the External Language

192 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

match ::= mrule
| mrule | match

mrule ::= pat => expr
pat ::= scon

| longexpid
|
| pat : ty
| longexpid pat
| {reclab1 = pat1, · · · ,reclabn = patn〈,...〉}
| pat1 as pat2

| ref pat

sigexp ::= sigid
| sig specs end

| functor (modid : sigexp) -> sigexp ′

| functor (modid : sigexp) ->> sigexp ′

| rec (modid) sigexp
| sigexp where type (tyvar 1, · · · ,tyvarn) longconid = ty

specs ::= ·
| spec specs

spec ::= val (tyvar 1, · · · ,tyvarn) expid : ty
| type (tyvar 1, · · · ,tyvarn) conid
| type (tyvar 1, · · · ,tyvarn) conid = ty
| datatype datbinds
| datatype conid = datatype longconid
| packtype conid = sigexp
| exception expid
| exception expid of ty
| module modid : sigexp
| include sigexp
| specs sharing type longconid 1 = longconid 2

| specs sharing longmodid 1 = longmodid 2

seal ::= :

| :>

| :>>

modexp ::= modid
| struct bindings end

| modexp.modid
| functor (modid : sigexp) -> modexp
| functor (modid : sigexp) ->> modexp
| modexp1 (modexp2)

| let bindings in modexp end

| modexp seal sigexp
| unpack expr as longconid
| rec (modid : sigexp) modexp

Figure 9.2: Syntax of the External Language (continued)

9.1. EL SYNTAX 193

• Unlike in SML, types, terms and modules may be projected from arbitrary module expres-
sions modexp , not just from longmodid ’s. While the elaboration translation places restrictions
on which modules may be projected from, they are not simple syntactic restrictions. Never-
theless, there are several instances in the syntax where a type is required to have the form
longconid or a module is required to have the form longmodid (e.g., in sharing constraints on
signatures). The typical reason for making such a restriction is to ensure that the translation
of the type or module has a certain form (e.g., see Rule 9.25).

• In much the same way that recursive and sum types are accessible to the SML programmer
only through the datatype mechanism, existential types are accessible to the programmer of
my language only through the packtype mechanism. The binding packtype conid = sigexp
elaborates to a module containing three components: (1) an abstract type conid , implemented
internally as 〈|sig |〉, where sig is the IL translation of sigexp, (2) a functor named conid pack,
which takes modules of signature sig and packages them as values of type conid , and (3) a
functor named conid unpack, which unpackages values of type conid into modules of sig-
nature sig . Correspondingly, the EL term pack modexp as longconid and the EL module
unpack expr as longconid package modexp and unpackage expr , respectively, by applying
to them the “pack” and “unpack” functors located in the module defining longconid . The
purpose of hiding the implementation of conid behind an abstract interface is to permit the in-
troduction of package types into the language without affecting the type inference/unification
algorithm.

• Like HS and unlike the Definition of SML, I do not distinguish between top-level bindings
and module bindings. There is only one kind of binding (HS use the term strdec instead).
Following O’Caml, I replace structure and functor bindings with a single module binding
form. I also introduce anonymous functor expressions functor (modid : sigexp) -> modexp
and functor (modid : sigexp) ->> modexp , where the former denotes a total functor and the
latter a partial functor. I similarly distinguish between total and partial functor signatures
by writing the former with a “->” arrow and the latter with with a “->>” arrow. SML’s
functor binding may be encoded as a module binding of a partial functor expression.

• The language supports three forms of sealing: transparent (:), basic (:>) and impure (:>>).
Transparent sealing has precisely the same semantics as in SML (see the note on Rule 9.52
for details). The latter two correspond directly to :>P and :>I in the IL, respectively. The
notation is perhaps slightly unfortunate here. As explained in Section 2.2.1, although basic
sealing is denoted here in the same way that opaque sealing is denoted in SML, SML’s opaque
sealing is in fact closer semantically to impure sealing (:>>). Nonetheless, for uniformity, I
have chosen to mark the distinction between basic and impure sealing using the same >/>>
motif used to distinguish the total and partial forms of functors and functor signatures.

• I assume that all

– tyvar ’s appearing in a single sequence (tyvar 1, · · · ,tyvarn)

– reclab’s in a record expression, record pattern, or record type

– expid ’s bound in a single funbinds

– conid ’s and expid ’s bound in a single datbinds

are distinct.

194 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

9.2 Overview of Elaboration

9.2.1 Preliminaries

• I assume the existence of an injective overbar function · mapping each EL identifier to an
IL label. This function can also be applied pointwise to a “long” identifier, resulting in a
sequence of labels (separated by dots), called labs . I will also assume the existence of an
infinite set of “internal” labels that are not in the range of the overbar function. There is a
fixed subset of the internal labels that the elaborator uses to recognize certain elaboration
idioms. These known labels include “it”, “in”, “out”, “pack”, “unpack”, “hidden”, “visible”,
“tag”, “fail”, and the natural numbers. I will denote all other internal labels by ilab.

• A label lab may be “opened” by writing lab∗. Open labels are used to mark certain modules
that are “open” for identifier lookup. (See the discussion of the lookup rules below for details.)
One may also join two labels lab1 and lab2 to form a new, internal label lab1 lab2. If a label
is the result of joining, it may be deconstructed into its component parts. Joining of labels is
useful in the elaboration of datatype and packtype bindings.

• The elaborator maintains a typing context Γ that is essentially a list of labeled declarations
(ldecs), except for two generalizations: (1) the list may contain duplicate labels (but not
duplicate variables), and (2) it may also contain declarations of the form sigid=sig for the
purpose of elaborating EL signature bindings. The labels on the declarations in Γ are used
to map EL identifiers to corresponding IL variables.

I will write IL(Γ) to denote the erasure of the elaboration context Γ into an IL context
decs , which simply strips off the labels on all the ldec entries in Γ, and erases all the signature
declarations. I will take “ ` Γ ok” to mean that ` IL(Γ) ok and, for all signature declarations
sigid=sig in Γ, we have IL(Γ) ` sig : Sig. For all other IL judgments J , I will take “Γ ` J ”
to mean that ` Γ ok and IL(Γ) ` J .

• It is useful to work with a subclass of signatures, called static signatures and denoted by the
metavariable statsig , whose distinguishing characteristic is that they do not contain any value
or partial functor declarations. In essence, one may view a static signature as a kind that has
been promoted to the status of a signature. Formally, static signatures and declarations are
defined by the following grammar:

statsig ::= [[statldecs]]
| Πtot(mvar :statsig).statsig ′

| ρ(statsig)
| maybe(statsig)

statldec ::= lab.statdec
statdec ::= cvar :knd

| mvar :statsig

Any signature can be erased into a static signature by the following Stat(·) function:

Stat(sig) Stat([[ldecs]]) = [[Stat(ldecs)]]
Stat(Πtot(mvar :sig).sig ′) = Πtot(mvar :Stat(sig)).Stat(sig ′)
Stat(Πpar(mvar :sig).sig ′) = [[·]]
Stat(ρ(mvar).sig) = ρ(Stat(sig))
Stat(maybe(sig)) = maybe(Stat(sig))

Stat(ldecs) Stat(·) = ·
Stat(lab.cvar :knd , ldecs) = lab.cvar :knd ,Stat(ldecs)
Stat(lab.evar :con , ldecs) = Stat(ldecs)
Stat(lab.mvar :sig , ldecs) = lab.mvar :Stat(sig),Stat(ldecs)

9.2. OVERVIEW OF ELABORATION 195

One can view the Stat(sig) function as doing half the work of the Fst(sig) function. It
eliminates the “dynamic” part of sig , but does not go the extra step of turning the signature
into a kind. During elaboration, Stat(sig) is often easier to work with than Fst(sig) because
static signatures are amenable to certain operations (e.g., looking up a label in a signature)
that are not defined for kinds. Here are some useful properties of the Stat(·) function:

1. If cdecs ` sig : Sig, then cdecs ` Stat(sig) : Sig and cdecs ` Fst(sig) ≡ Fst(Stat(sig)).

2. If cdecs ` sig1 ≡ sig2, then cdecs ` Stat(sig1) ≡ Stat(sig2).

3. If cdecs ` sig1 ≤ sig2, then cdecs ` Stat(sig1) ≤ Stat(sig2).

• I write vpmod to denote a pmod that is also a vmod , i.e., a module expression that is both
projectible and valuable. I write phrase to denote something that is either a con , exp or mod .
I write class to denote something that is either a knd , con or sig .

• As explained in Section 5.4, the first phase of recursive module elaboration generates some-
thing I call a meta-signature, which encapsulates the type information that is known at
different points during the typechecking of the recursive module. Meta-signatures have the
following grammar:

metasig ::= [[metaldecs]]
| Πtot(mvar :sig).metasig ′

| ρ(mvar).metasig
| {private=sig1,public=sig2}

metaldec ::= lab.metadec
metadec ::= cvar :knd

| evar :con
| mvar :metasig

The one case that distinguishes metasig ’s from ordinary sig ’s is {private=sig 1,public=sig2}.
I call this a “switchable” signature because it provides a way for the recursive module elabo-
ration algorithm to switch between public and private views of a module when typechecking
different parts of the recursive module body.

The functions Priv(·) and Pub(·) erase meta-signatures into ordinary signatures by switching
all switchable signatures to either the private or the public setting, respectively:

Priv(metasig) Priv([[metaldecs]]) = [[Priv(metaldecs)]]
Priv(Πtot(mvar :sig).metasig ′) = Πtot(mvar :sig).Priv(metasig ′)
Priv(ρ(mvar).metasig) = ρ(mvar).Priv(metasig)
Priv({private=sig1,public=sig2}) = sig1

Priv(metaldecs) Priv(·) = ·
Priv(lab.cvar :knd ,metaldecs) = lab.cvar :knd ,Priv(metaldecs)
Priv(lab.evar :con ,metaldecs) = lab.evar :con ,Priv(metaldecs)
Priv(lab.mvar :metasig ,metaldecs) = lab.mvar :Priv(metasig),

Priv(metaldecs)

Pub(metasig) Pub([[metaldecs]]) = [[Pub(metaldecs)]]
Pub(Πtot(mvar :sig).metasig ′) = Πtot(mvar :sig).Pub(metasig ′)
Pub(ρ(mvar).metasig) = ρ(mvar).Pub(metasig)
Pub({private=sig1,public=sig2}) = sig2

Pub(metaldecs) Pub(·) = ·
Pub(lab.cvar :knd ,metaldecs) = lab.cvar :knd ,Pub(metaldecs)
Pub(lab.evar :con ,metaldecs) = lab.evar :con ,Pub(metaldecs)
Pub(lab.mvar :metasig ,metaldecs) = lab.mvar :Pub(metasig),

Pub(metaldecs)

196 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

In fact, Priv(metasig) and Pub(metasig) are just two possible settings of metasig , where a
“setting” of metasig is taken to mean an ordinary signature formed by replacing each switch-
able signature in metasig of the form {private=sig 1,public=sig2} with either sig1 or sig2

(i.e., setting each switch to “private” or “public”). Before observing some useful properties
of meta-signatures and their settings, let us define what it means for a meta-signature to be
well-formed by extending the existing IL judgments for signatures and declarations with the
following new cases for meta-signatures and meta-declarations:

cdecs ` metasig : Sig

cdecs ` metaldecs ok

cdecs ` [[metaldecs]] : Sig
(9.1)

cdecs ` sig : Sig cdecs ,mvar c:Fst(sig) ` metasig ′ : Sig

cdecs ` Πtot(mvar :sig).metasig ′ : Sig
(9.2)

cdecs ` Fst(Priv(metasig)) : Kind

cdecs ,mvar c:Fst(Pub(metasig)) ` metasig : Sig

cdecs ` ρ(mvar).metasig : Sig
(9.3)

cdecs ` sig1 ≤ sig2

cdecs ` {private=sig1,public=sig2} : Sig
(9.4)

cdecs ` metaldecs ok

cdecs ` metadec ok cdecs ,Fst(Pub(metadec)) ` metaldecs ok

cdecs ` lab.metadec,metaldecs ok
(9.5)

cdecs ` metadec ok

cdecs ` metasig : Sig

cdecs ` mvar :metasig ok
(9.6)

These well-formedness rules were designed in order to guarantee the following property:

– If cdecs ` metasig : Sig and sig is a setting of metasig ,
then cdecs ` sig : Sig and cdecs ` Priv(metasig) ≤ sig and cdecs ` sig ≤ Pub(metasig)
(in particular, cdecs ` Priv(metasig) ≤ Pub(metasig)).

While this property is provable by straightforward induction, its proof depends on some subtle
points in the above rules. In Rule 9.2, it is important that the argument in the functor meta-
signature is an ordinary signature, since functor subtyping is invariant in the argument. In
Rule 9.3, the first premise is necessary to ensure that, for any setting sig of metasig , Fst(sig)
does not refer to mvar c.

9.2. OVERVIEW OF ELABORATION 197

9.2.2 Guide to the Elaboration Judgments

In this section, I describe at a high level what each elaboration judgment means, how it is used,
what its soundness properties are, and (in some cases) what its output may be expected to look
like. Note: the soundness properties for all the rules assume that the given typing context Γ (or in
some cases decs) is well-formed.

Main Translation Judgments

• Γ ` ty ; con : T

– Interpretation: Given an EL type (ty), return its translation as an IL type (con).

– Soundness: Γ ` con : T.

• Γ ` expr ; exp : con

– Interpretation: Given an EL term (expr), return its translation as an IL term (exp)
and its type (con).

– Soundness: Γ ` exp : con.

• Γ ` match ; val : con

– Interpretation: Given an EL pattern match (match), return a function val (of type
con) that takes an argument of the type expected by match , tries to match the argument
against each of the mrule’s in the match (in order), and throws a “fail” exception if the
pattern match fails.

– Soundness: Γ ` val : con .

– Comments: The “fail” exception is a component of the “basis” module that may be
assumed bound in Γ (see Section 9.3.1 for details).

• Γ ` binding(s) ; lbnds :κ ldecs

– Interpretation: Given EL binding(s), return their translation as a sequence of IL
labeled bindings (lbnds), along with a matching sequence of labeled declarations (ldecs)
that describe them. κ is the purity level of the lbnds .

– Soundness: Γ ` lbnds :κ ldecs .

– Comments: The labels on the output lbnds fall into two general categories: (1) they
have the form id , where id is the EL identifier bound by the corresponding input binding ,
or (2) they have the form ilab∗, where ilab is an arbitrary internal label. In the latter case,
the elaborator understands the binding to mean that the module labeled ilab ∗ should
be considered “open.” That is, the elaborator treats the components of the module as
if they were bound at top level alongside the other category-1 lbnds .

• Γ ` modexp ; mod :κ sig

– Interpretation: Given an EL module expression (modexp), return its translation as an
IL module (mod), along with its principal signature (sig) and purity level κ.

– Soundness: Γ ` mod :κ sig .

198 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

– Comments: As explained in Section 4.2.6, I follow HS’s approach to addressing the
avoidance problem. For example, I elaborate the EL module let bindings inmodexp end

into the IL module [hidden.mvar=[lbnds], visible∗=mod], where lbnds is the translation
of bindings and mod is the translation of modexp . The “hidden” label ensures that
the local bindings are in fact kept in a hidden namespace, because no EL identifier will
be translated (by the overbar function) into the label “hidden”. In contrast, since the
visible∗ label on the second component is open, the components of mod will be accessible
to the programmer. Several of the modexp translation rules return IL modules of this
same form. I refer to such modules as having “existential” signature ∃(mvar :sig 1).sig2,
which is definable as [[hidden.mvar :sig 1, visible∗:sig2]].

• Γ ` spec(s) ; ldecs

– Interpretation: Given EL spec(s), return their translation as a sequence of IL ldecs .

– Soundness: Γ ` ldecs ok.

– Comments: As in the translation of bindings, the output ldecs here fall into two
categories: those with labels of the form id and those with labels of the form ilab ∗.
The interpretation of the latter category is the same as in the binding translation: the
elaborator treats the components of the module declared with label ilab ∗ as if they were
declared in the same namespace as the other category-1 ldecs .

• Γ ` sigexp ; sig : Sig

– Interpretation: Given an EL signature expression (sigexp), return its translation as
an IL signature (sig).

– Soundness: Γ ` sig : Sig.

• Γ s̀tat spec(s) ; statldecs
Γ s̀tat sigexp ; statsig : Sig

– Interpretation: Same as the normal judgments for translating specifications and sig-
natures, except that these judgments only translate the static part of the input (i.e.,
val specs, exception specs, etc. are ignored).

– Soundness: Γ ` statldecs ok, Γ ` statsig : Sig.

– Comments: These judgments are useful in elaborating recursively dependent signa-
tures. Given an EL rds of the form rec (modid) sigexp, we ultimately want to do full
elaboration of sigexp into an IL signature sig. Before we can do full elaboration, how-
ever, we need to figure out what Stat(sig) is, because sigexp is only well-formed in a
typing context where modid has signature Stat(sig). These static elaboration judgments
allow us to compute Stat(sig) under the original context Γ first, without worrying about
references to modid in the dynamic components of sigexp. Although soundness does
not depend on it, these judgments are defined so that, whenever Γ ` spec(s) ; ldecs
(resp. Γ ` sigexp ; sig : Sig), it is also the case that Γ s̀tat spec(s) ; Stat(ldecs) (resp.
Γ s̀tat sigexp ; Stat(sig) : Sig).

• Γ ` pat ⇐ exp : con else val ; lbnds : ldecs

– Interpretation: Given an EL pattern (pat), an IL expression exp of type con , and
an exception val of type Tagged, match exp against the pattern pat . This results in a

9.2. OVERVIEW OF ELABORATION 199

bunch of IL bindings lbnds (described by ldecs), which bind pattern identifiers to the
appropriate projections from exp. If the pattern match fails, the evaluation of lbnds will
raise the exception val .

– Soundness: If Γ ` exp : con and Γ ` val : Tagged, then Γ ` lbnds :P ldecs . Furthermore,
lbnds is a sequence of term bindings. No binding refers to any of the previous bindings
in the sequence.

• Γ ` datbinds ; sig

– Interpretation: Given an EL datatype specification (datbinds), return an IL signature
(sig) describing the specified types and their data constructors.

– Soundness: Γ ` sig : Sig.

– Comments: Each type conid specified by the datbinds will be accorded its own (open)
module declaration. In that module declaration will be specified: (1) the type itself (with
an opaque kind, since datatype’s in ML are abstract types), (2) two coercion functions
(conid in and conid out) for converting between conid and its recursive expansion,
and (3) each of conid ’s data constructors. Since datatype bindings/specifications are
the only places where the “in” and “out” labels are used, a number of rules throughout
the elaborator test whether a given type named lab is in fact a datatype by checking
whether it is defined in the same module as a value labeled lab in.

Canonical Implementations of Signatures

• decs `can sig ; mod

– Interpretation: Given an IL signature sig , return a canonical module mod of that
signature.

– Soundness: decs ` mod :P sig .

– Comments: Canonical implementations exist only for signatures of a certain restricted
form. Essentially, the input signature must be static and transparent—as, in general, nei-
ther value specifications nor opaque type specifications have canonical implementations—
the only exception being that it may contain module declarations that correspond to the
elaboration of datatype specifications. This judgment is invoked by Rule 9.152 for
recursive module elaboration and also by Rule 9.41 for translating datatype bindings.

Coercive Signature Matching

• decs s̀ub vpmod : sig0 � sig ; pmod : tsig

– Interpretation: Given a projectible, valuable module vpmod of signature sig 0, and a
target signature sig , coerce vpmod into sig . The coercion module pmod (with transparent
signature tsig) will copy all of its components from vpmod but have the shape of sig
instead of sig0.

– Soundness: If decs ` vpmod :P sig0 and decs ` sig : Sig, then decs ` pmod :P tsig and
decs ` tsig ≤ sig .

– Comments: Unlike IL subtyping, coercive signature matching permits dropping and
reordering of structure components, allows total functors to be coerced to partial functor

200 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

signatures, and matches functor signatures contravariantly in the argument and covari-
antly in the result.

• decs s̀ub vpmod : sig0 � ldec(s) ; plbnd(s) : tldec(s)

– Interpretation: Given a projectible, valuable module vpmod of signature sig 0, and
target specification(s) ldec(s), return plbnd(s) that copy the corresponding components
from vpmod and match the shape of the ldec(s).

– Soundness: If decs ` vpmod :P sig0 and decs ` ldec(s) ok, then decs ` plbnd(s) :P
tldec(s) and decs ` tldec(s) ≤ ldec(s).

Signature Patching

• sig ẁt labs := phrase ; sig ′

– Interpretation: By adding to the signature sig the fact that the type or module
component selected by labs is statically equivalent to phrase , we get the signature sig ′.

– Comments: This judgment is used in the translation of signatures with where type

constraints (Rule 9.83). It does not guarantee that the output sig ′ is well-formed or
that sig ′ is a subtype of sig—Rule 9.83 verifies this independently. The judgment simply
traverses sig according to the path described by labs and then replaces whatever classifier
(class) it finds there by s(phrase : class).

• sig s̀h labs1 := labs2 ; sig ′

– Interpretation: By adding to the signature sig the fact that the type or module
component selected by labs1 is statically equivalent to the one selected by labs 2, we
get the signature sig ′.

– Comments: This judgment is used in the translation of type sharing and structure
sharing constraints (Rules 9.73 and 9.74). Like the ẁt judgment, it does not guarantee
that the output sig ′ is well-formed or that it is a subtype of sig . The judgment simply
traverses sig according to the path described by the common prefix of labs 1 and labs2,
and then it invokes the ẁt judgment to finish the job. It only succeeds if the component
indexed by labs1 appears further down in the input sig than the one indexed by labs 2

(otherwise, the classifier of the labs 1 component could not be replaced by a singleton
referring to the labs2 component).

A note about type and structure sharing: The semantics of sharing type constraints given by
the Definition of SML makes a subtle distinction between “flexible” and “rigid” type components.
Given a signature sig , a flexible type is one that sig specifies opaquely or that it specifies as
transparently equal to some other type that sig specifies opaquely. A type is rigid if it is not
flexible. The Definition only permits sharing of two flexible types. Thus, the signature

sig type t = int type u = int sharing type t = u end

is not considered well-formed, because t and u are transparently specified to equal a type (int)
not specified by the signature and are therefore rigid.

The Definition’s restriction to sharing flexible types was put in place to prevent type sharing
from requiring higher-order unification. While the restriction is not a problem per se, it becomes

9.2. OVERVIEW OF ELABORATION 201

problematic because of the way the Definition defines structure sharing constraints in terms of
type sharing constraints. Specifically, the Definition defines a sharing constraint on two structure
components of a signature by expanding it into a set of type sharing constraints, one for every
type constructor of the same name and arity provided by both structures. As a result, even if two
structures are specified with exactly the same signature, attempting to impose a sharing constraint
on them will fail if that signature includes even one rigid type specification. Since, in my experience
structure sharing is desired almost exclusively for sharing two structures of the same signature, I
find the Definition’s semantics of structure sharing to be overly restrictive.

Different implementations of SML loosen the Definition in different ways. The SML/NJ compiler
allows any two structure components to be shared if they are specified by the same signature
identifier. The TILT compiler employs a more liberal semantics of type sharing so that one may
share two rigid type components so long as they are transparently equal to the same type.

The approach I have taken in my present design is to dispense with the rigid/flexible distinction
entirely. I view a type/structure sharing constraint as simply a symmetric way of asking for one
of the components to be assigned a singleton kind/signature referring to the other. The constraint
is only considered valid if the resulting signature is an IL subtype of the original signature. If
the types/structures did not have the same shape to begin with, then the sharing constraint may
fail under my semantics but not under the Definition’s. However, as the vast majority of sharing
constraints are imposed on types/structures of exactly the same kind/signature, my semantics will
in most realistic cases be more liberal than the Definition’s.

Signature Peeling

• decs p̀eel pmod :sig ; pmod ′ : sig ′

– Interpretation: Given a module pmod of signature sig , peel off the outer layers of sig
until we reach an “interesting” signature, i.e., either a functor or structure signature sig ′

that is not an existential signature (not of the form [[hidden.mvar :sig 1, visible∗:sig2]]).
Correspondingly, pmod ′ is formed from pmod by a sequence of visible∗ projections,
unroll’ings, and fetch’es.

– Soundness: decs ` pmod ′ :P sig ′.

– Comments: This judgment is useful when we want to check, for example, that a given
module is really a functor, but we do not have a particular target signature that we are
matching it against (Rule 9.49). It also inserts automatically the fetch’es of recursive
module variables and unroll’ings of rds’s that the EL syntax leaves implicit. I will say
that a module pmod is in “peeled form” if decs p̀eel pmod :sig ; pmod : sig .

Label Lookup

• Γ c̀tx labs ; phrase : class

– Interpretation: Lookup the component indexed by labs in the context Γ and return it
(phrase) along with a class describing it.

– Soundness: Γ ` phrase : class . If phrase is a module, it is a pmod and it is guaranteed
to be in peeled form, i.e., Γ p̀eel phrase :class ; phrase : class .

– Comments: The lookup algorithm looks for the first lab in labs . It searches right-to-left
through Γ, and looks inside the signatures of modules that have open labels (ilab ∗) using

202 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

the signature lookup judgment (below). Once it finds the first lab, it uses the signature
lookup judgment to look for the remaining labs if there are any.

• decs ; pmod :sig s̀ig labs ; phrase : class

– Interpretation: Given a module pmod of signature sig , lookup the component indexed
by labs in sig , and return the resulting phrase (and its class), which will be a projection
from pmod .

– Soundness: Γ ` phrase : class . If phrase is a module, it is a pmod and it is guaranteed
to be in peeled form, i.e., Γ p̀eel phrase :class ; phrase : class .

– Comments: This judgment is defined in a similar manner to the context lookup
judgment—it searches for the head of labs right-to-left among the specifications that
comprise sig , and then calls itself recursively if there are more labs .

Recursive Module Elaboration

• Γ s̀tat binding(s) ; metaldec(s)
Γ s̀tat modexp ; metasig

– Interpretation: Given an EL binding(s) or modexp , perform static elaboration of it
(ignoring val bindings, etc.) and return a meta-signature or meta-declarations that
reflect what type information is known in different parts of the input.

– Soundness: Γ ` metaldec(s) ok, Γ ` metasig : Sig.

– Comments: This is the first phase of recursive module elaboration, and it only succeeds
if the input is pure/separable, i.e., has purity classifier P. See Section 5.4 for a high-level
explanation. This judgment is also used by Rule 9.13 in order to determine whether a
module expression is projectible. Specifically, if the input modexp is projectible, then it
will not contain any datatype bindings or any uses of sealing, so the output metasig will
have the form of a normal signature (in fact, it will be a transparent, static signature).

• Γ;metadec; Γ′
r̀ec pmod ⇒ binding(s) ; lbnd(s) : tldec(s)

Γ;metadec; Γ′
r̀ec pmod ⇒ modexp ; mod : tsig

– Interpretation: The main phase of recursive module elaboration.

– Soundness: Assuming Γ ` metadec ok and ` Γ,Pub(metadec),Γ′ ok,
then Γ,Priv(metadec),Γ′ ` lbnd(s) :P tldec(s) and Γ,Priv(metadec),Γ′ ` mod :P tsig .

– Comments: pmod tells us what part of the recursive module body we are currently
elaborating, and the metadec in the context allows us to switch from public to private
knowledge of certain type information when elaboration goes underneath a sealed module
expression. Note that the soundness property is rather weak: it only says that the
output is well-formed assuming the full private setting of the metadec. This is because
different parts of the input are typechecked under different settings of metadec, and
Priv(metadec) is the least common denominator in the subtyping hierarchy. For more
details, see Section 9.3.8.

9.3. ELABORATION 203

9.3 Elaboration

9.3.1 A Few More Preliminaries

• Given an elaboration context Γ, let labdom(Γ) be the set of labels on the entries in Γ, and
let vardom(Γ) be dom(IL(Γ)).

• I will sometimes write var=phrase or lab=phrase instead of lab.var=phrase when I do not
care what lab or var is, respectively. In either case, to form a proper lbnd , one can choose
some fresh internal label or variable to fill in whatever was omitted. Similarly, I will sometimes
write var :class or lab:class instead of lab.var :class when I do not care what lab or var is,
respectively. In either case, to form a proper ldec, one can choose some fresh internal label
or variable to fill in whatever was omitted.

• I will sometimes extend an elaboration context Γ with a metaldec. This is shorthand for
extending Γ with Pub(metaldec).

• Given a list of ldecs , labdom(ldecs) is not an entirely accurate description of the labels that
ldecs exports, since it does not take into account labels of components in the signatures of
open modules. The function vislabs(ldecs), defined here, computes more accurately the set
of “visible” labels, i.e., the labels that the signature lookup routine will succeed in finding if
it looks for them in the signature [[ldecs]]. This function comes in handy in Rule 9.57.

vislabs(ldecs) vislabs(·) = ∅
vislabs(ldec, ldecs) = vislabs(ldec) ∪ vislabs(ldecs)

vislabs(ldec) vislabs(lab:knd) = {lab}
vislabs(lab:con) = {lab}
vislabs(lab:sig) = {lab}, if lab is not open
vislabs(lab∗:[[ldecs]]) = vislabs(ldecs)
vislabs(lab∗:ρ(mvar).sig) = vislabs(lab∗:sig)

• Following HS, I handle shadowing of EL identifiers by means of an operation of syntactic
concatenation with renaming. Written (lbnds++lbnds ′) : (ldecs++ldecs ′), this operation
takes two lists of lbnds (and corresponding ldecs) and joins them together, taking care to
correct for duplicate labels by relabeling any shadowed lbnds/ldecs of the first list with fresh
internal labels. Defined as follows, it comes in handy in Rule 9.30:

(·++lbnds ′) : (·++ldecs ′)
def

= lbnds ′ : ldecs ′

(lab.bnd , lbnds++lbnds ′) : (lab.dec, ldecs++ldecs ′)
def

=

lab.bnd , lbnds ′′ : lab.dec, ldecs ′′ if lab 6∈ labdom(ldecs ′′)
ilab.bnd , lbnds ′′ : ilab.dec, ldecs ′′ otherwise, where ilab 6∈ labdom(ldecs ′′)

and ilab is open iff lab is
where lbnds ′′ : ldecs ′′ = (lbnds++lbnds ′) : (ldecs++ldecs ′)

• The elaborator assumes the presence of a structure basis :[[ldecs basis]] serving as the initial basis
for the internal language. ldecs basis must contain at least the following fields, which define
three exceptions, as well as equality functions eqcon for some fixed set of base types con :

Bind
∗

:[[tag:UnitTag, Bind:Tagged]],
Match

∗
:[[tag:UnitTag, Match:Tagged]],

fail∗ :[[tag:UnitTag, fail:Tagged]]

204 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

• In a number of rules, certain premises have the form metavariable = something , whereas
others have the form metavariable := something . I take “=” and “:=” both to mean syntactic
equality. However, in order to read the rules algorithmically, one should interpret the former
as “has the form”, and the latter as “is defined to be”.

• In a number of rules, I write a wildcard in the output of a premise when it is important
that the premise succeed, but it is irrelevant what the output is.

• Optional elements in rules are enclosed in angle brackets. For each rule, either all or none of
the elements in angle brackets must be present. In some cases, the optional element notation
is insufficient. Therefore, we have the additional notation

element1
or

element2

which means that either element1 or element2 must be present. If there are multiple such
choices in a single rule, this means that either the first element should be chosen in all cases,
or the second element should be chosen in all cases. An extension of this notation gives the
choices subscripts. Then all choices with the same subscript must agree (all first element or
all second element) but two choices with different subscripts are completely independent.

• To make things more concise, I often view the monomorphic instance of an expression as a
special case of the polymorphic instance. Except when otherwise noted, the kind Tn→T, the
type ∀(cvar p:kndp).con and the term exp[conp] may be considered shorthand for T, con and
exp, respectively, in the monomorphic instance when n = 0.

• There are some kinds that may also be viewed as signatures, e.g., knd = [[1:T, · · · , n:T]]. It
should be clear from context which syntactic class is intended. For instance, if knd is used to
classify a cvar , then it is a kind; but if knd is used to classify a mvar , then it is a signature.

As shown in Figure 9.3, the elaborator makes use of a number of derived forms of IL objects,
most of which are self-explanatory. A few points of note:

• A number of the derived form definitions invent new variables on the right-hand side. These
variables are always assumed to be fresh in the sense that they do not clash with the free
variables of the expression.

• I will sometimes write λ-expressions without the result type when it can be inferred from
context.

• plet is a projectible encoding of module-level let, assuming the submodules are projectible.
elet stands for “existential” let, and is used to introduce modules of “existential” signature.
See the translation of module expressions for examples of how these derived forms are used.

• catchcon exp with exp ′ attempts to evaluate exp (which has type con). If an exception is raised,
catch checks whether it is the “fail” exception. If so, exp ′ is evaluated; if not, the exception
is reraised.

• pproj
Σ{(labi 7→coni)n

i=1}
labk

(exp, exp ′) evaluates exp to a value of the given sum type, and then
checks whether it is tagged with labk. If so, it projects out the underlying value (of type
conk); if not, the exception exp ′ is raised.

9.3. ELABORATION 205

Unit
def

= {}

Bool
def

= Σ{1:Unit, 2:Unit}

false
def

= injBool
1 {}

true
def

= injBool
2 {}

if exp0 then exp2 else exp1
def

= case exp0 of (i 7→ λevar :Unit.exp i)
2
i=1 end

λ(evar :con):con ′.exp
def

= fix 1 evar ′(evar :con):con ′=exp end

kndn def

= {1:knd , · · · , n:knd}

knd1× · · · ×kndn
def

= {1:knd1, · · · , n:kndn}

(con1, · · · , conn)
def

= {1=con1, · · · , n=conn}

con1 × · · · × conn
def

= {1:con1, · · · , n:conn}

(exp1, · · · , expn)
def

= {1=exp1, · · · , n=expn}

Π(cvar 1, · · · , cvarn).knd
def

= Π(cvar :Tn).knd [cvar .i/cvar i]
n
i=1

λ(cvar 1, · · · , cvarn).con
def

= λ(cvar :Tn).con [cvar .i/cvar i]
n
i=1

∀(cvar 1, · · · , cvarn).con
def

= ∀(cvar :Tn).con [cvar .i/cvar i]
n
i=1

Λ(cvar 1, · · · , cvarn).exp
def

= Λ(cvar :Tn).exp[cvar .i/cvar i]
n
i=1

let cvar=con in (mod : sig)
def

= let mvar=[1=con] in (mod [mvar c.1/cvar] : sig)

(mod .lab : con)
def

= let mvar=mod in (mvar .lab : con), when mod 6= pmod

(mod .lab : sig)
def

= let mvar=mod in (mvar .lab : sig), when mod 6= pmod

pletmvar=pmod 1 in pmod 2
def

= [1.mvar=pmod 1, 2=pmod 2].2

eletmvar=mod 1 inmod 2
def

= [hidden.mvar=mod 1, visible∗=mod 2]

∃(mvar :sig1).sig2
def

= [[hidden.mvar :sig1, visible∗:sig2]]

failcon
def

= raisecon basis .fail∗.fail

catchcon exp with exp ′ def

= handle exp withλevar :Tagged.
iftagof evar is basis .fail∗.tag
then λevar :Unit.exp ′ else raisecon evar

pproj
Σ{(labi 7→coni)

n
i=1}

labk
(exp, exp ′)

def

= case exp of

lab1 7→ λevar :con1.raise
conk exp ′, · · · ,

labk 7→ λevar :conk.evar , · · · ,
labn 7→ λevar :conn.raiseconk exp ′ end

Figure 9.3: Derived Forms

• Although I have not written their definitions down here, I assume that less restrictive versions
of most IL term constructs have been defined (in terms of let) that permit subterms to be
arbitrary terms, not just values, and that evaluate those subterms in left-to-right order. For
example, I treat exp1 exp2 as shorthand for let evar 1=exp1 in let evar 2=exp2 in evar 1 evar2.

206 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

9.3.2 Main Translation Rules

Type Expressions Γ ` ty ; con : T

Γ ` int ; Int : T
(9.7)

Rule 9.7: There are analogous rules for the other base types (int, bool, unit, string, etc.),
and the base type constructors (ref).

Γ ` exn ; Tagged : T
(9.8)

Γ c̀tx tyvar ; con : T

Γ ` tyvar ; con : T
(9.9)

Rule 9.9: As ML does not support higher-kinded polymorphism at the core language level, type
variables all have kind T.

∀i ∈ 1..n : Γ ` ty i ; con i : T

Γ ` {reclab1:ty1, · · · ,reclabn:tyn} ; {reclab1:con1, · · · , reclabn:conn} : T
(9.10)

Γ ` ty ; con : T Γ ` ty ′
; con ′ : T

Γ ` ty -> ty ′
; con → con ′ : T

(9.11)

Γ c̀tx longconid ; con : Tn→T
∀i ∈ 1..n : Γ ` ty i ; con i : T

Γ ` (ty1, · · · ,tyn) longconid ; con (con1, · · · , conn) : T
(9.12)

Γ s̀tat modexp ; tstatsig

Γ,mvar :tstatsig ;mvar :tstatsig s̀ig conid ; con ′ : Tn→T
con := con ′[Can(Fst(tstatsig))/mvar c]

∀i ∈ 1..n : Γ ` ty i ; con i : T
modexp is not of the form longmodid

Γ ` (ty1, · · · ,tyn) modexp .conid ; con(con1, · · · , conn) : T
(9.13)

Rule 9.13: Projecting a type from a module. We must check that modexp is projectible.
To do this, we perform static elaboration (aka the first phase of recursive module elaboration)
and check that the static signature of modexp is in fact transparent. (Recall that transparency
and projectibility amount to the same thing.) We can then project out the conid component of
Can(Fst(tstatsig)).

The reason we perform static elaboration on modexp instead of ordinary elaboration is that
the dynamic components of modexp are irrelevant as far as projection of its type components is
concerned. Just as Fst(mod) may be well-formed even if mod is not, so modexp .conid may be
well-formed even if modexp is not.

9.3. ELABORATION 207

Term Expressions Γ ` expr ; exp : con

Γ ` scon ; scon : type(scon)
(9.14)

Rule 9.14: We assume a meta-level function type which gives the IL type of each constant.

Γ c̀tx longexpid ; exp : ∀(cvar p:kndp).con
Γ ` conp : kndp

Γ ` longexpid ; exp[conp] : con [conp/cvar p]
(9.15)

Rule 9.15: Potentially polymorphic variables. This is an instance of nondeterminism, where we
must guess the conp with which to instantiate the type arguments of exp, if there are any.

Γ ` modexp ; mod :κ sig
Γ,mvar :sig ;mvar :sig s̀ig expid ; exp : ∀(cvar p:kndp).con

′

Γ,mvar :sig , cvar p:kndp ` con ′ ≡ con : T
Γ, cvar p:kndp ` con : T Γ ` conp : kndp

modexp is not of the form longmodid

Γ ` modexp .expid ; letmvar=mod in (exp[con p] : con [conp/cvarp]) : con [conp/cvarp]
(9.16)

Rule 9.16: modexp.expid is elaborated as if it were let modulemodid = modexp inmodid .expid end.
See the elaboration of let bindings (Rule 9.18 below).

∀i ∈ 1..n : Γ ` expr i ; expi : con i

Γ ` {reclab1 = expr 1, · · · , reclabn = exprn} ;

{reclab1=exp1, · · · , reclabn=expn} : {reclab1:con1, · · · , reclabn:conn}

(9.17)

Γ ` bindings ; lbnds : ldecs
Γ, ilab∗.mvar :[[ldecs]] ` expr ; exp : con ′

Γ,mvar :[[ldecs]] ` con ′ ≡ con : T Γ ` con : T

Γ ` let bindings in expr end ; letmvar=[lbnds] in (exp : con) : con
(9.18)

Rule 9.18: The “open label” convention is used here to make the local bindings accessible while
translating expr . The elaborator verifies that the translated expression can be given a a type,
which must not depend on any abstract types defined by bindings . As a practical matter, this can
always be achieved by computing the normal form of con ′ (by Stone and Harper’s normalization
algorithm [75]) and then checking to make sure that mvar c is not free in it.

Γ ` expr ; exp : con ′′→ con
Γ ` expr ′ ; exp ′ : con ′

Γ ` con ′ ≡ con ′′ : T
Rule 9.20 does not apply.

Γ ` expr expr ′
; exp exp ′ : con

(9.19)

Rule 9.19: General function application, where exp is not a datatype constructor.

208 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

Γ c̀tx longexpid ; pmod .lab i : ∀(cvarp:kndp).con i → con

Γ ` pmod .conid in : ∀(cvar p:kndp).con
sum con

consum = Σ{lab1:con1, . . . , labn:conn}
Γ ` expr ′ ; exp ′ : con ′

Γ ` conp : kndp Γ ` con ′ ≡ con i[conp/cvar p] : T

Γ ` longexpid expr ′
; pmod .conid in[conp]〈〈inj

consum[conp/cvarp]
labi

exp ′〉〉 : con[conp/cvar p]
(9.20)

Rule 9.20: Application of a (potentially polymorphic) datatype constructor. The rule is a bit
complicated only because we make the optimization of inlining the constructor application as an
injection into the appropriate sum type, followed by a call to the datatype’s in coercion.

Γ ` expr ; exp : con
Γ ` ty ; con ′ : T Γ ` con ≡ con ′ : T

Γ ` expr : ty ; exp : con
(9.21)

Rule 9.21: Type constraints on expressions are verified, but do not appear in the translation.

Γ ` expr ; exp : con Γ ` match ; val : Tagged→ con ′ Γ ` con ≡ con ′ : T

Γ ` expr handle match ;

handle exp withλ(evar :Tagged):con .(catchcon val evar with raisecon evar) : con

(9.22)

Rule 9.22: The handling expression val evar will fail if the handler pattern does not match the
exception caught by the IL handle, in which case we re-raise the exception.

Γ ` expr ; exp : Tagged Γ ` con : T

Γ ` raise expr ; raisecon exp : con
(9.23)

Rule 9.23: raise expressions can be given any (valid) type.

Γ ` match ; val : con1 → con2

Γ ` fn match ;

λ(evar :con1):con2.(catch
con2 val evar with raisecon2 basis .Match

∗
.Match) :

con1 → con2

(9.24)

Rule 9.24: The application exp var will fail if the match fails; we turn the failure into a match

exception.

Γ ` modexp ; mod :κ sig Γ c̀tx longconid ; vpmod .lab : T

Γ ` vpmod .lab pack :P sig ′ par
−→[[it:vpmod .lab]]

Γ,mvar :sig s̀ub mvar : sig � sig ′
; pmod ′ :

Γ ` pack modexp as longconid ;

letmvar=mod in (vpmod .lab packpar(pmod ′).it : vpmod .lab) : vpmod .lab

(9.25)

Rule 9.25: The package type is required to be a longconid so that the “pack” functor is easy to
locate.

9.3. ELABORATION 209

Matches Γ ` match ; val : con

Γ ` con ′ : T
Γ, evar :con ′ ` pat ⇐ evar : con ′ else basis .fail∗.fail ; lbnds : ldecs

Γ, ilab∗.mvar :[[ldecs]] ` expr ; exp : con

Γ ` pat => expr ; λ(evar :con ′):con .letmvar=[lbnds] in (exp : con) : con ′→ con
(9.26)

Rule 9.26: The type con is well-formed in Γ because the ldecs only contain term declarations.

Γ ` mrule ; val : con1 → con2

Γ ` match ; val ′ : con ′
1 → con ′

2

Γ ` con1 → con2 ≡ con ′
1 → con ′

2 : T

Γ ` mrule | match ; λ(evar :con1):con2.catch
con2 val evar with val ′ evar : con1 → con2

(9.27)

Bindings Γ ` bindings ; lbnds :κ ldecs

Γ ` · ; · :P ·
(9.28)

Γ ` sigexp ; sig : Sig Γ, sigid=sig ` bindings ; lbnds :κ ldecs

Γ ` signature sigid = sigexp 〈;〉 bindings ; lbnds :κ ldecs
(9.29)

Rule 9.29: signature bindings do not produce any actual IL bindings or declarations; they just
provide shorthand for signature expressions during elaboration.

Γ ` binding ; lbnds1 :κ1
ldecs1

Γ, ldecs1 ` bindings ; lbnds2 :κ2
ldecs2

Γ ` binding 〈;〉 bindings ; lbnds 1++lbnds2 :κ1tκ2
ldecs1++ldecs2

(9.30)

Rule 9.30: The syntactic-concatenation-with-renaming operation is used here to relabel any
shadowed bindings from lbnds1.

Γ ` binding ; lbnds :κ ldecs

Γ ` expr ; exp : con
Γ, evar :con ` pat ⇐ evar : con else basis .Bind

∗
.Bind ; lbnds : ldecs

Γ ` val pat = expr ; ilab.evar=exp, lbnds :P ilab.evar :con , ldecs
(9.31)

Rule 9.31: Monomorphic val bindings. If the pattern match fails, we catch the fail exception and
reraise a bind exception. We separate monomorphic val bindings from polymorphic val bindings
because polymorphic bindings impose a value restriction on exp while monomorphic bindings do
not.

210 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

kndp := [[tyvar 1:T, · · · , tyvarm:T, 1:T, · · · , k:T]]
Γ, ilab∗.mvar p:kndp ` expr ; vexp : con
Γ′ := Γ, ilab∗.mvarp:kndp, evar :∀(mvar c

p:kndp).con

Γ′ ` pat ⇐ evar [mvar c
p] : con else basis .Bind

∗
.Bind ;

lab1=vexp1, · · · , labn=vexpn : lab1:con1, · · · , labn:conn

∀i ∈ 1..n :
lbnd i := labi=Λ(mvar c

p:kndp).vexp i

ldeci := labi:∀(mvar c
p:kndp).con i

Γ ` val (tyvar 1, · · · ,tyvarm) pat = expr ;

ilab.evar=Λ(mvar c
p:kndp).vexp, lbnd 1, · · · , lbndn :P

ilab.evar :∀(mvar c
p:kndp).con , ldec1, · · · , ldecn

(9.32)

Rule 9.32: Polymorphic val bindings. Like HS, I assume that a val declaration is explicitly
annotated with the type variables scoped in that declaration. Type inference may introduce k
additional type variables that are not mentioned in the source (as in val f = fn x => x). The
translation of expr is required to be valuable, so that the type abstraction in the output of the
rule is well-formed and does not suspend any computational effects. I require all the pattern-
matching bindings to be valuable as well; this means effectively that pat must be irrefutable and
not contain any ref patterns. (This requirement marks a departure from HS, in which some of the
pattern bindings are allowed to be non-valuable and are consequently not generalized. I believe my
semantics is easier to understand, and it conforms more closely to what is implemented in TILT.)

kndp := [[tyvar 1:T, · · · , tyvarm:T, 1:T, · · · , k:T]]

Γ′ := Γ, ilab∗.mvar p:kndp, expid 1.evar
′
1:con1 → con ′

1, · · · , expidn.evar ′n:conn → con ′
n

∀i ∈ 1..n : Γ′ ` match i ; λ(evar i:con i):con
′
i.expi : con i → con ′

i

valk := fix k (evar ′i(evar i:con i):con
′
i=expi)

n
i=1 end

Γ ` fun (tyvar 1, · · · ,tyvarm) expid 1 = fn match1 and · · · and expidn = fn matchn ;

expid1=Λ(mvar c
p:kndp).val1, · · · , expidn=Λ(mvar c

p:kndp).valn :P
expid1:∀(mvar c

p:kndp).con1 → con ′
1, · · · , expidn:∀(mvar c

p:kndp).conn → con ′
n

(9.33)

Rule 9.33: My syntax for fun bindings is slightly different from SML’s. It would not be difficult
to support SML-style clausal function definitions by desugaring them into the present syntax.

∀i ∈ 1..n : Γ c̀tx longmodid i ; pmod i : tsig i

Γ ` open longmodid 1 · · · longmodid n ;

ilab1
∗=pmod 1, · · · , ilabn

∗=pmodn :P ilab1
∗:tsig1, · · · , ilabn

∗:tsign

(9.34)

Rule 9.34: Makes the components of the opened modules visible in the current namespace by
binding with open labels. The signatures of the modules are specified as tsig ’s simply to emphasize
that the signatures of projectible modules are transparent.

Γ ` ty ; con : T

Γ ` exception expid of ty ;

ilab∗=[tag.evar=new tag[con], expid=λ(evar ′:con):Tagged.tag(evar , evar ′)] :P
ilab∗:[[tag.evar :con Tag, expid :con →Tagged]]

(9.35)

9.3. ELABORATION 211

Γ ` exception expid ;

ilab∗=[tag.evar=new tag[Unit], expid=tag(evar , {})] :P
ilab∗:[[tag.evar :UnitTag, expid :Tagged]]

(9.36)

Γ c̀tx longexpid ; pmod .lab : con
Γ ` pmod .tag : con ′

Γ ` exception expid = longexpid ;

ilab∗=[tag=pmod .tag, expid=pmod .lab] :P ilab∗:[[tag:con ′, expid :con]]

(9.37)

Rule 9.37: Structures containing a “tag” component are created by EL exception declarations
only.

Γ ` bindings1 ; lbnds1 :κ1
ldecs1

Γ, ilab∗.mvar :[[ldecs1]] ` bindings2 ; lbnds2 :κ2
ldecs2

Γ ` local bindings1 in bindings2 end ;

ilab.mvar=[lbnds1], lbnds2 :κ1tκ2
ilab.mvar :[[ldecs1]], ldecs2

(9.38)

Rule 9.38: This rule exemplifies HS’s approach to the avoidance problem, which I have followed.
Bindings are exported for all of the declarations, so it is perfectly OK for the public ldecs 2 to refer
to the private ldecs1 (since the ldecs1 do not go out of scope). The ldecs1 are guaranteed to be
inaccessible from the EL, however, because they are segregated into a substructure with an internal
label (that is not open).

Γ, tyvar 1.cvar 1:T, · · · , tyvarn.cvarn:T ` ty ; con : T

Γ ` type (tyvar 1, · · · ,tyvarn) conid = ty ;

conid=λ(cvar 1, · · · , cvarn).con :P conid :Π(cvar 1, · · · , cvarn).s(con)

(9.39)

Γ c̀tx longconid ; pmod .lab : tknd
Γ ` pmod :P [[lab.cvar :tknd , lab in:con in, lab out:conout, ldecs]]

ldecs = lab1.dec1, · · · , labn.decn

Γ ` datatype conid = datatype longconid ;

ilab∗=

[
conid.cvar=pmod .lab, conid in=pmod .lab in,

conid out=pmod .lab out, lab1=pmod .lab1, · · · , labn=pmod .labn

]

:P

ilab∗:[[conid.cvar :tknd , conid in:con in, conid out:conout, ldecs]]

(9.40)

Rule 9.40: Copying a datatype essentially involves copying the whole module that defines the
datatype, its in and out coercions, and its data constructors. Unfortunately, we cannot just copy
the whole module all at once because the name of the new type affects the labels assigned to the
type component and the in and out coercions.

Γ ` datbinds ; sig Γ `can sig ; mod

Γ ` datatype datbinds ; ilab∗=(mod :>P sig) : ilab∗:sig
(9.41)

Rule 9.41: For datatype bindings, we compute the canonical implementation of the correspond-
ing datatype spec.

212 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

Γ ` sigexp ; sig : Sig

mod :=

conid.cvar=〈|sig |〉,
conid pack=λpar(mvar :sig):[[it:cvar]].[it= pack mvar as sig],

conid unpack=λpar(mvar :[[it:cvar]]):sig .unpack mvar .it as sig

sig ′ :=

conid.cvar :T,

conid pack:sig
par
−→[[it:cvar]],

conid unpack:[[it:cvar]]
par
−→sig

Γ ` packtype conid = sigexp ; ilab∗=(mod :>P sig ′) :P ilab∗:sig ′ (9.42)

Rule 9.42: It is necessary that the “unpack” functor be partial, since unpacking is an im-
pure/inseparable operation. It does not matter whether the “pack” functor is total or partial, since
it is only ever applied by Rule 9.25.

Γ ` modexp ; mod :κ sig

Γ ` module modid = modexp ; modid=mod :κ modid :sig
(9.43)

Module Expressions Γ ` modexp ; mod :κ sig

Note: The translation rule for recursive modules is presented in Section 9.3.8.

Γ c̀tx longmodid ; pmod : tsig

Γ ` longmodid ; pmod :P tsig
(9.44)

Γ ` bindings ; lbnds :κ ldecs

Γ ` struct bindings end ; [lbnds] :κ [[ldecs]]
(9.45)

Γ ` modexp ; mod :κ sig

Γ,mvar :sig ;mvar :sig s̀ig modid ; pmod : tsig
modexp is not of the form longmodid

Γ ` modexp.modid ; elet mvar=mod in pmod :κ ∃(mvar :sig).tsig
(9.46)

Rule 9.46: modexp.modid is elaborated as if it were let modulemodid ′ = modexp inmodid ′.modid end.
See the elaboration of module-level let bindings (Rule 9.50 below).

Γ ` sigexp ; sig : Sig

Γ,modid.mvar :sig ` modexp ; mod :P sig ′

Γ ` functor (modid : sigexp) -> modexp ;

λtot(mvar :sig).mod :P Πtot(mvar :sig).sig ′

(9.47)

Γ ` sigexp ; sig : Sig

Γ,modid.mvar :sig ` modexp ; mod :κ sig ′

Γ ` functor (modid : sigexp) ->> modexp ;

λpar(mvar :sig):sig ′.mod :P Πpar(mvar :sig).sig ′

(9.48)

9.3. ELABORATION 213

Γ ` modexp1 ; mod 1 :κ1
sig1

Γ ` modexp2 ; mod 2 :κ2
sig2

Γ′ := Γ,mvar 1:sig1,mvar 2:sig2

Γ′
p̀eel mvar 1:sig1 ; pmod : Πτ (mvar :sig ′).sig ′′

Γ′
s̀ub mvar 2 : sig2 � sig ′

; pmod ′ :

κ =

{
P if κ1 = κ2 = P and τ = tot

I otherwise

Γ ` modexp1(modexp2) ;

elet mvar 1=mod 1 in elet mvar 2=mod 2 in pmod τ (pmod ′) :κ
∃(mvar 1:sig1).∃(mvar 2:sig2).sig

′′[pmod ′/mvar]

(9.49)

Rule 9.49: Note the use of peeling to uncover the underlying functor signature of mod 1.

Γ ` bindings ; lbnds :κ1
ldecs

Γ, ilab∗.mvar :[[ldecs]] ` modexp ; mod :κ2
sig

Γ ` let bindings in modexp end ;

elet mvar=[lbnds] inmod :κ1tκ2
∃(mvar :[[ldecs]]).sig

(9.50)

Γ ` modexp ; mod :κ sig Γ ` sigexp ; tsig : Sig

Γ,mvar :sig s̀ub mvar : sig � tsig ; pmod :

Γ ` modexp seal sigexp ; purify(let mvar=mod in (pmod : tsig)) :P tsig
(9.51)

Rule 9.51: Regardless of what kind of sealing is requested, if the sealing signature is transparent,
then we take this chance to observe that the sealed module is in fact pure/separable.

Rule 9.51 does not apply.
Γ ` modexp ; mod :κ sig Γ ` sigexp ; sig ′ : Sig

Γ,mvar :sig s̀ub mvar : sig � sig ′
; pmod : tsig

Γ ` modexp : sigexp ; elet mvar=mod in pmod :κ ∃(mvar :sig).tsig
(9.52)

Rule 9.52: As in SML, ascribing a signature to a structure using “:” hides components (this
hiding being accomplished via an explicit coercion), but allows the identity of the remaining type
components to leak through in the transparent tsig .

Rule 9.51 does not apply.
Γ ` modexp ; mod :κ sig Γ ` sigexp ; sig ′ : Sig

Γ,mvar :sig s̀ub mvar : sig � sig ′
; pmod :

Γ ` modexp :> sigexp ;

letmvar=mod in ((pmod :>P sig ′) : sig ′) :κ sig ′

(9.53)

Rule 9.51 does not apply.
Γ ` modexp ; mod :κ sig Γ ` sigexp ; sig ′ : Sig

Γ,mvar :sig s̀ub mvar : sig � sig ′
; pmod :

Γ ` modexp :>> sigexp ;

let mvar=mod in ((pmod :>I sig ′) : sig ′) :I sig ′

(9.54)

214 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

Rules 9.53 and 9.54: Opaque sealing does not require the use of an existential signature; we can
just use a normal IL module-level let, as the result is sealed with a signature that is well-formed
in Γ. The only difference between basic and impure sealing is which IL sealing construct they
translate into.

Γ ` expr ; exp : con Γ c̀tx longconid ; vpmod .lab : T

Γ ` con ≡ vpmod .lab : T Γ ` vpmod .lab unpack :P [[it:con]]
par
−→sig

Γ ` unpack expr as longconid ; vpmod .lab unpackpar([it=exp]) :I sig
(9.55)

Specifications
Γ ` specs ; ldecs

Γ s̀tat specs ; statldecs

Normal and static elaboration rules for specifications and signature expressions are often very
similar. I will write Γ 〈̀stat〉 spec(s) ; ldecs and Γ 〈̀stat〉 sigexp ; sig : Sig in certain rules to
denote that the rule can be used to derive either judgment by replacing all instances of 〈̀stat〉 with
` or all instances of 〈̀stat〉 with s̀tat.

Γ 〈̀stat〉 · ; ·
(9.56)

Γ 〈̀stat〉 spec ; ldecs1 Γ, ldecs1 〈̀stat〉 specs ; ldecs2

vislabs(ldecs1) ∩ vislabs(ldecs2) = ∅

Γ 〈̀stat〉 spec specs ; ldecs1, ldecs2
(9.57)

Rule 9.57: All that is necessary for the output ldecs to be well-formed is that labdom(ldecs 1)
and labdom(ldecs2) be disjoint. This condition would not, however, prevent one from writing a
spec containing, say, two datatype specifications of the same type, due to the use of open labels
in specs. We therefore require additionally that the visible labels exported by each spec be disjoint
from the visible labels exported by all the other specs.

Γ ` spec ; ldecs

Γ s̀tat spec ; statldecs

Γ, tyvar 1.cvar 1:T, · · · , tyvarn.cvarn:T ` ty ; con : T

Γ ` val (tyvar 1, · · · , tyvar n) expid : ty ; expid :∀(cvar 1, · · · , cvarn).con
(9.58)

Rule 9.58: Specification of a (potentially polymorphic) value. As with polymorphic value
bindings, we assume that the free type variables tyvar i in ty are bound explicitly.

spec is a val specification.

Γ s̀tat spec ; ·
(9.59)

Rule 9.59: Static elaboration ignores val specs.

Γ ` ty ; con : T

Γ ` exception expid of ty ; expid :[[tag:con Tag, expid :con →Tagged]]
(9.60)

9.3. ELABORATION 215

Γ ` exception expid ; expid :[[tag:UnitTag, expid :Tagged]]
(9.61)

spec is of the form exception expid or exception expid of ty .

Γ s̀tat spec ; expid :[[·]]
(9.62)

Γ 〈̀stat〉 type (tyvar 1, · · · ,tyvarn) expid ; expid :Tn→T
(9.63)

Γ, tyvar 1.cvar1:T, · · · , tyvar n.cvarn:T ` ty ; con : T

Γ 〈̀stat〉 type (tyvar 1, · · · ,tyvarn) expid = ty ; expid :Π(cvar 1, · · · , cvarn).s(con)
(9.64)

Γ c̀tx longconid ; pmod .lab : tknd
Γ ` pmod :P [[lab.cvar :tknd , lab in:con in, lab out:conout, ldecs]]

Γ ` datatype conid = datatype longconid ;

ilab∗:[[conid.cvar :tknd , conid in:con in, conid out:conout, ldecs]]

(9.65)

Γ c̀tx longconid ; con : tknd

Γ s̀tat datatype conid = datatype longconid ; ilab∗:[[conid :tknd]]
(9.66)

Γ ` datbinds ; sig

Γ ` datatype datbinds ; ilab∗:sig
(9.67)

Γ ` datbinds ; sig

Γ s̀tat datatype datbinds ; ilab∗:Stat(sig)
(9.68)

Γ ` sigexp ; sig : Sig

sig ′ :=

conid.cvar :T,

conid pack:sig
par
−→[[it:cvar]],

conid unpack:[[it:cvar]]
par
−→sig

Γ ` packtype conid = sigexp ; ilab∗:sig ′ (9.69)

sig ′ := [[conid :T, conid pack:[[·]], conid unpack:[[·]]]]

Γ s̀tat packtype conid = sigexp ; ilab∗:sig ′ (9.70)

Γ 〈̀stat〉 sigexp ; sig : Sig

Γ 〈̀stat〉 module modid : sigexp ; modid :sig
(9.71)

Γ 〈̀stat〉 sigexp ; sig : Sig

Γ 〈̀stat〉 include sigexp ; ilab∗:sig
(9.72)

Rule 9.72: The elaboration of include specs is analogous to the elaboration of open bindings.

Γ 〈̀stat〉 specs ; ldecs sig := [[ldecs]]

Γ,mvar :sig ;mvar :sig s̀ig longconid 1 ; mvar c.labs1 : knd1

Γ,mvar :sig ;mvar :sig s̀ig longconid 2 ; mvar c.labs2 : knd2

sig s̀h labs1 := labs2 ; sig ′

or
sig s̀h labs2 := labs1 ; sig ′

sig ′ = [[ldecs ′]] Γ ` ldecs ′ ≤ ldecs

Γ 〈̀stat〉 specs sharing type longconid 1 = longconid 2 ; ldecs ′
(9.73)

216 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

Rule 9.73: We need the “or” choice in this rule because the symmetric sharing constraint does
not indicate which of the two types is specified earlier in the ldecs .

Γ 〈̀stat〉 specs ; ldecs sig := [[ldecs]]

Γ,mvar :sig ;mvar :sig s̀ig longmodid 1 ; pmod 1 : sig1

Γ,mvar :sig ;mvar :sig s̀ig longmodid 2 ; pmod 2 : sig2

Fst(pmod 1) = mvar c.labs1 Fst(pmod 2) = mvar c.labs2

sig s̀h labs1 := labs2 ; sig ′

or
sig s̀h labs2 := labs1 ; sig ′

sig ′ = [[ldecs ′]] Γ ` ldecs ′ ≤ ldecs

Γ 〈̀stat〉 specs sharing longmodid 1 = longmodid 2 ; ldecs ′
(9.74)

Rule 9.74: We take Fst of pmod 1 and pmod 2 when computing labs1 and labs2 in order to
eliminate any unroll’s of rds’s and just leave a sequence of projections.

Signature Expressions
Γ ` sigexp ; sig : Sig

Γ s̀tat sigexp ; statsig : Sig

Γ(sigid) = sig

Γ ` sigid ; sig : Sig
(9.75)

Γ(sigid) = sig

Γ s̀tat sigid ; Stat(sig) : Sig
(9.76)

Γ 〈̀stat〉 specs ; ldecs

Γ 〈̀stat〉 sig specs end ; [[ldecs]] : Sig
(9.77)

Γ 〈̀stat〉 sigexp ; sig : Sig

Γ,modid.mvar :sig 〈̀stat〉 sigexp ′
; sig ′ : Sig

Γ 〈̀stat〉 functor (modid : sigexp) -> sigexp ′
; Πtot(mvar :sig).sig ′ : Sig

(9.78)

Γ ` sigexp ; sig : Sig

Γ,modid.mvar :sig ` sigexp ′
; sig ′ : Sig

Γ ` functor (modid : sigexp) ->> sigexp ′
; Πpar(mvar :sig).sig ′ : Sig

(9.79)

Γ s̀tat (modid : sigexp) ->> sigexp ′
; [[·]] : Sig

(9.80)

Γ s̀tat sigexp ; statsig : Sig

Γ,modid.mvar :statsig ` sigexp ; sig : Sig

Γ ` statsig ≡ Stat(sig)

Γ ` rec (modid) sigexp ; ρ(mvar).sig : Sig
(9.81)

Rule 9.81: Note that the third premise is necessary because the static and normal elaborations
of sigexp are performed under different contexts. In particular, the declaration of modid in the
second premise may shadow earlier declarations of modid in the context Γ, in which case the first
two premises alone are not enough to guarantee that the static part of sigexp does not refer to

9.3. ELABORATION 217

modid . (For instance, observe that if the third premise were omitted and a type X.t were visible
in the context, then rec (X) sig type t = X.t end would be translated without complaint, and
the output would be ill-formed.)

Γ s̀tat sigexp ; statsig : Sig

Γ s̀tat rec (modid) sigexp ; ρ(statsig) : Sig
(9.82)

Γ 〈̀stat〉 sigexp ; sig : Sig

Γ, tyvar 1.cvar1:T, · · · , tyvar n.cvarn:T ` ty ; con : T

Γ,mvar :sig ;mvar :sig s̀ig longconid ; mvar c.labs : Tn→T
sig ẁt labs := λ(cvar 1, · · · , cvarn).con ; sig ′ Γ ` sig ′ ≤ sig

Γ 〈̀stat〉 sigexp where type (tyvar 1, · · · ,tyvarn) longconid = ty ; sig ′ : Sig
(9.83)

Patterns Γ ` pat ⇐ exp : con else val ; lbnds : ldecs

Rules 9.88 and 9.90 do not apply.

Γ ` expid ⇐ exp : con else val ; expid=exp : expid :con
(9.84)

Rule 9.84: Pattern match against an identifer (which is not a datatype or exception constructor)
should always succeed.

type(scon) = con

Γ ` scon ⇐ exp : con else val ;

ilab=if basis .eqcon (exp, scon) then {} else raiseUnit val : ilab:Unit

(9.85)

Rule 9.85: Pattern match against a constant. We need primitive equality functions for constants
appearing in patterns.

Γ ` ⇐ exp : con else val ; ilab=exp : ilab:con
(9.86)

Rule 9.86: Pattern match against a wildcard.

Γ ` ty ; con ′ : T Γ ` con ≡ con ′ : T
Γ ` pat ⇐ exp : con else val ; lbnds : ldecs

Γ ` pat : ty ⇐ exp : con else val ; lbnds : ldecs
(9.87)

Rule 9.87: Pattern match against an explicitly-typed pattern.

Γ c̀tx longexpid ; pmod .lab i : ∀(cvarp:kndp).con con ′ = con[conp/cvar p]

Γ ` pmod .conid out : ∀(cvar p:kndp).con consum

consum = Σ{lab1:con1, . . . , labn:conn} con i = Unit Γ ` conp : kndp

Γ ` longexpid ⇐ exp : con ′ else val ;

ilab=pproj
consum[conp/cvarp]
labi

(pmod .conid out[conp]〈〈exp〉〉, val) : ilab:Unit

(9.88)

Rule 9.88: Pattern match against a constant datatype constructor.

218 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

Γ c̀tx longexpid ; pmod .lab i : ∀(cvarp:kndp).con i → con
con ′

i = con i[conp/cvar p] con ′ = con[conp/cvar p]

Γ ` pmod .conid out : ∀(cvar p:kndp).con consum

consum = Σ{lab1:con1, . . . , labn:conn} Γ ` conp : kndp

Γ ` pat ⇐ pproj
consum[conp/cvarp]
labi

(pmod .conid out[conp]〈〈exp〉〉, val) : con ′
i else val ;

lbnds : ldecs

Γ ` longexpid pat ⇐ exp : con ′ else val ; lbnds : ldecs
(9.89)

Rule 9.89: Pattern match against a value-carrying datatype constructor.

Γ c̀tx longexpid ; pmod .lab : Tagged Γ ` pmod .tag : UnitTag

Γ ` longexpid ⇐ exp : Tagged else val ;

ilab=iftagof exp is pmod .tag thenλevar :Unit.{} else raiseUnit val : ilab:Unit

(9.90)

Rule 9.90: Pattern match against a constant exception constructor.

Γ c̀tx longexpid ; pmod .lab : con →Tagged

Γ ` pmod .tag : con Tag

Γ ` pat ⇐ (iftagof exp is pmod .tag thenλevar :con.evar else raisecon val) : con else val ;

lbnds : ldecs

Γ ` longexpid pat ⇐ exp : Tagged else val ; lbnds : ldecs
(9.91)

Rule 9.91: Pattern match against a value-carrying exception constructor.

con = {reclab1:con1, · · · , reclabn:conn〈, · · ·〉}
∀i ∈ 1..n : Γ ` pat i ⇐ πreclabi

exp : con i else val ; lbnds i : ldecs i

Γ ` {reclab1 = pat 1, · · · , reclabn = patn〈,...〉} ⇐ exp : con else val ;

lbnds1, · · · , lbndsn : ldecs1, · · · , ldecsn

(9.92)

Rule 9.92: Pattern match against a record of patterns. The syntactic concatenation of the
lbnds i/ldecs i is implicitly required to be well-formed. If it is not, it means that the pattern binds
the same identifier twice, which is not permitted.

Γ ` pat1 ⇐ exp : con else val ; lbnds1 : ldecs1

Γ ` pat2 ⇐ exp : con else val ; lbnds2 : ldecs2

Γ ` pat 1 as pat2 ⇐ exp : con else val ; lbnds1, lbnds2 : ldecs1, ldecs2
(9.93)

Rule 9.93: Pattern match against two patterns simultaneously.

Γ ` pat ⇐ get exp : con else val ; lbnds : ldecs

Γ ` ref pat ⇐ exp : con Ref else val ; lbnds : ldecs
(9.94)

Γ ` pat ⇐ exp : con ′ else val ; lbnds : ldecs
Γ ` con ≡ con ′ : T

Γ ` pat ⇐ exp : con else val ; lbnds : ldecs
(9.95)

9.3. ELABORATION 219

Datatype Definitions Γ ` datbinds ; sig

∀i ∈ 1..p, ∀k ∈ 1..r :

Γ′ := Γ, ilab∗.mvar c
dt:

[[

ilab∗1:[[conid 1:T
n1→T]], · · · , ilab∗p:[[conidp:T

np→T]],

conid ′
1:T

q1→T, · · · , conid ′
r:T

qr→T

]]

Γ′
i := Γ′, tyvar i1.cvar i1:T, · · · , tyvar ini

.cvar ini
:T

Γ′′ := Γ, ilab∗1.mvar c
1:[[conid 1:T

n1→T]], · · · , ilab∗p.mvar c
p:[[conidp:T

np→T]]

Γ′′
k := Γ′′, tyvar ′k1.cvar

′
k1:T, · · · , tyvar ′

kqk
.cvar ′kqk

:T

Γ′
i `

unit

or
ty ij

ij

; con ij : T (for j ∈ 1..mi) Γ′′
k ` ty ′

k ; con ′
k : T

consum
i := Σ

{
expid i1:con i1, · · · , expid imi

:con imi

}

con i := (mvar c
dt.ilab

∗
i .conid i)(cvar i1, · · · , cvar ini

)

sig i :=

conid i:T
ni→T,

conid i in:∀(cvar i1, · · · , cvar ini
).con sum

i con i,

conid i out:∀(cvar i1, · · · , cvar ini
).con i consum

i ,

expid ij:∀(cvar i1, · · · , cvar ini
).

con i

or
con ij → con i

ij

(for j ∈ 1..mi)

tkndk := Π(cvar ′
k1, · · · , cvar

′
kqk

).s(con ′
k)

sig := ρ(mvar dt).[[ilab
∗
1:sig1, · · · , ilab

∗
p:sigp, conid ′

1:tknd1, · · · , conid ′
r:tknd r]]

Γ ` (tyvar 11, · · · ,tyvar 1n1
) conid 1 = expid 11

or

of ty11

11

| · · · |expid 1m1

or

of ty1m1

1m1

and · · · and

(tyvar p1, · · · ,tyvar pnp
) conidp = expidp1

or

of typ1

p1

| · · · |expid pmp

or

of typmp

pmp

withtype (tyvar ′
11, · · · ,tyvar

′
1q1

) conid ′
1 = ty ′

1

and · · · and (tyvar ′
r1, · · · ,tyvar

′
rqr

) conid ′
r = ty ′

r

; sig

(9.96)

Rule 9.96: The elaboration of datatype definitions is actually quite straightforward; the rule
looks large and complex mainly because there are a number of different n-ary entities:

• ni = arity (number of type arguments) of the ith datatype (out of p datatype’s)

• qk = arity (number of type arguments) of the kth withtype (out of r withtype’s)

• mi = number of data constructors of the ith datatype

Note that the datatype’s may refer to any of the datatype’s and any of the withtype’s, but the
withtype’s may only refer to the datatype’s, not to one another.

Also note the use of an rds in the output signature to encode the dynamic-on-static recursive
dependencies between the signatures of the datatype modules. Having rds’s in the IL makes the
encoding of datatype’s here somewhat simpler than it is in HS, where the corresponding rule is
forced to fake an rds by “forward-declaring” the datatype’s.

220 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

9.3.3 Canonical Implementations of Signatures

decs `can sig ; mod

`can Fst(sig);s(cvar : sig) ; con ;mod cvar 6∈ dom(decs)
mod ′ := let cvar=µ(cvar :Fst(sig)).con in (mod : sig) decs ` mod ′ :P sig

decs `can sig ; mod ′ (9.97)

Rule 9.97: sig is expected to only contain IL translations of datatype specs and transparent
type specs (and module specs containing them). As outlined in Section 5.4, the basic idea here is
to first compute a canonical implementation of Fst(sig) by joining all the type specs in sig together
under one big µ-constructor. Once we have that µ-constructor, it is straightforward to define the
canonical implementation of sig : type specifications are implemented by copying the corresponding
components from the µ-constructor, and the only value specifications allowed in sig are the in and
out coercions and data constructors for datatype’s, for which there are canonical implementations
using fold’s, unfold’s and sum injections (see Rule 9.105).

The first premise invokes an auxiliary judgment that computes the canonical con of kind Fst(sig)
and the canonical mod of signature sig simultaneously. (con cannot be computed just based on
Fst(sig) because the value specifications in datatype specs in sig contain relevant type information
that is not in Fst(sig).) The auxiliary judgment assumes for convenience that we use the same
variable cvar both for the variable bound by the µ and the variable that the µ is bound to.

The last premise checks that the output module is well-formed, which is tantamount to checking
that the kind Fst(sig) on the µ-constructor is expandable. See Section 6.2 for a discussion of the
expandability restriction, and see Section 9.3.8 for more on the consequences of this restriction for
recursive modules.

`can lcdecs; ldecs ; lcbnds; lbnds

This and the following auxiliary judgments assume that the sig or ldec(s) input is in singleton
form—specifically, that it has the form s(cpath : sig) or s(cpath : ldec(s)), where cpath is a con-
structor path headed by the µ-variable cvar from Rule 9.97. Note that this precondition is indeed
satisfied by the signature s(cvar : sig) that is passed in originally in Rule 9.97. The singleton form
assumption simplifies some of the rules, e.g., the rds rule (Rule 9.104), which may assume the rds
it is given is degenerate.

`can ·; · ; ·; ·
(9.98)

`can lcdec; ldec ; lcbnd ; lbnd
`can lcdecs ; ldecs ; lcbnds ; lbnds

`can lcdec, lcdecs ; ldec, ldecs ; lcbnd , lcbnds ; lbnd , lbnds
(9.99)

`can lcdec; ldec ; lcbnd ; lbnd

`can lab.cvar :tknd ; lab.cvar :tknd ′
;

lab.cvar=Can(tknd); lab.cvar=Can(tknd ′)

(9.100)

Rule 9.100: For transparent type specifications, we can simply use the IL Can(·) function.

9.3. ELABORATION 221

`can knd ; sig ; con ;mod

`can lab.mvar c:knd ; lab.mvar :sig ; lab.mvar c=con ; lab.mvar=mod
(9.101)

`can knd ; sig ; con; mod

`can lcdecs ; ldecs ; lcbnds ; lbnds

`can [[lcdecs]]; [[ldecs]] ; [lcbnds]; [lbnds]
(9.102)

`can knd ′; sig ′
; con ;mod

`can Π(mvar c:knd).knd ′; Πtot(mvar :sig).sig ′
;

λ(mvar c:knd).con ;λtot(mvar :sig).mod

(9.103)

`can knd ; sig ; con ;mod

`can knd ; ρ(sig) ; con; roll(mod)
(9.104)

Rule 9.104: The rds is degenerate because it is assumed to be in singleton form.

knd = [[conid :Tn→T]]

con = cpath .conid (cvar p)

sig =

conid :Π(cvar p:T
n).s(con),

conid in:∀(cvar p:T
n).con sum con ,

conid out:∀(cvar p:T
n).con consum,

expid j :∀(cvarp:T
n).

con
or

conj → con

j

(for j ∈ 1..m)

con ′ := [conid=λ(cvar p:T
n).con sum]

mod :=

conid=λ(cvar p:T
n).con ,

conid in=Λ(cvar p:T
n).foldcon ,

conid out=Λ(cvar p:T
n).unfoldcon ,

expid j=Λ(cvar p:T
n).

foldcon〈〈injcon
sum

expidj

{}〉〉

or

λ(evar :conj).fold
con 〈〈injcon

sum

expidj

evar〉〉

j

`can knd ; sig ; con ′;mod
(9.105)

Rule 9.105: The canonical implementation of a datatype spec. A few points of note:

• We can assume that sig specifies the constructor conid as transparently equal to a type of
the form cpath .conid because sig is assumed to be of the form s(cpath : sig ′).

• This rule illustrates that it is necessary to have sig around in order to compute the output
con ′, because the definition of con ′ comes from looking at the types of conid ’s in and out
coercions, which do not show up in the input knd .

• con ′ implements conid as just a sum type, not a recursive sum type; all the recursive knot-
tying will be handled by the µ that Rule 9.97 wraps around the whole constructor at the very
end.

222 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

9.3.4 Coercive Signature Matching

decs s̀ub vpmod : sig0 � ldecs ; plbnds : tldecs

decs s̀ub vpmod : sig0 � · ; · : ·
(9.106)

decs s̀ub vpmod : sig0 � ldec ; plbnd : tldec
decs , tldec s̀ub vpmod : sig0 � ldecs ; plbnds : tldecs

decs s̀ub vpmod : sig0 � ldec, ldecs ; plbnd , plbnds : tldec, tldecs
(9.107)

decs s̀ub vpmod : sig0 � ldec ; plbnd : tldec

decs ; vpmod :sig0 s̀ig lab ; vexp : ∀(cvar ′p:knd ′
p).con

′

decs , cvar p:kndp ` con ′
p : knd ′

p decs , cvar p:kndp ` con ≡ con ′[con ′
p/cvar

′
p] : T

decs s̀ub vpmod : sig0 � lab.evar :∀(cvar p:kndp).con ;

lab.evar=Λ(cvar p:kndp).(vexp[con ′
p]) : lab.evar :∀(cvar p:kndp).con

(9.108)

Rule 9.108: Coercion to a (potentially) polymorphic value specification; this may involve implicit
polymorphic instantiation. Note that this rule also handles alpha-conversion of EL type variables,
as kndp and knd ′

p need not have the same labels on their type components.

decs ; vpmod :sig0 s̀ig lab ; con : knd

decs s̀ub vpmod : sig0 � lab.cvar :knd ; lab.cvar=con : lab.cvar :s(con : knd)
(9.109)

Rule 9.109: Coercion to a type constructor specification.

lab is not open
decs ; vpmod :sig0 s̀ig lab ; vpmod ′ : sig ′

decs s̀ub vpmod ′ : sig ′ � sig ; pmod : tsig

decs s̀ub vpmod : sig0 � lab.mvar :sig ; lab.mvar=pmod : lab.mvar :tsig
(9.110)

Rule 9.110: Coercion to a module specification.

decs s̀ub vpmod : sig0 � sig ; pmod : tsig

decs s̀ub vpmod : sig0 � lab∗.mvar :sig ; lab∗.mvar=pmod : lab∗.mvar :tsig
(9.111)

Rule 9.111: Coercion to an open module specification, which means that vpmod need not provide
a component labeled lab∗, but it must provide all the components in the signature sig .

decs s̀ub vpmod : sig0 � sig ; pmod : tsig

decs s̀ub vpmod : sig0 � ldecs ; plbnds : tldecs

decs s̀ub vpmod : sig0 � [[ldecs]] ; [plbnds] : [[tldecs]]
(9.112)

9.3. ELABORATION 223

decs p̀eel vpmod 0:sig0 ; vpmod : Πtot(mvar 1:sig1).sig
′
1

decs ,mvar 2:sig2 s̀ub mvar 2 : sig2 � sig1 ; pmod 1 :
decs ,mvar 2:sig2,mvar ′1:sig

′
1[pmod 1/mvar 1] s̀ub

mvar ′1 : sig ′
1[pmod 1/mvar 1] � sig ′

2 ; pmod ′
2 : tsig ′

2

decs s̀ub vpmod 0 : sig0 � Πtot(mvar 2:sig2).sig
′
2 ;

λtot(mvar 2:sig2).pletmvar ′
1=vpmod tot(pmod 1) in pmod ′

2 :
Πtot(mvar 2:sig2).tsig

′
2[vpmod tot(pmod 1)/mvar ′

1]

(9.113)

Rule 9.113: Coercion to a total (applicative) functor specification.

decs p̀eel vpmod 0:sig0 ; vpmod : Πτ (mvar 1:sig1).sig
′
1

decs ,mvar 2:sig2 s̀ub mvar 2 : sig2 � sig1 ; pmod 1 :
decs ,mvar 2:sig2,mvar ′1:sig

′
1[pmod 1/mvar 1] s̀ub

mvar ′1 : sig ′
1[pmod 1/mvar 1] � sig ′

2 ; pmod ′
2 :

decs s̀ub vpmod 0 : sig0 � Πpar(mvar 2:sig2).sig
′
2 ;

λpar(mvar 2:sig2):sig
′
2.let mvar ′1=vpmod τ (pmod 1) in (pmod ′

2 : sig ′
2) :

Πpar(mvar 2:sig2).sig
′
2

(9.114)

Rule 9.114: Coercion to a partial (generative) functor specification.

decs ,mvar stat:Stat(sig0) s̀ub mvar stat : Stat(sig0) � Stat(sig) ; pmod stat :
con := Fst(pmod stat)[Fst(vpmod)/mvar c

stat]
decs s̀ub vpmod : sig0 � s(con : sig [con/mvar c]) ; pmod : tsig

decs s̀ub vpmod : sig0 � ρ(mvar).sig ; roll(pmod) : ρ(tsig)
(9.115)

Rule 9.115: Coercion to a recursively dependent signature. The first premise serves essentially
as a way of coercing Fst(sig 0) to the kind Fst(sig). Instead of defining a whole other judgment of
coercive kind matching, we simply coerce Stat(sig 0) to Stat(sig) and then take Fst of the coercion
module. (The only slightly tricky point is that Stat(·) is not defined for modules, so we must make
up a module variable mvar stat and then substitute Fst(vpmod) for it later on.) This is a canonical
example of where static signatures and the Stat(·) function come in handy.

Once we have a constructor con of kind Fst(sig), we can coerce to the body of the rds (sub-
stituting con in place of the recursive variable) and then roll the coercion module into the rds.

9.3.5 Signature Patching

where type sig ẁt labs := phrase ; sig ′

FV(phrase) ∩ vardom(ldecs) = ∅
sig = [[ldecs , lab.var :class , ldecs ′]]

sig ẁt lab := phrase ; [[ldecs , lab.var :s(phrase : class), ldecs ′]]
(9.116)

FV(phrase) ∩ vardom(ldecs) = ∅
sig = [[ldecs , lab.mvar :sig ′, ldecs ′]]

sig ′
ẁt labs := phrase ; sig ′′

sig ẁt lab.labs := phrase ; [[ldecs , lab.mvar :sig ′′, ldecs ′]]
(9.117)

224 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

mvar 6∈ FV(phrase) sig = ρ(mvar).sig ′ sig ′
ẁt labs := phrase ; sig ′′

sig ẁt labs := phrase ; ρ(mvar).sig ′′ (9.118)

sharing sig s̀h labs1 := labs2 ; sig ′

sig = [[ldecs , lab ′.var ′:class ′, ldecs ′, lab.var :class , ldecs ′′]]

sig s̀h lab := lab ′
; [[ldecs , lab ′.var ′:class ′, ldecs ′, lab.var :s(var ′ : class), ldecs ′′]]

(9.119)

sig = [[ldecs , lab ′.var ′:class ′, ldecs ′, lab.var :sig ′′, ldecs ′′]]
sig ′′

ẁt labs := var ′ ; sig ′′′

sig s̀h lab.labs := lab ′ ; [[ldecs , lab ′.var ′:class ′, ldecs ′, lab.var :sig ′′′, ldecs ′′]]
(9.120)

sig = [[ldecs , lab ′.var ′:sig ′, ldecs ′, lab.var :sig ′′, ldecs ′′]]
sig ′′

ẁt labs := var ′.labs ′ ; sig ′′′

sig s̀h lab.labs := lab ′.labs ′ ; [[ldecs , lab ′.var ′:sig ′, ldecs ′, lab.var :sig ′′′, ldecs ′′]]
(9.121)

sig = [[ldecs , lab.var :sig ′, ldecs ′]] sig ′
s̀h labs := labs ′ ; sig ′′

sig s̀h lab.labs := lab.labs ′ ; [[ldecs , lab.var :sig ′′, ldecs ′]]
(9.122)

sig = ρ(mvar).sig ′ sig ′
s̀h labs := labs ′ ; sig ′′

sig s̀h labs := labs ′ ; ρ(mvar).sig ′′ (9.123)

9.3.6 Signature Peeling

decs p̀eel pmod :sig ; pmod ′ : sig ′

p̀eel pmod :sig ; pmod ′ decs ` pmod ′ :P sig ′

decs p̀eel pmod :sig ; pmod ′ : sig ′ (9.124)

p̀eel pmod :sig ; pmod ′

Auxiliary peeling judgment, which strips off all leading existentials, rds’s and maybe’s.

p̀eel pmod .visible∗:sig2 ; pmod ′

p̀eel pmod :∃(mvar :sig1).sig2 ; pmod ′ (9.125)

p̀eel unroll(pmod):sig ; pmod ′

p̀eel pmod :ρ(mvar).sig ; pmod ′ (9.126)

p̀eel fetch(pmod):sig ; pmod ′

p̀eel pmod :maybe(sig) ; pmod ′ (9.127)

The above rules do not apply.

p̀eel pmod :sig ; pmod
(9.128)

9.3. ELABORATION 225

9.3.7 Label Lookup

Context Lookup Γ c̀tx labs ; phrase : class

Γ c̀tx labs ; con Γ ` con : knd

Γ c̀tx labs ; con : knd
(9.129)

Γ c̀tx labs ; exp Γ ` exp : con

Γ c̀tx labs ; exp : con
(9.130)

Γ c̀tx labs ; pmod Γ ` pmod :P sig

Γ c̀tx labs ; pmod : sig
(9.131)

Γ c̀tx labs ; phrase

Auxiliary context lookup judgment.

Γ, lab.cvar :knd c̀tx lab ; cvar
(9.132)

lab 6= lab ′ Γ c̀tx lab ′ ; phrase

Γ, lab.cvar :knd c̀tx lab ′ ; phrase
(9.133)

Γ, lab.evar :con c̀tx lab ; evar
(9.134)

lab 6= lab ′ Γ c̀tx lab ′ ; phrase

Γ, lab.evar :con c̀tx lab ′ ; phrase
(9.135)

p̀eel mvar :sig ; pmod lab is not open

Γ, lab.mvar :sig c̀tx lab ; pmod
(9.136)

Rule 9.136: If we find the label and it corresponds to a module, we return the module in peeled
form.

lab 6= lab ′ Γ c̀tx lab ′ ; phrase lab is not open

Γ, lab.mvar :sig c̀tx lab ′ ; phrase
(9.137)

mvar :sig s̀ig lab ′ ; phrase

Γ, lab∗.mvar :sig c̀tx lab ′ ; phrase
(9.138)

Rule 9.138: When we hit an open label in the context, we switch to signature lookup in order
to search for lab ′ inside sig .

mvar :sig s̀ig lab ′ 6; Γ c̀tx lab ′ ; phrase

Γ, lab∗.mvar :sig c̀tx lab ′ ; phrase
(9.139)

Γ c̀tx lab ; pmod : sig Γ; pmod :sig s̀ig labs ; phrase : class

Γ c̀tx lab.labs ; phrase
(9.140)

226 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

Signature Lookup decs; pmod :sig s̀ig labs ; phrase : class

decs ` pmod :P sig pmod :sig s̀ig lab ; phrase decs ` phrase : class

decs ; pmod :sig s̀ig lab ; phrase : class
(9.141)

decs ; pmod :sig s̀ig lab ; pmod ′ : sig ′

decs ; pmod ′:sig ′ s̀ig labs ; phrase : class

decs ; pmod :sig s̀ig lab.labs ; phrase : class
(9.142)

pmod :sig s̀ig lab ; phrase

Auxiliary signature lookup judgment, defined very similarly to the auxiliary context lookup judg-
ment.

pmod :[[ldecs , lab.cvar :knd]] s̀ig lab ; Fst(pmod).lab
(9.143)

lab 6= lab ′ pmod :[[ldecs]] s̀ig lab ′ ; phrase

pmod :[[ldecs , lab.cvar :knd]] s̀ig lab ′ ; phrase
(9.144)

pmod :[[ldecs , lab.evar :con]] s̀ig lab ; pmod .lab
(9.145)

lab 6= lab ′ pmod :[[ldecs]] s̀ig lab ′ ; phrase

pmod :[[ldecs , lab.evar :con]] s̀ig lab ′ ; phrase
(9.146)

p̀eel pmod .lab:sig ; phrase lab is not open

pmod :[[ldecs , lab.mvar :sig]] s̀ig lab ; phrase
(9.147)

lab 6= lab ′ pmod :[[ldecs]] s̀ig lab ′ ; phrase lab is not open

pmod :[[ldecs , lab.mvar :sig]] s̀ig lab ′ ; phrase
(9.148)

pmod .lab∗:sig s̀ig lab ′ ; phrase

pmod :[[ldecs , lab∗.mvar :sig]] s̀ig lab ′ ; phrase
(9.149)

pmod .lab∗:sig s̀ig lab ′ 6; pmod :[[ldecs]] s̀ig lab ′ ; phrase

pmod :[[ldecs , lab∗.mvar :sig]] s̀ig lab ′ ; phrase
(9.150)

unroll(pmod):sig s̀ig lab ; phrase

pmod :ρ(mvar).sig s̀ig lab ; phrase
(9.151)

9.3.8 Recursive Module Elaboration

I will begin by giving the elaboration rule for recursive module expressions. As described in Sec-
tion 5.4, this rule elaborates the recursive module body in two phases. The first “static” phase
elaborates only the static components of the module and produces a meta-signature. In the second
“main” phase, the meta-signature is used to adjust the amount of type information revealed in the
typing context at different points during the typechecking of the module body.

9.3. ELABORATION 227

Γ ` modexp ; mod :κ sig

1. Γ ` sigexp ; sig rec : Sig

2. Γ,modid.mvar rec:sigrec s̀tat modexp ; metasigactual

3. mvar c
rec 6∈ FV(Stat(Priv(metasig actual))) ∪ FV(Stat(Pub(metasig actual)))

4. Γ,mvar actual:Stat(Pub(metasig actual)) s̀ub

mvar actual : Stat(Pub(metasig actual)) � Stat(sig rec) ; : tstatsig coerced

5. metasig ′
actual := metasigactual[mvar c

rec.visible∗/mvar c
rec]

6. metasig static := ρ(mvar rec).∃(mvar actual: metasig ′
actual).tstatsig coerced

7. Γ `can Priv(metasig static) ; mod static

8. tsig rec := s(mvar c
static.visible∗ : sigrec)

9. Θ := Γ;mvar static:metasig static;modid.mvar rec:maybe(tsig rec)
10. Θ r̀ec unroll(mvar static).hidden ⇒ modexp ; mod actual : tsigactual

11. Θ,mvar actual:tsigactual s̀ub mvar actual : tsigactual � tsig rec ; pmod coerced :
12. mod := let mvar static=mod static in

(rec(mvar rec:tsig rec.letmvar actual=mod actual in (pmod coerced : tsig rec))
: sigrec)

Γ ` rec (modid : sigexp) modexp ; mod :P sigrec

(9.152)

Rule 9.152: Let us consider the premises one at a time. (I suggest the reader compare the formal
steps here with the high-level description given in Section 5.4, as they correspond quite closely.)

1. Translate the declared signature sigexp to sig rec, which need not be transparent.

2. Perform static elaboration of modexp, resulting in the meta-signature metasig actual.

3. Enforce the “dynamic-on-static” restriction on modexp by checking that the recursive module
variable mvar rec does not appear in the static part of metasig actual. References to mvar rec

may still occur in metasig actual’s value specs (i.e., its datatype specs).

4. We need to close up references to mvar rec in metasigactual by enclosing it in an rds (cf. Fig-
ure 5.17). Unfortunately, we cannot just write ρ(mvar rec).metasigactual, because (by step 2)
metasigactual expects mvar c

rec to have kind Fst(sig rec), not Fst(metasigactual). So first we
coerce metasigactual into the shape of Stat(sig rec), which produces tstatsig coerced.

5–6. Using tstatsig coerced, we can close up metasig actual with an rds and call it metasig static (in
Section 5.4, this was called CSS). For now, ignore the box around metasig ′

actual. The purpose
of the box will be explained below when the r̀ec judgment is defined.

7. Construct the canonical module mod static matching metasig static. Note: this will only succeed
if Fst(Priv(metasig static)) is an expandable kind. From a programming perspective, this means
that if in modexp there appears a total functor expression whose body contains datatype

definitions, then the argument signature of that functor must not contain any transparent
type specifications. I admit this is a rather bizarre restriction, but I see no way around it.

8. mod static will eventually be bound to mvar static (in Section 5.4, this was called Static). We
can thus selfify the declared signature sig rec with respect to mvar static.visible∗, in order to
obtain a transparent version of the declared signature tsig rec.

228 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

9. The typing context Θ for the main phase of elaboration binds the recursive module variable
with the signature maybe(tsig rec). Thanks to the signature peeling judgment, references to
modid in modexp will be implicitly fetch’ed.

10. Perform the main phase of elaboration, producing mod actual with signature tsigactual. Note:
unroll(mvar static).hidden tells the r̀ec judgment which submodule of mvar static corresponds
to modexp . (Similarly, the box in line 6 tells the r̀ec judgment what part of metasig static

corresponds to modexp .)

11. Match the actual signature of the body, tsig actual, against the required signature tsig rec in
order to produce a coercion module pmod coerced.

12. Put all the pieces together and seal the result with the original declared signature sig rec.

Static Phase of Recursive Module Elaboration

The output metaldec(s)/metasig has the property that it is almost entirely static and transparent.
The only construct that translates to a metaldec with value specifications in it is the datatype

binding (Rule 9.158), and the only constructs that produce switchable meta-signatures are sealed
module expressions and recursive module expressions (Rules 9.171 and 9.172). Otherwise, the rules
are totally straightforward.

Γ s̀tat bindings ; metaldecs

Γ s̀tat · ; ·
(9.153)

Γ s̀tat sigexp ; sig : Sig Γ, sigid=sig s̀tat bindings ; metaldecs

Γ s̀tat signature sigid = sigexp 〈;〉 bindings ; metaldecs
(9.154)

Γ s̀tat binding ; metaldecs 1 Γ,metaldecs1 s̀tat bindings ; metaldecs 2

Γ s̀tat binding 〈;〉 bindings ; metaldecs 1++metaldecs2
(9.155)

Γ s̀tat binding ; metaldecs

binding is a val or exception binding.

Γ s̀tat binding ; ·
(9.156)

binding is a type or open binding. Γ ` binding ; :P tldecs

Γ s̀tat binding ; Stat(tldecs)
(9.157)

Γ ` datbinds ; sig

Γ s̀tat datatype datbinds ; ilab∗:sig
(9.158)

Rule 9.158: It is important here that the signature be sig , not Stat(sig), since sig has a canonical
implementation while Stat(sig) does not.

9.3. ELABORATION 229

Γ c̀tx longconid ; : tknd

Γ s̀tat datatype conid = datatype longconid ; conid :tknd
(9.159)

Γ s̀tat bindings1 ; metaldecs1

Γ, ilab∗.mvar :[[metaldecs 1]] s̀tat bindings2 ; metaldecs2

Γ s̀tat local bindings1 in bindings2 end ; ilab.mvar :[[metaldecs 1]],metaldecs2
(9.160)

Γ s̀tat modexp ; metasig

Γ s̀tat module modid = modexp ; modid :metasig
(9.161)

Γ s̀tat modexp ; metasig

Γ c̀tx longmodid ; pmod : tsig

Γ s̀tat longmodid ; Stat(tsig)
(9.162)

Γ s̀tat bindings ; metaldecs

Γ s̀tat struct bindings end ; [[metaldecs]]
(9.163)

Γ s̀tat modexp ; metasig

Γ,mvar :metasig ;mvar :metasig s̀ig modid ; pmod : tsig
modexp is not of the form longmodid

Γ s̀tat modexp.modid ; ∃(mvar :metasig).Stat(tsig)
(9.164)

Γ s̀tat sigexp ; statsig : Sig

Γ,modid.mvar :statsig s̀tat modexp ; metasig

Γ s̀tat functor (modid : sigexp) -> modexp ; Πtot(mvar :statsig).metasig
(9.165)

Γ s̀tat functor (modid : sigexp) ->> modexp ; [[·]]
(9.166)

Γ s̀tat modexp1 ; metasig1 Γ s̀tat modexp2 ; metasig2

Γ,mvar 1:metasig1 p̀eel mvar 1:metasig1 ; : Πtot(mvar :statsig ′).tsig ′′

Γ,mvar 1:metasig1,mvar 2:metasig2 s̀ub mvar 2 : metasig2 � statsig ′
; pmod :

Γ s̀tat modexp1(modexp2) ; ∃(mvar 1:metasig1).∃(mvar 2:metasig2).
Stat(tsig ′′[pmod/mvar])

(9.167)

Γ s̀tat bindings ; metaldecs
Γ, ilab∗.mvar :[[metaldecs]] s̀tat modexp ; metasig

Γ s̀tat let bindings in modexp end ; ∃(mvar :[[metaldecs]]).metasig
(9.168)

Γ s̀tat sigexp ; tstatsig : Sig

Γ s̀tat modexp seal sigexp ; tstatsig
(9.169)

230 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

Rule 9.169 does not apply.
Γ s̀tat modexp ; metasig Γ s̀tat sigexp ; statsig : Sig

Γ,mvar :metasig s̀ub mvar : metasig � statsig ; : tsig

Γ s̀tat modexp : sigexp ; ∃(mvar :metasig).tsig
(9.170)

Rule 9.169 does not apply.
Γ s̀tat modexp ; metasig Γ s̀tat sigexp ; statsig : Sig

Γ,mvar :metasig s̀ub mvar : metasig � statsig ; : tsig

Γ s̀tat modexp :> sigexp ; ∃(mvar :metasig).{private=tsig ,public=statsig}
(9.171)

Rule 9.171: Note the similarity between this rule and the previous one. The only difference is
that the switchable signature output by this rule offers a public, opaque view of modexp in addition
to the private, transparent one. Also note that there is no rule for impure sealing (unless the sealing
signature is transparent), since the body of a recursive module is required to be pure/separable.

Γ s̀tat sigexp ; statsig rec : Sig

Γ,modid.mvar rec:statsig rec s̀tat modexp ; metasigactual

mvar c
rec 6∈ FV(Stat(Priv(metasig actual))) ∪ FV(Stat(Pub(metasig actual)))

Γ,mvar actual:Stat(Pub(metasig actual)) s̀ub

mvaractual : Stat(Pub(metasig actual)) � statsig rec ; : tstatsig coerced

metasig ′
actual := metasigactual[mvar c

rec.visible∗/mvar c
rec]

metasig static := ρ(mvar rec).∃(mvar actual:metasig ′
actual).

{private=tstatsig coerced,public=statsig rec}

Γ s̀tat rec (modid : sigexp) modexp ; metasig static

(9.172)

Rule 9.172: The premises of this rule are almost identical to the first six premises of Rule 9.152,
which makes sense since static elaboration is the first phase of recursive module elaboration. The
only significant difference is that here metasig static offers a public, opaque view of the recursive
module in addition to the private, transparent one.

Main Phase of Recursive Module Elaboration

The judgments describing the main phase of recursive module elaboration make use of a spe-
cial “meta-context” Θ of the form Γ;metadec; Γ′. Here, metadec is a declaration of the form
mvar static:metasig static, where metasig static represents the product of the static phase of recursive
module elaboration. It is important that Θ contain the full metasig static and not just its public
setting, because we will want to actually switch some of the settings in metasig static from public to
private during elaboration. Wherever I use a meta-context Θ = Γ;metadec; Γ ′ in a premise that
expects a normal elaboration context, Θ should be implicitly erased to Γ,Pub(metadec),Γ ′.

What makes the main phase somewhat tricky to formalize is that we need to keep track of what
part of metasig static (and, similarly, what projection from mvar static) corresponds to the piece of
the recursive module body we are currently elaborating. The translation judgments have the form
Θ r̀ec pmod ⇒ binding(s) ; lbnds : tldecs and Θ r̀ec pmod ⇒ modexp ; mod : tsig . The input
pmod tells us where we are in mvar static. Specifically, pmod will have the form of a “path”—i.e., a
sequence of eliminations (i.e., projections, applications, unroll’ings)—headed by mvar static.

9.3. ELABORATION 231

To indicate where we are in metasig static, I will employ the simple, if unusual, technique of
surrounding it with a box (literally). When the judgment makes a recursive call on a subterm,
the box will shrink in order to enclose only the meta-signature/meta-declaration(s) in metasig static

corresponding to that subterm. In many of the rules, it is useful to be able to “zoom in” on
the part of metasig static that is boxed. To enable this, I will write metadec{metasig } (resp.
metadec{metaldecs }) to signify that metasig (resp. metaldecs) is the boxed part of metasig static.

Aside from keeping track of where we are in metasig static, which is totally straightforward,
most of the rules are very similar to the normal elaboration rules for bindings and module expres-
sions. The constructs whose rules are most interesting are those that involve some form of data
abstraction—namely, datatype bindings, sealed module expressions and recursive module expres-
sions (Rules 9.178, 9.188 and 9.189). While recursive module elaboration respects data abstraction
boundaries during typechecking, the output of recursive module elaboration is transparent, so that
the recursive module body will match the transparent declared signature (tsig rec in Rule 9.152).

Θ r̀ec pmod ⇒ bindings ; lbnds : tldecs

Θ = Γ;metadec{ · }; Γ′

Θ r̀ec pmod ⇒ · ; · : ·
(9.173)

Θ ` sigexp ; sig : Sig Θ, sigid=sig r̀ec pmod ⇒ bindings ; lbnds : tldecs

Θ r̀ec pmod ⇒ signature sigid = sigexp 〈;〉 bindings ; lbnds : tldecs
(9.174)

Θ = Γ;metadec{metaldecs1,metaldecs2 }; Γ
′

Γ;metadec{metaldecs1 ,metaldecs2}; Γ
′

r̀ec pmod ⇒ binding ; lbnds 1 : tldecs1

Γ;metadec{metaldecs 1, metaldecs2 }; Γ
′, tldecs1 r̀ec pmod ⇒ bindings ; lbnds 2 : tldecs2

Θ r̀ec pmod ⇒ binding 〈;〉 bindings ; lbnds 1++lbnds2 : tldecs1++tldecs2

(9.175)

Θ r̀ec pmod ⇒ binding ; lbnds : tldecs

binding is a val or exception binding.
Θ = Γ;metadec{ · }; Γ′

Θ ` binding ; lbnds :P tldecs

Θ r̀ec pmod ⇒ binding ; lbnds : tldecs
(9.176)

Rule 9.176: For val and exception bindings, there is no static part (the box in Θ is empty),
and we default to using normal elaboration.

binding is a type, open or datatype replication binding.

Θ = Γ;metadec{metaldecs }; Γ′

Θ ` binding ; lbnds :P tldecs
length(metaldecs) = length(tldecs)

Θ r̀ec pmod ⇒ binding ; lbnds : tldecs
(9.177)

Rule 9.177: For these atomic, transparent bindings, we can default to normal elaboration. The
last premise ensures that the box in Θ encloses the right number of metaldecs .

232 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

Θ = Γ;metadec{ ilab∗:sig ′ }; Γ′

Θ ` datbinds ; sig Θ ` pmod .ilab∗ : sig

Θ r̀ec pmod ⇒ datatype datbinds ;

ilab∗=pmod .ilab∗ : ilab∗:s(pmod .ilab∗ : sig)

(9.178)

Rule 9.178: For a datatype binding, we know that the static phase has already computed the
datatype module. We can therefore copy the module directly from pmod (cf. Figure 5.20).

Θ = Γ;metadec{ ilab:[[metaldecs 1]],metaldecs 2 }; Γ
′

Γ;metadec{ilab:[[metaldecs1]],metaldecs2}; Γ
′

r̀ec

pmod .ilab ⇒ bindings1 ; lbnds1 : tldecs1

Γ;metadec{ilab:[[metaldecs 1]], metaldecs2 }; Γ
′, ilab∗.mvar :[[tldecs1]] r̀ec

pmod ⇒ bindings2 ; lbnds2 : tldecs2

Θ r̀ec pmod ⇒ local bindings1 in bindings2 end ;

ilab.mvar=[lbnds1], lbnds2 : ilab.mvar :[[tldecs 1]], tldecs2

(9.179)

Θ = Γ;metadec{ lab:metasig }; Γ′

Γ;metadec{lab: metasig }; Γ′
r̀ec pmod .lab ⇒ modexp ; mod : tsig

Θ r̀ec pmod ⇒ module modid = modexp ; modid=mod : modid :tsig
(9.180)

Θ r̀ec pmod ⇒ modexp ; mod : tsig

Θ = Γ;metadec{ tsig ′ }; Γ′

Θ ` modexp ; mod :κ tsig

Θ r̀ec pmod ⇒ modexp ; purify(mod) : tsig
(9.181)

Rule 9.181: If the boxed signature in Θ is a normal transparent signature, then we can use the
same Θ for typechecking all of modexp and default to normal elaboration.

Rules 9.182–9.188 assume that the highlighted signature in Θ is not transparent, in which case
Rule 9.181 does not apply.

Θ = Γ;metadec{ [[metaldecs]] }; Γ′

Γ;metadec{[[metaldecs]]}; Γ′
r̀ec pmod ⇒ bindings ; lbnds : tldecs

Θ r̀ec pmod ⇒ struct strdec end ; [lbnds] : [[tldecs]]
(9.182)

Θ = Γ;metadec{ ∃(mvar :metasig).sig }; Γ′

Γ;metadec{∃(mvar : metasig).sig}; Γ′
r̀ec pmod .hidden ⇒ modexp ; mod : tsig

Θ,mvar :tsig ;mvar :tsig s̀ig modid ; pmod ′ : tsig ′

Θ r̀ec pmod ⇒ modexp.modid ; eletmvar=mod in pmod ′ : ∃(mvar :tsig).tsig ′ (9.183)

9.3. ELABORATION 233

Θ = Γ;metadec{Πtot(mvar :sig ′).metasig }; Γ′

Θ ` sigexp ; sig : Sig

Γ;metadec{Πtot(mvar :sig ′). metasig }; Γ′,modid.mvar :sig r̀ec

pmod (mvar) ⇒ modexp ; mod : tsig

Θ r̀ec pmod ⇒ functor (modid : sigexp) -> modexp ;

λtot(mvar :sig).mod : Πtot(mvar :sig).tsig

(9.184)

Rule 9.184: This rule handles total functors. Partial functors are handled by Rule 9.181, since
a partial functor is considered transparent.

Θ = Γ;metadec{ ∃(mvar 1:metasig1).∃(mvar 2:metasig2).sig }; Γ′

Γ;metadec{∃(mvar 1: metasig1).∃(mvar 2:metasig2).sig}; Γ
′

r̀ec

pmod .hidden ⇒ modexp1 ; mod 1 : tsig1

Γ;metadec{∃(mvar 1:metasig1).∃(mvar 2: metasig2).sig}; Γ′
r̀ec

pmod .visible∗.hidden ⇒ modexp2 ; mod 2 : tsig2

Θ,mvar 1:tsig1 p̀eel mvar 1:tsig1 ; pmod 1 : Πtot(mvar :sig ′).tsig ′′

Θ,mvar 1:tsig1,mvar 2:tsig2 s̀ub mvar2 : tsig2 � sig ′
; pmod 2 :

Θ r̀ec pmod ⇒ modexp1(modexp2) ;

elet mvar 1=mod 1 in elet mvar 2=mod 2 in pmod 1
tot(pmod 2) :

∃(mvar 1:tsig1).∃(mvar 2:tsig2).tsig
′′[pmod 2/mvar]

(9.185)

Rule 9.185: We only allow applications of total functors; partial functor applications are impure.

Θ = Γ;metadec{ ∃(mvar :[[metaldecs]]).metasig }; Γ′

Γ;metadec{∃(mvar :[[metaldecs]]).metasig}; Γ′
r̀ec

pmod .hidden ⇒ bindings ; lbnds : tldecs
Γ;metadec{∃(mvar :[[metaldecs]]). metasig }; Γ′, ilab∗.mvar :[[tldecs]] r̀ec

pmod .visible∗ ⇒ modexp ; mod : tsig

Θ r̀ec pmod ⇒ let bindings in modexp end ;

eletmvar=[lbnds] inmod : ∃(mvar :[[tldecs]]).tsig

(9.186)

Θ = Γ;metadec{ ∃(mvar :metasig).sig ′ }; Γ′

Γ;metadec{∃(mvar : metasig).sig ′}; Γ′
r̀ec pmod .hidden ⇒ modexp ; mod : tsig

Θ ` sigexp ; sig : Sig

Θ,mvar :tsig s̀ub mvar : tsig � sig ; pmod ′ : tsig ′

Θ r̀ec pmod ⇒ modexp : sigexp ; eletmvar=mod in pmod ′ : ∃(mvar :tsig).tsig ′ (9.187)

234 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

Θ = Γ;metadec{ ∃(mvar :metasig).{private=tsig ′
private,public=sig ′

public} }; Γ
′

Θ ` sigexp ; sigpublic : Sig

tsigpublic := s(pmod .visible∗ : sigpublic) Θ ` Fst(pmod).visible∗ : Fst(sigpublic)

Θprivate := Γ;metadec{∃(mvar : metasig).tsig ′
private}; Γ

′

Θprivate r̀ec pmod .hidden ⇒ modexp ; mod actual : tsigactual

Θprivate,mvar :tsigactual s̀ub mvar : tsigactual � tsigpublic ; mod coerced :

Θ r̀ec pmod ⇒ modexp :> sigexp ;

letmvar=mod actual in (mod coerced : tsigpublic) : tsigpublic

(9.188)

Rule 9.188: Two important points: (1) When we go beneath the sealing to elaborate modexp ,
we use a modified meta-context Θprivate in which the public signature of pmod .visible∗ is eliminated
and only the private one remains. Θprivate exposes the implementation of modexp by allowing us
to observe the connection between the type components of pmod .visible∗ and pmod .hidden that
Θ obscured. (2) The output signature is not sigpublic but rather the selfification of sigpublic with
respect to pmod .visible∗ (cf. Figure 5.22). The purpose of this is to allow the code outside of
modexp :> sigexp to observe that the type components of this module expression are equivalent to
those of pmod .visible∗, thus avoiding the double vision problem. However, the private implemen-
tation of modexp is still kept hidden, because the signature that the rest of the recursive module
body sees for pmod .visible∗ is the public one.

Θ = Γ;metadec{ ρ(mvar rec).∃(mvar :metasig).{private=tsig ′
private,public=sig ′

public} }; Γ
′

Θ ` sigexp ; sig rec : Sig

tsigrec := s(unroll(pmod).visible∗ : sigrec) Θ ` Fst(pmod).visible∗ : Fst(sig rec)

Θprivate := Γ;metadec{ρ(mvar rec).∃(mvar : metasig).tsig ′
private}

; Γ′,modid.mvar rec:maybe(tsig rec)
Θprivate r̀ec unroll(pmod).hidden ⇒ modexp ; mod actual : tsigactual

Θprivate,mvar actual:tsigactual s̀ub mvaractual : tsigactual � tsig rec ; pmod coerced :

Θ r̀ec pmod ⇒ rec (modid : sigexp) modexp ;

rec(mvar rec:tsig rec.letmvar actual=mod actual in (pmod coerced : tsig rec)) : tsig rec

(9.189)

Rule 9.189: Just as the static elaboration rule for recursive modules performed the first half
of Rule 9.152, the present rule performs the last half. The only additional point is that recursive
module expressions are implicitly sealed with their declared signatures. Thus, when elaboration
goes inside the recursive module, we must modify the context (in the same way as in Rule 9.188) in
order to expose the private connection between the type components of unroll(pmod).visible∗ and
unroll(pmod).hidden.

9.4 Notes on Implementation

A clear, formal language definition is indisputably useful, but it can also conceal certain issues that
cause serious problems for practical implementation. In order to demonstrate the viability of my
language design ideas, I have implemented, as an experimental alternate front end to the TILT

9.4. NOTES ON IMPLEMENTATION 235

compiler, a language similar to the one defined in this chapter. The language I implemented is not
exactly the same as the one presented here, partly because the implementation was based on an
earlier formalization and partly due to time constraints on my implementation work. Fortunately,
the recursive module and recursively dependent signature constructs, which are arguably the most
useful and semantically complex of all the new features in my language, are implemented in a way
that follows the present formalization very closely. Furthermore, my limited testing has shown the
implementation to exhibit the intended behavior on all the examples of Chapter 5.

Most of the differences between my implementation and the present formalization are with re-
gard to superficial choices of surface syntax. In particular, while I have felt free in this chapter to
revise SML syntax as I see fit—e.g., supporting module bindings as opposed to SML’s structure
and functor bindings—my implementation sticks closer to SML syntax in order to provide back-
ward compatibility with existing SML code bases. However, there are a few more significant
distinctions worth mentioning.

First, my implementation does not support the packtype mechanism, nor does it provide any
other mechanism for packaging modules as first-class values. The reason for this is pragmatic:
whereas I found that recursive modules constituted a relatively orthogonal extension to the TILT
compiler (and mostly just to the front end), supporting package types and first-class module values
would have required me to make major changes to the whole compiler.

To understand why, observe that in the absence of pack mod as sig and unpack exp as sig , the
IL has a purely second-class module system. That is to say, the type system may distinguish
“separable” modules from “inseparable” modules, but in truth there is no way for the underlying
type components of a module to depend on any dynamic values or effects. As a consequence, it
is possible to phase-split all modules, not just separable modules, into a type constructor and a
term, by simply ignoring all uses of sealing and translating partial functors in the same way as total
functors. As Standard ML has a purely second-class module language, the original TILT front end
takes precisely this approach, and all the intermediate stages of the compiler are designed to work
with code that has been phase-split in this way. Rather than change an assumption of the whole
compiler, I opted to follow TILT’s approach to phase-splitting and omit first-class module packages
from the implementation, at least for the time being.

Second, as I discussed in Section 2.2.1, an unfortunate deficiency of all existing dialects of the
ML module system (including the one in this thesis) is their lack of support for inseparable sealing
and statically total functors. In the earlier language design on which my implementation is based,
I attempted to remedy this deficiency. My idea was to have separably total functors behave more
like statically total functors by making static module equivalence so conservative that it implies
dynamic equivalence. Specifically, I had the elaborator automatically insert into every structure
expression, struct bindings end, a sealed submodule defining an abstract “identity” type. The
effect of these identity types is to render two modules statically equivalent only if their identity
types are equivalent, which in turn is only the case if they are syntactically identical or one is a
renaming of the other (e.g., structure X = Y). In essence, this is a generalization of the approach
taken by O’Caml, which is not as brittle as O’Caml’s syntactic equivalence because it allows for
renamings of modules.

However, as I also discussed in Section 2.2.1, syntactic equivalence does not always imply
dynamic equivalence. For instance, the functor application F(X) is syntactically equivalent to
itself, yet it may be dynamically impure and generate different value components each time it is
evaluated. Since static equivalence in the presence of identity types is a strict generalization of
O’Caml’s syntactic equivalence, it does not imply dynamic equivalence either. In preparing the
language design of this thesis, I decided to dispense with identity types and the muddled semantics
that results from them.

236 CHAPTER 9. EVOLVING THE ML EXTERNAL LANGUAGE

That said, the identity types did have some considerable practical benefits in terms of imple-
mentation. First, when comparing the static parts of two modules for equivalence, elaboration
invariants guaranteed that the modules would be statically equivalent if and only if their identity
types were equivalent. This greatly simplified the implementation of the type equivalence subrou-
tine used by the elaborator. Second, since all anonymous structure expressions were elaborated to
modules containing sealed submodules, the only projectible modules were those in O’Caml-style
named form (e.g., F(X).A). As a result, the sizes of types projected from modules remained rela-
tively small. In an implementation of the language defined in this chapter, it may be necessary for
the elaborator to insert extra type abbreviations to ensure that types do not blow up in size.

In general, type size and type duplication are serious issues that are easy to overlook when
formalizing the language. One notable example of type duplication that I encountered was in the
elaboration of datatype definitions. In Rule 9.96, the sum type con sum that appears in the types of
the datatype’s in and out coercions is never bound to a type identifier. Thus, in Rule 9.20, which
elaborates datatype constructor applications by inlining them, the sum injection in the output
of the rule is forced to include a duplicate copy of its target con sum type. This means that the
large con sum type corresponding to a large datatype will be duplicated everywhere one of its many
constructors is used in the program.

The TILT compiler addresses this issue by adding to every datatype module/signature a “sum”
component specified as transparently equal to the corresponding con sum type, so that subsequent
references to con sum can be replaced by references to the datatype’s “sum” component. This
solution works fine for SML, but causes problems with the use of datatype specs in recursively
dependent signatures. According to the semantics of this chapter, datatype definitions in an rds
ρ(mvar).sig are permitted to refer to mvar c because such references will always emanate from value
specifications and thus obey the dynamic-on-static restriction. However, with TILT’s addition
of transparent sum-type components to datatype specs, a reference to mvar c from a datatype

definition will imply a reference from its sum-type component, which is not dynamic-on-static.
I addressed this problem in the implementation as follows. First, I observed that, in signatures

output by the elaborator, the specification of a normal (non-”sum”) type component of a signature
never refers to any “sum” components. Consequently, it is possible to phase-split every signature sig
into three parts [[cvar 1:knd1. cvar 2:tknd2. con]], where sig ’s type components are divided between
knd1, which contains the specifications of its normal type components, and tknd 2, which contains
the (transparent) specifications of its “sum” type components. As the syntax suggests, tknd 2 may
refer to cvar 1, and con may refer to cvar 1 and cvar 2, but knd 1 may refer to neither.

The upshot is that, if an rds ρ(mvar c).sig contains static-on-static references from datatype

specs in sig to mvar c, these will always be references from the knd 2 part of sig to the knd 1 part. As
such, they are fundamentally acyclic dependencies, and it is possible to compile such rds’s without
requiring equi-recursive types. Unfortunately, in order to phase-split these more flexible rds’s, I was
forced to modify the entire TILT phase-splitter in order to generate three-part output. Hopefully,
in future work, we will be able to use three-part phase-splitting in a more general fashion, e.g., to
allow rds’s to contain any kind of static-on-static dependency that is fundamentally acyclic, in the
way that O’Caml’s recursive module extension does.

Finally, while the need to control type duplication resulted in certain complications to my
implementation, I would say that overall the benefits of targeting a typed intermediate language
outweighed the frustrations. The TILT intermediate language typechecker helped me uncover
various small bugs in my implementation, and in one notable instance it pointed to a serious
error in an earlier formalization of my `can judgment for computing canonical implementations of
signatures.

Chapter 10

Conclusion and Future Work

10.1 Conclusion

The ML module system stands as a high-water mark of programming language support for data
abstraction. I began my work toward this dissertation by investigating how to extend ML with
recursive modules, with the goal of enhancing its support for data abstraction even further. In the
course of my investigation, I have

• Constructed a unifying account of the ML module system, in which the existing ML dialects
can be understood as subsystems that pick and choose different features

• Designed a recursive module extension to this unifying account that addresses methodological
problems with current recursive module proposals, encourages the use of data abstraction
mechanisms in recursive modules, and is easy to explain to the programmer

• Formalized this design, using Harper and Stone’s interpretation of Standard ML as a model
for developing a significant portion of the language in the framework of type theory

I have also studied the problem of statically detecting whether recursion, under the backpatching
semantics used for recursive modules, is safe. I have proposed a promising type system for this
purpose that improves considerably on existing approaches and enables more efficient compilation
of recursive modules. However, as described in Section 7.6, future work still remains with regard
to type inference and type system complexity before my proposal can be feasibly incorporated into
ML.

I hope that my unifying conception of ML modules, as well as my thorough analysis of the
recursive module problem, may serve as a helpful guide to researchers and programmers alike in
their attempts to understand the key issues and choices in the design of the ML module system.
Although my thesis culminates in the definition of a new ML dialect, this language is most certainly
a work in progress, and should by no means be taken as the final word on ML or its module system.
Rather, I hope that this language will serve as a foundation for future work, that its limitations will
inspire further evolution of the ML module system, and that its formalization in a type-theoretic
framework will encourage others to follow suit.

238 CHAPTER 10. CONCLUSION AND FUTURE WORK

10.2 Future Work

In addition to the future work on safe recursion discussed in Section 7.6, some interesting avenues
for future work include the following:

Separate Compilation of Recursive Modules One major omission of existing recursive mod-
ule proposals that my language of Part III does not address in its present form is support for
separate compilation of mutually recursive modules. ML provides support for separate compilation
of normal—i.e., hierarchically-dependent—modules through the functor mechanism. However, as
explained in Section 5.2.4, functors are not sufficient to handle separate compilation of recursive
modules because recursive modules require a special kind of elaboration in order to deal with the
double vision problem.

Does this imply that separate compilation of recursive modules is hopeless? Not at all. The
primary innovation of my recursive module construct is that it respects data abstraction. If mu-
tually recursive modules are sealed with abstract interfaces, then each module is typechecked in a
separate context, which exposes its own implementation but hides the implementation of the other
module. It should be straightforward to adapt recursive module elaboration in order to compile
these modules separately as well, but such a separate compilation mechanism is not encodable in
terms of the existing mechanisms of my external language.

As a practical matter, I believe that the most appropriate way to introduce such a mechanism
is as part of a compilation management system built on top of ML. Although the Definition of
Standard ML does not specify anything regarding compilation management, most implementations
provide some facility that enables programs to be split into compilation units and that supports
incremental recompilation of those units. TILT additionally provides support for “true” separate
compilation—any compilation unit may be compiled independently of its imports, so long as the
programmer explicitly specifies the signatures of those imports. Formalizing the semantics of com-
pilation units by elaboration into the ML internal language would be a useful contribution in its
own right, and it should be possible in such a semantics to use my recursive module elaboration
techniques in order to support recursive dependencies between separate compilation units.

Refining the Total/Partial Distinction In my module framework, the distinction between
total and partial functors is sufficiently general to account for the kinds of functors found in the
existing variants of the ML module system, but it is easy to imagine more subtle gradations.
For example, one may want to write a functor F whose body contains two submodules A and B,
wherein A contains only uses of basic sealing while B contains uses of impure sealing. Under my
present semantics, F will be deemed partial because of B’s impurity, but this is more restrictive than
necessary. It would be more accurate to treat F as partial with respect to the type components of
B and total with respect to the type components of A.

Another way in which my functor semantics is perhaps overly coarse is that it assumes that
the body of a functor depends on the entire argument module. Suppose that the argument X of
the above functor F has itself two submodules A and B, and that the module A in F’s body depends
only on types projected from X.A, not X.B. In that case, it might be useful to observe that, when F

is applied to two argument modules with equivalent A components, the A components in the result
will be equivalent as well, regardless of what the arguments’ B components were.

It is worth exploring whether either of these refinements to the total/partial distinction can be
incorporated into my present framework without introducing semantic complexity disproportionate
to their practical utility.

10.2. FUTURE WORK 239

Regaining “Statically Total” Functors It is unfortunate that all existing dialects of the ML
module system, including my own, only distinguish between separably total and partial functors,
because the “statically total” classification is preferable to both in many cases like the Set functor.
However, in order to support statically total functors, as well as the related mechanism of insepara-
ble sealing, we appear to require some form of dependent type. For example, we would like to treat
the Set functor as statically total because it should only return compatible type components when
applied to dynamically equivalent results. What this means, though, is that the type Set(X).t

depends on the dynamic components of the argument X and is thus a kind of dependent type.

As I explained in Section 2.2.1, the O’Caml functor mechanism is an interesting case. It uses
syntactic equivalence to compare functor arguments, which in many (but not all) cases implies
dynamic equivalence. Consequently, O’Caml functors behave on many (but not all) arguments
as if they were statically total. It remains an open problem whether it is possible to develop a
mechanism that mimics the semantics of statically total functors on all arguments, without the
need for actual dependent types.

Data Abstraction with Multiple Principals ML’s sealing mechanism allows the implementor
of a module to hide information from the clients of that module, i.e., the rest of the program. While
the extensions to ML I have given in this thesis do not fundamentally change this implementor/client
model of data abstraction, a useful direction for future work may be to generalize this model. There
may be many modules in a program, and the implementor of a module A may wish to expose its
implementation details to certain modules (B1, . . . , Bn) but not to other modules (C1, . . . , Cn). In
ML, this can be awkward to achieve. A cannot be sealed right where it is bound because that would
hide its implementation from the B modules. Instead, A and the B’s must be defined together as
submodules of some larger module AB, and then AB can be sealed to hide implementation details
from the C modules. Thus, the intentions of one module’s implementor may affect how the whole
program is structured.

It is worth exploring whether ML can be extended with a more flexible and explicit notion
of implementor (aka “principal” or “agent”) that would allow the implementor of one module to
specify, in a concise and local manner, how different principals in the program may perceive it.
Grossman et al. [24] have proposed a technique for syntactic proofs of type abstraction properties
in the setting of a λ-calculus with multiple principals. It is not immediately clear, though, how to
translate their calculus into a language design, or even what language mechanisms for multi-agent
data abstraction are the right ones.

Views In ML, the only abstract types whose elements may be pattern-matched are those intro-
duced by datatype definitions. Furthermore, although a datatype is an abstract type, it is really
“concrete” in the sense that it is isomorphic (via its in and out coercions) to a particular sum type.
To remedy this limitation, Wadler [80] proposed the idea of views, which allow the programmer
to write a non-canonical implementation of a datatype signature. A view consists of two trans-
formation functions: one from the datatype to the actual implementation type, which is called at
applications of the datatype’s constructors, and one in the other direction, which is invoked during
pattern matching.

Views afford programmers the convenience of pattern matching, while preserving their ability
to hide the identity of the implementation type. As such, they would constitute a real extension to
ML’s support for data abstraction. Okasaki has proposed a variant of Wadler’s views in the context
of SML [60], but only informally. It would be useful to formalize his (or perhaps some other) view
extension using the Harper-Stone framework.

240 CHAPTER 10. CONCLUSION AND FUTURE WORK

Type Classes As I explained at the beginning of Chapter 9, my language deprecates the SML
features of overloaded equality and equality types because I believe they are more trouble than
they are worth. A general mechanism for overloading, though, would be a worthwhile extension to
ML. Originally proposed by Wadler and Blott [81] as a way of generalizing ML’s equality types,
type classes enable overloading of arbitrary user-defined functions and have become one of the most
popular features of the Haskell language [25].

Although Haskell type classes, like ML modules, provide support for code reuse, type classes
are no substitute for a module system, and vice versa. Type classes generalize type inference,
whereas modules provide program structure and enforce data abstraction. An important (and, to
my knowledge, unexplored) direction for future work is to understand better how these features
relate to each other and how they might interact if they were both provided by a single language.

Bibliography

[1] Samson Abramsky and Chris Hankin, editors. Abstract Interpretation of Declarative Lan-
guages. Ellis Horwood Limited, 1987.

[2] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):575–631, 1993.

[3] Davide Ancona, Sonia Fagorzi, Eugenio Moggi, and Elena Zucca. Mixin modules and com-
putational effects. In International Colloquium on Automata, Languages, and Programming,
Eindhoven, The Netherlands, 2003.

[4] Davide Ancona and Elena Zucca. A primitive calculus for module systems. In International
Conference on Principles and Practice of Declarative Programming, volume 1702 of Lecture
Notes in Computer Science, pages 62–79. Springer-Verlag, 1999.

[5] Gerard Boudol. The recursive record semantics of objects revisited. Journal of Functional
Programming, 14(3):263–315, May 2004.

[6] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module? In ACM SIGPLAN
’99 Conference on Programming Language Design and Implementation (PLDI), pages 50–63,
Atlanta, GA, 1999.

[7] Pierre Crégut and David B. MacQueen. An implementation of higher-order functors. In
Proceedings of the 1994 ACM SIGPLAN Workshop on Standard ML and its Applications.

[8] Luis Damas and Robin Milner. Principal type schemes for functional programs. In Ninth ACM
Symposium on Principles of Programming Languages (POPL), pages 207–212, Albuquerque,
NM, 1982.

[9] Derek Dreyer. Moscow ML’s higher-order modules are unsound. Posted to the TYPES elec-
tronic forum, September 2002.

[10] Derek Dreyer. A type system for well-founded recursion. In Thirty-First ACM Symposium on
Principles of Programming Languages (POPL), pages 293–305, Venice, Italy, January 2004.

[11] Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order modules (ex-
panded version). Technical Report CMU-CS-02-122R, School of Computer Science, Carnegie
Mellon University, December 2002.

[12] Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order modules. In
Thirtieth ACM Symposium on Principles of Programming Languages (POPL), New Orleans,
LA, January 2003.

242 BIBLIOGRAPHY

[13] Derek Dreyer, Robert Harper, and Karl Crary. A type system for well-founded recursion.
Technical Report CMU-CS-03-163, Carnegie Mellon University, July 2003.

[14] Dominic Duggan. Type-safe linking with recursive DLL’s and shared libraries. ACM Trans-
actions on Programming Languages and Systems, 24(6):711–804, November 2002.

[15] Dominic Duggan and Constantinos Sourelis. Mixin modules. In 1996 ACM SIGPLAN Inter-
national Conference on Functional Programming, pages 262–273, Philadelphia, Pennsylvania,
June 1996.

[16] Dominic Duggan and Constantinos Sourelis. Parameterized modules, recursive modules, and
mixin modules. In 1998 ACM SIGPLAN Workshop on ML, pages 87–96, Baltimore, Maryland,
September 1998.

[17] Levent Erkök and John Launchbury. Recursive monadic bindings. In 2000 International
Conference on Functional Programming, pages 174–185, Paris, France, 2000.

[18] Levent Erkök and John Launchbury. A recursive do for Haskell. In 2002 Haskell Workshop,
October 2002.

[19] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishna-
murthi, Paul Steckler, and Matthias Felleisen. DrScheme: a programming environment for
Scheme. Journal of Functional Programming, 12(2):159–182, March 2002.

[20] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages. In 1998 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 236–248,
Montreal, Canada, June 1998.

[21] Daniel P. Friedman and Amr Sabry. Recursion is a computational effect. Technical Report
TR546, Indiana University, December 2000.

[22] Giorgio Ghelli and Benjamin Pierce. Bounded existentials and minimal typing. Theoretical
Computer Science, 193:75–96, 1998.

[23] John Greiner. Weak polymorphism can be sound. Journal of Functional Programming,
6(1):111–141, 1996.

[24] Dan Grossman, Greg Morrisett, and Steve Zdancewic. Syntactic type abstraction. ACM
Transactions on Programming Languages and Systems, 22(6):1037–1080, November 2000.

[25] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. Type classes in
Haskell. ACM Transactions on Programming Languages and Systems, 18(2):109–138, 1996.

[26] Robert Harper. Programming in Standard ML. http://www.cs.cmu.edu/~rwh/introsml/.

[27] Robert Harper. Proof-directed debugging. Journal of Functional Programming, 9(4):463–469,
1999.

[28] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In Twenty-First ACM Symposium on Principles of Programming Languages, pages
123–137, Portland, OR, January 1994.

BIBLIOGRAPHY 243

[29] Robert Harper and John C. Mitchell. On the type structure of Standard ML. ACM Transac-
tions on Programming Languages and Systems, 15(2):211–252, April 1993.

[30] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the phase
distinction. In Seventeenth ACM Symposium on Principles of Programming Languages, San
Francisco, CA, January 1990.

[31] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type analysis.
In Twenty-Second ACM Symposium on Principles of Programming Languages, pages 130–141,
San Francisco, CA, January 1995.

[32] Robert Harper and Chris Stone. An interpretation of Standard ML in type theory. Technical
Report CMU–CS–97–147, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, June 1997.

[33] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML. In Gordon
Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction: Essays in
Honor of Robin Milner. MIT Press, 2000.

[34] Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Program-
ming Languages and Systems, 15(2):253–289, April 1993.

[35] Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-by-value setting. In 2002 European
Symposium on Programming, volume 2305 of Lecture Notes in Computer Science, pages 6–20,
2002.

[36] Tom Hirschowitz, Xavier Leroy, and J.B. Wells. Compilation of extended recursion in call-by-
value functional languages. In Principles and Practice of Declarative Programming (PPDP),
pages 160–171, Uppsala, Sweden, August 2003.

[37] Mark P. Jones. Using parameterized signatures to express modular structure. In Proceed-
ings of the 23rd ACM Symposium on Principles of Programming Languages, pages 68–78, St.
Petersburg Beach, FL, 1996.

[38] Richard Kelsey, William Clinger, and Jonathan Rees (eds.). Revised5 report on the algorithmic
language Scheme. Higher-Order and Symbolic Computation, 11(1), September 1998.

[39] Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. Type reconstruction in the presence
of polymorphic recursion. ACM Transactions on Programming Languages and Systems,
15(2):290–311, April 1993.

[40] Imre Lakatos. Proofs and Refutations. Cambridge University Press, 1976.

[41] Xavier Leroy. The Objective Caml system: Documentation and user’s manual. Available
online at http://caml.inria.fr/ocaml/htmlman/.

[42] Xavier Leroy. Manifest types, modules, and separate compilation. In Proceedings of the
Twenty-first Annual ACM Symposium on Principles of Programming Languages, Portland,
OR, January 1994. ACM.

[43] Xavier Leroy. Applicative functors and fully transparent higher-order modules. In Conference
Record of POPL ’95: ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 142–153, San Francisco, CA, January 1995.

244 BIBLIOGRAPHY

[44] Xavier Leroy. A proposal for recursive modules in Objective Caml, May 2003. Available online
at: http://cristal.inria.fr/~xleroy/publi/recursive-modules-note.pdf.

[45] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, December 1996.

[46] David MacQueen. Modules for Standard ML. In Proceedings of the 1984 ACM Symposium on
LISP and Functional Programming, pages 198–207, Austin, TX, 1984.

[47] David MacQueen. Using dependent types to express modular structure. In Thirteenth ACM
Symposium on Principles of Programming Languages, 1986.

[48] David MacQueen. Adaptation in HOT languages: Comparing polymorphism, modules, and
objects. In C. A. R. Hoare, M. Broy, and R. Steinbrüggen, editors, Engineering Theories of
Software Construction. IOS Press, Amsterdam, 2001.

[49] David B. MacQueen and Mads Tofte. A semantics for higher-order functors. In Donald T.
Sannella, editor, Programming Languages and Systems — ESOP ’94, volume 788 of Lecture
Notes in Computer Science, pages 409–423. Springer-Verlag, 1994.

[50] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press, 1990.

[51] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
1990.

[52] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

[53] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM Trans-
actions on Programming Languages and Systems, 10(3):470–502, July 1988.

[54] Eugenio Moggi and Amr Sabry. An abstract monadic semantics for value recursion. In 2003
Workshop on Fixed Points in Computer Science, April 2003.

[55] Greg Morrisett and Robert Harper. Semantics of memory management for polymorphic lan-
guages. In A. Gordon and A. Pitts, editors, Higher Order Operational Techniques in Semantics.
Newton Institute, Cambridge University Press, 1997.

[56] Moscow ML. http://www.dina.kvl.dk/~sestoft/mosml.html.

[57] Aleksandar Nanevski. Meta-programming with names and necessity. In 2002 International
Conference on Functional Programming, pages 206–217, Pittsburgh, PA, 2002. A significant
revision is available as a technical report CMU-CS-02-123R, Carnegie Mellon University.

[58] Aleksandar Nanevski. Functional Programming with Names and Necessity. PhD thesis,
Carnegie Mellon University, June 2004. Available as Technical Report CMU-CS-07-9254872.

[59] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

[60] Chris Okasaki. Views for Standard ML. In 1998 ACM SIGPLAN Workshop on Standard ML,
pages 14–23, Baltimore, MD, September 1998.

[61] Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone. Implementing the TILT internal
language. Technical Report CMU-CS-00-180, Carnegie Mellon University, December 2000.

BIBLIOGRAPHY 245

[62] Simon Peyton Jones. The Implementation of Functional Programming Languages. Prentice-
Hall, 1987.

[63] Frank Pfenning and Carsten Schürmann. System description: Twelf – a meta-logical framework
for deductive systems. In Proceedings of the 16th International Conference on Automated
Deduction (CADE-16), pages 202–206, Trento, Italy, July 1999.

[64] Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage for programming with bound
names modulo renaming. In Roland Backhouse and José Nuno Oliveira, editors, Mathematics
of Program Construction, volume 1837 of Lecture Notes in Computer Science, pages 230–255.
Springer, 2000.

[65] Claudio V. Russo. Types for Modules. PhD thesis, Edinburgh University, Edinburgh, Scotland,
1998. LFCS Thesis ECS–LFCS–98–389.

[66] Claudio V. Russo. Recursive structures for Standard ML. In International Conference on
Functional Programming, pages 50–61, Florence, Italy, September 2001.

[67] Chung-chieh Shan. Higher-order modules in System Fω and Haskell. Unpublished manuscript,
available from the author’s website.

[68] Zhong Shao. An overview of the FLINT/ML compiler. In 1997 Workshop on Types in Com-
pilation, Amsterdam, June 1997. ACM SIGPLAN. Published as Boston College Computer
Science Department Technical Report BCCS-97-03.

[69] Zhong Shao. Transparent modules with fully syntactic signatures. In International Conference
on Functional Programming, pages 220–232, Paris, France, September 1999.

[70] Zhong Shao and Andrew W. Appel. A type-based compiler for standard ML. In 1995 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 116–129,
La Jolla, CA, 1995.

[71] Standard ML of New Jersey. http://www.smlnj.org.

[72] Christopher A. Stone. Singleton Kinds and Singleton Types. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, August 2000.

[73] Christopher A. Stone and Robert Harper. Deciding type equivalence in a language with
singleton kinds. Technical Report CMU-CS-99-155, School of Computer Science, Carnegie
Mellon University, September 1999.

[74] Christopher A. Stone and Robert Harper. Deciding type equivalence in a language with sin-
gleton kinds. In Twenty-Seventh ACM Symposium on Principles of Programming Languages,
pages 214–227, Boston, January 2000.

[75] Christopher A. Stone and Robert Harper. Extensional equivalence and singleton types. ACM
Transactions on Computational Logic, 2005. To appear.

[76] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Information and
Computation, 111(2):245–296, 1994.

246 BIBLIOGRAPHY

[77] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter Lee. TIL:
A type-directed optimizing compiler for ML. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 181–192, Philadelphia, PA, May 1996.

[78] Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, University
of Edinburgh, 1988.

[79] Joseph C. Vanderwaart, Derek Dreyer, Leaf Petersen, Karl Crary, Robert Harper, and Perry
Cheng. Typed compilation of recursive datatypes. In ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI), New Orleans, LA, January 2003.

[80] Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction. In
Fourteenth ACM Symposium on Principles of Programming Languages, pages 307–313, 1987.

[81] Philip Wadler and Stephen Blott. How to make ad hoc polymorphism less ad hoc. In Sixteenth
ACM Symposium on Principles of Programming Languages, pages 60–76, January 1989.

[82] Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation,
8(4):343–355, 1995.

