
HOW TO WRITE PAPERS
SO PEOPLE CAN READ THEM

Derek Dreyer
MPI for Software Systems

PLMW@SPLASH 2019
Athens, Greece

Do 
research

My job as a researcher

Do 
research

Write
papers

Give
talks

My job as a researcher

Do 
research

Write
papers

Give
talks

My job as a researcher

Have you read any
research papers lately?

Have you read any
research papers lately?

Have you read any
research papers lately?

• You may think you just lack
the technical sophistication
to understand them.

• But in fact, many papers are poorly written.

Have you read any
research papers lately?

• You may think you just lack
the technical sophistication
to understand them.

• But in fact, many papers are poorly written.

So if you can write clear,
accessible papers…

• People will enjoy reading them!

• People will learn something from them!

• They will get accepted to top conferences!

So if you can write clear,
accessible papers…

• People will enjoy reading them!

• People will learn something from them!

• They will get accepted to top conferences!

Writer Reader

A piece of research

Writer Reader

By downcasting the pre-axial gaskets,
 we achieved 47% reduction in XPS latency

on the re-uptake bivalve!

Writer Reader

By downcasting the pre-axial gaskets,
 we achieved 47% reduction in XPS latency

on the re-uptake bivalve!

OK, but what does it do,
and why do I care?

The good news
• There are principles you can follow that will

help you write clearer, more readable prose

- Based on how readers process information

• These principles are constructive:

- Easy to check if your text satisfies these
principles

- If not, principles suggest improvements

The good news
• There are principles you can follow that will

help you write clearer, more readable prose

- Based on how readers process information

• These principles are constructive:

- Easy to check if your text satisfies these
principles

- If not, principles suggest improvements

?

The good news
• There are principles you can follow that will

help you write clearer, more readable prose

- Based on how readers process information

• These principles are constructive:

- Easy to check if your text satisfies these
principles

- If not, principles suggest improvements

“Be clear”
“Omit needless words”
…

?

The good news
• There are principles you can follow that will

help you write clearer, more readable prose

- Based on how readers process information

• These principles are constructive:

- Easy to check if your text satisfies these
principles

- If not, principles suggest improvements

“Be clear”
“Omit needless words”
…

?

The good news
• There are principles you can follow that will

help you write clearer, more readable prose

- Based on how readers process information

• These principles are constructive:

- Easy to check if your text satisfies these
principles

- If not, principles suggest improvements

• Joseph M. Williams. Style: Toward clarity
and grace. 1990. (book)

• Norman Ramsey. Learn technical writing
in two hours per week. (course notes)

- http://www.cs.tufts.edu/~nr/pubs/two.pdf

• Simon Peyton Jones. How to write a great
research paper. (talk)

- https://www.microsoft.com/en-us/research/video/
how-to-write-a-great-research-paper-3/

Inspirations for this talk

http://www.cs.tufts.edu/~nr/pubs/two.pdf
https://www.microsoft.com/en-us/research/video/how-to-write-a-great-research-paper-3/
https://www.microsoft.com/en-us/research/video/how-to-write-a-great-research-paper-3/

• Joseph M. Williams. Style: Toward clarity
and grace. 1990. (book)

• Norman Ramsey. Learn technical writing
in two hours per week. (course notes)

- http://www.cs.tufts.edu/~nr/pubs/two.pdf

• Simon Peyton Jones. How to write a great
research paper. (talk)

- https://www.microsoft.com/en-us/research/video/
how-to-write-a-great-research-paper-3/

Inspirations for this talk

 Talk developed jointly with
 Rose Hoberman
 @ MPI-SWS

http://www.cs.tufts.edu/~nr/pubs/two.pdf
https://www.microsoft.com/en-us/research/video/how-to-write-a-great-research-paper-3/
https://www.microsoft.com/en-us/research/video/how-to-write-a-great-research-paper-3/

Sentences & paragraphs

It should be clear how each
sentence and paragraph relates to

the adjacent ones

Flow

Does this text flow?

Does this text flow?

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. The game-playing technique, originally
proposed by Jones et al., follows a code-based approach
where the security properties are formulated in terms of
probabilistic programs, called games. This is a general
design principle for cryptographic proofs to ease their
management.

Does this text flow?

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. The game-playing technique, originally
proposed by Jones et al., follows a code-based approach
where the security properties are formulated in terms of
probabilistic programs, called games. This is a general
design principle for cryptographic proofs to ease their
management.

Does this text flow?

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. The game-playing technique, originally
proposed by Jones et al., follows a code-based approach
where the security properties are formulated in terms of
probabilistic programs, called games. This is a general
design principle for cryptographic proofs to ease their
management.

Does this text flow?

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. The game-playing technique, originally
proposed by Jones et al., follows a code-based approach
where the security properties are formulated in terms of
probabilistic programs, called games. This is a general
design principle for cryptographic proofs to ease their
management.

Does this text flow?

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. The game-playing technique, originally
proposed by Jones et al., follows a code-based approach
where the security properties are formulated in terms of
probabilistic programs, called games. This is a general
design principle for cryptographic proofs to ease their
management.

Does this text flow?

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. The game-playing technique, originally
proposed by Jones et al., follows a code-based approach
where the security properties are formulated in terms of
probabilistic programs, called games. This is a general
design principle for cryptographic proofs to ease their
management.

Does this text flow?

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. The game-playing technique, originally
proposed by Jones et al., follows a code-based approach
where the security properties are formulated in terms of
probabilistic programs, called games. This is a general
design principle for cryptographic proofs to ease their
management.

Does this text flow?

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. The game-playing technique, originally
proposed by Jones et al., follows a code-based approach
where the security properties are formulated in terms of
probabilistic programs, called games. This is a general
design principle for cryptographic proofs to ease their
management.

What does this game-playing technique
have to do with what came before?

Old to new

• Begin sentences with old info

- Creates link to earlier text

• End sentences with new info

- Creates link to the text that follows

- Also places new info in position of emphasis

Applying old-to-new

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. The game-playing technique, originally
proposed by Jones et al., follows a code-based approach
where the security properties are formulated in terms of
probabilistic programs, called games. This is a general
design principle for cryptographic proofs to ease their
management.

New information

Applying old-to-new

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. To make it easier to manage such proofs,
Jones et al. have proposed a new design principle, called
the game-playing technique. This technique follows a
code-based approach where the security properties are
formulated in terms of probabilistic programs, called
games.

Old-to-new satisfied

Security proofs of cryptographic protocols are crucial for
the security of everyday electronic communication.
However, these proofs tend to be complex and difficult
to get right. To make it easier to manage such proofs,
Jones et al. have proposed a new design principle, called
the game-playing technique. This technique follows a
code-based approach where the security properties are
formulated in terms of probabilistic programs, called
games.

But flow is not enough!

What about this text?

Lions and tigers are some of the most dramatic and
awe-inspiring species of cats. Most of these large
cats, however, are currently facing extinction. A
smaller cat that has been more evolutionarily
successful is the house cat. Although house cats
are currently the most popular pet in the world,
they are in many ways anti-social. It would
therefore be interesting to study whether house
cats can be trained to be more sociable.

What about this text?

Lions and tigers are some of the most dramatic and
awe-inspiring species of cats. Most of these large
cats, however, are currently facing extinction. A
smaller cat that has been more evolutionarily
successful is the house cat. Although house cats
are currently the most popular pet in the world,
they are in many ways anti-social. It would
therefore be interesting to study whether house
cats can be trained to be more sociable.

What about this text?

Lions and tigers are some of the most dramatic and
awe-inspiring species of cats. Most of these large
cats, however, are currently facing extinction. A
smaller cat that has been more evolutionarily
successful is the house cat. Although house cats
are currently the most popular pet in the world,
they are in many ways anti-social. It would
therefore be interesting to study whether house
cats can be trained to be more sociable.

What about this text?

Lions and tigers are some of the most dramatic and
awe-inspiring species of cats. Most of these large
cats, however, are currently facing extinction. A
smaller cat that has been more evolutionarily
successful is the house cat. Although house cats
are currently the most popular pet in the world,
they are in many ways anti-social. It would
therefore be interesting to study whether house
cats can be trained to be more sociable.

What about this text?

Lions and tigers are some of the most dramatic and
awe-inspiring species of cats. Most of these large
cats, however, are currently facing extinction. A
smaller cat that has been more evolutionarily
successful is the house cat. Although house cats
are currently the most popular pet in the world,
they are in many ways anti-social. It would
therefore be interesting to study whether house
cats can be trained to be more sociable.

What about this text?

Lions and tigers are some of the most dramatic and
awe-inspiring species of cats. Most of these large
cats, however, are currently facing extinction. A
smaller cat that has been more evolutionarily
successful is the house cat. Although house cats
are currently the most popular pet in the world,
they are in many ways anti-social. It would
therefore be interesting to study whether house
cats can be trained to be more sociable.

What about this text?

Lions and tigers are some of the most dramatic and
awe-inspiring species of cats. Most of these large
cats, however, are currently facing extinction. A
smaller cat that has been more evolutionarily
successful is the house cat. Although house cats
are currently the most popular pet in the world,
they are in many ways anti-social. It would
therefore be interesting to study whether house
cats can be trained to be more sociable.

What about this text?

Lions and tigers are some of the most dramatic and
awe-inspiring species of cats. Most of these large
cats, however, are currently facing extinction. A
smaller cat that has been more evolutionarily
successful is the house cat. Although house cats
are currently the most popular pet in the world,
they are in many ways anti-social. It would
therefore be interesting to study whether house
cats can be trained to be more sociable.

Has gre
at flow,

but is incoherent!

Coherence

It should be clear how each
sentence and paragraph relates to

the big picture

One paragraph, one point

• A paragraph should have one main point,
expressed in a single point sentence

• Typically the point sentence should appear
at or near the beginning of the paragraph

No point sentence

Lions and tigers are some of the most dramatic and
awe-inspiring species of cats. Most of these large
cats, however, are currently facing extinction. A
smaller cat that has been more evolutionarily
successful is the house cat. Although house cats
are currently the most popular pet in the world,
they are in many ways anti-social. It would
therefore be interesting to study whether house
cats can be trained to be more sociable.

Point sentence up front

There appears to be a negative correlation between
the charisma of a species and its ability to survive.
Lions and tigers, for instance, are among the most
majestic creatures in the animal kingdom, yet they
are currently facing extinction. In contrast, the
house cat is evolutionarily quite successful, even
though it is mostly known for stupid pet tricks.

Create flow with old to new

Create coherence with
one paragraph, one point

Flow & coherence

Two other principles

• Name your baby:

- Give unique names to things
and use them consistently

• Just in time:

- Give information precisely
when it is needed, not before

Structure of
a research paper

Top-down
The basic idea

Explain your work at multiple levels of abstraction,
starting at a high level and

getting progressively more detailed

A structure that works

• Abstract (1-2 paragraphs, 1000 readers)

• Intro (1-2 pages, 100 readers)

• Key ideas (2-3 pages, 50 readers)

• Technical meat (4-6 pages, 5 readers)

• Related work (1-2 pages, 100 readers)

A structure that works

• Abstract (1-2 paragraphs, 1000 readers)

• Intro (1-2 pages, 100 readers)

• Key ideas (2-3 pages, 50 readers)

• Technical meat (4-6 pages, 5 readers)

• Related work (1-2 pages, 100 readers)

The CGI model for an
abstract/intro

• Context:
- Set the stage, motivate the general topic

• Gap:
- Explain your specific problem and why

existing work does not adequately solve it

• Innovation:
- State what you’ve done that is new,

and explain how it helps fill the gap

An abstract for this talk

Context
Learning to write well is an essential part of becoming a
successful researcher. Unfortunately, many researchers
find it very hard to write well because they do not know
how to view their text from the perspective of the reader.
In this talk, we present a simple set of principles for good
writing, based on an understanding of how readers
process information. Unlike such platitudes as "Be clear"
or "Omit needless words", our principles are constructive:
one can easily check whether a piece of text satisfies
them, and if it does not, the principles suggest concrete
ways to improve it.

Gap
Learning to write well is an essential part of becoming a
successful researcher. Unfortunately, many researchers
find it very hard to write well because they do not know
how to view their text from the perspective of the reader.
In this talk, we present a simple set of principles for good
writing, based on an understanding of how readers
process information. Unlike such platitudes as "Be clear"
or "Omit needless words", our principles are constructive:
one can easily check whether a piece of text satisfies
them, and if it does not, the principles suggest concrete
ways to improve it.

Innovation
Learning to write well is an essential part of becoming a
successful researcher. Unfortunately, many researchers
find it very hard to write well because they do not know
how to view their text from the perspective of the reader.
In this talk, we present a simple set of principles for good
writing, based on an understanding of how readers
process information. Unlike such platitudes as "Be clear"
or "Omit needless words", our principles are constructive:
one can easily check whether a piece of text satisfies
them, and if it does not, the principles suggest concrete
ways to improve it.

Introduction
• Like an expanded version of the abstract

• Alternative approach (SPJ): Eliminate Context

- Start with a concrete example, e.g.
“Consider this Haskell code…”

- If this works, it can be effective,
but I find it often doesn’t work

- It assumes reader already knows context

A structure that works

• Abstract (1-2 paragraphs, 1000 readers)

• Intro (1-2 pages, 100 readers)

• Key ideas (2-3 pages, 50 readers)

• Technical meat (4-6 pages, 5 readers)

• Related work (1-2 pages, 100 readers)

“Key ideas” section

• Use concrete illustrative examples and
high-level intuition

• Do not have to show the general solution
(that’s what the technical section is for)

Why have a “key ideas”
section at all?

1. Forces you to have a “takeaway”

2. Many readers only care about the
takeaway, not the technical details

3. For those who want the technical
details, the key ideas are still
useful as “scaffolding”

A confession

I don’t always have a key ideas section.

Breadth-first traversal

Breadth-first traversal

Intro:

Key ideas:

Technical
meat

Breadth-first traversal

Intro:

Key ideas:

Technical
meat

Sometimes breadth-first doesn’t work!
e.g., if explaining 3 & 4 requires

first explaining subtree rooted at 2

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

A Promising Semantics for Relaxed-Memory Concurrency

Jeehoon Kang Chung-Kil Hur ⇤

Seoul National University, Korea
{jeehoon.kang,gil.hur}@sf.snu.ac.kr

Ori Lahav Viktor Vafeiadis Derek Dreyer
MPI-SWS, Germany †

{orilahav,viktor,dreyer}@mpi-sws.org

Abstract
Despite many years of research, it has proven very difficult to de-
velop a memory model for concurrent programming languages that
adequately balances the conflicting desiderata of programmers, com-
pilers, and hardware. In this paper, we propose the first relaxed
memory model that (1) accounts for a broad spectrum of features
from the C++11 concurrency model, (2) is implementable, in the
sense that it provably validates many standard compiler optimiza-
tions and reorderings, as well as standard compilation schemes to
x86-TSO and Power, (3) justifies simple invariant-based reasoning,
thus demonstrating the absence of bad “out-of-thin-air” behaviors,
(4) supports “DRF” guarantees, ensuring that programmers who use
sufficient synchronization need not understand the full complexi-
ties of relaxed-memory semantics, and (5) defines the semantics of
racy programs without relying on undefined behaviors, which is a
prerequisite for applicability to type-safe languages like Java.

The key novel idea behind our model is the notion of promises:
a thread may promise to execute a write in the future, thus enabling
other threads to read from that write out of order. Crucially, to
prevent out-of-thin-air behaviors, a promise step requires a thread-
local certification that it will be possible to execute the promised
write even in the absence of the promise. To establish confidence in
our model, we have formalized most of our key results in Coq.

Categories and Subject Descriptors D.1.3 [Concurrent Program-
ming]: Parallel programming; D.3.1 [Programming Languages]:
Formal Definitions and Theory—Semantics

Keywords Weak memory models; C++11; operational semantics

1. Introduction
What is the right semantics for concurrent shared-memory programs
written in higher-level languages? The seemingly simplest answer
would be a sequentially consistent (SC) semantics [20], in which all
threads in a program share a single view of memory and writes to
memory take immediate global effect.

However, a naive SC semantics is costly to implement. First of
all, commodity architectures (such as x86, Power, and ARM) are
not SC: they execute memory operations speculatively or out of
order, and they employ hierarchies of buffers to reduce memory
latency, with the effect that there is no globally consistent view of

⇤ Corresponding author. †Saarland Informatics Campus.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

Copyright © held by owner/author(s). Publication rights licensed to ACM.
ACM [to be supplied]. . . $15.00

memory shared by all threads. To simulate SC semantics on these
architectures, one must therefore insert expensive fence instructions
to subvert the efforts of the hardware. Secondly, a number of com-
mon compiler optimizations—such as constant propagation—are
rendered unsound by a naive SC semantics because they effectively
reorder memory operations. Moreover, SC semantics is stronger (i.e.,
more restrictive) than necessary for many concurrent algorithms.

Hence, languages like Java and C++ have opted instead to
provide relaxed (aka weak) memory models [22, 13], which enable
programmers to demand SC semantics when they need it, but which
also support a range of cheaper memory operations that trade off
strongly consistent and/or well-defined behavior for efficiency.

1.1 Criteria for a Programming Language Memory Model
Unfortunately, despite many years of research, it has proven very
difficult to develop a memory model for concurrent programming
languages that adequately balances the conflicting desiderata of
programmers, compilers, and hardware. In particular, we would like
to find a memory model that satisfies the following properties:

• The model should be implementable, i.e., it should validate com-
mon compiler optimizations, as well as standard compilation
schemes to the major modern architectures. To be implementable,
it must justify many kinds of instruction reordering and merging.

• The model should support high-level reasoning principles that
programmers and compiler analyses depend on. At a bare min-
imum, it should validate simple invariant-based verification,
and should provide some “DRF” guarantees [4], ensuring that
programmers who employ sufficient synchronization need not
understand the full complexities of relaxed-memory semantics.

• The model should ideally avoid relying on undefined behavior
to define the semantics of racy programs. This is a prerequisite
for applicability to type-safe languages like Java, in which well-
typed programs may contain data races but are nevertheless
expected to have safe, well-defined semantics.
Both Java and C++ fail to achieve some of these criteria.
In the case of Java, the memory model fails to validate a

number of common program transformations performed by real Java
compilers, such as redundant read-after-read elimination and “roach
motel” reordering [27]. Although this problem has been known for
some time, a satisfactory solution has yet to be developed.

In the case of C++, the memory model relies crucially on
undefined behaviors to give semantics to racy programs. Moreover,
it permits certain “out-of-thin-air” executions which violate basic
invariant-based reasoning (and DRF guarantees) [7].

1.2 The “Out of Thin Air” Problem
To illustrate the problem with C++, consider these two variants of
the classic “load buffering” litmus test (with two threads in parallel):

a := x;
y := 1;

x := y; (LB) a := x;
y := a;

x := y; (LBd)

1

POPL ’17

(MEMORY: NEW)

hP,Mi m�! hP,M -A mi

(MEMORY: FULFILL)
 -2 { -S , -U } P 0 = P - m M 0 = M - m

hP,Mi m�! hP 0 \ {m},M 0i

(READ-HELPER)
o = pln =) cur.pln(x)  t

o 2 {rlx, ra} =) cur.rlx(x)  t
cur0 = cur t V t (o w ra ?R)
acq0 = acq t V t (o w rlx ?R)

where V = [pln : (o w rlx ? {x@t}), rlx : {x@t}]

hcur, acq, reli R:o,x,t,R������! hcur0, acq0, reli

(WRITE-HELPER)
cur.rlx(x) < t

cur0 = cur t V acq0 = acq t cur0

rel0 = rel[x 7! rel(x) t V t (o w ra ? cur0)]
Rw = (o w rlx ? (rel0(x) tRr))

where V = [pln : {x@t}, rlx : {x@t}]

hcur, acq, reli W:o,x,t,Rr,Rw���������! hcur0, acq0, rel0i

(SC-FENCE-HELPER)
S0 = acq.rlx t S

cur0 = acq0 = hS0,S0i
rel0 = �_.hS0,S0i

hhcur, acq, reli,Si Fsc��!
hhcur0, acq0, rel0i,S0i

(READ)

�
R(o,x,v)�����! �0

hx : v@(_, t], Ri 2M

V R:o,x,t,R������!V 0

hh�,V, P i,S,Mi �! hh�0,V 0, P i,S,Mi

(WRITE)

�
W(o,x,v)�����! �0

o = ra =) 8m0 2 P (x). m0.view = ?
m = hx : v@(_, t], Ri
hP,Mi m�! hP 0,M 0i

V W:o,x,t,?,R��������!V 0

hh�,V, P i,S,Mi �! hh�0,V 0, P 0i,S,M 0i

(UPDATE)

�
U(or,ow,x,vr,vw)����������! �0

ow = ra =) 8m0 2 P (x). m0.view = ?
hx : vr @(_ , tr], Rr i 2M

mw =hx : vw@(tr, tw], Rwi
hP,Mi mw��! hP 0,M 0i

V R:or,x,tr,Rr�������! W:ow,x,tw,Rr,Rw�����������!V 0

hh�,V, P i,S,Mi �! hh�0,V 0, P 0i,S,M 0i

(ACQ-FENCE)

�
Facq��! �0 cur0 = acq

hh�, hcur, acq, reli, P i,S,Mi �!
hh�0, hhcur0, acq, reli, P i,S,Mii

(REL-FENCE)
�

Frel��! �0 rel0 = �_.cur
8m 2 P. m.view = ?

hh�, hcur, acq, reli, P i,S,Mi �!
hh�0, hhcur, acq, rel0i, P i,S,Mii

(SC-FENCE)
�

Fsc��! �0

hV,Si Fsc��! hV 0,S0i
8m 2 P. m.view = ?
hh�,V, P i,S,Mi �!
hh�0,V 0, P i,S0,Mi

(SYSTEM CALL)

�
SysCall(v)������! �0

hV,Si Fsc��! hV 0,S0i
8m 2 P. m.view = ?

hh�,V, P i,S,Mi SysCall(v)������!
hh�0,V 0, P i,S0,Mi

(SILENT)

�
Silent���! �0

hh�,V, P i,S,Mi �! hh�0,V, P i,S,Mi

(PROMISE)
 -2 { -A , -S , -U } P 0 = P - m
M 0 = M - m m.view 2M 0

hh�,V, P i,S,Mi �! hh�,V, P 0i,S,M 0i

(MACHINE STEP)
hTS(i),S,Mi �!⇤ hTS 0,S0,M 0i
hTS 0,S0,M 0i e�! hTS 00,S00,M 00i
hTS 00,S00,M 00i is consistent

hTS,S,Mi e�! hTS[i 7! TS 00],S00,M 00i

Figure 3. Full operational semantics.

Closed Memory Given a timemap T and a memory M , we write
T 2 M if, for every x 2 Loc, we have T (x) = m.to for some
m 2 M with m.loc = x. For a view V , we write V 2 M if
T 2 M for each component timemap T of V . A memory M is
closed if m.view 2M for every m 2M .

Future Memory For memories M,M 0, we write M �!M 0 if
M 0 2 {M -A m,M -S m,M -U m} for some message m, and
M 0 is closed. We say M is a future memory of M w.r.t. a memory
P , if P ✓M 0 and M �!⇤ M 0.

Threads A thread view is a triple V = hcur, acq, reli, where
cur, acq 2 View and rel 2 Loc ! View satisfying rel(x) 
cur  acq for all x 2 Loc. We denote by V.cur, V.acq, and V.rel
the components of V . A thread state is a triple TS = h�,V, P i
defined just as in §2.2 except with a thread view V instead of a
single timemap (� is a local state and P is a memory). We denote
by TS .st, TS .view, and TS .prm the components of TS .

Thread Configuration Steps A thread configuration is a triple
hTS ,S,Mi, where TS is a thread state, S is a timemap (the global
SC timemap), and M is a memory.

Figure 3 presents the full list of thread configuration steps. To
avoid repetition, we use the additional rules READ-HELPER, WRITE-
HELPER, and SC-FENCE-HELPER. These employ several helpful
notations: ? and t denote the natural bottom elements and join
operations for timemaps and for views (pointwise extensions of the
initial timestamp 0 and thet—i.e., max—operation on timestamps);
{x@t} denotes the timemap assigning t to x and 0 to other locations;
and (cond ?X) is defined to be X if cond holds, and ? otherwise.

The write and the update steps cover two cases: a fresh write
to memory (MEMORY:NEW) and a fulfillment of an outstanding
promise (MEMORY:FULFILL). The latter allows to split the promise
or lower its view before its fulfillment (note that when m 2 P ✓M ,
we have P = P -U m and M = M -U m by def. of -U).

Consistency A thread configuration hTS ,S,Mi is called consis-
tent if for every future memory Mfuture of M w.r.t. TS .prm and
every timemap Sfuture with S  Sfuture 2Mfuture, there exist TS 0,
S 0, M 0 such that:

hTS ,Sfuture,Mfuturei �!⇤ hTS 0,S 0,M 0i ^ TS 0.prm = ;

Machine and Behaviors A machine state is a triple MS =
hTS,S,Mi consisting of a function TS assigning a thread state to
every thread, an SC timemap S, and a memory M . The initial
state MS0 (for a given program) consists of the function TS0

mapping each thread i to its initial state �0
i , the zero thread view (all

timestamps in all timemaps are 0), and an empty set of promises;
the zero timemap S0; and the initial memory M0 consisting of one
message hx : 0@(0, 0],?i for each location x. The machine step is
defined by the last rule in Figure 3. The variable e in the final thread
configuration step can either be a usual step (e is empty), or denote
a system call (e = SysCall(v)).

To define the set of behaviors of a program P (namely, what is
externally observable during P’s executions), we use the system
calls that P’s executions perform. More precisely, every execution
induces a sequence of system calls (each includes a specific value
for input/output), and the set of behaviors of P is taken to be the set
of all system call sequences induced by executions of P .

9

(MEMORY: NEW)

hP,Mi m�! hP,M -A mi

(MEMORY: FULFILL)
 -2 { -S , -U } P 0 = P - m M 0 = M - m

hP,Mi m�! hP 0 \ {m},M 0i

(READ-HELPER)
o = pln =) cur.pln(x)  t

o 2 {rlx, ra} =) cur.rlx(x)  t
cur0 = cur t V t (o w ra ?R)
acq0 = acq t V t (o w rlx ?R)

where V = [pln : (o w rlx ? {x@t}), rlx : {x@t}]

hcur, acq, reli R:o,x,t,R������! hcur0, acq0, reli

(WRITE-HELPER)
cur.rlx(x) < t

cur0 = cur t V acq0 = acq t cur0

rel0 = rel[x 7! rel(x) t V t (o w ra ? cur0)]
Rw = (o w rlx ? (rel0(x) tRr))

where V = [pln : {x@t}, rlx : {x@t}]

hcur, acq, reli W:o,x,t,Rr,Rw���������! hcur0, acq0, rel0i

(SC-FENCE-HELPER)
S0 = acq.rlx t S

cur0 = acq0 = hS0,S0i
rel0 = �_.hS0,S0i

hhcur, acq, reli,Si Fsc��!
hhcur0, acq0, rel0i,S0i

(READ)

�
R(o,x,v)�����! �0

hx : v@(_, t], Ri 2M

V R:o,x,t,R������!V 0

hh�,V, P i,S,Mi �! hh�0,V 0, P i,S,Mi

(WRITE)

�
W(o,x,v)�����! �0

o = ra =) 8m0 2 P (x). m0.view = ?
m = hx : v@(_, t], Ri
hP,Mi m�! hP 0,M 0i

V W:o,x,t,?,R��������!V 0

hh�,V, P i,S,Mi �! hh�0,V 0, P 0i,S,M 0i

(UPDATE)

�
U(or,ow,x,vr,vw)����������! �0

ow = ra =) 8m0 2 P (x). m0.view = ?
hx : vr @(_ , tr], Rr i 2M

mw =hx : vw@(tr, tw], Rwi
hP,Mi mw��! hP 0,M 0i

V R:or,x,tr,Rr�������! W:ow,x,tw,Rr,Rw�����������!V 0

hh�,V, P i,S,Mi �! hh�0,V 0, P 0i,S,M 0i

(ACQ-FENCE)

�
Facq��! �0 cur0 = acq

hh�, hcur, acq, reli, P i,S,Mi �!
hh�0, hhcur0, acq, reli, P i,S,Mii

(REL-FENCE)
�

Frel��! �0 rel0 = �_.cur
8m 2 P. m.view = ?

hh�, hcur, acq, reli, P i,S,Mi �!
hh�0, hhcur, acq, rel0i, P i,S,Mii

(SC-FENCE)
�

Fsc��! �0

hV,Si Fsc��! hV 0,S0i
8m 2 P. m.view = ?
hh�,V, P i,S,Mi �!
hh�0,V 0, P i,S0,Mi

(SYSTEM CALL)

�
SysCall(v)������! �0

hV,Si Fsc��! hV 0,S0i
8m 2 P. m.view = ?

hh�,V, P i,S,Mi SysCall(v)������!
hh�0,V 0, P i,S0,Mi

(SILENT)

�
Silent���! �0

hh�,V, P i,S,Mi �! hh�0,V, P i,S,Mi

(PROMISE)
 -2 { -A , -S , -U } P 0 = P - m
M 0 = M - m m.view 2M 0

hh�,V, P i,S,Mi �! hh�,V, P 0i,S,M 0i

(MACHINE STEP)
hTS(i),S,Mi �!⇤ hTS 0,S0,M 0i
hTS 0,S0,M 0i e�! hTS 00,S00,M 00i
hTS 00,S00,M 00i is consistent

hTS,S,Mi e�! hTS[i 7! TS 00],S00,M 00i

Figure 3. Full operational semantics.

Closed Memory Given a timemap T and a memory M , we write
T 2 M if, for every x 2 Loc, we have T (x) = m.to for some
m 2 M with m.loc = x. For a view V , we write V 2 M if
T 2 M for each component timemap T of V . A memory M is
closed if m.view 2M for every m 2M .

Future Memory For memories M,M 0, we write M �!M 0 if
M 0 2 {M -A m,M -S m,M -U m} for some message m, and
M 0 is closed. We say M is a future memory of M w.r.t. a memory
P , if P ✓M 0 and M �!⇤ M 0.

Threads A thread view is a triple V = hcur, acq, reli, where
cur, acq 2 View and rel 2 Loc ! View satisfying rel(x) 
cur  acq for all x 2 Loc. We denote by V.cur, V.acq, and V.rel
the components of V . A thread state is a triple TS = h�,V, P i
defined just as in §2.2 except with a thread view V instead of a
single timemap (� is a local state and P is a memory). We denote
by TS .st, TS .view, and TS .prm the components of TS .

Thread Configuration Steps A thread configuration is a triple
hTS ,S,Mi, where TS is a thread state, S is a timemap (the global
SC timemap), and M is a memory.

Figure 3 presents the full list of thread configuration steps. To
avoid repetition, we use the additional rules READ-HELPER, WRITE-
HELPER, and SC-FENCE-HELPER. These employ several helpful
notations: ? and t denote the natural bottom elements and join
operations for timemaps and for views (pointwise extensions of the
initial timestamp 0 and thet—i.e., max—operation on timestamps);
{x@t} denotes the timemap assigning t to x and 0 to other locations;
and (cond ?X) is defined to be X if cond holds, and ? otherwise.

The write and the update steps cover two cases: a fresh write
to memory (MEMORY:NEW) and a fulfillment of an outstanding
promise (MEMORY:FULFILL). The latter allows to split the promise
or lower its view before its fulfillment (note that when m 2 P ✓M ,
we have P = P -U m and M = M -U m by def. of -U).

Consistency A thread configuration hTS ,S,Mi is called consis-
tent if for every future memory Mfuture of M w.r.t. TS .prm and
every timemap Sfuture with S  Sfuture 2Mfuture, there exist TS 0,
S 0, M 0 such that:

hTS ,Sfuture,Mfuturei �!⇤ hTS 0,S 0,M 0i ^ TS 0.prm = ;

Machine and Behaviors A machine state is a triple MS =
hTS,S,Mi consisting of a function TS assigning a thread state to
every thread, an SC timemap S, and a memory M . The initial
state MS0 (for a given program) consists of the function TS0

mapping each thread i to its initial state �0
i , the zero thread view (all

timestamps in all timemaps are 0), and an empty set of promises;
the zero timemap S0; and the initial memory M0 consisting of one
message hx : 0@(0, 0],?i for each location x. The machine step is
defined by the last rule in Figure 3. The variable e in the final thread
configuration step can either be a usual step (e is empty), or denote
a system call (e = SysCall(v)).

To define the set of behaviors of a program P (namely, what is
externally observable during P’s executions), we use the system
calls that P’s executions perform. More precisely, every execution
induces a sequence of system calls (each includes a specific value
for input/output), and the set of behaviors of P is taken to be the set
of all system call sequences induced by executions of P .

9

(THREAD: SILENT)

�
Silent���! �0

hh�, V, P i,Mi �! hh�0, V, P i,Mi

(THREAD: READ)

�
R(x,v)����! �0 hx : v@ti 2M

V (x)  t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P i,Mi

(THREAD: WRITE)

�
W(x,v)����! �0 M 0 = M -A hx : v@ti
V (x) < t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P i,M 0i

(THREAD: PROMISE)
M 0 = M -A m P 0 = P -A m

hh�, V, P i,Mi �! hh�, V, P 0i,M 0i

(THREAD: FULFILL)

�
W(x,v)����! �0 hx : v@ti 2 P P 0 = P \ {hx : v@ti}

V (x) < t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P 0i,Mi

(MACHINE STEP)
hTS(i),Mi �!+ hTS 0,M 0i
hTS 0,M 0i is consistent

hTS,Mi �! hTS[i 7! TS 0],M 0i

Figure 1. Operational semantics for the simplified model handling only relaxed read and write accesses.

Machine States A machine state MS = hTS,Mi consists of a
function TS assigning a thread state to every thread, and a (global)
memory M . The initial state MS0 (for a given program) consists
of the function TS0 mapping each thread i to its initial state �0

i ,
a current timestamp of 0 for every location, and an empty set of
promises; and the initial memory M0 that has one initial message
hx : 0@0i for each location x. A machine takes a step (see the last
rule in Figure 1) whenever a thread can take several steps to some
consistent configuration. Note that we allow multiple thread steps in
one machine step. This is convenient in our proofs, and can reduce
the number of certifications during an execution of a program.

Finally, we can easily show that a machine never gets stuck
unless each thread i has reached h�final

i , V, ;i for some view V .
For non-final states, progress follows from the receptiveness and
progress assumptions about the programming language, together
with the invariant that no thread has a higher view of any x than
the highest timestamp for x in memory. Another crucial invariant is
consistency: the MACHINE STEP rule demands that each machine
step taken by a thread must preserve consistency of the thread’s own
configuration, and it implicitly preserves the consistency of other
threads’ configurations as well, since they are free to ignore any new
messages the thread has added. When all threads reach their final
states, consistency implies they must have no promises left to fulfill.

3. Supporting Atomic Updates
In this section, we extend our basic model for relaxed accesses
to also handle (relaxed) atomic update—aka read-modify-write
(RMW)—instructions, such as fetch-and-add and compare-and-
swap. Updates are essential as a means to implement synchroniza-
tion (e.g., mutual exclusion) between threads, but this also makes
them tricky to model semantically. In particular, a successful update
operation performed by one thread will often have the effect of
“winning a race” and hence blocking (previously possible) update
operations performed by other “losing” threads. This stands in con-
trast to the updates-free fragment in §2, in which threads are free
to ignore the messages of other threads. Thus, to extend our model
to support updates, we must ensure that threads performing updates
cannot invalidate the already-certified promises of other threads.

An update is an atomic composition of a read and a write to
the same location x. However, unlike under SC, atomicity requires
more than just avoiding interference of other threads between the
two operations. Consider the following example (taking FAA(x, 1)
to be an atomic fetch-and-add of 1 to x, which returns the value of
x before the increment):

a := FAA(x, 1); b := FAA(x, 1); (Par-Inc)

Atomicity ensures that it is not possible for both threads to increment
x from 0 to 1 (we must either get a = 1 or b = 1). To obtain this, we
require that the read timestamp of the update (i.e., the timestamp of
the write message that the update reads from) immediately precede
its write timestamp (i.e., the timestamp of the write message that the
update generates) in x’s modification order, and that future writes to

x may not be assigned timestamps in between them. In the example
above, if both of the updates were to increment x from 0 to 1, the
write timestamp for one of the updates would have to come between
the read and write timestamps for the other update.

To enforce this restriction, we extend messages to store a
continuous range of timestamps rather than a single timestamp.
Thus, messages are now tuples of the form hx : v@(f, t]i where
x 2 Loc, v 2 Val, and f, t 2 Time satisfying f < t or f = t = 0.
We write m.from and m.to to denote the f and t components of
a message m. Intuitively, m can be thought of as reserving the
timestamps in the range (m.from,m.to]; among these, m.to is the
“real” timestamp of m, but the remaining timestamps in the range
are reserved so that other messages cannot use them. Timestamp
reservation is reflected in the following revised definition of message
disjointness, which enforces that disjoint messages for the same
location must have disjoint ranges:

hx : v@(f, t]i# hx0 : v0@(f 0, t0]i ,
x 6= x0 _ t  f 0 < t0 _ t0  f < t

With timestamp reservation, we can easily ensure that the write
timestamp of an update is adjacent to its read timestamp in the
modification order. Formally, we will say two messages m and
m0 are adjacent, denoted Adj(m,m0), if m.loc = m0.loc and
m.to = m0.from. In defining the semantics of updates, we will
then insist that the message that the update inserts into memory must
appear adjacently after the message that it reads from. This suffices
to guarantee the correct outcome in the Par-Inc program above.

Although the introduction of timestamp reservation enables us to
easily model updates, it creates a complication for promises, namely
that timestamp reservations may invalidate the promise certifications
already performed by other threads. Consider, for example, the
following program:

a := x; // 1
b := FAA(z, 1); // 0
y := b+ 1;

x := y; FAA(z, 1); (Upd-Stuck)

This behavior ought to be allowed, since hardware could reorder
the read of x after the independent accesses to z and y. To produce
this behavior, following our semantics from the previous section,
T1 could promise to write y := 1 because it can thread-locally
certify that the promise can be fulfilled (the certification will involve
updating z from 0 to 1). If, however, T3 then updates z from 0 to 1,
that will mean that T1 can no longer perform the update it needs to
fulfill its promise, and its execution will eventually get stuck.

To avoid such stuck executions, we strengthen the check per-
formed by promise certification, i.e., the consistency requirement
on thread configurations. We require that each thread’s promises are
locally fulfillable not only in the current memory, but also in any
future memory, i.e., any extension of the memory with additional
messages. This quantification over future memories ensures that
thread configurations remain consistent whenever another thread
performs an execution step, and thus the machine cannot get stuck.

5

• Intro: A few paragraphs about main key idea

• Section 2: More details about main key idea
in a simplified version of the semantics

• Section 3-4: Presented other key ideas and
built up to the full semantics incrementally

Layering the presentation

(THREAD: SILENT)

�
Silent���! �0

hh�, V, P i,Mi �! hh�0, V, P i,Mi

(THREAD: READ)

�
R(x,v)����! �0 hx : v@ti 2M

V (x)  t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P i,Mi

(THREAD: WRITE)

�
W(x,v)����! �0 M 0 = M -A hx : v@ti
V (x) < t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P i,M 0i

(THREAD: PROMISE)
M 0 = M -A m P 0 = P -A m

hh�, V, P i,Mi �! hh�, V, P 0i,M 0i

(THREAD: FULFILL)

�
W(x,v)����! �0 hx : v@ti 2 P P 0 = P \ {hx : v@ti}

V (x) < t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P 0i,Mi

(MACHINE STEP)
hTS(i),Mi �!+ hTS 0,M 0i
hTS 0,M 0i is consistent

hTS,Mi �! hTS[i 7! TS 0],M 0i

Figure 1. Operational semantics for the simplified model handling only relaxed read and write accesses.

Machine States A machine state MS = hTS,Mi consists of a
function TS assigning a thread state to every thread, and a (global)
memory M . The initial state MS0 (for a given program) consists
of the function TS0 mapping each thread i to its initial state �0

i ,
a current timestamp of 0 for every location, and an empty set of
promises; and the initial memory M0 that has one initial message
hx : 0@0i for each location x. A machine takes a step (see the last
rule in Figure 1) whenever a thread can take several steps to some
consistent configuration. Note that we allow multiple thread steps in
one machine step. This is convenient in our proofs, and can reduce
the number of certifications during an execution of a program.

Finally, we can easily show that a machine never gets stuck
unless each thread i has reached h�final

i , V, ;i for some view V .
For non-final states, progress follows from the receptiveness and
progress assumptions about the programming language, together
with the invariant that no thread has a higher view of any x than
the highest timestamp for x in memory. Another crucial invariant is
consistency: the MACHINE STEP rule demands that each machine
step taken by a thread must preserve consistency of the thread’s own
configuration, and it implicitly preserves the consistency of other
threads’ configurations as well, since they are free to ignore any new
messages the thread has added. When all threads reach their final
states, consistency implies they must have no promises left to fulfill.

3. Supporting Atomic Updates
In this section, we extend our basic model for relaxed accesses
to also handle (relaxed) atomic update—aka read-modify-write
(RMW)—instructions, such as fetch-and-add and compare-and-
swap. Updates are essential as a means to implement synchroniza-
tion (e.g., mutual exclusion) between threads, but this also makes
them tricky to model semantically. In particular, a successful update
operation performed by one thread will often have the effect of
“winning a race” and hence blocking (previously possible) update
operations performed by other “losing” threads. This stands in con-
trast to the updates-free fragment in §2, in which threads are free
to ignore the messages of other threads. Thus, to extend our model
to support updates, we must ensure that threads performing updates
cannot invalidate the already-certified promises of other threads.

An update is an atomic composition of a read and a write to
the same location x. However, unlike under SC, atomicity requires
more than just avoiding interference of other threads between the
two operations. Consider the following example (taking FAA(x, 1)
to be an atomic fetch-and-add of 1 to x, which returns the value of
x before the increment):

a := FAA(x, 1); b := FAA(x, 1); (Par-Inc)

Atomicity ensures that it is not possible for both threads to increment
x from 0 to 1 (we must either get a = 1 or b = 1). To obtain this, we
require that the read timestamp of the update (i.e., the timestamp of
the write message that the update reads from) immediately precede
its write timestamp (i.e., the timestamp of the write message that the
update generates) in x’s modification order, and that future writes to

x may not be assigned timestamps in between them. In the example
above, if both of the updates were to increment x from 0 to 1, the
write timestamp for one of the updates would have to come between
the read and write timestamps for the other update.

To enforce this restriction, we extend messages to store a
continuous range of timestamps rather than a single timestamp.
Thus, messages are now tuples of the form hx : v@(f, t]i where
x 2 Loc, v 2 Val, and f, t 2 Time satisfying f < t or f = t = 0.
We write m.from and m.to to denote the f and t components of
a message m. Intuitively, m can be thought of as reserving the
timestamps in the range (m.from,m.to]; among these, m.to is the
“real” timestamp of m, but the remaining timestamps in the range
are reserved so that other messages cannot use them. Timestamp
reservation is reflected in the following revised definition of message
disjointness, which enforces that disjoint messages for the same
location must have disjoint ranges:

hx : v@(f, t]i# hx0 : v0@(f 0, t0]i ,
x 6= x0 _ t  f 0 < t0 _ t0  f < t

With timestamp reservation, we can easily ensure that the write
timestamp of an update is adjacent to its read timestamp in the
modification order. Formally, we will say two messages m and
m0 are adjacent, denoted Adj(m,m0), if m.loc = m0.loc and
m.to = m0.from. In defining the semantics of updates, we will
then insist that the message that the update inserts into memory must
appear adjacently after the message that it reads from. This suffices
to guarantee the correct outcome in the Par-Inc program above.

Although the introduction of timestamp reservation enables us to
easily model updates, it creates a complication for promises, namely
that timestamp reservations may invalidate the promise certifications
already performed by other threads. Consider, for example, the
following program:

a := x; // 1
b := FAA(z, 1); // 0
y := b+ 1;

x := y; FAA(z, 1); (Upd-Stuck)

This behavior ought to be allowed, since hardware could reorder
the read of x after the independent accesses to z and y. To produce
this behavior, following our semantics from the previous section,
T1 could promise to write y := 1 because it can thread-locally
certify that the promise can be fulfilled (the certification will involve
updating z from 0 to 1). If, however, T3 then updates z from 0 to 1,
that will mean that T1 can no longer perform the update it needs to
fulfill its promise, and its execution will eventually get stuck.

To avoid such stuck executions, we strengthen the check per-
formed by promise certification, i.e., the consistency requirement
on thread configurations. We require that each thread’s promises are
locally fulfillable not only in the current memory, but also in any
future memory, i.e., any extension of the memory with additional
messages. This quantification over future memories ensures that
thread configurations remain consistent whenever another thread
performs an execution step, and thus the machine cannot get stuck.

5

• Intro: A few paragraphs about main key idea

• Section 2: More details about main key idea
in a simplified version of the semantics

• Section 3-4: Presented other key ideas and
built up to the full semantics incrementally

Layering the presentation

“The paper is extremely well written.”

“The presentation of the semantics is
well-motivated and understandable.”

(THREAD: SILENT)

�
Silent���! �0

hh�, V, P i,Mi �! hh�0, V, P i,Mi

(THREAD: READ)

�
R(x,v)����! �0 hx : v@ti 2M

V (x)  t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P i,Mi

(THREAD: WRITE)

�
W(x,v)����! �0 M 0 = M -A hx : v@ti
V (x) < t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P i,M 0i

(THREAD: PROMISE)
M 0 = M -A m P 0 = P -A m

hh�, V, P i,Mi �! hh�, V, P 0i,M 0i

(THREAD: FULFILL)

�
W(x,v)����! �0 hx : v@ti 2 P P 0 = P \ {hx : v@ti}

V (x) < t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P 0i,Mi

(MACHINE STEP)
hTS(i),Mi �!+ hTS 0,M 0i
hTS 0,M 0i is consistent

hTS,Mi �! hTS[i 7! TS 0],M 0i

Figure 1. Operational semantics for the simplified model handling only relaxed read and write accesses.

Machine States A machine state MS = hTS,Mi consists of a
function TS assigning a thread state to every thread, and a (global)
memory M . The initial state MS0 (for a given program) consists
of the function TS0 mapping each thread i to its initial state �0

i ,
a current timestamp of 0 for every location, and an empty set of
promises; and the initial memory M0 that has one initial message
hx : 0@0i for each location x. A machine takes a step (see the last
rule in Figure 1) whenever a thread can take several steps to some
consistent configuration. Note that we allow multiple thread steps in
one machine step. This is convenient in our proofs, and can reduce
the number of certifications during an execution of a program.

Finally, we can easily show that a machine never gets stuck
unless each thread i has reached h�final

i , V, ;i for some view V .
For non-final states, progress follows from the receptiveness and
progress assumptions about the programming language, together
with the invariant that no thread has a higher view of any x than
the highest timestamp for x in memory. Another crucial invariant is
consistency: the MACHINE STEP rule demands that each machine
step taken by a thread must preserve consistency of the thread’s own
configuration, and it implicitly preserves the consistency of other
threads’ configurations as well, since they are free to ignore any new
messages the thread has added. When all threads reach their final
states, consistency implies they must have no promises left to fulfill.

3. Supporting Atomic Updates
In this section, we extend our basic model for relaxed accesses
to also handle (relaxed) atomic update—aka read-modify-write
(RMW)—instructions, such as fetch-and-add and compare-and-
swap. Updates are essential as a means to implement synchroniza-
tion (e.g., mutual exclusion) between threads, but this also makes
them tricky to model semantically. In particular, a successful update
operation performed by one thread will often have the effect of
“winning a race” and hence blocking (previously possible) update
operations performed by other “losing” threads. This stands in con-
trast to the updates-free fragment in §2, in which threads are free
to ignore the messages of other threads. Thus, to extend our model
to support updates, we must ensure that threads performing updates
cannot invalidate the already-certified promises of other threads.

An update is an atomic composition of a read and a write to
the same location x. However, unlike under SC, atomicity requires
more than just avoiding interference of other threads between the
two operations. Consider the following example (taking FAA(x, 1)
to be an atomic fetch-and-add of 1 to x, which returns the value of
x before the increment):

a := FAA(x, 1); b := FAA(x, 1); (Par-Inc)

Atomicity ensures that it is not possible for both threads to increment
x from 0 to 1 (we must either get a = 1 or b = 1). To obtain this, we
require that the read timestamp of the update (i.e., the timestamp of
the write message that the update reads from) immediately precede
its write timestamp (i.e., the timestamp of the write message that the
update generates) in x’s modification order, and that future writes to

x may not be assigned timestamps in between them. In the example
above, if both of the updates were to increment x from 0 to 1, the
write timestamp for one of the updates would have to come between
the read and write timestamps for the other update.

To enforce this restriction, we extend messages to store a
continuous range of timestamps rather than a single timestamp.
Thus, messages are now tuples of the form hx : v@(f, t]i where
x 2 Loc, v 2 Val, and f, t 2 Time satisfying f < t or f = t = 0.
We write m.from and m.to to denote the f and t components of
a message m. Intuitively, m can be thought of as reserving the
timestamps in the range (m.from,m.to]; among these, m.to is the
“real” timestamp of m, but the remaining timestamps in the range
are reserved so that other messages cannot use them. Timestamp
reservation is reflected in the following revised definition of message
disjointness, which enforces that disjoint messages for the same
location must have disjoint ranges:

hx : v@(f, t]i# hx0 : v0@(f 0, t0]i ,
x 6= x0 _ t  f 0 < t0 _ t0  f < t

With timestamp reservation, we can easily ensure that the write
timestamp of an update is adjacent to its read timestamp in the
modification order. Formally, we will say two messages m and
m0 are adjacent, denoted Adj(m,m0), if m.loc = m0.loc and
m.to = m0.from. In defining the semantics of updates, we will
then insist that the message that the update inserts into memory must
appear adjacently after the message that it reads from. This suffices
to guarantee the correct outcome in the Par-Inc program above.

Although the introduction of timestamp reservation enables us to
easily model updates, it creates a complication for promises, namely
that timestamp reservations may invalidate the promise certifications
already performed by other threads. Consider, for example, the
following program:

a := x; // 1
b := FAA(z, 1); // 0
y := b+ 1;

x := y; FAA(z, 1); (Upd-Stuck)

This behavior ought to be allowed, since hardware could reorder
the read of x after the independent accesses to z and y. To produce
this behavior, following our semantics from the previous section,
T1 could promise to write y := 1 because it can thread-locally
certify that the promise can be fulfilled (the certification will involve
updating z from 0 to 1). If, however, T3 then updates z from 0 to 1,
that will mean that T1 can no longer perform the update it needs to
fulfill its promise, and its execution will eventually get stuck.

To avoid such stuck executions, we strengthen the check per-
formed by promise certification, i.e., the consistency requirement
on thread configurations. We require that each thread’s promises are
locally fulfillable not only in the current memory, but also in any
future memory, i.e., any extension of the memory with additional
messages. This quantification over future memories ensures that
thread configurations remain consistent whenever another thread
performs an execution step, and thus the machine cannot get stuck.

5

• Intro: A few paragraphs about main key idea

• Section 2: More details about main key idea
in a simplified version of the semantics

• Section 3-4: Presented other key ideas and
built up to the full semantics incrementally

Layering the presentation

• What if you don’t have enough space for
such a layered presentation?

- Move some technical details to appendix

- Submit to a better conference
(i.e. a conference with a higher page limit)

Layering the presentation
(THREAD: SILENT)

�
Silent���! �0

hh�, V, P i,Mi �! hh�0, V, P i,Mi

(THREAD: READ)

�
R(x,v)����! �0 hx : v@ti 2M

V (x)  t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P i,Mi

(THREAD: WRITE)

�
W(x,v)����! �0 M 0 = M -A hx : v@ti
V (x) < t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P i,M 0i

(THREAD: PROMISE)
M 0 = M -A m P 0 = P -A m

hh�, V, P i,Mi �! hh�, V, P 0i,M 0i

(THREAD: FULFILL)

�
W(x,v)����! �0 hx : v@ti 2 P P 0 = P \ {hx : v@ti}

V (x) < t V 0 = V [x 7! t]

hh�, V, P i,Mi �! hh�0, V 0, P 0i,Mi

(MACHINE STEP)
hTS(i),Mi �!+ hTS 0,M 0i
hTS 0,M 0i is consistent

hTS,Mi �! hTS[i 7! TS 0],M 0i

Figure 1. Operational semantics for the simplified model handling only relaxed read and write accesses.

Machine States A machine state MS = hTS,Mi consists of a
function TS assigning a thread state to every thread, and a (global)
memory M . The initial state MS0 (for a given program) consists
of the function TS0 mapping each thread i to its initial state �0

i ,
a current timestamp of 0 for every location, and an empty set of
promises; and the initial memory M0 that has one initial message
hx : 0@0i for each location x. A machine takes a step (see the last
rule in Figure 1) whenever a thread can take several steps to some
consistent configuration. Note that we allow multiple thread steps in
one machine step. This is convenient in our proofs, and can reduce
the number of certifications during an execution of a program.

Finally, we can easily show that a machine never gets stuck
unless each thread i has reached h�final

i , V, ;i for some view V .
For non-final states, progress follows from the receptiveness and
progress assumptions about the programming language, together
with the invariant that no thread has a higher view of any x than
the highest timestamp for x in memory. Another crucial invariant is
consistency: the MACHINE STEP rule demands that each machine
step taken by a thread must preserve consistency of the thread’s own
configuration, and it implicitly preserves the consistency of other
threads’ configurations as well, since they are free to ignore any new
messages the thread has added. When all threads reach their final
states, consistency implies they must have no promises left to fulfill.

3. Supporting Atomic Updates
In this section, we extend our basic model for relaxed accesses
to also handle (relaxed) atomic update—aka read-modify-write
(RMW)—instructions, such as fetch-and-add and compare-and-
swap. Updates are essential as a means to implement synchroniza-
tion (e.g., mutual exclusion) between threads, but this also makes
them tricky to model semantically. In particular, a successful update
operation performed by one thread will often have the effect of
“winning a race” and hence blocking (previously possible) update
operations performed by other “losing” threads. This stands in con-
trast to the updates-free fragment in §2, in which threads are free
to ignore the messages of other threads. Thus, to extend our model
to support updates, we must ensure that threads performing updates
cannot invalidate the already-certified promises of other threads.

An update is an atomic composition of a read and a write to
the same location x. However, unlike under SC, atomicity requires
more than just avoiding interference of other threads between the
two operations. Consider the following example (taking FAA(x, 1)
to be an atomic fetch-and-add of 1 to x, which returns the value of
x before the increment):

a := FAA(x, 1); b := FAA(x, 1); (Par-Inc)

Atomicity ensures that it is not possible for both threads to increment
x from 0 to 1 (we must either get a = 1 or b = 1). To obtain this, we
require that the read timestamp of the update (i.e., the timestamp of
the write message that the update reads from) immediately precede
its write timestamp (i.e., the timestamp of the write message that the
update generates) in x’s modification order, and that future writes to

x may not be assigned timestamps in between them. In the example
above, if both of the updates were to increment x from 0 to 1, the
write timestamp for one of the updates would have to come between
the read and write timestamps for the other update.

To enforce this restriction, we extend messages to store a
continuous range of timestamps rather than a single timestamp.
Thus, messages are now tuples of the form hx : v@(f, t]i where
x 2 Loc, v 2 Val, and f, t 2 Time satisfying f < t or f = t = 0.
We write m.from and m.to to denote the f and t components of
a message m. Intuitively, m can be thought of as reserving the
timestamps in the range (m.from,m.to]; among these, m.to is the
“real” timestamp of m, but the remaining timestamps in the range
are reserved so that other messages cannot use them. Timestamp
reservation is reflected in the following revised definition of message
disjointness, which enforces that disjoint messages for the same
location must have disjoint ranges:

hx : v@(f, t]i# hx0 : v0@(f 0, t0]i ,
x 6= x0 _ t  f 0 < t0 _ t0  f < t

With timestamp reservation, we can easily ensure that the write
timestamp of an update is adjacent to its read timestamp in the
modification order. Formally, we will say two messages m and
m0 are adjacent, denoted Adj(m,m0), if m.loc = m0.loc and
m.to = m0.from. In defining the semantics of updates, we will
then insist that the message that the update inserts into memory must
appear adjacently after the message that it reads from. This suffices
to guarantee the correct outcome in the Par-Inc program above.

Although the introduction of timestamp reservation enables us to
easily model updates, it creates a complication for promises, namely
that timestamp reservations may invalidate the promise certifications
already performed by other threads. Consider, for example, the
following program:

a := x; // 1
b := FAA(z, 1); // 0
y := b+ 1;

x := y; FAA(z, 1); (Upd-Stuck)

This behavior ought to be allowed, since hardware could reorder
the read of x after the independent accesses to z and y. To produce
this behavior, following our semantics from the previous section,
T1 could promise to write y := 1 because it can thread-locally
certify that the promise can be fulfilled (the certification will involve
updating z from 0 to 1). If, however, T3 then updates z from 0 to 1,
that will mean that T1 can no longer perform the update it needs to
fulfill its promise, and its execution will eventually get stuck.

To avoid such stuck executions, we strengthen the check per-
formed by promise certification, i.e., the consistency requirement
on thread configurations. We require that each thread’s promises are
locally fulfillable not only in the current memory, but also in any
future memory, i.e., any extension of the memory with additional
messages. This quantification over future memories ensures that
thread configurations remain consistent whenever another thread
performs an execution step, and thus the machine cannot get stuck.

5

A structure that works

• Abstract (1-2 paragraphs, 1000 readers)

• Intro (1-2 pages, 100 readers)

• Key ideas (2-3 pages, 50 readers)

• Technical meat (4-6 pages, 5 readers)

• Related work (1-2 pages, 100 readers)

Related work

1. It goes at the end of the paper.

• You can only properly compare to related
work once you’ve explained your own.

2. Give real comparisons, not a “laundry list”!

• Explain in detail how your work fills the
Gap in a way that related work doesn’t.

Summary of principles
• Flow via “old to new”

• Coherence via “one paragraph, one point”

• Name your baby

• Just in time

• CGI model for abstract/intro

• Layer presentation with “key ideas” section

• Compare with related work at the end

