
HOW TO GIVE TALKS 
THAT PEOPLE CAN FOLLOW

Derek Dreyer
MPI for Software Systems

PLMW@POPL 2017
Paris, France

Do 
research

My job as a researcher

Do 
research

Write
papers

Give
talks

My job as a researcher

Do 
research

Write
papers

Give
talks

My job as a researcher

• Simon Peyton Jones. How to give a great
research talk. (MSR Summer School, 2016)

- “Your mission is to wake them up!”
- “Your most potent weapon, by far, is  

 your enthusiasm!” 

• John Hughes. Unaccustomed as I am to
public speaking. (PLMW, 2016)

- “Put on a show!”

Entertain your audience!

https://www.microsoft.com/en-us/research/academic-program/give-great-research-talk/
https://www.microsoft.com/en-us/research/academic-program/give-great-research-talk/
https://www.youtube.com/watch?v=SNAagGDzc48&index=10&t=1843s&list=PLnqUlCo055hWgpvok3qqLpIy3ow3Z-88s
https://www.youtube.com/watch?v=SNAagGDzc48&index=10&t=1843s&list=PLnqUlCo055hWgpvok3qqLpIy3ow3Z-88s

• Simon Peyton Jones. How to give a great
research talk. (MSR Summer School, 2016)

- “Your mission is to wake them up!”
- “Your most potent weapon, by far, is  

 your enthusiasm!” 

• John Hughes. Unaccustomed as I am to
public speaking. (PLMW, 2016)

- “Put on a show!”

Entertain your audience!

Good advice, but I don’t know how to
teach people to be entertaining…

https://www.microsoft.com/en-us/research/academic-program/give-great-research-talk/
https://www.microsoft.com/en-us/research/academic-program/give-great-research-talk/
https://www.youtube.com/watch?v=SNAagGDzc48&index=10&t=1843s&list=PLnqUlCo055hWgpvok3qqLpIy3ow3Z-88s
https://www.youtube.com/watch?v=SNAagGDzc48&index=10&t=1843s&list=PLnqUlCo055hWgpvok3qqLpIy3ow3Z-88s

Structure
Instead, we’ll focus on…

Structure

Jean-Luc Godard

Structure

Quentin Tarantino

Structure
A movie should have  
a beginning, a middle, and an end…

…but not necessarily in that order.  

— Jean-Luc Godard

Structure
A movie should have  
a beginning, a middle, and an end…

…but not necessarily in that order.  

— Jean-Luc Godard

Structure
A movie should have  
a beginning, a middle, and an end…

…but not necessarily in that order.  

— Jean-Luc Godard

talk

Derek Dreyer

Structure of 20-min. talk
• Motivation (~6 minutes)

- What problem are you solving and why?

• Contributions & key idea (~3 minutes)

- What did you actually do, and what is the
key idea behind your solution?

• Explanation of key idea (~9 minutes)

• Conclusion (~2 minutes)

Motivation
• Goal:

- Explain your problem and why the
audience should care about it.

• Pitfalls: ???

- Fail to clearly state the problem.
- Take too long to explain the problem.

Motivation
• Goal:

- Explain your problem and why the
audience should care about it.

• Pitfalls:

- Fail to clearly state your problem.
- Take too long to explain your problem.

• First, get to a problem.

- Explain a general version of your problem
(but not too general) in the first 2 minutes. 

• Then, get to the problem.

- Motivate and explicitly state your  
specific problem in the next 4 minutes.

- Limit discussion of prior work only to what
is needed to explain your problem.

Stage the motivation

Pilsner:

Georg Neis, Chung-Kil Hur,
Jan-Oliver Kaiser, Craig McLaughlin,
Derek Dreyer, Viktor Vafeiadis
 

MPI-SWS (Germany),
Seoul National University,
University of Glasgow 

A Compositionally Verified Compiler for a
Higher-Order Imperative Language

ICFP 2015
Vancouver

Pilsner:

Georg Neis, Chung-Kil Hur,
Jan-Oliver Kaiser, Craig McLaughlin,
Derek Dreyer, Viktor Vafeiadis
 

MPI-SWS (Germany),
Seoul National University,
University of Glasgow 

A Compositionally Verified Compiler for a
Higher-Order Imperative Language

ICFP 2015
Vancouver

Compiler Verification

• Goal: Formally guarantee that output of
compiler “preserves semantics” of input

- Successes: CompCert, CakeML

• Semantics preservation (traditionally):

- If PT = Compile(PS), 
then Behaviors(PT) ⊆ Behaviors(PS).

Compiler Verification

• Goal: Formally guarantee that output of
compiler “preserves semantics” of input

- Successes: CompCert, CakeML

• Semantics preservation (traditionally):

- If PT = Compile(PS), 
then Behaviors(PT) ⊆ Behaviors(PS).

Says nothing about 

separate compilation!

Compositional
Compiler Verification

• Goal: Define semantics preservation for
separately compiled modules

• Three key criteria (in our view):

- Modularity

- Flexibility

- Transitivity

Modularity

Semantics preservation preserved by linking:
Behaviors(T1•T2•T3) ⊆ Behaviors(S1•S2•S3)

S1 S2 S3

T1 T2 T3

Src:

Tgt:

Compiler Compiler Compiler

Flexibility

Can link results of different verified compilers,
together with hand-optimized modules

S1 S2 S3

T1 T2 T3

Src:

Tgt:

Compiler 1 Compiler 2 Hand-Opt.

Transitivity

Can verify individual passes of a compiler,
then link the results transitively

S1 S2 S3

T1 T2 T3

Src:

Tgt:

Pass A

Compiler 2 Hand-Opt.M1IL:
Pass B

Prior Work

A number of modular techniques proposed,  
but all are either:

1. Not flexible enough

2. Not transitive

Takeaway: 
 

First, get to a problem.
Then, get to the problem.

Contributions & key idea

• Goal:

- State what you did to solve the problem.
- Briefly describe key idea of your solution.

• Pitfall: ???

- Fail to have this section in your talk.

Contributions & key idea

• Goal:

- State what you did to solve the problem.
- Briefly describe key idea of your solution.

• Pitfall:

- Fail to have this section in your talk.

Don’t blow this  
golden opportunity!

• Proudly state your contributions.

- After the motivation, the audience eagerly
wants to hear what you did. Tell them!  

• Have a key idea.

- It will give audience a take-home message,  
and give focus to the rest of your talk.

Prior Work

A number of modular techniques proposed,  
but all are either:

1. Not flexible enough

2. Not transitive

Our Contributions
Parametric Inter-Language Simulations (PILS):

- New way to define semantics preservation

- Modular, flexible, and transitive

Pilsner:

- The first compositionally verified multi-
pass compiler for an ML-like language

- Verified using PILS in Coq!

Our Contributions

S1

T1

ML:

Asm:

Cps conversion

M1CPS:

Code generation

opts.

Pilsner

Our Contributions

S1

T1

ML:

Asm:

Cps conversion

M1CPS:

Code generation

opts.

Pilsner
- inlining

 - contification
 - dead code elim.
 - hoisting
 - …

Our Contributions

S1

T1

ML:

Asm:

Cps conversion

M1CPS:

Code generation

opts.

Pilsner

Our Contributions

S1

T1

ML:

Asm:

Cps conversion

M1CPS:

Code generation

opts.

Pilsner

S2 S3

T2 T3

Direct Hand-Opt.

Zwickel SMC Example

Our Contributions
Parametric Inter-Language Simulations (PILS):

- New way to define semantics preservation

- Modular, flexible, and transitive

Pilsner:

- The first compositionally verified multi-
pass compiler for an ML-like language

- Verified using PILS in Coq!

Our Contributions
Parametric Inter-Language Simulations (PILS):

- New way to define semantics preservation

- Modular, flexible, and transitive

Pilsner:

- The first compositionally verified multi-
pass compiler for an ML-like language

- Verified using PILS in Coq!

POPL ’11 POPL ’12

PILS

Benton-Hur ’09 Dreyer+ ’10

Ahmed+ ’09

Pitts-Stark ’98

Ahmed ’06

Appel-McAllester ’01

Sumii+ ’05, ’09

Lassen+ ’05, ’07

Abramsky+ ’98

POPL ’11 POPL ’12

PILS

Benton-Hur ’09 Dreyer+ ’10

Ahmed+ ’09

Pitts-Stark ’98

Ahmed ’06

Appel-McAllester ’01

Sumii+ ’05, ’09

Lassen+ ’05, ’07

Abramsky+ ’98

Compiler correctness

POPL ’11 POPL ’12

PILS

Benton-Hur ’09 Dreyer+ ’10

Ahmed+ ’09

Pitts-Stark ’98

Ahmed ’06

Appel-McAllester ’01

Sumii+ ’05, ’09

Lassen+ ’05, ’07

Abramsky+ ’98

Compiler correctness

Step-indexing

POPL ’11 POPL ’12

PILS

Benton-Hur ’09 Dreyer+ ’10

Ahmed+ ’09

Pitts-Stark ’98

Ahmed ’06

Appel-McAllester ’01

Sumii+ ’05, ’09

Lassen+ ’05, ’07

Abramsky+ ’98

Compiler correctness

Step-indexing
Logical relations

POPL ’11 POPL ’12

PILS

Benton-Hur ’09 Dreyer+ ’10

Ahmed+ ’09

Pitts-Stark ’98

Ahmed ’06

Appel-McAllester ’01

Sumii+ ’05, ’09

Lassen+ ’05, ’07

Abramsky+ ’98

Compiler correctness

Step-indexing
Logical relations

Game semantics

POPL ’11 POPL ’12

PILS

Benton-Hur ’09 Dreyer+ ’10

Ahmed+ ’09

Pitts-Stark ’98

Ahmed ’06

Appel-McAllester ’01

Sumii+ ’05, ’09

Lassen+ ’05, ’07

Abramsky+ ’98

Compiler correctness

Step-indexing
Logical relations

Game semantics

Bisimulations

POPL ’11 POPL ’12

PILS

A Kripke Logical Relation Between ML and Assembly

Chung-Kil Hur ∗ Derek Dreyer
Max Planck Institute for Software Systems (MPI-SWS)

{gil,dreyer}@mpi-sws.org

Abstract
There has recently been great progress in proving the correctness
of compilers for increasingly realistic languages with increasingly
realistic runtime systems. Most work on this problem has focused
on proving the correctness of a particular compiler, leaving open
the question of how to verify the correctness of assembly code that
is hand-optimized or linked together from the output of multiple
compilers. This has led Benton and other researchers to propose
more abstract, compositional notions of when a low-level program
correctly realizes a high-level one. However, the state of the art
in so-called “compositional compiler correctness” has only consid-
ered relatively simple high-level and low-level languages.
In this paper, we propose a novel, extensional, compiler-

independent notion of equivalence between high-level programs
in an expressive, impure ML-like λ-calculus and low-level pro-
grams in an (only slightly) idealized assembly language. We define
this equivalence by means of a biorthogonal, step-indexed, Kripke
logical relation, which enables us to reason quite flexibly about
assembly code that uses local state in a different manner than the
high-level code it implements (e.g., self-modifying code). In con-
trast to prior work, we factor our relation in a symmetric, language-
generic fashion, which helps to simplify and clarify the formal pre-
sentation, and we also show how to account for the presence of a
garbage collector. Our approach relies on recent developments in
Kripke logical relations for ML-like languages, in particular the
idea of possible worlds as state transition systems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms Languages, Theory, Verification

Keywords Step-indexed Kripke logical relations, biorthogonal-
ity, compositional compiler correctness, garbage collection, self-
modifying code

∗ This work was undertaken while the first author was at PPS, Univer-
sité Paris Diderot, supported by Digiteo/Ile-de-France project COLLODI
(2009-28HD) and Engineering Research Center of Excellence Program of
Korea Ministry of Education, Science and Technology (MEST) / National
Research Foundation of Korea (NRF) Grant R11-2008-007-01002-0.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

1. Introduction
While compiler verification is an age-old problem, there has been
remarkable progress in the last several years in proving the correct-
ness of compilers for increasingly realistic languages with increas-
ingly realistic runtime systems. Of particular note is Leroy’s Com-
pcert project [18], in which he used the Coq proof assistant to both
program and verify a multi-pass optimizing compiler from Cmi-
nor (a C-like intermediate language) to PowerPC assembly. Dar-
gaye [13] has adapted the Compcert framework to a compiler for a
pure mini-ML language, and McCreight et al. [19] have extended it
to support interfacing with a garbage collector. Independently, Chli-
pala [10, 12] has developed verified compilers for both pure and im-
pure functional core languages, the former garbage-collected, with
a focus on using custom Coq tactics to provide significant automa-
tion of verification.
That said, all of the aforementioned work has focused on prov-

ing the correctness of a particular compiler, leaving open the ques-
tion of how to verify the correctness of assembly code that is hand-
optimized or linked together from the output of multiple compil-
ers. The issue is that compiler correctness results are typically es-
tablished by exhibiting a fairly close simulation relation between
source and target code, but code produced by another compiler
may obey an entirely different simulation relation with the source
program, and hand-optimized code might not closely simulate the
source program at all. Thus, existing correctness proofs depend
fundamentally on the “closed-world” assumption that one has con-
trol over how the whole source program is compiled.
In order to lift the closed-world assumption, Benton and Hur [5]

suggest that what is needed is a more abstract, extensional notion
of what it means for a low-level program to correctly implement
a high-level one—a notion that is not tied to a particular com-
piler and that, moreover, offers as much flexibility in the low-level
representation of high-level features as possible. When reasoning
strictly about high-level programs, the canonical extensional notion
of when one program implements the same functionality as another
is observational (or contextual) equivalence, which says that the
two programs exhibit the same (termination) behavior when placed
into the context of an arbitrary enclosing well-typed high-level pro-
gram. However, it is not clear how to define such a contextual no-
tion of equivalence between high- and low-level programs, because
there is no way to run both programs under the same context—one
would need to quantify over equivalent high- and low-level pro-
gram contexts, but when are two contexts equivalent? We are back
to the original question.
Benton and Hur’s solution is to define a logical relation be-

tween the high- and low-level languages (actually two relations,
one for each direction of semantic approximation, employing a de-
notational semantics to represent the high-level side). Logical rela-
tions are inherently extensional—e.g., two functions are logically
related iff they map related arguments to related results, regardless
of their private implementation details—and guarantee equivalent

1

POPL ’11 POPL ’12

The Marriage of Bisimulations and Kripke Logical Relations

Chung-Kil Hur Derek Dreyer Georg Neis Viktor Vafeiadis
Max Planck Institute for Software Systems (MPI-SWS)

{gil,dreyer,neis,viktor}@mpi-sws.org

Abstract
There has been great progress in recent years on developing ef-
fective techniques for reasoning about program equivalence in
ML-like languages—that is, languages that combine features like
higher-order functions, recursive types, abstract types, and general
mutable references. Two of the most prominent types of techniques
to have emerged are bisimulations and Kripke logical relations
(KLRs). While both approaches are powerful, their complementary
advantages have led us and other researchers to wonder whether
there is an essential tradeoff between them. Furthermore, both ap-
proaches seem to suffer from fundamental limitations if one is
interested in scaling them to inter-language reasoning.

In this paper, we propose relation transition systems (RTSs),
which marry together some of the most appealing aspects of KLRs
and bisimulations. In particular, RTSs show how bisimulations’
support for reasoning about recursive features via coinduction can
be synthesized with KLRs’ support for reasoning about local state
via state transition systems. Moreover, we have designed RTSs to
avoid the limitations of KLRs and bisimulations that preclude their
generalization to inter-language reasoning. Notably, unlike KLRs,
RTSs are transitively composable.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms Languages, Theory, Verification

Keywords Kripke logical relations, bisimulations, relation transi-
tion systems, contextual equivalence, higher-order state, recursive
types, abstract types, transitivity, global vs. local knowledge

1. Introduction
One of the grand challenges in programming language semantics is
to find scalable techniques for reasoning about the observational
equivalence of programs. Even when the intuitive principles of
local reasoning suggest that a change to some program module
should not be observable to any client, it can be fiendishly difficult
to establish that formally. Denotational semantics offers a tractable
way of proving equivalence of programs by showing that they mean
the same thing in some adequate model of their language. How-
ever, traditional denotational methods do not scale well to general-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c� 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

purpose languages like ML that combine support for functional,
value-oriented programming (e.g., higher-order functions, poly-
morphism, abstract data types, recursive types) with support for
imperative, effect-oriented programming (e.g., mutable state and
control effects, among other things).

Fortunately, in recent years, there has been a groundswell of
interest in the problem of developing effective methods for reason-
ing about program equivalence in ML-like languages. A variety of
promising techniques have emerged [29, 36, 19, 20, 34, 33, 23,
5, 35, 12, 25], and while some of these methods are denotational,
most support direct reasoning about the operational semantics of
programs. In particular, there has been a healthy rivalry between
techniques based on Kripke logical relations (KLRs) [29, 5, 26,
13, 12, 17, 37] and bisimulations [36, 19, 34, 33, 23, 35].

This paper is motivated by two high-level concerns:

(1) KLRs and bisimulations offer complementary advantages,
which we would like to synthesize in a single proof method.

(2) There is a specific sense in which both KLRs and bisimulations
appear to be fundamentally limited, and some fresh idea seems
necessary to circumvent this limitation.

Concerning motivation (1): The latest KLR techniques [5, 12]
use state transition systems to provide more flexible principles for
reasoning about local state than bisimulations do. However, in or-
der to account for the presence of recursive features, such as re-
cursive types and higher-order state, KLRs require tedious manip-
ulation of tricky “step-indexed” constructions [6, 2].1 In contrast,
bisimulation techniques use coinduction to model such recursive
features very elegantly, but their support for reasoning about local
state is weaker than KLRs’ (see Section 9). These complementary
strengths have led us and other researchers to wonder whether there
is some fundamental tradeoff between KLRs and bisimulations.

Concerning motivation (2): We are interested in scaling equa-
tional reasoning techniques to the setting of inter-language reason-
ing, i.e., reasoning about equivalences between programs in dif-
ferent languages. Inter-language reasoning is essential to the de-
velopment of compositional certified compilers [7, 17], and may
also have applications to the verification of multi-language (inter-
operating) programs [4]. Unfortunately, both KLR and bisimulation
methods rely on technical devices that prevent them (it seems) from
scaling to the inter-language setting. Specifically, in order to deal
with higher-order functions, bisimulation methods employ various
“syntactic” devices that restrict the applicability of the methods
to single-language reasoning (see Section 3 for details). KLRs, in
contrast, have been shown to generalize to inter-language reason-
ing [17], but there remains a key problem: KLR proofs are in gen-
eral not transitively composable, at least in part due to the use of
step-indexed constructions as mentioned above. In order to prove
compositional correctness of multi-phase compilers for ML-like

1 This has led to a series of papers—some written by authors of the present
paper—on how to hide the “ugliness” of step-indices [11, 13, 8].

1

PILS

Takeaway:
Proudly state your contributions.  

Have a key idea.

Explanation of key idea

• Goal:

- Explain your key idea in detail.

• Pitfall: ???

- Fail to properly structure a long section.

Explanation of key idea

• Goal:

- Explain your key idea in detail.

• Pitfall:

- Fail to properly structure a long section.

Talklets
• Break explanation of key idea into talklets.

- More digestible units of story (2-4 min.)
- But just having talklets is not enough…  

• Use transitions between talklets to remind
the audience of the big picture.

- Summarize the point of the last talklet
and how it connects to the next one.

Summary
• First, get to a problem.

• Then, get to the problem.

• Proudly state your contributions.

• Have a key idea.

• Break explanation of key idea into talklets.

• Use transitions between talklets to remind
the audience of the big picture.

