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My research is motivated by a simple goal: to provide rigorous formal foundations for establishing the safety and
reliability of realistic software systems. How can we design large-scale systems that are efficient, easy to maintain, and
safe to execute, and how can we develop programming languages that help us program such systems more effectively?
Furthermore, how can we actually verify that complex, real-world systems written in these languages do what they are
supposed to do, and how can we provide maximum assurance that our verification efforts are on solid ground? Given
the central role that programming languages play in our software infrastructure, the above questions lie at the heart of
computer science and have remained among its grand challenges since the 1960s.

My general strategy in tackling these challenges is to develop formal methods—such as type systems, semantic
models, and program logics—that support compositional verification. In general, “compositional verification” refers to
the ability to establish the safety or correctness of a program in a modular fashion—decomposing the reasoning about
a whole, complex program into reasoning about its simpler, reusable component parts. Compositionality is widely
understood to be crucial for scaling program verification to handle real-world software systems with millions of lines of
code. As such, it has been a central concept in programming languages and verification research since the pioneering
work of John Reynolds on type systems, Dana Scott and Christopher Strachey on denotational semantics, and Tony
Hoare on program logics, half a century ago.

Unfortunately, the dream of compositional verification has traditionally failed to account for the messy reality
of modern software systems, because in most prior work, compositional verification methods have made significant
simplifying assumptions, rendering them inapplicable to real-world programs and programming languages. For example:
(1) They ignored features that are common to nearly every programming language since the 1990s (such as higher-order
mutable state) because they were difficult to reason about compositionally. (2) They assumed the use of simplified
“sequentially consistent” memory models of multithreaded programming rather than the “relaxed” models exhibited
by real multiprocessor architectures. (3) They avoided dark corners of real programming languages, such as “unsafe
escape hatches”, which make it challenging to even state safety guarantees for such languages, let alone prove them.

In my research, I have developed a range of new formal methods that avoid these kinds of simplifying assumptions,
thus making it feasible to compositionally verify realistic software systems that were previously out of reach of any
rigorous proof. At the moment, my work revolves primarily around an ERC Consolidator project I have led for the past
five years called RustBelt (plv.mpi-sws.org/rustbelt), in which we have built the first formal foundations for the
Rust programming language. This project ties together several strands of work that I have been (and will continue)
pursuing in the areas of types, semantics, concurrent separation logic, interactive theorem proving, and relaxed memory
models. In this research statement, I will first give a brief overview of the high-level problem motivating the RustBelt
project, and then describe the various strands of my research that have contributed to solving it, before concluding with
a discussion of several outstanding research challenges that I aim to address in ongoing and future work.

RustBelt: Securing the Foundations of the Rust Programming Language

One of the longstanding open problems in programming languages is to develop a language that ensures safety (i.e.,
that programs don’t crash your machine or exhibit undefined behavior) while also providing low-level control over
system resources. Languages like Java have strong type systems for ensuring safety, but this safety comes at the
expense of control. As a result, for many systems programming applications—e.g., web browsers, operating systems, or
game engines, where performance and resource constraints are primary concerns—the only option is to use an unsafe
language like C or C++ that provides fine-grained control. However, this control comes at a steep cost. For example,
Microsoft has reported that 70% of the security vulnerabilities they fix are due to memory safety violations, precisely
the type of bugs that strong type systems were designed to rule out [40]. Google has recently reported the same 70%
statistic for the Android operating system [39]. Likewise, Mozilla reports that the vast majority of critical bugs they
find in Firefox are memory related [14]. If only there were a way to avoid these bugs and somehow get the best of both
worlds: a systems programming language with both safety and control. ..


https://plv.mpi-sws.org/rustbelt

Enter Rust [35, 19]. Sponsored by Mozilla and developed actively over the past decade by a large and diverse
community of contributors, Rust supports many common low-level programming idioms and APIs derived from modern
C++, but at the same time it guarantees statically (at compile time) that these idioms are used safely. In fact, Rust
goes even further than existing safe languages by defending programmers against other, more insidious anomalies
that no other mainstream language can prevent. For example, consider data races: unsynchronized accesses to shared
memory (at least one of which is a write). Even though data races effectively constitute undefined (or weakly defined)
behavior for concurrent code, most “safe” languages (such as Java and Go) permit them, and they are a reliable source
of concurrency bugs [41]. In contrast, Rust’s type system rules out data races at compile time.

Rust has been steadily gaining in popularity, to the point that it has topped Stack Overflow’s list of “most loved”
programming languages for the past five years and is now being invested in by many major industrial software vendors
(such as Amazon, Google, Huawei, and Microsoft, which came together with Mozilla in 2021 to form the Rust
Foundation). Given the increasing adoption of Rust in industry, it is thus of essential importance—both to the success
of the language and the safety of applications built using it—that we obtain higher assurance that the language is in fact
as safe as claimed. In other words: How can we prove that Rust is safe?

As it turns out, the answer to this question is very far from obvious, because Rust’s expressiveness relies crucially
on a subtle interplay between safe and unsafe code. Specifically, at the core of Rust is a novel ownership type system,
in which the “lifetimes” of aliases (references) to objects are carefully tracked so that one alias cannot be used to
mutate and accidentally corrupt the view of another alias. This ownership type system serves to prohibit bad behaviors
like memory safety violations and data races, but it is also quite conservative—i.e., it rules out some perfectly safe
programming patterns as well. This is to be expected: no automatically checkable type system will be capable of
inferring whether arbitrarily clever low-level programming patterns are safe. As a result, though, to implement certain
kinds of data structures or synchronization mechanisms, Rust programmers must sometimes resort to using unsafe
“escape hatches”, such as unchecked type casts or array accesses, which circumvent the safety restrictions of the core
type system. Good practice dictates that uses of such unsafe features should be encapsulated by safe APIs, so that
well-typed clients of such APIs will be guaranteed to be safe. But in reality, such APIs have repeatedly been shown to
break the soundness of Rust [4, 16, 5], undermining confidence in its safety claims. Hence, we are left with the key
question: How can we prove that uses of unsafe features in Rust APIs have been safely encapsulated?

In the RustBelt project, we have supplied the first rigorous answer to this question, building on a decade of
breakthrough results in semantics, program logics, and concurrency. We now proceed to describe some of the key
ingredients of our solution.

Semantic Models of Modern Type Systems

The first challenge we faced is that the standard technology for verifying safety properties for high-level programming
languages—namely, Wright and Felleisen’s method of syntactic type soundness [45] (aka “progress and preserva-
tion” [13])—does not apply to languages in which one can mix safe and unsafe code. Progress and preservation is a
closed-world method, which assumes the use of a fixed set of typing rules. This assumption is fundamentally violated
by Rust’s unsafe escape hatches, which are explicitly designed to circumvent the restrictions of its safe typing rules.

To tackle this challenge, we instead adopted the approach of semantic type soundness. Under this approach, we build
a semantic model of Rust, which explains how to interpret each type of the language as a verification condition—i.e.,
a logical specification that every term of that type must satisfy in order to be considered semantically safe to use at
that type. With the semantic model in hand, proving safety of Rust programs breaks into two parts. First, we prove a
meta-theorem stating that all well-typed Rust terms that are syntactically safe (i.e., that do not use unsafe features) are
also semantically safe by construction. Second, for any API whose implementation makes use of unsafe features, we
must manually prove that the implementation satisfies the semantic model of the API. Once we have done so, we obtain
an end-to-end result that every well-typed Rust program P is safe to execute so long as the only uses of unsafe features
in P are in the implementations of APIs that have been proven semantically safe.

The essential idea of semantic type soundness is very old, dating back at least to Milner’s seminal paper on type
soundness [30]. Milner constructed his semantic soundness proof using denotational semantics, in which the semantic
model was defined using suitably enriched algebraic structures called domains [37]. However, despite several decades of
subsequent research on domains, denotational models were ultimately unable to provide effective methods for reasoning



about the full panoply of features found in modern programming languages: features like higher-order functions,
mutable state, recursive types, abstract data types, ownership types, control operators, and concurrency.

In a series of papers [1, 10, 27, 43], my collaborators and I developed and popularized a new class of semantic
models called step-indexed Kripke logical relations (or SKLRs), which accounted for all the aforementioned
language features used in tandem (as they are in Rust), thus overcoming the limitations of prior denotational models.
SKLRs were inspired directly by two prior lines of seminal work: the step-indexed models of Appel and McAllester [3]
and Ahmed [2] for handling recursive types and higher-order state, and the Kripke logical relations models of Pitts and
Stark [34] for establishing invariants about the private state of objects. In addition to marrying these prior approaches
together, our SKLRs significantly expanded their reasoning power by enriching the Kripke structure of invariants to
include state transition systems, describing how the private state of an object may evolve over time. These more flexible
Kripke structures have provided a crucial foundation for verifying the safety of real Rust APIs.

Iris: A Unifying Foundation for Modern Concurrent Separation Logics

After my initial work on SKLR models, it became clear to me that, although the models were theoretically very powerful,
there was a fundamental problem with actually deploying them in practice. In short, they were too low-level, making it
painful to carry out proofs about even small toy programs, let alone the much more complex Rust APIs whose safety
we aimed to verify in RustBelt. To address this problem, I undertook a line of work [9, 11, 42] to improve the usability
and scalability of SKLR models by formalizing them at a much higher level of abstraction using program logics. This
culminated in the development of Iris, my most directly impactful project to date [22, 20, 26, 21].

Iris is a framework for deriving advanced forms of separation logic [32]. Invented a little over 20 years ago as an
extension of Hoare logic for compositional verification of pointer-manipulating programs, separation logic (SL) has been
a major influence on modern verification and analysis tools like VeriFast [15] and Infer [12]. In the mid-2000s, Peter
O’Hearn went a step further and developed concurrent separation logic (CSL), which showed how the principles of SL
were just as relevant to reasoning about concurrent (multithreaded) programs as they were to sequential programs [31].
Like the original SL work, CSL was enormously influential, earning the 2016 Godel Prize, and spawning a wide variety
of follow-on program logics (“CSLs”) that expanded its reach to ever more challenging concurrent programming idioms.
However, this development also led to a fractured field in which, to quote Matthew Parkinson’s position paper The Next
700 Separation Logics [33], “there is a disturbing trend for each new library or concurrency primitive to require a new
separation logic.”

Iris addresses Parkinson’s concern head-on by reducing the essence of modern CSLs to a minimal core foundation.
Specifically, its design was based on the key insight that only two logical mechanisms (user-defined ghost state and
invariants) were needed to derive the most powerful reasoning principles from earlier CSLs within a unified logic [22].
In subsequent work [21], this foundation was reduced even further, as we showed how invariants and even Hoare triples
themselves could be encoded in terms of simpler primitives. Furthermore, unlike prior CSLs, Iris is language-agnostic
(i.e., applicable to a range of different programming languages), and is implemented in the Coq proof assistant, making
it possible for users of Iris to build interactive, machine-checked proofs about their programs [25]. Such support for
machine-checked proof is essential for building confidence in large-scale verification artifacts like RustBelt.

In the past 6 years, Iris has transformed the landscape of research on CSLs, with more than 40 published papers
from a range of contributors (including 17 POPL papers) studying or deploying Iris for verification of complex
programs and programming language meta-theory in C, Rust, Go, OCaml, Scala, and other widely-used languages
(iris-project.org). The startup BedRock Systems has adopted Iris as a central component of its systems verification
technology, and the reach of Iris has extended into the systems community as well, with renowned systems researchers
Frans Kaashoek and Nickolai Zeldovich of MIT re-orienting their crash-safe verification project around Iris [6, 7].

The most advanced application of Iris, though, has been in RustBelt, where we use it to encode a machine-checked
SKLR model of Rust [18]. Iris is a great fit for encoding such a semantic model for two key reasons. First, by virtue of
being a separation logic, Iris comes with built-in support for compositional, high-level reasoning about ownership, a
central concept in the Rust type system. Second, the RustBelt semantic soundness proof makes critical use of Iris’s
facility for deriving new domain-specific logics. In particular, in order to give a simple and direct model of Rust’s
reference types, we derive (within Iris) a new Rust-oriented logic called the lifetime logic. Unlike traditional separation
logic, which is based on the idea that resources can be divided in space, the lifetime logic introduces the novel ability
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for resources to be divided in time. This facility is essential for modeling what happens when an object o in Rust is
“borrowed”, since borrowing effectively splits the ownership of o between the borrower (who owns o for the duration of
some “lifetime”) and the original owner (who reclaims ownership of o once the lifetime has ended). Although “splitting
ownership in time” is not a standard notion in separation logic, Iris makes it easy to derive such non-standard notions of
separation and embed them soundly within the existing separating conjunction connective of the logic.

Separation Logic for Relaxed Memory Models

In the initial work on RustBelt [18], we assumed (for the sake of simplicity) a sequentially consistent (SC) model of
concurrency, in which threads take turns interacting with a single, shared global state. This is a common assumption in
work on concurrent program verification, but it does not reflect reality. In fact, Rust follows C and C++ in employing a
relaxed memory model, which offers significantly weaker and more complex guarantees about the ordering of concurrent
memory operations, as well as a wider range of options for programmers to choose from in deciding how strongly
synchronizing they want their memory accesses to be.

In order to adapt RustBelt to more accurately account for the relaxed memory operations that real concurrent Rust
APIs actually employ, our first step was thus to develop a sound program logic for the C++11 memory model (on which
Rust is based). Our GPS logic [44] paved the way in this regard: it was the first CSL to support modern reasoning
principles (such as shared-state “protocols”) in a manner carefully restricted to be sound under C++11’s weaker notion
of release-acquire consistency. In our work on iGPS [23], we showed furthermore how GPS could be encoded in Iris,
which in turn enabled us to begin building the first machine-checked proofs about relaxed-memory C++/Rust programs.

These developments fed directly into our subsequent work on RustBelt Relaxed [8], in which we showed how to
adapt RustBelt to relaxed memory. The overarching challenge we faced was porting the RustBelt verification from being
built on top of Iris (under SC semantics) to being built on top of (an extension of) iGPS (under C/C++11 semantics).
That such a porting would be possible at all was far from obvious. In particular, the most subtle aspect of porting
to iGPS concerned the lifetime logic, which played such a crucial role in the original RustBelt verification. As it
turns out, most of RustBelt’s lifetime logic—with the exception of its “atomic borrows” mechanism—remains sound
under relaxed memory. As a result, much of the original RustBelt—e.g., the large parts that did not depend on atomic
borrows—did not have to be changed at all! However, proving that the lifetime logic remains mostly sound under
relaxed memory—and fixing the rules for atomic borrows so that they are—required us to develop a novel concept of
synchronized ghost state.

Independently of Rust, my collaborators and I have also made other fundamental contributions to the study of
relaxed memory models. Notably, we developed a novel “promising” solution to C++11’s longstanding “out-of-thin-air”
problem, which has been the basis of much follow-on research [24]. We also uncovered and fixed a flaw in the official
C++11 semantics of SC accesses, and our fix was subsequently incorporated into the language standard [28].

Ongoing and Future Work

Further exploration of the foundations of Rust. With RustBelt, we have taken a big leap forward, but it is only the
first step. We now plan to use it as a springboard for further exploration of the actively evolving Rust language.

A natural direction for future work is to test the mettle of our current RustBelt model by using it—or adapting it as
needed—to account for the safety of more “daring” Rust APIs which use unsafe features in subtle ways. In work under
submission, we have already adapted RustBelt to prove soundness of GhostCell, a Rust API for safely implementing
data structures with internal sharing [46]. In ongoing work, we are exploring how to use RustBelt to verify soundness
of the “pinning” API, which underlies Rust’s recently introduced support for asynchronous programming.

In another line of work, we have contributed to the design of Rust itself through our work on Stacked Borrows [17].
Stacked Borrows is a new semantics for Rust memory accesses, geared toward validating more aggressive compiler
optimizations for Rust that exploit the strong aliasing information inherent in Rust types. As with RustBelt, the tricky
part of developing the Stacked Borrows semantics was dealing with the interaction between safe and unsafe code,
and ensuring that unsafe code does not break the type-based aliasing guarantees expected by safe code. My former
PhD student Ralf Jung, who led the development of Stacked Borrows, has worked closely with the Rust Unsafe Code
Guidelines working group (of which he is co-lead) to gain acceptance of the Stacked Borrows design and implement it



in Miri, the experimental reference interpreter that ships with Rust. In addition to exploring further refinements of the
Stacked Borrows semantics, our obvious next step for future work is to integrate Stacked Borrows into RustBelt.

Expanding the expressive power of Iris. Although Iris is already a mature verification tool, my collaborators and I
continue to explore ways to expand its expressive power through further development of its foundations.

One key limitation of Iris is that, due to its step-indexed semantic foundation, it is restricted to proving safety
properties (i.e., that programs do not do anything bad); liveness properties (i.e., that programs eventually do something
good) have been out of reach. In recent work [38], we have argued that the main problem with supporting liveness
verification is that the step-indexed model of Iris fails to validate the existential property, which says that existential
quantification inside the logic corresponds to existential quantification outside the logic. To address this problem, we
developed Transfinite Iris, which replaces Iris’s step-indexed model with one based on ordinals so that it validates the
existential property. We have demonstrated that Transfinite Iris supports liveness reasoning for higher-order, sequential
programs, and in future work, we are exploring how to support liveness reasoning about concurrent programs as well.

Independently of liveness, we are studying several promising alternatives to the traditional step-indexed foundations
of Iris in the interest of avoiding the oft-perceived complexity of step-indexed reasoning. First, we are developing a
variant of Iris in which proofs that require tricky step-indexed reasoning (or which are not presently doable at all) can
be simplified (or made possible) by treating step-indices themselves as a kind of resource. Second, we are investigating
how to disentangle Iris’s support for step-indexed reasoning from its support for ownership reasoning. Specifically,
we are building a framework for coinductive simulation proofs, which inherits Iris’s strong support for compositional
reasoning about ghost state and ownership while avoiding the complexities of its step-indexed model altogether.

Automating the foundational verification of realistic systems code. In our work so far on RustBelt and Iris, the
main focus has been on foundational verification—i.e., verification performed completely in an interactive theorem
prover (Coq), whose logical consistency rests on a small trusted foundation. Iris enables one to derive high-level logics
in which to conduct very tricky proofs about realistic systems code, concerning deep correctness properties that are
presently beyond the reach of any other rigorous formal methods. However, the proofs still require a large amount of
manual human effort. Thus, in order to scale these tools to large code bases and put them eventually in the hands of
programmers (rather than merely Coq experts), we need much better support for automated proof.

Recently, my collaborators and I have developed RefinedC [36], the first tool for automated and foundational
verification of functional correctness for C programs. The key idea of RefinedC is to facilitate automated, goal-directed
proof search using a combination of ownership types (a la Rust) and refinement types, which annotate C types with data
structure invariants. These types are then given semantics—in the style of the RustBelt model—by interpreting them as
Iris predicates and proving the RefinedC typing rules foundationally sound using Iris in Coq. In this way, RefinedC
supports the automation afforded by tools like VeriFast [15], while also reducing the trusted code base of those tools by
outputting foundational proofs in Coq. To drive further research on RefinedC, we are currently deploying it as part of a
large multi-institution project, sponsored by Google, to verify functional correctness of the pKVM hypervisor.

We are also exploring automated foundational verification for Rust code. In one project, we are studying how to
adapt the RefinedC approach to work for Rust instead of C. This appears to require a significant rethink of the system,
since RefinedC does not support anything like the “borrowing” pattern of ownership transfer so prevalent in Rust code.
In another project, we are investigating how to use the RustBelt infrastructure to build a semantic soundness proof for
Matsushita et al.’s recently developed RustHorn tool [29], so that we can then link automated RustHorn verification of
safe Rust code together with Iris verification of unsafe Rust APIs and obtain an end-to-end correctness guarantee.
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