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Abstract
Mitchell’s notion of representation independenceis a particularly
useful application of Reynolds’ relational parametricity— two dif-
ferent implementations of an abstract data type can be showncon-
textually equivalent so long as there exists a relation between their
type representations that is preserved by their operations. There
have been a number of methods proposed for proving represen-
tation independence in various pure extensions of System F (where
data abstraction is achieved through existential typing),as well as
in Algol- or Java-like languages (where data abstraction isachieved
through the use of local mutable state). However, none of these ap-
proaches addresses theinteraction of existential type abstraction
and local state. In particular, none allows one to prove representa-
tion independence results forgenerativeADTs — i.e., ADTs that
bothmaintain some local stateanddefine abstract types whose in-
ternal representations are dependent on that local state.

In this paper, we present a syntactic, logical-relations-based
method for proving representation independence of generative
ADTs in a language supporting polymorphic types, existential
types, general recursive types, and unrestricted ML-stylemuta-
ble references. We demonstrate the effectiveness of our method by
using it to prove several interesting contextual equivalences that in-
volve a close interaction between existential typing and local state,
as well as some well-known equivalences from the literature(such
as Pitts and Stark’s “awkward” example) that have caused trouble
for previous logical-relations-based methods.

The success of our method relies on two key technical inno-
vations. First, in order to handle generative ADTs, we develop a
possible-worlds model in which relational interpretations of types
are allowed togrow over time in a manner that is tightly coupled
with changes to some local state. Second, we employ astep-indexed
stratification of possible worlds, which facilitates a simplified ac-
count of mutable references of higher type.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract data
types; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Abstract data types, representation independence, ex-
istential types, local state, step-indexed logical relations
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1. Introduction
Reynolds’ notion ofrelational parametricity[23] is the essence of
type abstraction — clients of an abstract type behave uniformly
acrossall relational interpretations of that type and thus cannot de-
pend in any way on how the type is represented. Mitchell’s notion
of representation independence[17] is a particularly useful appli-
cation of relational parametricity — two different implementations
of an abstract data type can be shown contextually equivalent so
long as thereexistsa relation between their type representations
that is preserved by their operations. This is useful even when the
type representations of the two ADTs are the same, because the
choice of an arbitrary relational interpretation for the abstract type
allows one to establish the existence of local invariants.

Originally these ideas were developed in the context of (vari-
ants of) System F, but over the past two decades there has beena
great deal of work on extending them to the setting of more realis-
tic languages, such as those with recursive functions [20],general
recursive types [16, 1, 11], selective strictness [29], etc. In these
functional languages, data abstraction is achieved through the use
of existential types. Others have considered representation indepen-
dence in the setting ofimperativelanguages, such as Algol and
Java, where data abstraction is achieved instead through the use of
local mutable state (e.g.,local variables or private fields) [21, 5, 14].

Of course, most modern languages (such as ML) are nei-
ther purely functional nor imperative, but rather freely mix the
paradigms. However, none of the existing work on representation
independence has considered a language supporting both thefunc-
tional and the imperative approaches to data abstraction,i.e., both
existential types and local state. This is unfortunate, since both ab-
straction mechanisms play important, interdependent roles in the
definition ofgenerativeabstract data types.

1.1 Reasoning About Generative Abstract Data Types

Existential type abstraction providestype generativity— every
unpacking of an existential package generates afreshabstract type
that is distinct from any other. This is similar to the behavior of
Standard ML’sgenerative functors, which generate fresh abstract
types at each application, and indeed the semantics of SML-style
functors may be understood as a stylized use of existential type
abstraction [25]. The clearest motivation for type generativity is
in the definition of ADTs that encapsulate some local state. In
such instances, generativity is sometimesnecessaryto achieve the
proper degree of data abstraction.

As a simple motivating example, consider the SML mod-
ule code in Figure 1, which is adapted from an example of
Dreyer et al. [12]. (Later in the paper, we will develop a simi-
lar example using existential types.) Here, the signatureSYMBOL
describes a module implementing a mutable symbol table, which
maps “symbols” to strings. The module provides an abstract type
t describing the symbols currently in its table; a functioneq for
comparing symbols for equality; a functioninsert, which adds a

1



signature SYMBOL = sig
type t
val eq : t * t -> bool
val insert : string -> t
val lookup : t -> string

end
functor Symbol () :> SYMBOL = struct
type t = int
val size = ref 0
val table = ref nil
fun eq (x,y) = x = y
fun insert str = (

size := !size + 1;
table := str :: !table;
!size

)
fun lookup n =

List.nth (!table, !size - n)
end

Figure 1. Generativity Example

given string to the table and returns a fresh symbol mapped toit;
and a functionlookup, which looks up a given symbol in the table
and returns the corresponding string.

The functorSymbol implements the symbol typet as an integer
index into a (mutable) list of strings. When applied,Symbol creates
a freshtable (represented as a pointer to an empty list) and a
mutable countersize (representing the size of the table). The
implementations of the various functions are straightforward, and
the body of the functor is sealed with the signatureSYMBOL, thus
hiding access to the local state (table andsize).

The call toList.nth in thelookup function might in general
raise aSubscript exception if the inputn were an arbitrary inte-
ger. However, we “know” that this cannot happen becauselookup
is exported with argument typet, and the only values of typet that
a client could possibly have gotten hold of are the values returned
by insert, i.e., integers that are between 1 and the current size of
table. Therefore, the implementation of thelookup function need
not bother handling theSubscript exception.

This kind of reasoning is commonplace in modules that encap-
sulate local state. But what justifies it? Intuitively, the answer is
type generativity. Each instantiation of theSymbol functor creates
a fresh symbol typet, which represents the type of symbols that are
valid in its owntable (but not any other). WereSymbol not gen-
erative, each application of theSymbol functor would produce a
module with distinct local state but thesamesymbol type. It would
then be easy to induce aSubscript error by accidentally passing
a value of one table’s symbol type to another’slookup function.1

While this intuition about the importance of generativity is very
appealing, it is also completely informal. The goal of this paper is
to develop a formal framework for reasoning about the interaction
of generative type abstraction and mutable state.

In the case of an example like theSymbol functor, we will
be able to show that the implementation ofSymbol shown in
Figure 1 iscontextually equivalentto one whoselookup function
is replaced by:

fun lookup n =
if n > 0 andalso n <= !size

andalso !size = length(!table)
then List.nth (!table, !size - n)
else "Hell freezes over"

1 This is the case, for example, in OCaml, which only supportsapplicative
(i.e.,non-generative) functors [15].

In other words, there is no observable difference between the orig-
inal Symbol functor and one that dynamically checks the various
invariants we claim to “know.” Hence, the checks are unnecessary.

This kind of result can be understood as an instance of represen-
tation independence, albeit a somewhat degenerate one in that the
ADTs in question share the same type representation. As withmost
such results, the proof hinges on the construction of an appropriate
relational interpretation of the abstract typet, which serves to im-
pose an invariant on the possible values of typet. In this case, we
wish to assert that for a particular structureS defined bySymbol(),
the only values of typeS.t are integers between 1 and the current
size ofS’s table. This will allow us to prove that any range check
on the argument toS’s lookup function is superfluous.

The problem is that the relational interpretation we wish to
assign toS.t depends on thecurrent values stored inS’s local
state. In effect, asS’s insert function is called repeatedly over
time, its table grows larger, and the relational interpretation of
S.t must grow accordingly to include more and more integers.
Thus, what we need is an account ofstate-dependent representation
independence, in which the relational interpretations of abstract
types are permitted togrow over time, in a manner that is tightly
coupled with changes to some local state.

1.2 Overview

In this paper, we present a novel method for proving state-dependent
representation independence results. Our method extends previ-
ous work by Ahmed on syntacticstep-indexedlogical relations
for recursive and quantified types [1]. We extend her technique
with support for reasoning about local state, and demonstrate its
effectiveness on a variety of small but representative examples.
Although our primary focus is on proving representation indepen-
dence for ADTs that exhibit an interaction of existentials and state,
our method also handles several well-known simply-typed exam-
ples from the literature on local state (such as Pitts and Stark’s
“awkward” example [21]) that have proven difficult for previous
logical-relations-based methods to handle.

In order to reason about local state, we build into our logical
relation a notion ofpossible worlds. While several aspects of our
possible worlds are derived from and inspired by prior work,other
aspects are quite novel:

1. We enrich our possible worlds withpopulations and laws,
which allow us to evolve the relational interpretation of an
abstract type over time in a controlled, state-dependent fashion.
For instance, we can use a population to grow a set of val-
ues (e.g.,the integers between 1 and somen), together with a
law that explains what the current population implies aboutthe
current machine state (e.g.,that the symbol table has sizen).

2. Second, our method provides the ability to reason locallyabout
references to higher-order values. While ours is not the first
method to handle higher-order state, our approach is novel and
arguably simpler than previous accounts. It depends critically
on step-indexing in order to avoid a circularity in the construc-
tion of possible worlds.

The remainder of the paper is structured as follows. In Sec-
tion 2, we presentFµ!, our language under consideration, which
is essentially System F extended with general recursive types and
general ML-style references. In Section 3, we explain at a high level
how our method works and what is novel about it. In Section 4, we
present the details of our logical relation and prove it sound (but not
complete) with respect to contextual equivalence ofFµ! programs.
In Section 5, we show how to use our method to prove a num-
ber of interesting contextual equivalences. Finally, in Section 6, we
conclude with a thorough comparison to related work, as wellas
directions for future work.
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Types τ ::= α | unit | int | bool | τ1 × τ2 | τ1 → τ2 |
∀α. τ | ∃α. τ | µα. τ | ref τ

Prim Ops o ::= + | − | = | < | ≤ | . . .

Terms e ::= x | () | l | ±n | o(e1, . . . , en) | true | false |
if e then e1 else e2 | 〈e1, e2〉 | fst e | snd e |
λx : τ. e | e1 e2 | Λα. e | e [τ ] |
pack τ, e as ∃α. τ ′ | unpack e1 asα, x in e2 |
fold e | unfold e | ref e | !e | e1 := e2 | e1 == e2

Values v ::= () | l | ±n | true | false | 〈v1, v2〉 |
λx : τ. e | Λα. e | pack τ1, v as∃α. τ | fold v

s, (λx : τ. e) v 7−→ s, [v/x]e
s, (Λα. e) [τ ] 7−→ s, [τ/α]e

s, unpack (pack τ, v as ∃α. τ ′) asα, x in e
7−→ s, [τ/α][v/x]e

s, unfold (fold v) 7−→ s, v
s, ref v 7−→ s[l 7→ v], l wherel /∈ dom(s)

s, !l 7−→ s, v wheres(l) = v
s, l:= v 7−→ s[l 7→ v], () wherel ∈ dom(s)
s, l == l 7−→ s, true
s, l == l′ 7−→ s, false wherel 6= l′

s, e 7−→ s′, e′

s,E[e] 7−→ s′, E[e′]

Type Contexts ∆ ::= · | ∆, α
Value Contexts Γ ::= · | Γ, x : τ
Store Typing Σ ::= · | Σ, l : τ whereFTV (τ) = ∅

Γ(x) = τ

∆; Γ;Σ ⊢ x : τ
. . .

Σ(l) = τ

∆;Γ; Σ ⊢ l : ref τ

∆;Γ; Σ ⊢ e : τ

∆; Γ;Σ ⊢ ref e : ref τ

∆;Γ; Σ ⊢ e : ref τ

∆; Γ;Σ ⊢ !e : τ

∆;Γ; Σ ⊢ e1 : ref τ ∆; Γ;Σ ⊢ e2 : τ

∆; Γ;Σ ⊢ e1 := e2 : unit

∆; Γ;Σ ⊢ e1 : ref τ ∆; Γ;Σ ⊢ e2 : ref τ

∆;Γ; Σ ⊢ e1 == e2 : bool

Well-typed Store:
∀l ∈ dom(Σ). ·; ·; Σ ⊢ s(l) : Σ(l)

⊢ s : Σ

Figure 2. Fµ! Syntax + Dynamic and Static Semantics (excerpts)

2. The LanguageFµ!

We considerFµ!, a call-by-valueλ-calculus with impredicative
polymorphism, iso-recursive types, and general ML-style refer-
ences. The syntax ofFµ! is shown in Figure 2, together with ex-
cerpts of the static and dynamic semantics. We assume an infinite
set of locationsLoc ranged over byl. Our term language includes
equality on references (e1 == e2), but is otherwise standard.

We define a small-step operational semantics forFµ! as a rela-
tion between configurations(s, e), wheres is a global store map-
ping locationsl to valuesv. We use evaluation contextsE to lift the
primitive reductions to a standard left-to-right call-by-value seman-
tics for the language. We elide the syntax of evaluation contexts as
it is completely standard, and we show only some of the reduction
rules in Figure 2.

Fµ! typing judgments have the form∆; Γ;Σ ⊢ e : τ where the
contexts∆, Γ, andΣ are defined as in Figure 2. The type context∆
is used to track the set of type variables in scope; the value context
Γ is used to track the term variables in scope (along with theirtypes
τ , which must be well formed in context∆, written∆ ⊢ τ ); and
the store typingΣ tracks the types of the contents of locations in
the store. Note thatΣ maps locations to closed types. We write
FTV (τ ) to denote the set of type variables that appear free in

type τ . The typing rules are entirely standard, so we show only
a few rules in Figure 2. We refer the reader to the online technical
appendix [3] for full details ofFµ!.

2.1 Contextual Equivalence

A contextC is an expression with a single hole[·] in it. Typing
judgments for contexts have the form⊢ C : (∆; Γ;Σ ⊢ τ ) ⇒
(∆′; Γ′; Σ′ ⊢ τ ′), where(∆; Γ;Σ ⊢ τ ) indicates the type of the
hole. Essentially, this judgment says that ife is an expression such
that∆;Γ;Σ ⊢ e : τ , then∆′; Γ′; Σ′ ⊢ C[e] : τ ′. The typing rule
for a hole[·] is as follows:

∆ ⊆ ∆′ Γ ⊆ Γ′ Σ ⊆ Σ′

⊢ [·] : (∆; Γ; Σ ⊢ τ ) ⇒ (∆′; Γ′; Σ′ ⊢ τ )

The other rules are straightforward (see our online appendix [3]).
We define contextual approximation (∆;Γ;Σ ⊢ e1 �ctx e2 : τ )

to mean that, for any well-typed program contextC with a hole of
the type ofe1 ande2, the termination ofC[e1] implies the termina-
tion of C[e2]. Contextual equivalence (∆;Γ;Σ ⊢ e1 ≈ctx e2 : τ )
is then defined as approximation in both directions.

Definition 2.1 (Contextual Approximation & Equivalence)

Let∆;Γ;Σ ⊢ e1 : τ and∆;Γ; Σ ⊢ e2 : τ .

∆;Γ; Σ ⊢ e1 �ctx e2 : τ
def
=

∀C,Σ′, τ ′, s. ⊢ C : (∆; Γ;Σ ⊢ τ) ⇒ (·; ·; Σ′ ⊢ τ ′) ∧ ⊢ s : Σ′ ∧
s,C[e1] ⇓ =⇒ s,C[e2] ⇓

∆;Γ; Σ ⊢ e1 ≈ctx e2 : τ
def
=

∆;Γ; Σ ⊢ e1 �ctx e2 : τ ∧ ∆;Γ;Σ ⊢ e2 �ctx e1 : τ

3. The Main Ideas
In this section we give an informal overview of the main novelideas
in our method, and how it compares to some previous approaches.

3.1 Logical Relations

Broadly characterized, our approach is alogical relationsmethod.
We define a relationV JτK ρ, which relates pairs of values at typeτ ,
where the free type variables ofτ are given relational interpreta-
tions inρ. The relation is “logical” in the sense that its definition
follows the structure ofτ , modeling each type constructor as a log-
ical connective. For example, arrow types correspond to implica-
tion, so functions are defined to be related at an arrow type iff re-
latedness of their arguments implies relatedness of their results. We
will show that this logical relation is sound with respect tocontex-
tual equivalence forFµ!. This is useful because, for many examples,
it is much easier to show two programs are in the logical relation
than to show they are contextually equivalent directly.

Logical relations methods are among the oldest techniques for
proving representation independence results. We will assume the
reader is generally familiar with the flavor of these techniques, and
instead focus on what is distinctive and original about ours.

3.2 Local Reasoning via Possible Worlds and Islands

As explained in Section 1, our core contribution is the idea of
state-dependentrelational interpretations of abstract types. That is,
whether two values are related by some abstract type’s relational in-
terpretation may depend on the current state of the heap. Butwhen
defining such a relational interpretation, how can we characterize
the “current state of the heap?”

As a starting point, we review the general approach taken by
a number of prior works on reasoning about local state [21, 22,
7, 10]. This approach, which utilizes apossible worldsmodel, has
influenced us greatly, and constitutes the foundation of ourmethod.
However, the form it has taken in prior work is insufficient for our
purposes, and it is instructive to see why.
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The general approach of these prior works is to index the logical
relation not only by a typeτ but by aworldW . Instead of charac-
terizing the current state of the heap,W characterizes the properties
we expect the heap to have. In other words, it is a relation on ma-
chine stores, and we restrict attention to pairs of stores that satisfy
it. If two valuesv1 andv2 are in the logical relation at typeτ and
worldW , then it means they are related when considered under any
two storess1 ands2, respectively, that satisfyW .

Worlds in turn are constructed as a separating conjunction of
smaller worlds〈w1, . . . , wn〉, sometimes calledislands, where
each island is a relation that “concerns” a disjoint piece ofthe
store. Intuitively, this means that each island distinguishes between
pairs of stores only on the basis of a particular set of memoryloca-
tions, and the set of locations that one island cares about isdisjoint
from the set that any other one cares about.

Exactly how the separation criterion on islands is formalized is
immaterial; the important point is that it enables local reasoning.
Suppose we want to prove that one expression is related to another
in world W . Each may allocate some fresh piece of the store,
and before showing that the resulting values of the expressions
are related, we are permitted to extendW with a new islandw
describing how these fresh pieces of the store relate to eachother.
World extension is sound here precisely because the new island is
(due to freshness of allocation) separate from the others. So long as
the expressions in question do not make the locations in their local
stores publicly accessible, no other part of the program is capable
of mutating the store in such a manner as to violatew.

To make things concrete and to observe the limitations of possi-
ble worlds (at least as we have described them), let us consider the
motivating example from Section 1. To prove that the two imple-
mentations of theSymbol functor are contextually equivalent, we
will show that their bodies are logically related in an arbitrary ini-
tial world W0. Both functors allocate local state in the same way,
namely by allocating one pointer fortable and one forsize, so
we will want to extendW0 with an islandwsym describing the local
invariants ontable andsize. How should we definewsym?

One useful invariant thatwsym can enforce is that, for both
implementations ofSymbol, the integer pointed to bysize is equal
to the length of the list pointed to bytable. By incorporating this
property intowsym, we will be guaranteed that, in anyfuture world
(i.e., any extension ofW0 ⊎ wsym) in which thelookup function
is called, the dynamic check!size = length(!table) in the
second implementation ofSymbol will always evaluate totrue.

We can also usewsym to enforce that!size is the same in the
stores of both programs, and similarly for!table. Unfortunately,
while this is a necessary condition, it is not sufficient to prove that
the range check on the argument oflookup in the secondSymbol
implementation always evaluates totrue. For that, we need a way
of correlating the value of!size and the possible values of typet,
but the islands we have developed thus far do not provide one.

3.3 Populating the Islands and Enforcing the Laws

The problem with islands is that they are static entities with no
potential for development. To address this limitation, we enrich is-
lands withpopulations. A population is a set of values that “in-
habit” an island and affect the definition of the store relation for
that island. An island’s population maygrow over time (i.e.,as we
move to future worlds), and its store relation may change accord-
ingly. In order to control population growth, we equip everyisland
with an immutablelaw governing the connection between its pop-
ulation and its store relation. We denote populations byV , store
relations byψ, and laws byL.

Consider theSymbol example. Let us defineVn = {1, . . . , n},
and letψn be the store relation containing pairs of stores that obey
the properties concerningtable andsize described in Section 3.2

and that, in addition, both map the locationsize to n. The idea is
thatVn describes the set of values of typet, giventhat the current
stores satisfyψn. Thus, when we extend the initial worldW0 with
an islandwsym governingSymbol’s local state, we will choose that
wsym to comprise populationV0, store relationψ0, and a lawL
defined as{(ψn, Vn) | n ≥ 0}. Here,V0 andψ0 characterize the
initial world, in which there are no values of typet and the size
of the table is 0. The lawL describes what future populations and
store relations on this island may look like. In particular,L enforces
that future populations may contain 1 ton (for anyn), but only in
conjunction with stores that mapsize to n. (Of course, the initial
population and store relation must also obey the law, which they
do.) An island’s law is established when the island is first added to
the world and may not be amended in future worlds.

Having extended the worldW0 with this new islandwsym, we
are now able to define a relational interpretation for the type t,
namely: valuesv1 and v2 are related at typet in world W if
v1 = v2 = m, wherem belongs to the population ofwsym in W .
In proving equivalence of the two versions of thelookup function,
we can assume that we start with storess1 ands2 that are related
by some worldW , whereW is a future world ofW0 ⊎ wsym,
and that the arguments tolookup are related at typet in W .
Consequently, given the law that we established forwsym together
with the interpretation oft, we know that the arguments tolookup
must both equal somem, that the current population ofwsym must
be someVn, where1 ≤ m ≤ n, and that the current store relation
must beψn. Sinces1 ands2 satisfyW , they must satisfyψn, which
means they mapsize to n ≥ m. Hence, the dynamic range check
in the second version ofSymbol must evaluate totrue.

For the above relational interpretation oft to make sense, we
clearly need to be able to refer to a particular island in a world (e.g.,
wsym) by some unique identifier that works in all future worlds. We
achieve this by insisting that a world be an ordered list of islands,
and that new islands only be added to the end of the list. This allows
us to access islands by their position in the list, which stays the
same in future worlds.

In addition, an important property of the logical relation,which
relational interpretations of abstract types must thus obey as well, is
closure under world extension,i.e., that if two values are related in
worldW , then they are related in any future world ofW . To ensure
closure under world extension for relations that depend on their
constituents’ inhabitation of a particular island (such asthe relation
used above to interprett), we require that island populations can
only grow larger in future worlds, not smaller.

For expository purposes, we have motivated our population
technique with an example that is deliberately simple, in the sense
that the relational interpretation oft is completely dependent on
the current local state. That is, if we know that the current value of
!size isn, then we know without a doubt that the relational inter-
pretation oft in the current world must be{(1, 1), . . . , (n, n)}. In
Section 5, we will see more complex examples in which the rela-
tional interpretation oft may depend not only on the current state,
but also on the history of the program execution up to that point.
Our population techniques scales very nicely to handle suchex-
amples because it allows us to control theevolutionof an abstract
type’s relational interpretation over time.

3.4 Mutable References to Higher-Order Values

Most prior possible-worlds logical-relation approaches to reason-
ing about local state impose serious restrictions on what can be
stored in memory. Pitts and Stark [21], for example, only allow
references to integers. Reddy and Yang [22] and Benton and Lep-
erchey [7] additionally allow references todata, which include in-
tegers and pointers but not functions. In the present work, however,
we would like to avoid any restrictions on the store.
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To see what (we think) is tricky about handling references to
higher-order values, suppose we have two programs that bothmain-
tain some local state, and we are trying to prove these programs
equivalent. Say the invariant on this local state, which we will en-
force using an islandw, is very simple: the value that the first pro-
gram stores in locationl1 is logically related to the value that the
second program stores inl2. If these values were just integers, we
could write the law forw (as we did in theSymbol example) so
that in any future world,w’s store relationψ must demand that two
storess1 ands2 are related only ifs1(l1) = s2(l2). This works
because at typeint, the logical relation coincides with equality.

If the locations have some higher typeτ , however, the definition
of w’s store relationψ will need to relates1(l1) ands2(l2) using
the logical relation at typeτ , not mere syntactic equality. But the
problem is: logical relations are indexed by worlds. In order for ψ
to say thats1(l1) ands2(l2) are related at typeτ , it needs to specify
the worldW in which their relation is being considered.

Bohr and Birkedal [10] address this issue by imposing a rigid
structure on their store relations. Specifically, instead of having a
single store relation per island, they employ alocal parameter,
which is roughly a set of pairs of the form(P,LL), whereP is
a store relation andLL is a finite set of pairs of locations (together
with a closed type). The way to interpret this local parameter is that
the current stores must satisfyoneof theP ’s, and all the pairs of
locations in the correspondingLL must be related by the logical
relation in thecurrent world. In the case of our example withl1
and l2, they would define a local parameter{(P,LL)}, whereP
is the universal store relation andLL = {(l1, l2, τ )}. Bohr and
Birkedal’s approach effectively uses theLL’s to abstract away
explicit references to the world-indexed logical relationwithin the
store relation. This avoids the need to refer to a specific world
inside a store relation, but it only works for store relations that are
expressible in the highly stylized form of these local parameters.

Instead, our approach is toparameterizestore relations over the
world in which they will be considered. Then, in defining whatit
means for two storess1 ands2 to satisfy some worldW , we require
that for everyψ in W , (s1, s2) ∈ ψ[W ], i.e., s1 ands2 obeyψ
when it is instantiated to the current worldW . The astute reader
will have noticed, however, that this parameterization introduces a
circularity: worlds are defined to be collections of store relations,
which are now parameterized by worlds. To break this circularity,
we employstep-indexedlogical relations.

3.5 Step-Indexed Logical Relations and Possible Worlds

Appel and McAllester [4] introduced the step-indexed modelas
a way to expresssemantictype soundness proofs for languages
with general recursive and polymorphic types. Although itsorig-
inal motivation was tied to foundational proof-carrying code, the
technique has proven useful in a variety of applications. Inparticu-
lar, Ahmed [1] has used a binary version of Appel and McAllester’s
model for relational reasoning about System F extended withgen-
eral recursive types, and it is her work that we build on.

The basic idea is closely related to classic constructions from
domain theory. We define the logical relationV JτK ρ as the limit of
an infinite chain of approximation relationsVnJτK ρ, wheren ≥ 0.
Informally, valuesv1 andv2 are related by then-th approximation
relation only if they are indistinguishable in any context for n steps
of computation. (They might be distinguishableafter n steps, but
we don’t care because the “clock” has run out.) Thus, values are re-
lated in the limit only if they are indistinguishable in any context for
anyfinite number of steps,i.e., if they are really indistinguishable.

The step-indexed stratification makes it possible to define the
semantics of recursive types quite easily. Two valuesfold v1 and
fold v2 are defined to be related byVnJµα. τK ρ iff v1 andv2 are
related byVkJ[µα. τ/α]τK ρ for all k < n. Even though the un-

folded type is larger (usually a deal breaker for logical relations,
which are typically defined by induction on types), the step in-
dex gets smaller, so the definition of the logical relation iswell-
founded. Moreover, it makes sense for the step index to get smaller,
since it takes a step of computation to extractvi from fold vi.

Just as we use steps to stratify logical relations, we can also
use them to stratify our quasi-circular possible worlds. Wedefine
an “n-level world” inductively to be one whose constituent store
relations (theψ’s) are parameterized by (n−1)-level worlds. The
intuition behind this stratification of worlds is actually very simple:
ann-level world describes properties of the current stores that may
affect the relatedness of pairs of values forn steps of computation.
Since it takes one step of computation just toinspectthe stores (via
a pointer dereference), the relatedness of pairs of values forn steps
can only possibly depend on the relatedness of the current stores
for n−1 steps. Thus, it is fine for ann-level world to be defined
as a collection of (n−1)-level store relations,i.e., ψ’s that only
guarantee relatedness of memory contents forn−1 steps. And these
(n−1)-level ψ’s, in turn, need only be parameterized by (n−1)-
level worlds.

4. Step-Indexed Logical Relations forFµ!

In this section, we present the details of our logical relation forFµ!

and prove it sound with respect to contextual equivalence.
The basic idea is to give a relational interpretationV JτK of

a (closed) typeτ as a set of tuples of the form(k,W, v1, v2),
wherek is a natural number (called thestep index), W is a world
(as motivated in Section 3), andv1 andv2 are values. Informally,
(k,W, v1, v2) ∈ V JτK says that in any computation running for no
more thank steps,v1 approximatesv2 at the typeτ in world W .
An important point is that to determine ifv1 approximatesv2 for k
steps (at typeτ ), it suffices for the worldW to be ak-level world.
That is, the store relationsψ inW need only guarantee relatedness
of memory contents fork−1 steps, as discussed in Section 3.5. We
make the notion of a “k-level world” precise in Section 4.1.

Preliminaries In the rest of the paper, the metavariablesi, j, k,
m, andn all range over natural numbers. We use the metavariableχ
to denote sets of tuples of the form(k,W, e1, e2) wherek is a step
index,W is a world, ande1 ande2 are closed terms (i.e.,terms that
may contain locations, but no free type or term variables). Given a
setχ of this form, we writeχval to denote the subset ofχ such that
e1 ande2 are values.

As mentioned in Section 3.3, aworld W is an ordered list
(written 〈w1, . . . , wn〉) of islands. An islandw is a pair of some
currentknowledgeη and alawL. The knowledgeη for each island
represents the current “state” of the island. It comprises four parts: a
store relationψ, which is a set of tuples of the form(k,W, s1, s2),
wherek is a step index,W is a world, ands1, ands2 are stores;
a populationV , which is a set of closed values; and two store
typingsΣ1 andΣ2. The domains ofΣ1 andΣ2 give us the sets
of locations that the island “cares about” (a notion we mentioned
in Section 3.2). Meanwhile, a lawL is a set of pairs(k, η). If
(k, η) ∈ L, it means that, at “time”k (representing the number of
steps left on the clock), the knowledgeη represents an acceptable
state for the island to be in. Below we summarize our notationfor
ease of reference.

Type Interpretation χ ::= {(k,W, e1, e2), . . . }
Store Relation ψ ::= {(k,W, s1, s2), . . . }
Population V ::= {v1, . . . }
Knowledge η ::= (ψ, V,Σ1,Σ2)
Law L ::= {(k, η), . . .}
Island w ::= (η,L)
World W ::= 〈w1, . . . , wn〉
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CandAtomk
def
= {(j,W, e1, e2) | j < k ∧ W ∈ CandWorld j}

CandTypek
def
= P(CandAtomval

k )

CandStoreAtomk
def
= {(j,W, s1, s2) | j < k ∧ W ∈ CandWorld j}

CandStoreRelk
def
= P(CandStoreAtomk)

CandKnowledgek
def
= CandStoreRelk × Population

× StoreTy × StoreTy

CandLawAtomk
def
= {(j, η) | j ≤ k ∧ η ∈ CandKnowledgej}

CandLawk
def
= P(CandLawAtomk)

CandIslandk
def
= CandKnowledgek × CandLawk

CandWorldk
def
= {W ∈ (CandIslandk)n | n ≥ 0}

CandAtomω
def
=

S

k≥0 CandAtomk

CandTypeω
def
= P(CandAtom val

ω ) ⊇
S

k≥0 CandTypek

⌊χ⌋k
def
= {(j,W, e1, e2) | j < k ∧ (j,W, e1, e2) ∈ χ}

⌊ψ⌋k
def
= {(j,W, s1, s2) | j < k ∧ (j,W, s1, s2) ∈ ψ}

⌊η⌋k
def
= (⌊ψ⌋k , V,Σ1,Σ2) whereη = (ψ, V,Σ1,Σ2)

⌊L⌋k
def
= {(j, η) | j ≤ k ∧ (j, η) ∈ L}

⌊w⌋k
def
= (⌊η⌋k , ⌊L⌋k) wherew = (η,L)

⌊W ⌋k
def
= 〈⌊w1⌋k , . . . , ⌊wn⌋k〉 whereW = 〈w1, . . . , wn〉

(ψ′, V ′,Σ′
1,Σ

′
2) ⊒ (ψ, V,Σ1,Σ2)

def
= V ′ ⊇ V ∧ Σ′

1 ⊇ Σ1 ∧ Σ′
2 ⊇ Σ2

(η′,L′) ⊒ (η,L)
def
= η′ ⊒ η ∧ L′ = L

〈w′
1, . . . , w

′
n+m〉 ⊒ 〈w1, . . . , wn〉

def
= m ≥ 0 ∧ ∀i ∈ {1, . . . , n}. w′

i ⊒ wi

(j,W ′) ⊒ (k,W )
def
= j ≤ k ∧ W ′ ⊒ ⌊W ⌋j ∧ W ′ ∈ Worldj ∧ W ∈ Worldk

(j,W ′) ⊐ (k,W )
def
= j < k ∧ (j,W ′) ⊒ (k,W )

Atom[τ1, τ2]k
def
= {(j,W, e1, e2) ∈ CandAtomk | W ∈ Worldj ∧ Σ1(W ) ⊢ e1 : τ1 ∧ Σ2(W ) ⊢ e2 : τ2}

Type[τ1, τ2]k
def
= {χ ∈ P(Atom [τ1, τ2]val

k
) | ∀(j,W, v1, v2) ∈ χ. ∀(j′,W ′) ⊒ (j,W ). (j′,W ′, v1, v2) ∈ χ}

StoreAtomk
def
= {(j,W, s1, s2) ∈ CandStoreAtomk | W ∈ Worldj}

StoreRelk
def
= {ψ ∈ P(StoreAtomk) | ∀(j,W, s1, s2) ∈ ψ. ∀(i,W ′) ⊒ (j,W ). (i,W ′, s1, s2) ∈ ψ}

Knowledgek
def
= {(ψ, V,Σ1,Σ2) ∈ CandKnowledgek | ψ ∈ StoreRelk ∧

∀s1, s2, s′1, s
′
2.

(∀l ∈ dom(Σ1). s1(l) = s′1(l) ∧ ∀l ∈ dom(Σ2). s2(l) = s′2(l) ) =⇒
∀j,W. (j,W, s1, s2) ∈ ψ ⇐⇒ (j,W, s′1, s

′
2) ∈ ψ}

LawAtomk
def
= {(j, η) ∈ CandLawAtomk | η ∈ Knowledgej}

Lawk
def
= {L ∈ P(LawAtomk) | ∀(j, η) ∈ L. ∀i < j. (i, ⌊η⌋i) ∈ L}

Islandk
def
= {(η,L) ∈ Knowledgek × Lawk | (k, η) ∈ L}

Worldk
def
= {W ∈ (Islandk)n | n ≥ 0 ∧

∀a, b ∈ {1, . . . , n}. a 6= b =⇒
dom(W [a].Σ1)# dom(W [b].Σ1) ∧ dom(W [a].Σ2) #dom(W [b].Σ2)}

Atom[τ1, τ2]
def
=

S

k≥0 Atom[τ1, τ2]k

Type[τ1, τ2]
def
= {χ ∈ CandTypeω | ∀k ≥ 0. ⌊χ⌋k ∈ Type[τ1, τ2]k} ⊇

S

k≥0 Type[τ1, τ2]k

Figure 3. Auxiliary Definitions: Candidate Sets,k-Approximation, World Extension, and Well-Formedness Conditions

If W = 〈w1, . . . , wn〉 and1 ≤ j ≤ n, we writeW [j] as shorthand
for wj . If w = (ηi,Li) whereηi = (ψi, Vi,Σi1,Σi2), we use the
following shorthand to extract various elements out of the islandw:

w.η ≡ ηi

w.L ≡ Li

w.ψ ≡ ψi

w.V ≡ Vi

w.Σ1 ≡ Σi1

w.Σ2 ≡ Σi2

If W is a world withn islands, we also use the following shorthand:

Σ1(W )
def
=

S

1≤j≤n W [j].Σ1

Σ2(W )
def
=

S

1≤j≤n W [j].Σ2

We writeVal for the set of all values,Store for the set of all stores
(finite maps from locations to values), andStoreTy for the set of
store typings (finite maps from locations to closed types). We write
Population for the set of all subsets ofVal . Finally, we write
S1 #S2 to denote that the setsS1 andS2 are disjoint.

4.1 Well-Founded, Well-Formed Worlds and Relations

Notice that we cannot naı̈vely construct a set-theoretic model based
on the above intentions since the worlds we wish to constructare
(effectively) lists of store relations and store relationsare them-
selves parameterized by worlds (as discussed in Section 3.4). If we
ignore islands, laws, populations, and store typings for the moment,
and simply model worlds as lists of store relations, we are led to the
following specification which captures the essence of the problem:

StoreRel = P(N × World × Store × Store)
World = StoreReln

A simple diagonalization argument shows that the setStoreRel
has an inconsistent cardinality (i.e., it is an ill-founded recursive
definition).

We eliminate the inconsistency by stratifying our definition via
the step index. To do so, we first constructcandidatesets, which
are well-founded sets of our intended form. We then construct
proper notions of worlds, islands, laws, store relations, and so
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on, by filtering the candidate sets through some additional well-
formedness constraints.

Figure 3 (top left) defines our candidate sets by induction onk.
First, note that elements ofCandAtomk andCandStoreAtomk

are tuples with step indexj strictly less thank. Hence, our can-
didate sets are well-defined at all steps. Next, note that elements
of CandLawAtomk are tuples with step indexj ≤ k. Informally,
this is because ak-level law should be able to govern the current
knowledge (i.e., the knowledge at the present time when we havek
steps left to execute), not just the knowledge in the future when we
have strictly fewer steps left.

While our candidate sets establish the existence of sets of our
intended form, our worlds and type relations will need to be well-
behaved in other ways. There are key constraints associatedwith
atoms, types, store relations, knowledge, laws, islands, and worlds
that will be enforced in our final definitions. To specify these
constraints we need some additional functions and predicates.

For any setχ and any setψ, we define thek-approximation of
the set (written⌊χ⌋k and⌊ψ⌋k, respectively) as the subset of its
elements whose indices arestrictly lessthank (see Figure 3, top
right). Meanwhile, for any setL, we define thek-approximation
of the set (written⌊L⌋k) as the subset of its elements whose in-
dices areless than or equalto k. We extend thesek-approximation
notions to knowledgeη, islandsw, and worldsW (written ⌊η⌋k,
⌊w⌋k, and ⌊W ⌋k, respectively) by applyingk-approximation to
their constituent parts. Note that each of thek-approximation func-
tions yields elements ofCandX k whereX denotes the appropriate
semantic object.

Next, we define the notion ofworld extension(see Figure 3,
middle). We write(j,W ′) ⊒ (k,W ) (where⊒ is pronounced
“extends”) if W is a world that is good fork steps (i.e., W ∈
Worldk, see below),W ′ is a good world forj ≤ k steps (W ′ ∈
World j), andW ′ extends⌊W ⌋j (writtenW ′ ⊒ ⌊W ⌋j). Recall
from Section 3.3 that future worlds accessible fromW may have
new islands added to the end of the list. Furthermore, for each
islandw ∈ ⌊W ⌋j , the islandw′ in the same position inW ′ must
extendw. Here we require thatw′.L = w.L since an island’s law
cannot be amended in future worlds (see Section 3.3). We also
require thatw′.η ⊒ w.η, which says that the island’s population
may grow (w′.V ⊇ w.V ), as may the sets of locations that the
island cares about (w′.Σ1 ⊇ w.Σ1 andw′.Σ2 ⊇ w.Σ2). Though it
may seem from the definition of knowledge extension in Figure3
that we do not impose any constraints onw′.ψ, this is not the case.
As explained in Section 3.3, an island’s law should govern what the
island’s future store relations, populations, and locations of concern
may look like. The requirementW ′ ∈ World j (which we discuss
below) ensures that the future knowledgew′.η obeys the laww′.L.

Figure 3 (bottom) defines our various semantic objects, again by
induction onk. These definitions serve to filter their corresponding
candidate sets. We proceed now to discuss each of these filtering
constraints.

Following Pitts [20], our model is built from syntacticallywell-
typed terms. Thus, we defineAtom[τ1, τ2]k as the set of tuples
(j,W, e1, e2) whereΣ1(W ) ⊢ e1 : τ1 andΣ2(W ) ⊢ e2 : τ2, and
j < k. (Recall thatΣi(W ) denotes the “global” store typing—i.e.,
the union of theΣi components of all the islands inW .) We also
require the worldW to be a member ofWorldj .

We defineType[τ1, τ2]k as those setsχ ⊆ Atom[τ1, τ2]
val
k

that are closed under world extension. Informally, ifv1 andv2 are
related fork steps in worldW , thenv1 andv2 should also be related
for j steps in any future worldW ′ such that(j,W ′) is accessible
from (i.e., extends)(k,W ). We defineStoreRelk as the set of all
ψ ⊆ StoreAtomk ⊆ CandStoreAtomk that are closed under
world extension. This property is critical in ensuring thatwe can

extend a world with new islands without fear of breaking the store
properties from the old islands.

Knowledgek is the set of all tuples of the form(ψ, V,Σ1,Σ2) ∈
CandKnowledgek such thatψ ∈ StoreRelk. As mentioned
above, the domains ofΣ1 and Σ2 contain the locations that an
island cares about. What this means is that when determining
whether two storess1 and s2 belong to the store relationψ, we
cannot depend upon the contents of any location in stores1 that
is not indom(Σ1) or on the contents of any location ins2 that is
not indom(Σ2). Thus,Σ1 andΣ2 essentially serve asaccessibility
maps[7]. While Benton and Leperchey’s accessibility maps are
functions from stores to subsets ofLoc, our accessibility maps are
essentially sets of locations that are allowed to grow over time.

We defineLawk as the set of lawsL such that for all(j, η) ∈ L
we have thatη ∈ Knowledgej . Furthermore, we require that the
setsL be closed under decreasing step index—that is, if some
knowledgeη obeys lawL for j steps, then it must be the case that at
any future time, when we havei < j steps left, thei-approximation
of knowledgeη still obeys the lawL.

Islandk is the set of all pairs(η,L) ∈ (Knowledgek × Lawk)
such that the knowledgeη obeys the lawL at the current time
denoted by step indexk — i.e.,(k, η) ∈ L.

Finally, we defineWorldk as the set of allW ∈ (Islandk)n.
We also require that the sets of locations that each islandW [a]
cares about are disjoint from the sets of locations that any other
islandW [b] cares about, thus ensuring separation of islands.

4.2 Relational Interpretations of Types

Figure 4 (top) gives the definition of our logical relations for Fµ!.
The relationsVnJτK ρ are defined by induction onn and nested
induction on the typeτ . We use the metavariableρ to denote
type substitutions. A type substitutionρ is a finite map from type
variablesα to triples(χ, τ1, τ2) whereτ1 andτ2 are closed types,
and χ is a relational interpretation inType [τ1, τ2]. If ρ(α) =
(χ, τ1, τ2), thenρ1(α) denotesτ1 andρ2(α) denotesτ2.

Note that, by the definition ofVnJτK ρ, if (k,W, v1, v2) ∈
VnJτK ρ, thenk < n, W ∈ Worldk, andΣ1(W ) ⊢ v1 : ρ1(τ )
and Σ2(W ) ⊢ v2 : ρ2(τ ). Most of the relationsVnJτK ρ are
straightforward. For instance, the logical relation at type int says
that two integers are logically related for any number of steps k
and in any worldW as long as they are equal. The relations for the
other base typesunit andbool are similar. The logical relation at
typeτ × τ ′ says that two pairs of values are related fork steps in
worldW if their first and second components are related (each for
k steps in worldW ) at typesτ andτ ′ respectively.

Since functions are suspended computations, their relatedness
is defined based on the relatedness of computations (character-
ized by the relationEnJτK ρ, discussed below). Two functions
λx : ρ1(τ ). e1 andλx : ρ2(τ ). e2 are related fork steps in world
W at the typeτ → τ ′ if, in any future worldW ′ where there are
j < k steps left to execute and we have argumentsv1 andv2 that
are related at the argument typeτ , the computations[v1/x]e1 and
[v2/x]e2 are also related forj steps in worldW ′ at the result type
τ ′ (i.e.,they are in the relationEnJτ ′K ρ). Intuitively, j < k suffices
since beta-reduction consumes a step. Parameterizing overan arbi-
trary future worldW ′ is necessary here in order to ensure closure
of the logical relation under world extension.

Before we can specify when two computations are related, we
have to describe what it means for two stores to be related. We
write s1, s2 :k W , denoting that the storess1 ands2 are related
for k steps at the worldW (see Figure 4, top), if the stores are
well-typed with respect to the store typingsΣ1(W ) andΣ2(W ),
respectively, and if the stores are considered acceptable by—i.e.,
they are in the store relations of—all the islands inW at all future
times whenj < k.
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s1, s2 :k W
def
= ⊢ s1 : Σ1(W ) ∧ ⊢ s2 : Σ2(W ) ∧

∀w ∈ W. ∀j < k. (j, ⌊W ⌋j , s1, s2) ∈ w.ψ

VnJτK ρ = VnJτK ρ ∩ Atom[ρ1(τ), ρ2(τ)]valn

VnJαK ρ = χ whereρ(α) = (χ, τ1, τ2)

VnJunitK ρ = {(k,W, (), ())}

VnJintK ρ = {(k,W, v, v) | v ∈ Z}

VnJboolK ρ = {(k,W, v, v) | v = true ∨ v = false}

VnJτ × τ ′K ρ = {(k,W, 〈v1, v′1〉, 〈v2, v
′
2〉) |

(k,W, v1, v2) ∈ VnJτK ρ ∧
(k,W, v′1, v

′
2) ∈ VnJτ ′K ρ}

VnJτ → τ ′K ρ = {(k,W, λx : ρ1(τ). e1, λx : ρ2(τ). e2) |
∀(j,W ′) ⊐ (k,W ). ∀v1, v2.

(j,W ′, v1, v2) ∈ VnJτK ρ =⇒
(j,W ′, [v1/x]e1, [v2/x]e2) ∈ EnJτ ′K ρ}

VnJ∀α. τK ρ = {(k,W,Λα. e1,Λα. e2) |
∀(j,W ′) ⊐ (k,W ). ∀τ1, τ2, χ ∈ Type[τ1, τ2].

(j,W ′, [τ1/α]e1,
[τ2/α]e2) ∈ EnJτK ρ[α 7→ (χ, τ1, τ2)]}

VnJ∃α. τK ρ = {(k,W, pack τ1, v1 as ∃α. ρ1(τ),
pack τ2, v2 as ∃α. ρ2(τ)) |

∃χ ∈ Type[τ1, τ2].
(k,W, v1, v2) ∈ VnJτK ρ[α 7→ (χ, τ1, τ2)]}

VnJµα. τK ρ = {(k,W, fold v1, fold v2) | k < n ∧
∀j < k. (j, ⌊W ⌋j , v1, v2) ∈ VkJ[µα. τ/α]τ K ρ}

VnJref τK ρ = {(k,W, l1, l2) | k < n ∧ wref(k, ρ, τ, l1, l2) ∈ W}

wref(k, ρ, τ, l1, l2) = (η,L)
whereη = (ψ, {}, {l1 : ρ1(τ)}, {l2 : ρ2(τ)})

ψ = {(j,W ′, s1, s2) | (j,W ′, s1(l1), s2(l2)) ∈ VkJτK ρ}
L = {(j, ⌊η⌋j ) | j ≤ k}

EnJτK ρ = {(k,W, e1, e2) ∈ Atom[ρ1(τ), ρ2(τ)]n |
∀j < k. ∀s1, s2, s′1, v1.
s1, e1 7−→j s′1, v1 ∧ s1, s2 :k W =⇒
∃s′2, v2,W

′. (k − j,W ′) ⊒ (k,W ) ∧
s2, e2 7−→∗ s′2, v2 ∧ s′1, s

′
2 :k−j W

′ ∧
(k − j,W ′, v1, v2) ∈ VnJτK ρ}

V JτK ρ =
S

n≥0 VnJτK ρ E JτK ρ =
S

n≥0 EnJτK ρ

D J·K = {∅}
D J∆, αK = {ρ[α 7→ (χ, τ1, τ2)] | ρ ∈ D J∆K ∧ χ ∈ Type[τ1, τ2]}

G J·K ρ = {(k,W, ∅) | W ∈ Worldk}
G JΓ, x : τK ρ = {(k,W, γ[x 7→ (v1, v2)]) |

(k,W, γ) ∈ G JΓK ρ ∧ (k,W, v1, v2) ∈ V JτK ρ}

S JΣK = {(k,W ) | ∀(l : τ) ∈ Σ. (k,W, l, l) ∈ V Jref τK ∅}

∆; Γ;Σ ⊢ e1 �log e2 : τ
def
= ∆;Γ;Σ ⊢ e1 : τ ∧ ∆;Γ; Σ ⊢ e2 : τ ∧

∀k ≥ 0. ∀ρ, γ,W. ρ ∈ D J∆K ∧ (k,W, γ) ∈ G JΓK ρ ∧
(k,W ) ∈ S JΣK =⇒
(k,W, ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ E JτK ρ

∆; Γ;Σ ⊢ e1 ≈log e2 : τ
def
= ∆;Γ;Σ ⊢ e1 �log e2 : τ ∧

∆;Γ;Σ ⊢ e2 �log e1 : τ

Figure 4. Step-Indexed Logical Relations forFµ!

The relationEnJτK ρ specifies when two computations are logi-
cally related. Two closed, well-typed termse1 ande2 are related for
k steps at the typeτ in worldW if, given two initial storess1 ands2
that are related fork steps at worldW , if s1, e1 evaluates tos′1, v1
in j < k steps then the following conditions hold. First,s2, e2 must
evaluate to somes′2, v2 in anynumber of steps. (For details on why
the number of stepse2 takes is irrelevant, see Ahmed [1].) Second,
there must exist a worldW ′ ∈ Worldk−j that extends the world
W . Third, the final storess′1 ands′2 must be related for the remain-
ing k − j steps at worldW ′. Fourth, the valuesv1 andv2 must be
related fork − j steps in the worldW ′ at the typeτ . Notice the
asymmetric nature of the relation on computations: ifs1, e1 termi-
nates, thens2, e2 must also terminate. Hence, our relationsVnJτK ρ
model logical approximation rather than logical equivalence.

The cases of the logical relation for∀α.τ and∃α.τ are essen-
tially standard. The former involvesparameterizingover an arbi-
trary relational interpretationχ of α, and the latter involveschoos-
ing an arbitrary relational interpretationχ of α. The way the worlds
are manipulated follows in the style of the other rules. The logical
relation forµα.τ is very similar to previous step-indexed accounts
of recursive types, as described in Section 3.5. (Note that,although
the type gets larger on the r.h.s. of the definition, the step index gets
smaller, so the definition is well-founded.)

Any two locations related at a typeref τ are publicly accessible
references. For reasoning about suchvisiblelocations, existing log-
ical relations methods usually employ some mechanism that is dis-
tinct from the machinery used to reason about local orhiddenstate.
Since there always exists a bijection between the visible locations
of the two computations, the mechanism usually involves having a
special portion of the world that tracks the bijection between visi-
ble locations as well as the typeτ of their contents. Unlike previous
methods, our worlds have no specialized machinery for reasoning
about visible locations. Our technique for modeling (publicly ac-
cessible) references is simply a mode of use of our mechanismfor
reasoning about local state.

Intuitively, two locationsl1 andl2 should be related at the type
ref τ in worldW for k steps if, given any two storess1 ands2 that
are related fork steps at worldW , the contents of these locations,
i.e., s1(l1) and s2(l2), are related fork − 1 steps at the typeτ .
To enforce this requirement, we simply install a special islandwref

that only cares about the one locationl1 in s1 and the one location
l2 in s2. Furthermore,wref has an empty population and a law that
says the population should remain empty in future worlds. Finally,
the island’sfixedstore relationψ relates all storess1 ands2 whose
contents at locationsl1 and l2, respectively, are related at typeτ
for j < k steps. Herej < k suffices since pointer dereferencing
consumes a step (see Section 3.5).

The definitions of logical approximation and equivalence for
open terms are given at the bottom of Figure 4. These definitions
rely on the relational semantics ascribed to the contexts∆, Γ, Σ,
which we discuss next.

We say a type substitutionρ belongs to the relational interpreta-
tion of ∆ if dom(ρ) = ∆, and wheneverρ(α) = (χ, τ1, τ2), χ is
a well-formed relational interpretation (i.e.,χ ∈ Type[τ1, τ2]).

We let the metavariableγ range of relational value substitutions.
These are finite maps from term variablesx to pairs of values
(v1, v2). If γ(x) = (v1, v2), thenγ1(x) denotesv1 and γ2(x)
denotesv2. We sayγ belongs to the relational interpretation of
Γ for k steps at worldW (written (k,W, γ) ∈ G JΓK ρ, where
FTV (Γ) ⊆ dom(ρ)), if dom(γ) = dom(Γ), and the values
γ1(x) andγ2(x) are related fork steps in worldW at typeΓ(x).

We say a worldW satisfies a store typingΣ for k steps
(written (k,W ) ∈ S JΣK) if W contains an island of the form
wref(k, ∅, τ, l, l) for each(l : τ ) ∈ Σ—i.e., if l is related to itself
for k steps in worldW at typeref τ .
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We write∆;Γ;Σ ⊢ e1 �log e2 : τ (pronounced “e1 logically
approximatese2”) to mean that for allk, given a type substitu-
tion ρ ∈ D J∆K and a relational value substitutionγ such that
(k,W, γ) ∈ G JΓK ρ, where the worldW satisfiesΣ for k steps,
the closed termsρ1(γ1(e1)) andρ2(γ2(e2)) are related fork steps
in world W at the typeτ . Finally, we saye1 ande2 are logically
equivalent, written∆;Γ; Σ ⊢ e1 ≈log e2 : τ , if they logically ap-
proximate each other.

4.3 Fundamental Property & Soundness of Logical Relation

Here we state some of the main properties of our logical relation
and sketch interesting aspects of the proofs. Further details of the
meta-theory are given in the online technical appendix [3].

Lemma 4.1 (Closure Under World Extension)

Let ∆ ⊢ τ andρ ∈ D J∆K. If (k,W, v1, v2) ∈ VnJτK ρ and
(j,W ′) ⊒ (k,W ), then(j,W ′, v1, v2) ∈ VnJτK ρ.

Proof: By induction onn and nested induction on∆ ⊢ τ . �

An important property of logical approximation is that it isa
precongruence, i.e., it is compatiblewith all the constructs of the
language (seee.g.,Pitts [20]). We state these compatibility lemmas,
and give detailed proofs of the ones involving references, in the
online technical appendix [3]. The most involved cases are those for
allocation (ref) and assignment, which we discuss below. Proofs
of compatibility lemmas that do not involve references essentially
follow the proofs given in Ahmed [1]—although we must now deal
with additional hypotheses and goals involving stores and worlds,
this does not complicate the proofs in any fundamental way.

The compatibility property forref says that if∆;Γ;Σ ⊢
e1�

log e2 : τ then ∆;Γ;Σ ⊢ ref e1�
log ref e2 : ref τ . In the

proof, we find ourselves at a point where we have storess1, s2 :kW
and we allocate locationsl1 /∈ dom(s1) and l2 /∈ dom(s2) to
hold the valuesv1 and v2 respectively (where we know that
(k,W, v1, v2) ∈ V JτK ρ). To proceed, we define a new world
W ′ ∈ Worldk−1, which is just⌊W ⌋k−1 extended with a new
islandwref(k − 1, ρ, τ, l1, l2). In addition to showing thatW ′ is a
valid world, which is straightforward, we must also show that (1)
(k−1,W ′) ⊒ (k,W ) and (2)s1[l1 7→ v1], s2[l2 7→ v2] :k−1 W

′.
For (1) we need to show thatl1 andl2 are distinct from locations

that any islandw ∈ W “cares about”—that is,l1 /∈dom(Σ1(W ))
and l2 /∈ dom(Σ2(W )), which follows easily sincel1 and l2 are
fresh fors1 ands2. For (2) we must show that for allw′ ∈ W ′,
andj < k − 1, (j, ⌊W ′⌋j , s1[l1 7→ v1], s2[l2 7→ v2]) ∈ w′.ψ. If
w′ is the new islandwref(k − 1, ρ, τ, l1, l2), then the desired result
follows from the knowledge thatv1 andv2 are logically related. If
w′ is any other island, it must be the(k−1)-th approximation of
some islandw ∈ W . In this case, the desired result follows from
closure ofw.ψ under world extension, together with the fact thatsi

andsi[li 7→ vi] are identical when restricted to the domainw.Σi.
The proof of the compatibility lemma for assignment is quite

similar to that for ref, except that we do not add a new is-
land to W since we know thatW already contains an island
wref(k, ρ, τ, l1, l2) wherel1 andl2 are the locations being updated.

Theorem 4.2 (Fundamental Property)

If ∆;Γ; Σ ⊢ e : τ then∆;Γ;Σ ⊢ e �log e : τ .

Proof: By induction on the derivation of∆;Γ;Σ ⊢ e : τ . Each
case follows from the corresponding compatibility lemma. �

Soundness To show that the logical relation is sound with respect
to contextual approximation, we need an additional property we
call store parametricity. This property says that if⊢ s : Σ andW ∈
Worldk is a world comprising onewref island for each location in
Σ—i.e., if Σ = {l1 : τ1, . . . , ln : τn} andW = 〈w1, . . . , wn〉,
where eachwi = wref(k, ∅, τi, li, li))—thens, s :k W .

Notice that, to prove store parametricity, we need to show that
for each(li : τi) ∈ Σ, the value stored at locationli in stores is
related to itself at the typeτi (i.e., (k,W, s(li), s(li)) ∈ V JτiK ∅).
Unfortunately, the latter does not follow from the Fundamental
Property, which only allows us to conclude from·; ·; Σ ⊢ s(li) : τi

that(k,W, s(li), s(li)) ∈ E JτiK ∅.
What we need is the notion oflogical value approximation,

∆;Γ;Σ ⊢ v1 �log

val v2 : τ , which we define exactly as∆; Γ;Σ ⊢
v1 �log v2 : τ except that theE JτK ρ at the end of that definition
is replaced withV JτK ρ. Now we can prove that any well-typed
value is related to itself in the appropriate value relationV JτK ρ,
not just in the computation relationE JτK ρ as established by the
Fundamental Property. Specifically, we show that∆;Γ; Σ ⊢ v : τ
implies ∆;Γ;Σ ⊢ v �log

val v : τ . (The proof is by induction on
∆;Γ;Σ ⊢ v : τ and for each case the proof is similar to that of
the corresponding compatibility lemma.) With this lemma inhand,
store parametricity follows easily.

Theorem 4.3 (Soundness w.r.t. Contextual Approximation)

If ∆;Γ;Σ ⊢ e1 �log e2 : τ then∆;Γ;Σ ⊢ e1 �ctx e2 : τ .

Proof: Suppose⊢ C : (∆; Γ;Σ ⊢ τ ) ⇒ (·; ·; Σ′ ⊢ τ ′), ⊢ s : Σ′,
ands, C[e1] 7−→

k s1, v1. We must show thats, C[e2] ⇓.
If Σ = {l1 : τ1, . . . , ln : τn}, letW = 〈w1, . . . , wn〉, where

eachwi = wref(k + 1, ∅, τi, li, li). By the compatibility lemmas,
we can show·; ·; Σ′ ⊢ C[e1] �

log C[e2] : τ ′. Hence, noting that
(k+1,W ) ∈ S JΣ′K, we have(k+1,W,C[e1], C[e2]) ∈ E Jτ ′K ∅.
Sinces, s :k+1 W (by store parametricity) ands, C[e1] 7−→k

s1, v1 (from the premise), it follows thats, C[e2] ⇓. �

5. Examples
In this section we present a number of examples demonstrating
applications of our method. Our examples do not make use of
recursive types (or even recursion), but Ahmed’s prior work, which
we build on, gives several examples that do [1]. We will walk
through the proof for the first example in detail. For the remaining
ones, we only sketch the central ideas, mainly by giving suitable
island definitions and type interpretations. Full proofs for these
examples and others appear in the online technical appendix[3].

5.1 Name Generator

Our first example is perhaps the simplest possible state-dependent
ADT, a generator for fresh names. Nevertheless, it capturesthe
essence of theSymbol example from the introduction:

e = let x= ref 0 in
pack int, 〈λz : unit. (++x), λz : int. (z ≤ !x)〉 asσ

whereσ = ∃α. (unit → α)× (α→ bool) and(++x) abbreviates
the expression(x := !x+1; !x), andlet is encoded in the standard
way (using function application). The package defines an abstract
typeα of names and provides two operations: the first one returns
a fresh name on each invocation, and the second one checks that
any value of typeα it is given is a “valid” name,i.e.,one that was
previously generated by the first operation.

Names are represented as integers, and the local counterx
stores the highest value that has been used so far. The intended
invariant of this implementation is that no value of typeα ever has
a representation that is greater than the current content ofx. Under
this invariant, we should be able to prove that the second operation,
which dynamically checks this property, always returnstrue.

To prove this, we show thate is equivalent to a second expres-
sione′, identical toe, except that the dynamic check(z ≤ !x) is
eliminated and replaced bytrue. We only show the one direction,
⊢ e �log e′ : σ. The other direction is proven analogously.
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Because the terms are closed, this only requires showing that
(k0,W0, e, e

′) ∈ E JσK ∅ for all k0 ≥ 0 and worldsW0. Assume
storess0, s′0 :k0

W0 and the existence of a reduction sequence
s0, e 7−→k1 s1, v1 with k1 < k0. According to the definition of
E JσK ∅, we need to come up with a reductions′0, e

′ 7−→∗ s′1, v
′
1

and a worldW1 such that(k0 − k1,W1) ⊒ (k0,W0) and:

s1, s
′
1 :k0−k1

W1 ∧ (k0 − k1,W1, v1, v
′
1) ∈ V JσK ∅

By inspecting the definition of reduction, we see that

s1 = s0[l 7→ 0], v1 = pack int, 〈λz.(++l), λz.(z ≤ !l)〉 asσ

for somel /∈ dom(s0). In the same manner,s′0, e
′ obviously can

choose somel′ /∈ dom(s′0) and reduce to:

s′1 = s′0[l
′ 7→ 0], v′1 = pack int, 〈λz.(++l′), λz.true〉 as σ

We now need to define a suitable island that enables us to show
thatv1 andv′1 are related. We knowW0 has the form〈w1, . . . , wp〉
for somep. Let W1 be ⌊W0⌋k0−k1

, extended with a new island,
wp+1, defined as follows:

wp+1 = (η0
k0−k1

,Lk0−k1
)

ηn
k = (ψn

k , Vn, {l : int}, {l′ : int})
ψn

k = {(j,W, s, s′) ∈ StoreAtomk | s(l) = s′(l′) = n}
Vn = {i | 1 ≤ i ≤ n}
Lk = {(j, ηn

j ) ∈ LawAtomk | n ∈ N}

The populationVn consists of all integers that are “valid” names in
the current world,i.e.,not greater than the current value ofx. We
have to show(k0 − k1,W1) ⊒ (k0,W0) ands1, s′1 :k0−k1

W1.
Both are straightforward.

By definition of V J∃α.τK, we need to continue by giving a
relationχα ∈ Type[int, int], such that:

(k0 − k1,W1, 〈λz.(++l), λz.(z ≤ !l)〉, 〈λz.(++l′), λz.true〉)
∈ V J(unit → α) × (α→ bool)K ρ

with ρ = [α 7→ (χα, int, int)]. We choose the following one:

χα = {(j,W, i, i) ∈ Atom [int, int] | i ∈W [p+ 1].V }

This interpretation ofα depends on the (valid) assumption that
it will only be considered atW ’s that are future worlds ofW1

(in particular, it assumes that the (p+1)-th island inW , written
W [p + 1], is a future version of thewp+1 we defined above). We
could build this assumption explicitly into the definition of χα, but
as we will see it is simply not necessary to do so. By virtue of this
assumption, a valuei is only a valid inhabitant of typeα in worlds
whose (p+1)-th island population containsi, that is, where!l ≥ i.
Note that the relation is closed under world extension becauseV
may only grow over time, as explained in Section 3.3.

By definition ofV Jτ × τ ′K, it remains to be shown that:

1. (k0 − k1,W1, λz.(++l), λz.(++l′)) ∈ V Junit → αK ρ

2. (k0 − k1,W1, λz.(z ≤ !l), λz.true) ∈ V Jα→ boolK ρ

For each of these, we assume we begin in some strictly future world
W2 in which (k2,W2) ⊐ (k0 − k1,W1) ands2, s′2 :k2

W2.
First consider (1). We are givens2, (++l) 7−→k3 s3, v3 for

somek3 < k2, and it remains to show thats′2, (++l′) 7−→∗ s′3, v
′
3,

such thats3, s′3 andv3, v′3 are related in some future worldW3 such
that(k2 − k3,W3) ⊒ (k2,W2).

From(k2,W2) ⊒ (k0 − k1,W1) we know thatW2[p+ 1].L =
⌊W1[p+ 1].L⌋k2

= Lk2
. From that(k2,W2[p + 1].η) ∈ Lk2

follows, and hence there existsn such thatW2[p+1].η = ηn
k2

. That
is,W2[p+1].ψ = ψn

k2
andW2[p+1].V = Vn. Froms2, s′2 :k2

W2

andk3 < k2 we can conclude(k3, ⌊W2⌋k3
, s2, s

′
2) ∈ ψn

k2
and

thus s2(l) = s′2(l
′) = n. Consequently,v3 = v′3 = n + 1,

s3 = s2[l 7→ n+ 1], ands′3 = s′2[l
′ 7→ n+ 1].

Now we chooseW3 to be⌊W2⌋k2−k3
with its (p+1)-th island

updated to(ηn+1
k2−k3

,Lk2−k3
). Again, we have to check the relevant

properties,(k2 − k3,W3) ⊒ (k2,W2) and s3, s′3 :k2−k3
W3,

which are straightforward. Last, we have to show that the results
v3, v

′
3 are related inV JαK ρ under this world,i.e.,(k2−k3,W3, n+

1, n + 1) ∈ χα. Sincen + 1 ∈ Vn+1 = W3[p + 1].V , this is
immediate from the definition ofχα.

Now consider (2). The proof is similar to that for part (1), but
simpler. We are given that(k2,W2, v2, v

′
2) ∈ V JαK ρ = χα, and

s2, (v2 ≤ !l) 7−→k3 s3, v3 for somek3 < k2. The main thing to
show is thatv3 = true (we can pick the end worldW3 to just be
⌊W2⌋k2−k3

). As in part (1), we can reason thatW2[p+1].η = ηn
k2

for somen, and therefore thats2(l) = n and, by definition ofχα,
also thatv2 ≤ n. Hence,v2 ≤ s2(l), and the desired result follows
easily.

5.2 Usingref As a Name Generator

An alternative way to implement a name generator is to represent
names by locations and rely on generativity of theref operator.

e = pack ref unit, 〈λz : unit. (ref ()),
λp : (ref unit×ref unit). (fst p == snd p)〉 asσ

whereσ = ∃α. (unit → α) × (α× α→ bool). Here, the second
function implements a proper equality operator on names. Wewant
to prove this implementation contextually equivalent to one using
integers, as in the previous example:

e′ = let x= ref 0 in
pack int, 〈λz : unit. (++x),

λp : (int × int). (fst p = snd p)〉 asσ

Here are a suitable island definition and type interpretation for α:

wp+1 = (η
〈〉
k0
,Lk0

)

η
〈l1,...,ln〉
k = (ψn

k , V〈l1,...,ln〉, {li : unit | 1 ≤ i ≤ n}, {l′ : int})
ψn

k = {(j,W, s, s′) ∈ StoreAtomk | s′(l′) = n}
V〈l1,...,ln〉 = {〈li, i〉 | 1 ≤ i ≤ n}

Lk = {(j, η〈l1,...,ln〉
j ) ∈ LawAtomk | n ∈ N}

χα = {(j,W, l, i) ∈ Atom[ref unit, int] |
〈l, i〉 ∈W [p+ 1].V }

Here, and in the examples that follow,k0 represents the current
step level, andp the number of islands in the current worldW0, at
the point in the proof where we extendW0 with the islandwp+1

governing the example’s local state. In this example, we assume
that all labels in a list〈l1, . . . , ln〉 are pairwise disjoint, andl′ is
a distinguished label, namely the one that has been allocated for x
(as in the previous example).

In the definitions above, the population not only records the
valid names fore′ (as in Section 5.1), but also relates them to the
locations allocated bye. The latter are not guessable ahead of time,
due to nondeterminism of memory allocation, but the lawLk is
flexible enough to permit any partial bijection between{1, . . . , n}
andLoc to evolve over time. We (ab)use term-level pairs〈l, i〉 to
encode this partial bijection inV . This is sufficient to deducei = j
iff li = lj when proving equivalence of the equality operators.

5.3 Twin Abstraction

Another interesting variation on the generator theme involves the
definition oftwoabstract types (we writepack τ1, τ2, e as∃α, β.τ
to abbreviate two nested existentials in the obvious way):

e = let x= ref 0 in
pack int, int, 〈λz : unit. (++x),

λz : unit. (++x),
λp : (int × int). (fst p = snd p)〉 asσ

10



whereσ = ∃α, β. (unit → α) × (unit → β) × (α× β → bool).
Here we use a single counter to generate names of two types,
α and β, and a comparison operator that takes as input names
of different type. Because both types share the same counter, it
appears impossible for a name to belong to both types (eitherit was
generated as a name of typeα or of typeβ but not of both). The
example is interesting, however, in that we have no way of knowing
the interpretations ofα andβ ahead of time, since calls to the name
generation functions can happen in arbitrary combinations. We can
verify our intuition by proving thate is equivalent to ane′ where
the comparison operator is replaced byλp : (int × int). false.

The followingw andχ definitions enable such a proof:

wp+1 = (η0,∅
k0
,Lk0

)

ηn,S
k = (ψn

k , Vn,S , {l : int}, {l′ : int})
ψn

k = {(j,W, s, s′) ∈ StoreAtomk | s(l) = s′(l′) = n}
Vn,S = {〈1, i〉 | i ∈ S} ∪ {〈2, i〉 | i ∈ {1, . . . , n} \ S}
Lk = {(j, ηn,S

j ) ∈ LawAtomk | n ∈ N ∧ S ⊆ {1, . . . , n}}
χα = {(j,W, i, i) ∈ Atom[int, int] | 〈1, i〉 ∈ W [p+ 1].V }
χβ = {(j,W, i, i) ∈ Atom[int, int] | 〈2, i〉 ∈ W [p+ 1].V }

The population here is partitioned into the valid names forα and
the valid names forβ, basically recording the history of calls to the
two generator functions. To encode such a disjoint union inV , each
value is wrapped in a pair with the first component marking thetype
it belongs to (1 forα, 2 forβ). When proving equivalence of the two
comparison operators, the definitions ofχα, χβ andW [p + 1].V
directly imply that the arguments must be from disjoint sets.

5.4 Cell Class

The next example is a more richly-typed variation of the higher-
order cell object example of Koutavas and Wand [13]:

e = Λα. pack ref α, 〈λx :α. ref x,
λr : ref α. !r,
λ〈r, x〉 : ref α× α. (r := x)〉 asσ

whereσ = ∃β. (α → β) × (β → α) × (β × α → unit). We
use pattern matching notation here merely for clarity and brevity
(imagine replacing occurrences ofr andx in the third function with
fst andsnd projections, respectively, of the argument).

This example generalizes Koutavas and Wand’s original version
in two ways. First, we parameterize over the cell content type α,
which can of course be instantiated with an arbitrary highertype,
thus exercising our ability to handle higher-order stored values.
Second, instead of just implementing a single object, our example
actually models aclass, whereβ represents the abstract class type,
and the first function acts as a constructor for creating new cell ob-
jects. (A subsequent paper by Koutavas and Wand also considers a
class-based version of their original example [14], but it is modeled
with a Java-like nominal type system, not with existential types.)

Similar to [13], we want to prove this canonical cell implemen-
tation equivalent to one using two alternating slots:

e′ = Λα. pack (ref int × (ref α× ref α)),
〈λx :α. 〈ref 1, 〈ref x, ref x〉〉,
λ〈r0, 〈r1, r2〉〉 : (ref int × (ref α× ref α)).

if !r0 = 1 then !r1 else !r2,
λ〈〈r0, 〈r1, r2〉〉, x〉 : (ref int × (ref α× ref α)) × α.

if !r0 = 1 then (r0 := 2; r2 :=x)
else (r0 := 1; r1 := x)〉 asσ

When e or e′ is instantiated with a type argument, neither one
immediately allocates any new state. Correspondingly, no island is
introduced at that point in the proof. Rather, a new island isadded
to the world at each call to the classes’ constructor functions, for it
is at that point when fresh state is allocated in both programs.

So, assuming we have been given a relational interpretation
χα ∈ Type [τα, τ

′
α] for the type parameterα, consider the proof

that the constructor functions are logically related. Whenthe con-
structors are called, we allocate fresh state:l in the first program,
and〈l′0, 〈l

′
1, l

′
2〉〉 in the second program. For convenience, we will

package these together notationally asls = 〈l, 〈l′0, 〈l
′
1, l

′
2〉〉〉. We

now extend the current worldW with wp+1, defined as follows:

wp+1 = (ηls
k0
,Lls

k0
)

ηls
k = (ψls

k , {ls}, {l : τα}, {l
′
0 : int, l′1 : τ ′α, l

′
2 : τ ′α})

ψls
k = {(j,W, s, s′) ∈ StoreAtomk |

∃i ∈ {1, 2}. s′(l′0) = i ∧ (j,W, s(l), s′(l′i)) ∈ χα}
Lls

k = {(j, ηls
j ) | j ≤ k}

The store relationψls
k ensures that the contents ofl are related (by

χα) to the contents of the proper slotl′1 or l′2, depending on the
current flag value stored inl′0. Note how the definition ofψls

k relies
crucially on the presence of the world parameterW . Without it,
we would not know in which world to compares(l) and s′(l′i).
Note also that in this examplewp+1 does not evolve (i.e., its store
relation remains the same in all future worlds).

Finally, when proving equivalence of the existential packages,
we represent the cell class typeβ with χβ defined as follows:

χβ = {(j,W, l, 〈l′0, 〈l
′
1, l

′
2〉〉) |W ∈ World j ∧

∃w ∈W. w = (ηls
j ,L

ls
j ), wherels = 〈l, 〈l′0, 〈l

′
1, l

′
2〉〉〉}

Note thatχβ includesls’s owned byany island of the right form.
This might add some “junk” to the relation (e.g.,objects that were
created by some other class’s constructor function), but any such
junk is harmless since it adheres to the same invariants thatthe
objects created bye ande′ do.

5.5 Irreversible State Changes

A well-known example that has caused trouble for previous logical
relations methods is Pitts and Stark’s “awkward” example [21].
Although this example does not involve existentials, it hasproven
difficult to handle because it involves anirreversible state change:

e = let x= ref 0 in λf : (unit → unit). (x := 1; f(); !x)

e′ = λf : (unit → unit). (f(); 1)

The idea here is thate ande′ are equivalent because, as soon as
they are applied, the contents ofx are set to 1, after which point!x
will always return 1. In other words, the first application ofemarks
an irreversible state change fromx 7→ 0 to x 7→ 1.

Intuitively, irreversible state changes are hard to handleif the
knowledge about a piece of local state is fixed once and for allat
the point it is allocated. Using traditional possible-worlds models,
the most precise invariant one can enforce about the contents of
x is that they areeither 0 or 1. With such a weak invariant, it is
impossible to know when returning fromf() whether!x is still 1.

Using populations, however, we can prove the equivalence ofe
ande′ quite easily. A suitable island definition is:

wp+1 = (η∅k0
,Lk0

)

ηV
k = (ψV

k , V, {lx : int}, {})

ψV
k = {(j,W, s, s′) ∈ StoreAtomk | s(lx) = |V |}

Lk = {(j, ηV
j ) | j ≤ k ∧ |V | ≤ 1}

The intuition here is that we useV to encode a flag telling us
whetherx has already been set to 1. Initially,!x is 0, signified
by V = ∅. Whenx is set to 1, we add some arbitrary value toV ,
making it a singleton set of size 1. BecauseV is only allowed to
grow, we know thatx can never be changed back to 0. In addition,
since the lawLk requires|V | ≤ 1, xmust remain at 1 permanently.
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5.6 Callback with Lock

The proofs for the examples presented so far do not use step indices
in an interesting way. The last of our examples, which is inspired
by the reentrant callback example of Banerjee and Naumann [6],
demonstrates an unexpected case where the steps come in handy.
Relying as it does on subtle stepwise reasoning, our proof for this
example is rather involved (some might say ugly), but like a dog
walking on its hind legs, one is surprised to find it done at all.

Consider the following object encoding of higher-order type
τ = ((unit → unit) → unit) × (unit → int):

e = C[f ();x := !x+ 1]

where

C = letx= ref 0 in 〈λf : unit → unit. [·], λz : unit. !x〉

It implements a counter object with two methods: an increment
function, and a get function requesting the current countervalue.
An interesting feature of this object is that its increment method
takes a callback argument, which is invoked before the counter is
incremented.

Now, consider the following alternative implementation for this
object, in whichx is dereferencedbeforethe callback:

e′ = C[letn= !x in f ();x :=n+ 1]

One might naı̈vely assume that the two versions are equivalent,
becausex is not publicly accessible. Butf might perform arbitrary
operations, including recursively calling the increment function! In
this case,x may be modified between read and write access ine′.

Such reentrance can be prevented by adding a lock:

C = let b= ref true in
let x= ref 0 in
〈λf : unit → unit.

(if !b then (b := false; [·]; b := true) else ())
λz : unit. !x〉

Note that it is still possible forf to invoke the get function, which
just readsthe currentx.

With C reimplemented using a lock,e ande′ are now contextu-
ally equivalent. But how do we go about actually proving this? To
show the two increment functions equivalent, we need to establish
thatf cannot modifyx. But how can we set up an island that en-
sures that? After all, the island’s law must certainly allowupdates
to x in general. How can we formulate a law that allows the store
to change, but still cantemporarilyprohibit it?

Steps to the rescue! When proving that the two increment func-
tions are related, we assume that one terminates withj steps. As-
sumingb is set totrue (i.e., assuming thatx is “unlocked”), we
can partition the reduction sequence for its execution into3 phases
of lengthj1+j2+j3 = j, wherej2 spans the steps spent in the call
to f . Thesej2 steps are the time window in whichx is not allowed
to change. So the idea is to define a law that allows setting up time
windows of this kind, during which!x must remain constant.

The following island definition does the trick:

wp+1 = (η
{〈k0,k0,0〉}
k0

,Lk0
)

ηV
k = (ψ

min(V )
k , V, {lb : bool, lx : int}, {l′b : bool, l′x : int})

ψ
〈k1,k2,n〉
k = {(j,W, s, s′) ∈ StoreAtomk |

(j ≤ k1 ∧ s(lb) = s′(l′b) ∧ s(lx) = s′(l′x)) ∧
(j ≥ k2 ⇒ (s(lb) = false ∧ s(lx) = n))}

Lk = {(j, ηV
j ) ∈ LawAtomk |

V = {〈k1, k
′
1, n1〉, . . . , 〈km, k

′
m, nm〉} ∧

k1 ≥ k′1 > k2 ≥ · · · ≥ k′m−1 > km ≥ k′m}

Each window is represented by a triple〈k1, k2, n〉 in V (assuming
the obvious encoding of triples using pairs), withk1 andk2 giving

its first (upper) and last (lower) step, andn being the value to which
x is fixed during the window. The side condition inLk ensures that
windows do not overlap. Consequently, there is always a unique
lowest (newest) windowmin(V ) = 〈k1, k2, n〉, i.e., the one with
the least first projection (thek1). The store relationψ ensures that,
if the step levelj has not yet passed the lower boundk2 of the
newest window (i.e., if j ≥ k2), then!x must equal then from
that window, and the lock must be held. The definition ofψ also
prohibits windows from starting in the future by requiringj ≤ k1.

To prove equivalence of the increment functions, starting at step
k with s0(lx) = s′0(l

′
x) = n ands0(lb) = s′0(l

′
b) = true (the

interesting case), we proceed inj1 steps to setb to false, and
then add a new lowest window〈k − j1, k − j1 − j2 − 1, n〉 to the
population of the(p+1)-th island. Next, we knowf() returns after
exactlyj2 steps in some future worldW , and the storess1 ands′1
that it returns must be related byW at stepm = k−j1−j2, which
means that(m − 1, ⌊W ⌋m−1, s1, s

′
1) ∈ W [p + 1].ψ. Since the

step levelm − 1 is still in the range of the window we installed,
we know thatf() could not have added an even lower window to
the population of the(p+1)-th island (as the law disallows adding
windows that start in the future). Thus, we know thatW [p+1].ψ =

ψ
〈m+j2,m−1,n〉
m , and consequentlys1(lx) = s′1(l

′
x) = n and

s1(lb) = s′1(l
′
b) = false. That is, thanks to our use of the lock,

the call tof() could not have affected our local state.

5.7 Well-Bracketed State Changes

To conclude, we give two examples that our method appearsunable
to handle. The first one, suggested to us by Jacob Thamsborg, is a
variant of Pitts and Stark’s “awkward” example (Section 5.5):

e = letx= ref 0 in

λf : (unit → unit). (x := 0; f();x := 1; f(); !x)

e′ = λf : (unit → unit). (f(); f(); 1)

Here, unlike in the “awkward” example, the state ofx changes
back and forth between 0 and 1. The reason we believee ande′

to be equivalent (we do not have a proof!) is that the state changes
occur in a “well-bracketed” fashion —i.e., every change to 0 is
guaranteed to be followed later on in the computation by a change
to 1. This implies (informally) that invoking the callback function
f will either leave the state ofx unchanged or will return control
with x set to 1. However, it is not clear to us how to formally
establish this. The trick of representing irreversible state changes
via population growth is inapplicable since the state changes are
not irreversible, and the time windows idea from Section 5.6is
inapplicable as well since the example does not make use of locks.

5.8 Deferred Divergence

Here is another example we cannot handle, due to Hongseok Yang:2

e1 = λf : (unit → unit) → unit. f (λz : unit. diverge)
e2 = λf : (unit → unit) → unit.

letx= ref 0 in let y= ref 0 in
f (λz : unit. if !x = 0 then y := 1 else diverge);
if !y = 0 then x := 1 else diverge

Here,f may either call its argument directly, in which case the
computation clearly diverges (ine2 this happens eventually because
y is set to 1), or it may store its argument in some ref cell. In
the latter case, any subsequent call to the stored argument by the
program context will also cause divergence (in the case ofe2,
becausex will be 1 at that point). Only if neitherf nor the context
ever tries to callf ’s argument may the computation terminate.

2 A similar example is discussed in Benton and Leperchey [7], at the end
of their section 5. However, the two terms in their example are not actually
equivalent in our language, because we have higher-order store.
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For us to provee1 ande2 equivalent, we would need some way
of relating the two arguments tof . Initially, however, when the
arguments are invoked, one terminates and the other does not, so
it is not obvious how to relate them. In fact, they are only related
under the knowledge of whate1 ande2 will do after the call tof .
This suggests to us that one way to handle such an example might
be to define a relation on terms coupled with their continuations.

6. Related and Future Work
There is a vast body of work on methods for reasoning about local
state and abstract data types. In the interest of space, we only cite a
representative fraction of the most closely related recentwork.

Logical Relations Our work continues (and, to an extent, synthe-
sizes) two lines of recent work: one on using logical relations to
reason about type abstraction in more realistic languages,the other
on using logical relations to reason about local state.

Concerning the former, Pitts [20] provides an excellent overview,
although it is now slightly outdated — in the last few years, several
different logical relations approaches have been proposedfor han-
dling general recursive (as well as polymorphic) types [16,1, 11],
which Pitts considers an open problem. Much of the work on this
topic is concerned with logical relations that are both sound and
completewith respect to contextual equivalence. Completeness is
useful for establishing variousextensionality propertiesat different
types,e.g.,that two values of type∀α.τ are contextually equiva-
lent iff their instantiations at any particular typeτ ′ are equivalent.
In general, however, just because a method is complete with re-
spect to contextual equivalence does not mean that it iseffective
in proving all contextual equivalences. In fact, Pitts gives a repre-
sentation independence example for which existing techniques are
“effectively” incomplete.3

For a logical relation to be complete it must typically be what
Pitts terms “equivalence-respecting.” There are different ways
to achieve this condition, such as⊤⊤-closure [20], biorthogo-
nality [16], or working with contextual equivalence classes of
terms [11]. Pitts’⊤⊤-closure neatly combines the equivalence-
respecting property together withadmissibility(or continuity, nec-
essary for handling recursive functions) into one package.

We build on the work of Ahmed [1] on step-indexed logical
relations for recursive and quantified types. One advantageof the
step-indexed approach is that admissibility comes “for free,” in the
sense that it is built directly into the model. By only ever reasoning
about finite approximations of the logical relation (VnJτK ρ), we
avoid the need to ever prove admissibility. (In other words,an
inadmissible relation is indistinguishable from an admissible one
if one only ever examines its step-indexed approximations.) Of
course, the price one pays for this is that one is forced to use
stepwise reasoningeverywhere, so admissibility is not really “free”
after all. To ameliorate this burden, we are currently investigating
techniques for proving logical approximation in our modelwithout
having to do explicit stepwise reasoning. As we saw in Section 5.6,
though, sometimes the presence of the step indices can be helpful.

Like Ahmed’s previous work, our logical relation is sound, but
not complete, with respect to contextual equivalence. (Hers is com-
plete except for the case of existential types.4) While our method
cannot in its current form prove extensionality propertiesof con-

3 Pitts’ example is actually provable quite easily by atransitivecombination
of logical relations proofs (www.mpi-sws.org/~dreyer/pitts.txt).
Dreyer has suggested a harder example, mentioned on page 25 of Sumii
and Pierce [28], for which there is not even any known “brute-force” proof.
4 The published conference version of her paper claims full completeness,
but the proof contains a technical flaw uncovered by the second author. The
extended version of her paper corrects the error [1].

textual equivalence, it is still useful for proving representation in-
dependence results, which is our primary focus. Recent workby
Ahmed and Blume [2] involves a variant of [1] thatis complete
with respect to contextual equivalence, where completeness is ob-
tained by essentially Church-encoding the logical interpretation of
existentials (this is roughly similar to what⊤⊤-closure does, too).
We are currently attempting to develop a complete version ofour
method, using a similar approach to Ahmed and Blume.

Concerning the second line of work — logical relations for
reasoning about local state — most of the recent previous work we
know of employs possible-worlds models of the sort we discussed
in Section 3.2, so we refer the reader to that earlier sectionfor a
thorough comparison [21, 22, 7, 10]. However, there are two recent
pieces of work that are worth discussing in further detail.

Perhaps the closest related work to ours is Nina Bohr’s PhD
thesis [9], which extends her work with Lars Birkedal [10] intwo
directions. First, she gives a denotational possible-worlds model
for a language with general recursive types, polymorphism,and
higher-order references, with the restriction that references must
haveclosedtype. This restriction seems to imply that her method
is inapplicable to the cell class example in Section 5.4 because it
involves references of typeref α. Second, she proposes a more
refined (and complex) notion of possible world in which an island’s
store relation has the ability to change over time. This is similar in
certain ways to our population technique, except that her islands
do not contain anything resembling a population. Her approach is
designed to handle examples involving irreversible state changes,
like Pitts and Stark’s “awkward” example (Section 5.5), butnot
generative ADTs (Sections 5.1–5.3). Bohr’s possible worlds also
include the ability to impose invariants on thecontinuationsof
related terms, so we believe her technique can handle at least one, if
not both, of the examples in Section 5.7 and 5.8, which we cannot.

In a paper conceived concurrently with ours, Birkedal, Støvring,
and Thamsborg [8] present a relationally parametric denotational
model of a language with general recursive types, polymorphism,
and references of arbitrary type. Their model improves on Bohr’s
in the flexibility of its references, but it offers only a weaknotion of
possible worlds, with which one can only do very simple reasoning
about local state. Their model cannot handle any of our examples.

Bisimulations For reasoning about contextual equivalences (in-
volving either type abstraction or local state), one of the most suc-
cessful alternatives to logical relations is the coinductive technique
of bisimulations. Pierce and Sangiorgi [19] define a bisimulation
for reasoning about polymorphicπ-calculus, and they demonstrate
its effectiveness on an example that is similar to our symboltable
example. Due to the low-level, imperative nature of theπ-calculus,
it is difficult to give a precise comparison between their technique
and ours, but the basic idea of their technique (described below)
has been quite influential on subsequent work.

Sumii and Pierce define bisimulations for an untyped lan-
guage with a dynamic sealing operator [27], as well as an ex-
tension of System F with general recursive types [28]. Koutavas
and Wand [13] adapt the Sumii-Pierce technique to handle an
untyped higher-order language with general references; inthe
process, they improve on Sumii-Pierce’s treatment of contextual
equivalences involving higher-order functions. Interestingly, the
Koutavas-Wand technique involves the use of inductive stepwise
reasoning when showing that two functions are in the bisimulation.
Subsequently, Sangiorgi, Kobayashi, and Sumii [26] propose envi-
ronmental bisimulations, which generalize Sumii and Pierce’s pre-
vious work to an untyped framework subsuming that of Koutavas-
Wand’s, but in a way that does not appear to require any stepwise
reasoning. While all of these bisimulation approaches are sound
and complete with respect to contextual equivalence, none handles
a language with both existential type abstraction and mutable state.
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There are many similarities between bisimulations and logical
relations, although a precise comparison of the techniquesremains
elusive (and an extremely interesting direction for futurework).
With bisimulations, one defines the relational interpretations of ab-
stract types, or the invariants about local state,up front, as part of a
relation also containing the terms one wishes to prove contextually
equivalent, and then one proceeds to show that the relation one has
defined is in fact a bisimulation. With logical relations, the proof
proceeds backward in a structured way from the goal of showing
two terms logically equivalent, and the invariants about type rep-
resentations or local state are chosen in mid-proof. It is arguably
easier to sketch a bisimulation proof (by just stating the bisimu-
lation), whereas the islands andχ definitions in our proof sketches
must be statedin medias res. On the other hand, our islands andχ’s
are more minimal than bisimulations, which must often explicitly
include a number of redundant intermediate proof steps.

The Sumii-Pierce-Koutavas-Wand-Sangiorgi-Kobayashi-Sumii
approach is roughly to define bisimulations as sets of relations,
with each relation tied to a particularenvironment, e.g., a type
interpretation, a pair of stores, etc. Various “up-to” techniques are
used to make bisimulations as small as possible. This approach
seems conceptually similar to possible-worlds semantics,but the
exact relationship is unclear, and we plan to explore the connection
further in future work.

Separation Logic To reason about imperative programs in a lo-
calized manner, O’Hearn, Reynoldset al. introducedseparation
logic [24] as an extension to Hoare logic. Separation logic has
been enormously influential in the last few years, but it has not to
our knowledge been used to reason about higher-order typed func-
tional languages with type abstraction and higher-order store. No-
tably, however, the desire to scale separation logic to reason about
a functional programming language has led to Hoare Type Theory
(HTT) [18]. HTT is a dependently typed system where computa-
tions are assigned a monadic type in the style of a Hoare triple. Un-
der this approach, programs generally have to pass around explicit
proof objects to establish properties. Currently, HTT onlyhandles
strong update (where a location’s type can vary over time), not ML-
style references with weak update (and thus stronger invariants).

Relational Reasoning About Classes There is a large body of
work on reasoning techniques for object-oriented languages. For
example, Banerjee and Naumann [5] present a denotational method
for proving representation independence for a Java-like language.
Koutavas and Wand [14] have adapted their bisimulation approach
to a subset of Java. The languages considered in these works do not
provide generativity and first-class existential types, but rather tie
encapsulation to static class definitions. On the other hand, subse-
quent work by Banerjee and Naumann [6] addresses the issue of
ownership transfer, which we do not. We believe that the genera-
tivity of existential quantification and the separation enforced by
possible-island semantics are closely related to various notions of
ownership and ownership types, but we leave the investigation of
this correspondence to future work.
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