
RustBelt: Securing the Foundations of the Rust Programming
Language – Technical appendix

July 7, 2017

Contents
1 Syntax 2

1.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Continuation-passing-style let-normal programs . . . . . . . . . . . . . . . . . . . . . 3
1.4 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Well-formedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Size, Copy, Send, Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 Lifetime context judgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.4 Type Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.5 Well-typed functions and steps . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Some examples 14

3 λRust in Iris 21

4 Lifetime logic 22
4.1 Proof rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Derived forms of borrowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 λRust model 34
5.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Owned pointers and mutable references . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Shared references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.3 Compound types: Sums and products . . . . . . . . . . . . . . . . . . . . . . 38
5.1.4 Copy, Send, Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Type and continuation contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Lifetime contexts and judgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Judgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1



1 Syntax
1.1 Grammar
λRust is a lambda calculus with natural numbers and state, with explicit deallocation, and with a
primitive operation to copy regions of memory. Products and sums are not values, the only exist in
their heap representation and are manipulated there, or on a per-field basis.

The grammar of the language is given in Figure 1. e is the grammatical class of expressions and
v represents values. z is any integer, while n and i are natural numbers. Typically, i is used as an
index into something (e.g., a list). ` is a heap location, their structure will be defined later. x, f
are all program variables, the second usually denoting a function. x is a list of x (and similar for
other metavariables), which can be constructed as [x1, x2, . . . ]. To simplify the formalization of the
semantics, we also introduce a notion of evaluation contexts K. Memory accesses are annotated with
a memory order o, which is either non-atomic (na) or sequentially consistent (sc). The purpose
of this is that the program gets stuck when there are races involving non-atomic accesses. Thus,
by proving safety of a program, we show data-race freedom. (The order na’ is just an internal
implementation detail.)

This semantics is in some sense too definite, compared to Rust: It fixes the memory representation
of products and sums, and it allows mutation of any location at any time.

1.2 Operational semantics
A location ` = (i, n) consists of a block i and an offset into the block n. Allocation and

deallocation is always performed on entire blocks. Address arithmetic works within a block: `+m
increments the offset, and leaves the block number untouched.

A memory h is a finite partial map from locations to pairs of values and lock states:

Mem := N× N fin−⇀ LockSt×Val

The lock states encode a per-location reader-writer-lock that serves to detect data races. Notice
that reading 0 corresponds to the lock being unlocked. Non-atomic accesses require the location to
be locked; they will always be immediately preceded by the operation to acquire that location’s lock.
Atomic accesses, on the other hand, fail if there is a conflicting lock, i.e., all accesses fail if the write
lock is held, and write accesses fail if the read lock is held. Putting all these pieces together, we
have shown that a program that is safe (i.e., cannot get stuck in any execution) is free of data-races:
We can never reach a state such that two different threads will, if they get a chance to take a step
now, perform conflicting memory accesses—i.e., accesses to the same location, at least one of which
is non-atomic, and at least one of which is a write.

To define the behavior of equality tests and CAS, we employ a helper judgment v1 ` v2 = b
for b ∈ B saying whether v1 and v2 can compare (in)equal. In particular, comparing two different
locations of which at least one is not allocated is non-deterministic: they can compare equal or
unequal. For CAS, this means that the CAS could either succeed or fail. The purpose of O-cas-stuck
is to make sure that if such a non-deterministic CAS races with a non-atomic access to the same
location, the program is stuck. To this end, if such a situation is detected, we step to the stuck state
0(0).

We use the notation [<n] to denote the set {m |m < n}, and [≥m,<n] to denote {m′ |m ≤ m′ < n}.
The notation h [`← v] denotes the map h updated with location ` to map to v. h [`← v |x ∈ T ] does
the update for every x ∈ T , where ` and v may depend on x.

2



z ∈ Z
Expr 3 e ::= v | x

| e.e | e+ e | e− e | e ≤ e | e == e

| e(e)
| ∗oe
| e1 :=o e2

| CAS(e0, e1, e2)
| alloc(e)
| free(e1, e2)
| case e of e
| fork { e }

Val 3 v ::= () | ` | z | rec f(x) := e

Loc 3 ` ::= (i, n)
Order 3 o ::= sc | na | na’
LockSt 3 π ::= writing | readingn

Ctx 3 K ::= •
| K.e | v.K | K + e | v +K | K − e | v −K
| K ≤ e | v ≤ K | K == e | v == K

| K(e) | v(v ++ [K] ++ e)
| ∗oK | K :=o e | v :=o K

| CAS(K, e1, e2)
| CAS(v0,K, e2)
| CAS(v0, v1,K)
| alloc(K)
| free(K, e2)
| free(e1,K)
| caseK of e

Figure 1: Language syntax.

Note how O-alloc picks nondeterministic contents for all the fresh allocated cells.
We give the semantics as a small-step reduction relation of machine states, which encompass the

current memory and term, written h | e. Notably, this semantics defines more behaviors than Rust
does: The representation of product and sum types is fixed, uninitialized allocated locations have
deterministic reads, and it is possible to implement interior mutability without UnsafeCell.

1.3 Continuation-passing-style let-normal programs
In this section, we define the surface language that will be used for type-checking. To support
control flow operators such as return or break, the type system will enforce program to be in
continuation-passing style and in let-normal form. Before we come to the details of this, we need to
define some derived constructions that will be primitive in the surface language. In the following,
we use f for program variables that are used as functions, and k for program variables used as
continuations.

There are some operations that are not primitive to the language in a syntactic sense, but
that come with primitive typing rules: Copying a range of memory, and initializing a sum. These
operations are pervasively used, but cannot be typed in the type system. So we define them here as
derived forms, together with some useful syntactic sugar for sequencing, non-atomic accesses and
conditionals.

Finally, we define the operational behavior of the coercions that start and end lifetimes. They
don’t actually do anything, but they take a physical step – which we need to make the proofs go
through.

3



h ` v1 = v2

h ` z = z h ` ` = `
`1 /∈ dom(h) ∨ `2 /∈ dom(h)

h ` `1 = `2

h ` v1 6= v2

z1 6= z2

h ` z1 6= z2

`1 6= `2

h ` `1 6= `2

h | e→ h′ | e′1, e′?2
O-ectx

h | e→ h | e′1, e′?2
h | K[e]→ h | K[e′1], e′?2

O-proj
h | `.n→ h | `+ n

O-add
z1 + z2 = z′

h | z1 + z2 → h | z′

O-sub
z1 − z2 = z′

h | z1 − z2 → h | z′

O-le-true
z1 ≤ z2

h | z1 ≤ z2 → h | 1

O-le-false
z1 > z2

h | z1 ≤ z2 → h | 0

O-eq-true
h ` v1 = v2

h | v1 == v2 → h | 1

O-eq-false
h ` v1 6= v2

h | v1 == v2 → h | 0

O-alloc
n > 0 ` = (i, n′) {i} × N # dom(h) h′ = h [`+m←(reading 0, vm) |m ∈ [<n]]

h | alloc(n)→ h′ | `

O-free
n > 0 ` = (i, n′) dom(h) ∩ {i} × N = {i} × ([≥n′, <n′ + n]) h′ = h [`+m←⊥|m ∈ [<n]]

(h | free(n, `))→ (h′ | ())

O-deref-sc
h(`) = (readingn, v)

h | ∗sc`→ h | v

O-deref-na
h(`) = (readingn, v)

(h | ∗na`)→ (h [`←(readingn+ 1, v)] | ∗na’`)

O-deref-na’
h(`) = (readingn+ 1, v)

(h | ∗na’`)→ (h [`←(readingn, v)] | v)

O-assign-sc
h(`) = (reading 0, v′)

(h | ` :=sc v)→ (h [`←(reading 0, v)] | ())

O-assign-na
h(`) = (reading 0, v′)

(h | ` :=na v)→ (h [`←(writing, v′)] | ` :=na’ v)

O-assign-na’
h(`) = (writing, v′)

(h | ` :=na’ v)→ (h [`←(reading 0, v)] | ())

O-cas-fail
h(`) = (readingn, v′) h ` v′ 6= v1

(h | CAS(`, v1, v2))→ (h | 0)

O-cas-suc
h(`) = (reading 0, v′) h ` v′ = v1

(h | CAS(`, v1, v2))→ (h [`←(reading 0, z2)] | 1)

O-cas-stuck
h(`) = (readingn, v′) n > 0 h ` v′ = v1

(h | CAS(`, v1, v2))→ (h | 0())

O-case
(h | case i of e)→ (h | ei)

O-app
(h | (rec f(x) := e)(v))→ (h | e[rec f(x) := e/f, v/x])

O-fork
h | fork { e } → h | (), e

Figure 2: Operational semantics.

4



funrec f(x) ret k := e := rec f([k] ++ x) := e

let x = e in e′ := (rec ([x]) := e′)(e)
e′; e := let = e′ in e

letcont k(x) := e in e′ := let k = (rec k(x) := e) in e′

jump k(e) := k(e)
call f(e) ret k := f([k] ++ e)

false := 0
true := 1

if e0 then e1 else e2 := case e0 of [e1, e2]

∗e := ∗nae

e1 := e2 := e1 :=na e2

new := rec new(size) :=
if size == 0 then (42, 1337) else alloc(size)

delete := rec delete(size, ptr) :=
if size == 0 then () else free(size, ptr)

memcpy := rec memcpy(dst, len, src) :=
if len ≤ 0 then () else
dst.0 := src.0;
memcpy(dst.1, len− 1, src.1)

e1 :=n
∗e2 := memcpy(e1, n, e2)

e
inj i:== () := e.0 := i

e1
inj i:== e2 := e1.0 := i; e1.1 := e2

e1
inj i:==n

∗e2 := e1.0 := i; e1.1 :=n
∗e2

skip := let x = () in x

newlft := ()
endlft := skip

We distinguish between three classes of expressions: function bodies F consist of instructions I
that operate on paths p. The letcall operator makes it possible to call other functions, passing the
remainder of the current function as a continuation. This is in contrast to calling a continuation by
just jumping there. We the purpose of λRust, we are not concerned with whole programs, but only

5



with the individual functions of a program.

Path 3 p ::= x | p.n
Instr 3 I ::= false | true | z | funrec f(x) ret k := F | p | p1 + p2 | p1 − p2 | p1 ≤ p2

| new(n) | delete(n, p) | ∗p | p1 := p2 | p
inj i:== () | p1

inj i:== p2 | p1 :=n
∗p2 | p1

inj i:==n
∗p2

FuncBody 3 F ::= let x = I inF | letcont k(x) := F1 inF2 | newlft;F | endlft;F
| if p thenF1 elseF2 | case ∗p ofF | jump k(p) | call f(p) ret k

1.4 Type System
The key concept of the λRust type system is the notion of a lifetime. Essentially, a lifetime represents
a part of the program execution.

Programs are type-checked under five contexts: the variable context Γ contains all binders. It
assigns variables to their sort σ (either program variable x : val, a lifetime α : lft or a type T : type).
Furthermore, there is a context for external lifetimes E, a context for local lifetimes L, a context
assigning types to variables T and a context managing continuations K.

Sort 3 σ ::= val | lft | type
Γ ::= ∅ | Γ, X : σ

Lft 3 κ ::= α | static
E ::= ∅ | E, κ ve κ

′

L ::= ∅ | L, κ vl κ

Mod 3 µ ::= mut | shr
Type 3 τ ::= T | bool | int |  n

| ownn τ | &κµ τ | Στ | Πτ | ∀α. fn(ϝ : E; τ)→ τ | µT. τ
T ::= ∅ | T, p C τ | T, p C†κ τ
K ::= ∅ | K, k C cont(L;x.T)

Types describe not just single values, but regions of memory – for now, you can think of them as
making statements about lists of values. The type system introduces an distinction between functions
and continuations, matching the program grammar given in §1.3. In particular, continuations are
not types. We use this distinction to control that continuations are not passed to other functions
or otherwise leaked from their context. We will use function types for Rust-level functions, and
continuation types for the basic blocks of a Rust function.

The types of the form ownn τ represent owned pointers. The index n gives the size of the block
that this object has been allocated in; this is important because only entire blocks can be deallocated.

A particularly interesting type is a reference &κµ τ , also called (temporarily) borrowed pointer.
References are qualified by a modifier, which is either mut (mutable, i.e., unique) and shr (shared).
This pointer is only valid as long as its lifetime is still active, which can be proven by showing that
the lifetime is in the lifetime context L. Functions can be polymorphic over lifetimes.

Finally, the type system supports recursive types, with the restriction (enforced by well-
formedness) that the recursive occurrence is below a pointer type.

6



The type context can contain “normal” type assignments (p C τ) and type assignments that are
blocked by a lifetime: p C†κ τ means that we can only use this type assignment again when κ has
ended.

1.4.1 Well-formedness

The well-formedness judgments (`wf) document the binding structure of our grammar. There should
be no surprises. In the other judgments defined later, we always implicitly assume well-formedness
and we also will frequently leave the variable context Γ implicit.

Well-formed paths Γ `wf p

x : val ∈ Γ
Γ `wf x

Γ `wf p

Γ `wf p.n

Well-formed lifetimes Γ `wf κ

α : lft ∈ Γ
Γ `wf α

Γ `wf static

Well-formed external lifetime contexts Γ `wf E

Γ `wf ∅
Γ `wf L Γ `wf κ Γ `wf κ

′

Γ `wf L, κ ve κ
′

Well-formed local lifetime contexts Γ `wf L

Γ `wf ∅
Γ `wf L Γ `wf κ ∀κ′ ∈ κ.Γ `wf κ

′

Γ `wf L, κ vl κ

Well-formed types Γ `wf τ

T : type ∈ Γ
Γ `wf T

Γ `wf bool Γ `wf int Γ `wf  n
Γ `wf τ

Γ `wf ownn τ
Γ `wf κ Γ `wf τ

Γ `wf &κµ τ

∀i.Γ `wf τ i

Γ `wf Πτ
∀i.Γ `wf τ i

Γ `wf Στ
Γ, α, ϝ : lft `wf E ∀i.Γ, α : lft `wf τ i Γ, α : lft `wf τ

Γ `wf ∀α. fn(ϝ : E; τ)→ τ

Γ, T : type `wf τ T is guarded by pointer types in τ
Γ `wf µT. τ

Well-formed type contexts Γ `wf T

Γ `wf ∅
Γ `wf T Γ `wf p Γ `wf τ

Γ `wf T, p C τ
Γ `wf T Γ `wf p Γ `wf κ Γ `wf τ

Γ `wf T, p C†κ τ

7



Well-formed continuation contexts Γ `wf K

Γ `wf ∅
Γ `wf T Γ `wf k Γ `wf L Γ, x : val `wf T

Γ `wf T, k C cont(L;x.T)

1.4.2 Size, Copy, Send, Sync

The size of a type says how many memory locations a type spans. It is defined as follows:

size(bool) := 1 size(ownn τ) := 1
size(int) := 1 size(&κµ τ) := 1

size( n) := n size(Πτ) :=
∑
i

size(τ i)

size(Στ) := 1 + max
i

size(τ i)

size(µT. τ) := size(τ) size(∀α. fn(ϝ : E; τ)→ τ) := 1

Notice that there is no case for type variables: since well-formed recursive types always have their
recursive occurrence below a pointer type, the size of a recursive type does not depend on the size
of the recursive occurrence.

Some types are copyable, which means they can be used arbitrarily often. This is expressed by
the following judgment. Notice that in proving a recursive type to be copyable, you can assume the
type variable T to be copy.

Copy types τ copy

bool copy int copy  n copy &κ
shr τ copy

∀i. τi copy
Πτ copy

∀i. τi copy
Στ copy

(∀α. fn(ϝ : E; τ)→ τ) copy T copy
τ copy

µT. τ copy

A type is send if ownership can be transferred to another thread. It is sync if shared instances
of the type can be transferred to another thread.

Send types τ send

bool send int send  n send
τ send

ownn τ send
τ send

&κ
mut τ send

τ sync
&κ

shr τ send
∀i. τi send
Πτ send

∀i. τi send
Στ send

(∀α. fn(ϝ : E; τ)→ τ) send T send
τ send

µT. τ send

8



Sync types τ sync

bool sync int sync  n sync
τ sync

ownn τ sync
τ sync

&κ
mut τ sync

τ sync
&κ

shr τ sync
∀i. τi sync
Πτ sync

∀i. τi sync
Στ sync

(∀α. fn(ϝ : E; τ)→ τ) sync T sync
τ sync

µT. τ sync

1.4.3 Lifetime context judgments

The following judgments express various properties of lifetime contexts.

Lifetime inclusion Γ | E; L ` κ1 v κ2

E; L ` κ v static
κ vl κ ∈ L κ′ ∈ κ

E; L ` κ v κ′
κ ve κ

′ ∈ E
E; L ` κ v κ′

E; L ` κ v κ

E; L ` κ v κ′ E; L ` κ′ v κ′′

E; L ` κ v κ′′

Lifetime liveness Γ | E; L ` κ alive

E; L ` static alive
κ vl κ ∈ L ∀i.E; L ` κi alive

E; L ` κ alive
E; L ` κ alive E; L ` κ v κ′

E; L ` κ′ alive

Local lifetime context inclusion Γ ` L1 ⇒ L2

L′ is a permutation of L
L⇒ L′

External lifetime context satisfiability Γ | E1; L1 ` E2

E1; L1 ` ∅
E1; L1 ` κ v κ′ E1; L1 ` E2

E1; L1 ` E2, κ ve κ
′

1.4.4 Type Inclusion

The main subtyping supported in Rust is lifetime inclusion and (un)folding recursive types. Fur-
thermore, products of unitialized types are equivalent to one large uninitialized type. Finally, type
constructors have structural rules witnessing covariance and contravariance of type constructors.
This is reflected in our subtyping relation. Some of the rules state an equivalence (⇒), which is
meant as sugar for mutual inclusion.

9



Subtyping Γ | E; L ` τ1 ⇒ τ2

T-refl
E; L ` τ ⇒ τ

T-trans
E; L ` τ ⇒ τ ′ E; L ` τ ′ ⇒ τ ′′

E; L ` τ ⇒ τ ′′

T-bor-lft
E; L ` κ v κ′

E; L ` &κ
′

µ τ ⇒ &κµ τ

T-uninit-prod
E; L `  Σn ⇔ Π n

T-rec
∀τ ′1, τ ′2. (E; L ` τ ′1 ⇒ τ ′2)⇒ (E; L ` τ1[τ ′1/T1]⇒ τ2[τ ′2/T2])

E; L ` µT1. τ1 ⇒ µT2. τ2

T-rec-unfold
E; L ` µT. τ ⇔ τ [µT. τ/T ]

T-own
E; L ` τ1 ⇒ τ2

E; L ` ownn τ1 ⇒ ownn τ2

T-bor-shr
E; L ` τ1 ⇒ τ2

E; L ` &κshr τ1 ⇒ &κshr τ2

T-bor-mut
E; L ` τ1 ⇔ τ2

E; L ` &κmut τ1 ⇔ &κmut τ2

T-prod
∀i.E; L ` τ i ⇒ τ ′i

E; L ` Πτ ⇒ Πτ ′

T-sum
∀i.E; L ` τ i ⇒ τ ′i

E; L ` Στ ⇒ Στ ′

T-fn
Γ, α′, ϝ : lft | E′,E0; L0 ` E[κ/α]

∀i.Γ, α′, ϝ : lft | E′,E0; L0 ` τ ′i ⇒ τ i Γ, α′, ϝ : lft | E′,E0; L0 ` τ ⇒ τ ′

Γ | E0; L0 ` ∀α. fn(ϝ : E; τ)→ τ ⇒ ∀α′. fn(ϝ : E′; τ ′)→ τ ′

Inclusion of type contexts does not just allow applying subtyping; there are also a few coercions
supported by the type system. Most notably, a mutable reference can be coerced to a shared
reference.

Type context inclusion Γ | E; L ` T1 ⇒ T2

C-perm
T′ is a permutation of T

E; L ` T ctx⇒ T′
C-weaken
E; L ` T,T′ ctx⇒ T

C-frame
E; L ` T1

ctx⇒ T2

E; L ` T′,T1
ctx⇒ T′,T2

C-copy
τ copy

E; L ` p C τ ctx⇒ p C τ, p C τ

C-subtype
E; L ` τ ctx⇒ τ ′

E; L ` p C τ ctx⇒ p C τ ′

C-share
E; L ` κ alive

E; L ` p C &κmut τ
ctx⇒ p C &κshr τ

C-split-own
τ 6= [ ] ∀i.mi =

∑
j<i

size(τ j)

E; L ` p C ownn Πτ ctx⇔ p.m C ownn τ

C-split-bor
τ 6= [ ] ∀i.mi =

∑
j<i

size(τ j)

E; L ` p C &κµ Πτ ctx⇔ p.m C &κµ τ

C-borrow
E; L ` p C ownn τ ctx⇒ p C &κmut τ, p C

†κ ownn τ

C-reborrow
E; L ` κ′ v κ

E; L ` p C &κµ τ
ctx⇒ p C &κ

′

µ τ, p C†κ
′
&κµ τ

The following judgment expresses that when κ ends, we can “unblock” the parts of the typing
context that is blocked by κ.

10



Type context unblocking Γ ` T1 ⇒†κ T2

∅ ⇒†κ ∅
T1 ⇒†κ T2

T1, p C τ ⇒†κ T2, p C τ

T1 ⇒†κ T2

T1, p C
†κ τ ⇒†κ T2, p C τ

T1 ⇒†κ T2

T1, p C
†κ′

τ ⇒†κ T2, p C
†κ′

τ

Continuation context inclusion Γ | E ` K1 ⇒ K2

K′ is a permutation of K
E ` K⇒ K′

E ` K,K′ ⇒ K

Γ | E ` K⇒ K′ Γ, x : val | E; L ` T′ ctx⇒ T
Γ | E ` K, k C cont(L;x.T)⇒ K′, k C cont(L;x.T′)

1.4.5 Well-typed functions and steps

Finally we come to the main typing judgment: Γ | E; L | K; T ` F says that F is a well-typed
function body (as defined by the grammar in §1.3). This means that, under the assumptions described
by the contexts, the function is safe to execute. (Functions are in CPS and hence do not return.)

The grammar dictates that a function consists of a bunch of continuations (representing basic
blocks) that each consist of a sequence of instructions. Instructions do return and produce a value,
so their typing judgment Γ | E; L | T1 ` I a x.T2 features two typing contexts: if T1 holds before
the step is executed, then T2 holds after the step was executed.

We also have two of small helper judgments to express what loading from memory and storing
to memory does to types. E; L ` τ1 (τ τ2 says that we can write something of type τ to a location
described by τ!, which will change the type of the location to τ2. Similarly, E; L ` τ1

(τ τ2 says
that when reading from a location of type τ1, we will read something of type τ and the type of the
locations changes to τ2.

Well-typed functions Γ | E; L | K; T ` F

F-consequence
L⇒ L′ E; L ` T ctx⇒ T′ E ` K⇒ K′ E; L′ | K′; T′ ` F

E; L | K; T ` F

F-equalize
E, α ve κ, κ ve α; L | K; T ` F

E; L, α vl [κ] | K; T ` F

F-let
Γ | E; L | T1 ` I a x.T2

Γ, x : val | E; L | K; T2,T ` F
Γ | E; L | K; T1,T ` let x = I inF

11



F-letcont
Γ, k, x : val | E; L1 | K, k C cont(L1;x.T′); T′ ` F1

Γ, k : val | E; L2 | K, k C cont(L1;x.T′); T ` F2

Γ | E; L2 | K; T ` letcont k(x) := F1 inF2

F-if
E; L | K; T ` F1 E; L | K; T ` F2

E; L | K; T, p C bool ` if p thenF1 elseF2

F-jump
E; L ` T⇒ T′[y/x]

E; L | k C cont(L;x.T′); T ` jump k(y)

F-call
Γ | E; L ` T⇒ p C own τ ,T′ E; L ` κ alive Γ, ϝ : lft | E, ϝ ve κ; L ` E′

Γ | E; L | k C cont(L; y. y C own τ,T′); T, f C fn(ϝ : E′; τ)→ τ ` call f(p) ret k

F-newlft
Γ, α : lft | E; L, α vl κ | K; T ` F

Γ | E; L | K; T ` newlft;F

F-endlft
E; L | K; T′ ` F T⇒†κ T′

E; L, κ vl κ | K; T ` endlft;F

F-case-own
∀i. (E; L | K; T, p.0 C ownn  , p.1 C ownn τ i, p.(1 + size(τ i)) C ownn  (maxj size(τj))−size(τ i) ` Fi) ∨

(E; L | K; T, p C ownn Στ ` Fi)
E; L | K; T, p C ownn Στ ` case ∗p ofF

F-case-bor
E; L ` κ alive ∀i. (E; L | K; T, p.1 C &κµ τi ` Fi) ∨ (E; L | K; T, p C &κµ Στ ` Fi)

E; L | K; T, p C &κµ Στ ` case ∗p ofF

Type writing Γ | E; L ` τ1 (τ τ2

Twrite-own
size(τ) = size(τ ′)

E; L ` ownn τ ′(τ ownn τ

Twrite-bor
E; L ` κ alive

E; L ` &κmut τ (
τ &κmut τ

Type reading Γ | E; L ` τ1

(τ τ2

Tread-own-copy
τ copy

E; L ` ownn τ

(τ ownn τ

Tread-own-move
n = size(τ)

E; L ` ownm τ

(τ ownm  n

Tread-bor
τ copy E; L ` κ alive

E; L ` &κµ τ

(τ &κµ τ

Well-typed instructions Γ | E; L | T1 ` I a x.T2

S-true
E; L | ∅ ` true a x. x C bool

S-false
E; L | ∅ ` false a x. x C bool

S-num
E; L | ∅ ` z a x. x C int

12



S-fn
τ ′ copy τ ′ send

Γ, α, ϝ : lft, f, x, k : val | E,E′; ϝ vl [] | k C cont(ϝ vl []; y. y C own τ);
p C τ ′, x C own τ , f C ∀α. fn(ϝ : E; τ)→ τ ` F

Γ | E′; L′ | p C τ ′ ` funrec f(x) ret k := F a f. f C ∀α. fn(ϝ : E; τ)→ τ

S-path
E; L | p C τ ` p a x. x C τ

S-nat-op
E; L | p1 C int, p2 C int ` p1 {+,−} p2 a x. x C int

S-nat-leq
E; L | p1 C int, p2 C int ` p1 ≤ p2 a x. x C bool

S-new
E; L | ∅ ` new(n) a x. x C ownn  n

S-delete
n = size(τ)

E; L | p C ownn τ ` delete(n, p) a ∅

S-deref
E; L ` τ1

(τ τ ′1 size(τ) = 1
E; L | p C τ1 ` ∗p a x. p C τ ′1, x C τ

S-deref-bor-own
E; L ` κ alive

E; L | p C &κµ ownn τ ` ∗p a x. x C &κµ τ

S-deref-bor-bor
E; L ` κ alive E; L ` κ v κ′

E; L | p C &κµ&κ
′

mut τ ` ∗p a x. x C &κµ τ

S-assgn
E; L ` τ1 (τ τ ′1

E; L | p1 C τ1, p2 C τ ` p1 := p2 a p1 C τ
′
1

S-sum-assgn-unit
τ i = Π[ ] E; L ` τ1 (Στ τ ′1

E; L | p C τ1 ` p
inj i:== () a p C τ ′1

S-sum-assgn
τ i = τ τ1 (

Στ τ ′1

E; L | p1 C τ1, p2 C τ ` p1
inj i:== p2 a p1 C τ

′
1

S-memcpy
size(τ) = n E; L ` τ1 (τ τ ′1 E; L ` τ2

(τ τ ′2
E; L | p1 C τ1, p2 C τ2 ` p1 :=n

∗p2 a p1 C τ
′
1, p2 C τ

′
2

S-sum-memcpy
size(τ) = n E; L ` τ1 (Στ τ ′1 E; L ` τ2

(τ τ ′2 τ i = τ

E; L | p1 C τ1, p2 C τ2 ` p1
inj i:==n

∗p2 a p1 C τ
′
1, p2 C τ

′
2

13



2 Some examples
This section contains some manually type-checked functions demonstrating how the type system
looks like in action.

We write τ1 × τ2 × . . . for Πτ , unit for Π[ ], τ1 + τ2 + . . . for Στ and ! for Σ[ ]. We use  as sugar
for  1. Finally, own τ is short for ownsize(τ) τ .

It turns out to be useful to have some syntactic sugar for calling a function and using its return
value, for declaring continuations without writing code “backwards”, and for immediately initializing
a fresh allocation.

havecont k inF1 wherecont k(x) := F2 := letcont k(x) := F2 inF1

letcall x = f(p) inF := letcont k(x) := F in call f(p) ret k

letalloc x : τ := p inF := let x = new(1) in x := p inF
letalloc x : τ := ∗p inF := let x = new(τ) in x :=τ

∗p inF

Notice that we sometimes use types as subscripts where the syntax expects a number. In this case,
we implicitly refer to the size of the type.

The syntactic sugar above enjoys the typing rules below.
F-letcall

Γ, x : val | E; L | K; T, x C τ ` F E; L ` E′

Γ | E; L | K; T, f C fn(E′; τ)→ τ, p C τ ` letcall x = f(p) inF

F-letalloc-assgn
Γ, x : val | E; L | K; T, x C own τ ` F

Γ | E; L | K; T, p C τ ` letalloc x : τ := p inF

F-letalloc-memcpy
τ1

(τ τ2 Γ, x : val | E; L | K; T, x C own τ, p C τ2 ` F
Γ | E; L | K; T, p C τ1 ` letalloc x : τ := ∗p inF

Example 1: Mutable to shared reference, field reference.
1 struct Point { x: i32 , y: i32 }
2 fn get_x <’a >(p: &’a mut Point ) -> &’a i32 {
3 &(*p).x
4 }

The types translate as follows:

Point := int× int
get_x := ∀α. fn(α alive; own &αmut Point)→ own &αshr int

All lifetime bounds (in particular, the fact that lifetime parameters are alive) all have to be made
explicit. Furthermore, all variables and return values are passed via owned pointers.

The code itself translates to:

funrec get_x(p) ret ret :=
let p’ = ∗p in letalloc r : &αshr int := p’.0 in
delete(&αmut Point, p); jump ret(r)

14



I will usually try to make the Rust code and the λRust code match up in terms of lines, so one line of
code in the original function corresponds to one line of code in the translation. At the end, there will
always be an additional line deallocating the stack frame and jumping to the return continuation.

Now we can typecheck the function body.

Context: α alive
{ret C cont(r. r C own &αshr int); p C own &αmut Point}
{p} let p’ = ∗p in {p’ C &αmut Point, p C own  }
{p’} Split {p’.0 C &αmut int, p’.1 C &αmut int}
{p’.0} letalloc r : &αshr int := p’.0 in {r C own &αshr int}
{p, ret, r} delete(&αmut Point, p); ret(r)

A quick note on our typing outline conventions: In the very first line, we state the external lifetime
context E, which does not change during verification. The line below that state the remaining
contexts. The next lines are indented, which means that they describe a change in the contexts – the
items on the left are used, the items on the right are produced. Formally, such lines correspond to
the application of one of the rules for well-typed programs. Used items will, in general, be considered
gone because our contexts are substructural. However, if the item permits duplication (e.g., for
x C τ for τ copy), the item will implicitly be duplicated. When specifying items of the form to be
consumed, we will often shorten X C to just X. This still uniquely identifies the used-up context
item.

This choice of notation prevents repeating the same items over and over; however, the current
context is fairly implicit: the context consists of all the items that are produced by any preceeding
step, minus consumed non-duplicable items. When appropriate, we will repeat the entire current
context in an un-indented line to keep things clearer.

Example 2: Copying a reference out of ownership
1 fn rebor (mut t1: Point , mut t2: Point ) -> i32 {
2 let mut x = &mut t1;
3 let y = &mut (*{x}).y;
4 x = &mut t2;
5 *y
6 }

In the code above, dereferencing x consumes that pointer, so its permission is gone – it is now
essentially uninitialized. This is why x is wrapped in curly braces: if we had just written (*x).y,
Rust would instead have re-borrowed x so the program would not typecheck.

rebor := fn(own Point, own Point)→ own int

15



funrec rebor(t1, t2) ret ret :=
newlft;
letalloc x : &αmut Point := t1;
let x’ = ∗x in let y = x’.0 in
x := t2 in
let y’ = ∗y in letalloc r : int := y’ in
endlft; delete(Point, t1); delete(Point, t2); delete(&αmut Point, x); jump ret(r)

{ret C cont(r. r C own int); t1 C own Point, t2 C own Point}
newlft;

Local lifetimes: α v [ ]
{t1, t2} Borrow at α

{
t1 C &αmut Point, t1 C†α own Point, t2 C &αmut Point, t2 C†α own Point

}
{t1} letalloc x : &αmut Point := t1; {x C own &αmut Point}
{x} let x’ = ∗x in {x’ C &αmut Point, x C own  }
{x’} let y = x’.0 in {y C &αmut int}
{x, t2} x := t2 in {x C own &αmut Point}
{y} let y’ = ∗y in {y’ C int, y}
{y’} letalloc r : int := y’ {r C own int}
{t1, t2} endlft; {t1 C own Point, t2 C own Point}

Local lifetimes: ∅
{t1, t2, x, ret, r} delete(Point, t1); delete(Point, t2); delete(&αmut Point, x); jump ret(r)

Example 3: Borrowing from a borrowed box.
Now we can consider this piece of Rust code:

1 fn unbox <’a >(b: &’a mut Box <Point >) -> &’a mut u32 {
2 let bx = &mut *b;
3 &mut (* bx ).x
4 }

Rust boxes translate to owned pointers. In Rust, the only semantic difference between the type
T and Box<T> is that the former lives on the stack, while the latter lives on the heap. λRust does not
distinguish between stack and heap, so the two concepts unify: Box is just own .

unbox := ∀α. fn(α alive; own &αmut own Point)→ own &αmut int

funrec unbox(b) ret ret :=
let b’ = ∗b in let bx = ∗b’ in

letalloc r : &αmut int := bx.0 in

delete(&αmut Point, b); delete(Point, bx); jump ret(r)

16



Context: α alive
{ret C cont(r. r C own &αmut int); b C own &αmut own Point}
{b} let b’ = ∗b in {b′ C &αmut own Point, b C own  }
{b’} let bx = ∗b’ in {bx C own Point}
{bx} Split {bx.0 C ownPoint int, bx.1 C ownPoint int}
{bx.0} letalloc r : &αmut int := bx.0 in {r C own &αmut int, bx.0}
{bx.0, bx.1} Merge {bx C own Point}
{b, bx, r, retval} delete(&αmut Point, b); delete(Point, bx); jump ret(r)

Example 4: Struct initialization.
1 fn point (x: i32 , y: i32) -> Point {
2 Point { x: x, y: y}
3 }

point := fn(own int, own int)→ own Point

funrec point(x, y) ret ret :=
let x’ = ∗x in let y’ = ∗y in
let r = new(Point) in
r.0 := x′; r.1 := y′;
delete(int, x); delete(int, y); jump ret(r)

The part about having the lines match up does not really work out here any more...

{ret C cont(r. r C own Point); x C own int, y C own int}
{x, y} let x’ = ∗x in let y’ = ∗y in {x C own  , x’ C int, y C own  , y’ C int}
{} let r = new(Point) in {r C own  Point}
{r} Split {r.0 C ownPoint  , r.1 C ownPoint  }
{r.0, x’} r.0 := x′; {r.0 C ownPoint int, x’}
{r.1, y’} r.1 := y′; {r.1 C ownPoint int, y’}
{r.0, r.1} Merge {r C own Point}
{x, y, ret, r} delete(int, x); delete(int, y); jump ret(r)

Example 5: Enum matching and initialization.
We assume the following meta-level type definition:

Option := λτ.unit + τ

We will write Option〈τ〉 for τ applied to Option.
1 fn option_as_mut <T >(o: &mut Option <T >) -> Option <& mut T> {
2 match *o {
3 None => None ,
4 Some(ref mut t) => Some(t)
5 }
6 }

17



option_as_mut is parametric over some type τ on the meta-level.

option_as_mut〈τ〉 := ∀α. fn(α alive; own &αmut Option〈τ〉)→ own Option〈&αmut τ〉

funrec option_as_mut(o) ret ret :=
let r = new(Option〈&αmut τ〉) in

havecont k in
let o’ = ∗o in case ∗o’ of
− r

inj 0:== ();
jump k()

− r
inj 1:== o’.1;

jump k()
wherecont k() :=

delete(own &αmut Option〈τ〉, o); jump ret(r)

Context: α alive
{ret C cont(r. r C own Option〈&αmut τ〉); o C own &αmut Option〈τ〉}
{} let r = new(Option〈&αmut τ〉) in

{
r C own  Option〈&αmut τ〉

}
havecont k in{

k C cont(r C own Option〈&αmut τ〉, o C own  ); o C own &αmut Option〈τ〉, r C own  Option〈&αmut τ〉
}

{o} let o’ = ∗o in {o’ C &αmut Option〈τ〉, o C own  }
{o’} case ∗o’ of
− {o’.1 C &αmut unit}
{r} r

inj 0:== () in {r C own Option〈&αmut τ〉}
{k, o, r} jump k()

− {o’.1 C &αmut τ}
{} r

inj 1:== o’.1 in {r C own Option〈&αmut τ〉}
{k, o, r} jump k()

wherecont k() :=
{r C own Option〈&αmut τ〉, o C own  }
{o, ret, r} delete(own &αmut Option〈τ〉, o); jump ret(r)

Example 6: Moving out of an enum.
1 fn unwrap_or <T >(o: Option <T>, def: T) -> T {
2 match o {
3 None => def ,
4 Some(t) => t
5 }
6 }

unwrap_or is parametric over some type τ on the meta-level.

unwrap_or := ∀α. fnα alive; own Option〈τ〉, own τ → τ

18



funrec unwrap_or(o, def) ret ret :=
case ∗o of
− delete(Option〈τ〉, o); jump ret(def)
− letalloc r : τ := o.1 in

delete(Option〈τ〉, o); delete(τ, def); jump ret(r)

{ret C cont(r. r C own τ); o C own Option〈τ〉, def C own τ}
{o} case ∗o of
− {o C own Option〈τ〉}
{o, ret, def} delete(Option〈τ〉, o); jump ret(def)

−
{

o.0 C ownOption〈τ〉  , o.1 C ownOption〈τ〉 τ
}

{o.1} letalloc r : τ := o.1 in
{

r C own τ, o.1 C ownOption〈τ〉  τ
}

{o.1, o.1} Merge
{

o C own  Option〈τ〉
}

{o, def, ret, r} delete(Option〈τ〉, o); delete(τ, def); jump ret(r)

Example 7: Lazy lifetime initialization.
1 struct Two <’a > {
2 f: &’a i32 ,
3 g: &’a i32 ,
4 }
5
6 fn lazy_lft () {
7 let (mut t, f, g) : (Two , i32 , i32 );
8 f = 42;
9 t = Two { f: &f, g: &f };

10 *t.f; // The lifetime definitely is already active here
11 g = 23; // And g is definitely not yet borrowed .
12 t.g = &g; // But now we can borrow g at the *old* lifetime .
13 }

Let Two〈κ〉 := &κshr int×&κshr int.

lazy_lft := fn()→ own unit

funrec lazy_lft() ret ret :=
newlft;
let t = new(2) in let f = new(1) in let g = new(1) in
f := 42;
t.0 := f; t.1 := f;
let t0’ = ∗t.0 in ∗t0’;
g := 23;
t.1 := g;
let r = new(0) in

endlft; delete(2, t); delete(1, f); delete(1, g); jump ret(r)

19



{ret C cont(r. r C own unit}
newlft;

Local lifetimes: α v [ ]
{} let t = new(2) in let f = new(1) in let g = new(1) in
{t C own  2, f C own  1, g C own  1}
{f}f := 42;{f C own int}
{f} Borrow at α

{
f C &αshr int, f C†α own int

}
{t} t.0 := f; t.1 := f; {t C own Two〈α〉}
{t} let t0’ = ∗t.0 in {t0’ C &αshr int, t}
{t0’} ∗t0’; {t0’}
{g} g := 23; {g C own int}
{g} Borrow at α

{
g C &αshr int, g C†α own int

}
{g, t} t.1 := g; {g, t}
{} let r = new(0) in {r C own unit}
{f, g} endlft; {g C own int, f C own int}
{t, f, g, ret} delete(2, t); delete(1, f); delete(1, g); jump ret(r)

20



3 λRust in Iris
Before we get started with the interesting parts, we do some preparatory work on the Iris level to
enable reasoning about lambdaRust work. Mostly this is a straight-forward lifting of the operational
semantics; the part we need to describe in more details is how we manage the heap.

Physical state. To manage the heap, we use two monoids: Finite partial functions from locations
to pairs of lock states and (exclusive) values to talk about ownership of locations (with the instance
named γPhVal), and their contents; and finite partial functions from blocks to (exclusive) tuples for
start index and length of the block (instance name γPhFree). For that to work out, we give a monoid
structure to lock states with some unit ε and readingn · readingm = readingn+m.

PhVal := Loc fin−⇀ Frac(LockSt×Ag(Val))

PhFree := N fin−⇀ Frac(PowFin(N))

`
q7−→ v := ◦ [`← q(reading 0, v)] : Auth(PhVal) γPhVal

` 7→ v := `
17−→ v

`
q7−→ v :=∗

i

`+ i
q7−→ vi

` 7→ v := `
17−→ v

†mq ` := ∃i, n. ` = (i, n) ∧ ◦ [i← q([≥n,<n+m])] γPhFree

InvPhys := ∃h, V, F.Phy(h) ∗ •V γPhVal ∗ •F γPhFree ∗
h = V ∗ (∀i.dom(h) ∩ {i} × N = F (i))

where †m1 ` is the permission to deallocate ` as block of length m. If the fraction is less than 1, this
means that we don’t own the entire block yet, and have to obtain more permissions before we can
deallocate anything. We assume a global invariant namespace NPh, and we assume InvPhys NPh to
be in the global context.

We obtain the usual triples for both atomic and non-atomic memory loads and stores, and
(de)allocation, and some useful separations:

`
q7−→ v ∗ ` q′

7−→ v′ ⇔ `
q+q′

7−−−→ v ∗ v = v′ †mq ` ∗ †m
′

q′ `+m⇔ †m+m′

q+q′ `

{True} alloc(n) {`.∃v. ` 7→ v ∗ |v| = n ∗ †n1 `}NPh {` 7→ v ∗ †|v|1 `} free(|v|, v) {True}NPh

{` q7−→ v} ∗sc` {v′. v′ = v ∗ ` q7−→ v}NPh {` q7−→ v} ∗` {v′. v′ = v ∗ ` q7−→ v}NPh

{` 7→ v} ` :=sc w {v′. v′ = () ∗ ` 7→ w}NPh {` 7→ v} ` := w {v′. v′ = () ∗ ` 7→ w}NPh

|v1| = |v2| = n

{`1 7→ v1 ∗ `2
q7−→ v2} `1 :=n

∗`2 {`1 7→ v2 ∗ `2
q7−→ v2}NPh

21



4 Lifetime logic
The core principle of lifetimes and borrows has applications beyond type systems. In the following,
we develop a logic that includes primitives dealing with lifetimes, using the λRust type system as a
sample application.

4.1 Proof rules
Intuitively speaking, why ought a type system like the one in §1.4 be sound? What justifies doing
a borrow, using that borrow, and obtaining ownership of the original permission again when the
borrow ends? The purpose of this section is to develop an intuition for the proof rules of Figure 3,
which are used in the soundness proof of the type system. These rules describe the lifetime logic.

Splitting ownership in time. The lifetime logic adds a built-in notion of lifetimes, and the
notion of “owning P borrowed for lifetime κ”, written &κfull P .

The rule LftL-begin is used to create a new lifetime. At this point, we obtain the token [κ]1
which asserts that we own the lifetime κ: We know that the lifetime is still running, and we can end
it any time by applying the view shift we got. Now, it turns out that we may want multiple parties
to be able to witness that κ is ongoing, so we need to be able to split this assertion: [κ]q denotes
ownership of the fraction q of κ. Lifetimes can be intersected using the u operator.

We also obtain an update to end the new lifetime again. This makes use of the “update that
takes a step”, defined as follows:

P
E2
E1
Q := P −∗ |VE1 E2 . |VE2 E1Q

The core operation of the lifetime logic is borrowing an assertion P at a given lifetime. Using
LftL-borrow, P is split into ownership of P during the lifetime κ (the full borrow), and ownership
when κ died (a view shift that lets us “inherit” P from κ). In some sense, we are splitting ownership
along the time axis: The justification for the separating conjunction is the fact that a lifetime is
never both ongoing and has already ended at the same time. Thus, the two parts that we split P
into can be treated as disjoint resources: They govern the same part of the (logical and physical)
state, but they do so at different points in time.

When a lifetime ends, full borrows at that lifetime are not worth anything any more, a fact that
is witnessed by LftL-bor-fake.

Borrowed assertions can still be split and merged, as shown by LftL-bor-sep. To get access to a
borrowed assertion, we use LftL-bor-acc-cons. The rule is quite a mouthful, so it is worth looking
at the following simpler (derived) version:

〈&κfull P ∗ [κ]q WV .P 〉Nlft
(1)

This lets us open full borrows (&κfull P ) if we can prove that the lifetime is still ongoing, which we do
by presenting any fraction of the lifetime token. We obtain .P , but lose access to that token for as
long as the full borrow is open, which ensures that we do not end the lifetime while the full borrow
is open. Once we re-established .P , we can close the full borrow again the get our token back.

The full rule LftL-bor-acc-cons actually lets us close not just with .P , but with any .Q if we
can show that Q entails P through a view shift. Furthermore, that view shift is only actually tun
when the lifetime ends, which is witnessed by providing the appropriate token ([†κ]).

22



Figure 3: Lifetime logic assertions and proof rules

Notation Meaning Timeless Persistent
[κ]q Fraction q of lifetime token for κ: Witnessing that

the lifetime is still ongoing
Yes No

[†κ] Witness confirming that the lifetime κ is dead (i.e.,
it has ended)

Yes Yes

&κfull P Ownership of the full borrow of P for κ No No
&κi P There is an indexed borrow named i of P for κ No Yes

[Bor : i]q Ownership of fraction q of the indexed borrow i Yes No

Lifetimes. Lifetimes κ form a cancellable PCM with intersection as the operation (u) and unit ε.

κ v κ′ :=
(
∀q. 〈[κ]q WV q′. [κ′]q′〉Nlft

)
∗
(
[†κ′]VNlft [†κ]

)
Lifetime creation and end.

LftL-begin
TrueVNlft ∃κ. [κ]1 ∗�

(
[κ]1

Nlft
∅ [†κ]

) LftL-tok-fract
[κ]q+q′ ⇔ [κ]q ∗ [κ]q′

LftL-tok-comp
[κ u κ′]q ⇔ [κ]q ∗ [κ′]q

LftL-tok-unit
True⇒ [ε]q

LftL-not-own-end
[κ]q ∗ [†κ]⇒ False

LftL-end-comp
[†κ u κ′]⇔ [†κ] ∨ [†κ′]

LftL-end-unit
[†ε]⇒ False

Creating full borrows and using them.

LftL-borrow
.P VNlft &

κ
full P ∗

(
[†κ] Nlft

.P
) LftL-bor-sep

&κfull(P ∗Q)WVNlft &
κ
full P ∗&κfull Q

LftL-bor-fake
[†κ]VNlft &

κ
full P

LftL-bor-acc-strong
&κfull P ∗ [κ]q VNlft ∃κ

′. κ v κ′ ∗ .P ∗
(
∀Q. .

(
.Q ∗ [†κ′] ∅ .P

)
∗ .Q Nlft

&κ
′

full Q ∗ [κ]q
)

LftL-bor-acc-atomic-strong
&κfull P VNlft ∅

(
∃κ′. κ v κ′ ∗ .P ∗

(
∀Q. .

(
.Q ∗ [†κ′] ∅ .P

)
∗ .Q ∅ Nlft &κ

′

full Q
))
∨(

[†κ] ∗ |V∅ Nlft True
)

Indexed borrows.

LftL-bor-idx
&κfull P ⇔ ∃i. &κi P ∗ [Bor : i]1

LftL-bor-fract
[Bor : i]q+q′ ⇔ [Bor : i]q ∗ [Bor : i]q′

LftL-idx-shorten
κ′ v κ

&κi P ⇒ &κ
′

i P

LftL-idx-acc
&κi P ` 〈[Bor : i]1 ∗ [κ]q WV .P 〉Nlft

LftL-idx-acc-atomic
&κi P ` 〈[Bor : i]q WV b. if b then .P else [†κ]〉∅Nlft

LftL-idx-bor-unnest
&κi P ∗&κ

′

full([Bor : i]1)VNlft &
κuκ′

full P

23



Finally, the rule LftL-bor-acc-atomic-cons provides a way to access a full borrow without
having a proof that the lifetime is still ongoing. The rule is again fairly involved due to incorporating
a rule of consequence, so let us consider the following simpler (derived) version:

〈&κfull P WV b. if b then .P else [†κ]〉∅Nlft
(2)

The key differences to is that we do not need to provide [κ]q. As a consequence, (a) the accessor is
mask-changing, so it can only be used atomically, and (b) we may get either .P (the content of the
full borrow) or a proof that κ has, in fact, already ended.

A closer look at lifetimes. Before we go on talking about the lifetime logic rules, we have to
become more concrete about what a lifetime κ is. Lifetimes κ form a partial commutative monoid
with unit ε. We will also refer to the composition operation (u) as intersection of lifetimes. Moreover,
the PCM has to be cancellable, which means that the composition function is injective.

Furthermore, we define the following inclusion relation on lifetimes:

κ v κ′ := �
((
∀q. 〈[κ]q WV q′. [κ′]q′〉Nlft

)
∗ ([†κ′]VNlft [†κ])

)
This says that κ is dynamically shorter than κ′ if, given any fraction the token for κ, we can produce
some fraction of the token for κ′. Furthermore, tokens showing that κ′ has ended must be convertible
to tokens showing that κ has ended. It is easy to show that this inclusion interacts as expected with
lifetime intersection (LftL-incl-isect).

Indexed borrows. While the proof rules given so far bring us pretty far, it turns out that for
some of the advanced reasoning we need to do for Rust, they do not suffice. As we start to build
more complicated protocols involving full borrows, the fact that &κfull P is neither timeless nor
persistent really becomes a problem.

For this reason, the logic provides a way to decompose a full borrow into timeless and persistent
pieces (the borrow token and the indexed borrow, respectively), which are tied together by an
index i (LftL-bor-idx). Indexed borrows can be opened using LftL-idx-acc, but they cannot be
strengthened, reborrowed or split. They can also be accessed atomically without a lifetime token
LftL-idx-acc-atomic. The latter rule further shows that we actually only need any fraction of the
borrow token to perform an atomic access, thus providing a way of sharing borrows (by distributing
their fractions). Furthermore, indexed borrows can be shortened (LftL-idx-shorten) following the
dynamic lifetime inclusion κ′ v κ.

Indexed borrows are used to state the rule LftL-idx-bor-unnest, which will be used later to
prove two important derived rules: unnesting and reborrowing.

4.2 Derived forms of borrowing
Figure 4 shows some rules that can be derived from the basic rules discussed in the previous
subsection. LftL-bor-freeze is a very interesting derived rule, and it also demonstrates the full
power of LftL-bor-acc-atomic-cons, so we will briefly discuss it. After applying LftL-bor-acc-
atomic-cons, we distinguish two cases. Either we get . ∃x ∈ τ. P . We then move the . down into
the existential and destruct the latter to obtain an x and .P . We pick Q := P and trivially show
that P −∗ ∃x ∈ τ. P . Then we run the closing view shift to finish the proof. In the other case, all we

24



LftL-incl-isect
κ u κ′ v κ

LftL-incl-glb
κ v κ′ κ v κ′′

κ v κ′ u κ′′

LftL-fract-lincl
&κfrac q

′. [κ′]q·q′

κ v κ′

LftL-bor-shorten
κ′ v κ

&κfull P ⇒ &κ
′

full P

LftL-reborrow
κ′ v κ ` &κfull P VNlft &

κ′

full P ∗
(
[†κ′] Nlft

&κfull P
) LftL-bor-unnest

&κ
′

full(&κfull P ) Nlft
&κuκ

′

full P

LftL-bor-acc-cons
&κfull P ∗ [κ]q VNlft .P ∗ ∀Q. .

(
.Q ∅ .P

)
∗ .Q Nlft

&κfull Q ∗ [κ]q

LftL-bor-acc
〈[κ]q ∗&

κ
full P WV .P 〉Nlft

LftL-bor-acc-atomic
〈&κfull P WV b. if b then .P else [†κ]〉∅Nlft

LftL-bor-acc-atomic-cons
&κfull P VNlft ∅

(
.P ∗ ∀Q. .

(
.Q ∅ .P

)
∗ .Q ∅ Nlft &κfull Q

)
∨ [†κ] ∗ |V∅ Nlft True

LftL-bor-freeze
τ inhabited

(&κfull ∃x : τ. P )VNlft ∃x : τ. &κfull P

Figure 4: Lifetime logic derived rules

get is [†κ]. We run the closing view shift, and now we use the fact that τ is inhabited to obtain
some x. We pick that x as the witness for our goal, and then use LftL-bor-fake to finish the proof.

Furthermore, we introduce in Figure 5 some derived forms of borrowing – that is, assertions that
share are somewhat like &κfull P , but not exactly.

Reborrowing. Two The rule LftL-reborrow lets us reborrow a &κfull P , which means that we
can pick some statically shorter lifetime κ′ v κ and obtain P borrowed at κ′. When κ′ ends, we can
get our original full borrow back.

The rule LftL-bor-unnest is related. It deals with the case that we have a full borrow of a full
borrow (&κ

′

full &κfull P ). If we have already opened that full borrow and stripped a way the . added
by opening, then we can use LftL-bor-unnest to “unnest” the full borrow in the sense that we end
up with a full borrow at the intersected lifetime (&κ

′uκ
full P ).

Both of these rules are derived from LftL-idx-bor-unnest.

Persistent borrows. Persistent borrows are a persistent version of borrows. This means that
many parties are allowed to get access to its content. In order to avoid reentrant accesses, we can
use two different mechanisms, giving rise to two flavors of persistent borrows.

Similarly to invariants in Iris, the first possible mechanism is to force only atomic accesses. We
then get atomic persistent borrows, which are essentially like invariant in Iris with the additional
quirk that the invariant is only maintained for the duration of the lifetime of the borrow. They can

25



Notation Meaning Timeless Persistent
&κ/Nat P There is a atomic persistent borrow of P for κ in

namespace N
No Yes

&κfrac λq. P There is a fractured borrow of λq. P for κ No Yes
&κ/p.Nna P There is a non-atomic persistent borrow of P for κ

in non-atomic invariant pool p, namespace N
No Yes

Atomic persistent borrows

LftL-bor-at
N # Nlft ` &κfull P VNlft &

κ/N
at P

LftL-bor-lftnamesp
&κfull P VNlft &

κ/Nlft
at P

LftL-at-acc-atomic
&κ/Nat P ` 〈TrueWV b. if b then .P else [†κ]〉∅Nlft,N

LftL-at-acc
&κ/Nat P ` 〈[κ]q WV .P 〉Nlft−N

Nlft,N

LftL-at-shorten
κ′ v κ

&κ/Nat P ⇒ &κ
′/N

at P

Non-atomic persistent borrows

LftL-bor-na
&κfull P VN �&κ/p.Nna P

LftL-na-acc
&κ/p.Nna P ` 〈[κ]q ∗ [Na : p.N ]WV .P 〉Nlft,N

LftL-na-shorten
κ′ v κ N v N ′

&κ/p.Nna P ⇒ &κ
′/p.N ′

na P

Fractured borrows

LftL-bor-fracture
&κfull Φ(1)VNlft &

κ
frac Φ

LftL-fract-acc
∀q1, q2. Φ(q1 + q2)⇔ Φ(q1) ∗ Φ(q2)
&κfrac Φ ` 〈[κ]q WV q′. . Φ(q′)〉Nlft

LftL-fract-acc-atomic
&κfrac Φ ` 〈TrueWV (b, q). if b then .Φ(q) else [†κ]〉∅Nlft

LftL-fract-shorten
κ′ v κ

&κfrac Φ⇒ &κ
′

frac Φ

Figure 5: Lifetime logic derived forms

26



be defined as follows:

&κ/Nat P := ∃i. &κi P ∗ (N # Nlft ∗ [Bor : i]1
N ∨N = Nlft ∗ ∃q. [Bor : i]q

Nlft)

The other possible mechanism is to restrict the persistent borrow to be used in a threaded
manner, by using the mechanism of non-atomic invariants described in the Iris documentation. The
persistent borrows of this other flavor are called non-atomic persistent borrows. They can be defined
by:

&κ/p.Nna P := ∃i. &κi P ∗ NaInvp.N ([Bor : i]1)

Fractured borrows. A fractured borrow is a borrow of a permission Φ(q) that can be fractured,
i.e., decomposed according to a fraction:

Φ(q1 + q2)⇔ Φ(q1) ∗ Φ(q2)

Intuitively, it should be possible to share such a borrow, and still obtain some fraction of Φ via
a non-atomic accessor, i.e., Φ(q) can actually be kept around for non-atomic expressions. This is
because even if other threads are concurrently accessing the borrow, they will always leave some
fraction of Φ in the borrow.

The way this works is that we have an atomic persistent borrow which contains some fraction
of Φ, and some fraction of the lifetime token, such that the two fractions add up to 1. When the
lifetime is ended, the full token of one of the intersected lifetimes is used up, so there cannot be any
piece of the lifetime token within the fractured borrow – so the full Φ(1) is available. The rule of
consequence LftL-bor-acc-strong witnesses this fact by providing [†κ] to the view shift that is
applied.

Fractured borrows can be defined as follows:

&κfrac Φ := ∃κ′, γ. κ v κ′ ∗&κ
′/Nlft

at ∃q. Φ(q) ∗ q γ ∗ (q = 1 ∨ [κ′]1−q))

Here, are using the Frac RA.
Fractured borrows are particularly interesting for giving rise to dynamic lifetime inclusion

(LftL-fract-lincl).

4.3 Model
We will model lifetimes κ as multisets of atomic lifetimes Λ ∈ N, which are just identifiers. This
forms a cancellable positive commutative monoid with union for composition and ∅ as the unit.

We will need the following datatypes and CMRAs:

BorSt := in + open(q) + rebor(κ)
LftSt := LftStAlive + LftStDead

ALft := Auth(N fin−⇀ Frac + ())

ILft := Auth(℘fin,+(N) fin−⇀ Ag(G × G × G))

BorBox := Auth(N fin−⇀ Ag(BorSt)× Frac)
Cnt := Auth(N)

InhBox := Auth(℘fin(N))

27



We assume some globally known indices γa and γi for managing atomic and intersected lifetimes.
The two tokens of the lifetime logic are easily modelled:

[κ]q :=∗
Λ∈κ

◦ [Λ← inl(q)] γa

[†κ] := ∃Λ ∈ κ. ◦ [Λ← inr()] γa

We will use the following notation for a view shift that frames assertion PF :

P [PF ]E Q := P ∗ PF E Q ∗ PF

ILft manages the intersected lifetimes; it just records the ghost names of the state managing
those lifetimes. To simplify working with this indirection, we define:

OwnBor(κ, x) := ∃γbor. ◦ [κ← γbor, , ] γi ∗ x γbor

OwnCnt(κ, x) := ∃γcnt. ◦ [κ← , γcnt, ] γi ∗ x γcnt

OwnInh(κ, x) := ∃γInh. ◦ [κ← , , γInh] γi ∗ x γInh

Now we can define the core of the model: the protocols for alive and dead lifetimes. We split the
namespace Nlft into three disjoint sub-namespaces Nmgmt, Nbor, Ninh. Here, A : N fin−⇀ LftSt is a
map indicating the state of the atomic lifetimes, and I : ℘fin,+(N) fin−⇀ G × G × G indicates which
intersected lifetimes exist.

28



bor_to_box(s) :=

full if s = in

empty otherwise

LftBorAlive(κ, PB) := ∃B : N fin−⇀ BorSt.OwnBor(κ, • [i←(B(i), 1) | i ∈ dom(B)]) ∗
Box(Nbor, PB , [i← bor_to_box(B(i)) | i ∈ dom(B)]) ∗

∗
i∈dom(B)


True if B(i) = in
[κ]q if B(i) = open(q)
OwnCnt(κ′, ◦ 1) ∗ κ ⊂ κ′ if B(i) = rebor(κ′)


LftBorDead(κ) := ∃B : ℘fin(N), PB : Prop.OwnBor(κ, • [i←(in, 1) | i ∈ B]) ∗

Box(Nbor, PB , [i← empty | i ∈ dom(B)])
LftInh(κ, PI , s) := ∃E : ℘fin(N).OwnInh(κ, •E) ∗ Box(Ninh, PI , [i← s | i ∈ E])

LftVs(κ, PB , PI) := ∃n : N.OwnCnt(κ, •n) ∗ ∀I : ℘fin,+(N) fin−⇀ G × G × G.

. PB ∗ [†κ]

LftBorDead(κ) ∗ • I γi ∗ ∗
κ′∈dom(I)
κ′⊂κ

LftAlive(κ′)


Nbor

.PI ∗ OwnCnt(κ◦n)

LftAlive(κ) := ∃PB , PI . LftBorAlive(κ, PB) ∗ LftVs(κ, PB , PI) ∗ LftInh(κ, PI , empty)
LftDead(κ) := ∃PI . LftBorDead(κ) ∗ OwnCnt(κ, • 0) ∗ LftInh(κ, PI , full)

LftAliveIn(A, κ) := ∀Λ ∈ κ.A(Λ) = LftStAlive
LftDeadIn(A, κ) := ∃Λ ∈ κ.A(Λ) = LftStDead

LftInv(A, κ) := LftAlive(κ) ∗ LftAliveIn(A, κ) ∨ LftDead(κ) ∗ LftDeadIn(A, κ)

Notice that LftAlive and LftVs are defined mutually recursively, which is well-defined because the
size of the lifetime κ gets strictly smaller.

The rough idea behind this setup is as follows: For every lifetime κ, we have two boxes: one
tracking the borrows, and one tracking the inheritances. The latter are used to obtain resources
from dead lifetimes, which is necessary to show the view shift obtained via LftL-borrow and
LftL-reborrow. The borrow box contains assertion PB, and we have an authoritative map B
tracking which slices of the box are full and which are not. There are two ways a slice can be empty:
either the borrow currently open, and some fraction of the lifetime token was put in here as a deposit.
Alternatively, the borrow can be reborrowed to a strictly shorter lifetime (i.e., a lifetime represented
by a strictly larger multiset). Ownership of the fragments of B permit changing the state of the
slice or removing it (e.g., for splitting, where one slice is removed and two new ones are added). On
the inheritance side, the box overall contains assertion PI . LftInh ensures that the slices of the box
are all in the same state, but there is still an authoritative set that manages ownership of slices for
the purpose of removing them from the box. Finally, PB and PI are connected through LftVs, which
roughly speaking says that one can view shift from PB to PI . This view shift is executed when a
lifetime ends, after which PI can be used to fill all the inheritance boxes. All that extra machinery
in LftVs is needed to support reborrowing.

Based on this, we define LftLCtx, which we always assume to be in the context for the lifetime

29



logic rules.

LftLInv := ∃A, I. •A γa ∗ • I γi ∗ ∗
κ∈dom(I)

LftInv(A, κ)

LftLCtx := LftInv Nmgmt

Now we can model the remaining assertions of the logic, and an assertion RawBor (“raw borrows”)
that will be useful later in the proofs. The indices i in the lifetime logic rules are actually pairs of a
lifetime κ′ and a box index i.

κ v κ′ :=
(
∀q. 〈[κ]q WV q′. [κ′]q′〉Nlft

)
∗
(
[†κ′]VNlft [†κ]

)
[Bor : κ′, i]q := OwnBor(κ, ◦ i← (in, q))

&κκ′,i P := κ v κ′ ∗ BoxSlice(Nbor, P, i)
RawBor(κ, P ) := ∃i.BoxSlice(Nbor, P, i) ∗ [Bor : κ, i]1

&κfull P := ∃κ′. κ v κ′ ∗ RawBor(κ′, P )

Some proof rules are trivially justified: LftL-tok-fract, LftL-tok-comp, LftL-tok-unit, LftL-
not-own-end, LftL-end-comp, LftL-end-unit, LftL-bor-idx, LftL-bor-fract, LftL-idx-shorten
are all simple implications. We briefly discuss the most important steps of most the remaining
rules.1 When we have a full borrow &κfull P , we will call the actual lifetime of the borrow (the one
in the existential quantifier) κ0. In particular, κ v κ0.

Proof sketch of LftL-borrow. First we have to check whether κ is already allocated in I; if
not, that’s easy to do:

TrueVNlft ◦ [κ← , , ] γi (3)

The proof of this also extends A with new atomic lifetimes as necessary. In the following, we assume
to have this in the context.

Next we take a look at LftInv(A, κ). If the lifetime is dead, we use the following to create a “fake”
full borrow:

.b LftBorDead(κ)VNbor .
b LftBorDead(κ) ∗ RawBor(κ, P ) (4)

. LftInh(κ, PI , full) ∗ .P VNinh . LftInh(κ, PI ∗ P, full) ∗
(
[†κ] Nlft

.P
)

(5)

(4) just extends the B in LftBorDead with a fresh element and creates an empty slice in the box. (5)
allocates a fresh element in E.

If the lifetime is alive, we use:

. LftInh(κ, PI , empty)VNinh . LftInh(κ, PI ∗ P, empty) ∗ ∃j.OwnInh(κ, ◦ {j}) ∗ BoxSlice(Ninh, P, j)
(6)

. LftBorAlive(κ, PB) ∗ .P VNbor . LftBorAlive(κ, PB ∗ P ) ∗&κfull P (7)

. LftVs(κ, PB , PI)⇒ . LftVs(κ, PB ∗ P, PI ∗ P ) (8)
1The proof of reborrowing is not covered here; it can (like the others) be found in the Coq development.

30



These are all easy consequences of boxing lemmas and allocating in the authoritative B and E. All
that is left to do is show the view shift [†κ] .P . From [†κ] we learn that κ has ended, so we can
get access to LftDead(κ). We can now apply the following lemma to the resources we got from (6):

. LftInh(κ, PI , full) ∗ OwnInh(κ, ◦ {j}) ∗ BoxSlice(Ninh, P, j)VNinh .P ∗ ∃P
′
I . . LftInh(κ, P ′I , full)

(9)

This is shown easily by removing the slice from the box.

Proof sketch of LftL-bor-fake. This is a trivial consequence of (4).

Proof sketch of LftL-bor-acc-cons, LftL-idx-acc. These two work fairly similarly. First we
run the accessor in κ v κ0 to obtain a token for the actual lifetime κ0 of the borrow. We have
a witness of κ0 being in I, so we can get LftInv(A, κ0). Since we have a token [κ0]q′ , we can get
LftAlive(κ0). All we care about is LftBorAlive, using the following lemma:

BoxSlice(Nbor, P, i) ` . LftBorAlive(κ, PB) ∗ OwnBor(κ, ◦ i← in, inl(ex())) ∗ [κ]q WVNbor

. LftBorAlive(κ, PB) ∗ OwnBor(κ, ◦ i← open(q), inl(ex())) ∗ .P
(10)

From B(i) = in we know that the box slice is full. We empty the slice, obtaining .P . Next, we
change B(i) to open(q). This allows us to re-establish LftBorAlive. Similar, for the right-to-left
direction, we fill the empty slice and change B(i) back to in.

This already pretty much completes the proof of LftL-idx-acc. For the closing view shift, we
follow the same path, using the right-to-left direction of (10).

To finish LftL-bor-acc-cons, we have to handle the rule of consequence embedded in the closing
view shift of the accessor. We start out like above, until we get LftBorAlive. We use remove the
empty slice from the borrow box to learn that PB later decomposes into P ′B ∗ P . Since LftBorAlive
and LftVs are contractive in PB , we can rewrite with this decomposition. After adding a new empty
slice to the box, we can obtain . LftBorAlive(κ0, P

′
B ∗Q) (this also requires removing the old slice

from the authoritative map and adding a new one, but we own the fragment, so that’s possible).
Then we can finish the proof by applying (10) and

. LftVs(κ, P ′B ∗ P ) ∗ .
(
.Q ∗ [†κ] −Nlft

.P
)
⇒ . LftVs(κ, P ′B ∗Q) (11)

This last lemma follows by composing the view shift in LftVs with the one we get (from Q to P ).

Proof sketch of LftL-bor-acc-atomic-cons, LftL-idx-acc-atomic. We start by inspecting
whether κ0 is alive. If it is not, we obtain [†κ0], close the invariant again, and use κ v κ0 to obtain
[†κ]. The closing view shift is trivial.

If κ′ is alive, we take apart . LftBorAlive(κ, PB). From the borrow token we got, we have B(i) = in,
and thus the slice with P is full and we can empty it.

We are done with LftL-idx-acc-atomic now: for the closing view shift, we get .P again, so we
fill the slice and are done.

For LftL-bor-acc-atomic-cons, we instead continue like we did above with LftL-bor-acc-cons:
we remove the empty slice and create a new one with Q in it, and then we update LftVs using (11).

31



Proof sketch of LftL-bor-sep. First, we look at the left-to-right direction (splitting), which is
simpler. We start by looking at LftInv(κ′). If it is dead, then we use (4) to just “fake” &κ

′

full P and
&κ

′

full Q, which can both be changed to borrows at κ using LftL-idx-shorten.
So we can assume we have . LftAlive(κ′) and, in particular, . LftBorAlive. We split the slice

containing P ∗ Q into two slices containing P and Q, respectively. We also have to fix up the
authoritative map B, which is easy because we own the fragment corresponding to the slice we
removed. This gives us fragments for the new new slices, so we can finish up the proof by putting
these fragments into the proofs of &κ

′

full P and &κ
′

full Q.
Next, we look at the right-to-left direction (merging). The trouble here is that we obtain two

borrows, at two potentially different lifetimes κ0 and κ1. We do have κ v κ0 and κ v κ1. We use
reborrowing to obtain both borrows at lifetime κ′ := κ u κ0 u κ1. Notice that we have κ v κ′ Now
we can start to do the actual merging. We check whether κ′ is dead; if yes, so is κ and we can “fake”
the result. So we obtain . LftAlive(κ′) and, in particular, . LftBorAlive. We merge the two slices
containing P and Q, respectively, and turn them into a slice containing P ∗ Q. We have all the
fragments we need to fix up the authoritative B, so we can close everything up again and obtain
&κ

′

full P ∗&κ
′

full P . By LftL-bor-shorten, we are done.

Proof sketch of LftL-begin. The first step of this proof is easy, it just involves allocating a new
atomic lifetime Λ in ALft and returning a singleton κ := {Λ}.

This leaves us with proving the closing view shift. Before we come to the core proof, we show
some helper lemmas. We start with a lemma to end a single intersected lifetime κ:

(∀κ′. κ′ ∈ dom(I) ∧ κ′ ⊂ κ⇒ κ′ ∈ K) ∧ (∀κ′. κ′ ∈ dom(I) ∧ κ ⊂ κ′ ⇒ κ′ ∈ K ′) `

LftAlive(κ) ∗ [†κ]
[
• I γi ∗ ∗

κ′∈K
LftAlive(κ′) ∗ ∗

κ′∈K′

LftDead(κ′)
]
−Nmgmt

LftDead(κ) (12)

The proof proceeds by taking a closer look at LftBorAlive (in LftAlive(κ)). The goal is to show that
all B(i) are in. We can rule out open because we have [†κ]. For rebor(κ′), we obtain OwnCnt(κ′, ◦ 1)
for κ′ strictly larger than κ. However, this implies κ′ ∈ K ′ and thus we have LftDead(κ′), which
says that the authoritative count is 0 (and the ghost names match) – a contradiction. This we
know B(i) = in. After emptying the borrow box, we obtain .PB and LftBorDead(κ). Next, we
apply LftVs. We have all its preconditions: .PB , [†κ], the authoritative I and LftAlive for all strictly
shorter lifetimes. We obtain .PI and OwnCnt(κ, ◦n), which we use with the authoritative counter
to set that to 0. We fill the inheritance box, obtaining LftInh(κ, PI , full) which completes the proof.

Next, we show how to end a whole set K of lifetimes at once. To this end, the set K must be
closed under smaller lifetimes, i.e., larger sets. Furthermore, we need a proof that all all the other
lifetimes in I that have some sublifetime in K that’s alive according to A, are still alive (these
lifetimes are collected in K ′).

(∀κ ∈ K. ∀κ′ ∈ dom(I). κ′ ⊇ κ⇒ κ′ ∈ K) ∧
(∀κ ∈ K. ∀κ′ ∈ dom(I). LftAliveIn(A, κ) ∧ κ′ /∈ K ∧ κ′ ⊂ κ⇒ κ′ ∈ K ′) `(∗
κ∈K

LftInv(A, κ) ∗ [†κ]
) [

• I γi ∗ ∗
κ′∈K′

LftAlive(κ′)
]
−Nmgmt

∗
κ∈K

LftDead(κ)
(13)

32



To show (13), we perform induction over the metric |K|, i.e., over the size of the kill-set K. We
start by checking whether K contains any lifetimes κ such that LftAliveIn(A, κ). If no, we have
nothing to do. Otherwise, we select a minimal element κ ∈ {κ ∈ K | LftAliveIn(A, κ)} according to
the relation ⊂. This relation is acyclic, so such an element has to exist. We let K ′′ := K \ {κ} and
K ′′′ := K ′ ∪ {κ}. Clearly, K ′′ is smaller than K, so we can invoke the induction hypothesis to kill
K ′′ while framing K ′. To this end, we have to show that K ′′ is up-closed. This is the case because
κ is not only minimal in {κ ∈ K | LftAliveIn(A, κ)}, it is also minimal in K. Furthermore we have to
show that K ′′′ contains all lifetimes below something alive in K ′′. This is the case, because such a
lifetime κ′ will either also be in the down-closure of K (and hence it is in K ′), or it will be κ itself,
which we added to K ′′′. After invoking the induction hypothesis, we have that all lifetimes in K ′′
are dead. To complete our goal, all that’s left to do is end κ. To this end, we invoke (12). By our
frame and by the fact that κ is a minimal alive lifetime in K, we know that all lifetimes strictly
shorter than κ are in K ′ and hence alive. Furthermore, we know that all lifetimes strictly larger
than κ are in K ′′ and hence dead. This completes the proof.

Now, we can come back to proving the closing view shift of LftL-begin. We start out assuming
[{Λ}]1. We open LftLCtx and take a step to obtain LftLInv. From the token we own, we know
A(Λ) = LftStAlive. We update our token to obtain [† {Λ}]. Now we want to apply (13) with
K := {κ ∈ I |Λ ∈ κ} and K ′ := {κ ∈ dom(I) |κ /∈ K ∧ ∃κ′ ∈ K. LftAliveIn(A, κ′) ∧ κ ⊂ κ′}. From
[† {Λ}] we can get the corresponding token for all κ ∈ K. We thus satisfy all requirements of (13),
which finishes the proof.

33



5 λRust model
Well-formed terms of the type system are interpreted as Iris terms. Valuable expressions are
interpreted as the value they evaluate to. Variables in the type system are interpreted as Iris
variables of appropriate sort.

5.1 Types
Types are complex beasts. After the preparations we made in §4, it should not come as a surprise
that borrowing of λRust types will be explained using the lifetime logic. The notation has already
been suggestively chosen to match the one used in the syntactic type system.

The domain of semantic types is defined in Figure 6, and the interpretation of all primitive types
is defined in Figure 7. In the following, we will develop this definition step-by-step, together with the
semantic interpretation of the most important (and most complex) types: Owned pointers, as well
as mutable and shared references. We will also talk about products (restricted to the representative
case of pairs), which is probably the least surprising type.

The core of a semantic type is its notion of ownership JτK.own : TId× list(Val)→ iProp. This is
a thread-indexed predicate over a list of values. Why lists of values? A type describes a continuous
region of memory: Compound types like products and sums take up more than one memory location,
because they need more than one value to be represented. For example, the interpretation of τ1 × τ2
will demand that the given list is the concatenation of two lists accepted by τ1 and τ2, respectively,
while the uninitialized type just accepts any list of appropriate length:

Jτ1 × τ2K.own(t, v) := ∃v1, v2. v = v1 ++ v2 ∗ Jτ1K.own(t, v1) ∗ Jτ2K.own(t, v2)
J nK.own(_, v) := |v| = n

The thread-relative nature of these predicates is needed to model types which are not Send or Sync,
types which crucially rely on being accessed from only a single thread.

It turns out that we need another bit of data to properly describe a type: We need to know
its size. This is given as JτK.size : N, such that Ty-size holds. Note that we also need to have

Semantic Type A semantic type is a tuple (size ∈ N, own ∈ TId × list(Val) → iProp, shr ∈
Lft× TId× Loc→ iProp) such that

∀t, v. own(t, v)⇒ |v| = size (Ty-size)
∀κ, t, `. shr(κ, t, `)⇒ � shr(κ, t, `) (Ty-shr-persistent)
∀κ, t, `. &κfull (` 7→ own(t)) ∗ [κ]q VNlft shr(κ, t, `) ∗ [κ]q (Ty-share)

∀κ, κ′, t, `. κ′ v κ⇒ shr(κ, t, `)⇒ shr(κ′, t, `) (Ty-shr-mono)

Semantic type inclusion

τ1 vty τ2 := τ1.size = τ2.size ∧ (�∀t, v. τ1.own(t, v)⇒ τ2.own(t, v)) ∧
(� ∀κ, t, `. τ1.shr(κ, t, `)⇒ τ2.shr(κ, t, `))

Figure 6: The semantic domain of types.

34



size(τ) = JτK.size.

5.1.1 Owned pointers and mutable references

With the foundations introduced above, we can now define

Jownn τK.own(t, v) := ∃`. v = [`] ∗ . ` 7→ JτK.own(t) ∗
(
JτK.size = 0 ∨ JnK > 0 ∗ . †JτK.sizeJτK.size/JnK `

)
J&κmut τK.own(t, v) := ∃`. v = [`] ∗&κfull ` 7→ JτK.own(t)

Here and in the remainder of this document, ` 7→ Φ is sugar for ∃v. ` 7→ v ∗ Φ(v). Notice the close
relationship between the two types: The mutable reference has a borrow of the content where the
owned pointer, well, owns it. In particular, both definitions are contractive. The only remaining
difference is that owned pointers have the permission to deallocate what they point to, which mutable
references do not have.

With this setup, it is clear how borrowing can start (C-borrow). It is also clear that owning
a mutable reference at an ongoing lifetime justifies reading and writing through that pointer
(Tread-bor and Twrite-bor).

Re-borrowing an already borrowed pointer (C-reborrow) is justified by LftL-reborrow.
The most interesting rules are S-deref-bor-own and S-deref-bor-bor. In both cases, after

opening the borrow, we freeze the current value of the pointer: Since the original borrow is lost, we
know it cannot be changed anymore. For S-deref-bor-bor, we also have to justify getting out the
inner borrow: We start with a nested borrow, and after opening the outer one and taking a step, we
use LftL-bor-unnest to both close the outer borrow and obtain the inner one at the outer lifetime.

5.1.2 Shared references

The story is unfortunately more complicated for shared references. This is because sharing is a
rather non-uniform idea in Rust: For many types, sharing them (i.e., having a shared reference to
an element of such a type) implies that the contents of the variable are frozen, i.e., all mutation is
prohibited. This makes it trivially safe for everybody to perform read-only actions on this variable,
without and risk of data races or invalid pointers. The obvious model for this in separation logic is
to provide every holder of a shared reference with some fraction of the pointer.

Other types, however, provide interior mutability, which means that it is possible to perform
mutation through a shared reference. This should be modeled by having full ownership of the
pointer available, guarded through some protocol so that every holder of a shared reference can
obtain the full permission if they follow the protocol.

The way we express this formally is that every type decides itself what it means to be shared.
The interpretation of &κshr τ is not given uniformly; instead, it is defined by the type itself:

J&κshr τK.own(t, v) := ∃`. v = [`] ∗� JτK.shr(κ, t, `)

The sharing predicate has to satisfy two core properties: By Ty-shr-persistent, sharing is
persistent. By Ty-share, sharing can be started from a mutable reference (compare the premise of
this rule to the interpretation of mutable references above). Furthermore, sharing predicates have to
satisfy some closure properties (Ty-shr-mono).

35



J!Kγ := Type {size := 0; own := λ , .False; shr := λ , , .False} (Ty-def-emp)
JunitKγ := Type {size := 0; own := λ , v. v = []; shr := λ , , .True} (Ty-def-unit)
JboolKγ := SimpleType(λ , v. v = true ∨ v = false) (Ty-def-bool)
JintKγ := SimpleType(λ , v.∃z. v = z) (Ty-def-nat)

Jownn τKγ := Type {size := 1;
own := λt, v.∃`. v = [`] ∗ . ` 7→ JτKγ .own(t) ∗(

JτKγ .size = 0 ∨ JnKγ > 0 ∗ . †JτKγ .sizeJτKγ .size/JnKγ
`
)

;

shr := λκ, t, `. ∃`′. &κfrac(λq′. ` q′

7−→ `′) ∗

�
(
∀q′. [κ]q′

Nlft
Nshr,Nlft

JτKγ .shr(κ, t, `
′) ∗ [κ]q′

)
}

(Ty-def-own)
J&κmut τKγ := Type {size := 1;

own := λt, v.∃`. v = [`] ∗&JκK
full ` 7→ JτKγ .own(t);

shr := λκ′, t, `. ∃`′. &κ
′

frac(λq. ` q7−→ `′) ∗

�
(
∀q. [JκK u κ′]q

Nlft
E,Nlft

JτKγ .shr(JκK u κ
′, t, `′) ∗ [JκK u κ′]q

)
}

(Ty-def-mut)
J&κshr τKγ := SimpleType(λt, v.∃`. v = ` ∗ JτKγ .shr(JκK, t, `)) (Ty-def-shr)

JΠτKγ := Type {size :=
∑
i

Jτ iKγ .size;

own := λt, v.∃v. v =
∑
i

vi ∗∗
i

Jτ iKγ .own(t, vi);

shr := λκ, t, `.∗
i

Jτ iKγ .shr(κ, t, `+
∑
j<i

Jτ jKγ .size)}

(Ty-def-prod)
JΣτKγ := Type {size := 1 + max

i
JτiKγ .size;

own := λt, v.∃i, v′, v′′. v = [i] ++ v′ ++ v′′ ∗ Jτ iKγ .own(t, v′) ∗
|v′′| = 1 + max

j
Jτ jKγ .size;

shr := λκ, t, `. ∃i. Jτ iKγ .shr(κ, t, `+ 1) ∗&κfrac
(
λq. `

q7−→ i ∗
(`+ 1 + Jτ iKγ .size 7→ λv. Jτ iKγ .size + |v| = max

j
Jτ jKγ .size)

)
}

(Ty-def-sum)
J 1Kγ := SimpleType(λ , .True) (Ty-def-uninit1)
J nKγ := Π[ 1, . . . , 1] of length JnK (Ty-def-uninit)

J∀α. fn(ϝ : E; τ)→ τKγ := SimpleType(λ , v.∃f, x, k, F. v = funrec f(x) ret k := F ∗
.∀κ, κϝ, vk, v. �JE; ϝ vl [] | k C cont(ϝ vl [];x. x C own τ);

x C own τ ` F [funrec f(x) ret k := F/f, v/x, vk/k]Kγ[α←κ][ϝ←κϝ][x← v][k← vk])
(Ty-def-fn)

JµT. τK := fix(λT. JτKγ[T ←T ])

Figure 7: The interpretations of all the primitive types

36



Simple sharing. The most simple form of sharing occurs when sharing “plain data”. For example,
consider the type int. We define ownership and sharing of a number as follows:

JintK.own(t, v) := ∃z. v = [z]

JintK.shr(κ, , `) := ∃v. &κfrac(λq. ` q7−→ v) ∗ JintK.own(t, v)

Actually, this kind of sharing is so common that we define a notion of simple types using the above
sharing predicate:

SimpleType(Φ) := Type {size := 1;
own := λt, v.∃v. v = [v] ∗ Φ(t, v);

shr := λκ, t, `. ∃v. &κfrac(λq. ` q7−→ v) ∗ .Φ(t, v)}

For a simple type, we only have to show that the ownership predicate Φ is persistent and that
Ty-size holds. The remaining properties follow.

Sharing owned pointers and mutable references. It turns out that owned pointers and
mutable references have interesting and similar sharing predicates. Here’s the full definition:

Jownn τK.shr(κ, t, `) := ∃`′. &κfrac(λq. ` q7−→ `′) ∗�
(
∀q. [κ]q

Nlft
Nshr,Nlft

JτK.shr(κ, t, `′) ∗ [κ]q
)

J&κmut τK.shr(κ′, t, `) := ∃`′. &κ
′

frac(λq. ` q7−→ `′) ∗�
(
∀q. [κ u κ′]q

Nlft
E,Nlft

JτK.shr(κ u κ′, t, `′) ∗ [κ u κ′]q
)

using again the “magic update that takes a step” introduced in §4.
As you can see, a shared reference to an owned pointer or mutable reference consists of two

parts: First of all, the outer pointer is shared. This is a straight-forward fractured borrow such that
everybody gets a read-only permission to dereference the outer pointer. This is just like the simple
sharing predicate defined above.

The more complicated, second part involves sharing the inner pointer. What we would like to
have here (instead of the view shift that takes a step) is just JτK.shr(κ, t, `′). Unfortunately, that
would make it impossible to prove Ty-share: Since owned pointers are, well, pointers, they only
own the data they point to later or under a borrow, respectively. This also means they cannot
start sharing that data immediately, since execution view shifts under . is not possible. Instead,
we remember that we can start sharing the data behind the inner pointer once someone lets us
take a step. In other words, only when the outer pointer is dereferenced, the sharing of the inner
data actually starts. We kind of lazily apply sharing down the pointer chain. To prove this view
shift, there will be a small invariant managing this, since the shared references could actually be
distributed accross different threads – there is a race for who gets to actually start the sharing.

37



5.1.3 Compound types: Sums and products

Both ownership and sharing of sums and products are fairly straight-forward, but there is some
book-keeping and list manipulation going on that blurs the view.

JΠτK.own(t, v) := ∃v. v =
∑
i

vi ∗∗
i

Jτ iK.own(t, vi)

JΠτK.shr(κ, t, `) :=∗
i

Jτ iK.shr(κ, t, `+
∑
j<i Jτ jK.size)

JΣτK.own(t, v) := ∃i, v′, v′′. v = [i] ++ v′ ++ v′′ ∗ |v′′| = 1 + max
j

Jτ jK.size ∗ Jτ iK.own(t, v′)

JΣτK.shr(κ, t, `) := ∃i. &κfrac
(
λq. `

q7−→ i ∗ (`+ 1 + Jτ iK.size 7→ λv. Jτ iK.size + |v| = max
j

Jτ jK.size)
)
∗

Jτ iK.shr(κ, t, `+ 1)

5.1.4 Copy, Send, Sync

Jτ copyKγ := (�∀t, v. JτKγ .own(t, v)⇒ � JτKγ .own(t, v)) ∧

�∀κ, t, `, q. JτKγ .shr(κ, t, `) −∗ 〈[Na : t.Nshr.[≥`,<`+ 1 + JτKγ .size]] ∗ [κ]q WV

q′. [Na : t.Nshr.(`+ JτKγ .size)] ∗ . `
q′

7−→ JτKγ .own(t)〉Nshr,Nlft

Jτ sendKγ := � ∀t1, t2, v. JτKγ .own(t1, v)⇒ JτKγ .own(t2, v)
Jτ syncKγ := �∀κ, t1, t2, `. JτKγ .shr(κ, t1, `)⇒ JτKγ .shr(κ, t2, `)

5.2 Type and continuation contexts

JTKγ : TId→ iProp
J∅Kγ(t) := True

JT, p C τKγ(t) := JτKγ .own(t, [JpK]) ∗ JTKγ(t)

JT, p C†κ τKγ(t) :=
(
[†JκK] > JτKγ .own(t, [JpK])

)
∗ JTKγ(t)

JKKγ : TId→ iProp
J∅Kγ(t) := True

JK, k C cont(L;x.T)Kγ(t) :=
(
∀v. [Na : t] ∗ JLKγ(1) ∗ JTKγ[x← v](t) −∗ wp JkKγ(v) {True}

)
∧ JKKγ(t)

38



5.3 Lifetime contexts and judgments
The local and external lifetime contexts are interpreted as follows:

JEKγ : iProp
J∅Kγ := True

JE, κ ve κ
′Kγ := JκKγ v Jκ′Kγ ∗ JEKγ

JLKγ : Fract→ iProp
J∅Kγ(q) := True

JL, κ vl κKγ(q) := ∃κ′. JκKγ = κ′ u (uJκKγ) ∗ [κ′]q ∗�
(
[κ′]1

Nlft
∅ [†κ′]

)
∗ JLKγ(q)

JE1; L1 ` E2K := ∀q. JLK(q) −∗ �(JE1K −∗ JE2K)
JE; L ` κ1 v κ2K := ∀q. JLK(q) −∗ �(JEK −∗ Jκ1K v Jκ2K)
JE; L ` κ aliveK := ∀q. JEK −∗ 〈JLK(q)WV q′. [JκK]q′〉

5.4 Judgments

JE; L ` τ1 ⇒ τ2Kγ := ∀q. JLKγ(q) −∗ �(JEKγ −∗ τ1 vty τ2)
JE; L ` T1 ⇒ T2Kγ := ∀t, q. JEKγ ∗ JLKγ(q) ∗ JT1Kγ(t) JLKγ(q) ∗ JT2Kγ(t)

JT1 ⇒†κ T2Kγ := ∀t. [†κ] ∗ JT1Kγ(t) JT2Kγ(t)
JE ` K1 ⇒ K2Kγ := ∀t. JEKγ ∗ JK1Kγ(t) JK2Kγ(t)

JE; L ` τ1 (τ τ2Kγ := ∀`, t, q. JEKγ ∗ JLKγ(q) ∗ Jτ1Kγ .own(t, [v]) Nlft,Nrust
∃`, v. ` = v ∗ |v| = JτKγ .size ∗ ` 7→ v ∗(

. ` 7→ JτKγ .own(t) Nlft,Nrust
JLKγ(q) ∗ Jτ2Kγ .own(t, v)

)
JE; L ` τ1

(τ τ2Kγ := ∀`, t, q. JEKγ ∗ JLKγ(q) ∗ [Na : t] ∗ Jτ1Kγ .own(t, [v]) Nlft,Nrust

∃`, v, q′. ` = v ∗ ` q′

7−→ v ∗ . JτKγ .own(t, v) ∗(
`
q′

7−→ v Nlft,Nrust
JLKγ(q) ∗ [Na : t] ∗ Jτ2Kγ .own(t, v)

)
JE; L | T1 ` I a x.T2Kγ := ∀t. JEKγ ∗ JLKγ(1) ∗ [Na : t] ∗ JT1Kγ(t) −∗ wp I

{
v. JLKγ(1) ∗ [Na : t] ∗ JT2Kγ[x← v](t)

}
JE; L | K; T ` F Kγ := ∀t. JEKγ ∗ JLKγ(1) ∗ [Na : t] ∗ JKKγ(t) ∗ JTKγ(t) −∗ wp F {True}

5.5 Theorems
Theorem 1 (Compatibility of the logical relation). For any inference rule of the type system, if
we wrap all judgments in semantic brackets J−K, the resulting Iris theorem holds.

Theorem 2 (Adequacy of the logical relation). Let f be a λRust function such that the Iris assertion
J∅; ∅ | ∅ ` f a x. x C fn() → Π[]K holds, then when we execute f(λx. x) (passing it the default
continuation), no execution ends in a stuck state.

39


	1 Syntax
	1.1 Grammar
	1.2 Operational semantics
	1.3 Continuation-passing-style let-normal programs
	1.4 Type System
	1.4.1 Well-formedness
	1.4.2 Size, Copy, Send, Sync
	1.4.3 Lifetime context judgments
	1.4.4 Type Inclusion
	1.4.5 Well-typed functions and steps


	2 Some examples
	3 Lambda-Rust in Iris
	4 Lifetime logic
	4.1 Proof rules
	4.2 Derived forms of borrowing
	4.3 Model

	5 Lambda-Rust model
	5.1 Types
	5.1.1 Owned pointers and mutable references
	5.1.2 Shared references
	5.1.3 Compound types: Sums and products
	5.1.4 Copy, Send, Sync

	5.2 Type and continuation contexts
	5.3 Lifetime contexts and judgments
	5.4 Judgments
	5.5 Theorems


