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Abstract

In the interest of designing a recursive module extensidviltahat
is as simple and general as possible, we propose a noveltyieas
for general recursion over effectful expressions. Theeqmes of
effects seems to necessitate a backpatching semantiectosion
similar to that of Scheme. Our type system ensures statitizl
recursion is well-founded—that the body of a recursive egpion
will evaluate without attempting to access the undefinednsiee
variable—which avoids some unnecessary run-time costxiass
ated with backpatching. To ensure well-founded recursiothée
presence of multiple recursive variables and separate itatiop,
we track the usage of individual recursive variables, regméed
statically by “names”. So that our type system may evenjuazdl
integrated smoothly into ML's, reasoning involving name®nly
required inside code that uses our recursive construct @ad not
infect existing ML code, although instrumentation of sorristng
code can help to improve the precision of our type system.
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1 Introduction

A distinguishing feature of the programming languages enNtL
family, namely Standard ML [21] and Objective Caml [25],heir
strong support for modular programming. The module systeins
both languages, however, are strictly hierarchical, goiihig cyclic
dependencies between program modules. This restrictionfis-
tunate because it means that mutually recursive functiodsygpes
must always belefinedin the same module, regardless of whether
they belongconceptually in the same module. As a consequence,
recursive modules are one of the most commonly requested-ext
sions to the ML languages.

There has been much work in recent years on recursive moglule e
tensions for a variety of functional languages. One of thénma
stumbling blocks in designing such an extension for an irapam-
guage like ML is the interaction of module-level recursiod @ore-
level computational effects. Since the core language of Mly o
permits recursive definitions afabstractions (functions), recursive
linking could arguably be restricted to modules that oniytein
fun bindings. The banishing of all computational effects, hasve
would place a severe restriction on recursive module progriag.

Some recursive module proposals attempt to ameliorateetsiisic-
tion by splitting modules into eecursively linkablesection and an
initialization section, and only subjecting the former to syntactic
restrictions [10]. While such a construct is certainly méexi-
ble than one that forbids effects entirely, it imposes acstme on
recursive modules that is rather arbitrary. Others havgestgd
abandoning ML-style modules altogether in favormixin mod-
ules[3, 17] or units [13], for which recursive linking is the norm
and hierarchical linking a special case. For the purposeteie-
ing ML, though, this would constitute a rather drastic ransof
the language.

1.1 Recursion and Effects

In the interest of designing a recursive module extensioMto
that is as simple and general as possible, suppose that veetover
introduce a new form of structure declaration

structure rec X = M

in which the structure M may refer to itself recursively asaxd
there are n@ priori limitations on M. How should recursion inter-
act with any computational effects that may occur durindguation
of M?



structure rec X = struct
structure A = struct
val debug = ref false
fun £f(x) = ...X.B.g(x-1)...
end
structure B = struct
val trace = ref false
fun g(x) = ...X.A.f(x-1)...
end
end

Figure 1. Example of Recursive Module with Effects

functor myA (X : SIG) = ...

functor yourB (X : SIG) = ...

structure rec X = struct
structure A = myA(X)
structure B = yourB(X)

end

Figure 2. Separate Compilation of Recursive Modules

Under the standard interpretation of recursion via a fixeidtppp-
erator, the new recursive structure declaration would btaount

to structure X = fix(X.M), wherefix(X.M) evaluates to its
unrolling M[fix(X.M)/X].1 Such a fixed-point semantics has the
property that any computational effects in M are re-enaeteg/-
ery recursive reference to X.

While there is nothing inherently wrong with this behavibrs un-
desirable for many intended uses of recursive modules. >@&me
ple, consider the declaration of two mutually recursivecturesa
andB in Figure 1. Heredebug andtrace are externally-accessible
debugging flags used hf and g, respectively. Under the above
fixed-point semantics, every recursive reference betwfeand g
prompts a re-evaluation of the entire module, includingctteation
of brand new ref cells fodebug andtrace. In other words, each
recursive call operates in an entirely different mutabdgestso set-
ting debug to true externally would not alter the fact thasebug

is false during all recursive calls td.A.f andX.B.g.

An alternative semantics for recursion that exhibits mquerapri-
ate behavior with respect to computational effects ididmekpatch-
ing semantics of Scheme [19], in whighructure rec X = M
would evaluate as follows: First, X is bound to a fresh lomati
containing an undefined value; then, M is evaluated to a neodul
value V; finally, X is backpatched with V. If the evaluation f
attempts to dereference X, a run-time error is reportedikdrthe
fixed-point semantics, backpatching ensures that thetseffadV
only happen once.

fects may result in the same behavior as the backpatchingreas
when the effect in question ®ate it is well-known that the same
is not true forcontinuations as it matters whether a continuation is
captured inside or outside of the recursive definition [14].

Moreover, hoisting the effects is impossible in the conteEhdep-
arate compilation. In particular, consider Figure 2, whittows
how the structurea andB from Figure 1 may be developed apart
from each other by abstracting each one over the recursiatia

X. Thestructure rec linking them may also be compiled sepa-
rately, in which case we do not have access to the impleniensat

of myA andyourB and there is no way to hoist the effects out of
myA (X) andyourB(X). The backpatching semantics thus seems to
be a simpler, cleaner and more general approach.

1.2 Well-Founded Recursion

Russo employs the backpatching semantics described abdig i
recursive module extension to Moscow ML [28]. Russo’s exten
sion has the advantage of being relatively simple, largelyabse
the type system does not make any attempt to statically erisat
structure rec X = M is well-foundedi.e., that the evaluation
of M will not dereference X.

If possible, though, compile-time error detection is prafde. In
addition, statically ensuring well-foundedness woulawlirecur-

sive modules to be implemented more efficiently. In the atserh
static detection, there are two well-known implementatibaices:

(1) the recursive variable X can be implemented as a poioter t
value ofoption type (initially NONE), in which case every derefer-
ence of X must also perform a tag check to see if it has been back
patched yet, or (2) X can be implemented as a pointer to a thunk
(initially fn () => raise Error), in which case every derefer-
ence of X must also perform a function call. Either way, miiyua
recursive functions defined across module boundaries wilhd
ticeably slower than ordinary ML functions. If recursionsiati-
cally known to be well-founded, however, the value pointedby

X will be needed only after X has been backpatched, so each ac-
cess will require just a pointer dereference without anyitamdl

tag check or function call.

In this paper we propose a type-theoretic approach to empuwell-
founded recursive definitions under a backpatching secwofire-
cursion. The basic idea is to model recursive variablegatbt as
namesand to use names to track the set of recursive variablea that
piece of code may attempt to dereference when evaluatedusaur

of names is inspired by the work of Nanevski on a core language
for metaprogramming and symbolic computation [23], altjioit

is closer in detail to his work (concurrent with ours) on gsitames

to model control effects [24].

Names are important both for tracking uses of multiple reiwer
variables in the presence of nested recursion and for stipgor
separate compilation of recursive modules. An equally iz

One might argue that what the backpatching semantics really feature of our approach is that recursive modules may infuke-

achieves is the ability to write “excessively recursivefidigions.

In the example in Figure 1, the effectful definitionsdafbug and
trace do not really participate in the recursion. One might there-
fore imagine a semantics fatructure rec that models the re-
cursion via a fixed-point, but hoists the effects outsideheffixed-
point so that they only occur once. However, while hoistimg ¢f-

Iwe use MN/X] to denote the capture-avoiding substitution of
N for Xin M.

tions defined in existing ML code without requiring them to be
changed or recompiled to account for name reasoning. N@vert
less, as we discuss in Section 3.3, there are useful reeurmdule
idioms for which instrumentation of existing ML code appetw
be unavoidable if one wants to statically ensure that therséan is
well-founded.

As there are a number of difficult issues surrounding stagioe(
components of recursive modules [5, 8], we restrict oumditta



here to the dynamic (code) components of recursive modGles.
respondingly, we develop our type system at the level ofreeesi
(core-level)expressions We do not intend this as an extension to
the core language of ML, but as the basis of a future extertsion
the module language.

1.3 Overview

The remainder of the paper is organized as follows: In Se@iae
introduce the notion oévaluability, which ensures that a program
is safe to evaluate even if it contains free references tefimet! re-
cursive variables. Through a series of examples, we iftstnow

a simple approach to tracking evaluability suffers from enber of
theoretical and practical problems. In Section 3 we presentore
type system for solving these problems, in the context ofplee)
simply-typedA-calculus. While effects necessitate the backpatch-
ing semantics of recursion, all of the subtleties involvimgmes

2.1 The Evaluability Judgment

While true evaluability is clearly an undecidable propgtitere are
certain kinds of expressions that we can expect the typemsyst
to recognize as evaluable. For instance, recall the exafrue
Figure 1, which recursively defines a pair of submodulesh edic
which is a pair of aref expression and k-abstraction. In general,
all values and tuples of evaluable expressions should b&dened
evaluable. In additionzef (€), !e, ande; : =&, should all be evalu-
able as long as their constituent expressions are. Evéityabihus
independent of computational purity.

There is, however, a correspondence betweamevaluabilityand
computational impurityin the sense that both are hidden by
abstractions and unleashed by function applications. InwL
assume (for the purpose of the value restriction) that attion
applications are potentially impure. In the current settire might
similarly assume for simplicity that all function applicats are po-

can in fact be explored here in the absence of effects. We give tentially non-evaluable.

the static and dynamic semantics of our core language, alithg
meta-theoretic properties including type safety.

In Section 4 we show how to encode an unrestricted form of re-

cursion by extending the language with memoized computstio
While this unrestricted construct does not ensure welhétmd re-
cursion, it is useful as a fallback in circumstances wheretype
system is too weak to observe that a recursive term is watided.

In Section 5 we compare our approach with related work on-well
founded recursion and recursive modules. Finally, in $adiwe
conclude and suggest future work.

2 Evaluability

Consider a general recursive construct of the fowu(x:t.e),
representing an expressi@nof type t that may refer to its ulti-
mate value recursively as What is required of to ensure that
rec(x:T.€) is well-founded? Crargt al. [5] require thate bevalu-
able (that is, pure and terminating) in a context wherés not.
We generalize their notion of valuability to one permittieffects,
which we callevaluability a term may be judged evaluable if its
evaluation does not access an undefined recursive varils, to
ensurerec(x: T.€) is well-founded, the expressi@must beevalu-
able in a context where uses of the variabl@re non-evaluable
An expression can be non-evaluable and still well-formed ply
evaluable expressions are safe to evaluate in the preséncel®
fined recursive variables.

Formally, we might incorporate evaluability into the typestem by
dividing the typing judgment into one classifying evaluaiérms
(T - e ] 1) and one classifying non-evaluable ternisH e 1 1).
(There is an implicit inclusion of the former in the lattet) ad-
dition, we need to extend the language with a notion of unddfin
variables, which are bound in the contexixgst, as opposed to or-
dinary variables which are bound ast. The distinction between
them can be seen from their typing rules:

xTterl
MNe=xT1t

x:tel
MNe=x|1t

Given these extensions, we can now give the following typirlg
for recursive expressions:

Mxttrkelt
MNFrec(x:t.€) | 1T

Unfortunately, this assumption has one major drawbacknjifies

that we can never evaluate a function application insidearséve
expression! Furthermore, itis usually unnecessary: whiletions
defined inside a recursive expression may very well be hidifig
erences to an undefined variable, functions defined in agidfiL

code will not. For example, instead of defining local statéhvei

ref expression, suppose that we wish to define a mutable array in
submoduler (of Figure 1) by a call to the array creation function:

structure A = struct

val a = Array.array(n,0)
fun f(x) = ...Array.update(a,i,m)...
fun g(x) = ...X.B.£(x-1)...

end

The call toArray.array is perfectly evaluable, while a call to the
functionA . g inside the above module mighbtbe. Lumping them
together and assuming the worst makes the evaluabilitynjiechg
far too conservative.

2.2 A Partial Solution

At the very least, then, we should distinguish between thegyof
total andpartial functions. For present purposedptal arrow type

11 — Ty classifies a function whose body is evaluable, apdrial
arrow typet; — Ty classifies a function whose body is potentially
non-evaluablé:

MNx:okFelt
lN-Axelo—t

Mx:oFeft
lN-Axelo—1

Correspondingly, applications of total evaluable funesido evalu-
able arguments will be deemed evaluable, whereas applisatif
partial functions will be assumed non-evaluable:

MN-elo—1 lN-elo N-eto—-1 N-efo
Fe(e) |t MEee) Tt
The total/partial distinction addresses the concernsudsad in the
previous section, to an extent. Existing ML functions caw i@

classified as total, and the arrow type->Tt, in ML proper is syn-
onymous with a total arrow. Thus, we may now evaluate calls to

2The “total/partial” nomenclature arises from viewing non-
evaluability as a kind of computational effect.



existing ML functions in the presence of undefined recursave-
ables, as those function applications will be known to beéuaiade.
However, there are still some serious problems.

2.3 Problems

Nested Recursion First, consider what happens when we use
general recursion to define a recursive function, such asrfat

rec(f : int — int. fn x => ... x * f(x-1) ...)

Note that we are forced to give the recursive expression @apar
arrow type because the body of the factorial function usesegbur-
sive variablef. Nonetheless, exporting factorial as a partial func-
tion is bad because it means that no application of factogialever
be evaluated inside a recursive expression!

To mend this problem, we observe that while the factoriakfun
tion is indeed partial during the evaluation of the geneeslur-
sive expression defining it, it becomes total as soofi &sback-
patched with a definition. One way to incorporate this okeserv
tion into the type system is to revise the typing rule for rstue
termsrec(x:T.€) so that we ignore partial/total discrepancies when
matching the declared tygewith the actual type oé. For example,

in the factorial definition above, we would allofvto be declared
with a total arrowint — int, since the body of the definition has
an equivalent typenoduloa partial/total mismatch.

Unfortunately, such a revised typing rule is only sound if pve-

hibit nested recursive expressions. Otherwise, the ruleatiew a

truly partial function to be erroneously assigned a totpétyas the
following code illustrates:

rec(x : T.
let
val f =
in
£0O
end

)

The trouble here is that the evaluation of the recursive esgion
definingf results only in the backpatching gfnotx. Itis therefore
unsound for that expression to make the typémf() => x total.

In short, the problem is that the total/partial dichotomiois coarse
because it does not distinguish between uses of differentsive
variables. In the type system of Section 3, we will be ableite g

a more appropriate type specifying tHawill dereferencex when

applied, but noy.

rec(y : unit — 1. fn () => x)

Higher-Order Functions  Another problem with the total/partial
distinction arises in the use of higher-order functionspffise we

wish to use the Standard Basisp function for lists, which can be
given the following type (for ang andr):

val map : (0 — T) — (0 list — T list)

Since the type ohap is a pure ML type, all the arrows are total,
which means that we cannot applyp to a partial function, as in
the following:

rec (X : SIG.
let
val £ : O =T = ...
val g : 0 list — T list = map £
)

Given the type ofap, this is reasonable: unless we know hesp
is implemented, we have no way of knowing that evaluatiag
will not try to apply £, resulting in a potential dereferenceof

Nevertheless, we should at least be able to reptage £ with

its eta-expansiotin xs => map f xs, which is clearly evaluable
since it is a value. Even its eta-expansion is ill-typed, &asy,
because the type dof still does not match the argument type of
map. The way we propose to resolve this problem is to view a
partial/total type mismatch not as a sign that the offending
pression (in this casepap f) is ill-typed, but merely that it is
potentially non-evaluable. The type system of Section 3 reH
flect this intuition, and will correspondingly consider thaction
fn xs => map f xs tobe well-typed with gartial arrow, but not

a total one.

Separate Compilation Russo points out a problem with sepa-
rate compilation of recursive modules in Moscow ML [28] thiz
system we have sketched thus far suffers from as well: tiseme i
way to refer to a recursive variable without dereferencingar in-
stance, recall the separate compilation scenario fromr&iguThe
code in Figure 2 is ill-typed under our current setup because
der call-by-value semantics, the functor applicatiaga (X) and
yourB (X) will begin by evaluating the recursive varialtewhich

is undefined.

What we really intended, however, was not for the functordiapp
tions to dereference the recursive variablend pass the resulting
module value as an argument, but rather to pass the recwesive
ablex as an argument itself without dereferencing it. The way to
account for this intended semantics is to treat a recursivialvie
not as a (potentially divergent) expression, but aslaeof a new
locationtype that must be dereferenced explicitly. This idea will be
fleshed out further in the next section.

3 A Type System for Well-Founded Recursion

In this section we present a type system for well-foundednson

that addresses all the problems enumerated in the pre\éatisrs.

To address the nested recursion problem, we generalizeidige |
ment of evaluability to one that tracks uses of individuaursive
variables. We achieve this by introducing along with eacurgive
variable anamethat is used as a static representative of the variable.
The new evaluability judgment has the foffit- e: T [S], with the
interpretation “under context, terme has typet and is evaluable
modulothe names in set S”. In other wordswill evaluate without
dereferencing any recursive variablesceptpossibly those whose
associated names appear in S. Following Nanevski [23], Waca
finite set of names support Our previous judgment of evaluability

(T +e] 1) can be understood as evaluability modulo the empty sup-
port (" Fe: T [0]), while non-evaluability [ - e 1 T) corresponds to
evaluability modulssomenon-empty support.

Similarly, we generalize the types of functions to bear apsup
indicating which particular recursive variables may beeflenenced

in their bodies. Thus, the total arrow type of the previougiea
becomes an arrow type bearing empty support, while thegbarti
arrow type corresponds to an arrow type beasngienon-empty
support.

To address the higher-order function problem, we employvelno
judgment oftype equivalence modulo a supposthich allows type
mismatches in an expression to be ignored so long as they only
involve names that are in the support of the expression. ftue i



Variables X,¥,z € Variables

Names XY,Z € Names

Supports ST € Bin(Names

Types o,1:=1|T1xT2|T1 irz
| VX.T| boxsg(T)

Terms efu=x|()] (e | m(e)
|Ax.e| f(e)|AX.e| f(S)
| box(€) | unbox(e)
| rec(X>Xx:T.€)

Values vi= x| ()] (v,v2) | Ax.e|AX.e

Typing Contexts r=0|r,x:t|r,X

Figure 3. Core Language Syntax

ition behind this judgment is that we are only interestedacking
uses ofundefinedecursive variables; since the names that appear in
the support of an expression correspond to recursive \lasidhat

must bedefinedbefore the expression can be evaluated, they can be

safely ignored when typing it.

To address the separate compilation problem, our typeraytstaits
recursive variables as values of a neex type classifying (po-
tentially uninitialized) memory locations. Recursive eegsions in
our type system have the formac(X >x: T.€)2, introducing (in the
scope ofe) the name X and the recursive variaklavhich is bound
in the context with typéoxx (T). The type ofx indicates thak is a
memory location and that any expression attempting to dezete
(unbox) it must have X in its support. Consequently, what we previ-
ously wrote asec(x:T.e) would now be written agec(X>x: 1.€),
where€ replaces occurrences of teepression xn e with an ex-
plicit dereference of thealue x(written unbox(x)). In addition,
note that we no longer need to distinguish recursive vaggafsfom
ordinary variables through a separate context bindingXike; a
recursive variable is distinguished simply by bisx type.

3.1 Syntax

The syntax of our core language is given in Figure 3. We asshene
existence of countably infinite sets of namBisine$ and variables
(Variable9, and use S and T to range over supports. We often write
the name X as shorthand for the singleton suppxrt.

The type structure of the language is as follows. Unit (1) pai
types {1 x T») require no explanation. An arrow typel(i 12)

The reasons for allowing names to be instantiated with stippoe
discussed in Section 3.3.

Lastly, the location typé&oxs(T) classifies a memory location that
will contain avalue of type T once the recursive variables associ-
ated with the names in S have been defined. Locations are most
commonly introduced by recursive expressions, but they atsy
be introduced byox(e), which evaluate® and then “boxes” the
resulting valuej.e., stores it at a new location. Since each boxing
may potentially create a new locatiobox(v) is not a value; the
only values of location type are variables. The eliminafumm for
location types isinbox(e), which dereferences the location result-
ing from the evaluation oé. We will sometimes writebox(t) as
shorthand foboxp(T).

Notational Conventions In the termAx.e, the variablex is
bound ine; in the termA X. e and typev X. 1, the name X is bound
in e andT; in the termrec(X>x : T.€), the name X and variable
x are bound ire. As usual, we identify terms and types that are
equivalent modula@-conversion of bound variables/names.

For notational convenience, we enforce several impliaifune-
ments on the well-formedness of contexts and judgments. A co
textl™ is well-formed if (1) it does not bind the same variable/name
twice, and (2) for any prefix df of the forml’,x : T, the free names

of T are bound if”’. A judgment of the fornf I- - - - is well-formed

if (1) T is well-formed, and (2) any free names appearing to the
right of the turnstile are bound ih. We assume and maintain the
implicit invariant that all contexts and judgments are welimed.

3.2 Static Semantics

The main typing judgment has the forfi-e: T [S]. The support

S represents the set of names whose associated recursalglesr
we may assume have been defined (backpatched) by theetisne
evaluated. Put another way, the only recursive variablesetimay
dereference are those associated with the names in S. Tie sta
semantics is carefully designed to validate this assumptio

The rules of the type system (Figure 4) are designed to make ad
missible the principle osupport weakeningwhich says that if
N-e:t[g thenl Fe:1[T] forany T2 S. Thus, for instance,
since a variablex does not require any support, Rule 1 allon®

be assigned any supportcSdom(I"), not just the empty support.

The remainder of the rules may be summarized as follows. Unit
needs no support (Rule 2), but pairs and projections redh&e

bears a support on the arrow, which indicates the set of namesgypport of their constituent expressions (Rules 3 and 4)urfs+

whose associated recursive variables must be defined lzefone-
tion of this type may be applied. We will sometimes write— T,

as shorthand for an arrow type with empty suppoft# 12).

The language also provides the ability to abstract an exmesver

a name. The typ& X.T1 classifies name abstractionX. e, which
suspend the evaluation of their bodies and are treated assval
Application of a name abstraction(S), allows the name parameter
of f to be instantiated with a support S, not just a single name.

30ur notation here is inspired by, but not to be confused with,
Harper and Lillibridge’s notation fdabelsandvariablesin a mod-
ule calculus [16]. They use labels to distinguish exterr@ahas of
module components from internatvariable names. In our recur-
sive construct, both X anklare bound inside.

tion Ax.e has typeo Ttin any support S, so long as the boely
is well-typed under the addition of support T (Rule 5). Toleste

a function applicatiorf (), the support must contain the supports
of f ande, as well as the support diis arrow type (Rule 6).

Although a name abstractionX.e suspends the evaluation ef

the body is typechecked under the same support as the abstrac
tion itself (Rule 7). In other words, one can vi&iX.T as another
kind of arrow type that always bears empty support (compaitte w
Rule 5 when T= 0). Note also that our assumptions about the well-
formedness of judgments ensures that the support S canmtatrco

X, since SC dom(I") and X¢ dom(I"). Restricting name abstrac-
tions in this way is motivated by the fact that, in all our imded
uses of name abstractions, the body of the abstraction isua va
(with empty support).



Term well-formedness: T e: T[S ‘

rxy=t
rEx:t[g @) r-(:1[g @)
NrFe:t[§ MFexit2[9 M-e:11x12[9

T (ener) 112 [S rrne s

rx:oke:T[SUT| 5

FEAXe: o —-1 ]

FFf:o—»t1[§ FFe:g[s TCS
r-f(e):t[9

(6)

MNXre:t[9
rEAaX.e:vX.t[g

ref:vXt[g
ref(T):7[T/X] [9

r-e:t[g
I box(e) : boxt(T) [I

M-e:boxr(1)[§ TCS
I Funbox(e) : T [9

(10)

IX,x:boxx(t)Fe:o[§ I XFo=xT
M-rec(Xex:1.€):1[9

(11)

Nl-e:o[f Nro=st
r-e:t[g

(12)

Type equivalence:T F 11 =sTp ‘

r}—O'lEsO'Z rl—TlEst
MO XT1=502XT2

i W (14)

SUS=T=SUS, Troyi=r0op THFT1=TT2

(15
rFO’liTlEscziTz

[XFT11=5T2
MNEVX. 11 =5VX. T2

(16)

SU$=T=SUS, TrFTi=11T2
M= bOXsl(Tl) =s bOXs2 (Tg)

(17)

Figure 4. Core Language Static Semantics

Instantiating a name abstractidnof type V X. T with a support T
has the type resulting from substituting T for Xtir{Rule 8). The
substitutiort [T /X] is defined by replacing every support S appear-
ing in T with §[T/X], which is in turn defined as follows:

ST/X] {EUT*{X}

Since boxing an expression first evaluatedéx(e) has the same
support a® (Rule 9). Furthermoreyox(e) may be given a location
type boxr (1) with arbitrary T since the resulting location contains

ifXes
ifX¢&S

a defined value and may be unboxed immediately. Unboxing an

expressiore of type boxt (1) is only permitted if the recursive vari-
ables associated with the names in T have been defieedf T is
contained in the support S (Rule 10).

Rules 11 and 12 are the most interesting rules in the typersyst
since they both make use of our type equivalence judgmefihede
in Figure 4. The judgmertf - T; =s T» means that; andt, are
equivalent typesnodulothe names in support $g., thatt, are
T, are identical types if we ignore all occurrences of the naimes

S. For example, the typas 2, T2 andty X, T, are equivalent
moduloany support containing X.

The intuition behind our type equivalence judgment is tbate a
recursive variable has been backpatched, its associated oan
be completely ignored for typechecking purposes becausaniye
care about tracking uses ahdefinedrecursive variables. If the
support ofeis S, then by the timeis evaluated, the recursive vari-
ables associated with the names in S will have been definags, Th

in the context of typing under support S, the types LR T2 and

1 S, T, are as good as equivalent since they only differ with re-
spect to the names in S, which are irrelevant. (Note: wheokthg

equivalence of arrow types; S T1 andoy =, To modulo S, we
compare the argument types and result types at the extendeéd m
ulus SUS; = SUS,. This makes sense because a function of one
of these types may only be applied wittuS; in the support. The
rule for box can be justified similarly.)

This notion of equivalence modulo a support is critical ® typing
of recursive terms (Rule 11). Recall the factorial exampéanf
Section 2.2, adapted to our present type system:

int — int.
x * unbox(f) (x-1) ...)

rec(F > f :
fn x => ...

The issue here is that the declared typeradoes not match the

actual type of the bodyint F. int. OnceFis backpatched,
however, the two types do matamoduloF.

Correspondingly, our typing rule for recursive terras(X>x: T.€)
works as follows. First, the contektis extended with the name
X, as well as the recursive varialeof type boxx (t). This loca-
tion type binds the name and the variable together becassgst
that X must be in the support of any expression that attentpts t
dereference (unbox). The rule then checks thathas some type
o in this extended context, under a support S that dm¢éclude

X (sincex is undefined while evaluating). Finally, it checks that
o andt are equivalenmoduloX. It is easiest to understand this
last step as a generalization of our earlier idea of ignodisgrep-
ancies between partial and total arrows when compasi@gd 1.
The difference here is that we ignore discrepancies withe@sto

a particular name X instead of all names, so that the rulevssha
properly in the presence of multiple names (nested reaujsio

In contrast, Rule 12 appears rather straightforward, afigw term

with type o and support S to be assigned a type that is equivalent to
o modulo the names in S. In fact, this rule solves the highdeior
function problem described in Section 2.2! Recall that wated

to apply an existing higher-order ML function likeap to a partial
function,i.e.,one whose arrow type bears non-empty support:

rec (X > x : SIG.

let
val f : 0 =5 T = ..
valg:o‘listitlist=fnxs => map f xs

)

The problem here is that the typebtioes not match the argument



typeo—1 of map. Intuitively, though, this code ought to typecheck:
if we are willing to addX to the support og’s arrow type, then
x must be backpatched befogeis ever applied, s& should be
ignored when typing the body gf

Rule 12 encapsulates this reasoning. Sgéespecified with type

0 list 25 1 list, we can assume supparwhen typecheck-
ing its body fiap f xs). Under suppork, Rule 12 allows us to
assignf the typeo — 1, as it is equivalent t@&’s type moduloX.
Thus,g’s body is well-typed under suppatt

3.3 Name Abstractions and Non-strictness

We have so far illustrated how the inclusion of supports intgp-
ing and equivalence judgments addresses the first two pnsidie-
scribed in Section 2.3. Our system addresses the problempef s
arate compilation as well by (1) making the dereferencing oé-
cursive variable an explicit operation, and (2) providihg ability

to abstract an expression over a name.

Recall the separate compilation scenario from Figure 2ceSim-
cursive variables in our core language are no longer deneted
implicitly, we might attempt to rewrite the linking moduls:a

structure rec X > x : SIG =
structure A = myA(x)
structure B = yourB(x)

end

The recursive variable is now a value of location typleoxx (SIG),
S0 passing it as an argumentityA andyourB does not dereference
it. Assuming then thatiyA andyourB arenon-strict i.e.,that they
do not dereference their argument when applied, the resuisi
indeed well-founded.

But what types can we give tgyA andyourB to reflect the property
that they are non-strict? Suppose thgh's return type isSIG_A.
We would like to give it the typ&oxx (SIG) — SIG-A, so that (1) its
argument type matches the typexgfand (2) the absence @fon
the arrow indicates thatyA can be applied under empty support.
However, this type makes no sense wheye is defined, because
the nameX is not in scope outside of the recursive module.

This is where name abstractions come in. To showfatis non-
strict, it is irrelevant what particular support is requirte unbox its

argument, so we can use a name abstraction to allow any name or

support to be substituted far Figure 5 shows the resulting well-
typed separate compilation scenario, in which the typeydf is
VX.boxx(SIG) — SIG-A.

Our recursive construct is still not quite as flexible foraete com-
pilation purposes as one might like. In particular, suppbse we
wanted to parameterizeyA over just yourB instead ofboth myA
and yourB. There is no way in our system to extract a value of
type boxx (SIG-B) from x without unboxing it. It is easy to remedy
this problem, however, by generalizing the recursive gorsto an
n-ary one,rec(X >X: T.8), where each of tha recursive variables

X; is boxed separately with tydeoxx, (T;).

Name abstractions can also be used to express non-stsobfies
general-purposL functors, which in turn allows better static de-
tection of well-founded recursion in certain cases. Fotainse,
the recursive module in Figure 6 provides a typet, which is

myA = AX. Ax : boxx(SIG).

yourB = AX. Ax : boxx(SIG).

structure rec X > x : SIG = struct
structure A = myA{X}(x)
structure B = yourB{X}(x)

end

Figure 5. Revised Separate Compilation Scenario

structure rec C : ORDERED = struct

datatype t = ...CSet.set...
fun compare (x,y) = ...CSet.compare(a,b)...
end

and CSet = MakeSet(C)

Figure 6. Recursive Data Structure Example

defined in terms ofetsof itself* The definition of modulec
refers recursively to théSet module, which is defined by apply-
ing theMakeSet functor to theC module. The only way we can
be sure that the recursion is well-founded is if we know tinat t
application of theMakeSet functor will not attempt to apply the
partial functionC. compare, i.e.,that theMakeSet functor is non-
strict. With name abstractions, we can instrument the imple
tation of MakeSet in order to assign it a non-strict typeuch as
VX.boxx (ORDERED) — SET.

Similarly, name abstractions can be used to give more mégies
to core-level ML functions. For instance, suppose we hadsgto
the code for thewap function. By wrapping the definition afap in
a name abstraction, we could assign the function the type

vVX. (o 2, 19} o, (0 list X1 list)

This type indicates thatap will turn a value of any arrow type into
avalue of the same arrow type, but will not apply its argunirettie
process. Given this type famp, we can write our recursive module
example involvingnap the way we wanted to write it originally in
Section 2.3:

rec (X > x : SIG.
let
val £ : O X, T= ...
valg:o‘listirlist=

)

The more precise non-strict type faanp allows us to avoid eta-
expandingmap £, but it also requires having access to the imple-
mentation ofmap. Furthermore, it requires us to modify the type
of map, infecting the existing ML infrastructure with names. It is
therefore important that, in the absence of this solutiam, tgpe
system is strong enough (thanks to Rule 12) to typecheclkaat le
the eta-expansion afap £, without requiring changes to existing
ML code. Unfortunately, there is no corresponding way tc eta
expand the functor applicatiamekeSet (C) in the example from
Figure 6. To statically ensure that the recursion in thab®la is

4See Okasaki [26] for similar, more realistic examples, sagh
“bootstrapped heaps”.

5For simplicity, we are ignoring here that the result sigratu
SET really depends on the type components of the functor argumen



well-founded, it appears that onausthave access to the implemen-
tation of theMakeSet functor in order to instrument it with name
abstractions and assign it a more precise non-strict aterf

This example also illustrates why it is useful to be able stantiate
a hame abstraction withsupportinstead of a single name. In par-

ticular, suppose that's type wereo S, 1 for some non-singleton
support S. The definition of would becomenap S £, which is
only possible given the ability to instantiatep with a support.

Finally, note that while our system does not contain anyamotif
subtyping, it is important to be able to coerce a non-sttiotfion
into an ordinary (potentially strict) arrow type. The caercfrom
VX.boxx(0)—1 to 0—1[0/X] is easily encodable within our
language a& f.Ax.f(0)(box(x)).

3.4 Dynamic Semantics

We formalize the dynamic semantics of our core languageringe
of a virtual machine. Machine statgés;C; e) consist of a storey, a
continuationC, and an expressiomcurrently being evaluated. We
sometimes usf to stand for a machine state.

A continuationC consists of a stack of continuation framiesas
shown in Figure 7. A storeis a partial mapping from variables (of
location type) testorable things A storable thingd is either a term
(e) or nonsense?). By w(x) we denote the storable thing storecat
in w, which is only valid if something (possibly nonsense) isatb
atx. By w[x— 8] we denote the result of creating a new location
wand storingd at it. By w[x:=0] we denote the result of updating
the storewto storef atx, wherex s already in dorfw). We denote
the empty store by.

The dynamic semantics of the language is shown in Figure 7 as
well. It takes the form of a stepping relatiéd— Q’. Rules 18
through 31 are all fairly straightforward. Rule 32 says tivabrder

to evaluaterec(X >X: T.€), we create a new locationin the store
bound to nonsense, push the recursive fraen€X>x: 1. e) on the
continuation stack, and evaluae(We can always ensure thats
not already a location in the store biyconversion.) Once we have
evaluateck to a valuev, Rule 33 performs the backpatching step: it
storesv at locationx in the store and returns Finally, if a location

is ever dereferenced (unboxed), Rule 31 simply looks up ahgev
itis bound to in the store.

3.5 Type Safety

Observe that the machine is stuck if we attempt to unbox aitota
that is bound to nonsense. The point of the type safety thede
to ensure that this will never happen for well-formed progsa\We
begin by defining a notion of well-formedness for stores,alutis
dependent on a notion ofran-time context A run-time context
is a context that only binds variables representing memaocg-|
tions, i.e., variables ofbox type. In addition, we distinguishack-
patchablelocations and connect them to their associated names by
introducing a new context binding formXx : T, which behaves
semantically the same as the two bindings<Xboxx (1), but is
distinguished syntactically.

DEFINITION 3.1 (RUN-TIME CONTEXTS). A contextl is run-
timeif the only bindings i take the form »x: T or x: boxt(1).

DEFINITION 3.2 (STOREWELL-FORMEDNESY. A store w is
well-formed denoted” + w [9), if:

Continuations C::

= e|CoF
Continuation Frames F ::

(0,€) | (v,0) [Ti(e) | o(€) | V(e)
| o(T) | box(e) | unbox(e)
| rec(Xp>Xx:T.0)

Small-step semantics:Q — Q' ‘

(e1,€2) not a value
(Wi Ci(er,)) — (W Co(e,e2);01)

(18)

(;Co(e,€);V) — (w;Co(v,e);€) (19

(20)

(w;Co(vy,®);v2) = (00,C; (v, V2))

(w;C;m(€)) — (W;CoTg(e); €) (2Y)

(@Com(e) viva) = @) 22

(w;Cier(e)) — (w;Coe(e);e1) 9

(w;Coe(e);V) — (wW;CoVv(e);e) (24)

(w;Co(Ax.€)(e);V) — (w;C;e[v/x]) @9

(w;,C;&(T)) — (w;Coe(T);€) (26)

(w;Coe(T);AX.€) — (w;C;€[T/X]) 27

(0;C; box(e)) — (w;Cobox(e);e) (28)

x ¢ dom(w)

(0;Cobox(e);V) — (w[x—V];C;X)

(29)

(;C;unbox(€)) — (w;Counbox(e);€) (30)

w(X) =V
(o;Counbox(e);X) — (w;C;V)

31

x ¢ dom(w)

(0;C;rec(Xp>x:T.€)) — (wx—7];Corec(X>X:T.0);€)

(33)

(32

(w;Corec(X>X:T.0);V) — (WX:=V];C;V)

Figure 7. Core Language Dynamic Semantics

1. T is run-time and dortw) = vardom(I")
2. ¥Xpx:1el.ifX € Sthendv. w(x) =vandlr -v:t[9

3. ¥Xx:boxr(T) €. 3v. w(x) =vandl Fv: T[S



Continuation well-formedness: ' = C: T cont [ ‘

(34)

M-e:T cont[g

rN-F:t=0[g THC:0cont[S
N-CoF:1cont[9

(35

NrN-C:ocont[§ lto=st
M-C:1 cont [

(36)

Continuation frame well-formedness: '+ F : 11 = T2 [S] ‘

M-e:12[9
M-{e,€):T1=T1xT2[Y

(37)

MEv:ty [S
FE{v,e) i To=T1 X T2 [T

(38)

ie{12}
FEm(e) T xT2=T1 [Y

(39)

N-e:o[9
M-e(e):o—t1=1[9

Nr-v:o—t[9
Fr-v(e):o=r1][9

(42)

(40) (41

M-eo(T):VX.T=1[T/X] [§

I+ box(e) : T= boxT(T) [ (43)

I unbox(e) : box(T) = T [ (44

Xpx:t1el Tho=xt
MNrec(Xex:T.0):0=T1[S

(45)

Figure 8. Well-formedness of Core Continuations

Essentially, the judgmerit - w [S] says that” assigns types to
all locations in the domain ofo, and that all locations map to
appropriately-typed values except those backpatchal#s asso-
ciated with names which are not in the support S.

We define well-formedness of continuations and continaatio
frames via the judgments-C: T cont [Sandl FF : 11 = 12 [T,
defined in Figure 8. The former judgment says that contionadi
expects a value of typeto fill in its e; the latter judgment says that
F expects a value of type; to fill in its e and thatF produces a
value of typet, in return. The only rule that is slightly unusual is
Rule 45 for recursive frameasc(X>X: T.). Since this frame is not
a binder for X orx, Rule 45 requires that Xx: T be in the context.
This is a safe assumption sinez(X>x: T.e) only gets pushed on
the stack after a binding forhas been added to the store.

We can now define a notion of well-formedness for a machirte sta
which requires that the type of its expression componentinest
the type of the hole in the continuation component:

DEFINITION 3.3 (MACHINE STATE WELL-FORMEDNESY. A
machine stat@ is well-formed denoted™ + Q [, if Q = (w;C; e),
where:

1. T[S

2. 3t.T+C:tcont[§andlte:1[S

We can now state the preservation and progress theorenisgead
type safety:

THEOREM3.4 (PRESERVATION). If ' Q [S]andQ+— Q', then
r.s.rreQ' 9.

DEFINITION 3.5 (TERMINAL STATES). A machine stateQ is
terminalif it has the form(cw; e; V).

DEFINITION 3.6 (STuck STATES). A machine staté€ is stuck
if it is non-terminal and there is no sta® such thaQ — Q’.

THEOREM3.7 (PROGRESS. If '+ Q [S], thenQ is not stuck.

Note that wherQ = (w;Counbox(e);X), the well-formedness @
implies that™ - x: box(T) [S] for some typea. The well-formedness
of w then ensures that there is a valusuch thatw(x) = v, soQ
can make progress by Rule 31.

COROLLARY 3.8 (TYPE SAFETY). Supposdt e: 1 [0]. Then
for any machine stat®, if (;e;€) —* Q, thenQ is not stuck.

The full meta-theory of our language (along with proofs) egus
in the companion technical report [7].

3.6 Practical Issues

Efficient Implementation  Our dynamic semantics treats values
of type boxg(T) as memory locations that will eventually contain
values of type. It is quite likely, though, that values of typdi.e.,
the kinds of values one wants to define recursively) haveaaift
boxed representation. For instance, in the case of reeunsoed-
ules,t will typically be a record type, and a module value of type
will be represented as a pointer to a record stored on the heap

Only one level of pointer indirection is needed to implemigatk-
patching. Thus, a direct implementation of our semantias rip-
resents all values of typeoxs(T) as pointers to values of type
will introduce an unnecessary level of indirection whenuesl of
type 1 are already pointers. Our semantics, however, does not re-
quire one to employ such a naive representation. Indeetydest
with naturally boxed representations, a realistic impletaton of
our semantics should represent values of types(t) the same as
values of typer and should compile thenbox’ing of such values
as a no-op. (See Hirschowigt al. [18] for an example of such a
compilation strategy.) At the level of our type system, thiothere
is still an important semantic distinction to be made betweand
boxg(T) that transcends such implementation details.

Effects Since we have modeled the semantics of backpatching
operationally in terms of a mutable store, it is easy to ipocate
some actual computational effects into our framework ag. wel

the companion technical report [7] we extend the languagdeyae
safety proof with primitives for mutable state and contitimas.

The extensions are completely straightforward and arengafig
oblivious to the presence of supports in typing judgments.



Types T1::
Terms e::

-+ | compg(T)
.-+ | delay(e) | force(e)

SUS=T=SUS, TrFTi=1T1T2
- compsl('rl) =5 compsz(Tg)

(46)

M-e:1[SUT]
I - delay(e) : compt(T) [S

(47)

MN-e:compyr(1)[§ TCS
I force(e) : T[S

(48)

Figure 9. Static Semantics for Memoized Computations

Typechecking It is also important that our language admit a

practical typechecking algorithm. In the implicitly-tygpdorm of

the language that we have used here, it is not obvious that suc
an algorithm exists because terms do not have unique typas. F

example, ifAx.e has typec S, T, it can also be giverw LI
forany TD S. It is easy to eliminate this non-determinism, how-
ever, by making the language explicitly-typed. In partauif A-
abstractions are annotateddsx : 6.e and boxed expressions are
annotated aboxt(€), along with the revised typing rules

Mx:oke:T[SUT] Me:t[g

M= bOXT(e) . bOXT(T) [S]

then it is easy to synthesize unique types for explicitiyety terms

up to equivalence modulo a given support S. (See the companio
technical report for details [7].) It remains an importanestion

for future work how much of the type and support informatian i
explicitly-typed terms can be inferred.

M-ATx:0.e:0 19

4 Encoding Unrestricted Recursion

Despite all the efforts of our type system, there will alwhgsecur-
sive termsrec(X >x: T.€) for which we cannot statically determine
thate can be evaluated without dereferencingFor such cases it
is important to have a fallback approach that would allowpghe
grammer to writerec(X > X : T.€) with the understanding that the
recursion may be ill-founded and dereferences wfll be saddled
with an additional run-time cost.

One option is to add a secondrestrictedrecursive term construct,
with the following typing rule:

rx:l—-tke:1[g
It urec(x:1.€):1[S

Note that we do not introduce any name X, so there are nocestri
tions on wherx can be dereferenced. Since the dereferencing of
may diverge and cannot therefore be a mere pointer dereferee
assignx the thunk type 1 1 instead obox(T), with dereferencing
achieved by applying to (). Adding an expliciturec construct,
however, makes for some redundancy in the recursive mesthani
of the language. It would be preferable, at least at the lef/gie
theory, to find a way to encode unrestricted recursion in seoin
our existing recursive construct.

We achieve this by extending the language with primitivesifem-
oized computations. The syntax and static semantics oéxtexn-

10

Machine States Q:
Continuation Frames F ::

-+ | Error
.-+ | force(e) | memo(x,e)

x ¢ dom(w)
(w;C; delay(e)) — (w[x— €];C;X)

(49)

(w;C; force(€)) — (w;Coforce(s);€) (59)

wx)=e
(w;Coforce(e);X) — (wW[Xx:=7];Comemo(x,e);€)

(51)

(52)

(w;Comemo(x,e);V) — (w[x:=V];C;V)

w(x)="?
(w;Coforce(s);X) — Error

(53

Figure 10. Dynamic Semantics for Memoized Computations

sion are given in Figure 9. First, we introduce a typenpg(T) of
locations storing memoized computations. A value of thizetis

essentially a thunk of type 12, T whose result is memoized after
the first application.

The primitivedelay(e) creates a memoized locatiarin the store
bound to the unevaluated expressian When x is forced (by
force(x)), the expressioe stored ak is evaluated to a value and
thenv is written back tax. During the evaluation of, the location

X is bound to nonsense; iis forced again during this stage, the
machine raises an error. Thus, every forcexafiust check to see
whether itis bound to an expression or nonsense. Despitkffae
ence in operational behavior, the typing rules for memoizemh-
putations appear just asdbmpg(1), delay(e) andforce(e) were

shorthand for 1= 1, A ().eande(), respectively. We useomp(T)
sometimes as shorthand farmpg(T).

We can now encoderec via a recursive memoized computation:

urec(x:1.6) ¥

force(rec(X>xX: comp(T).delay (€A (). force(unbox(x))/X])))

It is easiest to understand this encoding by stepping thratig
First, a newrecursivelocation x is created, bound to nonsense.
Then, thedelay creates a newnemoizedocationy bound to the ex-
pressiore|. .. /x]. Next, therec backpatcheg with the valuey and
returnsy. Finally, y is forced, resulting in the evaluation €f .. /X]

to a valuev, andy is backpatched with. If the recursive variable
(encoded a3\ (). force(unbox(x))) is dereferenced (applied Q)
during the evaluation off. .. /x], it will result in another forcing of
y, raising a run-time error.

Essentially, one can view thec in this encoding as merely ty-
ing the recursive knot on the memoized computation, whike th
memoization resulting from théorce is what actually performs
the backpatching. Observe that if we were to gieenp(T) a non-
memoizing semantics.e., to consider it synonymous with-% 1,
the above encoding would have precisely the fixed-point séns
of recursion. Memoization ensures that the effecesanly happen
once, at the firsforce of the recursive computation.



The dynamic semantics for this extension is given in FigireTb
evaluatedelay(e), we create a new memoized location in the store
and binde to it (Rule 49). To evaluatéorce(e), we first evaluate

e (Rule 50). Oncee evaluates to a location we lookx up in the
store. Ifx is bound to an expressi@we proceed to evaluate but
first push on the continuation stack a memoization framertorre

us that the result of evaluatirggshould be memoized at(Rules 51

appears ire. Thus, continuing the above example, the function
Ay.Az.€ would depend ox with degree 2, so instantiating the first
argument would only decrement that degree to 1, not 0.

Nevertheless, Hirschowitz and Leroy’s system still sufom a
paucity of types. Consider the same curried function examgx-
cept where we let-bindly.Az € first instead of applying it directly:

and 52). Ifx is instead bound to nonsense, then we must be in the let f = Ay.Az€ in f(e). The most precise degree-based type one

middle of evaluating anothébrce(x), so we step to airror state
which halts the program (Rule 53). Extending the type safetpf
of Section 3.5 to handle memoized computations is straghtird;
the details appear in the companion technical report [7].

5 Related Work

Well-Founded Recursion Boudol [4] proposes a type system for
well-founded recursion that, like ours, employs a backuaty se-
mantics. Boudol's system tracks tegreeso which expressions
depend on their free variables, where the degree to wdigpends
onxis 1 if x appears in a guarded positioner(i.e., under an un-
appliedA-abstraction), and 0 otherwise. What we call the support
of an expression corresponds in Boudol’'s system to the setrof
ables on which the expression depends with degree 0. Thilg, wh
there is no distinction between recursive and ordinaryatdes in
Boudol’s system, his equivalent afc(x:T.€) ensures that the eval-
uation ofe will not dereferencex by requiring thate depend orx
with degree 1.

In our system an arrow type indicates the recursive variathiat
may be dereferenced when a function of that type is appliedarA
row type in Boudol's system indicates the degree to whictbtiay

of a function depends on its argument. Thus,i> tando L 1
classify functions that arstrict andnon-strictin their arguments,
respectively. As we discussed in Section 3.3, the abilitigémtify
non-strict functions is especially important for purposésepa-
rate compilation. For example, in order to typecheck ouacsse
compilation scenario from Figure 2, it is necessary to knust the
separately-compiled functogsrA andyourB are non-strict.

In contrast to our system, which requires the code from Eig@uio

be rewritten as shown in Figure 5, Boudol's system can typech
the code in Figure 2 as is. The reason is that function aggits

of the form f(x) (i.e.,where the argument is a variable) are treated
as a special case in his semantics: while the expresgiatepends

on the variablexwith degree 0, the expressiofi(x)” merely passes

x to f without dereferencing it. This implies that ordinanbound
variables may be instantiated at run time with recursivéatdes.
Thus, viewed in terms of our semantics, Boudol’s systentsiah
variables as implicitly havingox type.

The simplicity of Boudol's system is achieved at the expeofse
being rather conservative. In particular, a function aggilon f (e)

is considered to depend on all the free variable$ with degree 0.
Suppose that is a curried functior\y.Az€, where€ dereferences
arecursive variablg. In Boudol's system, even a single application
of f will be considered to depend amwith degree 0 and thus cannot
appear unguarded in the recursive term defining

To address the limitations of Boudol's system, Hirschovéta
Leroy [17] propose a generalization of it, which they useles t
target language for compiling their call-by-value mixin dude cal-
culus (see below). Specifically, they extend Boudol’'s mot6 de-
grees to be arbitrary integers: the degree to whiatepends on
x becomes, roughly, the number ®fabstractions under which
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can give tof when typing the body of thiet is 19 1, T2 N 13.

This type tells us nothing about the degree to whiatlepends on
the recursive variable dereferenced bg. Thus, Hirschowitz and
Leroy’s system must conservatively assume ti{&) may derefer-
encex. In contrast, our type system can assiga type such as

T o, T2 X, 13, which would allow its first argument (but not its
second) to be instantiated under the empty support.

We believe thdet expression above is representative of code that
one might want to write in the body of a recursive module, \hic
suggests that our name-based approach is a more apprdptiate
dation for recursive modules. However, the weaknesses ef th
degree-based approaches are not necessarily problemtitecpar-
ticular applications for which they were developed. For [te-
pose of compiling mixin modules, the primary feature regdiof
Hirschowitz and Leroy’s target language is the ability ttklmu-
tually recursiver-abstractions that have been compiled separately.
As we have illustrated in Section 3.3, our language suppbiss
feature as well.

Weak Polymorphism and Effect Systems There seems to be an
analogy between the approaches discussed here for trasikifig
founded recursion and the work on combining polymorphisih an
effects in the early days of ML. Boudol’s 0-1 distinction &minis-
cent of Tofte’s distinction between imperative and appiveatype
variables [30]. Hirschowitz and Leroy’s generalizationBifudol

is similar to the idea ofveak polymorphisril5] (implemented by
MacQueen in earlier versions of the SML/NJ compiler), wireee
type variablea carries a numeric “strength” representing, roughly,
the number of function applications required before a ré¢ficere-
ated storing a value of typee. Our system has ties to effect systems
in the style of Talpin and Jouvelot [29], in which an arroweyip-
dicates the set of effects that may occur when a functionatftyipe

is applied. For us, the effect in question is the derefergnof an
undefined recursive variable.

A common criticism leveled at both effect systems and wedy-po
morphism is that functional and imperative implementation a
polymorphic function have different types, and it is imgbksto
know which type to expect when designing a specification for a
module separate from its implementation [31]. To a largemxt
this criticism does not apply to our type system: names trifges
within recursive modules, but thexternalinterface of a module
will be the same regardless of whether or not the module isemp
mented recursively. To ensure that certain recursive nesdflike
the one in Figure 6) are well-founded, however, one need®+o o
serve that a general-purpose functor (like MageSet functor) is
non-strict, and it is debatable whether the (non-)strie$raf such a
functor should be reflected in its specification. Choosingto@x-
pose strictness information in the specification of a funichposes
fundamental limitations on how the functor can be used, umttij
our system, but in any type system for well-founded recursio

Strictness Analysis One can think of static detection of well-
founded recursion as a kind abn-strictnesanalysis, in contrast
to the well-known problem ostrictnessanalysis [1]. Both prob-



lems are concerned with identifying whether an expresssach

as the body of a function, will access the value of a particula
variable when evaluated. Strictness analysis, howeversasl as
an optimization technique for lazy languages, in which amycf
tion may be conservatively classified as non-strict. In-bgl
value languages, on the other hand, functions are stricefautt—
observing that a function is non-strict requires us to exjitreat

its argument as boxed and to show that applying the functidin w
not unbox it. Itis thus unclear how techniques from strisganal-
ysis might be applied to the well-founded recursion problem

Names The idea of using names in our type system is inspired
by Nanevski’'s work on using a modal logic with names to model
a “metaprogramming” language for symbolic computation].[23
(His use of names was in turn inspired by Pitts and Gabbay’s
FreshML [27].) Nanevski uses names to represent undefinad sy
bols appearing inside expressions of a mddatype. These ex-
pressions can be viewed as pieces of uncompiled syntax viteese
names must be defined before they can be compiled.

Our use of names is conceptually closer to Nanevski's marente
work (concurrent with ours) on using names to model contfol e
fects for which there is a notion of handling [24]. As mengdn
earlier, one can think of the dereferencing of a recursiveabte
as an effect that is in some sense “handled” by the backpetchi
of the variable. Formally, though, Nanevski's system isteyuiif-
ferent, especially in that it does not employ any judgmentypé
equivalence modulo a support.

Monadic Recursion There has been considerable work recently
on adding effectful recursion to Haskell. Since effects askell
are isolated in monadic computations, adding a form of @oar
over effectful expressions requires an understanding wfrecur-
sion interacts with monads. Erkdk and Launchbury [11] psgpa
monadic fixed-point construehfix for defining recursive compu-
tations in monads that satisfy a certain set of axioms. Thesr|
show how to usenfix to define a recursive form of Haskelld
construct [12]. Friedman and Sabry [14] argue that the baickp
ing semantics of recursion is fundamentally stateful, &od defin-
ing a recursive computation in a given monad requires theaghon
to be combined with a state monad. This approach allows sexur
in monads that do not obey the Erkdk-Launchbury axiomsh sisc
the continuation monad.

The primary goal of our type system is to statically ensurd-we
founded recursion in an impure call-by-value setting, dndtthe
work on recursive monadic computations for Haskell (whiebids
any static analysis) is largely orthogonal to ours. Newwesbs, the
dynamic semantics of our language borrows from recent wgrk b
Moggi and Sabry [22], who give an operational semantics ter t
monadic metalanguage extended with the Friedman-Safiry

Recursive Modules Most recursive module proposals restrict the
form of the recursive module construct so that recursiorotde-
fined over effectful expressions. One exception is Russdine
sion to Moscow ML [28], which employs an unrestricted form of
recursion similar to ounrec construct from Section 4. Another
is Leroy’s experimental extension to O’'Caml [20], which péts
arbitrary effects in recursive modules but restricts batéiping to
modules of pointed typd,e., modules that export only functions
and lazy computations. This restriction enables more efftdim-
plementation, since for pointed types there is an apprapfizot-
tom” value with which to initialize the recursive variablene can
apply the same optimization to ourec(x: 1.€) in the case that
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is pointed. Our system, however, permits examples like tieein
Figure 1, which Leroy’s extension does not.

Crary, Harper and Puri [5] give a foundational account ofirsive
modules that models recursion via a fixed-point at the moleuks.
For the fixed-point semantics to make sense, they requitahba
body of a fixed-point module igaluable(i.e., pure and terminat-
ing) in a context where the recursive variable is non-vakia®ur
judgment ofevaluabilityfrom Section 2 can be seen as a general-
ization of valuability. Similarly, Flatt and Felleisen’sqposal for
units [13] divides the recursive module construct into a recarsiv
section, restricted to contain only valuable expressiand,an un-
restricted initialization section evaluated after theursive knot is
tied. Duggan and Sourelis [9, 10] studyn&in module extension to
ML, which allows function and datatype definitions to sparduie
boundaries. Like Flatt and Felleisen, they confine suchnsitée
function definitions to the “mixin” section of a mixin modulsep-
arate from the effectful initialization section.

There have also been several proposals based on Ancona and
Zucca's calculusCMS for purely functional call-by-name mixin
modules [3]. In one direction, recent work by Ancoegal. [2]
extendsCM Swith computational effects encapsulated by monads.
They handle recursive monadic computations using a re@udsi
construct based on Erkok and Launchbury’s [12]. In anotlirerc-
tion, Hirschowitz and Leroy [17] transf@MSto a call-by-value
setting. Their type system performs a static analysis ofmmod-
ules to ensure well-founded recursive definitions, butquiees the
strictness dependencies between module components tatbenwr
explicitly in the interfaces of modules.

6 Conclusion and Future Work

We have proposed a novel type system for general recursien ov
effectful expressions, to serve as the foundation of a sd@imod-

ule extension to ML. The presence of effects seems to neatssi

a backpatching semantics for recursion similar to that dfeBte.
Our type system ensures statically that recursion is veeiirfled,
avoiding some unnecessary run-time costs associated witk- b
patching. To ensure well-founded recursion in the presece
multiple recursive variables and separate compilationtraek the
usage of individual recursive variables, representedcatht by
names Our core system is easily extended to account for the com-
putational effects of mutable state and continuations. dititeon,

we extend our language with a form of memoized computation,
which allows us to write arbitrary recursive definitions la¢ tex-
pense of an additional run-time cost.

The explicitly-typed version of our type system admits aigtntfor-
ward typechecking algorithm, and could serve as a targgukzge
for compiling a recursive extension to ML. An important ditien

for future work is to determine the extent to which names &hou
be available to the ML programmer. This will depend heavity o
the degree to which types involving names can be inferrechwhe
typechecking recursive modules.

Another key direction for future work is to scale our apptoac
the module level. In addition to the issues involving remursat the
level of types [8], there is the question of how hames andrstou
interact with other module-level features such as type gdivéy.
We are currently investigating this question by combinihg fan-
guage presented here with our previous work on a type sysiem f
higher-order modules [6].
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