
A Type System for Well-Founded Recursion∗

Derek Dreyer

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

dreyer@cs.cmu.edu

Abstract

In the interest of designing a recursive module extension toML that
is as simple and general as possible, we propose a novel type system
for general recursion over effectful expressions. The presence of
effects seems to necessitate a backpatching semantics for recursion
similar to that of Scheme. Our type system ensures statically that
recursion is well-founded—that the body of a recursive expression
will evaluate without attempting to access the undefined recursive
variable—which avoids some unnecessary run-time costs associ-
ated with backpatching. To ensure well-founded recursion in the
presence of multiple recursive variables and separate compilation,
we track the usage of individual recursive variables, represented
statically by “names”. So that our type system may eventually be
integrated smoothly into ML’s, reasoning involving names is only
required inside code that uses our recursive construct and need not
infect existing ML code, although instrumentation of some existing
code can help to improve the precision of our type system.

Categories and Subject Descriptors

D.3.1 [Programming Languages]: Formal Definitions and The-
ory; D.3.3 [Programming Languages]: Language Constructs and
Features—Recursion, Modules; F.3.3 [Logics and Meanings of
Programs]: Studies of Program Constructs—Type structure

General Terms

Languages, Theory

Keywords

Type systems, recursion, recursive modules, effect systems

∗This material is based on work supported in part by NSF grants
CCR-9984812 and CCR-0121633. Any opinions, findings, and
conclusions or recommendations in this publication are those of the
author(s) and do not reflect the views of this agency.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’04,January 14–16, 2004, Venice, Italy.
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

1 Introduction

A distinguishing feature of the programming languages in the ML
family, namely Standard ML [21] and Objective Caml [25], is their
strong support for modular programming. The module systemsof
both languages, however, are strictly hierarchical, prohibiting cyclic
dependencies between program modules. This restriction isunfor-
tunate because it means that mutually recursive functions and types
must always bedefinedin the same module, regardless of whether
they belongconceptually in the same module. As a consequence,
recursive modules are one of the most commonly requested exten-
sions to the ML languages.

There has been much work in recent years on recursive module ex-
tensions for a variety of functional languages. One of the main
stumbling blocks in designing such an extension for an impure lan-
guage like ML is the interaction of module-level recursion and core-
level computational effects. Since the core language of ML only
permits recursive definitions ofλ-abstractions (functions), recursive
linking could arguably be restricted to modules that only contain
fun bindings. The banishing of all computational effects, however,
would place a severe restriction on recursive module programming.

Some recursive module proposals attempt to ameliorate thisrestric-
tion by splitting modules into arecursively linkablesection and an
initialization section, and only subjecting the former to syntactic
restrictions [10]. While such a construct is certainly moreflexi-
ble than one that forbids effects entirely, it imposes a structure on
recursive modules that is rather arbitrary. Others have suggested
abandoning ML-style modules altogether in favor ofmixin mod-
ules [3, 17] or units [13], for which recursive linking is the norm
and hierarchical linking a special case. For the purpose of extend-
ing ML, though, this would constitute a rather drastic revision of
the language.

1.1 Recursion and Effects

In the interest of designing a recursive module extension toML
that is as simple and general as possible, suppose that we were to
introduce a new form of structure declaration

structure rec X = M

in which the structure M may refer to itself recursively as X,and
there are noa priori limitations on M. How should recursion inter-
act with any computational effects that may occur during evaluation
of M?

1

structure rec X = struct
structure A = struct
val debug = ref false
fun f(x) = ...X.B.g(x-1)...

end
structure B = struct
val trace = ref false
fun g(x) = ...X.A.f(x-1)...

end
end

Figure 1. Example of Recursive Module with Effects

functor myA (X : SIG) = ...

functor yourB (X : SIG) = ...

structure rec X = struct
structure A = myA(X)
structure B = yourB(X)

end

Figure 2. Separate Compilation of Recursive Modules

Under the standard interpretation of recursion via a fixed-point op-
erator, the new recursive structure declaration would be tantamount
to structure X = fix(X.M), where fix(X.M) evaluates to its
unrolling M[fix(X.M)/X].1 Such a fixed-point semantics has the
property that any computational effects in M are re-enactedat ev-
ery recursive reference to X.

While there is nothing inherently wrong with this behavior,it is un-
desirable for many intended uses of recursive modules. For exam-
ple, consider the declaration of two mutually recursive structuresA
andB in Figure 1. Here,debug andtrace are externally-accessible
debugging flags used byf and g, respectively. Under the above
fixed-point semantics, every recursive reference betweenf andg
prompts a re-evaluation of the entire module, including thecreation
of brand new ref cells fordebug andtrace. In other words, each
recursive call operates in an entirely different mutable state, so set-
ting debug to true externally would not alter the fact that!debug
is false during all recursive calls toX.A.f andX.B.g.

An alternative semantics for recursion that exhibits more appropri-
ate behavior with respect to computational effects is thebackpatch-
ing semantics of Scheme [19], in whichstructure rec X = M
would evaluate as follows: First, X is bound to a fresh location
containing an undefined value; then, M is evaluated to a module
value V; finally, X is backpatched with V. If the evaluation ofM
attempts to dereference X, a run-time error is reported. Unlike the
fixed-point semantics, backpatching ensures that the effects in M
only happen once.

One might argue that what the backpatching semantics really
achieves is the ability to write “excessively recursive” definitions.
In the example in Figure 1, the effectful definitions ofdebug and
trace do not really participate in the recursion. One might there-
fore imagine a semantics forstructure rec that models the re-
cursion via a fixed-point, but hoists the effects outside of the fixed-
point so that they only occur once. However, while hoisting the ef-

1We use M[N/X] to denote the capture-avoiding substitution of
N for X in M.

fects may result in the same behavior as the backpatching semantics
when the effect in question isstate, it is well-known that the same
is not true forcontinuations, as it matters whether a continuation is
captured inside or outside of the recursive definition [14].

Moreover, hoisting the effects is impossible in the contextof sep-
arate compilation. In particular, consider Figure 2, whichshows
how the structuresA andB from Figure 1 may be developed apart
from each other by abstracting each one over the recursive variable
X. Thestructure rec linking them may also be compiled sepa-
rately, in which case we do not have access to the implementations
of myA andyourB and there is no way to hoist the effects out of
myA(X) andyourB(X). The backpatching semantics thus seems to
be a simpler, cleaner and more general approach.

1.2 Well-Founded Recursion

Russo employs the backpatching semantics described above in his
recursive module extension to Moscow ML [28]. Russo’s exten-
sion has the advantage of being relatively simple, largely because
the type system does not make any attempt to statically ensure that
structure rec X = M is well-founded, i.e., that the evaluation
of M will not dereference X.

If possible, though, compile-time error detection is preferable. In
addition, statically ensuring well-foundedness would allow recur-
sive modules to be implemented more efficiently. In the absence of
static detection, there are two well-known implementationchoices:
(1) the recursive variable X can be implemented as a pointer to a
value ofoption type (initially NONE), in which case every derefer-
ence of X must also perform a tag check to see if it has been back-
patched yet, or (2) X can be implemented as a pointer to a thunk
(initially fn () => raise Error), in which case every derefer-
ence of X must also perform a function call. Either way, mutually
recursive functions defined across module boundaries will be no-
ticeably slower than ordinary ML functions. If recursion isstati-
cally known to be well-founded, however, the value pointed to by
X will be needed only after X has been backpatched, so each ac-
cess will require just a pointer dereference without any additional
tag check or function call.

In this paper we propose a type-theoretic approach to ensuring well-
founded recursive definitions under a backpatching semantics of re-
cursion. The basic idea is to model recursive variables statically as
names, and to use names to track the set of recursive variables thata
piece of code may attempt to dereference when evaluated. Ouruse
of names is inspired by the work of Nanevski on a core language
for metaprogramming and symbolic computation [23], although it
is closer in detail to his work (concurrent with ours) on using names
to model control effects [24].

Names are important both for tracking uses of multiple recursive
variables in the presence of nested recursion and for supporting
separate compilation of recursive modules. An equally important
feature of our approach is that recursive modules may invokefunc-
tions defined in existing ML code without requiring them to be
changed or recompiled to account for name reasoning. Neverthe-
less, as we discuss in Section 3.3, there are useful recursive module
idioms for which instrumentation of existing ML code appears to
be unavoidable if one wants to statically ensure that the recursion is
well-founded.

As there are a number of difficult issues surrounding static (type)
components of recursive modules [5, 8], we restrict our attention

2

here to the dynamic (code) components of recursive modules.Cor-
respondingly, we develop our type system at the level of recursive
(core-level)expressions. We do not intend this as an extension to
the core language of ML, but as the basis of a future extensionto
the module language.

1.3 Overview

The remainder of the paper is organized as follows: In Section 2 we
introduce the notion ofevaluability, which ensures that a program
is safe to evaluate even if it contains free references to undefined re-
cursive variables. Through a series of examples, we illustrate how
a simple approach to tracking evaluability suffers from a number of
theoretical and practical problems. In Section 3 we presentour core
type system for solving these problems, in the context of the(pure)
simply-typedλ-calculus. While effects necessitate the backpatch-
ing semantics of recursion, all of the subtleties involvingnames
can in fact be explored here in the absence of effects. We give
the static and dynamic semantics of our core language, alongwith
meta-theoretic properties including type safety.

In Section 4 we show how to encode an unrestricted form of re-
cursion by extending the language with memoized computations.
While this unrestricted construct does not ensure well-founded re-
cursion, it is useful as a fallback in circumstances where our type
system is too weak to observe that a recursive term is well-founded.
In Section 5 we compare our approach with related work on well-
founded recursion and recursive modules. Finally, in Section 6 we
conclude and suggest future work.

2 Evaluability

Consider a general recursive construct of the formrec(x:τ.e),
representing an expressione of type τ that may refer to its ulti-
mate value recursively asx. What is required ofe to ensure that
rec(x:τ.e) is well-founded? Craryet al. [5] require thate bevalu-
able (that is, pure and terminating) in a context wherex is not.
We generalize their notion of valuability to one permittingeffects,
which we callevaluability: a term may be judged evaluable if its
evaluation does not access an undefined recursive variable.Thus, to
ensurerec(x:τ.e) is well-founded, the expressione must beevalu-
able in a context where uses of the variablex arenon-evaluable.
An expression can be non-evaluable and still well-formed, but only
evaluable expressions are safe to evaluate in the presence of unde-
fined recursive variables.

Formally, we might incorporate evaluability into the type system by
dividing the typing judgment into one classifying evaluable terms
(Γ ` e ↓ τ) and one classifying non-evaluable terms (Γ ` e ↑ τ).
(There is an implicit inclusion of the former in the latter.)In ad-
dition, we need to extend the language with a notion of undefined
variables, which are bound in the context asx ↑ τ, as opposed to or-
dinary variables which are bound asx : τ. The distinction between
them can be seen from their typing rules:

x : τ ∈ Γ
Γ ` x ↓ τ

x ↑ τ ∈ Γ
Γ ` x ↑ τ

Given these extensions, we can now give the following typingrule
for recursive expressions:

Γ,x ↑ τ ` e↓ τ
Γ ` rec(x:τ.e) ↓ τ

2.1 The Evaluability Judgment

While true evaluability is clearly an undecidable property, there are
certain kinds of expressions that we can expect the type system
to recognize as evaluable. For instance, recall the examplefrom
Figure 1, which recursively defines a pair of submodules, each of
which is a pair of aref expression and aλ-abstraction. In general,
all values and tuples of evaluable expressions should be considered
evaluable. In addition,ref(e), !e, ande1:=e2 should all be evalu-
able as long as their constituent expressions are. Evaluability is thus
independent of computational purity.

There is, however, a correspondence betweennon-evaluabilityand
computational impurityin the sense that both are hidden byλ-
abstractions and unleashed by function applications. In MLwe
assume (for the purpose of the value restriction) that all function
applications are potentially impure. In the current setting we might
similarly assume for simplicity that all function applications are po-
tentially non-evaluable.

Unfortunately, this assumption has one major drawback: it implies
that we can never evaluate a function application inside a recursive
expression! Furthermore, it is usually unnecessary: whilefunctions
defined inside a recursive expression may very well be hidingref-
erences to an undefined variable, functions defined in existing ML
code will not. For example, instead of defining local state with a
ref expression, suppose that we wish to define a mutable array in
submoduleA (of Figure 1) by a call to the array creation function:

...
structure A = struct
val a = Array.array(n,0)
fun f(x) = ...Array.update(a,i,m)...
fun g(x) = ...X.B.f(x-1)...

end
...

The call toArray.array is perfectly evaluable, while a call to the
functionA.g inside the above module mightnot be. Lumping them
together and assuming the worst makes the evaluability judgment
far too conservative.

2.2 A Partial Solution

At the very least, then, we should distinguish between the types of
total andpartial functions. For present purposes, atotal arrow type
τ1→ τ2 classifies a function whose body is evaluable, and apartial
arrow typeτ1 ⇀ τ2 classifies a function whose body is potentially
non-evaluable:2

Γ,x : σ ` e↓ τ
Γ ` λx.e↓ σ→ τ

Γ,x : σ ` e↑ τ
Γ ` λx.e↓ σ ⇀ τ

Correspondingly, applications of total evaluable functions to evalu-
able arguments will be deemed evaluable, whereas applications of
partial functions will be assumed non-evaluable:

Γ ` e1 ↓ σ→ τ Γ ` e2 ↓ σ
Γ ` e1(e2) ↓ τ

Γ ` e1 ↑ σ ⇀ τ Γ ` e2 ↑ σ
Γ ` e1(e2) ↑ τ

The total/partial distinction addresses the concerns discussed in the
previous section, to an extent. Existing ML functions can now be
classified as total, and the arrow typeτ1->τ2 in ML proper is syn-
onymous with a total arrow. Thus, we may now evaluate calls to

2The “total/partial” nomenclature arises from viewing non-
evaluability as a kind of computational effect.

3

existing ML functions in the presence of undefined recursivevari-
ables, as those function applications will be known to be evaluable.
However, there are still some serious problems.

2.3 Problems

Nested Recursion First, consider what happens when we use
general recursion to define a recursive function, such as factorial:

rec(f : int ⇀ int. fn x => ... x * f(x-1) ...)

Note that we are forced to give the recursive expression a partial
arrow type because the body of the factorial function uses the recur-
sive variablef. Nonetheless, exporting factorial as a partial func-
tion is bad because it means that no application of factorialcan ever
be evaluated inside a recursive expression!

To mend this problem, we observe that while the factorial func-
tion is indeed partial during the evaluation of the general recur-
sive expression defining it, it becomes total as soon asf is back-
patched with a definition. One way to incorporate this observa-
tion into the type system is to revise the typing rule for recursive
termsrec(x:τ.e) so that we ignore partial/total discrepancies when
matching the declared typeτ with the actual type ofe. For example,
in the factorial definition above, we would allowf to be declared
with a total arrowint → int, since the body of the definition has
an equivalent typemoduloa partial/total mismatch.

Unfortunately, such a revised typing rule is only sound if wepro-
hibit nested recursive expressions. Otherwise, the rule may allow a
truly partial function to be erroneously assigned a total type, as the
following code illustrates:

rec(x : τ.
let

val f = rec(y : unit → τ. fn () => x)
in

f()
end

)

The trouble here is that the evaluation of the recursive expression
definingf results only in the backpatching ofy, notx. It is therefore
unsound for that expression to make the type offn () => x total.
In short, the problem is that the total/partial dichotomy istoo coarse
because it does not distinguish between uses of different recursive
variables. In the type system of Section 3, we will be able to give f
a more appropriate type specifying thatf will dereferencex when
applied, but noty.

Higher-Order Functions Another problem with the total/partial
distinction arises in the use of higher-order functions. Suppose we
wish to use the Standard Basismap function for lists, which can be
given the following type (for anyσ andτ):

val map : (σ → τ) → (σ list → τ list)

Since the type ofmap is a pure ML type, all the arrows are total,
which means that we cannot applymap to a partial function, as in
the following:

rec (X : SIG.
let

val f : σ ⇀ τ = ...
val g : σ list ⇀ τ list = map f

...
)

Given the type ofmap, this is reasonable: unless we know howmap
is implemented, we have no way of knowing that evaluatingmap f
will not try to applyf, resulting in a potential dereference ofX.

Nevertheless, we should at least be able to replacemap f with
its eta-expansionfn xs => map f xs, which is clearly evaluable
since it is a value. Even its eta-expansion is ill-typed, however,
because the type off still does not match the argument type of
map. The way we propose to resolve this problem is to view a
partial/total type mismatch not as a sign that the offendingex-
pression (in this case,map f) is ill-typed, but merely that it is
potentially non-evaluable. The type system of Section 3 will re-
flect this intuition, and will correspondingly consider thefunction
fn xs => map f xs to be well-typed with apartial arrow, but not
a total one.

Separate Compilation Russo points out a problem with sepa-
rate compilation of recursive modules in Moscow ML [28] thatthe
system we have sketched thus far suffers from as well: there is no
way to refer to a recursive variable without dereferencing it. For in-
stance, recall the separate compilation scenario from Figure 2. The
code in Figure 2 is ill-typed under our current setup because, un-
der call-by-value semantics, the functor applicationsmyA(X) and
yourB(X) will begin by evaluating the recursive variableX, which
is undefined.

What we really intended, however, was not for the functor applica-
tions to dereference the recursive variableX and pass the resulting
module value as an argument, but rather to pass the recursivevari-
ableX as an argument itself without dereferencing it. The way to
account for this intended semantics is to treat a recursive variable
not as a (potentially divergent) expression, but as avalueof a new
locationtype that must be dereferenced explicitly. This idea will be
fleshed out further in the next section.

3 A Type System for Well-Founded Recursion

In this section we present a type system for well-founded recursion
that addresses all the problems enumerated in the previous section.
To address the nested recursion problem, we generalize the judg-
ment of evaluability to one that tracks uses of individual recursive
variables. We achieve this by introducing along with each recursive
variable anamethat is used as a static representative of the variable.
The new evaluability judgment has the formΓ ` e : τ [S], with the
interpretation “under contextΓ, terme has typeτ and is evaluable
modulothe names in set S”. In other words,ewill evaluate without
dereferencing any recursive variablesexceptpossibly those whose
associated names appear in S. Following Nanevski [23], we call a
finite set of names asupport. Our previous judgment of evaluability
(Γ ` e↓ τ) can be understood as evaluability modulo the empty sup-
port (Γ ` e : τ [/0]), while non-evaluability (Γ ` e↑ τ) corresponds to
evaluability modulosomenon-empty support.

Similarly, we generalize the types of functions to bear a support
indicating which particular recursive variables may be dereferenced
in their bodies. Thus, the total arrow type of the previous section
becomes an arrow type bearing empty support, while the partial
arrow type corresponds to an arrow type bearingsomenon-empty
support.

To address the higher-order function problem, we employ a novel
judgment oftype equivalence modulo a support, which allows type
mismatches in an expression to be ignored so long as they only
involve names that are in the support of the expression. The intu-

4

Variables x,y,z ∈ Variables
Names X,Y,Z ∈ Names
Supports S,T ∈ Pfin(Names)

Types σ,τ ::= 1 | τ1× τ2 | τ1
S

−→ τ2
| ∀X.τ | boxS(τ)

Terms e, f ::= x | 〈〉 | 〈e1,e2〉 | πi(e)
| λx.e | f (e) | λX.e | f (S)
| box(e) | unbox(e)
| rec(X .x : τ.e)

Values v ::= x | 〈〉 | 〈v1,v2〉 | λx.e | λX.e
Typing Contexts Γ ::= /0 | Γ,x : τ | Γ,X

Figure 3. Core Language Syntax

ition behind this judgment is that we are only interested in tracking
uses ofundefinedrecursive variables; since the names that appear in
the support of an expression correspond to recursive variables that
must bedefinedbefore the expression can be evaluated, they can be
safely ignored when typing it.

To address the separate compilation problem, our type system treats
recursive variables as values of a newbox type classifying (po-
tentially uninitialized) memory locations. Recursive expressions in
our type system have the formrec(X .x : τ.e)3, introducing (in the
scope ofe) the name X and the recursive variablex, which is bound
in the context with typeboxX(τ). The type ofx indicates thatx is a
memory location and that any expression attempting to dereference
(unbox) it must have X in its support. Consequently, what we previ-
ously wrote asrec(x:τ.e) would now be written asrec(X .x : τ.e′),
wheree′ replaces occurrences of theexpression xin e with an ex-
plicit dereference of thevalue x(written unbox(x)). In addition,
note that we no longer need to distinguish recursive variables from
ordinary variables through a separate context binding likex ↑ τ; a
recursive variable is distinguished simply by itsbox type.

3.1 Syntax

The syntax of our core language is given in Figure 3. We assumethe
existence of countably infinite sets of names (Names) and variables
(Variables), and use S and T to range over supports. We often write
the name X as shorthand for the singleton support{X}.

The type structure of the language is as follows. Unit (1) andpair

types (τ1× τ2) require no explanation. An arrow type (τ1
S

−→ τ2)
bears a support on the arrow, which indicates the set of names
whose associated recursive variables must be defined beforea func-
tion of this type may be applied. We will sometimes writeτ1→ τ2

as shorthand for an arrow type with empty support (τ1
/0

−→ τ2).

The language also provides the ability to abstract an expression over
a name. The type∀X.τ classifies name abstractionsλX.e, which
suspend the evaluation of their bodies and are treated as values.
Application of a name abstraction,f (S), allows the name parameter
of f to be instantiated with a support S, not just a single name.

3Our notation here is inspired by, but not to be confused with,
Harper and Lillibridge’s notation forlabelsandvariablesin a mod-
ule calculus [16]. They use labels to distinguish external names of
module components from internalα-variable names. In our recur-
sive construct, both X andx are bound insidee.

The reasons for allowing names to be instantiated with supports are
discussed in Section 3.3.

Lastly, the location typeboxS(τ) classifies a memory location that
will contain avalueof type τ once the recursive variables associ-
ated with the names in S have been defined. Locations are most
commonly introduced by recursive expressions, but they mayalso
be introduced bybox(e), which evaluatese and then “boxes” the
resulting value,i.e., stores it at a new location. Since each boxing
may potentially create a new location,box(v) is not a value; the
only values of location type are variables. The eliminationform for
location types isunbox(e), which dereferences the location result-
ing from the evaluation ofe. We will sometimes writebox(τ) as
shorthand forbox /0(τ).

Notational Conventions In the term λx.e, the variablex is
bound ine; in the termλX.e and type∀X.τ, the name X is bound
in e and τ; in the termrec(X . x : τ.e), the name X and variable
x are bound ine. As usual, we identify terms and types that are
equivalent moduloα-conversion of bound variables/names.

For notational convenience, we enforce several implicit require-
ments on the well-formedness of contexts and judgments. A con-
text Γ is well-formed if (1) it does not bind the same variable/name
twice, and (2) for any prefix ofΓ of the formΓ′,x : τ, the free names
of τ are bound inΓ′. A judgment of the formΓ ` · · · is well-formed
if (1) Γ is well-formed, and (2) any free names appearing to the
right of the turnstile are bound inΓ. We assume and maintain the
implicit invariant that all contexts and judgments are well-formed.

3.2 Static Semantics

The main typing judgment has the formΓ ` e : τ [S]. The support
S represents the set of names whose associated recursive variables
we may assume have been defined (backpatched) by the timee is
evaluated. Put another way, the only recursive variables that e may
dereference are those associated with the names in S. The static
semantics is carefully designed to validate this assumption.

The rules of the type system (Figure 4) are designed to make ad-
missible the principle ofsupport weakening, which says that if
Γ ` e : τ [S] thenΓ ` e : τ [T] for any T⊇ S. Thus, for instance,
since a variablex does not require any support, Rule 1 allowsx to
be assigned any support S⊆ dom(Γ), not just the empty support.

The remainder of the rules may be summarized as follows. Unit
needs no support (Rule 2), but pairs and projections requirethe
support of their constituent expressions (Rules 3 and 4). A func-

tion λx.e has typeσ T
−→ τ in any support S, so long as the bodye

is well-typed under the addition of support T (Rule 5). To evaluate
a function applicationf (e), the support must contain the supports
of f ande, as well as the support onf ’s arrow type (Rule 6).

Although a name abstractionλX.e suspends the evaluation ofe,
the body is typechecked under the same support as the abstrac-
tion itself (Rule 7). In other words, one can view∀X.τ as another
kind of arrow type that always bears empty support (compare with
Rule 5 when T= /0). Note also that our assumptions about the well-
formedness of judgments ensures that the support S cannot contain
X, since S⊆ dom(Γ) and X 6∈ dom(Γ). Restricting name abstrac-
tions in this way is motivated by the fact that, in all our intended
uses of name abstractions, the body of the abstraction is a value
(with empty support).

5

Term well-formedness: Γ ` e : τ [S]

Γ(x) = τ
Γ ` x : τ [S]

(1)
Γ ` 〈〉 : 1 [S]

(2)

Γ ` e1 : τ1 [S] Γ ` e2 : τ2 [S]

Γ ` 〈e1,e2〉 : τ1× τ2 [S]
(3)

Γ ` e : τ1× τ2 [S]

Γ ` πi(e) : τi [S]
(4)

Γ,x : σ ` e : τ [S∪T]

Γ ` λx.e : σ T
−→ τ [S]

(5)

Γ ` f : σ T
−→ τ [S] Γ ` e : σ [S] T ⊆ S

Γ ` f (e) : τ [S]
(6)

Γ,X ` e : τ [S]

Γ ` λX.e : ∀X.τ [S]
(7)

Γ ` f : ∀X.τ [S]

Γ ` f (T) : τ[T/X] [S]
(8)

Γ ` e : τ [S]

Γ ` box(e) : boxT(τ) [S]
(9)

Γ ` e : boxT(τ) [S] T ⊆ S

Γ ` unbox(e) : τ [S]
(10)

Γ,X,x : boxX(τ) ` e : σ [S] Γ,X ` σ ≡X τ
Γ ` rec(X .x : τ.e) : τ [S]

(11)

Γ ` e : σ [S] Γ ` σ ≡S τ
Γ ` e : τ [S]

(12)

Type equivalence: Γ ` τ1 ≡S τ2

Γ ` 1≡S 1
(13)

Γ ` σ1 ≡S σ2 Γ ` τ1 ≡S τ2

Γ ` σ1× τ1 ≡S σ2× τ2
(14)

S∪S1 = T = S∪S2 Γ ` σ1 ≡T σ2 Γ ` τ1 ≡T τ2

Γ ` σ1
S1−→ τ1 ≡S σ2

S2−→ τ2

(15)

Γ,X ` τ1 ≡S τ2

Γ ` ∀X.τ1 ≡S ∀X.τ2
(16)

S∪S1 = T = S∪S2 Γ ` τ1 ≡T τ2

Γ ` boxS1(τ1) ≡S boxS2(τ2)
(17)

Figure 4. Core Language Static Semantics

Instantiating a name abstractionf of type∀X.τ with a support T
has the type resulting from substituting T for X inτ (Rule 8). The
substitutionτ[T/X] is defined by replacing every support S appear-
ing in τ with S[T/X], which is in turn defined as follows:

S[T/X]
def
=

{

S∪T−{X} if X ∈ S
S if X 6∈ S

Since boxing an expression first evaluates it,box(e) has the same
support ase (Rule 9). Furthermore,box(e) may be given a location
typeboxT(τ) with arbitrary T since the resulting location contains
a defined value and may be unboxed immediately. Unboxing an
expressione of typeboxT(τ) is only permitted if the recursive vari-
ables associated with the names in T have been defined,i.e., if T is
contained in the support S (Rule 10).

Rules 11 and 12 are the most interesting rules in the type system
since they both make use of our type equivalence judgment, defined
in Figure 4. The judgmentΓ ` τ1 ≡S τ2 means thatτ1 andτ2 are
equivalent typesmodulo the names in support S,i.e., that τ1 are
τ2 are identical types if we ignore all occurrences of the namesin

S. For example, the typesτ1
/0

−→ τ2 andτ1
X

−→ τ2 are equivalent
moduloany support containing X.

The intuition behind our type equivalence judgment is that,once a
recursive variable has been backpatched, its associated name can
be completely ignored for typechecking purposes because weonly
care about tracking uses ofundefinedrecursive variables. If the
support ofe is S, then by the timee is evaluated, the recursive vari-
ables associated with the names in S will have been defined. Thus,

in the context of typinge under support S, the typesτ1
/0

−→ τ2 and

τ1
S

−→ τ2 are as good as equivalent since they only differ with re-
spect to the names in S, which are irrelevant. (Note: when checking

equivalence of arrow typesσ1
S1−→ τ1 andσ2

S2−→ τ2 modulo S, we
compare the argument types and result types at the extended mod-
ulus S∪S1 = S∪S2. This makes sense because a function of one
of these types may only be applied with S∪S1 in the support. The
rule forbox can be justified similarly.)

This notion of equivalence modulo a support is critical to the typing
of recursive terms (Rule 11). Recall the factorial example from
Section 2.2, adapted to our present type system:

rec(F . f : int → int.
fn x => ... x * unbox(f)(x-1) ...)

The issue here is that the declared type ofF does not match the

actual type of the body,int
F

−→ int. OnceF is backpatched,
however, the two types do matchmoduloF.

Correspondingly, our typing rule for recursive termsrec(X .x : τ.e)
works as follows. First, the contextΓ is extended with the name
X, as well as the recursive variablex of typeboxX(τ). This loca-
tion type binds the name and the variable together because itsays
that X must be in the support of any expression that attempts to
dereference (unbox)x. The rule then checks thate has some type
σ in this extended context, under a support S that doesnot include
X (sincex is undefined while evaluatinge). Finally, it checks that
σ and τ are equivalentmoduloX. It is easiest to understand this
last step as a generalization of our earlier idea of ignoringdiscrep-
ancies between partial and total arrows when comparingσ andτ.
The difference here is that we ignore discrepancies with respect to
a particular name X instead of all names, so that the rule behaves
properly in the presence of multiple names (nested recursion).

In contrast, Rule 12 appears rather straightforward, allowing a term
with typeσ and support S to be assigned a type that is equivalent to
σ modulo the names in S. In fact, this rule solves the higher-order
function problem described in Section 2.2! Recall that we wanted
to apply an existing higher-order ML function likemap to a partial
function,i.e.,one whose arrow type bears non-empty support:

rec (X . x : SIG.
let

val f : σ X
−→ τ = ...

val g : σ list
X

−→ τ list = fn xs => map f xs
...

)

The problem here is that the type off does not match the argument

6

typeσ→τ of map. Intuitively, though, this code ought to typecheck:
if we are willing to addX to the support ofg’s arrow type, then
x must be backpatched beforeg is ever applied, soX should be
ignored when typing the body ofg.

Rule 12 encapsulates this reasoning. Sinceg is specified with type

σ list
X

−→ τ list, we can assume supportX when typecheck-
ing its body (map f xs). Under supportX, Rule 12 allows us to
assignf the typeσ→ τ, as it is equivalent tof’s type moduloX.
Thus,g’s body is well-typed under supportX.

3.3 Name Abstractions and Non-strictness

We have so far illustrated how the inclusion of supports in our typ-
ing and equivalence judgments addresses the first two problems de-
scribed in Section 2.3. Our system addresses the problem of sep-
arate compilation as well by (1) making the dereferencing ofa re-
cursive variable an explicit operation, and (2) providing the ability
to abstract an expression over a name.

Recall the separate compilation scenario from Figure 2. Since re-
cursive variables in our core language are no longer dereferenced
implicitly, we might attempt to rewrite the linking module as:

structure rec X . x : SIG =
structure A = myA(x)
structure B = yourB(x)

end

The recursive variablex is now a value of location typeboxX(SIG),
so passing it as an argument tomyA andyourB does not dereference
it. Assuming then thatmyA andyourB arenon-strict, i.e., that they
do not dereference their argument when applied, the recursion is
indeed well-founded.

But what types can we give tomyA andyourB to reflect the property
that they are non-strict? Suppose thatmyA’s return type isSIG A.
We would like to give it the typeboxX(SIG)→SIG A, so that (1) its
argument type matches the type ofx, and (2) the absence ofX on
the arrow indicates thatmyA can be applied under empty support.
However, this type makes no sense wheremyA is defined, because
the nameX is not in scope outside of the recursive module.

This is where name abstractions come in. To show thatmyA is non-
strict, it is irrelevant what particular support is required to unbox its
argument, so we can use a name abstraction to allow any name or
support to be substituted forX. Figure 5 shows the resulting well-
typed separate compilation scenario, in which the type ofmyA is
∀X.boxX(SIG)→SIG A.

Our recursive construct is still not quite as flexible for separate com-
pilation purposes as one might like. In particular, supposethat we
wanted to parameterizemyA over just yourB instead ofboth myA
and yourB. There is no way in our system to extract a value of
typeboxX(SIG B) from x without unboxing it. It is easy to remedy
this problem, however, by generalizing the recursive construct to an
n-ary one,rec(~X .~x :~τ.~e), where each of then recursive variables
xi is boxed separately with typeboxX i (τi).

Name abstractions can also be used to express non-strictness of
general-purposeML functors, which in turn allows better static de-
tection of well-founded recursion in certain cases. For instance,
the recursive module in Figure 6 provides a typeC.t, which is

myA = λX. λx : boxX(SIG). ...

yourB = λX. λx : boxX(SIG). ...

structure rec X . x : SIG = struct
structure A = myA{X}(x)
structure B = yourB{X}(x)

end

Figure 5. Revised Separate Compilation Scenario

structure rec C : ORDERED = struct
datatype t = ...CSet.set...
fun compare (x,y) = ...CSet.compare(a,b)...

end
and CSet = MakeSet(C)

Figure 6. Recursive Data Structure Example

defined in terms ofsetsof itself.4 The definition of moduleC
refers recursively to theCSet module, which is defined by apply-
ing theMakeSet functor to theC module. The only way we can
be sure that the recursion is well-founded is if we know that the
application of theMakeSet functor will not attempt to apply the
partial functionC.compare, i.e., that theMakeSet functor is non-
strict. With name abstractions, we can instrument the implemen-
tation of MakeSet in order to assign it a non-strict type5 such as
∀X.boxX(ORDERED)→SET.

Similarly, name abstractions can be used to give more precise types
to core-level ML functions. For instance, suppose we had access to
the code for themap function. By wrapping the definition ofmap in
a name abstraction, we could assign the function the type

∀X. (σ X
−→ τ) /0

−→ (σ list
X

−→ τ list)

This type indicates thatmap will turn a value of any arrow type into
a value of the same arrow type, but will not apply its argumentin the
process. Given this type formap, we can write our recursive module
example involvingmap the way we wanted to write it originally in
Section 2.3:

rec (X . x : SIG.
let

val f : σ X
−→ τ = ...

val g : σ list
X

−→ τ list = map {X} f
...

)

The more precise non-strict type formap allows us to avoid eta-
expandingmap f, but it also requires having access to the imple-
mentation ofmap. Furthermore, it requires us to modify the type
of map, infecting the existing ML infrastructure with names. It is
therefore important that, in the absence of this solution, our type
system is strong enough (thanks to Rule 12) to typecheck at least
the eta-expansion ofmap f, without requiring changes to existing
ML code. Unfortunately, there is no corresponding way to eta-
expand the functor applicationMakeSet(C) in the example from
Figure 6. To statically ensure that the recursion in that example is

4See Okasaki [26] for similar, more realistic examples, suchas
“bootstrapped heaps”.

5For simplicity, we are ignoring here that the result signature
SET really depends on the type components of the functor argument.

7

well-founded, it appears that onemusthave access to the implemen-
tation of theMakeSet functor in order to instrument it with name
abstractions and assign it a more precise non-strict interface.

This example also illustrates why it is useful to be able to instantiate
a name abstraction with asupportinstead of a single name. In par-

ticular, suppose thatf’s type wereσ S
−→ τ for some non-singleton

support S. The definition ofg would becomemap S f, which is
only possible given the ability to instantiatemap with a support.

Finally, note that while our system does not contain any notion of
subtyping, it is important to be able to coerce a non-strict function
into an ordinary (potentially strict) arrow type. The coercion from
∀X.boxX(σ)→ τ to σ→ τ[/0/X] is easily encodable within our
language asλ f .λx. f (/0)(box(x)).

3.4 Dynamic Semantics

We formalize the dynamic semantics of our core language in terms
of a virtual machine. Machine states(ω;C;e) consist of a storeω, a
continuationC, and an expressione currently being evaluated. We
sometimes useΩ to stand for a machine state.

A continuationC consists of a stack of continuation framesF, as
shown in Figure 7. A storeω is a partial mapping from variables (of
location type) tostorable things. A storable thingθ is either a term
(e) or nonsense (?). By ω(x) we denote the storable thing stored atx
in ω, which is only valid if something (possibly nonsense) is stored
atx. By ω[x 7→θ] we denote the result of creating a new locationx in
ω and storingθ at it. By ω[x:=θ] we denote the result of updating
the storeω to storeθ atx, wherex is already in dom(ω). We denote
the empty store byε.

The dynamic semantics of the language is shown in Figure 7 as
well. It takes the form of a stepping relationΩ 7→ Ω′. Rules 18
through 31 are all fairly straightforward. Rule 32 says that, in order
to evaluaterec(X .x : τ.e), we create a new locationx in the store
bound to nonsense, push the recursive framerec(X .x : τ.•) on the
continuation stack, and evaluatee. (We can always ensure thatx is
not already a location in the store byα-conversion.) Once we have
evaluatede to a valuev, Rule 33 performs the backpatching step: it
storesv at locationx in the store and returnsv. Finally, if a location
is ever dereferenced (unboxed), Rule 31 simply looks up the value
it is bound to in the store.

3.5 Type Safety

Observe that the machine is stuck if we attempt to unbox a location
that is bound to nonsense. The point of the type safety theorem is
to ensure that this will never happen for well-formed programs. We
begin by defining a notion of well-formedness for stores, which is
dependent on a notion of arun-time context. A run-time context
is a context that only binds variables representing memory loca-
tions, i.e., variables ofbox type. In addition, we distinguishback-
patchablelocations and connect them to their associated names by
introducing a new context binding form X. x : τ, which behaves
semantically the same as the two bindings X,x : boxX(τ), but is
distinguished syntactically.

DEFINITION 3.1 (RUN-TIME CONTEXTS). A contextΓ is run-
time if the only bindings inΓ take the form X.x : τ or x : boxT(τ).

DEFINITION 3.2 (STORE WELL -FORMEDNESS). A store ω is
well-formed, denotedΓ ` ω [S], if:

Continuations C ::= • |C◦F
Continuation Frames F ::= 〈•,e〉 | 〈v,•〉 | πi(•) | •(e) | v(•)

| •(T) | box(•) | unbox(•)
| rec(X .x : τ.•)

Small-step semantics:Ω 7→ Ω′

〈e1,e2〉 not a value

(ω;C;〈e1,e2〉) 7→ (ω;C◦〈•,e2〉;e1)
(18)

(ω;C◦〈•,e〉;v) 7→ (ω;C◦〈v,•〉;e)
(19)

(ω;C◦〈v1,•〉;v2) 7→ (ω;C;〈v1,v2〉)
(20)

(ω;C;πi(e)) 7→ (ω;C◦πi(•);e)
(21)

(ω;C◦πi(•);〈v1,v2〉) 7→ (ω;C;vi)
(22)

(ω;C;e1(e2)) 7→ (ω;C◦•(e2);e1)
(23)

(ω;C◦•(e);v) 7→ (ω;C◦v(•);e)
(24)

(ω;C◦ (λx.e)(•);v) 7→ (ω;C;e[v/x])
(25)

(ω;C;e(T)) 7→ (ω;C◦•(T);e)
(26)

(ω;C◦•(T);λX.e) 7→ (ω;C;e[T/X])
(27)

(ω;C;box(e)) 7→ (ω;C◦box(•);e)
(28)

x 6∈ dom(ω)

(ω;C◦box(•);v) 7→ (ω[x 7→v];C;x)
(29)

(ω;C;unbox(e)) 7→ (ω;C◦unbox(•);e)
(30)

ω(x) = v

(ω;C◦unbox(•);x) 7→ (ω;C;v)
(31)

x 6∈ dom(ω)

(ω;C; rec(X .x : τ.e)) 7→ (ω[x 7→?];C◦ rec(X .x : τ.•);e)
(32)

(ω;C◦ rec(X .x : τ.•);v) 7→ (ω[x:=v];C;v)
(33)

Figure 7. Core Language Dynamic Semantics

1. Γ is run-time and dom(ω) = vardom(Γ)

2. ∀X .x : τ ∈ Γ. if X ∈ S then∃v. ω(x) = v andΓ ` v : τ [S]

3. ∀x : boxT(τ) ∈ Γ. ∃v. ω(x) = v andΓ ` v : τ [S]

8

Continuation well-formedness: Γ `C : τ cont [S]

Γ ` • : τ cont [S]
(34)

Γ ` F : τ ⇒ σ [S] Γ `C : σ cont [S]

Γ `C◦F : τ cont [S]
(35)

Γ `C : σ cont [S] Γ ` σ ≡S τ
Γ `C : τ cont [S]

(36)

Continuation frame well-formedness: Γ ` F : τ1 ⇒ τ2 [S]

Γ ` e : τ2 [S]

Γ ` 〈•,e〉 : τ1 ⇒ τ1× τ2 [S]
(37)

Γ ` v : τ1 [S]

Γ ` 〈v,•〉 : τ2 ⇒ τ1× τ2 [S]
(38)

i ∈ {1,2}

Γ ` πi(•) : τ1× τ2 ⇒ τi [S]
(39)

Γ ` e : σ [S]

Γ ` •(e) : σ→ τ ⇒ τ [S]
(40)

Γ ` v : σ→ τ [S]

Γ ` v(•) : σ ⇒ τ [S]
(41)

Γ ` •(T) : ∀X.τ ⇒ τ[T/X] [S]
(42)

Γ ` box(•) : τ ⇒ boxT(τ) [S]
(43)

Γ ` unbox(•) : box(τ) ⇒ τ [S]
(44)

X .x : τ ∈ Γ Γ ` σ ≡X τ
Γ ` rec(X .x : τ.•) : σ ⇒ τ [S]

(45)

Figure 8. Well-formedness of Core Continuations

Essentially, the judgmentΓ ` ω [S] says thatΓ assigns types to
all locations in the domain ofω, and that all locations map to
appropriately-typed values except those backpatchable ones asso-
ciated with names which are not in the support S.

We define well-formedness of continuations and continuation
frames via the judgmentsΓ `C : τ cont [S] andΓ ` F : τ1 ⇒ τ2 [S],
defined in Figure 8. The former judgment says that continuationC
expects a value of typeτ to fill in its •; the latter judgment says that
F expects a value of typeτ1 to fill in its • and thatF produces a
value of typeτ2 in return. The only rule that is slightly unusual is
Rule 45 for recursive framesrec(X .x : τ.•). Since this frame is not
a binder for X orx, Rule 45 requires that X.x : τ be in the context.
This is a safe assumption sincerec(X .x : τ.•) only gets pushed on
the stack after a binding forx has been added to the store.

We can now define a notion of well-formedness for a machine state,
which requires that the type of its expression component matches
the type of the hole in the continuation component:

DEFINITION 3.3 (MACHINE STATE WELL -FORMEDNESS). A
machine stateΩ is well-formed, denotedΓ ` Ω [S], if Ω = (ω;C;e),
where:

1. Γ ` ω [S]

2. ∃τ. Γ `C : τ cont [S] andΓ ` e : τ [S]

We can now state the preservation and progress theorems leading to
type safety:

THEOREM 3.4 (PRESERVATION). If Γ`Ω [S] andΩ 7→Ω′, then
∃Γ′,S′. Γ′ ` Ω′ [S′].

DEFINITION 3.5 (TERMINAL STATES). A machine stateΩ is
terminal if it has the form(ω;•;v).

DEFINITION 3.6 (STUCK STATES). A machine stateΩ is stuck
if it is non-terminal and there is no stateΩ′ such thatΩ 7→ Ω′.

THEOREM 3.7 (PROGRESS). If Γ ` Ω [S], thenΩ is not stuck.

Note that whenΩ = (ω;C◦unbox(•);x), the well-formedness ofΩ
implies thatΓ` x : box(τ) [S] for some typeτ. The well-formedness
of ω then ensures that there is a valuev such thatω(x) = v, so Ω
can make progress by Rule 31.

COROLLARY 3.8 (TYPE SAFETY). Suppose/0 ` e : τ [/0]. Then
for any machine stateΩ, if (ε;•;e) 7→∗ Ω, thenΩ is not stuck.

The full meta-theory of our language (along with proofs) appears
in the companion technical report [7].

3.6 Practical Issues

Efficient Implementation Our dynamic semantics treats values
of type boxS(τ) as memory locations that will eventually contain
values of typeτ. It is quite likely, though, that values of typeτ (i.e.,
the kinds of values one wants to define recursively) have a naturally
boxed representation. For instance, in the case of recursive mod-
ules,τ will typically be a record type, and a module value of typeτ
will be represented as a pointer to a record stored on the heap.

Only one level of pointer indirection is needed to implementback-
patching. Thus, a direct implementation of our semantics that rep-
resents all values of typeboxS(τ) as pointers to values of typeτ
will introduce an unnecessary level of indirection when values of
type τ are already pointers. Our semantics, however, does not re-
quire one to employ such a naı̈ve representation. Indeed, for typesτ
with naturally boxed representations, a realistic implementation of
our semantics should represent values of typeboxS(τ) the same as
values of typeτ and should compile theunbox’ing of such values
as a no-op. (See Hirschowitzet al. [18] for an example of such a
compilation strategy.) At the level of our type system, though, there
is still an important semantic distinction to be made between τ and
boxS(τ) that transcends such implementation details.

Effects Since we have modeled the semantics of backpatching
operationally in terms of a mutable store, it is easy to incorporate
some actual computational effects into our framework as well. In
the companion technical report [7] we extend the language and type
safety proof with primitives for mutable state and continuations.
The extensions are completely straightforward and are essentially
oblivious to the presence of supports in typing judgments.

9

Types τ ::= · · · | compS(τ)
Terms e ::= · · · | delay(e) | force(e)

S∪S1 = T = S∪S2 Γ ` τ1 ≡T τ2

Γ ` compS1
(τ1) ≡S compS2

(τ2)
(46)

Γ ` e : τ [S∪T]

Γ ` delay(e) : compT(τ) [S]
(47)

Γ ` e : compT(τ) [S] T ⊆ S

Γ ` force(e) : τ [S]
(48)

Figure 9. Static Semantics for Memoized Computations

Typechecking It is also important that our language admit a
practical typechecking algorithm. In the implicitly-typed form of
the language that we have used here, it is not obvious that such
an algorithm exists because terms do not have unique types. For

example, ifλx.e has typeσ S
−→ τ, it can also be givenσ T

−→ τ
for any T⊇ S. It is easy to eliminate this non-determinism, how-
ever, by making the language explicitly-typed. In particular, if λ-
abstractions are annotated asλT x : σ.e and boxed expressions are
annotated asboxT(e), along with the revised typing rules

Γ,x : σ ` e : τ [S∪T]

Γ ` λT x : σ.e : σ T
−→ τ [S]

Γ ` e : τ [S]

Γ ` boxT(e) : boxT(τ) [S]

then it is easy to synthesize unique types for explicitly-typed terms
up to equivalence modulo a given support S. (See the companion
technical report for details [7].) It remains an important question
for future work how much of the type and support information in
explicitly-typed terms can be inferred.

4 Encoding Unrestricted Recursion

Despite all the efforts of our type system, there will alwaysbe recur-
sive termsrec(X .x : τ.e) for which we cannot statically determine
that e can be evaluated without dereferencingx. For such cases it
is important to have a fallback approach that would allow thepro-
grammer to writerec(X . x : τ.e) with the understanding that the
recursion may be ill-founded and dereferences ofx will be saddled
with an additional run-time cost.

One option is to add a secondunrestrictedrecursive term construct,
with the following typing rule:

Γ,x : 1→ τ ` e : τ [S]

Γ ` urec(x : τ.e) : τ [S]

Note that we do not introduce any name X, so there are no restric-
tions on whenx can be dereferenced. Since the dereferencing ofx
may diverge and cannot therefore be a mere pointer dereference, we
assignx the thunk type 1→ τ instead ofbox(τ), with dereferencing
achieved by applyingx to 〈〉. Adding an expliciturec construct,
however, makes for some redundancy in the recursive mechanisms
of the language. It would be preferable, at least at the levelof the
theory, to find a way to encode unrestricted recursion in terms of
our existing recursive construct.

We achieve this by extending the language with primitives for mem-
oized computations. The syntax and static semantics of thisexten-

Machine States Ω ::= · · · | Error
Continuation Frames F ::= · · · | force(•) | memo(x,•)

x 6∈ dom(ω)

(ω;C;delay(e)) 7→ (ω[x 7→e];C;x)
(49)

(ω;C; force(e)) 7→ (ω;C◦ force(•);e)
(50)

ω(x) = e

(ω;C◦ force(•);x) 7→ (ω[x:=?];C◦memo(x,•);e)
(51)

(ω;C◦memo(x,•);v) 7→ (ω[x:=v];C;v)
(52)

ω(x) = ?

(ω;C◦ force(•);x) 7→ Error
(53)

Figure 10. Dynamic Semantics for Memoized Computations

sion are given in Figure 9. First, we introduce a typecompS(τ) of
locations storing memoized computations. A value of this type is

essentially a thunk of type 1
S

−→ τ whose result is memoized after
the first application.

The primitivedelay(e) creates a memoized locationx in the store
bound to the unevaluated expressione. When x is forced (by
force(x)), the expressione stored atx is evaluated to a valuev, and
thenv is written back tox. During the evaluation ofe, the location
x is bound to nonsense; ifx is forced again during this stage, the
machine raises an error. Thus, every force ofx must check to see
whether it is bound to an expression or nonsense. Despite thediffer-
ence in operational behavior, the typing rules for memoizedcom-
putations appear just as ifcompS(τ), delay(e) and force(e) were

shorthand for 1
S

−→ τ, λ〈〉.eande〈〉, respectively. We usecomp(τ)
sometimes as shorthand forcomp /0(τ).

We can now encodeurec via a recursive memoized computation:

urec(x : τ.e) def
=

force(rec(X .x : comp(τ).delay(e[λ〈〉. force(unbox(x))/x])))

It is easiest to understand this encoding by stepping through it.
First, a newrecursive location x is created, bound to nonsense.
Then, thedelay creates a newmemoizedlocationy bound to the ex-
pressione[. . ./x]. Next, therec backpatchesx with the valuey and
returnsy. Finally, y is forced, resulting in the evaluation ofe[. . ./x]
to a valuev, andy is backpatched withv. If the recursive variable
(encoded asλ〈〉. force(unbox(x))) is dereferenced (applied to〈〉)
during the evaluation ofe[. . ./x], it will result in another forcing of
y, raising a run-time error.

Essentially, one can view therec in this encoding as merely ty-
ing the recursive knot on the memoized computation, while the
memoization resulting from theforce is what actually performs
the backpatching. Observe that if we were to givecomp(τ) a non-
memoizing semantics,i.e., to consider it synonymous with 1→ τ,
the above encoding would have precisely the fixed-point semantics
of recursion. Memoization ensures that the effects ineonly happen
once, at the firstforce of the recursive computation.

10

The dynamic semantics for this extension is given in Figure 10. To
evaluatedelay(e), we create a new memoized location in the store
and binde to it (Rule 49). To evaluateforce(e), we first evaluate
e (Rule 50). Oncee evaluates to a locationx, we lookx up in the
store. Ifx is bound to an expressione, we proceed to evaluatee, but
first push on the continuation stack a memoization frame to remind
us that the result of evaluatingeshould be memoized atx (Rules 51
and 52). Ifx is instead bound to nonsense, then we must be in the
middle of evaluating anotherforce(x), so we step to anError state
which halts the program (Rule 53). Extending the type safetyproof
of Section 3.5 to handle memoized computations is straightforward;
the details appear in the companion technical report [7].

5 Related Work

Well-Founded Recursion Boudol [4] proposes a type system for
well-founded recursion that, like ours, employs a backpatching se-
mantics. Boudol’s system tracks thedegreesto which expressions
depend on their free variables, where the degree to whichedepends
on x is 1 if x appears in a guarded position ine (i.e., under an un-
appliedλ-abstraction), and 0 otherwise. What we call the support
of an expression corresponds in Boudol’s system to the set ofvari-
ables on which the expression depends with degree 0. Thus, while
there is no distinction between recursive and ordinary variables in
Boudol’s system, his equivalent ofrec(x:τ.e) ensures that the eval-
uation ofe will not dereferencex by requiring thate depend onx
with degree 1.

In our system an arrow type indicates the recursive variables that
may be dereferenced when a function of that type is applied. An ar-
row type in Boudol’s system indicates the degree to which thebody

of a function depends on its argument. Thus,σ 0
−→ τ andσ 1

−→ τ
classify functions that arestrict andnon-strict in their arguments,
respectively. As we discussed in Section 3.3, the ability toidentify
non-strict functions is especially important for purposesof sepa-
rate compilation. For example, in order to typecheck our separate
compilation scenario from Figure 2, it is necessary to know that the
separately-compiled functorsmyA andyourB are non-strict.

In contrast to our system, which requires the code from Figure 2 to
be rewritten as shown in Figure 5, Boudol’s system can typecheck
the code in Figure 2 as is. The reason is that function applications
of the form f (x) (i.e.,where the argument is a variable) are treated
as a special case in his semantics: while the expression “x” depends
on the variablex with degree 0, the expression “f (x)” merely passes
x to f without dereferencing it. This implies that ordinaryλ-bound
variables may be instantiated at run time with recursive variables.
Thus, viewed in terms of our semantics, Boudol’s system treats all
variables as implicitly havingbox type.

The simplicity of Boudol’s system is achieved at the expenseof
being rather conservative. In particular, a function application f (e)
is considered to depend on all the free variables off with degree 0.
Suppose thatf is a curried functionλy.λz.e′, wheree′ dereferences
a recursive variablex. In Boudol’s system, even a single application
of f will be considered to depend onxwith degree 0 and thus cannot
appear unguarded in the recursive term definingx.

To address the limitations of Boudol’s system, Hirschowitzand
Leroy [17] propose a generalization of it, which they use as the
target language for compiling their call-by-value mixin module cal-
culus (see below). Specifically, they extend Boudol’s notion of de-
grees to be arbitrary integers: the degree to whiche depends on
x becomes, roughly, the number ofλ-abstractions under whichx

appears ine. Thus, continuing the above example, the function
λy.λz.e′ would depend onx with degree 2, so instantiating the first
argument would only decrement that degree to 1, not 0.

Nevertheless, Hirschowitz and Leroy’s system still suffers from a
paucity of types. Consider the same curried function example, ex-
cept where we let-bindλy.λz.e′ first instead of applying it directly:
let f = λy.λz.e′ in f (e). The most precise degree-based type one

can give tof when typing the body of thelet is τ1
1

−→ τ2
0

−→ τ3.
This type tells us nothing about the degree to whichf depends on
the recursive variablex dereferenced bye′. Thus, Hirschowitz and
Leroy’s system must conservatively assume thatf (e) may derefer-
encex. In contrast, our type system can assignf a type such as

τ1
/0

−→ τ2
X

−→ τ3, which would allow its first argument (but not its
second) to be instantiated under the empty support.

We believe thelet expression above is representative of code that
one might want to write in the body of a recursive module, which
suggests that our name-based approach is a more appropriatefoun-
dation for recursive modules. However, the weaknesses of the
degree-based approaches are not necessarily problematic in the par-
ticular applications for which they were developed. For thepur-
pose of compiling mixin modules, the primary feature required of
Hirschowitz and Leroy’s target language is the ability to link mu-
tually recursiveλ-abstractions that have been compiled separately.
As we have illustrated in Section 3.3, our language supportsthis
feature as well.

Weak Polymorphism and Effect Systems There seems to be an
analogy between the approaches discussed here for trackingwell-
founded recursion and the work on combining polymorphism and
effects in the early days of ML. Boudol’s 0-1 distinction is reminis-
cent of Tofte’s distinction between imperative and applicative type
variables [30]. Hirschowitz and Leroy’s generalization ofBoudol
is similar to the idea ofweak polymorphism[15] (implemented by
MacQueen in earlier versions of the SML/NJ compiler), wherein a
type variableα carries a numeric “strength” representing, roughly,
the number of function applications required before a ref cell is cre-
ated storing a value of typeα. Our system has ties to effect systems
in the style of Talpin and Jouvelot [29], in which an arrow type in-
dicates the set of effects that may occur when a function of that type
is applied. For us, the effect in question is the dereferencing of an
undefined recursive variable.

A common criticism leveled at both effect systems and weak poly-
morphism is that functional and imperative implementations of a
polymorphic function have different types, and it is impossible to
know which type to expect when designing a specification for a
module separate from its implementation [31]. To a large extent,
this criticism does not apply to our type system: names infect types
within recursive modules, but theexternal interface of a module
will be the same regardless of whether or not the module is imple-
mented recursively. To ensure that certain recursive modules (like
the one in Figure 6) are well-founded, however, one needs to ob-
serve that a general-purpose functor (like theMakeSet functor) is
non-strict, and it is debatable whether the (non-)strictness of such a
functor should be reflected in its specification. Choosing not to ex-
pose strictness information in the specification of a functor imposes
fundamental limitations on how the functor can be used, not just in
our system, but in any type system for well-founded recursion.

Strictness Analysis One can think of static detection of well-
founded recursion as a kind ofnon-strictnessanalysis, in contrast
to the well-known problem ofstrictnessanalysis [1]. Both prob-

11

lems are concerned with identifying whether an expression,such
as the body of a function, will access the value of a particular
variable when evaluated. Strictness analysis, however, isused as
an optimization technique for lazy languages, in which any func-
tion may be conservatively classified as non-strict. In call-by-
value languages, on the other hand, functions are strict by default—
observing that a function is non-strict requires us to explicitly treat
its argument as boxed and to show that applying the function will
not unbox it. It is thus unclear how techniques from strictness anal-
ysis might be applied to the well-founded recursion problem.

Names The idea of using names in our type system is inspired
by Nanevski’s work on using a modal logic with names to model
a “metaprogramming” language for symbolic computation [23].
(His use of names was in turn inspired by Pitts and Gabbay’s
FreshML [27].) Nanevski uses names to represent undefined sym-
bols appearing inside expressions of a modal� type. These ex-
pressions can be viewed as pieces of uncompiled syntax whosefree
names must be defined before they can be compiled.

Our use of names is conceptually closer to Nanevski’s more recent
work (concurrent with ours) on using names to model control ef-
fects for which there is a notion of handling [24]. As mentioned
earlier, one can think of the dereferencing of a recursive variable
as an effect that is in some sense “handled” by the backpatching
of the variable. Formally, though, Nanevski’s system is quite dif-
ferent, especially in that it does not employ any judgment oftype
equivalence modulo a support.

Monadic Recursion There has been considerable work recently
on adding effectful recursion to Haskell. Since effects in Haskell
are isolated in monadic computations, adding a form of recursion
over effectful expressions requires an understanding of how recur-
sion interacts with monads. Erkök and Launchbury [11] propose a
monadic fixed-point constructmfix for defining recursive compu-
tations in monads that satisfy a certain set of axioms. They later
show how to usemfix to define a recursive form of Haskell’sdo
construct [12]. Friedman and Sabry [14] argue that the backpatch-
ing semantics of recursion is fundamentally stateful, and thus defin-
ing a recursive computation in a given monad requires the monad
to be combined with a state monad. This approach allows recursion
in monads that do not obey the Erkök-Launchbury axioms, such as
the continuation monad.

The primary goal of our type system is to statically ensure well-
founded recursion in an impure call-by-value setting, and thus the
work on recursive monadic computations for Haskell (which avoids
any static analysis) is largely orthogonal to ours. Nevertheless, the
dynamic semantics of our language borrows from recent work by
Moggi and Sabry [22], who give an operational semantics for the
monadic metalanguage extended with the Friedman-Sabrymfix.

Recursive Modules Most recursive module proposals restrict the
form of the recursive module construct so that recursion is not de-
fined over effectful expressions. One exception is Russo’s exten-
sion to Moscow ML [28], which employs an unrestricted form of
recursion similar to oururec construct from Section 4. Another
is Leroy’s experimental extension to O’Caml [20], which permits
arbitrary effects in recursive modules but restricts backpatching to
modules of pointed type,i.e., modules that export only functions
and lazy computations. This restriction enables more efficient im-
plementation, since for pointed types there is an appropriate “bot-
tom” value with which to initialize the recursive variable.One can
apply the same optimization to oururec(x : τ.e) in the case thatτ

is pointed. Our system, however, permits examples like the one in
Figure 1, which Leroy’s extension does not.

Crary, Harper and Puri [5] give a foundational account of recursive
modules that models recursion via a fixed-point at the modulelevel.
For the fixed-point semantics to make sense, they require that the
body of a fixed-point module isvaluable(i.e., pure and terminat-
ing) in a context where the recursive variable is non-valuable. Our
judgment ofevaluability from Section 2 can be seen as a general-
ization of valuability. Similarly, Flatt and Felleisen’s proposal for
units [13] divides the recursive module construct into a recursive
section, restricted to contain only valuable expressions,and an un-
restricted initialization section evaluated after the recursive knot is
tied. Duggan and Sourelis [9, 10] study amixinmodule extension to
ML, which allows function and datatype definitions to span module
boundaries. Like Flatt and Felleisen, they confine such extensible
function definitions to the “mixin” section of a mixin module, sep-
arate from the effectful initialization section.

There have also been several proposals based on Ancona and
Zucca’s calculusCMS for purely functional call-by-name mixin
modules [3]. In one direction, recent work by Anconaet al. [2]
extendsCMSwith computational effects encapsulated by monads.
They handle recursive monadic computations using a recursive do
construct based on Erkök and Launchbury’s [12]. In anotherdirec-
tion, Hirschowitz and Leroy [17] transferCMS to a call-by-value
setting. Their type system performs a static analysis of mixin mod-
ules to ensure well-founded recursive definitions, but it requires the
strictness dependencies between module components to be written
explicitly in the interfaces of modules.

6 Conclusion and Future Work

We have proposed a novel type system for general recursion over
effectful expressions, to serve as the foundation of a recursive mod-
ule extension to ML. The presence of effects seems to necessitate
a backpatching semantics for recursion similar to that of Scheme.
Our type system ensures statically that recursion is well-founded,
avoiding some unnecessary run-time costs associated with back-
patching. To ensure well-founded recursion in the presenceof
multiple recursive variables and separate compilation, wetrack the
usage of individual recursive variables, represented statically by
names. Our core system is easily extended to account for the com-
putational effects of mutable state and continuations. In addition,
we extend our language with a form of memoized computation,
which allows us to write arbitrary recursive definitions at the ex-
pense of an additional run-time cost.

The explicitly-typed version of our type system admits a straightfor-
ward typechecking algorithm, and could serve as a target language
for compiling a recursive extension to ML. An important direction
for future work is to determine the extent to which names should
be available to the ML programmer. This will depend heavily on
the degree to which types involving names can be inferred when
typechecking recursive modules.

Another key direction for future work is to scale our approach to
the module level. In addition to the issues involving recursion at the
level of types [8], there is the question of how names and recursion
interact with other module-level features such as type generativity.
We are currently investigating this question by combining the lan-
guage presented here with our previous work on a type system for
higher-order modules [6].

12

Acknowledgments

The author would like to thank Bob Harper and Karl Crary for in-
valuable discussions and guidance throughout the development of
this work.

References

[1] Samson Abramsky and Chris Hankin, editors.Abstract Inter-
pretation of Declarative Languages. Ellis Horwood Limited,
1987.

[2] Davide Ancona, Sonia Fagorzi, Eugenio Moggi, and Elena
Zucca. Mixin modules and computational effects. In2003
International Colloquium on Languages, Automata and Pro-
gramming, Eindhoven, The Netherlands, 2003.

[3] Davide Ancona and Elena Zucca. A primitive calculus for
module systems. InInternational Conference on Principles
and Practice of Declarative Programming, volume 1702 of
Lecture Notes in Computer Science, pages 62–79. Springer-
Verlag, 1999.

[4] Gerard Boudol. The recursive record semantics of objects
revisited. Research report 4199, INRIA, 2001. To appear
in the Journal of Functional Programming.

[5] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive
module? In1999 Conference on Programming Language De-
sign and Implementation (PLDI), pages 50–63, Atlanta, GA.

[6] Derek Dreyer, Karl Crary, and Robert Harper. A type system
for higher-order modules. In2003 ACM Symposium on Prin-
ciples of Programming Languages, pages 236–249, 2003.

[7] Derek Dreyer, Robert Harper, and Karl Crary. A type system
for well-founded recursion. Technical Report CMU-CS-03-
163, Carnegie Mellon University, July 2003.

[8] Derek R. Dreyer, Robert Harper, and Karl Crary. Toward a
practical type theory for recursive modules. Technical Report
CMU-CS-01-112, School of Computer Science, Carnegie
Mellon University, March 2001.

[9] Dominic Duggan and Constantinos Sourelis. Mixin modules.
In 1996 ACM SIGPLAN International Conference on Func-
tional Programming, pages 262–273, Philadelphia, Pennsyl-
vania, June 1996.

[10] Dominic Duggan and Constantinos Sourelis. Parameterized
modules, recursive modules, and mixin modules. In1998
ACM SIGPLAN Workshop on ML, pages 87–96, Baltimore,
Maryland, September 1998.

[11] Levent Erkök and John Launchbury. Recursive monadic bind-
ings. In 2000 International Conference on Functional Pro-
gramming, pages 174–185, Paris, France, 2000.

[12] Levent Erkök and John Launchbury. A recursive do for
Haskell. In2002 Haskell Workshop, October 2002.

[13] Matthew Flatt and Matthias Felleisen. Units: Cool modules
for HOT languages. In1998 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
236–248, Montreal, Canada, June 1998.

[14] Daniel P. Friedman and Amr Sabry. Recursion is a compu-
tational effect. Technical Report TR546, Indiana University,
December 2000.

[15] John Greiner. Weak polymorphism can be sound.Journal of
Functional Programming, 6(1):111–141, 1996.

[16] Robert Harper and Mark Lillibridge. A type-theoretic ap-
proach to higher-order modules with sharing. InTwenty-First
ACM Symposium on Principles of Programming Languages,
pages 123–137, Portland, OR, January 1994.

[17] Tom Hirschowitz and Xavier Leroy. Mixin modules in a call-
by-value setting. In2002 European Symposium on Program-
ming, volume 2305 ofLecture Notes in Computer Science,
pages 6–20, 2002.

[18] Tom Hirschowitz, Xavier Leroy, and J. B. Wells. Compilation
of extended recursion in call-by-value functional languages.
In 2003 International Conference on Principles and Practice
of Declarative Programming, Uppsala, Sweden.

[19] Richard Kelsey, William Clinger, and Jonathan Rees (eds.).
Revised5 report on the algorithmic language Scheme.Higher-
Order and Symbolic Computation, 11(1), September 1998.

[20] Xavier Leroy. A proposal for recursive modules in Objective
Caml, May 2003. Available from the author’s web site.

[21] Robin Milner, Mads Tofte, Robert Harper, and David Mac-
Queen.The Definition of Standard ML (Revised). MIT Press,
1997.

[22] Eugenio Moggi and Amr Sabry. An abstract monadic seman-
tics for value recursion. In2003 Workshop on Fixed Points in
Computer Science, April 2003.

[23] Aleksandar Nanevski. Meta-programming with names and
necessity. In2002 International Conference on Functional
Programming, pages 206–217, Pittsburgh, PA, 2002. A sig-
nificant revision is available as a technical report CMU-CS-
02-123R, Carnegie Mellon University.

[24] Aleksandar Nanevski. A modal calculus for effect handling.
Technical Report CMU-CS-03-149, Carnegie Mellon Univer-
sity, June 2003.

[25] Objective Caml.http://www.ocaml.org.

[26] Chris Okasaki. Purely Functional Data Structures. Cam-
bridge University Press, 1998.

[27] Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage
for programming with bound names modulo renaming. In
Roland Backhouse and José Nuno Oliveira, editors,Math-
ematics of Program Construction, volume 1837 ofLecture
Notes in Computer Science, pages 230–255. Springer, 2000.

[28] Claudio V. Russo. Recursive structures for Standard ML. In
International Conference on Functional Programming, pages
50–61, Florence, Italy, September 2001.

[29] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect
discipline. Information and Computation, 111(2):245–296,
1994.

[30] Mads Tofte. Operational Semantics and Polymorphic Type
Inference. PhD thesis, University of Edinburgh, 1988.

[31] Andrew K. Wright. Simple imperative polymorphism.Lisp
and Symbolic Computation, 8(4):343–355, 1995.

13

