
RustBelt Relaxed - Technical Appendix

This work is accompanied by a machine-checked formalization in Coq, which includes all
definitions, theorems, lemmas and proofs in this appendix, with the exception of the correspondence
proof (§2).

Contents
1 Language 2

1.1 Grammar . 2
1.2 Operational Semantics . 2

2 Correspondence of ORC11 to RC11 13
2.1 Executions . 13

2.1.1 Consistent Executions . 14
2.2 Declarative Semantics . 14
2.3 Operational Graph Semantics (OGS) . 16
2.4 OGS to ORC11 . 18

3 Lifetime Logic for Views 23
3.1 Proof Rules . 23
3.2 Derived Forms of Borrowing . 26

4 GPFSL 29

5 Case Study: Arc 39
5.1 The Full APIs of Arc . 39
5.2 Insufficient Synchronization in get_mut . 42

1

1 Language
1.1 Grammar
Our language is an extension of the original RustBelt’s λRust with the relaxed memory semantics
of ORC11 (§1.2). λRust is a lambda calculus with integers, locations with explicit allocation and
deallocation, and a notion of poison value h. Instead of sc for atomic accesses, we use release rel,
acquire acq, and relaxed rlx accesses together with fences.

The grammar is given in Fig. 1. Several syntactic sugars are taken as-is from the original
RustBelt, given in Fig. 2. We refer the reader to the original RustBelt appendix (Jung et al. [2017])
for more explanation of the grammar and syntactic sugars.

1.2 Operational Semantics
Following iGPS (Kaiser et al. [2017]) we use an operational semantics for relaxed memory so that it
can be instantiated in Iris. For this work, we extend iGPS’s operational semantics for RA+NA to
include relaxed accesses and fences.

The semantics, called ORC11, is defined by three sub semantics: the expressions semantics
(Fig. 5), the machine semantics (Fig. 9), and the race-detecting semantics (Fig. 6 and Fig. 7).
The combined thread pool semantics is given in Fig. 10 and Fig. 11. In §2, we sketch a proof of
correspondence that relates ORC11 to the axiomatic semantics from Lahav et al. [2017].

2

z ∈ Z
Expr 3 e ::= v | x

| e.e | e+ e | e− e | e ≤ e | e == e

| e(e)
| ∗oe
| e1 :=o e2

| CAS(e0, e1, e2, of , or, ow)
| alloc(e)
| free(e1, e2)
| case e of e
| fork { e }
| fenceo

Val 3 v ::= h | ` | z | rec f(x) := e

Loc 3 ` ::= (i, n)
Order 3 o ::= acq | rel | rlx | na
Ctx 3 K ::= •

| K.e | v.K | K + e | v +K | K − e | v −K
| K ≤ e | v ≤ K | K == e | v == K

| K(e) | v(v ++ [K] ++ e)
| ∗oK | K :=o e | v :=o K

| CAS(K, e1, e2, of , or, ow)
| CAS(v0,K, e2, of , or, ow)
| CAS(v0, v1,K, of , or, ow)
| alloc(K)
| free(K, e2)
| free(e1,K)
| caseK of e

Figure 1: Language syntax.

3

funrec f(x) ret k := e := rec f([k] ++ x) := e

let x = e in e′ := (rec ([x]) := e′)(e)
e′; e := let = e′ in e

letcont k(x) := e in e′ := let k = (rec k(x) := e) in e′

jump k(e) := k(e)
call f(e) ret k := f([k] ++ e)

false := 0
true := 1

if e0 then e1 else e2 := case e0 of [e1, e2]

∗e := ∗nae

e1 := e2 := e1 :=na e2

new := rec new(size) :=
if size == 0 then (42, 1337) else alloc(size)

delete := rec delete(size, ptr) :=
if size == 0 thenh else free(size, ptr)

memcpy := rec memcpy(dst, len, src) :=
if len ≤ 0 thenh else
dst.0 := src.0;
memcpy(dst.1, len− 1, src.1)

e1 :=n
∗e2 := memcpy(e1, n, e2)

e
inj i:== () := e.0 := i

e1
inj i:== e2 := e1.0 := i; e1.1 := e2

e1
inj i:==n

∗e2 := e1.0 := i; e1.1 :=n
∗e2

skip := let x = h inh
newlft := h

endlft := skip

Figure 2: Syntactic sugars.

4

π ∈ Thread ::= N
t ∈ Time ::= N+

ω ∈ MsgVal ::= � | � | v ∈ Val

ActionIds ::= 2N
+

V ∈ View ::= Loc fin−⇀ {w : Time, aw : ActionIds, nr : ActionIds, ar : ActionIds}

V ∈ ThreadView ::=
{

rel : Loc fin−⇀ View, frel : View, cur : View, acq : View
}

m ∈ ExtMsg ::=
{

ts : Time, val : MsgVal, view : View?
}

M∈ MsgPool ::= Loc fin−⇀ Time fin−⇀
{

val : MsgVal, view : View?
}

N ∈ NARace ::= View
ς ∈ GlobalState ::= MsgPool×NARace
MemEvent 3 ε ::= 〈Alloc, `, n ∈ N+〉

| 〈Dealloc, `, n ∈ N+〉
| 〈Read, `, v, o〉
| 〈Write, `, v, o〉
| 〈Update, `, vr, vw, or, ow〉
| 〈Fence, o〉

Figure 3: Machine state definitions.

5

ω ∈ Readable(`,M,V) := ∃t.M(`)(t) = (ω,) ∧ t ≤ V.cur(`)

ω ≡ v

v ≡ v � ≡ h

` ∈ unalloc(M)

` /∈ dom(M)
` ∈ unalloc(M)

∃t.M(`)(t) = (�,)
` ∈ unalloc(M)

M ` v1 = v2

M ` z = z M ` ` = `
`1 ∈ unalloc(M) ∨ `2 ∈ unalloc(M)

M ` `1 = `2

` v1 6= v2

z1 6= z2

` z1 6= z2

`1 6= `2

` `1 6= `2
` ` 6= 0 ` 0 6= `

` v1 =? v2

` z1 =? z2 ` `1 =? `2 ` ` =? 0 ` 0 =? `

o1 v o2

na v rlx na v acq na v rel rlx v acq rlx v rel
Figure 4: Auxilliary relations.

6

M,V ` e ε?

−→ e′1, e
′?
2

OE-ectx
e→ e′1, e

′?
2

M,V ` K[e]→ K[e′1], e′?2

OE-proj
M,V ` `.n→ `+ n

OE-add
z1 + z2 = z′

M,V ` z1 + z2 → z′

OE-sub
z1 − z2 = z′

M,V ` z1 − z2 → z′

OE-le-true
z1 ≤ z2

M,V ` z1 ≤ z2 → 1

OE-le-false
z1 > z2

M,V ` z1 ≤ z2 → 0

OE-eq-true
M ` v1 = v2

M,V ` v1 == v2 → 1

OE-eq-false
` v1 6= v2

M,V ` v1 == v2 → 0

OE-alloc
n > 0

M,V ` alloc(n) 〈Alloc,`,n〉−−−−−−−→ `

OE-free
n > 0

M,V ` free(n, `) 〈Dealloc,`,n〉−−−−−−−−→ h

OE-deref
ω ≡ v

M,V ` ∗o` 〈Read,`,ω,o〉−−−−−−−−→ v

OE-assign
M,V ` ` :=o v

〈Write,`,v,o〉−−−−−−−−→ h

OE-cas-fail
rlx v of
rlx v or
rlx v ow

(∀ω ∈ Readable(`,M,V).∃v′. ω ≡ v′∧ ` v1 =? v′) ` v1 6= vr

M,V ` CAS(`, v1, v2, of , or, ow) 〈Read,`,vr,of 〉−−−−−−−−−→ 0

OE-cas-suc
rlx v of
rlx v or
rlx v ow

(∀ω ∈ Readable(`,M,V).∃v′. ω ≡ v′∧ ` v1 =? v′) M ` v1 = vr

M,V ` CAS(`, v1, v2, of , or, ow) 〈Update,`,vr,v2,or,ow〉−−−−−−−−−−−−−−→ 1

OE-fence
M,V ` fenceo

〈Fence,o〉−−−−−−→ h
OE-case
M,V ` case i of (e)→ ei

OE-app
M,V ` (rec f(x) := e)(v)→ e[rec f(x) := e/f, v/x]

OE-fork
M,V ` fork { e } → h, e

Figure 5: Expression semantics.

7

M,N , V ` RaceFree(ε)

DRF-read-na
∀t ∈ dom(M(`)). t ≤ cur(`).w N (`).aw v cur(`).aw
M,N , (rel, frel, cur , acq) ` RaceFree(〈Read, `, v, na〉)

DRF-write-na
N (`).aw v cur(`).aw N (`).nr v cur(`).nr N (`).ar v cur(`).ar

∀t ∈ dom(M(`)). t ≤ cur(`).w < tw

M,N , (rel, frel, cur , acq) ` RaceFree(〈Write, `, v, na〉)

DRF-read-at
rlx v o N (`).w ≤ cur(`).w

M,N , (rel, frel, cur , acq) ` RaceFree(〈Read, `, v, o〉)

DRF-write-at
rlx v o N (`).w ≤ cur(`).w N (`).nr v cur(`).nr
M,N , (rel, frel, cur , acq) ` RaceFree(〈Write, `, v, o〉)

DRF-update
M,N , V ` RaceFree(〈Read, `, vr, or〉) M,N , V ` RaceFree(〈Write, `, vw, ow〉)

M,N , V ` RaceFree(〈Update, `, vr, vw, or, ow〉)

DRF-alloc
M,N , V ` RaceFree(〈Alloc, `, n〉)

DRF-dealloc
∀i ∈ [<n], t′ ∈ dom(M(`+ i)). t′ ≤ cur(`).w ∀i ∈ [<n].N (`+ i).aw v cur(`+ i).aw
∀i ∈ [<n].N (`+ i).nr v cur(`+ i).nr ∀i ∈ [<n].N (`+ i).ar v cur(`+ i).ar

M,N , (rel, frel, cur , acq) ` RaceFree(〈Dealloc, `, n〉)

Figure 6: Data-race-free (DRF) pre condition, detailing the exact requirements on the local and
global race detector state for any particular memory event.

8

N
ε,t,m∗

N ′

DRF-Post-read-na
r /∈ N (`).nr N ′ = N [`←{N (`) with nr := N (`).nr ∪ {r}}]

N
〈Read,`,v,na〉,r,[]

N ′

DRF-Post-write-na
N ′ = N [`←{N (`) with w := m.ts}]

N
〈Write,`,v,na〉,⊥,[m]

N ′

DRF-Post-read-at
rlx v o r /∈ N (`).ar N ′ = N [`←{N (`) with ar := N (`).ar ∪ {r}}]

N
〈Read,`,v,o〉,r,[]

N

DRF-Post-write-at
rlx v o N ′ = N [`←{N (`) with aw := N (`).aw ∪ {m.ts}}]

N
〈Write,`,v,o〉,⊥,[m]

N ′

DRF-Post-update
r /∈ N (`).ar N ′ = N [`←{N (`) with ar := N (`).ar ∪ {r}}]

N ′ = N [`←{N (`) with aw := N (`).aw ∪ {m.ts}}]

N
〈Update,`,vr,vw,or,ow〉,r,[m]

N ′

DRF-Post-alloc
N ′ = N [`+ i←{w := mi.ts, aw := ∅, nr := ∅, ar := ∅} | i ∈ [<n]]

N
〈Alloc,`,n〉,⊥,[m0...mn−1]

N ′

DRF-Post-dealloc
N ′ = N [`+ i←{N (`+ i) with w := mi.ts}) | i ∈ [<n]]

N
〈Dealloc,`,n〉,⊥,[m0...mn−1]

N ′

Figure 7: Data-race-free (DRF) post condition, detailing the change to the global race detector
state on a per-event basis.

9

OM-read-helper
cur(`).w ≤ t R(`) ≤ t

V = [`←{w := t, aw := ∅, nr := if o = na then {r} else ∅, ar := if o v rlx then {r} else ∅}]
cur ′ = if acq v o then cur t V tR else cur t V
acq′ = if rlx v o then acq t V tR else acq t V

(rel, frel, cur , acq) 〈R:o,`,t,R〉,r−−−−−−−−→ (rel, frel, cur ′, acq′)

OM-write-helper
cur(`).w < t

V = [`←{w := t, aw := if rlx v o then {t} else ∅, nr := ∅, ar := ∅}]
cur ′ = cur t V acq′ = acq t V

V ′ = rel(`) t if rel v o then cur ′ else V rel ′ = rel [`←V ′]
Rw = if rlx v o then V ′ t frel tRr else ⊥

(rel, frel, cur , acq) 〈W:o,`,t,Rr,Rw〉,⊥−−−−−−−−−−−−→ (rel ′, frel, cur ′, acq′)

Figure 8: View-helper relations.

10

ς | V ε−→ ς ′ | V ′

OM-alloc
` = (i, n′) {i} × N # dom(M)

M′ =M [`+m← [tm←(�,⊥)] |m ∈ [<n]]
V 〈W:na,`+0,t0,⊥,⊥〉−−−−−−−−−−−−→ · · · 〈W:na,`+m,tm,⊥,⊥〉−−−−−−−−−−−−−→ · · ·

〈W:na,`+(n−1),t(n−1),⊥,⊥〉−−−−−−−−−−−−−−−−−−→ V ′
ms = [(tm, �,⊥) | m ∈ [<n]]

M | V 〈Alloc,`,n〉,⊥,ms−−−−−−−−−−−→ M′ | V ′

OM-free
` = (i, n′) dom(M) ∩ {i} × N = {i} × ([≥n′, <n′ + n])

∀m ∈ [<n], t ∈ dom(M(`+m)). t ≤ V.cur(`+m).w < tm ∧M(`+m)(t).val 6= �
∀m ∈ [<n].dom(M(`+m)) 6= ∅

M′ =M [`+m← [tm←(�,⊥)] |m ∈ [<n]]
V 〈W:na,`+0,t0,⊥,⊥〉−−−−−−−−−−−−→ · · · 〈W:na,`+m,tm,⊥,⊥〉−−−−−−−−−−−−−→ · · ·

〈W:na,`+(n−1),t(n−1),⊥,⊥〉−−−−−−−−−−−−−−−−−−→ V ′
ms = [(tm, �,⊥) | m ∈ [<n]]

M | V 〈Dealloc,`,n〉,⊥,ms−−−−−−−−−−−−→ M′ | V ′

OM-read
` /∈ unalloc(M) M(`)(t) = (v,R)

V ′′ 〈R:o,`,t,R〉,r−−−−−−−−→ V ′

M | V 〈Read,`,v,o〉,r,[]−−−−−−−−−−→ M | V ′

OM-write
` /∈ unalloc(M) t /∈M(`)
M′ =M [`←M(`) [t←(v,R)]]

V 〈W:o,`,t,⊥,R〉−−−−−−−−−→ V ′

M | V 〈Write,`,v,o〉,[(t,v,R)]−−−−−−−−−−−−−−→ M′ | V ′

OM-update
` /∈ unalloc(M) M(`)(tr) = (vr, Rr) tw = tr + 1 tw /∈M(`)

M′ =M [`←M(`) [tw←(vw, Rw)]]
V 〈R:or,`,tr,Rr〉,r−−−−−−−−−−→ 〈W:ow,`,tw,Rr,Rw〉−−−−−−−−−−−−→ V ′

M | V 〈Update,`,vr,vw,or,ow〉,r,[(tw,vw,Rw)]−−−−−−−−−−−−−−−−−−−−−−−−→ M′ | V ′

OM-Acq-fence

M | V 〈Fence,acq〉−−−−−−−→ M | (V.rel,V.frel,V.acq,V.acq)

OM-Rel-fence
M | V 〈Fence,rel〉−−−−−−−→ M | ([`←V.cur | ` ∈ dom(V.rel)] ,V.cur,V.cur,V.acq)

Figure 9: Machine semantics.

11

ς | V | e ε−→π ς ′ | V ′ | e′

CombRed-pure
M,V ` e→ e′, es

(M,N , V) | e ⊥,es==⇒ (M,N , V) | e′

CombRed-event
∀ε′,M′′,V ′′, e′′, r′,ms′.M,V ` e→ε′ e′, [] ∧M | V ε,r′,ms′−−−−−→ M′′ | V ′′ =⇒ M,N ,V ` RaceFree(ε′)

M,V ` eε → e′, [] M | V ε,r,ms−−−−→ M′ | V ′ N
ε,r,ms

N ′

(M,N , V) | e ε,[]=⇒ (M,N , V) | e′

Figure 10: Combined machine and expression semantics

ς | T S → ς ′ | T S ′

ForkView(V) ::= (∅, ∅,V.cur,V.cur)

OT-step
T S(π) = (e, V) (M,N , V) | e

ε,[ef,0,...,efn]
========⇒ (M′,N ′, V ′) | e′ {ρ0 . . . ρn} ∩ domT S = ∅

(M,N) | T S → (M′,N ′) | T S [π←(e′, V ′)] [ρi←(ef,i,ForkView(V ′)) | i ∈ [<n]]

Figure 11: Threadpool semantics.

12

2 Correspondence of ORC11 to RC11
The memory model of ORC11 is modeled after Lahav et al. [2017] (referred to as “RC11” from now
on) without SC accesses and SC fences. It is worth noting that the memory model of ORC11 is more
conservative and declares more programs racy than RC11. To prove this, we show that any program
that is racy under RC11 is also considered racy by ORC11. We make this claim more precise below.

The race detector in ORC11 (and the one in the intermediate OGS machine) is stronger, i.e.,
detects more races, than RC11. In particular, ORC11 does not permit reducing a CAS expression
with order acq in the presence of an unsynchronized non-atomic read even when the CAS itself
synchronizes with the non-atomic read. In contrast, the self-synchronizing nature of CAS leads to
RC11 accepting this particular behavior as non-racy.

To simplify the proof, we allow RC11 to take expression reduction steps that are disallowed in
ORC11. In particular, the declarative semantics in RC11 may compare arbitrary values with each
other, whereas ORC11 will get stuck in some of these cases (see Fig. 5). A potential theorem to prove
would then be that ORC11 detects any RC11 race or gets stuck for other reasons. Fortunately, the
race detector in ORC11 already models races as being stuck and so the theorem statement simply
becomes: Any program that is racy under RC11 will get stuck under ORC11 (see Theorem 1).

Definition 1 (Extended Order) The set of extended orders ExtOrder is defined by

o ∈ ExtOrder := Order] {relacq}.

Note that relacq w o for any (extended) order o. We define o.w and o.r s.t.

o.w, o.r :=

rel, acq if o = relacq

rel, rlx if o = rel

rlx, acq if o = acq

rlx, rlx if o = rlx

na, na if o = na

Definition 2 (Labels) The set of labels, Label, is defined by the following (tagged) union of events:

γ ∈ Label := {Ro(`, v) | o ∈ Order, ` ∈ Loc, v ∈ Val}
∪ {Wo(`, v) | o ∈ Order, ` ∈ Loc, v ∈ Val}
∪
{

Uo(`, vr, vw) | o ∈ ExtOrder, ` ∈ Loc, vr ∈ codom(` · =? ·), vw ∈ Val
}

∪ {Fo | o ∈ {rel, acq}}
∪ {Forkρ | ρ ∈ Thread}

We write γ ∼ ε when γ corresponds a memory event ε (mapping all labels except Fork to their
corresponding counterparts in MemEvent).

2.1 Executions
An execution G is defined by:

13

1. a finite set of events E ⊆ N. with events E ⊇ E0 :=
{
a`0 | ` ∈ L

}
.

2. a labelling function lab ∈ E→ Label, with projections typ,mod, loc, valr, valw where defined.

3. a function tid assigning a thread identifier to every event in E. We write Eπ to denote the
events in E with tid(a) = π.

4. a strict partial order sb ⊆ E× E which is total on Eπ for every thread π. and which puts all
events in E0 before all other events.

5. a binary relation rf ⊆ [WU]; =loc; [RU] such that

(a) ∀〈a, b〉 ∈ rf. valw(a) = valr(b)
(b) ∀b, 〈a1, b〉 ∈ rf, 〈a2, b〉 ∈ rf. a1 = a2.

6. a family of strict total orders {mo`}`∈L and mo :=]`∈L mo`.

2.1.1 Consistent Executions

Definition 3 (Completeness) An execution G is called complete if and only if for every a ∈ R we
have valr(a) = h ∨ ∃b ∈ Wloc(a). 〈b, a〉 ∈ rf. Note that this condition is weaker than in RC11 as it
allows reads from uninitialized locations (signified by the value h).

Definition 4 (Auxiliary relations)

rb := rf−1; mo

eco := (rf ∪ mo ∪ rb)+

rs := [WU]; sb|?=loc
; [(WU)wrlx]; (rf; [U])∗

asw := [Forkρ]; (sb|?tid=ρ); [Eρ]

sw := asw ∪
(
[Ewrel]; ([F]; sb)?; rs; rf; [(RU)wrlx]; (sb; [F])?; [Ewacq]

)
hb := (sb ∪ sw)+

Definition 5 (Consistency) An execution is called RC11-consistent (simply “consistent” from now
on) if it is complete and

• hb; eco? is irreflexive (COHERENCE)

• sb ∪ rf is acyclic (NO-THIN-AIR)

This definition does not include RC11’s SC axiom.

2.2 Declarative Semantics
The following definitions are taken from Kaiser et al. [2017] (“iGPS”) and, if necessary, adapted to
our setting. Below we define threadpool reduction that generates traces. Note that we circumvent
checks (such as those for legal comparisons) in the expression reduction by providing existentially
quantified memoryM and local view V .

14

Trace-Red-Silent
M,V ` T S(π) −→ e, []
T S ε=⇒π T S[π 7→ e]

Trace-Red-Mem
γ ∼ ε M,V ` T S(π) ε−→ e, []

T S γ=⇒π T S[π 7→ e]

Trace-Red-Fork
V(π) = (e, V) M,V ` T S(π) −→ e′, ef ρ 6∈ dom(T S)

T S
Forkρ===⇒π T S[π 7→ e′]] [ρ 7→ ef]

We write T S =⇒π T S ′ if T S x=⇒π T S ′ for some transition label x; T S x=⇒ T S ′ if T S x=⇒π T S ′
for some thread identifier π; and T S =⇒ T S ′ if T S x=⇒π T S ′ for some transition label x and thread
identifier π. A threadpool is called final if T S(π) ∈ Val for every π ∈ dom(T S).
Definition 6 (Traces) A trace is a sequence of pairs 〈γ1, π1〉, . . . , 〈γn, πn〉. We say that tr =
〈γ1, π1〉, . . . , 〈γn, πn〉 is a trace of an expression e if

[0 7→ e] ε=⇒
∗ γ1=⇒π1 ε=⇒

∗
. . .

ε=⇒
∗ γn=⇒πn ε=⇒

∗
T S

for some thread π and threadpool T S. When T S is final, we call tr a full trace.
Definition 7 A trace tr = 〈γ1, π1〉, . . . , 〈γn, πn〉 induces partial order on indices sb(tr), called
sequenced-before, and a relation on indices asw(tr), called additional-synchronized-with. They are
defined by:

i < j πi = πj

〈i, j〉 ∈ sb(tr)
〈i, j〉 ∈ sb(tr) 〈j, k〉 ∈ sb(tr)

〈i, k〉 ∈ sb(tr)

i < j γi = Forkπj
〈i, j〉 ∈ asw(tr)

Lemma 1 Let tr be a trace of an expression e. Then
• Any prefix of tr is also a trace of e.

• Any permutation tr′ of tr with sb(tr′) = sb(tr) and asw(tr′) = asw(tr) is a trace of e.
Definition 8 An execution G follows a trace tr = 〈γ1, π1〉, . . . , 〈γn, πn〉 if:
• E = {a1, . . . , an} such that lab(ak) = γk and tid(ak) = πk for every 1 ≤ k < n

• sb = {〈ai, aj〉 | 〈i, j〉 ∈ sb(tr)}.
We call G an execution of expression e if G follows some trace of e.

Definition 9 (Conflict) Two events a and b are called conflicting in an execution G if a, b ∈ E,
{typ(a), typ(b)} ∩ {W, U} 6= ∅, a 6= b, and loc(a) = loc(b).
Definition 10 (Races) A pair 〈a, b〉 is called a race in G if a and b are conflicting events in
G, and 〈a, b〉 6∈ hb ∪ hb−1. An execution G is called racy if there is some race 〈a, b〉 in G with
na ∈ {mod(a),mod(b)}.
Definition 11 (Bugginess) An execution G is buggy if it is racy. An expression e is buggy if some
consistent execution of e is buggy.

15

2.3 Operational Graph Semantics (OGS)
We now introduce an operationalized account of RC11 (OGS, short for Operational Graph Semantics),
in which we build up executions step by step. This serves as an important stepping stone towards a
our correspondence proof with ORC11.

Definition 12 (Execution Extension: Memory Accesses) We write G′ ∈ Add(G, π, ρ, γ) if there
exists an event a s.t.

• G′.E = G.E] {a}, G′.tid = G.tid ∪ {a 7→ ρ}, G′.lab = G.lab ∪ {a 7→ γ}

• if ρ 6= π then ρ 6∈ codom(G.tid)

• G′.sb = (G.sb] (G.Eρ × {a}))+

• G′.rf ⊇ G.rf

• G′.mo ⊇ G.mo and if γ = Wna(_,_) then a is mo-maximal in G′

Definition 13 (Race Predicate) We define a predicate Race(G, π) which holds for all memory
events that would cause a data race in execution G. Note that this race detector models exactly
the rules implement in ORC11. Thus, it detects more races than RC11 but only in (potentially
non-buggy) executions following buggy expressions.

Race-I
o w rlx γ ∈ (RU)o` ∃a ∈ Wna

` .∀b ∈ Eπ. 〈a, b〉 6∈ hb∗

γ ∈ Race(G, π)

Race-II
γ = Rna(`,_) ∃a ∈ (WU)`.∀b ∈ Eπ. 〈a, b〉 6∈ hb∗

γ ∈ Race(G, π)

Race-III
γ = Wna(`,_) ∃a ∈ (RWU)`.∀b ∈ Eπ. 〈a, b〉 6∈ hb∗

γ ∈ Race(G, π)

Race-IV
o w rlx γ = Wo` ∃a ∈ (RW)na

` .∀b ∈ Eπ. 〈a, b〉 6∈ hb∗

γ ∈ Race(G, π)

Race-V
γ = Uo` ∃a ∈ (RW)na

` .∀b ∈ Eπ. 〈a, b〉 6∈ hb∗

γ ∈ Race(G, π)

Definition 14 (OGS Reductions)
OGS-Memory-Step
γ ∈ {Ro(`, v), Wo(`, v), Fo}

γ 6∈ Race(G, π)
G′ ∈ Add(G, π, π, γ)
G′ is consistent

G
γ−→π G′

OGS-Fork
G′ ∈ Add(G, π, ρ, Forkρ)

G′ is consistent

G
Forkρ−−−→π G′

OGS-Race
γ ∈ Race(G, π)
G

γ−→π ⊥race

16

We define combined machine and expression semantics for OGS. We once again allow expression
reductions to proceed independent of the current state, thus capturing more behaviors than those
allowed by ORC11.

OGS-CombRed-pure
M,V ` e→ e′, es

G | e ⊥,es==⇒ G | e′

OGS-CombRed-event
∀ε′,M′′,V ′′, e′′.M,V ` e→ε′ e′, [] =⇒ ¬(G ε−→π ⊥race)

M,V ` eε → e′, [] G
ε−→π G′

G | e ε,[]=⇒π G′ | e′

OGS-OT-step
T S(π) = e G | e

ε,[ef,0,...,efn]
========⇒π G′ | e′ {ρ0 . . . ρn} ∩ domT S = ∅

G | T S → G′ | T S [π←(e′, V ′)] [ρi← ef,i | i ∈ [<n]]

We define G0 to be an execution in which all locations are allocated with an initial value of 0.

Lemma 2 (Inclusion of Behaviors (I)) Let G be a non-buggy, consistent execution of expression
e. Then there exists a trace tr = 〈ε1, π1〉 . . . 〈εn, πn〉 of e such that G0

ε1−→π1 . . .
εn−→πn G ∨ ∃j ≤

n.G0
ε1−→π1 . . .

εj−→πj ⊥race.

Proof. As G is consistent, we have that sb∪rf is acyclic. Let a1, . . . , an be an enumeration of E that
respects (sb∪ rf)+. For every 1 ≤ i ≤ n, let πi := tid(ai), εi = lab(ai), and tr = 〈ε1, π1〉 . . . 〈εn, πn〉.
Adding events a1, . . . , an one-by-one we can thus establish either G0

ε1−→π1 . . .
εn−→πn G, or—if in

any step j ≤ n the race predicate detects a spurious race—G0
ε1−→π1 . . .

εj−→πj ⊥race.

Lemma 3 (Inclusion of Behaviors (II)) Let e be a buggy expression. Then G0; [0 7→ e] −→∗ ⊥race.

Proof. We have that e is buggy and, thus, a consistent execution G which is buggy. Let a1, . . . , an
be an enumeration of E that respects sb∪rf. Let k be the minimal index such that G∩{a1, . . . , ak}
is buggy, i.e., racy.

We thus have that G ∩ {a1, . . . , ak} is racy. Let j < k be the minimal index such that loc(ak) =
loc(aj), 〈ak, aj〉 6∈ hb ∪ hb−1, and one of the following holds:

• ak ∈ (WU)wrlx ∧ aj ∈ Rna ∨ ak ∈ Wna

• aj ∈ (WU)wrlx ∧ ak ∈ Rna ∨ aj ∈ Wna

Note that we have tid(ak) 6= tid(aj), as otherwise these events would be related by G.sb, and,
thus G.hb.

1. ak ∈ Wna. We define B := {a ∈ E|〈a, aj〉 ∈ G.hb ∨ 〈a, ak〉 ∈ G.hb∗} and G′ := G∩B. Note that
G′ is non-empty, consistent, and not buggy. By Lemma 2, we have that G0

ε1−→π1 . . .
εn−→πn

G′∨∃j ≤ n.G0
ε1−→π1 . . .

εj−→πj ⊥race for some trace 〈ε1, π1〉, . . . , 〈εn, πn〉 of e. In the latter case
our proof is done. Otherwise we have 〈ak, aj〉 6∈ G′.hb and we show that G′ lab(aj)−−−−→tid(aj) ⊥race.
By Definition 13 (using whichever case corresponds to lab(aj)), it suffices to show that
〈ak, b〉 6∈ G′.hb∗ for all b ∈ Etid(aj). By way of contradiction, assume b ∈ Etid(aj) and
〈ak, b〉 ∈ G′.hb∗. By definition of G′, we have 〈b, aj〉 ∈ G.hb ∨ 〈b, ak〉 ∈ G.hb∗.

17

(a) 〈b, aj〉 ∈ G.hb. By transitivity, we have 〈ak, aj〉 ∈ G.hb, which contradicts our assumption.
(b) 〈b, ak〉 ∈ G.hb∗. From tid(ak) 6= tid(aj) we have that b 6= ak. Thus, 〈b, ak〉 ∈ G.hb. By

transitivity, we have 〈b, b〉 ∈ G.hb, which contradicts hb’s irreflexivity.

As 〈ε1, π1〉, . . . , 〈εn, πn〉, 〈lab(aj), tid(aj)〉 is a valid trace for e, we have that G0; [0 7→ e] −→∗
⊥race.

2. aj ∈ Wna is symmetric to the case above.

3. ak ∈ (WU)wrlx ∧ aj ∈ Rna. We define B := {a ∈ E|〈a, aj〉 ∈ G.hb ∨ 〈a, ak〉 ∈ G.hb∗} and
G′ := G ∩ B. Note that G′ is consistent and not buggy. By Lemma 2, we have that
G0

ε1−→π1 . . .
εn−→πn G′ ∨ ∃j ≤ n.G0

ε1−→π1 . . .
εj−→πj ⊥race for some trace 〈ε1, π1〉, . . . , 〈εn, πn〉

of e. In the latter case our proof is done. Otherwise we have 〈ak, aj〉 6∈ G′.hb and we show
that G′ lab(aj)−−−−→tid(aj) ⊥race.
By Definition 13, it suffices to show that 〈ak, b〉 6∈ G′.hb∗ for all b ∈ Etid(aj). By way
of contradiction, assume b ∈ Etid(aj) and 〈ak, b〉 ∈ G′.hb∗. By definition of G′, we have
〈b, aj〉 ∈ G.hb ∨ 〈b, ak〉 ∈ G.hb∗.

(a) 〈b, aj〉 ∈ G.hb. By transitivity, we have 〈ak, aj〉 ∈ G.hb, which contradicts our assumption.
(b) 〈b, ak〉 ∈ G.hb∗. From tid(ak) 6= tid(aj) we have that b 6= ak. Thus, 〈b, ak〉 ∈ G.hb. By

transitivity, we have 〈b, b〉 ∈ G′.hb, which contradicts hb’s irreflexivity.

As 〈ε1, π1〉, . . . , 〈εn, πn〉, 〈lab(aj), tid(aj)〉 is a valid trace for e, we have that G0; [0 7→ e] −→∗
⊥race.

4. aj ∈ Wwrlx ∧ ak ∈ Rna. This case is symmetric to the one above.

2.4 OGS to ORC11
Definition 15 We define auxiliary relations {auxrel}`, auxfrel, and auxacq.

auxrel` := hb; [Wrel
`]

auxfrel := hb; [Frel]
auxacq := hb; ([Erel]; ([F]; sb)?; rs; rf; [Rrlx])?

Definition 16 (Timestamp Assignment) A timestamp assignment for an execution graph G is
a function ts : W → Time, that satisfies ts(a) < ts(b) whenever 〈a, b〉 ∈ mo. Given a timestamp
assignment ts for G and an event a ∈ W, the view of an event a in G according to ts, denoted
view(a,G, ts), and the message induced by a in G according to ts, denoted msg(a,G, ts), are given
by:

view(a,G, ts) =

λ`. max {ts(b) | b ∈ W`, 〈b, a〉 ∈ hb∗} if mod(a) = rel

λ`. max
{
ts(b) | b ∈ W`, 〈b, a〉 ∈ (auxfrel ∪ auxrel`)?; hb∗

}
if mod(a) = rlx

⊥ otherwise
msg(a,G, ts) =(valw(a), view(a,G, ts))

18

In these definitions, we take ⊥ to be the maximum of an empty set.

Definition 17 (Event Injection) Let G be an execution and a ∈ E. We define an injection into
natural numbers, written Inj(G, a), as follows.

Inj(G, a) := prime(tid(a))|{b|〈b,a〉∈sb}|

where prime(n) is the nth prime number. Note that Inj is injective and that performing a machine
step G −→ G′ implies Inj(G′, a) = Inj(G, a) for any a ∈ G.

We write Inj(G,X) for {Inj(G, a) | a ∈ X}. We also write a ∈ Y for Inj(G, a) ∈ Y if Y is defined
as Inj(G,X) for some X. (Note that this implies a ∈ X.)

Definition 18 Let G be an execution and ts be a timestamp assignment for G. We define the
physical state (Mts

G ,VtsG ,N ts
G) as follows.

• The memory is defined byMts
G := λ`. λt.

msg(a,G, ts) if ∃a. t = ts(a)

⊥ otherwise

• The thread view VtsG is defined by

ThEvs(X,S,R) := {a ∈ S | ∃b ∈ X. 〈a, b〉 ∈ R∗}
tmax(X,S,R) := max {ts(a) | a ∈ ThEvs(X,S,R)}

V (X,R) := λ`. { w := tmax(X, W`, R),

aw :=
{
ts(a) | a ∈ ThEvs(X, Wwrlx

` , R)
}
,

nr := Inj(G,ThEvs(X, Rna
` , R)),

ar := Inj(G,ThEvs(X, Rwrlx
` , R))

}
VtsG (π) := {rel := λ`′. V (Eπ, auxrel`′),

frel := V (Eπ, auxfrel),
cur := V (Eπ, hb),
acq := V (Eπ, auxacq)
}

• The global race detector state N ts
G is defined by

N ts
G := λ`. {

w := tmax(E, Wna
` , (=)),

aw :=
{
ts(a) | a ∈ Wwrlx

`

}
,

nr := Inj(G, Rna
`),

ar := Inj(G, Rwrlx
`)

}

19

In these definitions, we take ⊥ to be the maximum of an empty set.
We say that G relates to a physical state (M,V,N), denoted G ∼ (M,V,N), if and only if

(Mts
G ,VtsG ,N ts) = (M,V,N).

Definition 19 In the following, we lift ORC11’s machine semantics to thread views such that

(M,N ,V) ε−→π (M,N ′,V ′) := (M,N) | V(π) ε−→ (M′,N ′) | V ′ ∧ V ′ = V [π←V ′]

Lemma 4 Suppose G γ−→π G′, γ ∼ ε and let ts′ be a timestamp assignment for G′. Then ts |G.W is
a timestamp assignment for G and (Mts

G ,VtsG ,N ts
G) ε−→π (Mts′

G′ ,Vts
′

G′ ,N ts′

G′).

Lemma 5 (Inclusion of Behaviors (I)) Suppose G γ1−→π1 . . .
γn−→πn Gn and G ∼ (M1,V1, N1).

Then either

• there exist ε1 . . . εn, (M2,N2,V2) G2 . . . (Mn,Nn,Vn) Gn such that π1−→ [ε1] εn−→πn

(Mn,Nn,Vn).

• or there exist j < n, ε1 . . . εj+1, (M2,N2,V2)G2 . . . (Mj ,Nj ,Vj)Gj such that π1−→ [ε1] εj−→πj

(Mj−1,Nj ,Vj) ∧ ¬
(

(Mj ,Nj ,Vj)
εj+1−−−→πj+1 _

)
.

Lemma 6 (Inclusion of Behaviors (II)) Let G be a consistent execution that is not buggy, G γ−→π

⊥race, G ∼ (M,V, N), and γ ∼ ε. Then ¬
(

(M,N) | V(π) ε−→ _
)

Proof. Let ts be the timestamp assignment implied by G ∼ (M,V,N). We consider the following
cases.

1. γ ∈ {Ro(`,_), Uo(`,_,_)} ∧ o w rlx ∧ ∃a ∈ Wna
` .∀b ∈ Eπ. 〈a, b〉 6∈ hb∗.

We show ¬ (M,N ,V(π) ` RaceFree(〈Read, `,_, o〉)). It suffices to show that V(π).cur(`) <
N (`). Let am ∈ Wna

` be the mo-maximal non-atomic write event on ` (which implies ts(am) ≥
ts(a)). Then N (`) = ts(am). It thus suffices to show that V(π).cur(`) < ts(am). By way of
contradiction, assume that V(π).cur(`) ≥ ts(am). Then, there exists c ∈ W` and b ∈ Eπ s.t.
〈c, b〉 ∈ hb∗ ∧ ts(c) ≥ ts(am). From 〈a, am〉 ∈ mo∗, COHERENCE, and G being non-racy we
have that 〈a, am〉 ∈ hb∗. As G is non-racy, we also have c = am ∨ 〈am, c〉 ∈ hb ∨ 〈c, am〉 ∈ hb.

(a) c = am. We have 〈am, b〉 ∈ hb∗. Then, by transitivity, we have 〈a, b〉 ∈ hb∗ which
contradicts our initial assumption.

(b) 〈am, c〉 ∈ hb. By transitivity, we have 〈am, b〉 ∈ hb∗, and, thus, 〈a, b〉 ∈ hb∗. This
contradicts our initial assumption.

(c) 〈c, am〉 ∈ hb ∧ c 6= a. By COHERENCE, we have 〈am, c〉 6∈ mo and, thus, 〈c, am〉 ∈ mo.
This contradicts ts(c) ≥ ts(am).

2. γ = Rna(`,_) ∧ ∃a ∈ (WU)`.∀b ∈ Eπ. 〈a, b〉 6∈ hb∗.
We show ¬ (M,N ,V(π) ` RaceFree(〈Read, `,_, na〉)). It suffices to show that there exists t′,
(v′, V ′) =M(`)(t′) s.t. V(π).cur(`) < t′ ∨N (`).aw 6v V(π).cur(`).aw.
We choose t′ = ts(a) and (v′, V ′) := msg(a,G, ts). It suffices to show V(π).cur(`) < ts(a) ∨
N (`).aw 6v V(π).cur(`).aw. There exists c ∈ W` and b ∈ Eπ s.t. 〈c, b〉 ∈ hb∗ and V(π).cur(`) =
ts(c).
We consider two cases:

20

(a) mod(a) = na. We show ts(c) < ts(a). By way of contradiction, assume ts(c) ≥ ts(a).
We have c 6= a as otherwise 〈a, b〉 ∈ hb∗, contradicting our assumption. Thus we have
ts(c) > ts(a) and 〈a, c〉 ∈ mo. From G being non-racy, COHERENCE, and 〈a, c〉 ∈ mo
we have that 〈a, c〉 ∈ hb. By transitivity, 〈a, b〉 ∈ hb∗, which contradicts our assumption.

(b) mod(a) = rlx. We show N (`).aw 6v V(π).cur(`).aw. By way of contradiction, assume
that N (`).aw v V(π).cur(`).aw. We have a ∈ N (`).aw and, thus, a ∈ V(π).cur(`).aw.
Hence, there exists b′ ∈ Eπ s.t. 〈a, b′〉 ∈ hb∗, which contradicts our assumption.

3. γ = Wna(`, v) ∧ ∃a ∈ (RWU)`.∀b ∈ Eπ. 〈a, b〉 6∈ hb∗.

We show that ¬ (M,N ,V(π) ` RaceFree(〈Write, `,_, na〉)). There exists c ∈ W` and b ∈ Eπ
s.t. 〈c, b〉 ∈ hb∗ ∧ V(π).cur(`) = ts(c). We also have a 6= c as that would imply 〈a, b〉 ∈ hb∗,
contradicting our assumption.
We consider the following cases.

(a) a ∈ Wna
` . We show that there exists t′, (v′, V ′) = M(`)(t′) s.t. ts(c) < t′. We choose

t′ := ts(a) and (v′, V ′) := msg(a,G, ts). It suffices to show ts(c) < ts(a). As G is
non-racy, we have 〈a, c〉 ∈ hb ∨ 〈c, a〉 ∈ hb. The former implies, by transitivity, that
〈a, b〉 ∈ hb∗, which would contradict our assumption. Thus, 〈c, a〉 ∈ hb. As a 6= b we
derive 〈c, a〉 ∈ mo from COHERENCE and, thus, ts(c) < ts(a).

(b) a ∈ (WU)wrlx
` . We show that N (`).aw 6v V(π).cur(`).aw. By way of contradiction, assume

that N (`).aw v V(π).cur(`).aw. We have a ∈ N (`).aw and, thus, a ∈ V(π).cur(`).aw.
Hence, there exists b′ ∈ Eπ s.t. 〈a, b′〉 ∈ hb∗, which contradicts our assumption.

(c) a ∈ R`. We show that N (`).nr 6v V(π).cur(`).nr ∨N (`).ar 6v V(π).cur(`).ar. We have a ∈
N (`).nr ∨ a ∈ N (`).ar. By way of contradiction, assume that N (`).nr v V(π).cur(`).nr ∧
N (`).ar v V(π).cur(`).ar. Then a ∈ V(π).cur(`).nr ∪ V(π).cur(`).ar. Hence, there exists
b′ ∈ Eπ s.t. 〈a, b′〉 ∈ hb. This contradicts our assumption.

4. γ = Wo(`,_) ∧ o w rlx ∧ ∃a ∈ (RW)na
` .∀b ∈ Eπ. 〈a, b〉 6∈ hb∗.

We show ¬ (M,N ,V(π) ` RaceFree(〈Write, `,_, o〉)). We consider a ∈ Rna and a ∈ Wna

separately.

(a) a ∈ Rna. It suffices to show that N (`).nr 6v V(π).cur(`).nr.
By way of contradiction, assume that N (`).nr v V(π).cur(`).nr. We have a ∈ N (`).nr
and, thus, a ∈ V(π).cur(`).nr. This implies that there exists b′ ∈ Eπ s.t. 〈a, b′〉 ∈ hb∗,
which contradicts our assumption.

(b) a ∈ Wna. It suffices to show that V (π).cur(`) < N (`).
Let am ∈ Wna

` be the mo-maximal non-atomic write event on ` (which implies ts(am) ≥
ts(a)). Then N (`) = ts(am). It thus suffices to show that V(π).cur(`) < ts(am). By
way of contradiction, assume that V(π).cur(`) ≥ ts(am). Then, there exists c ∈ W`
and b ∈ Eπ s.t. 〈c, b〉 ∈ hb∗ ∧ ts(c) ≥ ts(am). From 〈a, am〉 ∈ mo∗, COHERENCE,
and G being non-racy we have that 〈a, am〉 ∈ hb∗. As G is non-racy, we also have
c = am ∨ 〈am, c〉 ∈ hb ∨ 〈c, am〉 ∈ hb.
i. c = am. We have 〈am, b〉 ∈ hb∗. Then, by transitivity, we have 〈a, b〉 ∈ hb∗ which

contradicts our initial assumption.

21

ii. 〈am, c〉 ∈ hb. By transitivity, we have 〈am, b〉 ∈ hb∗, and, thus, 〈a, b〉 ∈ hb∗. This
contradicts our initial assumption.

iii. 〈c, am〉 ∈ hb∧c 6= a. By COHERENCE, we have 〈am, c〉 6∈ mo and, thus, 〈c, am〉 ∈ mo.
This contradicts ts(c) ≥ ts(am).

5. γ = Uo(`,_,_) ∧ ∃a ∈ (RW)na
` .∀b ∈ Eπ. 〈a, b〉 6∈ hb∗.

We show that performing the “write” part of the update event leads to a race in ORC11, i.e.,
¬ (M,N ,V(π) ` RaceFree(〈Write, `,_, o.w〉)). We consider a ∈ Rna and a ∈ Wna separately.

(a) a ∈ Rna. We show that N (`).nr 6v V(π).cur(`).nr.
By way of contradiction, assume that N (`).nr v V(π).cur(`).nr. We have a ∈ N (`).nr
and, thus, a ∈ V(π).cur(`).nr. This implies that there exists b′ ∈ Eπ s.t. 〈a, b′〉 ∈ hb∗,
which contradicts our assumption.

(b) a ∈ Wna. It suffices to show that V (π).cur(`) < N (`).
Let am ∈ Wna

` be the mo-maximal non-atomic write event on ` (which implies ts(am) ≥
ts(a)). Then N (`) = ts(am). It thus suffices to show that V(π).cur(`) < ts(am). By
way of contradiction, assume that V(π).cur(`) ≥ ts(am). Then, there exists c ∈ W`
and b ∈ Eπ s.t. 〈c, b〉 ∈ hb∗ ∧ ts(c) ≥ ts(am). From 〈a, am〉 ∈ mo∗, COHERENCE,
and G being non-racy we have that 〈a, am〉 ∈ hb∗. As G is non-racy, we also have
c = am ∨ 〈am, c〉 ∈ hb ∨ 〈c, am〉 ∈ hb.
i. c = am. We have 〈am, b〉 ∈ hb∗. Then, by transitivity, we have 〈a, b〉 ∈ hb∗ which

contradicts our initial assumption.
ii. 〈am, c〉 ∈ hb. By transitivity, we have 〈am, b〉 ∈ hb∗, and, thus, 〈a, b〉 ∈ hb∗. This

contradicts our initial assumption.
iii. 〈c, am〉 ∈ hb∧c 6= a. By COHERENCE, we have 〈am, c〉 6∈ mo and, thus, 〈c, am〉 ∈ mo.

This contradicts ts(c) ≥ ts(am).

Lemma 7 Suppose G γ1−→π1 . . .
γn−→πn ⊥race and G ∼ (M1,V1, N1). Then there exist 0 ≤ j < n,

ε1 . . . εj+1, (M2,N2,V2) G2 . . . (Mj ,Nj ,Vj) Gj such that π1−→ [ε1] εj−→πj (Mj−1,Nj ,Vj) ∧
¬
(

(Mj ,Nj ,Vj)
εj+1−−−→πj+1 _

)
.

Proof. Follows from Lemma 5 and Lemma 6.

Definition 20 (Initial State) We define the initial physical stateM0, global race detector state N0
as well as an initial thread view V0 as follows.

M0 := λ`. λt.

(0,⊥) if t = 0

⊥ otherwise
N0 := λ`. 0

auxview := λ`. { w := 0, aw := ∅, nr := ∅, ar := ∅, }
V0 := {rel := λ`.⊥, frel := ⊥, cur := auxview, acq := auxview, }

22

Theorem 1 (ORC11: Racy Programs Get Stuck) Suppose e is buggy. Then (M0,N0) | [0 7→
(e, V0)]→∗ (M′,N ′) | T S ′ such that ¬ ((M′,N ′) | _).

Proof. Follows from Lemma 3 and Lemma 7.

3 Lifetime Logic for Views
The lifetime logic in RustBelt needs to be adapted to a logic like GPFSL where assertions depend on
views.

3.1 Proof Rules

Splitting ownership in time. The lifetime logic adds a built-in notion of lifetimes, and the
notion of “owning P borrowed for lifetime κ”, written &κfull P .

The rule LftL-begin is used to create a new lifetime. At this point, we obtain the token [κ]1
which asserts that we own the lifetime κ: We know that the lifetime is still running, and we can end
it any time by applying the view shift we got. Now, it turns out that we may want multiple parties
to be able to witness that κ is ongoing, so we need to be able to split this assertion: [κ]q denotes
ownership of the fraction q of κ. Lifetimes can be intersected using the u operator.

We also obtain an update to end the new lifetime again. This makes use of the “update that
takes a step”, defined as follows:

P
E2
E1
Q := P −∗ |VE1 E2 . |VE2 E1Q

The core operation of the lifetime logic is borrowing an assertion P at a given lifetime. Using
LftL-borrow, P is split into ownership of P during the lifetime κ (the full borrow), and ownership
when κ died (a view shift that lets us “inherit” P from κ). In some sense, we are splitting ownership
along the time axis: The justification for the separating conjunction is the fact that a lifetime is
never both ongoing and has already ended at the same time. Thus, the two parts that we split P
into can be treated as disjoint resources: They govern the same part of the (logical and physical)
state, but they do so at different points in time.

When a lifetime ends, full borrows at that lifetime are not worth anything any more, a fact that
is witnessed by LftL-bor-fake.

Borrowed assertions can still be split and merged, as shown by LftL-bor-sep. To get access to
a borrowed assertion, we use LftL-bor-acc-strong. The rule is quite a mouthful, so it is worth
looking at the following simpler (derived) version:

〈&κfull P ∗ [κ]q WV .P 〉Nlft
(1)

This lets us open full borrows (&κfull P) if we can prove that the lifetime is still ongoing, which we do
by presenting any fraction of the lifetime token. We obtain .P , but lose access to that token for as
long as the full borrow is open, which ensures that we do not end the lifetime while the full borrow
is open. Once we re-established .P , we can close the full borrow again the get our token back.

The full rule LftL-bor-acc-strong actually lets us close not just with .P , but with any .Q if
we can show that Q entails P through a view shift. Furthermore, that view shift is only actually
tun when the lifetime ends, which is witnessed by providing the appropriate token ([†κ]).

23

Figure 12: Lifetime logic assertions and proof rules

Notation Meaning Timeless Persistent
[κ]q Fraction q of lifetime token for κ: Witnessing that

the lifetime is still ongoing
Yes No

[†κ] Witness confirming that the lifetime κ is dead (i.e.,
it has ended)

Yes Yes

&κfull P Ownership of the full borrow of P for κ No No
&κi P There is an indexed borrow named i of P for κ No Yes

[Bor : i] Ownership of the indexed borrow i Yes No
&κ/0

at P Internal atomic persistent borrow of P for κ No Yes

Lifetimes. Lifetimes κ form a cancellable PCM with intersection as the operation (u) and unit ε.

κ v κ′ := �∀q. 〈[κ]q WV q′. [κ′]q′〉Nlft

Lifetime creation and end.

LftL-begin
TrueVNlft ∃κ. [κ]1 ∗�

(
[κ]1

Nlft
∅ [†κ]

) LftL-tok-fract
[κ]q+q′ ⇔ [κ]q ∗ [κ]q′

LftL-tok-fract-obj
[κ]q+q′ ⇒ [κ]q ∗ 〈obj〉 [κ]q′

LftL-tok-comp
[κ u κ′]q ⇔ [κ]q ∗ [κ′]q

LftL-tok-unit
True⇒ [ε]q

LftL-not-own-end
[κ]q ∗ [†κ]⇒ False

LftL-end-comp
[†κ u κ′]⇔ [†κ] ∨ [†κ′]

LftL-end-unit
[†ε]⇒ False

Creating full borrows and using them.

LftL-borrow
.P VNlft &

κ
full P ∗

(
[†κ] Nlft

.P
) LftL-bor-sep

&κfull(P ∗Q)WVNlft &
κ
full P ∗&κfull Q

LftL-bor-fake
〈subj〉 [†κ]VNlft &

κ
full P

LftL-bor-acc-strong
&κfull P ∗ [κ]q VNlft ∃κ

′. κ v κ′ ∗ .P ∗
(
∀Q. .

(
.Q ∗ 〈subj〉 [†κ′] ∅ .P

)
∗ .Q Nlft

&κ
′

full Q ∗ [κ]q
)

LftL-bor-acc-atomic-strong
&κfull P VNlft ∅

(
∃P ′κ′. κ v κ′ ∗ .(dP ′e ∧ P) ∗

(
∀Q. .

(
.Q ∗ 〈subj〉 [†κ′] ∅ .P

)
∗ .(dP ′e ∧Q) ∅ Nlft &κ

′

full Q
))
∨(

∃κ′. κ v κ′ ∗ 〈subj〉 [†κ′] ∗ |V∅ Nlft True
)

24

Figure 13: Lifetime logic assertions and proof rules, continued

Indexed borrows.

LftL-bor-idx
&κfull P ⇔ ∃i. &κi P ∗ [Bor : i]

LftL-idx-shorten
κ′ v κ

&κi P ⇒ &κ
′

i P
LftL-idx-acc
&κi P (Vtok) ∗ [Bor : i](Vbor) ∗ [κ]q(Vtok)VNlft ∃V. V v Vtok t Vbor ∗ .P (V) ∗(

∀V ′tok. Vtok v V ′tok ∗ .P (V ′tok t V) Nlft
[Bor : i](V ′tok t V) ∗ [κ]q(V

′
tok)
)

LftL-idx-bor-unnest
&κi P ∗&κ

′

full([Bor : i])VNlft &
κuκ′
full P

LftL-idx-bor-iff
.�(P ⇔ Q)
&κi P ⇒ &κi Q

Internal persistent atomic borrows.

LftL-bor-in-at
&κfull P VNlft &

κ/0
at P

LftL-in-at-acc
&κ/0

at P ` 〈[κ]q WV Vb. . bP ctVb〉
∅
Nlft

LftL-in-at-shorten
κ′ v κ

&κ/0
at P ⇒ &κ

′/0
at PLftL-in-at-iff

.�(P ⇔ Q)
&κ/0

at P ⇒ &κ/0
at Q

25

Finally, the rule LftL-bor-acc-atomic-strong provides a way to access a full borrow without
having a proof that the lifetime is still ongoing.

A closer look at lifetimes. Before we go on talking about the lifetime logic rules, we have to
become more concrete about what a lifetime κ is. Lifetimes κ form a partial commutative monoid
with unit ε. We will also refer to the composition operation (u) as intersection of lifetimes. Moreover,
the PCM has to be cancellable, which means that the composition function is injective.

Furthermore, we define the following inclusion relation on lifetimes:

κ v κ′ := �
(
∀q. 〈[κ]q WV q′. [κ′]q′〉Nlft

)
This says that κ is dynamically shorter than κ′ if, given any fraction the token for κ, we can produce
some fraction of the token for κ′. It is easy to show that this inclusion interacts as expected with
lifetime intersection (LftL-incl-isect).

Indexed borrows. While the proof rules given so far bring us pretty far, it turns out that for
some of the advanced reasoning we need to do for Rust, they do not suffice. As we start to build
more complicated protocols involving full borrows, the fact that &κfull P is neither timeless nor
persistent really becomes a problem.

For this reason, the logic provides a way to decompose a full borrow into timeless and persistent
pieces (the borrow token and the indexed borrow, respectively), which are tied together by an
index i (LftL-bor-idx). Indexed borrows can be opened using LftL-idx-acc, but they cannot
be strengthened, reborrowed or split. Furthermore, indexed borrows can be shortened (LftL-idx-
shorten) following the dynamic lifetime inclusion κ′ v κ.

Indexed borrows are used to state the rule LftL-idx-bor-unnest, which will be used later to
prove two important derived rules: unnesting and reborrowing.

Internal atomic persistent borrows. They are a primitive form of atomic persistent borrow
(see the pargraph below about atomic persistent borrows). They have the same opening and closing
rules as atomic peristent borrows, but use Nlft as namespace, which could not be used with atomic
persistent borrows.

Internally, they are implemented in a very similar fashion as atomic persistent borrows. The
reason we need them is that they are used for implementing fractured borrows, which are in turn
used for creating dynamic lifetime inclusion, and this cannot afford using a different mask as Nlft.

3.2 Derived Forms of Borrowing
Fig. 14 shows some rules that can be derived from the basic rules discussed in the previous subsection.

Furthermore, we introduce in Fig. 15 some derived forms of borrowing – that is, assertions that
share are somewhat like &κfull P , but not exactly.

Reborrowing. Two The rule LftL-reborrow lets us reborrow a &κfull P , which means that we
can pick some statically shorter lifetime κ′ v κ and obtain P borrowed at κ′. When κ′ ends, we can
get our original full borrow back.

The rule LftL-bor-unnest is related. It deals with the case that we have a full borrow of a full
borrow (&κ

′

full &κfull P). If we have already opened that full borrow and stripped a way the . added

26

LftL-incl-isect
κ u κ′ v κ

LftL-incl-glb
κ v κ′ κ v κ′′

κ v κ′ u κ′′

LftL-fract-lincl
&κfrac q

′. [κ′]q·q′
κ v κ′

LftL-bor-shorten
κ′ v κ

&κfull P ⇒ &κ
′

full PLftL-reborrow
κ′ v κ ` &κfull P VNlft &

κ′

full P ∗
(
[†κ′] Nlft

&κfull P
) LftL-bor-unnest

&κ
′

full(&κfull P) Nlft
&κuκ

′

full P
LftL-bor-acc-cons
&κfull P ∗ [κ]q VNlft .P ∗ ∀Q. .

(
.Q ∅ .P

)
∗ .Q Nlft

&κfull Q ∗ [κ]q

LftL-bor-acc
〈[κ]q ∗&

κ
full P WV .P 〉Nlft

LftL-bor-freeze
τ inhabited

(&κfull ∃x : τ. P)VNlft ∃x : τ. &κfull P

LftL-bor-iff
.�(P ⇔ Q)

&κfull P ⇒ &κfull Q

Figure 14: Lifetime logic derived rules

by opening, then we can use LftL-bor-unnest to “unnest” the full borrow in the sense that we end
up with a full borrow at the intersected lifetime (&κ

′uκ
full P).

Both of these rules are derived from LftL-idx-bor-unnest.

Persistent borrows. Persistent borrows are a persistent version of borrows. This means that
many parties are allowed to get access to its content. In order to avoid reentrant accesses, we can
use two different mechanisms, giving rise to two flavors of persistent borrows.

Similarly to invariants in Iris, the first possible mechanism is to force only atomic accesses. We
then get atomic persistent borrows, which are essentially like invariant in Iris with the additional
quirk that the invariant is only maintained for the duration of the lifetime of the borrow. They can
be defined as follows:

&κ/Nat P := ∃i. &κi P ∗ N # Nlft ∗ [Bor : i] N

The other possible mechanism is to restrict the persistent borrow to be used in a threaded
manner, by using the mechanism of non-atomic invariants described in the Iris documentation (and
can be adapted to the GPFSL logic with the same rules). The persistent borrows of this other flavor
are called non-atomic persistent borrows. They can be defined by:

&κ/p.Nna P := ∃i. &κi P ∗ NaInvp.N ([Bor : i])

Fractured borrows. A fractured borrow is a borrow of a permission Φ(q) that can be fractured,
i.e., decomposed according to a fraction:

Φ(q1 + q2)⇔ Φ(q1) ∗ Φ(q2)

Intuitively, it should be possible to share such a borrow, and still obtain some fraction of Φ via
a non-atomic accessor, i.e., Φ(q) can actually be kept around for non-atomic expressions. This is
because even if other threads are concurrently accessing the borrow, they will always leave some
fraction of Φ in the borrow.

Fractured borrows are particularly interesting for giving rise to dynamic lifetime inclusion
(LftL-fract-lincl).

27

Notation Meaning Timeless Persistent
&κ/Nat P There is a atomic persistent borrow of P for κ in

namespace N
No Yes

&κfrac λq. P There is a fractured borrow of λq. P for κ No Yes
&κ/p.Nna P There is a non-atomic persistent borrow of P for κ

in non-atomic invariant pool p, namespace N
No Yes

Atomic persistent borrows

LftL-bor-at
N # Nlft ` &κfull P VNlft &

κ/N
at P

LftL-at-acc
&κ/Nat P ` 〈[κ]q WV Vb. . bP ctVb〉

Nlft
Nlft,N

LftL-at-shorten
κ′ v κ

&κ/Nat P ⇒ &κ
′/N

at P

LftL-at-iff
.�(P ⇔ Q)

&κ/Nat P ⇒ &κ/Nat Q

Non-atomic persistent borrows

LftL-bor-na
&κfull P VN &κ/p.Nna P

LftL-na-acc
&κ/p.Nna P ` 〈[κ]q ∗ [Na : p.N]WV .P 〉Nlft,N

LftL-na-shorten
κ′ v κ

&κ/p.Nna P ⇒ &κ
′/p.N

na P

LftL-na-iff
.�(P ⇔ Q)

&κ/N .Pna ⇒ &κ/N .Qna

Fractured borrows
LftL-bor-fracture
∀q1, q2. Φ(q1 + q2)⇔ Φ(q1) ∗ Φ(q2)

&κfull Φ(1)VNlft &
κ
frac Φ

LftL-fract-acc
&κfrac Φ ` 〈[κ]q WV q′. . Φ(q′)〉Nlft

LftL-fract-shorten
κ′ v κ

&κfrac Φ⇒ &κ
′

frac Φ

LftL-fract-iff
.�(∀q. Φ(q)⇔ Ψ(q))
&κfrac Φ⇒ &κfrac Φ

Figure 15: Lifetime logic derived forms

28

4 GPFSL
GPFSL is an extension of iGPS (Kaiser et al. [2017]) that adopts the fence modalities from FSL (Doko
and Vafeiadis [2016, 2017]). Fig. 16 lists the rules for traditional points-to assertions (non-atomics).
Fig. 17 lists the rules for fork and fences.

GPFSL also combines GPS single-location protocols and iGPS single-write protocols with atomic
borrows (Fig. 18, Fig. 19, Fig. 21, Fig. 22, Fig. 23, Fig. 24). These protocols are used to verify
Mutex, RwLock.

GPFSL also develops protocols based on view-dependent cancellable invariants, which is a simpler
variant of the lifetime logic. The protocols differ slightly from the atomic-borrows-based versions.
Some of them are given in Fig. 25 and Fig. 26. These protocols are used to verify Arc<T>,
thread::spawn, and rayon::join.

29

NA-frac-agree
`
q7−→ v ∗ ` q′7−→ v′ ⇔ `

q+q′7−−−→ v ∗ v = v′
NA-freeable-combine
†mq ` ∗ †m

′

q′ `+m⇔ †m+m′
q+q′ `

NA-alloc
{True} alloc(n) {`.∃v. ` 7→ v ∗ |v| = n ∗ †n1 `}

NA-free
{` 7→ v ∗ †|v|1 `} free(|v|, v) {True}

NA-read
{` q7−→ v} ∗` {v′. v′ = v ∗ ` q7−→ v}

NA-write
{` 7→ v} ` := w {` 7→ w}

NA-memcpy
|v1| = |v2| = n

{`1 7→ v1 ∗ `2
q7−→ v2} `1 :=n

∗`2 {`1 7→ v2 ∗ `2
q7−→ v2}

Figure 16: Non-atomics rules.

Fork
∀ρ. {P } e in ρ {True}
{P } fork { e } {True}

Rel-fence
{P } fencerel in π {∆π P }

Acq-fence
{∇π P } fenceacq in π {P }

Figure 17: Fork and fences rules.

30

AtBor-N-persistent
&κ ` : (t, s, v) I ⇒ �&κ ` : (t, s, v) I

AtBor-N-local
&κ ` : (t, s, v) I ⇒ R(`, t, s, v, I)

AtBor-N-local-join
R(`, t, s, v, I) ∗&κ ` : (t′, s′, v′) I ⇒ &κ ` : (t, s, v) I

AtBor-N-init
[κ]q −∗ &

κ
full (∃v. ` 7−→ v ∗ P (v)) −∗ (∀t, v. . P (v) −∗ . Iw(`, t, s, v)) −∗

(�∀t, s, v. . Iw(`, t, s, v)V .P (v))
[κ]q ∗ ∃t, v. &

κ
` : (t, s, v) I

AtBor-N-rlx-read
∀t′ w t, s′ w s, v′. Ir(`, t′, s′, v′)V Ir(`, t′, s′, v′) ∗ P (t′, s′, v′)
∀t′ w t, s′ w s, v′. Iw(`, t′, s′, v′)V Iw(`, t′, s′, v′) ∗ P (t′, s′, v′)

{[κ]q ∗&
κ
` : (t, s, v) I } ∗rlx` in π {v′. [κ]q ∗ ∃t

′ w t, s′ w s. &κ ` : (t′, s′, v′) I ∗ ∇π P (t′, s′, v′)}
AtBor-N-acq-read

∀t′, s′, v′. Ir(`, t′, s′, v′)V Ir(`, t′, s′, v′) ∗ P (t′, s′, v′)
∀t′, s′, v′. Iw(`, t′, s′, v′)V Iw(`, t′, s′, v′) ∗ P (t′, s′, v′)

{[κ]q ∗&
κ
` : (t, s, v) I } ∗acq` {v′. [κ]q ∗ ∃t

′ w t, s′ w s. &κ ` : (t′, s′, v′) I ∗ P (t′, s′, v′)}
AtBor-N-rlx-write
{[κ]q ∗&

κ
` : (t, s, v) I ∗∆π (∀t′ > t.R(`, t′, s′, v′, I)V Iw(`, t′, s′, v′))}

` :=rlx v
′ in π

{[κ]q ∗&
κ
` : (t′, s′, v′) I }

AtBor-N-rel-write
{[κ]q ∗&

κ
` : (t, s, v) I ∗ (∀t′ > t.R(`, t′, s′, v′, I)V Iw(`, t′, s′, v′))}

` :=rel v
′ in π

{[κ]q ∗&
κ
` : (t′, s′, v′) I }

Figure 18: Atomic-borrow-based normal GPFSL prototocols.

31

∆?ow
π P := (if ow = rel then P else ∆π P)

∇?or
π P := (if or = acq then P else ∇π P)

AtBor-N-cas
of , or ∈ {rlx, acq} ow ∈ {rlx, rel}

∀t′ w t, s′ w s, v′. Iw(`, t′, s′, v′) ∨ Ir(`, t′, s′, v′)⇒ (` vr =? v′)
∀t′ w t, s′ w s, v′. (` v′ 6= vr)⇒ Ir(`, t′, s′, v′)V Ir(`, t′, s′, v′) ∗R(t′, s′, v′)
∀t′ w t, s′ w s, v′. (` v′ 6= vr)⇒ Iw(`, t′, s′, v′)V Iw(`, t′, s′, v′) ∗R(t′, s′, v′)

∀t′ w t, s′ w s. . Iw(`, t′, s′, vr)V .Q1(t′, s′) ∗ .Q2(t′, s′)

∆?ow
π

(
∀t′ w t, s′ w s. P −∗ .Q2(t′, s′)V ∃s′′ w s′.∀t′′ > t. .R(`, t′′, s′′, vw, I)
V (〈obj〉 (.Q1(t′, s′)V . Im(`, t′, s′, vr))) ∗ (Q(t′′, s′′) ∗ Iw(`, t′′, s′′, vw))

)
{[κ]q ∗&

κ
` : (t, s, v) I ∗∆?ow

π P }
CAS(`, vr, vw, of , or, ow) in π

{b. [κ]q ∗ ∃s
′ w s.

b = 1 ∗ ∃t′ > t. &κ ` : (t′, s′, vw) I ∗ ∇?or
π Q(t′′, s′′)

∨ b = 0 ∗∆?ow
π P ∗ ∃t′ ≥ t, v′. (` v′ 6= vr) ∗&κ ` : (t′, s′, v′) I ∗ ∇?of

π R(t′, s′, v′)}
Figure 19: CAS rule for atomic-borrow-based normal GPFSL prototocols.

sw-writer-local-exclusive
W(`, t, s, v, I) ∗W(`, t, s, v, I)⇒ False

sw-local-writer-reader
W(`, t, s, v, I)⇒ R(`, t, s, v, I)

sw-creaders-local-join
Rqshr(`, t, s, v, I) ∗ Rq

′

shr(`, t
′, s′, v′, I)⇒ Rq+q′

shr (`, t, s, v, I)

sw-creaders-local-split
Rq+q′

shr (`, t, s, v, I)⇒ Rqshr(`, t, s, v, I) ∗ Rq
′

shr(`, t, s, v, I)

sw-cwriter-local-exclusive
Wshr(`, t, s, v, I) ∗Wshr(`, t′, s′, v′, I)⇒ False

sw-share-local-cwriter
W(`, t, s, v, I)⇒Wshr(`, t, s, v, I) ∗ R1

shr(`, t, s, v, I)
sw-reader-creader-local
Rqshr(`, t, s, v, I)⇒ R(`, t, s, v, I)

sw-cw-local-exclusive
W(`, t, s, v, I) ∗Wshr(`, t′, s′, v′, I)⇒ False

sw-cr-local-exclusive
W(`, t, s, v, I) ∗ Rqshr(`, t

′, s′, v′, I)⇒ False

Figure 20: Local assertions of single-writer GPFSL prototocols.

32

AtBor-sw-reader-persistent
&κ ` : (t, s, v) I

R
⇒ �&κ ` : (t, s, v) I

R

AtBor-sw-reader-local
&κ ` : (t, s, v) I

R
⇒ R(`, t, s, v, I)

AtBor-sw-reader-local-join
R(`, t, s, v, I) ∗&κ ` : (t′, s′, v′) I

R
⇒ &κ ` : (t, s, v) I

R

AtBor-sw-writer-local
&κ ` : (t, s, v) I

W
⇒W(`, t, s, v, I)

AtBor-sw-writer-local-join
W(`, t, s, v, I) ∗&κ ` : (t′, s′, v′) I

R
⇒ &κ ` : (t, s, v) I

W

AtBor-sw-creader-local
&κ ` : (t, s, v) I

q

CR
⇒ Rqshr(`, t, s, v, I)

AtBor-sw-creader-local-join
Rqshr(`, t, s, v, I) ∗&κ ` : (t′, s′, v′) I

R
⇒ &κ ` : (t, s, v) I

q

CR

AtBor-sw-cwriter-local
&κ ` : (t, s, v) I

CW
⇒Wshr(`, t, s, v, I)

AtBor-sw-cwriter-local-join
Wshr(`, t, s, v, I) ∗&κ ` : (t′, s′, v′) I

R
⇒ &κ ` : (t, s, v) I

CW

AtBor-sw-unshare-local-cwriter
[κ]q ∗Wshr(`, t, s, v, I) ∗&κ ` : (t′, s′, v′) I

1

CR
V [κ]q ∗&

κ
` : (t, s, v) I

W

Figure 21: Atomic-borrow-based single-writer GPFSL prototocols (1).

33

AtBor-sw-init
[κ]q ∗&

κ
full (∃v. ` 7−→ v ∗ P (v)) −∗ (∀t, v. . P (v) −∗ W(`, t, s, v, I)V . Iw(`, t, s, v) ∗Q(t, v)) −∗

(�∀t, s, v. . Iw(`, t, s, v)V .P (v))
[κ]q ∗ ∃t, v. &

κ
` : (t, s, v) I

R
∗Q(t, v)

AtBor-sw-read
o ∈ {rlx, acq}

∀t′ w t, s′ w s, v′. Ir(`, t′, s′, v′)V Ir(`, t′, s′, v′) ∗ P (t′, s′, v′)
∀t′ w t, s′ w s, v′. Iw(`, t′, s′, v′)V Iw(`, t′, s′, v′) ∗ P (t′, s′, v′)
∀t′ w t, s′ w s, v′. Im(`, t′, s′, v′)V Im(`, t′, s′, v′) ∗ P (t′, s′, v′)

{[κ]q ∗&
κ
` : (t, s, v) I

R
}

∗o` in π

{v′. [κ]q ∗ ∃t
′ w t, s′ w s. &κ ` : (t′, s′, v′) I

R
∗ ∇?o

π P (t′, s′, v′)}
AtBor-sw-exclusive-read

o ∈ {rlx, acq} Iw(`, t, s, v)V Iw(`, t, s, v) ∗ P

{[κ]q ∗&
κ
` : (t, s, v) I

W
∗} ∗o` in π {v. [κ]q ∗&

κ
` : (t, s, v) I

W
∗ ∇?o

π P }
AtBor-sw-creader-read

o ∈ {rlx, acq}
∀t′ w t, s′ w s, v′. Ir(`, t′, s′, v′)V Ir(`, t, s, v) ∗ P (t′, s′, v′)
∀t′ w t, s′ w s, v′. Iw(`, t′, s′, v′)V Iw(`, t′, s′, v′) ∗ P (t′, s′, v′)

{[κ]q0
∗&κ ` : (t, s, v) I

q

CR
}

∗o` in π

{v′. [κ]q0
∗ ∃t′ w t, s′ w s. &κ ` : (t′, s′, v′) I

q

CR
∗ ∇?o

π P (t′, s′, v′)}

Figure 22: Atomic-borrow-based single-writer GPFSL prototocols (2).

34

AtBor-sw-write
o ∈ {rlx, rel} s v s′ . 〈obj〉 (Iw(`, t, s, v)V Im(`, t, s, v) ∗Q)

{[κ]q ∗&
κ
` : (t, s, v) I

W
∗∆?o

π (∀t′ > t.R(`, t′, s′, v′, I)V Iw(`, t′, s′, v′))}
` :=o v

′ in π

{[κ]q ∗&
κ
` : (t′, s′, v′) I

W
∗Q}

AtBor-sw-rel-write
s v s′ . 〈obj〉 (Iw(`, t, s, v)V Q1 ∗Q2)

{[κ]q ∗&
κ
` : (t, s, v) I

W
∗

.
(
∀t′ > t.W(`, t′, s′, v′, I) −∗ Q2

(
〈obj〉 (Q1 Im(`, t, s, v)) ∗ |V(Iw(`, t′, s′, v′) ∗Q(t′))

))}
` :=rel v

′

{[κ]q ∗ ∃t
′ > t. &κ ` : (t′, s′, v′) I

R
∗Q(t′)}

Figure 23: Atomic-borrow-based single-writer GPFSL prototocols (3).

35

b ? P := if b then P else True b ? P : Q := if b then P else Q

AtBor-sw-creader-cas
of , or ∈ {rlx, acq} ow ∈ {rlx, rel}

∀t′ w t, s′ w s, v′. Iw(`, t′, s′, v′) ∨ Ir(`, t′, s′, v′)⇒ (` vr =? v′)
∀t′ w t, s′ w s, v′. (` v′ 6= vr)⇒ Ir(`, t′, s′, v′)V Ir(`, t′, s′, v′) ∗R(t′, s′, v′)
∀t′ w t, s′ w s, v′. (` v′ 6= vr)⇒ Iw(`, t′, s′, v′)V Iw(`, t′, s′, v′) ∗R(t′, s′, v′)

∀t′ w t, s′ w s. . Iw(`, t′, s′, vr)V .Q1(t′, s′) ∗ .Q2(t′, s′)

∆?ow
π

∀t
′ w t, s′ w s. P −∗ .Q2(t′, s′)V .Wshr(`, t′, s′, vr) ∗ ∃s′′ w s′.
∀t′′ > t. .Wshr(`, t′′, s′′, vw, I) −∗ bdrop ? .Rqshr(`, t

′′, s′′, vw, I)
V (〈obj〉 (.Q1(t′, s′)V . Im(`, t′, s′, vr)))∗ (Q(t′′, s′′) ∗ Iw(`, t′′, s′′, vw))

{[κ]q0

∗&κ ` : (t, s, v) I
q

CR
∗∆?ow

π P }
CAS(`, vr, vw, of , or, ow) in π

{b. [κ]q0
∗ ∃s′ w s.

b = 1 ∗ ∃t′ > t.
(
bdrop ? &κ ` : (t′, s′, vw) I

R
: &κ ` : (t′, s′, vw) I

q

CR

)
∗

∇?or
π Q(t′, s′)

∨ b = 0 ∗∆?ow
π P ∗ ∃t′ ≥ t, v′. (` v′ 6= vr) ∗&κ ` : (t′, s′, v′) I

q

CR
∗

∇?of
π R(t′, s′, v′)

}
AtBor-sw-reader-cas

of , or ∈ {rlx, acq} ow ∈ {rlx, rel}
∀t′ w t, s′ w s, v′. Iw(`, t′, s′, v′) ∨ Ir(`, t′, s′, v′) ∨ Im(`, t′, s′, v′)⇒ (` vr =? v′)
∀t′ w t, s′ w s, v′. (` v′ 6= vr)⇒ Ir(`, t′, s′, v′)V Ir(`, t′, s′, v′) ∗R(t′, s′, v′)
∀t′ w t, s′ w s, v′. (` v′ 6= vr)⇒ Iw(`, t′, s′, v′)V Iw(`, t′, s′, v′) ∗R(t′, s′, v′)
∀t′ w t, s′ w s, v′. (` v′ 6= vr)⇒ Im(`, t′, s′, v′)V Im(`, t′, s′, v′) ∗R(t′, s′, v′)

∀t′ w t, s′ w s. .(P −∗ Im(`, t′, s′, vr)V False)
∀t′ w t, s′ w s. . Iw(`, t′, s′, vr)V .Q1(t′, s′) ∗ .Q2(t′, s′)

∆?ow
π

(
∀t′ w t, s′ w s. P −∗ .Q2(t′, s′)V .Wshr(`, t′, s′, vr) ∗ ∃s′′ w s′.∀t′′ > t. .Wshr(`, t′′, s′′, vw, I)
V (〈obj〉 (.Q1(t′, s′)V . Im(`, t′, s′, vr)))∗ (Q(t′′, s′′) ∗ Iw(`, t′′, s′′, vw))

)
{[κ]q ∗&

κ
` : (t, s, v) I

R
∗∆?ow

π P }
CAS(`, vr, vw, of , or, ow) in π

{b. [κ]q ∗ ∃s
′ w s.

b = 1 ∗ ∃t′ > t. &κ ` : (t′, s′, vw) I
R
∗ ∇?or

π Q(t′, s′)

∨ b = 0 ∗∆?ow
π P ∗ ∃t′ ≥ t, v′. (` v′ 6= vr) ∗&κ ` : (t′, s′, v′) I

R
∗

∇?of
π R(t′, s′, v′)

}
Figure 24: Atomic-borrow-based single-writer GPFSL prototocols (4).

36

ViewInv-sw-reader-persistent
ι ` : (t, s, v) I

R
⇒ � ι ` : (t, s, v) I

R

ViewInv-sw-reader-local
ι ` : (t, s, v) I

R
⇒ R(`, t, s, v, I)

ViewInv-sw-reader-local-join
R(`, t, s, v, I) ∗ ι ` : (t′, s′, v′) I

R
⇒ ι ` : (t, s, v) I

R

ViewInv-sw-writer-local
ι ` : (t, s, v) I

W
⇒W(`, t, s, v, I)

ViewInv-sw-writer-local-join
W(`, t, s, v, I) ∗ ι ` : (t′, s′, v′) I

R
⇒ ι ` : (t, s, v) I

W

ViewInv-sw-creader-local
ι ` : (t, s, v) I

q

CR
⇒ Rqshr(`, t, s, v, I)

ViewInv-sw-creader-local-join
Rqshr(`, t, s, v, I) ∗ ι ` : (t′, s′, v′) I

R
⇒ ι ` : (t, s, v) I

q

CR

ViewInv-sw-cwriter-local
ι ` : (t, s, v) I

CW
⇒Wshr(`, t, s, v, I)

ViewInv-sw-cwriter-local-join
Wshr(`, t, s, v, I) ∗ ι ` : (t′, s′, v′) I

R
⇒ ι ` : (t, s, v) I

CW

ViewInv-sw-unshare-local-cwriter
[ι]q ∗Wshr(`, t, s, v, I) ∗ ι ` : (t′, s′, v′) I

1
CR
V [ι]q ∗

ι ` : (t, s, v) I
W

Figure 25: View-invariant-based single-writer GPFSL prototocols (1).

ViewInv-sw-init
` 7−→ v −∗ (∀ι, t, v. . Iw(`, t, s, v)) ∃ι, t, v. [ι]1 ∗

ι ` : (t, s, v) I
W

ViewInv-sw-rel-write
s v s′ . 〈obj〉 (Iw(`, t, s, v)V Q1 ∗Q2)

{[ι]q ∗ ι ` : (t, s, v) I
W
∗

.
(
∀t′ > t.W(`, t′, s′, v′, I) −∗ Q2 −∗ [ι]q

(
〈obj〉 (Q1 Im(`, t, s, v)) ∗ |V(Iw(`, t′, s′, v′) ∗Q(t′))

))}
` :=rel v

′

{∃t′ > t. ι ` : (t′, s′, v′) I
R
∗Q(t′)}

Figure 26: View-invariant-based single-writer GPFSL prototocols (2).

37

R(`, t, s, v, I)V �R(`, t, s, v, I)

〈obj〉 ∀v′, t′ ≥ t, s′ w s. Ir(`, t′, s′, v′)V Ir(`, t′, s′, v′) ∗ P (v′)
〈obj〉 ∀v′, t′ ≥ t, s′ w s. Iw(`, t′, s′, v′)V Iw(`, t′, s′, v′) ∗ P (v′)
〈obj〉 ∀v′, t′ ≥ t, s′ w s. Im(`, t′, s′, v′)V Im(`, t′, s′, v′) ∗ P (v′)
{R(`, t, s, v, I) ∗ b.GS(`, I)cV }
∗rlx` in π

{v′.∇π P (v′) ∗ t ≤ t′ ∗ s v s′ ∗ R(`, t′, s′, v′, Ir) ∗ b.GS(`, I)cV }

〈obj〉 ∀v′, t′ ≥ t, s′ w s. Ir(`, t′, s′, v′)V Ir(`, t′, s′, v′) ∗ P (v′)
〈obj〉 ∀v′, t′ ≥ t, s′ w s. Iw(`, t′, s′, v′)V Iw(`, t′, s′, v′) ∗ P (v′)
〈obj〉 ∀v′, t′ ≥ t, s′ w s. Im(`, t′, s′, v′)V Im(`, t′, s′, v′) ∗ P (v′)
{R(`, t, s, v, I) ∗ b.GS(`, I)cV }
∗acq`

{v′. P (v′) ∗ t ≤ t′ ∗ s v s′ ∗ R(`, t′, s′, v′, Ir) ∗ b.GS(`, I)cV }

W(`, I) ∗W(`, I)⇒ False {W(`)} ` :=rlx w {True} {W(`)} ` :=rel w {True}

{R(`)} CAS(`, v1, v2, of , or, ow) {True} {Rqshr(`)} ∗rlx` {True} {Rqshr(`)} ∗acq` {True}

{Rqshr(`)} CAS(`, v1, v2, of , or, ow) {Rqshr(`)}

Figure 27: Intermediate-level rules for GPS single-writers.

38

5 Case Study: Arc

Using the lifetime logic for views (§3), the GPFSL logic (§4), and the combination of them, we
successfully ported RustBelt’s semantic typing proofs of the concurrent libraries Arc, Mutex, RwLock,
thread::spawn, and rayon::join. Of these seemingly simple libraries, Arc, Mutex, and RwLock
encapsulate very subtle correctness conditions, since they support APIs for “extensive” resource
reclamation. Our definition of “extensive” reclamation is twofold. First, by extensive reclamation
we refer to the ability to fully recover all resources for deallocation at the end, which previous
logics were not able to demonstrate. For example, FSL++ (Doko and Vafeiadis [2017]) verifies an
Arc implementation that can reclaim the content (the ownership of the T in Arc<T>), but not the
internal reference counter of the Arc itself. Meanwhile, iGPS (Kaiser et al. [2017]) is able to reclaim
the ownership of the atomic integer that implements a spin lock, but is not able to reclaim the
shared resource that the lock is protecting in the case the lock is unlocked. Second, by extensive
reclamation, we refer to the ability to temporarily obtain full ownership of shared resources. For
example, Arc<T>, Mutex<T>, and RwLock<T> have APIs that allow a thread to temporarily gain full
access to the underlying content T when the thread can prove that it is the unique owner of the Arc,
Mutex, or RwLock. Verifying this kind of temporary reclamation has never been attempted before.
To the best of our knowledge, these are the very first formal, machine-checked proofs of relaxed
memory algorithms that perform extensive resource reclamation.

In this section, we discuss at a high level the technical challenges in verifying Arc with its
powerful yet delicate temporary resource reclamation scheme. This attempt to verify the full APIs
of Arc has led us to the discovery of a data race in one of its temporary reclamation API—namely,
Arc::get_mut. The data race is due to the use of a relaxed access that does not provide sufficient
synchronization, which was not discovered by the original SC RustBelt verification because all
atomic accesses had been strengthened to sequential consistency.

5.1 The Full APIs of Arc

Arc<T>, short for Atomically Reference Counted, is used to share atomically a value of type T, whose
mutation is disabled by default. In order to mutate T, programmers need to instantiate Arc with
wrappers that support thread-safe mutability, for example Arc<Mutex<T>> or Arc<RwLock<T>>. The
following Rust example instantiates Arc with an atomic integer AtomicUsize and demonstrates how
Arc is typically used:
1 let arc1 = Arc :: new(AtomicUsize :: new (5));
2 let arc2 = Arc :: clone (& arc1);
3 thread :: spawn (move || {
4 println !(" child thread : {:?}", arc2. fetch_add (1, Ordering :: Relaxed));
5 });
6 println !("main thread : {:?}", arc1. fetch_add (2, Ordering :: Relaxed));

In line 1 in the main thread, a new Arc value arc1 is created to govern an atomic integer allocated
in shared memory. The Arc’s internal counter for the number of references to the content is set to 1.
An Arc pointer acts almost like its underlying content, so in line 6 we can call fetch_add on arc1
as if on the atomic integer itself. To share the content with the child thread, we create another arc2
by clone-ing arc1 (line 2), which effectively increments the internal counter to 2: there are now 2
pointers sharing the atomic integer. When the Arc pointers go out of scope (line 4 and 6), their
destructors—the drop function—are called and the internal counter is decremented accordingly. The
last call of drop will additionally deallocate the underlying content and the internal counter itself.

39

Arc Weak

new: fn(T) -> Arc<T> new: fn() -> Weak<T>

deref: fn(&Arc<T>) -> &T

clone: fn(&Arc<T>) -> Arc<T> clone: fn(&Weak<T>) -> Weak<T>

downgrade: fn(&Arc<T>) -> Weak<T> upgrade: fn(&Weak<T>) -> Option<Arc<T>>

drop: fn(Arc<T>) -> () drop: fn(Weak<T>) -> ()

get_mut: fn(&mut Arc<T>) -> Option<&mut T>

make_mut: fn(&mut Arc<T>) -> &mut T

Figure 28: An excerpt of Rust’s Arc<T> and Weak<T> APIs.

As expected, to allow concurrent updates by multiple threads, the internal counter is implemented
with an atomic integer.

Fig. 28 gives an excerpt of the most intestring APIs from the Arc library. The four functions
Arc::new, Arc::deref, Arc::clone, and Arc::drop were successfully verified by FSL++ Doko
and Vafeiadis [2017]. The full APIs of Rust’s Arc<T>, however, was not attempted in the relaxed
memory setting before. Our verification must therefore tackle two extra sets of behaviors, presented
as the following two main challenges.

Arc<T> has a subordinate type Weak<T> The first challenge involves a type called Weak<T>.
Weak<T> itself is a variant of Arc<T>: it has a counter to count how many Weak pointers are existing,
and also has the similar clone and drop functions (Fig. 28). However, Weak<T> is not tied to the
underlying value of type T: while owning an Arc<T> guarantees that the value is still available,
owning a Weak<T> does not prevent the underlying value to be reclaimed. Therefore, in order to
access the underlying value with a Weak pointer, one first has to call Weak::upgrade to obtain an
Arc. Weak::upgrade can fail when the value has already been reclaimed, that is when there is
no Arc pointer left. A Weak pointer are typically created by calling Arc::downgrade on a shared
reference of Arc.

The challenge for verifying Arc and Weak in a relaxed memory model is that they involve two
tightly coupled atomic locations. As multi-location invariants are in general unsound for relaxed
memory models, we need to use separate GPFSL single-location invariants for each counter and at
the same time maintain their relation. This is a known challenge, as has been observed by GPS
(Turon et al. [2014]). The general solution is to construct ghost states and/or ghost tokens to encode
the relation between the locations and prevent their invariants from breaking the relation. We were
able to design ghost states for the two counters of Arc and Weak without much difficulty.

Arc<T> supports temporary borrows of the underlying content The second challenge
involves the support to temporarily reclaim full ownership of the underlying content when the thread
knows it is the unique Arc and Weak pointers. The functions Arc::get_mut and Arc::make_mut
provide these capabilities. In particular, get_mut (Fig. 29) checks that the thread owns the unique
Arc and Weak pointers in two steps (in is_unique):

• First, in line 3 (Fig. 29), it acquires a “lock” on the Weak counter to make sure that there is
no other Weak pointers, so that there cannot be other Arc pointers created by upgrade-ing.

40

1 fn is_unique (& mut self) -> bool {
2 // lock the weak pointer count if we appear to be the sole weak pointer holder .
3 if self . inner (). weak. compare_exchange (1, usize ::MAX , Acquire , Relaxed). is_ok () {
4 let unique = self . inner (). strong .load(Relaxed) == 1;
5
6 self . inner (). weak. store (1, Release); // release the lock
7 unique
8 } else { false }
9 }

10 fn get_mut (this: &mut Self) -> Option <& mut T> {
11 if this. is_unique () {
12 unsafe { Some (& mut this.ptr. as_mut (). data) }
13 } else { None }
14 }
15 fn drop (& mut self) {
16 if self . inner (). strong . fetch_sub (1, Release) != 1 {
17 return ;
18 } ...
19 }

Figure 29: Rust’s implementation (excerpt) of Arc::get_mut and Arc::drop.

• Second, in line 4, it reads the Arc counter and check if the value read from the counter is 1.

If the value read in line 4 is 1, get_mut concludes that thread owns the unique Arc and Weak pointers,
and gives the thread temporary full access to the underlying content with type &mut T (line 12).
Otherwise, it releases the lock on the Weak counter (line 6) and fails. Arc::make_mut also follows
the similar pattern of Arc::get_mut, but the targets are reversed: it first acquires a “lock” on the
Arc counter and then reads the Weak counter.

It is not obvious at all how to justify to the correctness of Arc::get_mut and Arc::make_mut.
Unfortunately here we cannot discuss the proofs in detail here. A superficial explanation would
be that this is the combined result of multiple synchronization points scattered in the code of Arc
and Weak. In other words, their correctness depends on tracking global information across multiple
functions of Arc and Weak (clone’s, drop’s, downgrade, and upgrade). For example, in the case of
Arc::get_mut, the combined information lets the thread know that it has observed all the creation
of any possible Arc pointers, either by clone-ing or upgrade-ing. Since every creation of an Arc
pointer must increment the Arc counter by 1, this means that the thread has observed all the
increments to the Arc counter. So when thread reads 1 from the Arc counter, it must be the case
that all other Arc pointers have been drop-ed (each drop decrements the counter by 1), and the
thread must be owning the last Arc pointer. It is then safe to “trade” the ownership of the Arc
pointer to get temporary access to the underlying content.

For the verification, we design several ghost states to track the history of actions by the Arc and
Weak pointers, and ultimately accumulate their effects to achieve the guarantee needed in get_mut
and take_mut. The ghost states and their derived rules show that, at the read in the check’s second
step (line 4, Fig. 29), the thread has collected synchronized, sufficient resources to trade for the full
ownership of the content and the counters. Such a reasoning has never been attempted before in
relaxed memory logics.

41

5.2 Insufficient Synchronization in get_mut

Unfortunately, our setup was not strong enough to verify Arc and Weak without change. The two
reads of the counters in the second check of get_mut and make_mut were rlx in the original code
(line 4, Fig. 29), and we had to strengthen them both to acq in order to make the verification go
through. The reason is that, while we managed to temporarily get the full resources out by a read,
the rlx reads do not give us those resources in the current view (they are under a ∇ modality).
While we conjecture that a rlx read in make_mut is in fact sufficient, a rlx read in get_mut turned
out to be insufficient and we have reported the bug and the fix has been merged into Rust codebase.
The following example invokes a data race when using get_mut:
1 let mut arc1 = Arc :: new (0);
2 let arc2 = Arc :: clone (& arc1);
3 thread :: spawn (move || { let _ : u32 = *arc2; /* drop(arc2); */ });
4 loop { match Arc :: get_mut (& mut arc1) {
5 None => {}
6 Some(m) => { *m = 1u32; return ; }}}

In this example there are two non-atomic operations: the read of the underlying integer in
line 3 (child thread) and the write to the same integer in line 6 (parent thread). The read should
be safe because the child thread owns arc2, thus the underlying integer is shared and immutable.
The write should be safe because get_mut guarantees that the parent thread owns the unique Arc
pointer (arc1) and should temporarily gain full access to the non-atomic integer. This can only
happens after the child thread finishes and arc2 has been dropped. However, the two non-atomic
operations constitute a data race by C11 standard, because neither one happens-before the other.
More specifically, in line 3 of the child thread, when arc2 goes out of scope, it will be destructed by
Arc::drop, which uses a release (rel) RMW (see the code at line 16, Fig. 29). This release RMW
will be read by get_mut (line 4, Fig. 29) in the parent thread (line 4). If this read had been acq,
then there would have been a release-acquire synchronization between the release RMW of drop
and the acquire read of get_mut, and the non-atomic read of the child thread would have been
guaranteed to happen-before the non-atomic write of the parent thread. However, the read was rlx,
thus no happen-before relationship can be established between the two non-atomic operations.

References
M. Doko and V. Vafeiadis. A program logic for C11 memory fences. In VMCAI, LNCS, pages
413–430. Springer, 2016.

M. Doko and V. Vafeiadis. Tackling real-life relaxed concurrency with FSL++. In ESOP, 2017.

R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer. RustBelt: Securing the foundations of
the Rust programming language – technical appendix and coq development, 2017. https:
//plv.mpi-sws.org/rustbelt/popl18/.

J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis. Strong logic for weak memory:
Reasoning about release-acquire consistency in Iris. In ECOOP, LIPIcs, pages 17:1–17:29, 2017.

O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer. Repairing sequential consistency in
C/C++11. In PLDI, 2017.

42

https://plv.mpi-sws.org/rustbelt/popl18/
https://plv.mpi-sws.org/rustbelt/popl18/

A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak memory with ghosts, protocols, and
separation. In OOPSLA, pages 691–707. ACM, 2014.

43

	1 Language
	1.1 Grammar
	1.2 Operational Semantics

	2 Correspondence of ORC11 to RC11
	2.1 Executions
	2.1.1 Consistent Executions

	2.2 Declarative Semantics
	2.3 Operational Graph Semantics (OGS)
	2.4 OGS to ORC11

	3 Lifetime Logic for Views
	3.1 Proof Rules
	3.2 Derived Forms of Borrowing

	4 GPFSL
	5 Case Study: [language=rust,basicstyle=]Arc
	5.1 The Full APIs of [language=rust,basicstyle=]Arc
	5.2 Insufficient Synchronization in [language=rust,basicstyle=]getmut

