
RustBelt Relaxed
Hoang-Hai Dang

Max Planck Institute for Software Systems (MPI-SWS)

Saarland Informatics Campus, Germany

haidang@mpi-sws.org

Jacques-Henri Jourdan

LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay

France

jacques-henri.jourdan@lri.fr

Jan-Oliver Kaiser

Max Planck Institute for Software Systems (MPI-SWS)

Saarland Informatics Campus, Germany

janno@mpi-sws.org

Derek Dreyer

Max Planck Institute for Software Systems (MPI-SWS)

Saarland Informatics Campus, Germany

dreyer@mpi-sws.org

Abstract
The Rust programming language aims to support safe sys-

tems programming by means of a strong ownership-tracking

type system. In their prior work on RustBelt, Jung et al. began

the task of setting Rust’s safety claims on a more rigorous

formal foundation. Specifically, they used Iris, a Coq-based

separation logic framework, to build a machine-checked

proof of semantic soundness for a λ-calculus model of Rust,

as well as for a number of widely-used Rust libraries that

internally employ unsafe language features. However, they

also made the significant simplifying assumption that the

language is sequentially consistent.

In this paper, we adapt RustBelt to account for the relaxed-

memory operations that concurrent Rust libraries actually

use, in the process uncovering a data race in the Arc library.

We focus primarily on themost interesting technical problem:

how to adapt the “lifetime logic” (an essential component of

the RustBelt proof) to be sound under relaxed memory.

ACM Reference Format:
Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and

Derek Dreyer. 2019. RustBelt Relaxed. In Proceedings of Some ACM
SIGPLAN Conference on Programming Languages (PL’19). ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Rust [14] is a new programming language—sponsored by

Mozilla and developed actively over the past decade by a

diverse community of contributors—that aims to bring safety

to the world of systems programming. Specifically, Rust

provides low-level control over data layout and resource

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PL’19, February 29, 2019, New York, NY, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

management à la modern C++, while at the same time offer-

ing strong high-level guarantees (such as type and memory

safety) that are traditionally associated with safe languages

like Java. In fact, Rust takes a step further, statically prevent-

ing anomalies like data races and iterator invalidation that

safe languages typically permit. Rust strikes its delicate bal-

ance between safety and control using a substructural type
system, in which types not only classify data but also repre-

sent ownership of resources, such as the right to read, write,

or deallocate a piece of memory. By tracking ownership in

the types, Rust is able to prohibit dangerous combinations of

mutation and aliasing, a well-known source of programming

pitfalls and security vulnerabilities in both C/C++ and Java.

Only recently has Rust begun to receive attention from the

programming languages community. Notably, the RustBelt

project [7] was launched in 2016 in order to set the safety

claims of Rust on a more rigorous formal foundation. The

initial work on RustBelt by Jung et al. [10] made two main

contributions. First, they proposed a formal definition of a

core typed calculus called λRust, which encapsulates the cen-

tral features of the Rust language. Second, they used the Coq

proof assistant to verify formally that Rust’s aforementioned

safety guarantees do in fact hold for λRust.

However, the initial work on RustBelt also made a sig-

nificant simplifying assumption: It assumed a sequentially

consistent model for concurrent memory accesses. On the

one hand, sequential consistency [17]—i.e., an interleaving

semantics in which threads take turns accessing the global

state, and all threads share the same view of that state—has

long been the standard memory model assumed by research

on concurrency verification. On the other hand, this assump-

tion does not match the reality of modern multicore pro-

gramming languages, Rust included.

In reality, following C/C++11 (hereafter, C11), Rust pro-

vides a relaxed (or weak) memory model, supporting a va-

riety of different consistency levels for shared-memory ac-

cesses [2]. For programmers who demand strong synchro-

nization, sequentially consistent (SC) accesses are available,
but this strength comes at the cost of disabling standard com-

piler optimizations and inserting expensive memory fences

into the compiled code. The weaker consistency levels of

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PL’19, February 29, 2019, New York, NY, USA H.-H. Dang, J.-H. Jourdan, J.-O. Kaiser, and D. Dreyer

release/acquire and relaxed allow one to trade off synchro-

nization strength in return for more efficient compiled code.

Rust employs a variety of these different consistency levels

in several of its widely-used concurrency libraries, such as

Arc, Mutex, and RwLock. But in the initial RustBelt verifica-

tion effort, all atomic (i.e., potentially racy) memory accesses

were treated as having the strongest consistency level, SC.

In this paper, we present RustBelt Relaxed (or RBrlx,

for short), the first formal validation of the soundness of

Rust under relaxed memory. Although based closely on the

original RustBelt, RBrlx takes a significant step forward by

accounting for the safety of themore weakly consistent mem-

ory operations that real concurrent Rust libraries actually

use. For the most part, we were able to verify Rust’s uses

of relaxed-memory operations as is. Only in the implemen-

tation of one Rust library (Arc) did we need to strengthen

the consistency level of two memory reads (from relaxed

to acquire) in order to make our verification go through.

And in one of these cases, our attempt to verify the original

(more relaxed) access led us to expose it as the source of a

previously undetected data race in the library. Our fix for

this race has since been merged into the Rust codebase.

Before we can describe RBrlx in greater detail, let us begin

by briefly reviewing the structure of the original RustBelt

verification on which it is based.

RustBelt. The structure of RustBelt is motivated primarily

by the need to account for the extensible nature of “safety”
in the Rust language. Specifically, at the heart of Rust is an

ownership-based type system, which rules out bad combi-

nations of mutation and aliasing, yet is expressive enough

to typecheck many common systems programming idioms.

Nonetheless, certain kinds of functionality (e.g., some pointer-

based data structures, synchronization abstractions, garbage

collection mechanisms) cannot be implemented within the

strictures of Rust’s type system. Rust provides these abstrac-

tions instead via libraries whose implementations internally

utilize unsafe features (e.g., accessing raw pointers whose

aliasing is unchecked). These libraries are claimed to be safe

extensions to Rust because they encapsulate their uses of

unsafe code in “safe APIs”. However, given that the set of

such extensions is far from fixed—new and surprising “safe

APIs” are being developed all the time—there is a pressing

need to understand what property an internally-unsafe li-
brary ought to satisfy to be deemed a safe extension to Rust.

To formalize Rust’s extensible notion of safety, RustBelt

employs a so-called semantic soundness proof [8]. (This is in
contrast to the usual syntactic, “progress-and-preservation”
proof [24, 9], which only applies to programs that do not use

unsafe features.) The high-level idea of a semantic sound-

ness proof is simple: (1) You define a semantic model of types:
a mapping from types T to logical predicates on terms Φ(e),
which asserts what it means for the term e to behave safely at
type T (even if internally e uses unsafe code). (2) You prove

that the syntactic typing rules of the language respect this

semantic model. (3) For any library that makes use of unsafe
code, you verify manually that the library’s implementation

satisfies the semantic model of its API. Put together, these im-

ply that if a program is well-typed and does not use unsafe
features except in the libraries verified in (3), then it is safe

to execute—i.e., its behavior is well-defined.
In RustBelt, Jung et al. [10] developed a semantic sound-

ness proof for λRust, and they instantiated point (3) by manu-

ally verifying the semantic safety of a number of widely-used

Rust libraries that internally use unsafe features, including

Arc, Rc, Cell, RefCell, Mutex, and RwLock.
To carry out such a proof for a language as complex as

Rust, and to make the manual verification of tricky Rust li-

braries feasible, Jung et al. relied on separation logic [19]—in
particular, a state-of-the-art higher-order concurrent sepa-

ration logic framework called Iris [11]. It is easy to see why

separation logic is a good fit for Rust: It is designed around

the same notion of ownership as Rust’s type system, and

thus provides built-in support for ownership-based reason-

ing. Furthermore, the Iris framework was designed to make

it easy to derive the soundness of domain-specific logics,

a facility which Jung et al. exploited in order to derive a

new Rust-oriented logic they called the lifetime logic. The
lifetime logic proved crucial in enabling a relatively simple

and direct semantic model of Rust’s “reference types”, along

with high-level reasoning principles for the associated Rust

mechanisms of lifetimes and borrowing [14, §4.2, §10.3].

Adapting RustBelt to relaxed memory. The overarching
challenge in developing RBrlx is that the logical foundation

on which RustBelt is built is unsound for relaxed memory.

More precisely, the Iris framework is parameterized by an

operational semantics for the language under consideration,

and depending on how this parameter is instantiated, Iris

can be used to derive inference rules of varying strength. In

the case of RustBelt, this parameter was instantiated with

a sequentially consistent (SC) semantics for λRust; and this

“standard” instantiation (call it Iris-SC) supported a strong

logical mechanism for placing invariants on arbitrary re-

gions of shared memory. Iris-SC’s invariants were gainfully

employed in the RustBelt proof, both in the verification of

concurrent libraries and in establishing the soundness of the

aforementioned lifetime logic. Unfortunately, they were too
strong to be sound under a relaxed memory model—under

relaxed memory, different threads can observe writes to dif-

ferent locations in different orders, so one cannot in general

maintain an invariant on multiple locations simultaneously.

Fortunately, there is nothing forcing us to instantiate Iris

with an SC semantics; indeed, in prior work, Kaiser et al. [12]

have already shown how one can just as well instantiate Iris

with a relaxed memory model. The only catch is that one

must come up with an operational-semantics formulation

of the memory model (in contrast to the “axiomatic” style

2

RustBelt Relaxed PL’19, February 29, 2019, New York, NY, USA

of memory models like C11). In particular, Kaiser et al. in-

stantiated Iris with an operational version of RA+NA—the

fragment of C11 featuring release-acquire atomic (RA) and

non-atomic (NA) accesses. They then used Iris to derive a

separation logic for RA+NA called iGPS, which—although

weaker than Iris-SC—was sufficiently powerful to verify sev-

eral challenging relaxed-memory data structures (in Coq).

iGPS offers a natural starting point for us—to a first approx-

imation, we are going to rebuild RustBelt on top of it. In so

doing, however, we must tackle several technical challenges:

1. iGPS only targets RA+NA. For RBrlx, we must adapt

iGPS to account for the larger fragment of C11 that

the Rust libraries we are verifying actually depend on

(including relaxed accesses and release/acquire fences).

2. The lifetime logic, which played such an essential role

in RustBelt, was previously proven sound in Iris-SC.

For RBrlx, we must adapt the lifetime logic to be sound

under relaxed memory, and then prove that it is.

3. We must now verify the real, relaxed-memory imple-

mentations of concurrent Rust libraries, whose correct-

ness is in some cases significantly more subtle than

under the assumption of SC.

We will focus the majority of the paper on how we tackle

the second of these challenges, since it is our most novel and

(we believe) interesting technical contribution. In particular,

it turns out that most of RustBelt’s lifetime logic—with the ex-

ception of its “atomic borrows” mechanism—remains sound

under relaxed memory. As a result, much of the original

RustBelt verification—e.g., the large parts that do not depend
on atomic borrows—need not be changed at all! However,

proving that the lifetime logic remains mostly sound under

relaxed memory—and fixing the rules for atomic borrows

so that they are—required us to develop a novel concept of

view-dependent ghost state, which we have not seen in any

prior work on relaxed-memory separation logic.

The remainder of the paper is structured as follows. First,

we use a simple running example (message-passing between

two threads) to review the basics of RustBelt’s lifetime logic

in §2 and separation logic for relaxed memory in §3. Next, in

§4 and §5, we articulate the problem with naively combining

the lifetime logic and relaxed memory, and we show how

view-dependent ghost state solves the problem. Finally, in

§6, we discuss other contributions of RBrlx, and we conclude

in §7 with related work.

2 RustBelt’s Lifetime Logic
Separation logic enriches traditional Hoare logic so that log-

ical assertions denote not only facts about the program state

but also ownership of resources. And as with ownership in

real life, it is essential in separation logic to be able to transfer
ownership from one piece of a program (e.g., one thread)

to another. In §2.1, we begin by reviewing the traditional

direct style in which such ownership transfer is achieved in

{X 7→ h ∗ Y 7→ h} X := 0;Y := 0; {X 7→ 0 ∗ Y 7→ 0}
{X 7→ 0 ∗ SendY (X 7→ −) ∗ RecvY (X 7→ −)}
{X 7→ 0 ∗ SendY (X 7→ −)}
X := 42;

{X 7→ 42 ∗ SendY (X 7→ −)}
Y :=sc 1; {True}

{RecvY (X 7→ −)}
if (∗scY != 0)

{X 7→ −}
X := 57; {X 7→ 57}

Figure 1. Message-Passing verified with direct transfer.

SendRecv-Create

Y 7→ 0 SendY (P) ∗ RecvY (P)
SC-Send

{SendY (P) ∗ P }Y :=sc 1 {True}
SC-Recv

{RecvY (P)} ∗scY {v . v = 0 ∨ P }

Figure 2. Separation-logic specification for SendRecv.

separation logic. Then, in §2.2, we motivate the more indirect
style of ownership transfer exhibited by Rust’s borrowing

mechanism, and in §2.3, we review how RustBelt’s lifetime

logic supports formal reasoning about it. Throughout this

section, we assume a strong SC semantics for concurrency.

2.1 Direct Ownership Transfer
Consider the Message-Passing (MP) example in Fig. 1. The

example assumes two memory locations X and Y and starts

by initializing X and Y to 0 before spawning two threads.

Thread 1 writes 42 toX , then writes 1 to Y to send a message

that thread 2 may now access X . Thread 2 tries to read Y ,
and if it reads a nonzero value, it knows it can safely write

to X . Crucially, the accesses to Y are atomic (SC)—in C11

lingo—while the accesses toX are non-atomic. The difference
is that it is safe for atomic accesses to race, while it is unsafe

for non-atomic accesses to race. In particular, it is considered

undefined behavior in C11/Rust for a program to contain

two accesses to the same location, one (or both) of which is

non-atomic and one (or both) of which is a write, which are

not synchronized (i.e., in a “happens-before” ordering).

Intuitively, MP is safe because the atomic accesses to Y
ensure that thread 1’s non-atomic write to X happens be-

fore thread 2’s, so the writes to X do not race. To establish

this formally, we introduce the separation-logic specifica-

tion SendRecv shown in Fig. 2, which enables ownership of

some resource—described by the assertion P—to be directly
transferred from one thread to another via message-passing.

1

In reality, separation logics like Iris provide more general

logical mechanisms than SendRecv; we use this bespoke

spec here merely to streamline the presentation.

The first rule, SendRecv-Create, transforms the points-to
assertion Y 7→ 0 (representing ownership of the location

1
We refer the reader to Kaiser et al. [12] for an implementation of SendRecv

and a more detailed proof of MP in Iris-SC.

3

PL’19, February 29, 2019, New York, NY, USA H.-H. Dang, J.-H. Jourdan, J.-O. Kaiser, and D. Dreyer

Y , together with the knowledge that Y currently points to

0) into two assertions SendY (P) and RecvY (P). These asser-
tions are joined by the separating conjunction (∗) connective
and can thus be passed to two different threads to allow

concurrent accesses to Y . (Note the use of the fearsome-

looking logical update connective to transform Y 7→ 0

into SendY (P)∗RecvY (P). This connective, which is an essen-
tial feature of the Iris framework, is basically a much more

flexible version of the magic wand (or linear implication)

connective −∗ from standard separation logic.
2
But to a first

approximation, the reader can pretend that is −∗.)
The next rule, SC-Send, says that a thread owning SendY (P)

has permission to write 1 to Y if it also owns P ; and in so

doing, it gives up its ownership of P . Finally, SC-Recv says

that a thread owning RecvY (P) has permission to read Y ,
thereby losing its ownership of RecvY (P), but if it reads any
nonzero value v , it also gains ownership of P .

We can now use SendRecv to verify MP as follows. After

X and Y are initialized, ownership of Y is transformed (using

SendRecv-Create) into SendY (P) ∗ RecvY (P), with P chosen

to be X 7→ − (i.e., ∃v . X 7→ v), so that Y can be used to

directly transfer ownership of X 7→ − from thread 1 to

thread 2. Upon forking, the Send predicate is then passed

(along with X 7→ 0) to thread 1, while the Recv predicate

is passed to thread 2. After the first thread writes 42 to X ,
it sends ownership of X to thread 2 using SC-Send. Dually,

thread 2 uses SC-Recv to reason that if it reads a nonzero

value from Y , it knows that it has received ownership of

X 7→ −, so it can safely write (non-atomically) 57 to X . □

2.2 Borrowing in Rust
Although direct ownership transfer is pleasantly simple, it

is unfortunately not sufficient to explain a key feature of

the Rust language, namely its borrowing mechanism. We

first explain what borrowing is, and why direct ownership

transfer does not easily account for it, before explaining in

§2.3 how RustBelt’s lifetime logic comes to the rescue.

To create a mutable reference to an object o : T in Rust,

one borrows o for the duration of some lifetime 'a, with the

result being a reference value r of type &'a mut T. Borrow-
ing causes the ownership of o to be split in time: While the

lifetime 'a is alive, the borrower controls the object and can

use r to mutate it; but once 'a is dead, the original owner of

o can reclaim ownership of it. The reclamation that occurs

once the lifetime 'a is over is essentially a form of ownership

transfer from the borrower to the original owner of o. And
the natural question that arises when proving the safety of

Rust is: How do we know that this reclamation is sound?

One might think that there is an obvious way of modeling

this reclamation using direct ownership transfer: When the

2
As the name suggests, logical updates can update resources, whereas magic

wands cannot. For further details, see Jung et al. [11].

lifetime 'a is over, the borrower just needs to hand owner-

ship of the borrowed reference back to the original owner.

The trouble is that this is not always possible.

For example, consider the index_mut function from Rust’s

Vec library, whose type is

fn(&'a mut Vec<i32>, usize) -> &'a mut i32.

This function takes a mutable reference r to an integer vector,
along with an index n, and returns an interior mutable refer-

ence e to the n-th element of the vector. Crucially, thanks to

Rust’s substructural type system, the caller of this function

gives up ownership of the argument r in exchange for the

result e. The surrendering of r is quite important here be-

cause otherwise r could be used to subsequently mutate the

object in a way that would invalidate the interior pointer e.
Now suppose that the argument r to index_mut had been

obtained by borrowing an object o : Vec<i32>, i.e.,
let r = &mut o; let e = index_mut(r,n); ...

When index_mut is called here, ownership of r is lost, so if

the borrower of o were required to return ownership of r at

the end of lifetime 'a, they would be unable to do so.

2.3 The Lifetime Logic
Given that it is not clear how to model borrow reclamation

with direct ownership transfer, Jung et al. [10] took a differ-

ent approach: They developed the lifetime logic. At a high
level, the idea of the lifetime logic is to formalize the intuition

mentioned above: Borrowing an object o for a lifetime 'a
splits ownership of o in time, between a “borrow” assertion,

which the borrower can use to access o while 'a is alive,

and an “inheritance” assertion, which the original owner can

use to reclaim ownership of o once 'a is dead. Although

“splitting ownership in time” is not a standard notion in sep-

aration logic, the Iris framework is designed to enable one to

derive such non-standard notions of separation and embed

them in the separating conjunction connective, and that is

precisely what Jung et al. did.

The lifetime logic introduces several abstract predicates
representing a variety of capabilities and permissions related

to lifetimes and borrowing, together with axioms (proven

sound in Iris-SC) for manipulating them, as shown in Fig. 3.
3

Let us begin with an overview of the new predicates:

• The full borrow &
κ
full P asserts temporary ownership

of resource P , while the lifetime κ is alive. It provides
a direct means of modeling the semantics of Rust’s

mutable reference types.

• The lifetime token [κ]q serves as a witness that the

lifetime κ is still alive. Here, q is a fraction in (0, 1]. If
q = 1, we say that this is the full token for κ. The use

3
In Fig. 3, and throughout the paper, the proof rules are slightly simplified

so as to omit occurrences of the ▷ modality [11]. This modality is an artifact

of the step-indexed model of Iris, and is used to ensure consistency of the

logic, but there is nothing new about our use of ▷, so we factor it out of the

presentation. See the appendix for the rules with the ▷’s added back in.

4

RustBelt Relaxed PL’19, February 29, 2019, New York, NY, USA

LftL-begin

True ∃κ . [κ]
1
∗ Kill(κ)

LftL-kill

[κ]
1
∗ Kill(κ) [†κ]

LftL-tok-fract

[κ]q+q′ ⇔ [κ]q ∗ [κ]q′
LftL-full-bor

P &
κ
full P ∗ Inh(κ, P)

LftL-full-inh

[†κ] ∗ Inh(κ, P) P

LftL-full-split

&
κ
full(P ∗Q) &

κ
full P ∗ &κ

fullQ

LftL-full-acc

&
κ
full P ∗ [κ]q P ∗ Ret(κ, P ,q)

LftL-full-ret

P ∗ Ret(κ, P ,q) &
κ
full P ∗ [κ]q

Figure 3. Selected rules of RustBelt’s lifetime logic (slightly

simplified to omit details concerning the ▷ modality).

P Ret(κ,P,q)

ACC RET

Inh(κ,P) [†κ]
P

[κ]q
[κ]q'

[κ]q''

[κ]1
BOR

Kill(κ)

P

P&
κ
full

BEGIN

INH

∗

∗ FRACT

…

KILL

Figure 4. The life cycle of borrows and lifetimes.

of fractions allows one to share the knowledge that a

lifetime is alive with multiple parties (see below).

• The killer permission Kill(κ) is a unique permission

needed to kill the lifetime κ.
• The dead token [†κ] is used to witness the knowledge

that lifetime κ is dead.

• The inheritance Inh(κ, P) asserts the right to reclaim

the ownership of borrowed resource P once κ is dead.

• The return policy Ret(κ, P ,q) is used as part of the

protocol for accessing the contents of a full borrow.

We briefly explain the rules in Fig. 3 with the help of Fig. 4,

which depicts the life cycle of a lifetime and a full borrow.

We start from the right of Fig. 4, where we create a new life-

time using LftL-begin (BEGIN in Fig. 4). This yields the full

token [κ]
1
for a new lifetime κ, as well as the corresponding

Kill(κ) permission. Lifetime tokens are fractional (LftL-tok-
fract, FRACT), so that they can be split into (and joined

back from) smaller pieces which enable multiple threads to

simultaneously witness that κ is still alive.

Next, on the left of Fig. 4, we see the “flagship” rule of

the lifetime logic: Given ownership of any assertion P , and
any lifetime κ, we can use the borrowing rule LftL-full-bor

(BOR in Fig. 4) to create a borrow of P for κ. The rule splits
ownership of P in time between two separately ownable

assertions: (1) a full borrow &
κ
full P that represents ownership

of P while κ is alive; and (2) an inheritance Inh(κ, P) that can
be used to reclaim P after κ dies. Intuitively, this rule directly

models what happens when an object is borrowed in Rust,

with the full borrow then being given to the borrower and

the inheritance given to the object’s original owner.

A thread owning both the full borrow &
κ
full P and a token

[κ]q (proving κ is alive) can trade them to obtain P using the

accessing rule LftL-full-acc (ACC in Fig. 4). As part of the

trade, the thread is also given the return policy Ret(κ, P ,q).
Once the thread is done using P , it trades P and Ret(κ, P ,q)
to get back &

κ
full P and [κ]q (LftL-full-ret, RET in Fig. 4).

Once all accesses to borrows at lifetime κ are done, we

can recollect the full token [κ]
1
and use the killer permis-

sion Kill(κ) with LftL-kill (KILL) to end the lifetime. This

yields the dead token [†κ]. Since κ is now dead, the content

P in &
κ
full P cannot be accessed any more and can thus be re-

claimed. Anyone owning [†κ] and the inheritance Inh(κ, P)
can use LftL-full-inh (INH in Fig. 4) to reclaim P .
Although not depicted in Fig. 4, another crucial rule of

the lifetime logic is LftL-full-split, which lets one split a

borrow of P ∗ Q into separate borrows of P and Q . This
rule is essential in verifying the soundness of Rust functions

like index_mut (§2.2) that split a reference to an object into

references to its subcomponents.

Finally, let us note an important safety property of the

lifetime logic: The inheritance of a borrow can only be used
after all accesses to the borrowed content have finished. The
key to ensuring this is that, during an access of the borrow

&
κ
full P via the accessing rule LftL-full-acc, the lifetime token

[κ]q and the borrow assertion are “kept” by the return policy

and are only returned in exchange for the borrowed content

P . By withholding [κ]q and only returning it after the access

finishes, the rule ensures that no party can have the full

token [κ]
1
needed to kill κ while others are still accessing

borrows associated with κ. Consequently, the inheritance
can only be used after all accesses have finished.
However, as we will see in §4, maintaining this safety

property under relaxed memory is not so straightforward.

Message-Passing in the lifetime logic. Let us now quickly

demonstrate how the lifetime logic can support a somewhat

different verification of the MP example than the one given

in §2.1. Here, instead of transferring the location X from

thread 1 to thread 2 directly, we transfer a lifetime token,

which thread 2 then uses to reclaim ownership of X . The use

of the lifetime logic here is clearly overkill since direct own-

ership transfer of X already suffices, but it will nonetheless

give the reader a concrete feel for the lifetime logic in action.

In Fig. 5a, we start by creating a lifetime κ (LftL-begin).

Then, with the ownership of X 7→ 0, we create a borrow

&
κ
full(X 7→ −) using LftL-full-bor. Next, we instantiate

5

PL’19, February 29, 2019, New York, NY, USA H.-H. Dang, J.-H. Jourdan, J.-O. Kaiser, and D. Dreyer

{[κ]
1
∗ Kill(κ) ∗ X 7→ 0 ∗ Y 7→ 0}{[κ]

1
∗ Kill(κ) ∗ &κ

full(X 7→ −) ∗ Inh(κ,X 7→ −) ∗ Y 7→ 0

}{[κ]
1
∗ Kill(κ) ∗ . . . ∗ SendY ([κ]1/2) ∗ RecvY ([κ]1/2)

}
(a) Proof of initialization.{[κ]

1/2 ∗ &κ
full(X 7→ −) ∗ SendY ([κ]1/2)

}{
X 7→ − ∗ Ret(κ,X 7→ −, 1/2) ∗ SendY ([κ]1/2)

}
X := 42;

{
X 7→ − ∗ Ret(κ,X 7→ −, 1/2) ∗ SendY ([κ]1/2)

}{[κ]
1/2 ∗ SendY ([κ]1/2)

}
Y :=sc 1; {True}

(b) Proof of thread 1.{[κ]
1/2 ∗ Kill(κ) ∗ Inh(κ,X 7→ −) ∗ RecvY ([κ]1/2)

}
if (∗scY != 0){[κ]

1/2 ∗ Kill(κ) ∗ Inh(κ,X 7→ −) ∗ [κ]
1/2

}
{[κ]

1
∗ Kill(κ) ∗ Inh(κ,X 7→ −)}

{[†κ] ∗ Inh(κ,X 7→ −)} {X 7→ −} X := 57; {X 7→ 57}
(c) Proof of thread 2.

Figure 5. MP verified with the lifetime logic in Iris-SC.

SendRecv for Y where the content to be sent is [κ]
1/2. Fi-

nally, we spawn two threads. We give a half token [κ]
1/2, the

borrow &
κ
full(X 7→ −), and Send to the thread 1. We give the

other half of the κ token, the killer, the inheritance, and Recv
to thread 2.

In Fig. 5b, thread 1 trades the token and the borrow to

access X 7→ − with LftL-full-acc and writes to X . After
that, with LftL-full-ret, thread 1 trades the return policy

and X 7→ − to get back the token and the borrow. Finally,

thread 1 writes to Y and sends the token [κ]
1/2 to thread 2.

In Fig. 5c, thread 2 uses Recv to get back the full token.

Owning Kill(κ), it ends the lifetime and earns the dead token

[†κ] (LftL-kill). Combining that with the inheritance, thread

2 reclaims the ownership of X 7→ − (LftL-full-inh) and can

safely write (non-atomically) to X . □

3 Reasoning About Relaxed Memory
Before explaining the problems of porting the lifetime logic

to relaxed memory, we now briefly review the basics of re-

laxed memory models and their separation logics.

3.1 Understanding Relaxed Memory with Views
In the C11 relaxed memory model [2], memory accesses are

not limited to SC, but can be picked from several consistency

modes with varying synchronization power. At the bottom of

the synchronization hierarchy sit non-atomic accesses (NA),

which do not provide any synchronization and are not to be

accessed concurrently. Data races on NA accesses in C11 are

undefined behavior. In contrast, other memory access modes

in C11 permit races: SC (sc), release (rel), acquire (acq),
and relaxed (rlx). SC accesses always synchronize with one

another, while acquire reads synchronize with release writes

that they read from. Relaxed accesses do not synchronize,

unless with the help of memory fences (see below).

{X 7→ 0 ∗ SendY (X 7→ −) ∗ RecvY (X 7→ −)}
{X 7→ 0 ∗ SendY (X 7→ −)}
X := 42;

{X 7→ − ∗ SendY (X 7→ −)}
fencerel;
{∆(X 7→ −) ∗ SendY (X 7→ −)}
Y :=rlx 1; {True}

{RecvY (X 7→ −)}
if ∗rlxY != 0

{∇(X 7→ −)}
fenceacq;
{X 7→ −}
X := 57; {X 7→ 57}

Figure 6. Message-Passing with rlx accesses and fences.

As relaxed accesses do not synchronize, it would be unsafe

to replace the sc accesses to Y in MP with rlx ones, since
then the two non-atomic accesses to X would constitute a

race. In order to understand why, we need to understand a

bit of the relaxed-memory semantics.

Following [13] and [12], we opt for an operational expla-

nation whose core notion is views. Intuitively, each thread in

the program has its own local view which represents its local,

subjective perspective of the state of memory. If thread 1

modifies the memory, it is not necessary that thread 2 ob-

serves that modification immediately. In the terminology of

views, we say that thread 2’s local view V2 does not include
the modification by thread 1. In order to observe the modifi-

cation, thread 2 needs to perform physical synchronization

with thread 1, so that thread 1’s local viewV1 is incorporated
or joined into V2. Then, V1 is included in V2: V1 ⊑ V2. After
that, the thread 2 has observed the modifications by thread 1.

The view inclusion relation implies synchronization or, in

different terms, the happens-before relation. As threads exe-
cute, and their local views grow over time, they occasionally

synchronize with one another by sending their local views

to other threads.

Consider theMP examplewith sc accesses replaced by rlx
accesses. In that hypothetical case, we are not guaranteed a

happens-before relation between the non-atomic writesX of

thread 1 and thread 2—leaving us with a race. In the language

of views, this can be explained as follows: thread 1’s local

view V1 after the write has not been joined into thread 2’s

local viewV2 when it starts writingX , soV2 is not guaranteed
to include the write in thread 1. In the operational semantics,

performing a non-atomic write without having observed

all writes constitutes a race. In order to avoid the race, we

need sufficient synchronization, which we can achieve using

release and acquire fences, as shown in Fig. 6.
4

The synchronization is guaranteed physically through the

chain of “release fence→ relaxed write→ relaxed read→
acquire fence”. That is, the synchronization is only between

what is before the release fence and what is after the acquire
fence. Since the non-atomic write to X is before the release

fence, and the non-atomic read of X is after the acquire

fence, they are happens-before and thus there is no race. If,

4
One can also use a pair of release and acquire accesses, but here we use
fences for the sake of the exposition.

6

RustBelt Relaxed PL’19, February 29, 2019, New York, NY, USA

however, we were to remove the fences or reorder them with

the accesses to Y , we would once again have a race.

The explanation in terms of views is as follows. The rlx
write of thread 1 to Y only sends to thread 2 the view VBF
that is thread 1’s local view before the release fence, and the

rlx read of thread 2 receives VBF but only joins VBF into

thread 2’s local view after the acquire fence. So only after

the acquire fence would thread 2 have observed all writes to

X , so that it may safely write to X non-atomically.

3.2 Separation Logic for Relaxed Memory
Several separation logics have been developed to reasonmod-

ularly about relaxed-memory programs under variants of the

C11 memory model. These logics—which include RSL [23],

GPS [22], iGPS [12], and FSL [5, 6]—use views (or equivalent

descriptions of a thread’s local perspective) in their model

of separation-logic assertions. Assertions thus become pred-

icates not only on resources, but also on views. The reason

for this may be illustrated by the points-to assertion of sepa-

ration logic. If a thread ownsX 7→ v , it should be guaranteed
(among other things) that a read from X will return v . In the

relaxed-memory setting, ownership of X 7→ v must there-

fore say something about the local view V of the thread

asserting it: V should contain the latest write to X , and it

should have value v . Otherwise, reading from X could yield

an older value and thus render at least one guarantee of the

points-to assertion moot.

Furthermore, it is crucial that these predicates be view-
monotone, i.e., that assertions remain valid when the thread

witnesses additional memory events. Formally, monotonicity

means that if JPK represents the model of an assertion as

a view predicate, and V1 ⊑ V2, then JPK(V1) implies JPK(V2).
This requirement stems from separation logic’s “frame rule”.

Intuitively, a thread owning (X 7→ v) ∗ P must be able

to frame P around accesses to X—i.e., retaining ownership
of P throughout—even though such accesses will grow the

thread’s view. For this, the validity of P must be monotone

in the thread’s view.

To support rlx accesses, the model of assertions is built

around a more fine-grained notion of a thread’s view in

which we distinguish between (1) the thread’s current view,

(2) its release view (i.e., the view the thread had at the most

recent rel fence), and (3) its acquire view (i.e., the view the

thread will have after the next acq fence).
5

Based on this notion of views, we derive a separation logic

for relaxed memory in Iris—called GPFSL—which brings

together the essential features of iGPS [12] and FSL [5, 6].

The details of GPFSL are beyond the scope of this paper, but

for now we focus our attention on the release and acquire

modalities ∆ and ∇ that GPFSL inherits from FSL.

5
Views also include an additional component used to track per-location

rel writes which essentially act as mini rel fences for that location.

Rel-fence

{P } fencerel {∆P }
Acq-fence

{∇P } fenceacq {P }
Rlx-Send

{SendY (P) ∗ ∆P }Y :=rlx 1 {True}
Rlx-Recv

{RecvY (P)} ∗rlxY {v .v = 0 ∨ ∇P }

Figure 7. Rules for fences and SendRecv with rlx.

The logic for fences. The release modality ∆P asserts own-

ership of P at the thread’s release view, thereby witnessing

that P has been true for the current thread since (at least)

its most recent rel fence. Consequently, ∆P allows P to be

transferred through rlx writes as demonstrated by Rlx-Send

(Fig. 7). The introduction rule Rel-fence moves propositions

into the release modality when a rel fence occurs.

The acquire modality ∇P asserts ownership of P at the

thread’s acquire view, guaranteeing that P will hold for the

current thread at (and after) its next acq fence. The intended
use of the acquire modality is to record the effect of rlx
reads, which constitute the modality’s introduction rule as

demonstrated by rule Rlx-Recv. Conversely, executing an

acquire fence eliminates the modality (rule Acq-fence).
6

With these rules for fences and relaxed SendRecv (Fig. 7),

we can now make sense of the verification of relaxed MP in

Fig. 6. The proof is very similar to the SC proof (Fig. 1), and

one only needs to be careful about introducing the release

modality and eliminating the acquire modality.

Ghost state and view-agnosticism. Following iGPS and

FSL++, GPFSL provides support for user-defined ghost state.
Ghost state is logical state that is used to track additional

information in the verification, but is not part of physical

state. In the aforementioned logics, the user of the logic is

free to define the particular structure of ghost state that is

appropriate for their proof, a facility that is useful in deriving

domain-specific logics like the lifetime logic. The Send and

Recv assertions, as well as the various abstract predicates

that comprise the lifetime logic, are all instances of assertions

that are constructed with the help of ghost state.

Although it has proven indispensable for verifying intri-

cate concurrent data structures in traditional SC separation

logics, ghost state has an additional “special power” in the

relaxed-memory setting, namely that it is view-agnostic. In
other words, because ghost state is purely logical, the ghost

state assertion a
γ
, which asserts the ownership of ghost

resource a stored at ghost location γ , does not care about the
thread view at which it is interpreted.

As a result, ownership of a
γ
can be transferred from one

thread to another without the need for physical synchroniza-
tion. In particular, not being tied to any view, ghost state can

6
For more details on the logic, please consult [6] and our appendix.

7

PL’19, February 29, 2019, New York, NY, USA H.-H. Dang, J.-H. Jourdan, J.-O. Kaiser, and D. Dreyer

soundly be moved in and out of the fence modalities:

a
γ ⇔ ∆ a

γ ⇔ ∇ a
γ

(FSL-Ghost-mod)

Recall that ∆P asserts that P holds at the thread’s release

view, and ∇P asserts that P holds at the thread’s acquire view.

Since ownership of ghost state holds regardless of any view,

it is easy to see that owning a
γ
is equivalent to owning

∆ a
γ
or ∇ a

γ
.

FSL-Ghost-mod is essential in enabling threads to agree

on the global state of a data structure. Regardless of what
each thread has observed about the data structure, it is useful

to be able to express globally consistent properties of the

data structure. For example, we may want to record the

history of all push’s and pop’s of a concurrent stack, and

require that the number of pop’s cannot surpass the number

of push’s. Ghost state is able to encode such objective, view-

agnostic information, and in their paper on FSL++, Doko

and Vafeiadis [6] noted the importance of ghost state being

view-agnostic, writing: “The most important feature of ghost

state from the perspective of the verification of Arc is [the]
ability to transfer ownership of ghosts without the need for

synchronization. This is achieved by having the ghost state

be agnostic with respect to the ∆ and ∇ modalities.”
7

While ghost state in general clearly benefits from being

view-agnostic, we will see in the next section that sometimes

it is useful for ghost state assertions to not be view-agnostic.
This leads us to propose the apparently novel concept of

view-dependent ghost state.

4 Lifetime Logic Meets Relaxed Memory
Now that we have reviewed the basics of the lifetime logic

and relaxed memory, we turn our attention to the problem

of combining the two and present our solution to it. In Rust-

Belt, lifetime tokens are simply ghost state that are not tied

to physical state. This model suffices for the soundness of

RustBelt’s lifetime logic under the SC assumption. However,

in the relaxed-memory setting, modeling lifetime tokens

as view-agnostic ghost state is problematic because then

lifetime tokens can be transferred across threads without

physical synchronization. In §4.1, we show a counterexample

where this naive model of lifetime tokens leads to unsound

reasoning under relaxed memory. In §4.2, we discuss how

to remedy the problem by modeling lifetime tokens instead

using view-dependent ghost state, and in §4.3, we explain

how to prove soundness of full borrows under this more

sophisticated model.

4.1 Deriving Unsoundness in a Naive Model
If in the relaxed-memory setting we continue to model life-

time tokens as view-agnostic ghost state, then by using the

7
Indeed, we too make crucial use of the view-agnostic nature of ghost state

in our own (more comprehensive) verification of Arc in RBrlx. See §7 for a

more detailed comparison between our Arc proof and FSL++’s.

FSL-Ghost-mod rule we can provide a spurious verification
of the buggy MP example given in Fig. 8.

The initialization is similar to the verification in Fig. 5:

We create a lifetime κ and a borrow for X , and instantiate

SendRecv for Y before giving them to the two threads. In

thread 1 (Fig. 8b), we access the borrow and write toX . Then,

to send [κ]
1/2 (via a rlx write to Y), we use FSL-Ghost-mod

to obtain ∆[κ]
1/2. Note that this proof step is only possible

because we assume view-agnostic lifetime tokens.
In thread 2 (Fig. 8c), after receiving ∇[κ]

1/2, we apply FSL-

Ghost-mod again to strip off the acquire modality, thus ob-

taining the missing half of the token. Combining both halves,

we kill κ and apply the inheritance to obtainX 7→ −. This, in
turn, licenses the following non-atomic write to X , which is

not happens-after thread 1’s write to X and thus constitutes

a data race.

As we can see from this scenario, our hypothetical lifetime

logic for relaxed memory violates a key safety guarantee:

that a lifetime κ’s inheritance must happen-after all accesses

to all borrows of κ (see §2). The root of the problem is that

we are able to move view-agnostic lifetime tokens in and out

of the fence modalities.

We now leave our hypothetical unsound lifetime logic and

turn towards RBrlx’s lifetime logic which, being based on

view-dependent lifetime tokens, is sound in the presence of

relaxed memory.

4.2 Lifetime Tokens as View-Dependent Ghost State
If we were to port RustBelt’s model of the lifetime token [κ]q
directly to RBrlx as a view-agnostic assertion, it would just

assert ghost ownership of q with the ghost location κ:

J[κ]qK(V) ::= q
κ

(RB-tok)

Instead, in RBrlx, we enrich this model so that it depends on

the view at which [κ]q is asserted:

J[κ]qK(V) ::= ∃Vtok. (q,Vtok) κ ∗Vtok ⊑ V (Rlx-RB-tok)

In this model, the ghost element is no longer just a fraction

q, but a pair of the fraction and the token view Vtok. The
token view Vtok represents what this particular fraction of

the token has observed, i.e., what borrow accesses the token

has participated in. The model requires that V—the view at

which the token is interpreted—has also at least observed

what [κ]q has observed: Vtok ⊑ V .

To understand the implications of this change, we need

to understand what it means for a thread to own [κ]q in

the model. As explained in §3.2, assertions in our logic are

interpreted as view predicates in Iris. That a thread π owns

[κ]q is interpreted in the model as the thread π owning [κ]q
at its local viewVπ , i.e., J[κ]qK(Vπ). In the model with Rlx-RB-

tok, this gives us Vtok ⊑ Vπ . Therefore, owning the lifetime

token [κ]q implies that the thread has observed all accesses

that the token has been involved in (as encoded in Vtok).

8

RustBelt Relaxed PL’19, February 29, 2019, New York, NY, USA

X := 0;Y := 0;

X := 42;

Y :=rlx 1

if ∗rlxY != 0

thenX := 57;

(a) Buggy Message-Passing.

{[κ]
1/2 ∗ &κ

full(X 7→ −) ∗ SendY ([κ]1/2)
}

X := 42;

{[κ]
1/2 ∗ SendY ([κ]1/2)

}{
∆[κ]

1/2 ∗ SendY ([κ]1/2)
}

Unsound!
Y :=rlx 1; {True}
(b) Buggy proof of thread 1.

{[κ]
1/2 ∗ Kill(κ) ∗ Inh(κ,X 7→ −) ∗ RecvY ([κ]1/2)

}
if (∗rlxY != 0){[κ]

1/2 ∗ . . . ∗ ∇[κ]1/2
}{[κ]

1/2 ∗ Kill(κ) ∗ . . . ∗ [κ]
1/2

}
Unsound!

{[†κ] ∗ Inh(κ,X 7→ −)} {X 7→ −} X := 57; {X 7→ 57}
(c) Buggy proof of thread 2.

Figure 8. Buggy MP spuriously verified with view-agnostic lifetime tokens.

As a result of this change, FSL-Ghost-mod no longer applies

to lifetime tokens, so transferring lifetime tokens in RBrlx

requires physical synchronization. This suffices to eliminate

the hypothetical unsound verification in Fig. 8. The question

remains, however: How do we know that we are back on

solid ground? How can we prove that the proof rules for full

borrows are sound under relaxed memory?

As we will see shortly, the key is to associate views not

only with the lifetime token assertions, but with all the other

assertions that play a role in the lifetime logic. In so doing,

we can express invariants that govern the view-dependent
interactions between those assertions. In the next subsection

we will see how such invariants enable the porting of full

borrows to RBrlx without changing their interface.

4.3 Full Borrows
Recall that there are two ways of interacting with the con-

tent of a full borrow: (1) reclaiming the borrow using the

inheritance (LftL-full-inh) and (2) accessing the borrow

(LftL-full-acc). We now explain how to prove soundness of

these two different forms of borrow interactions.

Proving inheritance. To prove a rule sound in the model

of RBrlx, we first interpret the rule at the current local view

of the thread that applies the rule and then prove it in Iris. In

particular, to prove LftL-full-inh sound for RBrlx, we first

interpret it at the local view V of the thread:

J[†κ]K(V) ∗ JInh(κ, P)K(V) JPK(V)
The user of this rule provides us—the prover of the rule—

with the dead token and the inheritance at V , and we need

to give the user back P at the sameV . Now, the lifetime logic

is responsible for controlling ownership of the content of

the borrow, P ; so let us assume that, when no threads are

accessing the borrow, P is maintained at a view VC , which
we call the content view. When we apply the inheritance, we

will therefore be receiving JPK(VC). Since all assertions of
GPFSL are view-monotone, if we can show that VC ⊑ V , we

can upgrade P from VC to V and obtain JPK(V) to finish the

proof.

The key to proving the goal VC ⊑ V is to:

• associate with each lifetime logic assertion a view that

represents what the assertion has observed, i.e., what
activities it has been involved in; and then

• establish and maintain invariants on those associated

views that are sufficiently strong to prove our goal.

Below, we list a few associated views for assertions that

interact with a full borrow &
κ
full P :

• the content view VC at which the borrow keeps P ;
• the token views Vtok, one for every [κ]q ;
• the full token view Vκ of the full token [κ]

1
, defined as

the join of all token views Vtok;
• the dead token view V† ⊒ Vκ ;
• the borrow view VB of the borrow assertion &

κ
full P ;• the inheritance view VI of Inh(κ, P); and

• the initial viewV0, which is the content view of P when

the borrow is first created.

In order to prove VC ⊑ V for LftL-full-inh, we enforce

the following invariant:

V0 ⊑ VI ∧
(
V0 , VC ⇒ VC ⊑ Vκ

)
(LftL-full-bor-inv-1)

The first part of the invariant, V0 ⊑ VI , is needed for the

corner case where the borrow is created but never used.

In that case, P holds at VC = V0, the initial view. When

inheritance happens, by virtue of owning JInh(κ, P)K(V), we
know from the definition of Inh(κ, P) thatV ⊒ VI ⊒ V0 = VC .
The second part of the invariant is for full borrows that

have been accessed at least once. By owning J[†κ]K(V), we
know that V ⊒ V† ⊒ Vκ ⊒ VC . □
This shows that LftL-full-bor-inv-1 allows us to prove

LftL-full-inh. But what is the intuition for this invariant?

As hinted at before, each piece of a lifetime token is intended

to bear “witness” to any access to the borrow that the token

is used for. Ultimately, the full token [κ]
1
—which is the join

of all tokens—must have witnessed all accesses to the bor-

row. Therefore, a thread owning the full token should have

observed all modifications made to P by all of those accesses,

so it can safely kill the lifetime and use the inheritance to

reclaim P at its local view.

How do we maintain LftL-full-bor-inv-1? The first part,

V0 ⊑ VI , is easily maintained by the creation of the borrow

with LftL-full-bor. The second part, VC ⊑ Vκ , is maintained

by the rule LftL-full-ret. Note that the lifetime token [κ]q
is withheld during the access. When the access finishes and

P is returned to the borrow at an updated view V ′
C , the rule

uses V ′
C to update the view of the withheld token [κ]q from

Vtok to Vtok ⊔V ′
C before returning it to the user. Since Vκ is

9

PL’19, February 29, 2019, New York, NY, USA H.-H. Dang, J.-H. Jourdan, J.-O. Kaiser, and D. Dreyer

the join of all lifetime tokens, this effectively updates Vκ to

Vκ ⊔V ′
C ⊒ V ′

C . With this, the invariant is re-established.

Proving accesses. To prove the rule for accessing full bor-

rows, LftL-full-acc, we again interpret it in the model:

J&κ
full PK(V) ∗ J[κ]qK(V) JPK(V) ∗ JRet(κ, P ,q)K(V)

Given the lifetime token and the borrow assertion, we need

to provide the user with synchronized access to P at the

thread’s local viewV . Assuming that we can prove the return

policy Ret(κ, P ,q), we still need to ensure that P holds at V ,
i.e., V ⊒ VC . For this, we rely on the following invariant:

VC ⊑ VB (LftL-full-bor-inv-2)

That is, the content view VC of P is always included in the

borrow view VB of &
κ
full P . By owning J&κ

full PK(V), we have
V ⊒ VB ⊒ VC . Like LftL-full-bor-inv-1, LftL-full-bor-inv-2

is straightforward to maintain: When an access is returned,

we update VB with the new content view V ′
C . □

In summary, associating lifetime logic assertions to views

allows us to express and enforce strong invariants on inter-

actions with lifetimes and borrows, so that we can port their

original RustBelt rules (some of which are listed in Fig. 3) to

RBrlx without any changes to their interface.

5 Fractured and Atomic Borrows
Full borrows are perfect formodelingmutable references that

can only have one user at a time. This is because accesses

to full borrows are always sequential: at any moment in

time, there can be only one ongoing access to a full borrow.

For this reason, however, full borrows are not suitable for

modeling types that are meant to be accessed concurrently

by multiple threads, e.g., shared references. In this section,

we discuss RBrlx ports of two alternatives to full borrows:

fractured borrows and atomic borrows.
Table 1 compares several properties of different borrow

types. These differences already exist in RustBelt except for

the last column, which is unique to the relaxed-memory

setting. (We will come back to that column in §5.2.) Both

fractured and atomic borrows are created by conversion

from full borrows (LftL-fract-bor and LftL-at-bor, Fig. 9).

Once created, they both allow the borrowed contents to be

shared concurrently by several parties. Their borrow asser-

tions, &
κ
fracΦ and &

κ
at P , are freely duplicable so that the same

borrow can be referred to and be accessed simultaneously

by multiple threads. This is in contrast to the full borrow

assertion &
κ
full P , which is unique and is withheld during an

access so as to ensure at most one access at a time.

But how is it possible, one may ask, that multiple threads

can acquire the same resource at the same time? Fractured

borrows and atomic borrows give different answers to this

question. Fractured borrows only give out a a fraction of

the resource—ensuring that enough fractions remain for all

participants at all times—whereas atomic borrows enforce

LftL-fract-bor

&
κ
fullΦ(1) &

κ
fracΦ

LftL-at-bor

&
κ
full P &

κ
at P

LftL-fract-acc

&
κ
fracΦ ∗ [κ]q ∃q′.Φ(q′) ∗ Ret(κ,Φ,q,q′)

LftL-fract-ret

Φ(q′) ∗ Ret(κ,Φ,q,q′) [κ]q
LftL-at-acc

{P ∗Q1} e {v . P ∗Q2} atomic(e)

&
κ
at P ⊢ {[κ]q ∗Q1} e {v . [κ]q ∗Q2}

Figure 9. Selected RustBelt rules for fractured and atomic

borrows.

a strict turn-taking scheme, allowing access to the resource

only for a single atomic step of execution.

To meaningfully talk about fractions of resources, frac-

tured borrows assume a predicate Φ over fractions that is

compatible with fraction addition:Φ(q1+q2) ⇔ Φ(q1)∗Φ(q2).
The access rule LftL-fract-bor (Fig. 9) gives access toΦ(q′)
for some fraction q′. The corresponding return policy only

returns the lifetime token once the exact q′ ofΦ is returned

(LftL-fract-ret).

In contrast to fractured borrows, atomic borrows do pro-

vide full access to the resources contained within. This is

possible by restricting the duration of the access: unlike

fractured (and full) borrows, atomic borrows can only be ac-

cessed around a single, atomic instruction.
8
This restriction

of atomic borrows is encoded in its access rule LftL-at-acc

(Fig. 9), which allows accesses only around Hoare triples for

atomic instructions.

Atomicity is crucial, for example, when several threads

need to modify a shared variable, such as a reference counter

for shared pointers. Therefore, while fractured borrows are

designed to model immutable shared resources, atomic bor-

rows are designed to model mutable shared resources in

concurrent libraries. (Naturally, these libraries use atomic

memory accesses compatible with LftL-at-acc.)

In the remainder of this section, we briefly discuss the

porting of fractured and atomic borrows to RBrlx.

5.1 Porting Fractured Borrows
Fractured borrows, like all borrows, need to guarantee that all

accesses happen-before the inheritance is applied. However,

unlike full borrows where all accesses are ordered, accesses

to a fractured borrow can happen independently from one

another. Thus, for fractured borrows, we need to maintain

that independent changes to fractions ofΦ made by indepen-

dent accesses are all observed by the thread performing the

inheritance. The key to achieve this is to recognize that the

8
In Iris parlance, atomic instructions are expressions that evaluate in just

one step. This is not to be confused with the notion of atomic accesses in

this paper, even though atomic accesses are indeed atomic instructions.

10

RustBelt Relaxed PL’19, February 29, 2019, New York, NY, USA

Borrow type Access by

multi-threads

Access dura-

tion

Access

amount

Communication

between accesses

Access at local

view

Full borrows &
κ
full P sequential multiple steps full yes yes

Fractured borrows &
κ
fracΦ concurrent multiple steps fractions no yes

Atomic borrows &
κ
at P concurrent atomic full yes no

Table 1. Comparison of borrow types.

content view ofΦ is no longer a single view, but consists of

two views:

(1) the view VYTBA of the yet-to-be-accessed portion ofΦ,
(2) the view VAA of the already-accessed portion ofΦ.

VYTBA is the view of the chunk ofΦ that has not been given

out to any access, as well as the view at which the fractured

borrow was created. Meanwhile, VAA tracks all the changes

made by the accesses to all the chunks that have been given

out to those accesses.

With that in mind, we repeat what we did for full borrows:

defining the invariants for the inheritance and the accesses

of fractured borrows.

Proving inheritance. We enforce an invariant on the two

views of a fractured borrow &
κ
fracΦ:

VYTBA ⊔VAA ⊑ Vκ (LftL-fract-bor-inv-1)

That is, instead of using a single content viewVC like in LftL-

full-bor-inv-1, we use the view VYTBA ⊔ VAA which is the

view of the full resourceΦ(1), and require that it is always

included in the full token view κ. Thus, by similar reasoning

to LftL-full-bor-inv-1, any changes to the fractured borrow’s

contents are guaranteed to happen-before the moment the

inheritance is applied.

Proving accesses. We maintain a second invariant:

VYTBA ⊑ VB (LftL-fract-bor-inv-2)

This invariant enables the synchronized access to a fraction

ofΦ in the accessing rule LftL-fract-acc: If the rule is applied

at a thread’s local view V and the thread owns a borrow

assertion &
κ
fracΦ with some borrow view VB , then V ⊒ VB ⊒

VYTBA. Thus the thread can obtain some portionΦ(q′) from
the the yet-to-be-accessed chunk at its local view V .

5.2 Porting Atomic Borrows
A challenge specific to porting atomic borrows arises from

the fact that atomic borrows, like full borrows, allow com-

munication between different accesses to the same borrow.

This situation does not apply to fractured borrows because

each access of a fractured borrow obtains an independent

fraction of the underlying contents. In contrast, each access

of an atomic borrow obtains the full contents and can modify

them and thus can communicate with other accesses.

The trouble with communication between accesses is that

atomic instructions—in particular atomic accesses around

which atomic borrows are typically accessed—are not al-

ways synchronizing (i.e., they do not imply happens-before).

Therefore, LftL-at-acc (Fig. 9) is not sound in RBrlx. Imagine

that if LftL-at-acc were sound, a thread π would access and

modify P (i.e., after the access P holds at π ’s local view), and
immediately in the next step a different thread ρ would get

synchronized access to P at its own local view, including the

modifications made by π . In that case, the logic would allow

synchronization from π to ρ without there being any physi-

cal synchronization to support that. In particular, we would

be able to use atomic borrows to derive a version of Rlx-Send

and Rlx-Recv (Fig. 7) without the ∆ and ∇ modalities. With

such rules allowing us to bypass the need for fences entirely,

we could construct yet another spurious verification of the

buggy MP example in Fig. 8.

Since the content viewVC of P can be constantly changed

by different threads with atomic accesses to the borrow, there

is in general no relationship between threads’ local views and

the content view VC . Therefore, we need a new accessing

rule for atomic borrows that does not equate the view at

which the content is provided with the local view of the

thread. In order to state the new rule, we add a new assertion

to the logic, which we call the view-join modality: If P is a

view-dependent assertion and Vb a view, then the view-join

modality ⌊P⌋⊔Vb is defined by J⌊P⌋⊔Vb K(V) ::= JPK(V ⊔Vb),
which means that P holds at the join of the current view

and Vb . With that defined, here is the new atomic borrow

accessing rule:

Rlx-LftL-at-acc

∀Vb . {⌊P⌋⊔Vb ∗Q1} e {v . ⌊P⌋⊔Vb ∗Q2} atomic(e)

&
κ
at P ⊢ {[κ]q ∗Q1} e {v . [κ]q ∗Q2}

That is, after opening the atomic borrow at the current

thread’s view V , a thread obtains the content P at an ar-

bitrarily larger viewV ⊔Vb . Here,Vb is a parameter that will

be instantiated (by the prover of the rule) with the content

view VC . After obtaining access to P , the atomic instruction

e can update the current thread’s view to a larger view V ′
.

After e has executed, the atomic borrow is closed by giving

back P at the updated view V ′ ⊔Vb .

11

PL’19, February 29, 2019, New York, NY, USA H.-H. Dang, J.-H. Jourdan, J.-O. Kaiser, and D. Dreyer

Why must P be returned at V ′ ⊔Vb? The answer lies in
the inheritance for atomic borrows. To maintain the guar-

antee that the inheritance happens-after all accesses, when

returning the borrow contents we upgrade and then fix the

content view VC to equal the lifetime view Vκ .
9
Equating

these two views trivially maintains the inheritance invari-

ant that VC ⊑ Vκ . To maintain the view equality, however,

we now must mirror any change to Vκ in VC . In particular,

returning the borrow with Rlx-LftL-at-acc will update the

lifetime token view Vtok (and therefore Vκ) by joining the

thread’s local view V ′
into it. This change thus needs to be

mirrored inVC , which explains why we demand P atV ′⊔Vb
(thus upgrading VC to V ′ ⊔VC).

Finally, note that for atomic borrows there is in general

no relation between VC and the borrow view VB , so there is

no second invariant (like LftL-full-bor-inv-2) to maintain.

6 Other Contributions of RBrlx

ORC11 memory model. Rust inherits its memory model

from C11 [2, 21]. The model suffers from a long-standing

issue with out-of-thin-air reads, which pose a significant ob-

stacle to formal verification [3]. Thus, following previous

relaxed-memory separation logics, we work with a strength-

ened variant of C11 in which out-of-thin-air behaviors are

eliminated by prohibiting load-store reordering on relaxed

accesses. In particular, we target RC11 [16], which fixes this

and other flaws of the model. Recent work by Ou and Dem-

sky [18] suggests that the performance overhead of working

with RC11 vs. C11 may not be so significant in practice.

However, as mentioned in the introduction, we require

an operational account of relaxed memory—instead of an

axiomatic one such as RC11—in order to instantiate the Iris

framework. To this end, we develop ORC11, a semantics

inspired by both the promising semantics [13] and iGPS [12].

The main novelty lies in ORC11’s race detector, which ex-

tends iGPS’s in order to account for the non-synchronizing

nature of relaxed accesses. It does so by introducing explicit

atomic/non-atomic read/write events into the operational

semantics and tracking which events threads have seen.

To validate ORC11, we sketch (in the appendix) a proof of

correspondence between ORC11 and the fragment of RC11

omitting SC accesses and SC fences (since those features are

not used by the Rust libraries considered by RustBelt). The

correspondence establishes that any program considered

racy by RC11 will also be considered racy by ORC11.

GPFSL program logic. As part of developingRBrlx, as men-

tioned in §3.2, we used Iris to derive a new relaxed-memory

separation logic GPFSL, which combines the functionality

of iGPS/GPS [12, 22] and FSL/FSL++ [5, 6]. In particular, it

inherits fence modalities from FSL and improves on iGPS by

9
This only happens for borrows that are accessed at least once. Otherwise,

VC is included only in the inheritance view VI as explained in §4.3, which

still suffices to prove the inheritance sound.

supporting the reclamation of resources governed by iGPS’s

single-location protocols.

Proving soundness of λRust type system and libraries. A
major component of the original RustBelt verification was

the proof of semantic soundness for the typing rules of the

λRust type system, which was performed in Iris-SC. Fortu-

nately, we were able to reuse these proofs unchanged! One

may wonder how this is possible given that RBrlx is built on

top of GPFSL rather than Iris-SC. The answer is that both of

them are implemented in Coq as instantiations of the MoSeL

framework [15], which provides a uniform set of tactics ap-

plicable to different separation logics. Since the only rules

on which Iris-SC and GPFSL differ are those pertaining to

atomic accesses and atomic borrows, and since the safe frag-

ment of λRust does not concern itself with atomics, we could

port the proof of semantic soundness of λRust from Iris-SC

to GPFSL without modification.

In contrast, since the concurrency libraries considered in

RustBelt use relaxed-memory operations, we had to verify

them afresh. They include: thread::spawn, rayon::join,
Mutex, RwLock, and Arc. (The verifications of the sequential
libraries Rc, Cell, and RefCell remain largely unchanged

from RustBelt.) By far the most challenging of these to verify

in RBrlx was Arc. To make the verification go through, we

needed to strengthen two atomic reads from rlx to acq in
the implementations of Arc::get_mut and Arc::make_mut.
We conjecture that the relaxed access in Arc::make_mut
is indeed sound but verifying this would have required a

significantly more complex invariant. We refer the reader to

the appendix for further details.

Data race in Arc. Our need to strengthen the atomic ac-

cess in Arc::get_mut (for purposes of verification) led us

to uncover it as a bug in the original implementation of the

get_mut function. The original rlx read was insufficient to

establish a happens-before relation between the dropping of

the second-to-last clone of an Arc—a rel write—and subse-

quent exclusive access to the contents of the Arc through a

call to get_mut on the sole remaining clone. This violation

of happens-before can be used to construct a data race under

the C11 memory model. The bug has been reported and is

already fixed in Rust.

7 Related and Future Work
iGPS [12] has a mechanism to reclaim resources called can-
cellable single-location protocols. Cancellable protocols are,

in fact, very similar to borrows in that they use fractional

tokens to prove that the protocol is not cancelled, i.e., still
alive, and can still be accessed. Anyone owning the full to-

ken can cancel the protocol and directly trade the token for

the protocol resources. Therefore, these protocols can be

seen as a direct-style variant of borrows without the lifetime

killing and inheritance business. iGPS cancellable protocols

12

RustBelt Relaxed PL’19, February 29, 2019, New York, NY, USA

are not as powerful as RBrlx lifetime logic in that they can-

not reclaim protocol resources at the thread’s local view,

simply because the fraction tokens used by them are also

view-agnostic. Inspired by the lifetime logic, GPFSL general-

izes cancellable protocols to also be view-dependent in the

same style that lifetime tokens are made view-dependent,

thus allowing protocol resource reclamation by either atomic

borrows-based protocols or view-dependent cancellable pro-

tocols. We depend heavily on the latter in verifying Arc.
Doko and Vafeiadis [6] verify a subset of the Arc library.

We improve on their results by (1) enlarging the scope of

the verification to include important parts of the API such

as the make_mut and get_mut functions (the latter of which

we found to contain a data race) as well as the Weak ref-

erence type, (2) allowing full resource reclamation of both

the contents and the reference-count fields of the Arc data
structure, and (3) embedding our verification effort in the

RustBelt framework, so that we can establish the soundness

of Arc when linked with unknown well-typed λRust code.

Kang et al.’s promising semantics [13] is a proposal for fix-
ing C11’s out-of-thin-air problem without prohibiting load-

store reordering on relaxed accesses (as RC11 and ORC11
do). Svendsen et al. [20] introduce the first program logic for

the promising semantics. Their logic is based on RSL [23] and

supports relaxed accesses but not fences. Moreover, unlike

FSL, it disallows the transfer of ownership through relaxed

accesses, among other reasoning principles that have proven

useful in RBrlx. Extending RBrlx to account for promises is

a very interesting avenue for future work.

Finally, it is worth re-iterating that ORC11 and GPFSL
currently do not support SC accesses and SC fences. Adding

support for SC would enable us to verify some interesting

and challenging fine-grained concurrent algorithms, such

as the work-stealing queue by Chase and Lev [4], as well

as epoch-based resource reclamation schemes such as that

implemented by Rust’s crossbeam library [1].

Acknowledgments
This research was supported in part by a European Research

Council (ERC) Consolidator Grant for the project “RustBelt”,

funded under the European Union’s Horizon 2020 Frame-

work Programme (grant agreement no. 683289).

References
[1] 2016. Crossbeam: Support for concurrent and parallel programming.

Available at https://github.com/aturon/crossbeam.

[2] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber.

2011. Mathematizing C++ concurrency. In POPL. 55–66.
[3] Hans-J. Boehm and Brian Demsky. 2014. Outlawing ghosts: Avoiding

out-of-thin-air results. In MSPC.
[4] David Chase and Yossi Lev. 2005. Dynamic circular work-stealing

deque. In SPAA 2005: Proceedings of the 17th Annual ACM Symposium
on Parallelism in Algorithms and Architectures, July 18-20, 2005, Las
Vegas, Nevada, USA. 21–28. https://doi.org/10.1145/1073970.1073974

[5] Marko Doko and Viktor Vafeiadis. 2016. A program logic for C11

memory fences. In VMCAI (LNCS). Springer, 413–430.
[6] Marko Doko and Viktor Vafeiadis. 2017. Tackling real-life relaxed

concurrency with FSL++. In ESOP.
[7] Derek Dreyer. 2016. RustBelt project webpage. http://plv.mpi-sws.

org/rustbelt/
[8] Derek Dreyer. 2018. Milner award lecture: The type soundness theorem

that you really want to prove (and now you can). In POPL. https:
//www.youtube.com/watch?v=8Xyk_dGcAwk

[9] Robert Harper. 2016. Practical Foundations for Programming Languages
(Second Edition). Cambridge University Press, New York, NY, USA.

[10] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2018. RustBelt: Securing the foundations of the Rust programming

language. PACMPL 2, POPL, Article 66 (2018).

[11] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular

foundation for higher-order concurrent separation logic. (2018). To

appear in Journal of Functional Programming.

[12] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and

Viktor Vafeiadis. 2017. Strong logic for weakmemory: Reasoning about

release-acquire consistency in Iris. In ECOOP (LIPIcs). 17:1–17:29.
[13] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A promising semantics for relaxed-memory concurrency.

In POPL. ACM, 175–189.

[14] Steve Klabnik and Carol Nichols. 2018. The Rust Programming Lan-
guage. https://doc.rust-lang.org/stable/book/2018-edition/

[15] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,

Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek

Dreyer. 2018. MoSeL: A general, extensible modal framework for

interactive proofs in separation logic. PACMPL 2, ICFP, Article 77

(2018).

[16] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing sequential consistency in C/C++11. In PLDI.
[17] Leslie Lamport. 1979. How to make a multiprocessor computer that

correctly executes multiprocess programs. IEEE Trans. Computers 28,
9 (1979), 690–691.

[18] Peizhao Ou and Brian Demsky. 2018. Towards understanding the costs

of avoiding out-of-thin-air results. PACMPL 2, OOPSLA, Article 136

(2018).

[19] John C. Reynolds. 2002. Separation logic: A logic for shared mutable

data structures. In LICS. https://doi.org/10.1109/LICS.2002.1029817
[20] Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and

Viktor Vafeiadis. 2018. A separation logic for a promising semantics.

In ESOP 2018, Thessaloniki, Greece, April 14-20, 2018. 357–384. https:
//doi.org/10.1007/978-3-319-89884-1_13

[21] The Rust Team. 2018. The Rustonomicon. https://doc.rust-lang.org/
stable/nomicon/atomics.html

[22] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigat-

ing weak memory with ghosts, protocols, and separation. In OOPSLA.
ACM, 691–707.

[23] Viktor Vafeaidis and Chinmay Narayan. 2013. Relaxed separation

logic: A program logic for C11 concurrency. In OOPSLA.
[24] Andrew K. Wright and Matthias Felleisen. 1994. A syntactic approach

to type soundness. Information and Computation 115, 1 (1994). https:
//doi.org/10.1006/inco.1994.1093

13

https://github.com/aturon/crossbeam
https://doi.org/10.1145/1073970.1073974
http://plv.mpi-sws.org/rustbelt/
http://plv.mpi-sws.org/rustbelt/
https://www.youtube.com/watch?v=8Xyk_dGcAwk
https://www.youtube.com/watch?v=8Xyk_dGcAwk
https://doc.rust-lang.org/stable/book/2018-edition/
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doc.rust-lang.org/stable/nomicon/atomics.html
https://doc.rust-lang.org/stable/nomicon/atomics.html
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093

	Abstract
	1 Introduction
	2 RustBelt's Lifetime Logic
	2.1 Direct Ownership Transfer
	2.2 Borrowing in Rust
	2.3 The Lifetime Logic

	3 Reasoning About Relaxed Memory
	3.1 Understanding Relaxed Memory with Views
	3.2 Separation Logic for Relaxed Memory

	4 Lifetime Logic Meets Relaxed Memory
	4.1 Deriving Unsoundness in a Naive Model
	4.2 Lifetime Tokens as View-Dependent Ghost State
	4.3 Full Borrows

	5 Fractured and Atomic Borrows
	5.1 Porting Fractured Borrows
	5.2 Porting Atomic Borrows

	6 Other Contributions of RBrlx
	7 Related and Future Work
	Acknowledgments
	References

