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In recent years, there has been tremendous progress on developing program logics for verifying the correctness

of programs in a rich and diverse array of languages. Thus far, however, such logics have assumed that

programs are written entirely in a single programming language. In practice, this assumption rarely holds

since programs are often composed of components written in different programming languages, which interact

with one another via some kind of foreign function interface (FFI). In this paper, we take the first steps towards

the goal of developing program logics for multi-language verification. Specifically, we present Melocoton, a

multi-language program verification system for reasoning about OCaml, C, and their interactions through the

OCaml FFI. Melocoton consists of the first formal semantics of (a large subset of) the OCaml FFI—previously

only described in prose in the OCaml manual—as well as the first program logic to reason about the interactions

of program components written in OCaml and C. Melocoton is fully mechanized in Coq on top of the Iris

separation logic framework.
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1 INTRODUCTION

In recent years, there has been tremendous progress on developing verification systems based on
program logics (in particular, separation logics), which support the modular verification of complex
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programs in a rich and diverse array of languages. Notable examples include VST-Floyd [Cao et al.
2018] and RefinedC [Sammler et al. 2021] for C, RustBelt [Jung et al. 2017] and RustHornBelt [Mat-
sushita et al. 2022] for Rust, and Cosmo [Mével et al. 2020] for multi-core OCaml—all of which are
fully mechanized in Coq.
The above-cited systems all employ a common recipe:

(1) Design an operational semantics for the language, which serves as the “ground truth” about
program behavior.

(2) Build a (Hoare-style) program logic for the language, which supports higher-level proof rules
for compositionally verifying program correctness.

(3) Establish soundness of the program logic by giving an interpretation of the logical judgments
(e.g., Hoare triples) in terms of the operational semantics, and verifying the proof rules as
lemmas about that interpretation.

This recipe works great for verifying programs written entirely in a single language. However, in
practice, programs are not typically written all in one language, but rather linked together from a
patchwork of components written in different languages. For instance, they include calls to kernel
and runtime primitives implemented in low-level languages such as C and assembly; leverage
low-level efficient code implemented in languages like C, C++, and Rust; and reuse large, existing
libraries implemented in a different language (e.g., numeric computing libraries written in C). In
fact, almost all widely-used programming languages include some kind of foreign function interface

(FFI) to interact with code written in other languages (often using C as an intermediary).
For these so-called “multi-language programs”, there is not yet a recipe for building (provably

sound) program logics. For starters, step one (the question of how to define a semantics for multi-
language programs) is still an active topic of research [Neis et al. 2015; Patterson et al. 2022; Sammler
et al. 2023; Stewart et al. 2015]. Moreover, for steps two and three, there does not yet exist any
program logic for reasoning about multi-language programs in which the constituent languages
have (as is often the case) very different memory models. In short, the problem of building program
logics for multi-language program verification is still wide open.
In this paper, we take the first steps towards filling this gap by proposing a recipe for building

multi-language program logics. To keep matters concrete, we focus on a specific instance of the
problem: verifying multi-language programs written in a combination of OCaml and C. OCaml
has structured values (e.g., sums, pairs, lists, and references), a garbage-collected memory, and a
type system providing strong guarantees about its programs. C has integer values and pointers,
manually managed memory, and a type system providing only weak guarantees about its programs.
Nevertheless, there exists a bridge between the two—the OCaml FFI—which exposes enough of the
OCaml runtime to C to convert values, execute callbacks, and share memory.

1.1 Key Challenge: Bridging the Language Differences

In fact, in multi-language verification, one—if not the—main challenge is bridging the gap between
the languages under consideration: the more the languages differ, the more the single-language
reasoning principles that apply to them will differ. In this regard, OCaml and C are truly an “odd
couple”: they differ in their values (i.e., abstract values in OCaml vs. concrete values in C),1 memory
models (i.e., mutable records and arrays vs. pointers with pointer arithmetic), memory management
(i.e., garbage collection vs. manual memory management), type systems (i.e., a strong, polymorphic
type system vs. a weak type system), and runtime (i.e., large runtime vs. bare-bones binaries).

1OCaml’s values are abstract in the sense that their semantics is independent of their machine-level representation. In

contrast, C’s values are concrete in the sense that they have concrete representation as a sequence of bytes.
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cap used data

field 0 field 1 field 2

size: 3 cap • • size: 1 •

cap-many C bytes
︷                       ︸︸                       ︷

11 · · · · · · 1cap

field 0

size: 1 used

Fig. 1. C memory layout of the buf-record {cap, used, data} as exposed by the OCaml FFI

To illustrate these differences and how they are bridged by the OCaml FFI, let us consider a
concrete example: the runtime representation of OCaml values in C. Consider the OCaml type:

type buf = { cap : int; used: int ref; data: raw_bytes }

This type is used as part of the running example of this paper (in §2), where it exposes buffers
implemented in C (i.e., raw chunks of bytes) to OCaml through the OCaml FFI. The data-field stores
the underlying bytes, the cap-field the capacity of the buffer, and the used-field how much of the
buffer is currently in use (i.e., how many bytes are readable). The type raw_bytes—as far as OCaml
is concerned—is abstract (i.e., declared with type raw_bytes without a definition), meaning it
does not reveal anything about its contents to OCaml.
From the perspective of OCaml, values of type buf are records {cap, used, data} where the

cap-field is an immutable integer, the used-field is a mutable reference, and the data-field stores
some kind of immutable value (of an unknown shape). This is not, however, what the OCaml FFI
exposes to C as the runtime representation of these values. Instead, nested values (e.g., records
and pairs) are exposed as blocks of memory, runtime blocks, which are nested using pointers. A
value of type buf is a pointer to a block with three elements, one for each field of the record (as
depicted in Fig. 1). The first field stores the runtime representation of the cap-integer; the second
field stores the used-reference—a pointer to a block, which stores the number of used bytes; and
the third field stores a pointer to a so-called “custom” block, which embeds C data into OCaml (e.g.,
raw C pointers). In this case, the custom block stores a pointer to the underlying bytes of the buffer.
Clearly, the OCaml view of buf values and their runtime representation in C is different. For

one, in C, they reside in memory (with a concrete address where they are stored) whereas, in
OCaml, they are conceptually “just values” (i.e., they are copied when passed around). However,
that is not the only difference. The fields of buf are immutable (e.g., cap cannot change) and the
used-reference is mutable. From the perspective of C, however, both records and references have
the same representation, runtime blocks. It is up to the programmer to remember that one of them
is allowed to be mutated whereas the other is not. Finally, C code can embed its own data into
OCaml through custom blocks (here the data-field) and it can access and modify that data as needed
whereas the data-field of the record is completely opaque to OCaml.

In program code, the differences between OCaml and C are bridged through so-called “glue code”,
code which uses the OCaml FFI to link up program parts written solely in either OCaml or C. For
program verification, the story is not so clear yet. For instance, when we reason about glue code,
how do we reconcile the two very different views that OCaml and C have on values of type buf?
To design a multi-language program verification analogue of the single-language recipe, we have
to bridge the language gap at two different levels:

The operational semantics. At the operational semantics level, the challenge is that no existing
multi-language semantics explains how to reconcile the key differences between both languages
(i.e., interacting with the OCaml garbage collector and runtime, registering “roots”, executing
callbacks, etc.). However, there are promising starting points. Patterson et al. [2022] combine a
garbage collected language and a language with manual memory management. Unfortunately,
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they do so using an elaboration semantics to a shared target language with garbage collection,
which does not exist in the case of OCaml and C. Sammler et al. [2023] propose an approach to
multi-language semantics that uses modular combinators to connect languages by composing their
operational semantics. As such, their approach fits well with step one of the single-language recipe.
Unfortunately, while they consider languages with significant differences (e.g., different calling
conventions and memory models), they do not consider garbage collection or a runtime.

The program logic. At the program logic level, the main challenge is preserving language-local
reasoning. That is, chunks of code that are solely written in C or solely written in OCaml should
enjoy reasoning principles that are fine-tuned to their respective language (without being impacted
by the existence of the other language). However, preserving language-local reasoning is easier
said than done. For one, the two program logics will have different views on the same piece of state

(e.g., a buf-value in OCaml will be viewed as nested runtime blocks on the C side). Changes to
runtime blocks on the C side (e.g., updating the block storing the number of used bytes) correspond
to changes in the state on the OCaml side (e.g., changing the used-reference in the buffer). Another,
more subtle issue with preserving language-local reasoning is that code written in one language can
potentially violate language-specific invariants of the other. For example, OCaml—as a functional
language—makes pervasive use of immutable values. When linked with C, the C code can observe
the runtime representation of those values and, in principle, mutate their contents, albeit with
unknown consequences as far as the OCaml semantics is concerned.

1.2 Melocoton

In this paper, we present Melocoton, a multi-language program verification system for reasoning
about OCaml, C, and their interactions through the OCaml FFI. It extends the single-language
recipe for program verification to a multi-language setting as follows:

(1) As a starting point, we take simplified versions of OCaml and C called _C and _ML (see §2.2)
and—following the single-language recipe—we define their canonical operational semantics,
→C and→ML. Moreover, again following the recipe, we derive language-specific program
logics for them. Since both languages have non-trivial state, we derive two separation logics,
called IrisC and IrisML, in the separation logic framework Iris [Jung et al. 2018, 2015].

(2) We extend the language-local program logics IrisC and IrisML with reasoning principles for
“external calls”. That is, functions potentially implemented in another language (e.g., in C) are
exposed to the language-local logic (e.g., to IrisML) through an interface. Conceptually, for
each external call, the interface gives a precondition and a postcondition surrounding the
call. (We do not add any rules to→C and→ML).

(3) Finally, for the combined language, _ML+C, we develop an operational semantics −↠ML+C, which
embeds the operational semantics of _C and _ML and adds reasoning rules to bridge between
them. Moreover, we develop a separation logic, IrisML+C, which embeds IrisC and IrisML and
extends their reasoning principles to bridge between the two logics. We then prove that
IrisML+C is sound with respect to the joint semantics −↠ML+C.

In Melocoton, the verification of a mixed OCaml and C program can be done almost entirely in
the language-local logics IrisC and IrisML. The notion of “external calls” allows us to abstract over
which language is “on the other end” of the call, and the interfaces of external calls (i.e., their pre-
and postconditions) are written in the language-local logics. Hence, even for external calls, we do
not have to leave the language-local logics (e.g., functions declared external in OCaml, although
actually implemented in C, still have an IrisML specification). In fact, even code interacting with the
OCaml FFI—on the C side—can stay in the language-local logic IrisC (see §2.4). The only purpose
of the “umbrella logic” IrisML+C is to tie together language-local verifications and ensure that the
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assumptions of one side match up with the guarantees of the other. The key to matching up both
sides is providing reasoning rules for what we call the “view reconciliation problem”: reconciling
different logical views on the same shared state (see §2.5).

Contributions. The main contribution of this paper is Melocoton, a multi-language program
verification system for programs written in OCaml and C. Melocoton consists of the first formal
semantics of (a large subset of) the OCaml FFI—previously only described in prose in the OCaml
manual [oca 2023b]—and the first program logic to reason about the interactions of OCaml and C.

Melocoton’s operational semantics (§3) is the first multi-language semantics that models interac-
tions with an OCaml-style garbage collector. To define it, we take inspiration from Sammler et al.
[2023]: we define an operational semantics that modularly embeds the semantics of _ML and _C, and
we use angelic and demonic non-determinism to bridge the gap between the two semantics. As
mentioned above, the work of Sammler et al. does not cover the kind of language interactions that
are possible through the OCaml FFI, which are what makes interoperability between OCaml and C
interesting. To capture them, we use a carefully designed model of the core aspects of the OCaml
runtime (e.g., runtime blocks, garbage collection, “roots”, callbacks, etc.).
Melocoton’s program logic (§4) is the first separation logic (and program logic) for a multi-

language setting with different memory models (including garbage collection). We use separation
logic to reason about the state of OCaml and C, and we use step-indexing—inherited from Iris—to
handle the recursive and higher-order features of OCaml. To soundly combine (1) angelic non-
determinism and (2) the higher-order features of OCaml, as it turns out, we have to use a richer
form of step-indexing than what is provided out-of-the box by Iris: we have to use transfinite
step-indexing and, thus, define IrisML+C in Transfinite Iris [Spies et al. 2021] (see §4.3).
We explain the key ideas behind Melocoton (in §2) with our running example: importing a

compression library from C into OCaml. Besides the compression library, we have applied Me-
locoton to several interesting examples (in §5): a polymorphic equality function that cannot be
implemented natively in OCaml, a list implementation that alternates between OCaml and C
memory blocks, a version of Landin’s knot [Landin 1964] that mutually recursively goes through
the FFI, and an abstract data type that stores OCaml callbacks in C memory. To show that the
last two examples—even though they are implemented in C—are type safe (i.e., they can be safely
used from arbitrary, well-typed OCaml code), we define a standard logical relation in IrisML+C, and
extend it with reasoning principles for external calls. Melocoton is fully mechanized in Coq, and the
Coq development can be found in the supplementary material [Guéneau et al. 2023]. The current
development version of Melocoton and further information is available from the projet webpage at
https://melocoton-project.github.io.

2 MELOCOTON BY EXAMPLE

We explain the key ideas underlying Melocoton using a motivating example: importing a C com-
pression library into OCaml. We focus on the program logic level of Melocoton and follow the
spirit of the multi-language recipe: first develop language-local reasoning principles, then focus
on language interoperability. Concretely, we discuss the C library and an OCaml client (§2.1), we
explain how to reason about them locally (§2.2), we discuss the OCaml FFI “glue code” that ties
them together (§2.3), we explain how to reason about the glue code (§2.4), and, finally, we address
the view reconciliation problem (§2.5). Throughout this paper, we use colors to distinguish different
languages: magenta for OCaml, dark blue for C, and light blue for primitives of the OCaml FFI.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 247. Publication date: October 2023.
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C library:

1 int snappy_compress(unsigned char *inp, int insz, unsigned char *outp, int *outsz);

2 size_t snappy_max_compressed_length(size_t source_length);

OCaml client:

3 type raw_bytes and buf = { cap : int; used: int ref; data: raw_bytes }

4 external buf_alloc : int -> buf = "buf_alloc"

5 external buf_free : buf -> unit = "buf_free"

6 external buf_get : buf -> int -> char = "buf_get"

7 external buf_upd : int -> int -> (int -> char) -> buf -> unit = "buf_upd"

8 external wrap_compress : buf -> buf -> bool = "wrap_compress"

9 external wrap_max_len : int -> int = "wrap_max_len"

10 let is_compressible (xs: char array) =

11 let len = Array.length xs in if len = 0 then false else

12 let (inp, outp) = (buf_alloc len, buf_alloc (wrap_max_len len)) in

13 buf_upd 0 (len - 1) (fun i -> Array.get xs i) inp;

14 let _ = wrap_compress inp outp in let shrank = !(outp.used) < !(inp.used) in

15 buf_free inp; buf_free outp; shrank

Fig. 2. Using a C compression function from OCaml.

2.1 The C Library and OCaml Client

In this example, depicted in Fig. 2, we want to import a C compression library into OCaml. One can
imagine that the implementation of the compression library is particularly efficient in C, or that it
already exists as a separate, standalone library and we want to avoid rewriting it. In this particular
example, we take inspiration from the interface of Google’s Snappy compression library [sna 2023].
For the purposes of the example, the implementation of the compression algorithm is not relevant.2

The C library. The function snappy_compress can be used to compress an input buffer inp
(i.e., a raw C pointer to a chunk of bytes) of length insz into an output buffer outp of capacity
outsz. After compression, the pointer outsz stores the actual length of the compressed data. To
make sure that the capacity of the output buffer outp suffices, the library provides the function
snappy_max_compressed_length, which computes an upper bound on the compressed size.

The OCaml client. The OCaml client is_compressible wants to use the compression library
to check whether an array of characters will shrink in size when compressed. When we implement
it in OCaml, the first stumbling block that we encounter is that is_compressible takes in an
OCaml array of characters (i.e., a built-in array managed by the OCaml garbage collector), but the
C library function snappy_compress expects two char pointers (i.e., raw pointers to C buffers of
bytes). The issue is the that the two types, char array and char *, are not the same—they are not
even part of the same language.

To circumvent this problem, we introduce glue code: C code that uses the OCaml FFI to mediate
between is_compressible and snappy_compress. For now, we delay a discussion of the C imple-
mentation of the glue code (to §2.3) and focus on its OCaml interface (Lines 3-9). The interface
consists of (1) a small buffer library (loosely inspired by OCaml’s Bigarray library [oca 2023a]) and
(2) wrappers of the compression functions operating on buffers. The interface declares an abstract

2In the Coq mechanization, we do not consider the actual Snappy compression algorithm, because its verification is besides

the point of this paper. Instead, we verify a toy algorithm which can, in the worst case, double the size of the input.
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_C

w ∈ Val F (= ∈ Z) | (0 ∈ Addr)
2 ∈ Expr F w | G | ⊖ 2 | 2 ⊗2 | malloc(2) | free(2, 2) | ∗2 | ∗2 ← 2 | while(2) 2 | call fn ®2 | · · ·
? ∈ Prog F ∅ | ?, fn(®G) := 2

f ∈ State ≜ Addr
fin
⇀ Cell where cl ∈ Cell ≜ {★, †} ⊎ Val

_ML

V ∈ Val F (= ∈ Z) | (ℓ ∈ Loc) | true | false | ⟨⟩ | ⟨V ,V ⟩ | inl V | inr V | rec 5 G . 4 | ]
e ∈ Expr F V | G | e e | ⊖ e | e ⊗ e | alloc e e | e.(e) | e.(e) ← e | length e | call fn ®e | · · ·

f ∈ State ≜ Loc
fin
⇀ list(Val) ⊎ {E} ? ∈ Prog F ∅

Fig. 3. Syntax, state, and resources of _C and _ML

type raw_bytes, a record for buffers buf, and four functions to operate on buffers: buf_alloc
allocates an uninitialized buffer of a given capacity (initially using 0 bytes); buf_free frees a buffer
(since memory management is manual in C, we have to free allocated buffers); buf_upd updates a
range of the buffer using a callback (additionally increasing the number of used bytes if necessary);
and buf_get reads a byte of the buffer. The compression functions are wrapped as wrap_max_len
(for snappy_max_compressed_length) and wrap_compress (for snappy_compress).

The OCaml client is_compressible uses the glue code to check whether an array of characters
can shrink in size as follows: it allocates an input buffer inp and an output buffer outp—large
enough to store the compressed input; it then fills the input buffer with the contents of the
array; it compresses the input into the output buffer; it checks whether the output size is smaller
than the input size; and, finally, it frees the two buffers and returns the result. (The function
is_compressible is only illustrating how one can use the external compression function from
OCaml. A more realistic client would not “throw away” the compressed buffer like this.)

2.2 Language-Local Reasoning

Before we turn to the implementation of the glue code that connects the OCaml client and the
C library, let us first illustrate one of the central ideas of Melocoton: preserving language-local
reasoning. Even without knowing the implementation of the glue code (or the OCaml FFI), we can
verify the C compression library and the OCaml client already in language-specific program logics.
As mentioned in §1, we consider rather idealized versions of C and OCaml in this paper, called _C
and _ML, which are depicted in Fig. 3. We first discuss the language _C and verify the compression
library in IrisC. Then, we contrast _C with _ML and verify the client in IrisML.

The language _C. The essential features of _C are its very simple form of values (i.e., integers = or
addresses 0) and its flat memory model. To be precise, memory in _C is a finite map from addresses
tomemory cells, either values or special tokens indicating that an address has been freshly allocated
and is uninitialized (★) or has been freed already (†). Memory is allocated with malloc(=) and has
to be manually deallocated again with free(0, =). Executing malloc(=) returns an address 0 which
points to the first of = consecutive heap cells. To access heap cells other than 0, pointer arithmetic
can be used (i.e., “0 + 8”). Programs ? , in _C, are lists of functions (where no function is defined
twice).

Verifying the C library. The language _C gives rise to IrisC, a simple, language-specific sep-
aration logic, depicted in Fig. 4. In the context of our running example, we use IrisC to prove
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IrisC
read-c

{0 ↦→C w} ∗0 {w
′ . w = w′ ∗ 0 ↦→C w}C

write-c

{0 ↦→C } ∗0 ← w′ { . 0 ↦→C w
′}C

alloc-c

{= ≥ 0}malloc(=) {0.∗0≤8<= (0 + 8) ↦→C★}C

free-c

{∗0≤8<= (0 + 8) ↦→C } free(0, =) { . True}C

IrisML
read-ml

{ℓ ↦→ML
®V } ℓ .(8) {V ′ . V ′ = ®V [8] ∗ ℓ ↦→ML

®V }ML

write-ml

{ℓ ↦→ML
®V } ℓ .(8) ← V ′ { . ℓ ↦→ML

®V [8 := V ′]}ML

alloc-ml

{= ≥ 0} alloc= V {ℓ . ∃®V . ℓ ↦→ML
®V ∗ | ®V | = = ∗ ∀8 . ®V [8] = V }ML

IrisC and IrisML
call-internal

? (fn) = f {%} 5 (®E) @?,Ψ {E . & E}

{%} call fn ®E @?,Ψ {E . & E}

call-external

fn ∉ dom(?) % −−∗ Ψ fn ®E &

{%} call fn ®E @ ?,Ψ {E . & E}

Fig. 4. A selection of the reasoning rules of IrisC and IrisML. The program ? and the interface Ψ are omi�ed
in rules that do not mention them.

correctness of the two compression library functions. Since IrisC is a standard separation logic
(e.g., see write-c, read-c, alloc-c, free-c, and call-internal), we only discuss the function
specifications as the proofs themselves are routine. To verify a function in IrisC, one proves Hoare
triples of the form “{%} call fn ®w @ ?,Ψ {&}C” where call fn ®w is the function call construct of _C,
? is the surrounding program, % and & are the pre- and postconditions, and Ψ is an “interface”.
(Interfaces are only used for external calls to other languages—we will ignore them for now and
come back to them shortly.) For the function snappy_max_compressed_length, we show

{= ≥ 0} call snappy_max_compressed_length [=] @ ?lib,∅ {w. ∃<. w =< ∗maxlen(=,<)}C .

where ?lib is the surrounding compression library (and the interface is the empty interface ∅). Since
we are not concerned with the details of the compression algorithm, we keep the upper bound (and
other details of compression) abstract in the form of predicates (here “maxlen”).

For snappy_compress, wewant to prove that if we pass in two buffers—one containing a sequence
of integers to compress and one large enough to store the output—the compressed version of the
input is stored in the output buffer. To make this intuition formal, we can use the points-to assertion
0 ↦→C cl of IrisC. It conveys ownership over the memory address 0 and asserts that it currently
stores the memory cell cl. For snappy_compress, we show
{

bf (0in, =in,
−−→<in) ∗ bf (0out, =max, []) ∗ 0outsz ↦→C =max ∗maxlen(=in, =max)

}

call snappy_compress [0in, =in, 0out, 0outsz] @?lib,∅
{

w′ . w′= 0 ∗ ∃−−−→<out, =out. bf (0in, =in,
−−→<in) ∗ bf (0out, =max,

−−−→<out) ∗ cpr(
−−→<in,
−−−→<out) ∗ 0outsz ↦→C |

−−−→<out |
}

�

where bf (0, =, [<0, . . . ,<:−1]) ≜ (∗0≤8<: (0 + 8) ↦→C <8 ) ∗ (∗:≤8<= (0 + 8) ↦→C ) ∗ : ≤= asserts that
0 stores a buffer of capacity = with the first : cells storing the integers<0, . . . ,<:−1, and we write
0 ↦→C ≜ ∃cl ∈ Val ⊎ {★} . 0 ↦→ cl whenever the contents of 0 are irrelevant and 0 has not been
freed yet. In other words, we prove that if we pass in a sufficiently large output buffer 0out, then
compression is successful (i.e., return value 0), 0out will afterwards store the compressed version of

the input 0in (captured by cpr(−−→<in,
−−−→<out)), and 0outsz will store the length of the compressed buffer.
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The language _ML. Let us now turn to _ML. In contrast to _C, the language has a very rich notion
of values: integers, locations, booleans, unit, pairs, sums, foreign values “ ] ” (discussed shortly),
and closures. Moreover, the memory model of _ML is very different. The heap of _ML is a map from
(abstract) locations to lists of values. Superficially, this may seem similar to the memory of _C.
However, there are several crucial differences: First, memory management in _ML relies on garbage
collection, meaning memory is allocated on the heap with alloc= V , but never has to be freed
manually. Instead, conceptually, memory is garbage collected once no part of the program can
access it anymore. Second, the memory of _ML is more complex, because it can store (lists of)
arbitrary values, regardless of their shape or size (e.g., ⟨⟨n,m⟩, rec 5 G . 4⟩, a pair of another pair and
a closure). Third, locations in _ML store entire lists of values. Each location ℓ models a mutable array,
whose length can be determined with length ℓ , whose elements can be retrieved with ℓ .(=), and
whose elements can be updated with ℓ .(=) ← V . In contrast to _C, there is no “address arithmetic”
(i.e., the expression ℓ + 8 is stuck). A third, minor difference to _C is that there are no top-level
function declarations in _ML (i.e., ? = ∅) and, instead, in _ML we execute single expressions e (which
internally can contain let-bindings and mutual recursion).

There are three aspects of _ML that enable language interoperability. They are non-intrusive and
minimal such that _ML does not even (need to) know which languages it is interacting with. First,
there are foreign values “ ] ”, where ] is an abstract identifier. They can be used by other languages
such as _C to “embed” their own data into _ML. We will use this feature of OCaml to embed the
underlying C buffer into OCaml in our running example (in §2.5). Foreign values are abstract: they
can be passed around via function calls, but there is no language construct in _ML to inspect their
contents. Second, after executing an external function, locations in the heap of _ML can store data
that is temporarily inaccessible from _ML (see §3.1). Whenever this is the case, the _ML heap stores E
at the respective location and accesses in _ML will get stuck. Third, and most interestingly, _ML
contains a language construct for external function calls call fn ®V . The syntactic construct call fn ®V
has no meaning in the language-local semantics of _ML (i.e., it is stuck

3 in the semantics of _ML). As
such, _ML does not have to include any rules in its semantics for executing code of other languages
(e.g., _C). Instead, we will assign meaning to external calls in the combined multi-language _ML+C
(see §3), where external calls in _ML are linked with their implementation in _C.

Verifying the OCaml client. Let us turn to the verification of is_compressible in IrisML. We
prove that given ownership over an array of integers, the function returns an unspecified boolean,
meaning {ℓ ↦→ML ®=} is_compressible ℓ @∅,Ψbuf {V

′ .V ′ ∈ {true, false} ∗ ℓ ↦→ML ®=}ML. This spec-
ification is not particularly exciting, but it suffices to illustrate the interaction with the external

functions implemented in C. The resources of IrisML (e.g., “ℓ ↦→ML
®V ”) and its reasoning rules

(e.g., read-ml, write-ml, and alloc-ml) are standard. Thus, we focus mainly on the treatment
of external function calls. External calls allow us to slice the verification of a program into the
language-local parts and the parts that are implemented in another language. In is_compressible,
the first time that we call an external function is when we allocate the initial buffers inp and outp

with buf_alloc (Line 12). Suppose (for a moment), for the sake of explanation, that buf_alloc
was implemented in OCaml. In this hypothetical scenario, the standard way to proceed would be to
prove (once) and afterwards apply (multiple times) the Hoare triple:

{= > 0} buf_alloc(=) @∅,Ψbuf {V . bufferML (V , =, [])}ML

3In general, “getting stuck” corresponds to reaching a “bad state” in the semantics (e.g., a safety violation). By making

call fn ®V stuck in the language-local semantics _ML, we ensure that one cannot obtain a closed proof of a _ML-program by

only considering the _ML-side if the program has external calls. Instead, it is only be possible to verify such programs in the

combined language _ML+C by additionally considering the _C implementations of the external functions (see Theorem 4.2).
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where bufferML (V , n, ®m) ≜ ∃ℓ,V ′ . V = ⟨n,ℓ,V ′⟩ ∗ ℓ ↦→ML [| ®m|] ∗ raw_bytes(V ′, n, ®m) asserts that V
is a tuple containing the buffer capacity n, a _ML reference ℓ for the used field, and a value V ′

containing the underlying integers ®m. How V ′ stores the integers ®m is irrelevant for the verification
of is_compressible, meaning we can stay at the abstraction of “raw_bytes(V ′, n, ®m)”. (As we will
see in §2.5, the definition of raw_bytes uses _ML’s “foreign values” and knowledge about the OCaml
FFI.) After applying the Hoare triple, we can then use the buffer that buf_alloc returns to resume
the verification of is_compressible.
Of course, buf_alloc is not actually implemented in OCaml. Nevertheless, in our proof of

is_compressible, we want to stay as close as possible to the language-local reasoning sketched
out above. To do so, we introduce reasoning principles to “skip” external function calls by drawing
a boundary at their specification. For example, in the verification of is_compressible, we want
to prove the precondition = > 0 of buf_alloc to call it and then resume afterwards with the
postcondition bufferML (V , =, []). To make this reasoning sound, we take inspiration from the work
on open simulations [Hur et al. 2012] and of de Vilhena and Pottier [2021] on a program logic
for effect handlers. Concretely, we parameterize Hoare triples by an interface Ψ ∈ Intf (Val) ≜
FnName → list(Val) → (Val → iProp) → iProp that maps each external call to its specification.
Formally, an interface Ψ is a “predicate transformer” that takes in a function name fn, a list of
argument values ®E , and a postcondition& and then produces the precondition “Ψ fn ®E &” required to
call fn with arguments ®E . The way that “skipping” function calls works with predicate transformers
(see call-external) is that we show that the current precondition % implies Ψ fn ®E & where & is
our desired postcondition.
For example, in the case of the buffer library, the interface Ψbuf ≜ Ψbuf_alloc ⊔ Ψbuf_free ⊔ · · · ⊔

Ψwrap_max_len specifies all the library functions as a disjunction of single-function interfaces, where
(Ψ1 ⊔ Ψ2) fn ®E Q ≜ Ψ1 fn ®E Q ∨ Ψ2 fn ®E Q . For buf_alloc specifically, the interface is:

Ψbuf_alloc fn ®V Q ≜ ∃=. fn = buf_alloc ∧ ®V = [=] ∧ = > 0 ∗ (∀V . bufferML (V , =, []) −−∗ QV )

whichwe,more idiomatically, write asΨbuf_alloc ≜ ∀=. ⟨=>0⟩ buf_alloc [=] ⟨V . bufferML(V , =, [])⟩
(note the angle brackets!) to give single-function interfaces their familiar “Hoare triple reading”.4

With the interface Ψbuf for the library in hand, the verification of is_compressible in IrisML
proceeds smoothly as if the functions were implemented in _ML (using call-external).

2.3 A Primer of the OCaml FFI

Having verified the OCaml client and the C compression library (from Fig. 2), we now turn to
the “glue code” that connects them. Before we can verify any glue code (in §2.4), we first have
to understand the central concepts of the OCaml FFI and how they are used in our example. To
explain them, we focus on the implementation of buf_alloc (in Fig. 5); the implementation of the
remaining glue code functions can be found in the supplementary material [Guéneau et al. 2023].

The representation of OCaml values. In C, all OCaml values—regardless of their type, in-
cluding buf, raw_bytes, int, and char array—are exposed by the OCaml runtime as runtime

values—of type value. They are either integers or pointers to runtime blocks (i.e., chunks of memory
in the heap of the OCaml runtime). Integers are used to encode OCaml’s integers (i.e., int) and
other simple types such as bool and unit. Pointers are used to encode OCaml’s structured values
(e.g., pairs, data types with arguments, arrays, etc.). For example, as depicted in Fig. 1, a value of the
buffer record is represented as a pointer to a runtime block with three values, one storing an integer
for the capacity, one storing a reference for the used field, and another storing the underlying

4Formally, the notation is defined as ∀®G. ⟨% ⟩ fn ®E ⟨E. ∃ ®~. & ⟩ ≜ _fn′®E′Q. fn′ = fn ∗ ∃ ®G. ®E′ = ®E ∗ % ∗ (∀E, ®~. & −−∗Q E) . The

reader may cheerfully ignore this definition and stick with the intuition of Hoare triples as specifications.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 247. Publication date: October 2023.



Melocoton: A Program Logic for Verified Interoperability Between OCaml and C 247:11

16 value buf_alloc(value cap) {

17 CAMLparam1(cap); CAMLlocal3(bk, bf, r);

18 r = caml_alloc(1, 0); // allocate the `used` reference block

19 Store_field(r, 0, Val_int(0));

20 bk = caml_alloc_custom(sizeof(void*)); // allocate the `data` custom block

21 Custom_contents(bk) = malloc(Int_val(cap));

22 bf = caml_alloc(3, 0); // allocate the `{cap, used, data}` block

23 Store_field(bf, 0, cap); Store_field(bf, 1, r); Store_field(bf, 2, bk);

24 CAMLreturn(bf);

25 }

Fig. 5. FFI glue code for buf_alloc

C buffer. To embed the C buffer—a raw C pointer which is not of type value—into OCaml, the
runtime offers so-called “custom blocks”. Custom blocks are runtime blocks that embed native C
data (e.g., pointers) into OCaml as foreign values.5

Manipulating OCaml values in C. As a function using the OCaml FFI, buf_alloc has to
interact correctly with the OCaml runtime primitives (in light blue) and the OCaml garbage
collector. We will ignore the garbage collector for now—and the primitives for working with it
in Line 17 and CAMLreturn in Line 24—and come back to it below. Instead, we focus on how to
operate on runtime values. For integers, converting between an integer = and the representation
of = as a runtime value is simple: the runtime provides the primitives Val_int (read “integer to
value”, see Line 19) and Int_val (read “value to integer”, see Line 21). These primitives actually do
something—e.g., Val_int converts = to 2= + 1 and Int_val right-shifts it back—because the OCaml
runtime uses the least significant bit as a tag to distinguish integers from pointers.

Interacting with structured values is more subtle. Recall the runtime representation of the buffer
record {cap, used, data} depicted in Fig. 1. To create it, buf_alloc proceeds as follows: it
allocates a runtime block r of size one for the reference used using the primitive caml_alloc

(in Line 18) and initializes it to zero using the primitive Store_field (in Line 19); it allocates a
“custom” runtime block bk (in Line 20) using caml_alloc_custom; it allocates a C buffer of the
right length and stores it in the custom block (in Line 21); it allocates a block for the buf record
and stores the capacity (here len), the used reference, and the custom block in it (in Lines 22-23);
and, finally, it returns the newly created runtime block (in Line 24).

Tiptoeing around the OCaml garbage collector. One fundamental difference between OCaml
and C reveals itself only implicitly in the code in Fig. 2: the presence of the OCaml garbage collector
(GC). That is, memory management in OCaml is based on garbage collection, meaning once a
runtime allocated object (i.e., one that is represented as a runtime block) becomes unreachable (i.e.,
no part of the OCaml code can access it anymore), the GC can deallocate it to reduce the amount
of memory consumed. This is in stark contrast to the manual memory management of C, where
memory has to be explicitly allocated and eventually deallocated.
One immediate consequence of this difference is that the buffer library needs to provide a

buf_free-function to OCaml (Line 5), because otherwise the buffer will stay in memory forever.
A more burdensome and subtle consequence is that we have to make sure that the GC does not

5In Melocoton, we model a simplified form of custom blocks: In OCaml, they can store arbitrary C data, which is accessed

with Data_custom_val. Here, they always store a C pointer, which is accessed with Custom_contents. Moreover, in OCaml

custom blocks can be given additional parameters such as comparison methods during allocation, which we omit here.
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invalidate references to runtime blocks that we still want to use. That is, when we define an external
function in C, the GCmay execute whenever wemake calls to (certain) OCaml FFI runtime functions
(e.g., caml_alloc). To prevent it from invalidating our local references (by deallocating or moving
the runtime blocks that they point to), we have to “register” our local references with the GC as
so-called “roots”(using CAMLlocal and CAMLparam in Line 17). Eventually, when we no longer need
them, we can unregister our roots with the GC again (using CAMLreturn in Line 24).

2.4 An Interface for the OCaml FFI

How should we verify glue code such as buf_alloc in Fig. 5? On the one hand, the code is written
in C, so it would be natural to use the language-local logic IrisC to reason about it. On the other
hand, semantically, the code is more concerned with OCaml values (and the runtime representation
thereof) than with C data structures, C pointers, and C-specific features. We answer this question
with our next key idea: importing a logic for the OCaml FFI into the language-local logic IrisC.

Conceptually, “the OCaml FFI” is (1) a lower-level model of OCaml’s values and heap that is
exposed to C and (2) a set of “runtime primitives” available to C to operate on this lower-level
representation. Together, these two parts of the OCaml FFI form a clean abstraction over the
actual, underlying C data representation (and the implementation of the garbage collector). We
use them as a “middle ground” between C and OCaml in this work. Concretely, (1) we define a
notion of runtime values, runtime heaps, and runtime separation logic resources and (2) we specify
the runtime primitives as external functions in IrisC using an interface Ψ

FFI
. In doing so, we get

access to abstract reasoning principles about the OCaml runtime while retaining the language-local
reasoning principles of IrisC.

The resources of the OCaml runtime. To define the runtime interface, we take the view that
memory exposed by the OCaml FFI is an abstract heap of runtime blocks and then relate this heap
to both its C and OCaml representations (i.e., map it to pointers and integers in C and map it to
structured values and references in OCaml). We will describe the interface of the OCaml runtime
in more detail in §4.2. For now, we just take a glimpse at its values, resources, and rules.
The values of the OCaml runtime E ∈ Val F (= ∈ Z) | (W ∈ Loc) are either integers or abstract

runtime locations W . Runtime locations “store” runtime blocks, which we track through separation
logic resources: For standard blocks, we have W ↦→blk[C |<] ®E , which says that W currently stores a

block of values ®E . It, additionally, asserts that the tag6 of the block is C and that the mutability of
the block is< ∈ {imm,mut, fresh}: blocks can be immutable imm (e.g., for OCaml pairs), mutable
mut (e.g., for OCaml references), or fresh fresh (i.e., it has not been decided yet whether W will be
a mutable or immutable value). For “custom” blocks, which embed C data into OCaml, we have
W ↦→cstm w, which says that W currently stores the _C-value w. Custom blocks are always mutable.

To use these abstract runtime values E from _C, we relate them to concrete _C-values w. This
correspondence is the relation E ∼\

C
w:

E ∼\C w ≜ (∃=. E = = ∧ w = =̂) ∨ (∃W . E = W ∧ w = \ (W)) where \ ∈ AddrMap ≜ Loc
fin
⇀ Addr

It takes in a finite map \ from runtime locations to _C-addresses, and then relates runtime integers =
with the _C-value =̂ representing them (where ·̂ translates integers to _C-values using the encoding
also used by Val_int) and runtime locations with their _C-addresses. The map \ allows us to
model the behavior of the garbage collector (i.e., moving and deallocating runtime blocks). It is not
constant. Instead, the GC may (1) move blocks in memory, which changes their physical address
in _C (i.e., 0 changes) but not their “identity” in the runtime (i.e., W remains unchanged) and (2)

6Tags are how OCaml distinguishes between different constructors of a datatype. In our examples, they are typically 0.
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deallocate blocks that have become unreachable, which keeps the block in the abstract runtime (i.e.,
W is not removed from the runtime heap), but its physical address vanishes. To keep track of the
current map \ , we introduce an additional separation logic resource GC(\ ), which asserts that the
current map from runtime locations to _C addresses is \ .

The interface of the OCaml runtime. To understand how these resources are used, let us
take a look at the interface for the caml_alloc runtime primitive (which is a disjunct of Ψ

FFI
):

Ψalloc ≜ ∀\, =,<. ⟨GC(\ ) ∗ 0≤=⟩ alloc [=,<] ⟨w . ∃\
′, W . GC(\ ′) ∗ W ↦→blk[< |fresh] 0

= ∗ W ∼\
′

C w⟩

The interface enables us to allocate a block of (non-negative) length = with tag<. To do so, we have
to provide the GC resource GC(\ ) with some address map \ initially. Since the allocation primitive
caml_alloc calls the garbage collector internally, this map \ is potentially changed during the
allocation, and we get back a new address map \ ′ after the call (and the GC resource). Moreover,
for the newly allocated block, we get a fresh runtime location W , which “stores” =-consecutive
zeros as runtime values. To enable us to use the new block from _C, the return value w is related by
W ∼\

′

C
w to the freshly allocated runtime location W in the postcondition. (We will see more runtime

primitives and how to maintain references to _ML values across GC calls in §4.2.)
Using the interface Ψ

FFI
, we can verify glue code in IrisC. In particular, for buf_alloc, we prove:

{

GC(\ )∗ =∼\Cw ∗ =≥ 0
}

call buf_alloc [w]@?lib,ΨFFI

{

w′ .∃\ ′,W. GC(\ ′)∗ W ∼\
′

C w′ ∗ bufRT (W, =, [])
}

C

where bufRT (W, =, ®<) ≜∃WD,W3 ,0. W ↦→blk[0 |imm] [=,WD, W3 ] ∗ WD ↦→blk[0 |mut] [0] ∗ W3 ↦→cstm0 ∗ bf (0, =, ®<)
encodes the runtime representation of a buffer, as illustrated in Fig. 1—albeit without tags. It
contains ownership of (1) the “buffer record” in runtime representation W ↦→blk[0 |imm] [=,WD, W3 ]
(with capacity =), (2) the reference for the used field WD ↦→blk[0 |mut] [0], (3) the “custom block”
W3 ↦→cstm 0 underneath data, which stores the address of the underlying _C buffer, and (4) the
underlying buffer bf (0, =, ®<).

2.5 View Reconciliation

We have sketched how to verify a mixed OCaml-and-C program from the OCaml side using IrisML
and from the C side using IrisC (including glue code using the OCaml FFI via Ψ

FFI
). The last remain-

ing piece of the puzzle is connecting the different parts, which brings us to the view reconciliation

problem. Take buf_alloc again for example. We have discussed how to assume a specification about

it in IrisML (in §2.2) and how to prove a specification for it in IrisC (in §2.4). However, so far, the two
specifications do not match up—the IrisC-specification uses the resources for the runtime and the
IrisML-specification the resources for _ML.

There is a fundamental challenge here. The two logics, IrisC (extended with Ψ
FFI

) and IrisML, are
about entirely different languages, and yet they express views on the same underlying data. More
specifically, they are language-local logics following the single-language recipe (from §1), which
means they intentionally do not model how values and memory of their language are represented in
other languages. Each language-local logic models the language’s own local account of the physical
state, which is different on each side. Yet, whenever code on one side changes its underlying physical
state, the changes become observable on the other side. For example, after buf_alloc allocates
the block r for the used-reference (obtaining WD ↦→blk[0 |mut] [0]), the block becomes observable in
OCaml as a reference (in the form of ℓ ↦→ML [0]) when buf_alloc returns. Subsequently, whenever
the OCaml or C side mutates it (e.g., in wrap_compress), the new value becomes also observable
on the other side (e.g., in is_compressible).
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GC(\ ) ∗ ℓ ↦→ML
®V ≡−∗ ∃®E,W . GC(\ ) ∗ W ↦→blk[0 |mut] ®E ∗ ℓ ∼ML W ∗ ®V ∼ML ®E (ml-to-ffi)

GC(\ ) ∗ W ↦→blk[0 |mut] ®E ∗ ®V ∼ML ®E ≡−∗ ∃ℓ . GC(\ ) ∗ ℓ ↦→ML
®V ∗ ℓ ∼ML W (ffi-to-ml)

Fig. 6. The view reconciliation rules

The fact that there are two ways of describing the same piece of data means we have to make
sure that they stay “in sync” (e.g., WD ↦→blk[0 |mut] [0] and ℓ ↦→ML [1] would be inconsistent). Here, we
can reap the benefits of working in separation logic. Using the notion of exclusive ownership, we can
enforce that, at any given point, there is only a single view on any piece of data—through the lens
of either OCaml (ℓ ↦→ML [0]) or the runtime (WD ↦→blk[0 |mut] [0]), but not both. In the logic, we can
transition between the two perspectives using the view reconciliation principles, depicted in Fig. 6.
They allow us to use IrisML resources when we are verifying C glue code in IrisC. Concretely, the

rule ml-to-ffi allows us to turn ℓ ↦→ML
®V (whenever we own the GC resource GC(\ )) into the

runtime block W ↦→blk[0 |mut] ®E using Iris’s resource updates [Jung et al. 2018, §5.4]. The runtime
block location W is tied to the _ML location ℓ through a new assertion ℓ ∼ML W , which makes sure that
W always (uniquely) corresponds to ℓ . To relate the values of the runtime block ®E and the reference
®V , the relation “∼ML” is lifted to values as ®V ∼ML ®E (e.g., by relating false ∼ML 0). The rule ffi-to-ml
reverses ml-to-ffi: we can take ownership of a runtime block and turn it (back) into ownership of
a _ML reference. The assertion ℓ ∼ML W appears after the update, because we can use this rule also
to expose blocks that were freshly created in C (e.g., in buf_alloc) to OCaml.

With the view reconciliation rules in hand, we can finally tie the knot. We will discuss the formal
details of connecting IrisC and IrisML in §4. For now, let us use buf_alloc to illustrate the key
steps for our running example. Concretely, we need to match up the two buffer representations
in the postconditions of buf_alloc, bufferML (V , n, ®m) and bufRT (W, =, ®<). To do so, we prove the
following view reconciliation rule:

GC(\ ) ∗ bufRT (W, n, ®m) ≡−∗ ∃V . GC(\ ) ∗ bufferML (V , n, ®m) ∗ V ∼ML W

which we can use to turn bufRT into bufferML. The proof of this rule consists of three parts:
First, we turn the runtime block WD ↦→blk[0 |mut] [=] inside bufRT into the mutable used-reference
ℓ ↦→ML [=] inside bufferML (using ffi-to-ml). Second, we turn the custom block W3 ↦→cstm 0 ∗
bf (0, =, ®<) inside bufRT into raw_bytes(V ′, n, ®m) inside bufferML. This is the place where we de-
fine raw_bytes, which was treated axiomatically while verifying is_compressible. Concretely,
we define raw_bytes(V ′, n, ®m) ≜ ∃W3 , ], 0. V ′ = ] ∗ ] ∼ML W3 ∗ W3 ↦→cstm 0 ∗ bf (0, =, ®<), which
means V ′ is a foreign value ] that corresponds to the custom runtime block W3 , which stores
the address 0 of the underlying bytes. (We obtain the foreign identifier ] using additional rules
given in the supplementary material [Guéneau et al. 2023].) Third, we prove that the runtime block
W ↦→blk[0 |imm] [=,WD, W3 ] represents the _ML buffer V ≜ ⟨n,ℓ, ] ⟩, meaning V ∼ML W .

With the above view reconciliation rule and its reverse (i.e., turning bufferML into bufRT), we can
verify all the glue code of the buffer library (see [Guéneau et al. 2023]). We can then finally connect
all the puzzle pieces (as described in §4) to conclude that is_compressible is correct, which in
particular means (1) the glue code correctly interacts with the FFI and maintains all the language
invariants of _ML, and (2) that the client is_compressible uses the function snappy_compress

correctly without triggering any unsafe behavior in _C (e.g., no out-of-bounds accesses).
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3 OPERATIONAL SEMANTICS

Zooming out, let us return to the multi-language recipe from §1. In this section, we focus on
the operational semantics side of the recipe. As a starting point, we take the canonical small-step
operational semantics for the languages _C and _ML (defined in the supplementary material [Guéneau
et al. 2023]). We write (e, f) →ML (e

′, f ′) for a step in _ML and ?; (2, f) →C (2
′, f ′) for a step in _C

(where ? is the surrounding _C-program). Since these semantics operate on different values and
have different memory models, they cannot be simply “plugged together.” Thus, the big question is
how can we connect the two semantics to a multi-language semantics “−↠ML+C ”?

The language _ML+C and the semantics −↠ML+C . We define the semantics −↠ML+C as a com-
position of smaller building blocks. Each building block is a language _ with an associated no-
tion of expressions 4 ∈ Expr , values E ∈ Val, state f ∈ State, functions f ∈ Func, programs

? ∈ FnName
fin
⇀ Func, and a small-step operational semantics −↠. Two languages _� and _�

interact through external calls call fn ®E . Our basic building blocks are the semantics _C and _ML.
Inspired by the approach of Sammler et al. [2023] (i.e., defining multi-language semantics using
modular combinators), we combine these building blocks using combinators.
In our case, to connect two languages _� and _� through their external calls, we introduce a

language-generic linking combinator “?� ⊕ ?�” with its associated language _�⊕� (and semantics
−↠�⊕�). The linking combinator composes two languages with the same values and memory model:
outgoing calls “call fn ®E” from one side result in the execution of “fn(®E)” in the other.
Of course, _ML and _C differ in their values and memory model (see Fig. 3). Thus, we cannot

directly link a _ML-expression e and a _C-program ? . To bridge the gap between them, we introduce
a wrapping combinator “[·]FFI” that embeds the language _ML into its own language _[ML]FFI (with
semantics −↠[ML]FFI ). The wrapper takes a _ML-expression e and produces a program [e]FFI with
_C-values and the _C-memory model. However, the program [e]FFI is not a syntactic _C-program;
it is a program in the language _[ML]FFI . The language _[ML]FFI uses _C-values and the _C memory
model, but has a very different notion of expressions and semantics (see §3.1).

Putting everything together, we obtain the combined language _ML+C ≜ _[ML]FFI⊕C with its opera-
tional semantics −↠ML+C ≜−↠[ML]FFI⊕C and its programs [e]FFI ⊕ ? where e is a _ML-expression and
? a _C-program. In the semantics −↠ML+C, external calls of e are made in terms of _ML’s values and
memory model. They get translated by the wrapper to external calls of _C, which are then resolved
to the actual function implementations within ? through linking. In the other direction, ? can make
external calls to FFI functions, which will be resolved by the wrapper in its operational semantics.

Modeling garbage collection. In the semantics of _ML+C, we need to model the observable
actions of the garbage collector (GC): when viewed from the C side, the OCaml GC can move objects
in memory, as well as free memory that was previously storing OCaml values. To account for this
behavior, our model of garbage collection is built around the following three key principles: First,
we decouple the identity of runtime values from their physical address in memory. In the semantics, we
distinguish between blocks in the “runtime heap” and their concrete physical addresses. This allows
us to disentangle the concept of a “runtime value” (stable across runs of the GC) from its physical
representation (which can change across GC runs). This principle was used previously by Hur and
Dreyer [2011], albeit in proving compiler correctness in the presence of a GC, not in defining a multi-
language semantics. Second, garbage collection is modeled as a non-deterministic choice subject to

reachability constraints: the GC is modeled as non-deterministically changing or invalidating the
physical addresses of blocks. This allows us to abstract over the concrete implementation of the
OCaml GC. Non-determinism was also used by Moine et al. [2023], Wang et al. [2019], and Hur
and Dreyer [2011] in their respective models of a GC. Third, we track the registered FFI roots in the
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operational semantics. These roots are needed to make C accesses to runtime-managed memory
sound: The OCaml FFI requires that C pointers to OCaml values are registered as “roots” with the
GC (using FFI primitives). This registration ensures that the GC is aware of the values being used
in C and, hence, does not erroneously deallocate them. Moreover, it allows the GC to update the C
pointers when it decides to move the value they store in memory. In the semantics, we keep track
of which pointers have been registered as roots and update them when appropriate.

Bridging language barriers with angelic non-determinism. The wrapper [·]FFI bridges the
gap between _ML and _C at the level of the operational semantics. Doing so is not straightforward
for a number of reasons (see also §3.1). In particular, when going from _C to _ML (e.g., when _C
invokes a _ML-callback or returns to _ML), the wrapper needs to translate values from their low-level
runtime representation to their high-level _ML representation. The issue is that this translation is,
unfortunately, not unique! Different _ML-values V can have the same runtime representation E (e.g.,
integers and booleans are both runtime integers; pairs and arrays are both runtime blocks, etc.).
When we go from _C to _ML in the wrapper, we have to choose “the right” high-level representation.
Which one is the right one is only known to the programmer who wrote the glue code.7

To make “the right” choice, we follow the lead of Song et al. [2023] and Sammler et al. [2023]:
we use angelic non-determinism (together with the usual demonic non-determinism). Instead of
forcing the wrapper to make the right choice (as would be the case for demonic non-determinism),
angelic non-determinism rules out all the wrong choices. Concretely, we use multirelations [Martin
et al. 2007; Rewitzky 2003], written ?; B −↠ ( , as steps in the operational semantics. Here, B is a
configuration of the operational semantics (i.e., a pair of an expression 4 and the state f) and ( a
set of configurations from which to continue the execution after the step. We interpret the choice of
the set ( as angelic non-determinism, and the choice of the configuration B′ ∈ ( to resume from as
demonic non-determinism.

The operational semantics→C and→ML use—as usual—only demonic non-determinism. Their
semantics can be lifted in a generic way to multirelations −↠C and −↠ML (note the double arrow!).
We define the semantics of thewrapper “[·]FFI” and linking combinator “⊕” in terms ofmultirelations.
(See the Coq development [Guéneau et al. 2023] for the full definition of the combinators.)

3.1 View Reconciliation in the Wrapper Semantics

We focus on the most interesting part of the semantics: the wrapper semantics and how it deals
with the view reconciliation problem (see §2.5) at the level of the operational semantics. To explain
view reconciliation in the wrapper, we need to understand, at a high level, how the wrapper is set
up: The purpose of the wrapper is to produce a program [e]FFI that (1) faithfully executes the code
of e in the semantics of _ML and (2) provides a model of the runtime primitives such that they can
be called from _C. The program [e]FFI does not have to be a syntactic _C-program. Instead, since
the linking combinator “⊕” connects languages through external calls call fn ®E , it only needs
to provide “functions” that can be called using _C-values in the _C-memory model. We use this
freedom in the semantics −↠[ML]FFI by implementing the “functions” of [e]FFI (i.e., the primitives of
the FFI and a main function that triggers the execution of e) as operations on an internal notion of
wrapper state.

The wrapper state. The wrapper state d ∈ State (in Fig. 7) has two execution modes: ML
and C. While it is executing the wrapped expression e, its state isML ((Z , j, f, rm), f) where f is
the current _ML-state and the remaining state is part of the runtime state (discussed shortly). The

7We do not use types to guide this choice as our wrapper—like the OCaml runtime—does not track type information and

even with type information the choice would be unclear for functions with polymorphic types.
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Z ∈ BlockStore ≜ Loc
fin
⇀ Block 1 ∈ Block ::= Vals(C, `, ®E) | Custom(w) | Closure(rec 5 G . 4)

j ∈ LocMap ≜ Loc
fin
⇀ Loc ⊎ ForeignId ⊎ {•} \ ∈ AddrMap ≜ Loc

fin
⇀ Addr

rm ∈ rootMap ≜ Addr
fin
⇀ Val rs ∈ rootSet ≜ set(Addr)

d ∈ State ::=ML ((Z , j, f, rm), f) | C ((Z , j, \, rs), f)

Fig. 7. Runtime state of the wrapper.

wrapper transitions to the C execution mode whenever we are at the boundary between _C and
_ML (e.g., we have called an external _C-function, or we are executing a FFI primitive called from
_C). In the C execution mode, the state of the wrapper is C ((Z , j, \, rs), f) where f is the current
_C-state and the remaining state is again part of the runtime state. In this mode, the _ML-heap f has
been dissolved completely into the runtime state. Throughout the execution, the wrapper state
thus switches between the ML and C views of the state. These two views represent the same data,
e.g., a reference on one side and a block on the other. When switching sides, it is the task of the
wrapper to propagate changes made on one side into corresponding changes on the other side.

The runtime state (i.e., Z , j, \, f, rm, and rs) is how the wrapper reconciles the views of _C and _ML.
It is an abstract model of the runtime heap of blocks (alluded to in §2.4) and the GC roots, together
with additional state to relate them to their _C and _ML representation. The map Z stores the current
heap of runtime blocks. It is the central piece of state of the runtime: many primitives only operate
at the level of the block heap (e.g., allocating new blocks, accessing or modifying existing ones).
In particular, it is stable under the action of the GC, as it describes an abstract view of blocks,
independently from their physical representation. A block can be either a standard block Vals(C, `, ®E)
(with tag C , mutability ` ∈ {Mut, Immut}, storing values ®E), a “custom” block Custom(w) (storing
a _C value w), or a “closure” block Closure(rec 5 G . 4) representing a _ML function.

The map \ maps runtime locations to their _C-addresses (see also §2.4) if they are materialized in
the _C-memory (i.e., they have not been deallocated by the GC). The map j maps runtime locations
to their _ML counterpart. A runtime location W is mapped (1) to a _ML-location ℓ if W is a standard
block backing an array, (2) to a “foreign value identifier” ] if W is a custom block, or (3) to a special
token (•) if W is freshly allocated (from _C) or a block that backs a pure _ML value (e.g., pairs or
closures). A runtime location W can be in all three maps at the same time: it can be in j to relate it
to a corresponding _ML-reference ℓ , in Z to track the runtime values ®E that are stored in W , and in \
to assign it an address 0 in the _C-heap. The map rm and the set rs are used to keep track of GC
“roots” and the memory f tracks the “residual” _C-memory (explained below).

The wrapper state has been carefully designed to move between the two views of the state with
“just the right” amount of non-determinism: the wrapper needs to expose enough information
about the runtime, but must not overspecify its behavior. For instance, we expose and track the
mutability ` of standard blocks, encoding the runtime’s expectation that one must not modify
a block that is supposed to be immutable. (While the concrete implementation of the runtime
will give some behavior to this operation, performing an update to an “immutable” block violates
an implicit OCaml assumption that the compiler can depend on for optimizations.) But we are
also careful to leave some flexibility in how blocks are used to allow compiler optimizations (e.g.,
representationally identical, immutable values such as the _ML pairs ⟨42,true⟩ and ⟨42,1⟩ can reuse
the same runtime blocks).

The garbage collector and registered roots. In _ML+C, we do not fix a specific garbage collector
implementation. Instead, the semantics of _ML+C should be sound with respect to all reasonable
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garbage collectors. Thus, as outlined above, we model the GC using non-determinism. That is, the
address map \ is only part of the state while we are at the boundary to _C (i.e., in the mode C). It is
picked anew whenever we move from an execution in _ML to an external function in _C (and for
some runtime primitives such as caml_alloc). This choice over \ is made demonically (if we verify
a program, we have to reason about all possible choices for \ ). To avoid “over-eager” deallocation,
the choice is subject to two constraints that ensure that reachable locations remain alive:

closed(\, Z ) ≜ ∀(W ∈ dom\ ) (1 ∈ Block). Z (W) = 1 ⇒ ∀W ′ ∈ locs(1). W ′ ∈ dom\ (GC1)

roots(\, rs) ≜ ∀0W . rm(0) = W ⇒ W ∈ dom\ (GC2)

The first constraint, requires the address map \ to be transitively closed: for any runtime location W
in \ , any reachable location W ′ must also be part of the map (where locs(1) is the set of runtime
locations contained in 1). The second constraint ensures that \ contains at least all the “registered
roots”. Roots, in general, are how the OCaml GC keeps track of which runtime blocks to keep around.
In _ML+C, it suffices to track those roots that have been explicitly registered with the GC through an
FFI primitive (explained below). How the other GC roots—which we do not model in _ML+C—are
determined is left as an implementation choice to the GC so long as it does not deallocate reachable
blocks (GC1). In _ML+C, registered roots are _C-addresses that store (the _C-addresses) of runtime
blocks W , given by \ (W). They are tracked in the roots map rm (and in the set rs when in C).8 Their
intended behavior is that (1) the block W is not deallocated by the GC and (2) whenever the runtime
moves the block W in memory, it will also update its address stored in the root. The first part is
addressed by (GC2). The second part happens whenever we move from ML to C: The ML wrapper
state contains a _C-memory f where all the registered roots have been removed, the “residual”
_C-memory. When we return to _C, the wrapper uses the freshly picked address map \ to “add in”
the _C-representation of the roots.

Angelic non-determinism. As mentioned above, the angelic non-determinism comes into
play when we move from _C to _ML. Concretely, when we transition from C ((Z , j, \, rs), f) to
ML ((Z , j, f, rm), f), we need to choose _ML-values V for runtime values E in their block representa-
tion. However, the block representation is not unique, since, for example, true and 1 have the same
runtime representation 1. To pick “the right” value, the semantics uses angelic non-determinism.
There is a second use of angelic non-determinism in the semantics: in transitioning from _C to

_ML, the wrapper angelically chooses a subset of the heap f , possibly empty, that it temporarily
disables (i.e., it marks the contents with E). This use of angelic non-determinism simplifies reasoning
about the semantics: Locations that are not accessed on the _ML-side can be disabled, which avoids
(unnecessarily) committing to a concrete _ML-value when transitioning from _C to _ML. Instead, by
staying uncommitted, the choice of the value is deferred to a later point (e.g., to the next external
call from _ML). In contrast, locations that are subsequently accessed on the _ML-side have to remain
enabled in this choice. They cannot be disabled, because an access to Ewould be undefined behavior.

The runtime primitives. The runtime provides the following primitives, a large subset of the
OCaml FFI [oca 2023b], operating on the runtime state: The primitive alloc (for caml_alloc) allo-
cates a new runtime block W by extending Z (with the block) and j (with •), “calls the GC” on \ , and
then extends the new map with the _C address. Similarly, alloc_custom (for caml_alloc_custom)
extends these maps with a new custom block. The primitives Field (for Field) and Store_field
(for Store_field) access and update a field of a block in Z . The primitives read_custom (for reading
from Custom_contents) and write_custom (for writing to Custom_contents) access and update

8During the _ML-execution (where we have rm) we know which runtime value is rooted and has to be materialized again

when moving to _C; whereas during _C-execution (where we have rs) the value that is stored in a root can be changed.
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IntfImplement

∀fn ®E % . {Ψ fn ®E %} call fn ®E @ ?,Π {E ′ . %E ′} Ψ fn is False for all fn ∉ dom ?

Π |= ? : Ψ

IntfConseq

Ψ ⊑ Ψ
′

Ψ |= ? : Π Π
′ ⊑ Π

Ψ
′ |= ? : Π′

Link

Π |=ML+C ?1 : Ψ Ψ |=ML+C ?2 : Π dom(?1)#dom(?2)

∅ |=ML+C ?1 ⊕ ?2 : Ψ ⊔ Π

EmbedML

{True} e @∅,Π {V . ∃=. V = = ∗ q (=)}ML Π is ⊥ for primitives

[Π]FFI |=ML+C [e]FFI : Ψ
Π

FFI ⊔ main(q)

EmbedC

Ψ |=C ? : Π

Ψ |=ML+C ? : Π

Fig. 8. The interface rules of IrisML+C

the contents of a custom block in Z . The primitive isblock (for Is_block) checks whether a runtime
value is a block, length (for Wosize_val) reads the length of the block, and read_tag (for Tag_val)
reads the tag of the block. The primitives registerroot and unregisterroot can be used for registering
and unregistering roots in the map rm. These primitives model what the runtime does when the
macros CAMLparam, CAMLlocal, and CAMLreturn are executed. The primitive callback can be used
to trigger the execution of a callback rec 5 G . 4 in _ML (see also §4.1).

4 PROGRAM LOGIC

Aswe have seen in §2, reasoning about programs is done at the level of the language-local logics IrisC
and IrisML in Melocoton. However, eventually, we have to ensure that this reasoning is sound (i.e.,
that assumptions of one side are properly connected to proofs in the other). For this purpose, we
introduce the “umbrella logic” IrisML+C, which embeds IrisC and IrisML. We discuss how IrisML+C
composes proofs (in §4.1), how it justifies the interface Ψ

FFI
(in §4.2), and how it is modelled (in §4.3).

4.1 Composing Proofs in IrisML+C

In IrisML+C, we primarily reason at the level of interfaces Ψ,Π ∈ Intf (Val). We write Ψ |= ? : Π

to mean that the program ? implements interface Π under the “assumption” of interface Ψ. We
can prove (also in IrisC and IrisML) that ? implements an interface by showing that its functions
satisfy the specification given by Ψ against the interface Π (IntfImplement). As one would expect,
there is also an analogue to the Hoare rule of consequence (IntfConseq) where Ψ ⊑ Ψ

′ ≜

∀fn ®E % . Ψ fn ®E % −−∗ Ψ′ fn ®E % . Using interfaces, we can succinctly state how proofs in the language-
local logics (e.g., from §2) can be connected through IrisML+C:

Theorem 4.1 (Connecting IrisC and IrisML). Let e be a _ML-expression, ? a _C-program (where

dom ? does not contain FFI primitives), Π a _ML-interface, and q a pure predicate on integers. If

(1) {True} e @∅,Π {V . ∃=. V = = ∗ q (=)}ML in IrisMLand

(2) ΨΠ

FFI
|=C ? : [Π]FFI in IrisC,

then we have ∅ |=ML+C [e]FFI ⊕ ? : main(q) in IrisML+C.

Let us break this theorem down. It allows linking a _ML-expression e with a _C-program ? . For e,
we need to prove a language-local triple (in IrisML) with a pure postcondition on integers q (e.g.,
True for a proof of safety). We can do so against an arbitrary _ML-interface Π. For ? , we need to
prove that its functions implement the interface Π as we have claimed they do. Since Π is an
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{GC(\ )} call alloc_custom []
{

w . ∃\ ′, E ′,w′ . GC(\ ′) ∗ W ↦→cstm w′ ∗ W ∼\
′

C
w
}

(AllocCustom)

{

GC(\ ) ∗ W ∼\
C
w ∗ 0 ↦→C w

}

call registerroot [0] {GC(\ ) ∗ 0 ↦→root W} (RegRoot)

{GC(\ ) ∗ 0 ↦→root W} call unregisterroot [0]
{

∃w . GC(\ ) ∗ W ∼\
C
w ∗ 0 ↦→C w

}

(UnregRoot)

{%} (rec 5 G . e′) V @∅,Π {V ′ . & (V ′)}ML

{GC(\ ) ∗ W ↦→clos rec 5 G . e
′ ∗ ⊲ % ∗ W ∼\C wf ∗ V ∼ML E ∗ E ∼

\
C w}

call callback [wf ,w]@ [e]FFI, [Π]FFI

{w . ∃\ ′ V ′ E ′ w′ . GC(\ ′) ∗& (V ′) ∗ V ′ ∼ML E
′ ∗ E ′ ∼\

′

C w′}

(ExecCallback)

Fig. 9. IrisML+C Hoare triples for selected runtime primitives.

interface over _ML-values, but we want to use it in IrisC, we convert it into an interface on _C-values
using the interface wrapper [·]FFI (discussed below). To use runtime primitives, ? is proven against
the runtime interface ΨΠ

FFI
. Here, Ψ

FFI
gets the _ML-interface Π as an additional argument (which

we omit in §2 for simplicity) to be able to execute _ML-callbacks from _C (see §4.2). Under these
conditions, the theorem allows us to deduce that the combined program [e]FFI ⊕ ? implements the
interface main(q) ≜ ⟨atInit⟩main [] ⟨w . ∃=. w = =̂ ∧ q (=)⟩. Here, atInit is a resource that signals
program start and main is a “primitive” of the wrapper that will trigger the execution of e.

The proof of Theorem 4.1 is straightforward using the key properties of IrisML+C (in Fig. 8). We can
embed proofs into IrisML+C from IrisC (EmbedC) and IrisML (EmbedML). To embed an IrisML proof,
it suffices to prove a Hoare triple about a _ML-expression e against the interface Π. We then obtain
that the wrapped program [e]FFI implements the runtime interface ΨΠ

FFI
and the main interface

main(q)—assuming the wrapped interface [Π]FFI. After embedding proofs into IrisML+C, we can
then “link” them together (Link): if one side assumes Π and implements Ψ and the other assumes
Ψ and implements Π, then they cancel out (i.e., the remaining assumption is ∅) and the linked
program implements Ψ⊔Π. In the case of Theorem 4.1, the wrapped program [e]FFI assumes [Π]FFI
and implements ΨΠ

FFI
whereas ? assumes ΨΠ

FFI
and implements [Π]FFI. Thus, they cancel out.

What allows us to use the _ML-interface Π as a _C-interface in this proof is the wrapper [Π]FFI:

[Π]FFI fn ®w % ≜ ∃\ ®V ®E &. GC(\ ) ∗ ®V ∼ML ®E ∗ ®E ∼
\
C
®w ∗ Π fn ®V & ∗

(∀\ ′ V ′ E ′ w′ . & (V ′) ∗ GC(\ ′) ∗ V ′ ∼ML E
′ ∗ E ′ ∼\

′

C
w′ −−∗ % (w′))

While its formal definition is quite a mouthful, its high-level intuition is comparatively simple: The
wrapper [Π]FFI relates the _C-values to _ML-values through the runtime representation. Concretely, it
(1) gives us access to the GC resourceGC(\ ) when entering the function on the _C-side (and demands
it back with an updated map \ ′ when existing the function), (2) connects the _C-arguments ®w to

_ML-arguments ®V through their runtime representation ®E , and (3) connects the _ML-return value V ′

through its runtime representation E ′ to the _C-return value w′.

4.2 The Runtime Interface

One thing that we have not discussed yet is who is on the other side of the runtime primitives in the
interface Ψ

FFI
. Operationally, these primitives are given semantics by −↠ML+C. At the program logic

level, we prove their specifications in IrisML+C (against the underlying semantics −↠ML+C). A key
selection of these primitives is depicted in Fig. 9. The rule AllocCustom allows allocating a custom
block; it is analogous to the interface Ψalloc (from §2.4). The rule RegRoot allows registering a
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_C-address 0 as a root with the runtime. If we do so, we obtain a new resource “0 ↦→root W”, a root
points-to, which asserts that 0 is registered as a root for the runtime block W . The resource is stable
across calls to the GC (i.e., it does not depend on \ ) and thus we can use it to access W even after
triggering the GC (e.g., through alloc).

Unregistering the root (UnregRoot) gives back ownership of the underlying _C points-to. While
the root is registered, one is prevented from freeing the underlying memory. (Note that the program
logic permits roots to remain registered indefinitely, and thus does not guarantee the absence of
memory leaks.)
The rule ExecCallback allows executing a callback rec 5 G . e′ in the runtime. It uses a special

points-to assertion “ ↦→clos” for closures. The rule says that if we call 5 (with the _C-representation w
of) V under precondition % , then we get (the _C-representation w′ of) the value V ′ that results
from executing 5 and the postcondition & (V ′). The “⊲” modality in this rule is Iris’s modality for
step-indexing; we will discuss the effects of step-indexing on IrisML+C shortly (in §4.3).

View reconciliation. One of the main challenges, also at the level of the program logic, is

view reconciliation. That is, we have to soundly combine the resources 0 ↦→C cl of IrisC, ℓ ↦→ML
®V

of IrisML, and W ↦→blk[C |<] ®E of the runtime. Fortunately, the resources 0 ↦→C cl and W ↦→blk[C |<] ®E
never overlap, because the operational semantics separates the runtime-managed memory Z (whose
resources are of the form W ↦→blk[C |<] ®E) from the manually-managed C memory f (whose resources

are of the form 0 ↦→C cl). Thus, we focus on the interaction of ℓ ↦→ML
®V and W ↦→blk[C |<] ®E . The

resources ℓ ↦→ML
®V and W ↦→blk[C |<] ®E can in fact overlap (see §2.5), as they can describe different

views on the same piece of data. For example, if we mutate a runtime block in _C through the FFI,
then this change will be observable in _ML after an external call.

As far as the user of IrisML+C is concerned, these two views are mediated by the view reconciliation
rules (Fig. 6). While these rules are in some sense very natural, justifying their soundness requires
care: The crux is that there is an inherent disconnect between the physical state of the operational

semantics (i.e., f and Z ) and the logical state in terms of points-to assertions (i.e., ℓ ↦→ML
®V and

W ↦→blk[C |<] ®E). In the operational semantics, there is only one view of the _ML-heap at any given

time: either as a runtime heap Z or a _ML-heap f .
9 (This is essential to reuse the language-local

semantics, which are only defined in terms of the language-specific heap.) The logic, however,

allows more fine-grained views, where ℓ ′ ↦→ML
®V and W ′ ↦→blk[C |<] ®E can exist at the same time

for different locations ℓ ′ and W ′ (both during the execution in _ML and in _C). The coexistence of
runtime points-to assertions and _ML-points-to assertions is not only convenient (e.g., it enables
the view reconciliation rules in Fig. 6), it is essential for core reasoning principles of separation

logic such as framing (e.g., the language-local logic IrisML can frame its resources ℓ ↦→ML
®V around

external calls).
Our solution to the view reconciliation challenge is to adjust the connection between the physical

representation and the logical representation when we cross language boundaries. Concretely,

whenever we are in _ML, the resource ℓ ↦→ML
®V is connected directly to the physical memory (i.e.,

f (ℓ) = V ). When we transition to _C, we connect it instead to a runtime block in the runtime

memory Z using ghost state. When ℓ ↦→ML
®V is connected to Z , we can obtain the runtime resource

W ↦→blk[C |<] ®E . To ensure that there are never two overlapping views exposed, we maintain as an

invariant (not in the Iris sense) that the runtime blocks backing ℓ ↦→ML
®V and W ↦→blk[C |<] ®E must

9In Fig. 7, the runtime state in the case ML ( (Z , j, f, rm), f ) contains both “Z ” and “f”. The heap f is the important one: it

represents the entire _ML memory, mapping locations to their _ML values. The heap Z contains additional runtime state (e.g.,

the runtime representation of immutable OCaml values such as integer pairs, or runtime blocks that have been allocated

using the FFI and have not been exposed to _ML).
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wp 4 @ ?,Ψ{Q} ≜ ∀f. SI(f) ≡−∗ wp′ (4, f)@ ?,Ψ{Q}

(WP1) wp′ (E, f)@ ?,Ψ{Q} ≜ SI(f) ∗Q (E)
(WP2) wp′ ( [call fn ®E], f)@ ?,Ψ{Q} ≜

SI(f) ∗ fn ∉ dom(?) ∗ ∃Q ′ . Ψ fn ®E Q ′ ∗ ⊲∀E ′ .Q ′ (E ′) −−∗ wp [E ′]@ ?,Ψ{Q}

(WP3) wp′ (4, f)@ ?,Ψ{Q} ≜ (4 not a value nor a call)

∃(. ?; (4, f) −↠ ( ∗ ∀4′f ′ . (4′, f ′) ∈ ( ≡−∗ ⊲ ≡−∗ SI(f ′) ∗ wp 4′@ ?,Ψ{Q}

Fig. 10. Simplified weakest-precondition wp 4 @ ?,Ψ{Q} of IrisML+C

always be disjoint. We maintain this invariant in the model of the GC resource:

GC(\ ) ≜ ∃Z phys, fvirt, Z virt, Zml . SIML (fvirt) ∗ •(Z virt) ∗ Z phys = Z virt ⊎ Zml ∗ repr(fvirt, Zml) ∗ · · ·

The physical view that the operational semantics has at this point on the _ML-state is the runtime
heap Z phys (the map Z in execution mode C in Fig. 7). Logically, we split this heap into two disjoint

parts, Z virt and Zml ., The part Z virt that backs up the resource W ↦→blk[C |<] ®E (through •(Z virt) ) and

the part Zml that backs up the resource ℓ ↦→ML
®V . We cannot directly back ℓ ↦→ML

®V with a runtime
heap, since “ ↦→ML” is a resource from IrisML which—as usual—is backed by a _ML-heap (through
SIML (·), the “state interpretation” in the terminiology of Iris). However, what we can do is maintain
a separate, virtual _ML-heap fvirt (not present in the underlying physical memory) which (1) backs
the resource ↦→ML in the form of SIML (fvirt) and (2) is faithfully represented by the runtime heap
Z virt (denoted repr(fvirt, Zml)).

Theway the view reconciliation rules (see Fig. 6) are proven sound is bymoving locations between
fvirt and Z virt as needed. Concretely, ml-to-ffi removes ℓ from fvirt and adds a corresponding
runtime identifier W (previously stored in Zml) into Z virt . ffi-to-ml does the opposite. When we
start verifying a glue code function, the original _ML-heap is turned into fvirt , and then we can
gradually convert to and from the runtime representation as needed.

4.3 The Model of IrisML+C

We have discussed how to verify programs [e]FFI ⊕ ? in IrisML+C (see Theorem 4.1). What is still
missing is what we obtain from verifying a program in IrisML+C. The answer is adequacy:

Theorem 4.2 (Adeqacy of IrisML+C). Let ? be a _ML+C-program and q a pure predicate on integers.

If ∅ |= ? : main(q), then ?; (call main [],∅) −↠∗
ML+C
{(=̂, ℎ) | q (=)}.

Intuitively, this theorem says that call main [] (which will trigger the execution of e) can only ter-
minate in integers satisfying q and diverge. In particular, call main [] is safe to execute. Formally,
we define the program executions on multi-relations coinductively as

?; B −↠∗ ( ≜coind B ∈ ( ∨ ∃(
′ . ?; B −↠ ( ′ ∧ ∀B′ ∈ ( ′ . ?; B′ −↠∗ (

At first glance, this definition may seem odd, because it may seem like we are proving the existence
of an execution. However, this thought is misleading. In a semantics with demonic and angelic
non-determinism, if we want to prove something for all possible executions of a program, we have
to resolve angelic choices and accept demonic choices. In our multi-relations ?; B −↠ ( , the outer
choice over the set of states ( is angelic and, thus, when we reason about all executions, we need to
resolve this choice (hence “∃( ′”). The inner choice over the next state B ∈ ( is demonic and, hence,
when we reason about all executions, we need to accept this choice (hence ∀B′ ∈ ( ′).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 247. Publication date: October 2023.



Melocoton: A Program Logic for Verified Interoperability Between OCaml and C 247:23

Angelic non-determinism and step-indexing. Proving Theorem 4.2 is non-trivial. What
makes it challenging is the interaction of angelic non-determinism (contained in the semantics) and
step-indexing (underlying the model of Iris). To explain this interaction, we first take a step back
and discuss the model of Hoare triples in IrisML+C. As usual for Iris, we define Hoare triples in terms
of a weakest precondition, which in our case takes in the surrounding program ? and interface Ψ (i.e.,
{%} 4 @?,Ψ {Q} ≜ □(% −−∗ wp 4 @ ?,Ψ{Q})). A simplified version of the weakest precondition
wp 4 @ ?,Ψ{Q} is depicted in Fig. 10. There are three things to note about this definition. First, it has
three (instead of two) cases, since it contains an additional case for external calls (WP2). This case
allows us to “skip” over external function calls in the way explained in §2.2. Second, the definition
is step-indexed which reveals itself through the modality “⊲” that appears in the cases (WP2) and
(WP3). Step-indexing enables powerful recursive reasoning in Iris and, hence, IrisML+C. We make
use of it in our examples (in §5) and when reasoning about callbacks (see ExecCallback). Third,
the weakest precondition uses multi-relations ? ; B −↠ ( instead of “ordinary” relations ? ; B → B′ in
(WP3). This is only the case for IrisML+C; the logics IrisC and IrisML use weakest preconditions with
ordinary relations as usual. We use multi-relations here to deal with the semantics −↠ML+C.
Combining step-indexing and angelic non-determinism, as done in the weakest precondition

(see Fig. 10), makes proving adequacy nontrivial. The reason is a circularity that arises in the
model: (1) the number of steps taken by the program might depend on angelic choices, (2) the
witnesses for the angelic choices proven in the logic may themselves depend (implicitly) on an
underlying step-index from the model, and (3) the step-index only ensures adequacy if it is greater
than the number of steps the program takes. More concretely, to prove Theorem 4.2, we have to
take the angelic choices over ( in (WP3) inside of IrisML+C and “replay” them outside of IrisML+C
to resolve the angelic choices in ?; B −↠∗ ( . However, in traditional step-indexed logics such as
Iris, the meaning of existential quantification is weaker than what one would intuitively expect.
In particular, it is not always the case that an existential quantifier in the logic such as “∃(” in
(WP3) implies an existential quantifier outside the logic such as“∃( ′” in ? ; B −↠∗ ( , because of the
aforementioned dependence on the step-index.
To establish adequacy (i.e., to “replay” the angelic choices outside of IrisML+C), we have to use

a stronger form of step-indexing than the one that Iris provides out-of-the-box. To do so, we
build Melocoton atop of Transfinite Iris [Spies et al. 2021], a transfinitely step-indexed version
of Iris that provides the kind of “witness extraction” from existential quantifiers that we need in
this proof. More specifically, when we use transfinite step-indexing (i.e., ordinals as step-indices),
we can prove that the angelic choices cannot truly depend on the step-index, which breaks the
dependency cycle outlined above. The details of this construction can be found in the supplementary
material [Guéneau et al. 2023].

Language generality. Above, we have discussed how to compose IrisML+C-proofs and how
to use adequacy to obtain assurances for a combined _ML and _C program. In the accompanying
Coq development [Guéneau et al. 2023], we prove many of these results in a language-generic
form for arbitrary languages in the sense of §3. Concretely, we define the weakest precondition
wp 4 @ ?,Ψ{Q} in a language-generic form (i.e., parameterized over the concrete language under
consideration) for languages with external calls and angelic and demonic non-determinism. We
then prove interface implementation (IntfImplement), the rule of consequence (IntfConseq), and
linking (Link) parameterized over the language. Moreover, we prove adequacy for the weakest
precondition wp 4@ ?,Ψ{Q} parameterized over the language—taking care of the interaction of
angelic non-determinism and step-indexing. For Theorem 4.2, we instantiate the language-generic
version with _ML+C.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 247. Publication date: October 2023.



247:24 A. Guéneau, J. Hostert, S. Spies, M. Sammler, L. Birkedal, and D. Dreyer

From the language-generic adequacy statement, we additionally derive standard language-specific
adequacy statements for IrisC and IrisML—provided the program under consideration does not
contain any external function calls (i.e., it can be verified against the empty interface ∅). (We do so
using a generic lifting from standard relations ? ; B → B′ to multi-relations ? ; B −↠ ( .) For example,
for IrisML, we derive the following adequacy statement (and analogously for IrisC):

Corollary 4.3 (Adeqacy of IrisML). Let e be a _ML expression and q a pure predicate on integers.

If {True} e @∅,∅ {V . ∃=. V = = ∗ q (=)}ML in IrisML, then safe(e, q).

Here, the predicate safe(e, q) guarantees that e is never stuck and that, if e terminates, the resulting
value is an integer satisfying q .

5 CASE STUDIES

We have applied Melocoton to several interesting case studies. In §5.1 we start with three examples
that illustrate how Melocoton can be used for program verification. Afterwards, in §5.2, we show
how Melocoton can, additionally, be used to prove type safety of external functions implemented
in C.

5.1 Program verification

Buffer library & compression. In §2, we have primarily focused on the function buf_alloc as
a running example. Most of the other external functions (in Fig. 2) are straightforward to verify. The
most interesting one is buf_upd, because it uses callbacks. We prove the following specification:

∀:. {% (:)} � (:) @∅,Ψbuf {D. D = 5 (:) ∗ % (: + 1)}ML

⟨0 ≤ 8 ≤ 9 < = ∗ 8 ≤ | ®m| ∗ bufferML(V , =, ®m) ∗ % (8)⟩ buf_upd [8, 9, � ,V ]

⟨V ′ . V ′ = ⟨⟩ ∗ bufferML (V , =, ®m[8 := 5 (8), . . . , 9 := 5 ( 9)]) ∗ % ( 9 + 1)⟩

where the predicate % describes the resources used by the callback � depending on the current
index : and 5 is a mathematical function describing the integers that the callback computes. The
specification asserts that buf_upd modifies the contents of the buffer between indices 8 and 9

according to 5 . Using this specification, we verify is_compressible by picking % ( ) ≜ ℓ ↦→ML ®=
(for the input _ML-array of characters) and 5 (:) ≜ ®=[:] (for the :-th element of the array). Unlike
well-typed functions in OCaml, the function buf_upd is not safe in general: if it is not used according
to its specification, then it can exhibit undefined behavior (e.g., out-of-bounds accesses and iterator
invalidation). Thus, OCaml code that uses the buffer library must carefully respect its specification.
The function is_compressible, as we prove by verifying it, satisfies these requirements.

Polymorphic equality. As another example, we have verified a polymorphic equality function
that (deeply) compares the runtime representation of two OCaml values. What makes this function
interesting is that it is not possible to implement it natively in OCaml (or in our case _ML), because
there is no way to determine the shape of values (e.g., whether they are sums or pairs). For example,
a _ML function designed to compare pairs would get stuck when we attempt to pass it a sum
value. (OCaml exposes an Obj module providing some escape hatches that expose the runtime
representation of values, but it is undocumented and breaks type safety so we do not consider it
here.) As such, this example demonstrates that the FFI can be used to add new functionality to _ML.

Zig-Zag Lists. As another example, we have verified a “zig-zag list”—a linked list implementation
whose cons-operation allocates cells on the C heap to store the head and tail of the list (OCaml
values), and then exposes this “cons-cell” to OCaml by embedding it into a custom block. To make
this work, the fields of the cons-cell are registered with the GC as global roots, ensuring that they
are not accidentally deallocated by the GC. We provide C implementations of external functions
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to work with such lists in OCaml (e.g., head, cons). We use the term “zig-zag list” because, when
traversing such list, one follows pointer chains that alternate between the OCaml and C heaps.
This example demonstrates that Melocoton supports data structures spanning both heaps, and that
the values of each language can be stored in the other’s heap.

5.2 Type Safe Interfaces

Besides program verification, we can additionally use Melocoton to prove type safety of external
functions (and their clients). To this end, we equip _ML with a logical relation. The logical relation
(and its associated type system) are standard constructions from the literature [Timany et al. 2022,
Figures 2 and 5], which we extend with support for external functions implemented in _C: First,
we add a new context Σ, which assigns a type fn : �1 → · · · → �= → � to every external function
fn in it. Then, we interpret the contexts using the interfaces Ψ of IrisML such that each external
function fn ∈ Σ is assigned (the semantic interpretation of) its type as a specification in Ψ. Finally,
we use IrisC to validate the assumed types of external functions, which means we prove in IrisC
that the _C-implementation satisfies the interpretation of the given type. Besides proving type
safety of individual external functions fn, we can additionally use the logical relation to prove type
safety of OCaml clients that wrap them in a safe abstraction (e.g., is_compressible).

Landin’s knot. Our next example, a simple modification of Landin’s knot [Landin 1964], illus-
trates that Melocoton and its logical relation are powerful enough to reason about higher-order
functions, callbacks to _ML, and mutual recursion through the FFI (and the heap). Our version of
Landin’s knot implements recursion through backpatching by combining _ML and _C code:

let knot (f : ('a -> 'b) -> ('a -> 'b)) =

let l = ref (fun _ -> assert false) in

l := (fun x -> f (fun y -> callk l y) x);

(fun x -> callk l x)

value callk(value l, value x) {

value f = Field(l, 0);

return caml_callback(f, x);

}

We proved functional correctness of knot (i.e., it is a recursion combinator), and that it is
semantically safe (i.e., in the logical relation) at type ∀UV. ((U → V) → (U → V)) → (U → V).

Event listeners. As our last example, we have verified a small library of “event listeners”. It
demonstrates a tricky use of higher-order state in _C (i.e., memory storing closures), which we
handle using step-indexing. The _ML-interface for this library is below. It captures a programming
pattern commonly found in event-based GUI libraries to mediate between “event consumers”
(clients of the GUI library) and “event producers” (the backend of the GUI). Consumers are handed
an abstract value (of type 'a listener) to which they can attach callbacks (using listen) to react
to future events. When an event happens, the backend can notify (using notify) a listener which
triggers the consumer’s callback. The library is implemented in _C and exposed using the FFI.

type 'a listener

external create : unit -> 'a listener = "listener_create"

external listen : ('a -> unit) -> 'a listener -> unit = "listener_listen"

external notify : 'a -> 'a listener -> unit = "listener_notify"

The most interesting thing about this library is that the implementation of listen stores an arbi-
trary _ML-callback in a mutable data structure managed on the _C-side. The callback, by the nature
of OCaml’s type system, can capture the listener to which it is attached. This makes proving
type safety of the library tricky, because we can easily run into circularity issues when naively
attempting to define an interpretation of 'a listener (e.g., a listener is safe if its callbacks are
safe, and callbacks are safe if the listeners they capture are safe). We resolve these circularity
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issues as usual in logical relations, by using step-indexing. Concretely, analogous to our standard
interpretation of reference types [Timany et al. 2022, Figures 5], we make use of Iris’s impred-
icative invariants [Jung et al. 2018, §7.1], which internally are modelled using step-indexing. As
mentioned in §4.3, for the semantics −↠ML+C, this is only sound because we use a transfinitely step-
indexed version of Iris. Ultimately, we prove the functions (create, listen, notify) safe at type:
∀U. ∃listener . (unit→ listener) × ((U → unit) → listener → unit) × (U → listener → unit).

6 RELATED WORK

Melocoton is, to our knowledge, the first program logic for programs spanning multiple languages
with different memory models. (The only other multi-language program logic that we are aware of
is Iris-Wasm discussed below.) Here, we also compare with work that tackles the related problem
of compiler verification in a multi-language setting (but is not based on a program logic).

Iris-Wasm. Iris-Wasm [Rao et al. 2023] provides an Iris-based program logic for reasoning
about WebAssembly and its interaction with its host language, which in Iris-Wasm is a tiny subset
of JavaScript. The memory model of the host is a minor extension of WebAssembly’s memory
model and hence, there is no view reconciliation challenge. In contrast, Melocoton shows how to
scale verification to more complex FFIs that require integrating program logics with very different
memory models and how to deal with the problems that arise such as view reconciliation (§2.5).

Cito. Cito [Pit-Claudel et al. 2020; Wang et al. 2014] is a C-like language with a verified compiler
formalized in Coq, which supports linking with functions from other languages via axiomatic
specifications built into its operational semantics. While these axiomatic specifications follow the
style of open simulations [Hur et al. 2012] like the interfaces Ψ presented in this paper, they are not
phrased using a program logic, but stated using abstract data types and pure pre- and postconditions.
Cito uses program logics to reason about individual languages, but it does not tackle the problem
of building a multi-language program logic like IrisML+C.

Cogent. Cheung et al. [2022] show how to extend the compiler correctness theorem of Co-
gent [O’Connor et al. 2016, 2021] with manually verified external C functions. Cheung et al. require
the C code to uphold the invariants guaranteed by Cogent’s linear type system and focus on extend-
ing the correctness proof of the Cogent compiler using these invariants. In contrast, we assume
correctness of the OCaml compiler and runtime and instead focus on building a program logic for
verifying OCaml-and-C programs that maintain the (more complex) OCaml runtime invariants.

Semantic soundness for language interoperability. Patterson et al. [2022] prove type safety
of the interaction between (among others) a MiniML-style garbage collected language and an L3-
style language with manual memory management. Instead of Melocoton’s source-level reasoning,
they compile both languages to a common target language and build logical relations that relate
source-level types with target-level terms. This approach shifts reasoning to the target language.
For example, they relate values from different languages using target-level conversion functions
instead of Melocoton’s source-level relations like V ∼ML E and E ∼C w.

Verified compilers. Mates et al. [2019] (building on the work of Patterson et al. [2017]) verify
a compiler from a stateful language with closures to one without closures in a syntactic multi-
language [Matthews and Findler 2007; Perconti and Ahmed 2014] using a logical relation for
contextual equivalence. Hur and Dreyer [2011] verify a one-pass compiler from anML-like language
to an assembly-like language, via a cross-language logical relation where garbage collection is
axiomatized. Their approach supports linking with manually verified assembly-level code, but
only if that code can be proven behaviorally equivalent to some ML-level module. Compositional
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CompCert [Stewart et al. 2015] and the line of work it inspired [Gu et al. 2015; Koenig and Shao
2021; Song et al. 2020] show how to extend the CompCert compiler with cross-language linking.
The composition of languages based on external calls in Melocoton is inspired by Compositional
CompCert’s interaction semantics, but extends it with DimSum-style wrappers [Sammler et al.
2023] to handle linking of languages with different memory models. DimSum [Sammler et al. 2023]
provides a “decentralized” approach for reasoning about multi-language programs via combinators
for linking and language translation, which inspired the definition of the operational semantics in
Melocoton (see §3). DimSum only considers the interaction of relatively low-level languages, none
of which have such a rich FFI and runtime as OCaml.

Formal models of garbage collection using nondeterminism. Our operational model of
garbage collection (§3) uses nondeterminism, which has also been used before in the literature.
Hur and Dreyer [2011] similarly decouple GC-managed values from their physical representation,
albeit in a program equivalence setting without interactions between the different languages. They
model GC-managed values as stored in logical memories in which pointers are never moved or
deallocated. Logical memories are related to physical memory using a lookup table; running the
GC is modeled as non-deterministically changing the lookup table. These closely match the block
store and address map of our runtime semantics, respectively (Fig. 7). The idea of modeling the
effect of the GC via non-determinism (subjet to constraints) can also be found in other, more recent
work [Moine et al. 2023; Wang et al. 2019]. None of the above work studies the combination of a
GC with an FFI and, hence, they do not consider the ability to register user-declared roots.

Formal reasoning about the OCaml FFI. The model of the OCaml FFI in this paper is based on
the informal description given in the OCaml manual [oca 2023b]. We model the core features of the
FFI, but omit some more advanced features. For instance, we do not model direct pointer-accesses
to the contents of runtime blocks as if they were normal C memory. Instead, all modifications go
through runtime primitives provided by the FFI. Direct accesses are primarily used for efficiency—
to enable exchanging data such as strings or byte arrays without making copies. We also do not
currently model features like exceptions or multithreading. Furthermore, we model the primitives
for registering roots with a more elementary API than the one provided by the OCaml FFI through
CAMLlocal, CAMLparam and CAMLreturn. Alternative APIs for rooting have also been proposed
by Munch-Maccagnoni and Scherer [2022], and we believe that these APIs would be easy to specify
on top of our primitives.
Furr and Foster [2005] build a type system for C glue code that uses the OCaml FFI to detect

common misuses of the FFI. This type system is proven sound using a formal model of the C-side
of the FFI. However, because their focus is on finding bugs in C glue code, they do not model the
OCaml side of the FFI and do not target verification of mixed OCaml and C code like Melocoton.
This also means that they do not handle advanced features such as callbacks and closures.
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