A Relational Modal Logic for Higher-Order Stateful ADTs

Derek Dreyer
Georg Neis
Andreas Rossberg
Lars Birkedal

MPI-SWS, Germany
IT University of Copenhagen, Denmark

POPL 2010
Madrid
Program Equivalence

Program verification
- Show program P is observationally equivalent to some reference implementation

Compiler correctness
- Show input and output of compiler phases are semantically equivalent

Representation independence and data abstraction
- Modules M_1 and M_2 can employ different data representations and local invariants, yet be observationally equivalent
Canonical notion of program equivalence:

- $M_1 \equiv M_2$ if no program context can distinguish them
- Difficult to reason about directly, due to the universal quantification over contexts

Several decades of work on various methods for local reasoning about observational equivalence:

- Logical relations, bisimulations, Hoare-style logics, …
- Mostly for restricted languages (purely functional, Algol-like, etc.)
Algebraic data types, recursive types \((\tau_1 \times \tau_2, \tau_1 + \tau_2, \mu \alpha.\tau)\)

Higher-order functions \((\tau_1 \rightarrow \tau_2)\)

Polymorphism, generics \((\forall \alpha.\tau)\)

Modules, ADTs \((\exists \alpha.\tau)\)

Mutable references of unrestricted type \((\text{ref } \tau)\)
\[\tau = \exists \alpha. (\text{unit} \to \alpha) \times (\alpha \times \alpha \to \text{bool}) \]

\[e_1 = \text{pack ref unit, } \langle \lambda_. \text{ref } \langle \rangle, \\
\lambda y. \text{fst } y = \text{snd } y \rangle \text{ as } \tau \]

\[e_2 = \text{let } x = \text{ref } 0 \text{ in } \\
\text{pack int, } \langle \lambda_. ++x, \\
\lambda y. \text{fst } y = \text{snd } y \rangle \text{ as } \tau \]
We give the first logic for reasoning about observational equivalence in ML-like languages.

Our logic synthesizes several ideas from prior work:

- Plotkin-Abadi logic for relational parametricity
- Gödel-Löb logic (after Appel et al.’s “very modal model”)
- S4 modal logic
- Relational separation logic (Yang, Benton)
Our Contribution

We give the first logic for reasoning about observational equivalence in ML-like languages

Our logic synthesizes several ideas from prior work:

- Plotkin-Abadi logic for relational parametricity
- Gödel-Löb logic (after Appel et al.’s “very modal model”)
- S4 modal logic
- Relational separation logic (Yang, Benton)
- Our own step-indexed Kripke logical relations model (Ahmed-Dreyer-Rossberg, POPL’09)
Kripke logical relations models for reasoning about state:

- Term relation indexed by “possible world” \(W \)
- \(W \) characterizes invariants about contents of heap, *e.g.*, \(x \Leftarrow n \) in program 1 and \(x \Leftarrow \neg n \) in program 2

The trouble with higher-order state (general references):

- \(W \) may depend on “logical relatedness” of heap contents
- Leads to circularity in the construction of possible worlds
Step-indexed logical relations (Appel-McAllester, Ahmed):

- Stratify construction of possible worlds by “step index” n
- Intuition: n-level worlds only care whether heap contents are logically related for $n - 1$ steps

A key contribution of our POPL’09 paper:

- A step-indexed relational model for higher-order state (as opposed to the unary models of previous work)
Step-indexed models are great . . .

- Easy to construct, simple intuition
- Applicable to a variety of “semantically difficult” features
Step-indexed models are great . . .

- Easy to construct, simple intuition
- Applicable to a variety of “semantically difficult” features

. . . except for the steps!

- To prove M_1 and M_2 equivalent, you pick an arbitrary n and prove they are related for n steps.
- Step-index arithmetic pervaded our POPL’09 proofs.
Step-indexed models are great . . .

- Easy to construct, simple intuition
- Applicable to a variety of “semantically difficult” features

. . . except for the steps!

- To prove M_1 and M_2 equivalent, you pick an arbitrary n and prove they are related for n steps.
- Step-index arithmetic pervaded our POPL’09 proofs.

Important to develop step-free proof principles
Define M_1 and M_2 to be infinitely related if they are related for any # of steps.
Define M_1 and M_2 to be infinitely related if they are related for any # of steps.

Prove infinite relatedness enjoys an extensionality principle:

- f_1 and f_2 are infinitely related iff they map infinitely-related arguments to infinitely-related results.
Define M_1 and M_2 to be \textit{infinitely related} if they are related for any \# of steps.

Prove infinite relatedness enjoys an \underline{extensionality principle}:

- f_1 and f_2 are infinitely related \textit{iff} they map \textit{infinitely-related} arguments to \textit{infinitely-related} results.

Unfortunately, it is \textit{false}! In fact:

- f_1 and f_2 are infinitely related \textit{iff}, for any n, they map \textit{n-related} arguments to \textit{n-related} results.
It abstracts away the boring stuff

Messy details of the step-indexed construction are confined to the model
Example: The Extensionality Principle

\[
\frac{C, x_1, x_2, x_1 \equiv x_2 : \sigma \vdash f_1 x_1 \equiv f_2 x_2 : \tau}{C \vdash f_1 \equiv f_2 : \sigma \rightarrow \tau}
\]

Quantification over step indices and possible worlds is confined to the model:

\[
[C \vdash P] \approx \forall n. \forall W \in World_n. [C] nW \Rightarrow [P] nW
\]
First logic for reasoning about observational equivalence in ML-like languages

Similar reasoning ability to our POPL’09 model, but at a much higher level of abstraction