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1 Algebraic Structures

1.1 COFE

The model of Iris lives in the category of Complete Ordered Families of Equivalences (COFEs). This
definition varies slightly from the original one in [2].

Definition 1 (Chain). Given some set T and an indexed family (= C T x T)nen of equivalence
relations, a chain is a function ¢ : N — T such that ¥n,m.n < m = c¢(m) £ c(n).

n

Definition 2. A complete ordered family of equivalences (COFE) is a tuple (T, (
chain(T') — T) satisfying

C TxT)nen, lim :

Vn. (£) is an equivalence relation (COFE-EQUIV)
Vn,m.n >m = (£) C (2) (COFE-MONO)
Ve, y.o =y < (Vn.z =) (COFE-LIMIT)
Vn,c. lim(c) = ¢(n + 1) (COFE-COMPL)

The key intuition behind COFEs is that elements = and y are n-equivalent, notation z = v, if
they are equivalent for n steps of computation, i.e., if they cannot be distinguished by a program
running for no more than n steps. In other words, as n increases, Z becomes more and more refined
(core-moNO)—and in the limit, it agrees with plain equality (core-LimiT). In order to solve the
recursive domain equation in §6 it is also essential that COFEs are complete, i.e., that any chain
has a limit (core-comPL).

Definition 3. An element x € T' of a COFE is called discrete if

VyET.xgyix:y
A COFE A is called discrete if all its elements are discrete. For a set X, we write AX for the
discrete COFE with x = x' £ x = 1/
Definition 4. A function f: T — U between two COFEs is non-expansive (written f : T RN U)if
VneeT,yeT.x=y= flzr) = f(y)
It is contractive if
Vn,o € T,y € T.(Ym < n.x = y) = f(z) = f(z)

Intuitively, applying a non-expansive function to some data will not suddenly introduce differ-
ences between seemingly equal data. Elements that cannot be distinguished by programs within n
steps remain indistinguishable after applying f. The reason that contractive functions are interest-
ing is that for every contractive f : T — T with T inhabited, there exists a fixed-point fiz(f) such

that fiz(f) = f(fix(f))-

Definition 5. The category COFE consists of COFFEs as objects, and non-expansive functions as
arrows.

Note that COFE is cartesian closed:

Definition 6. Given two COFEs T and U, the set of non-expansive functions {f T 25 U} is
itself a COFE with

fEg&veeT. f(z)=g(x)

Definition 7. A (bi)functor F : COFE — COFE is called locally non-expansive if its action Fy on
arrows s itself a non-expansive map. Similarly, F' is called locally contractive if Fy is a contractive
map.

The function space (=) ~= (—) is a locally non-expansive bifunctor. Note that the composi-
tion of non-expansive (bi)functors is non-expansive, and the composition of a non-expansive and a
contractive (bi)functor is contractive.



1.2 RA

Definition 8. A resource algebra (RA) is a tuple
(M,VCM,|—]|:M— M, (-): M x M — M) satisfying

Va,b,c.(a-b)-c=a-(b-c) (RA-ASSOC
Ya,b.a-b="0-a (RA-COMM

Va.|a| -a=a (RA-CORE-ID

Va,b.a b= |a] < |b] (RA-CORE-MONO
Va,b.(a-b) €V =a€V (RA-VALID-OP

)
)
)
Va.[|a]| = |a] (RA-CORE-IDEM)
)
)
)

where axb=3cb=a-c (RA-INCL
RAs are closely related to Partial Commutative Monoids (PCMs), with two key differences:

1. The composition operation on RAs is total (as opposed to the partial composition operation of
a PCM), but there is a specific subset of valid elements that is compatible with the operation
(RA-VALID-OP).

2. Instead of a single unit that is an identity to every element, there is a function |—] assigning
to every element a its (duplicable) core |a], as demanded by RA-CORE-ID.
We further demand that |—] is idempotent (RA-CORE-IDEM) and monotone (RA-CORE-MONO)
with respect to the usual extension order, which is defined similar to PCMs (RA-INCL).

This idea of a core is closely related to the concept of multi-unit separation algebras [4], with
the key difference that the core is a function defining a canonical “unit” |a| for every element a.

Definition 9. It is possible to do a frame-preserving update froma € M to B C M, written a ~ B,
if

Yag.a-af €V =3dbe B.b-a; €V
We further define a ~ b = a ~ {b}.

The assertion a ~ B says that every element as compatible with a (we also call such elements
frames), must also be compatible with some b € B. Intuitively, this means that whatever assump-
tions the rest of the program is making about the state of ~, if these assumptions are compatible
with a, then updating to b will not invalidate any of these assumptions. Since Iris ensures that
the global ghost state is valid, this means that we can soundly update the ghost state from a to a
non-deterministically picked b € B.



1.3 CMRA

Definition 10. A CMRA is a tuple (M : COFE, (Ve € M)pen, | =] : M 25 M, () : M x M =% M)
satisfying

Vn,a,b.a =bAa €V, =beV, (CMRA-VALID-NE)
Yn,m.n>m=1V, CV, (CMRA-VALID-MONO)
Va,b,c.(a-b)-c=a-(b-c) (CMRA-ASSOQ)
Va,b.a-b=10b-a (CMRA-COMM)
Va.|a] -a=a (CMRA-CORE-ID)
Va.||al] = |a] (CMRA-CORE-IDEM)
Va,b.a < b= |a] < |b] (CMRA-CORE-MONO)
Vn,a,b.(a-b) €V, =a €V, (CMRA-VALID-OP)

Vn,a,by,be.a € Vo Aa = by - by =

Jeq,00.a=c1-Ca Acy = by Acy = by (CMRA-EXTEND)
where
a<b=3cb=a-c (CMRA-INCL)
n A n
ab=dcb=a-c (CMRA-INCLN)

This is a natural generalization of RAs over COFEs. All operations have to be non-expansive,
and the validity predicate V can now also depend on the step-index. We define the plain V as the

“limit” of the V,:
VE (W
neN

The extension axiom (cMra-EXTEND). Notice that the existential quantification in this axiom
is constructive, i.e., it is a sigma type in Coq. The purpose of this axiom is to compute a1, asg
completing the following square:

ai-az L by-by

where the n-equivalence at the bottom is meant to apply to the pairs of elements, i.e., we demand
a; = by and ay = by. In other words, extension carries the decomposition of b into b; and b
over the n-equivalence of a and b, and yields a corresponding decomposition of a into a; and as.
This operation is needed to prove that > commutes with existential quantification and separating
conjunction:

>(3z:7.P) < Jz: T.0P >(Px Q) < >P*>Q

(This assumes that the type 7 is non-empty.)

Definition 11. An element ¢ of a CMRA M is called the unit of M if it satisfies the following
conditions:

1. € is valid:
Vn.e eV,

2. € is a left-identity of the operation:
YVaoe M.e-a=a

3. € 1s a discrete COFE element



Definition 12. It is possible to do a frame-preserving update from a € M to B C M, written
a~ B, if
Vn,as.a-ar €V, =3I e B.b-ag €V,

We further define a ~ b= a ~ {b}.
Note that for RAs, this and the RA-based definition of a frame-preserving update coincide.
Definition 13. A CMRA M is discrete if it satisfies the following conditions:

1. M is a discrete COFFE

2.V ignores the step-index:
Vae M.a €Vy=Vn,a eV,

Note that every RA is a discrete CMRA, by picking the discrete COFE for the equivalence
relation. Furthermore, discrete CMRAs can be turned into RAs by ignoring their COFE structure,
as well as the step-index of V.

mon,

Definition 14. A function f : My — My between two CMRAs is monotone (written f : My —
My ) if it satisfies the following conditions:
1. f is non-expansive
2. f preserves validity:
VYn,a € My.a €V, = f(a) € V,
3. f preserves CMRA inclusion:
VYa € Mi,be Mi.a<b= f(a) < f(D)

Definition 15. The category CMRA consists of CMRAs as objects, and monotone functions as
arrows.

Note that CMRA is a subcategory of COFE. The notion of a locally non-expansive (or contrac-
tive) bifunctor naturally generalizes to bifunctors between these categories.



2 COFE constructions

2.1 Next (type-level later)
Given a COFE T, we define »T as follows:

»T = next(T)
next(z) = next(y) 2n=0Vx "ty

»(—) is a locally contractive functor from COFE to COFE.

2.2 Uniform Predicates

Given a CMRA M, we define the COFE UPred(M) of uniform predicates over M as follows:

UPred(M) = {gp :N x M — Prop

(Vn,z,y.p(n,2) Az =y = o(n,y)) A
(Vn,m,z,y.p(n,z) ANz S yAm <nAy € Vy = @(m,y))

where Prop is the set of meta-level propositions, e.g., Coq’s Prop. UPred(—) is a locally non-
expansive functor from CMRA to COFE.
One way to understand this definition is to re-write it a little. We start by defining the COFE
of step-indexed propositions: For every step-index, we proposition either holds or does not hold.
SProp £ o*(N)
{Xep(N)|Vn,mn>m=>neX=>me X}
XQYéVmgn.mEX@meY

(1>

Notice that with this notion of SProp is already hidden in the validity predicate V,, of a CMRA: We
could equivalently require every CMRA to define V_(—) : M 2% SProp, replacing CMRA-VALID-NE
and CMRA-VALID-MONO.

Now we can rewrite UPred(M) as monotone step-indexed predicates over M, where the definition
of a “monotone” function here is a little funny.

UPred(M) = M % SProp

(>

{go:MgSProp Vn,m7x,y.n€<p(;v)/\x<y/\mgn/\yEVm:>mEga(y)}

The reason we chose the first definition is that it is easier to work with in Coq.



3 CMRA constructions

3.1 Product

Given a family (M;);e; of CMRAs (I finite), we construct a CMRA for the product [[,.; M; by
lifting everything pointwise.
Frame-preserving updates on the M; lift to the product:
PROD-UPDATE
a ~ M\, B
fli—a]l ~ {f[i—1]|be B}

3.2 Finite partial function

Given some countable K and some CMRA M, the set of finite partial functions K S0 af s equipped
with a COFE and CMRA structure by lifting everything pointwise.
We obtain the following frame-preserving updates:

FPFN-ALLOC-STRONG FPFN-ALLOC FPFN-UPDATE
G infinite a€ey a€V a~ B
0~ {[y~ d]|y € G} 0~ {[y = d]|y € K} fli—a] ~ {fli—b]|be B}

K i (—) is a locally non-expansive functor from CMRA to CMRA.

3.3 Agreement
Given some COFE T, we define AG(T) as follows:
AG(T) 2 {c:N—T,V:SProp}
quotiented by
a=b2aV=0bVAVn.ncaV = ac(n)=Zb.c(n)
aZbE(Ym<nmecaVemebV)A(Ym<n.meaV = ac(m)=b.c(m))

[I>

Vn

la] £ a
a~bé(a.c,{n‘nea.V/\nGb.V/\agb})

{a eM ‘ n € aVAYm <n.a.c(n) = a.c(m)}

Ac(—) is a locally non-expansive functor from COFE to CMRA.

You can think of the c as a chain of elements of T that has to converge only for n € V steps.
The reason we store a chain, rather than a single element, is that AG(T) needs to be a COFE itself,
so we need to be able to give a limit for every chain of AG(T). However, given such a chain, we
cannot constructively define its limit: Clearly, the V of the limit is the limit of the V of the chain.
But what to pick for the actual data, for the element of 77 Only if V = N we have a chain of T" that
we can take a limit of; if the V is smaller, the chain “cancels”, i.e., stops converging as we reach
indices n ¢ V. To mitigate this, we apply the usual construction to close a set; we go from elements
of T to chains of T'.

We define an injection ag into AG(T) as follows:

ag(z) £ {cé)\f.axVéN}

There are no interesting frame-preserving updates for AG(T'), but we can show the following:

AG-VAL AG-DUP AG-AGREE
ag(x) € Vy, ag(r) = ag(x) - ag(w) ag(r)-ag(y) EVa ==y



3.4 One-shot

The purpose of the one-shot CMRA is to lazily initialize the state of a ghost location. Given some
CMRA M, we define ONESHOT(M) as follows:

ONESHOT(M) = pending + shot(M) +e+ L
Vn = {pending, e} U {shot(a) |a € V,,}
shot(a) - shot(b) £ shot(a - b)
¢ - pending £ pending - ¢ £ pending

[I>

¢ - shot(a) £ shot(a) - & £ shot(a)

The remaining cases of composition go to L.

|pending| £ ¢ |shot(a)| £ |a]
le] 2 ¢ |L]2 1
The step-indexed equivalence is inductively defined as follows:
a=b
pending = pending eZe 1=1

shot(a) = shot(b)

ONESHOT(—) is a locally non-expansive functor from CMRA to CMRA.
We obtain the following frame-preserving updates:

ONESHOT-SHOOT ONESHOT-UPDATE
aeV a~ B
pending ~- shot(a) shot(a) ~» {shot(b) |b € B}

3.5 Exclusive CMRA
Given a cofe T, we define a CMRA EX(T) such that at most one € T' can be owned:

lI>

Ex(T)
Vn

e - ex(x)

ex(T)+e+ L
{a € EX(T)|a # L1}

ex() - € £ ex(x)

(1>

4

The remaining cases of composition go to L.
lex(2)] £ ¢ le] £ ¢ L] =1L
The step-indexed equivalence is inductively defined as follows:

n
r=Yy

n

E=¢€ 1

n

ex(7) = ex(y)
Ex(—) is a locally non-expansive functor from COFE to CMRA.
We obtain the following frame-preserving update:

EX-UPDATE
ex(x) ~ ex(y)



4 Language

A language A consists of a set Ezpr of expressions (metavariable e), a set Val of values (metavariable
v), and a set State of states (metvariable o) such that

e There exist functions val2expr : Val — Ezpr and expr2val : Ezpr — wval (notice the latter is
partial), such that

Ve, v. expr2val(e) = v = val2expr(v) = e Vu. expr2val(val2expr(v)) = v

e There exists a primitive reduction relation
(=, — = —,—,—) C Eapr x State x Expr x State x (Exprw {L})

We will write e1,01 — ea, 09 for e, 01 — e9,09, L.
A reduction e1, 01 — es, 09, er indicates that, when e; reduces to e, a new thread es is forked
off.

e All values are stuck:
e, — ., , =-expr2val(e)=_1

e There is a predicate defining atomic expressions satisfying

Ve. atomic(e) = expr2val(e) = L Vei1,01,eq,09, . atomic(er) A e1, 01 — ea, 09, ef =

TJuy. expr2val(es) = vy

In other words, atomic expression reduce in one step to a value. It does not matter whether
they fork off an arbitrary expression.

Definition 16. An expression e and state o are reducible (written red(e, o)) if
Jdes, 00,65.€,0 — €2,09, e¢

Definition 17 (Context). A function K : Expr — Expr is a context if the following conditions are
satisfied:

1. K does not turn non-values into values:
Ve.expr2val(e) = L = expr2val(K(e)) = L

2. One can perform reductions below K :
Ve1,01,€2,00,¢e.€1,01 — €9,09,¢ = K(e1),01 = K(ea), 09, ¢¢

3. Reductions stay below K wuntil there is a value in the hole:
Ve, o1, e,00,er.expr2val(e]) = L A K(e}),01 — eg,09,er = Jeh.ea = K(eh) Nej,o1 —
eh, o9, ef
4.1 Concurrent language
For any language A, we define the corresponding thread-pool semantics.

Machine syntax
T € ThreadPool & U Ezxp"

Machine reduction

e1,01 —eg,09,ef  efF L €1,01 — €2,02
T+ [e1] HT';0 — T+ [ea] H T + [es]; 0 T+ [e1] H T ;0 =T+ [ez] HT';0




5 Logic

To instantiate Iris, you need to define the following parameters:

e A language A

e A locally contractive bifunctor ¥ : COFE — CMRA defining the ghost state, such that for
all COFEs A, the CMRA X(A) has a unit

As usual for higher-order logics, you can furthermore pick a signature S = (T, F,.A) to add more
types, symbols and axioms to the language. You have to make sure that 7 includes the base types:

T 2 {Val, Expr, State, M, InvName, InvMask, Prop}

Elements of 7 are ranged over by T
Each function symbol in F has an associated arity comprising a natural number n and an ordered
list of n + 1 types 7 (the grammar of 7 is defined below, and depends only on 7). We write

F:om,...,7 = Thy1 € F

to express that F' is a function symbol with the indicated arity.

Furthermore, A is a set of axioms, that is, terms ¢ of type Prop. Again, the grammar of terms
and their typing rules are defined below, and depends only on 7 and F, not on A. Elements of A
are ranged over by A.

5.1 Grammar

Syntax. Iris syntax is built up from a signature S and a countably infinite set Var of variables
(ranged over by metavariables z, y, 2):

Tuo=T|1l|rx71|T—>7T

t,Pyou=a | F(t,....,tn) | O] &8) | mt| de:mt|t@) | el [t] | t-¢]
False | True |t =, ¢t|P=P|PAP|PVP|PxP|P—%P|
pr:T.t|3dx:7. P|Ve: 7. P|

t r—
t V() | Phy(t) |OP [>P | "B P | wp, t {z.1}

Recursive predicates must be guarded: in uz.t, the variable x can only appear under the later >
modality.

Note that [J and > bind more tightly than %, — , A, V, and =. We will write 5, P for tEtP. If
we omit the mask, then it is T for weakest precondition wp e {z. P} and @ for primitive view shifts
B P.

Some propositions are timeless, which intuitively means that step-indexing does not affect them.
This is a meta-level assertions about propositions, defined as follows:

I' I timeless(P) £ T' | >P - P Vv >False

Metavariable conventions. We introduce additional metavariables ranging over terms and gen-
erally let the choice of metavariable indicate the term’s type:

metavariable | type

metavariable | type

- ¢t | InvName
t,u | arbitrary

£ | InvMask
v,w | Val
a,b | M
e | Expr POR|P
Q) ro
o | State P

©,%,¢ | 7 — Prop (when 7 is clear from context)

10



Variable conventions. We assume that, if a term occurs multiple times in a rule, its free variables
are exactly those binders which are available at every occurrence.

5.2 Types
Iris terms are simply-typed. The judgment I' - ¢ : 7 expresses that, in variable context I', the term
t has type 7.

A variable context, I' = 21 : 71, ..., @, : T, declares a list of variables and their types. In writing

I',x : 7, we presuppose that x is not already declared in T'.

Well-typed terms

I'Ht:r Lx:7y:7' Ft:7 N,z:7,y: 7" Tokt:T
r:Thx:T ; S T ;
Dox:7'Ft:7 oo Ftlz/y]: T Ty,z:7"y: 7"\ ToFtly/z,z/y] : 7
'Hti:m L'Ht,:m Firm,...,7h > The1 € F TH():1
F"F(t17...,tn)17’n+1
T'Ht:n T'Fu:m T'Ht:m X1y ie{1,2} Dx:tkt:7
I'F(tu): 7 X 7o 'Fmt:n F'FXe.t:7— 7
Ht:r =1 u:T I'a:M 'a: M I'b: M
~ I'kFe: M _
PHt(u):7 I'klal: M P'kta-b:M

T'Ht:7 T'Fu:7 ' P:Prop I'FQ: Prop
I't=,u:Prop I'FP= Q@ :Prop

I' + False : Prop 't True : Prop

' P:Prop T'FQ:Prop T'FP:Prop I'FQ: Prop ' P: Prop I'FQ:Prop

I'EPAQ :Prop I'EPVAQ:Prop I'-PxQ :Prop
I'F P :Prop I'FQ: Prop Tx:rtkHt: 7 x is guarded in ¢ I'z:7F P :Prop
I'EP-—xQ :Prop Tkpx:7t:7 '3z :7.P: Prop
I'Nz:7F P :Prop I'E P : Prop I'F ¢ :InvName I'Fa:M I'Fa:M
I'EVz:7.P: Prop FFL:Prop T +lai: Prop I'-V(a) : Prop
I'F o : State 'k P: Prop ' P:Prop
T+ Phy(o) : Prop ' -0P : Prop I'E>P: Prop

'k P:Prop I'F & : InvMask '+ & : InvMask
r+ giég,P : Prop

T'te: Expr 'z :Valkt: Prop ' & : InvMask
'+ wpge{z.t}: Prop

5.3 Proof rules

The judgment I' | © F P says that with free variables I', proposition P holds whenever all as-
sumptions © hold. We implicitly assume that an arbitrary variable context, I', is added to every
constituent of the rules. Furthermore, an arbitrary bozed assertion context [J® may be added to
every constituent. Axioms I' | P - @ indicate that both T' | P+ Q and " | Q F P can be derived.

11



Laws of intuitionistic higher-order logic with equality. This is entirely standard.
Asm EqQ

R 1E 1 Al
PecoO O+P OFt=.t EFL O I False OFP OFQ
; OFt=,1 _— O F True
OF P or Pt/ OF P OFrPAQ
AEL AER VIL VIR VE
OFPAQ OFPAQ OrP orQ OFPVQ O,PFR 0,QFR
OFP 0FQ OFPVQ OFPVQ OFR
=1 =E VI VE
0,PFQ OFP=Q OFP Nz:7|©FP rerve:r. P THt:7
OFP=Q OFrQ rervze:r.P I'|©F Plt/x]
=l JE
I'|©F Plt/x] Fkt:7 rerdz:r.P Fe:7|©,PFQ
rNer3z:r.P

rrerQ
A

OF (Ax:7.P)(t) =1 Plt/x] g) Fupzx:7.P = Plux : 7.P/x]

Laws of (affine) bunched implications.

*-MONO —x [-E
Tru]:e)*P;H;P p P =@ P FQo PxQFR
QA G P x Py Qqx Qo PFQ =R
(P+Q)*R-A-Px(Q =« R)

Laws for ghosts and physical resources.

aj b la - b
a - V(a)

Phy(o) * Phy(c’) | False
True ‘é

Laws for the later modality.

>-MONO L >-3
Or P (:}5 L PP 7 is inhabited
OF>P >z :7.PF 3z T7.>0P
>Vx. P -+ Vx.>oP
>(PAQ) 4P A>Q v N
dz.>P F pdx. P
>(PVQ)>PVQ

>(P* Q) I >P x>Q

12



t or ' is a discrete COFE element
timeless(t =, t')

a is a discrete COFE element

timeless(ia))

a is a discrete COFE element

. [ F timeless(Q)
timeless(V(a)) timeless(Phy(c)) T'F timeless(P = Q)

T+ timeless(Q)
I F timeless(P — Q)

[,z : 7 timeless(P)

[,z : 7k timeless(P)
I F timeless(Vx : 7. P)

I F timeless(3x : 7. P)

Laws for the always modality.

01 e O(P+Q) - O(PAQ) OPAQ)4-OPAOQ
erP OPL- P OP«Q - OPAQ OPve)4-0prPvOQ
. = *
Ooe+arp CLP < oO1P [(Wz. P 4+ Vz.OOP
> >
Odz. P 4+ Jz. OOP
t=t'FOt =t =iz LaliF Dlall V(a) - OV(a)

Laws of primitive view shifts.

PVS-MONO PVS-TIMELESS PVS-TRANS
;ViI;TR; PrQ timeless(P) ECEUES
£ 51'352P|_51§52Q DPF'EEP

51 '352 52 Eggp '_ 51 '353P

PVS-ALLOCI

£ is infinite
PVS-MASK-FRAME PVS-FRAME
& Egzp }_ glwfféggwc‘:fp

QxR PHOYBR2QxP sPHE el [P

PVS-UPDATE
PVS-OPENI

PVS-CLOSEL _ a~ B _
P - telp P AP F "2t True alb Be3be B.ib

Laws of weakest preconditions.

WP-VALUE WE-MOND PVS-WP
) &1 C & xz:val | PFQ i
Plv/x| Fwpev{x. P wpee{x. P} Fwpese{z. P
/el Fwesv (P} LS IELT e B () F s (o P)
WP_PVS WP-ATOMIC
) & C & atomic(e)
wpg e {z. B¢ P} F wpge{x. P} TN B py 5
B wpg, e{z. ?B" P} Fwpg, e{z. P}
WP FRAME WP-FRAME-STEP
AN expr2val(e) = L
.P} . P
@xwpg e {r. Pyt wpee{z.Qx P} >Q *wpg e {z. P} - wpge{z.Q* P}
WP-BIND

K is a context

wpg e {z. wpg K (val2expr(x)) {y. P}} - wpg K(e) {y. P}

13



Lifting of operational semantics.

WP-LIFT-STEP

& C & expr2val(e;) = L red(ey,01) Ves, 09, €5. 1,01 — €3,09, e = (e, 09, €f)

& |3£2 >Phy(o1) * DVeq, o2, er. p(ea, 09, €f) A
Phy(os) — B wpg, €2 {x. P} * wp e {_. True}

Fwpg, e1 {z. P}

WP-LIFT-PURE-STEP

expr2val(e;) = L Voi.red(ey,01) Voi,e,09,€.€1,01 — €3,09, € = 01 = 2 A\ @(ea, er)

DVeg, er. (e, er) = wpg, €2 {x. P} + wpr e {_. True} F wpg e1 {z. P}

Here we define wpg ef {x. P} = True if e; = | (remember that our stepping relation can, but
does not have to, define a forked-off expression).

5.4 Adequacy

The adequacy statement concerning functional correctness reads as follows:

V€ e, v, p,0,a,0 T
(Vn.a € V) =
(Phy(0) * ai - wpg e {z. p(x)}) =
o;le] =% o's[v] H T =
¢(v)
where ¢ is a meta-level predicate over values, 7.e., it can mention neither resources nor invariants.

Furthermore, the following adequacy statement shows that our weakest preconditions imply that

the execution never gets stuck: Every expression in the thread pool either is a value, or can reduce
further.

V€, e,o,a,0,T.

(Vn.a € V) =

(Phy(0) *laj - wpg e {z. p(x)}) =
oile] = o's T =

Ve € T'. expr2val(e) # L Vred(e, o’)

Notice that this is stronger than saying that the thread pool can reduce; we actually assert that
every non-finished thread can take a step.

14



6 Model and semantics

The semantics closely follows the ideas laid out in [2].

6.1 Generic model of base logic

The base logic including equality, later, always, and a notion of ownership is defined on UPred(M)

for any CMRA M.

Interpretation of base assertions

ne

[Tk t: Prop]: [I'] — UPred(M)

Remember that UPred(M) is isomorphic to M %% SProp. We are thus going to define the assertions
as mapping CMRA elements to sets of step-indices.
We introduce an additional logical connective Own(a), which will later be used to encode all of

[P]", lal and Phy(o).

(1>

[T'Ft=;u:Prop],

(1>

[T F False : Prop],
[T+ True : Prop],
[l'-PAQ :Prop],
[T'FPVQ :Prop],

> I

lI>

(1>

[TFP=Q:Prop], = Aa.

Aa.
Aa.

[l'FVz:7.P: Prop],
[T+ 3z :7.P: Prop],

>

.{n‘[[FFtZTHWQ[[FFUZT]]V}
.0
.N

A
A
A
Aa. [I'F P : Prop](a)N[I' - Q : Prop],(a)
Aa.[I'F P : Prop],(a) U[I'F Q : Prop],(a)

Ym,b.m<nAa<xbAbey, =
n m € [I'F P : Prop],(a) =
m € [I'+Q : Prop],(a)
{n|vve[r].n €L, z: 7k P:Prop],s,(a)}
{n | Fver]l.nel,z:7kH P:Proplym(a)}

[C FOP : Prop], = Xa.[I' - P : Prop],(|a])

(1>

[I'F>P : Prop], = Aa.

[T'FPx*Q :Prop], = Aa.

[l P—Q : Prop], £ \a.

[T Own(a) : Prop], £ Ab.

{n|n=0vn—-1€[I'+ P:Prop],(a)}

{n Ib1,by.a Z by - by A }
ne [Tk P:Prop]y(b)) An e [T+ Q : Prop],(b)
Ym,bbm<nAa-bevy, =
n m € [I' = P : Prop],(b) =
m € [I' - Q : Prop](a-b)

(o]s20)

[T FV(a): Prop]y £ A_. {n]a € V,}

For every definition, we have
and monotone.

6.2 Iris model

to show all the side-conditions: The maps have to be non-expansive

Semantic domain of assertions. The first complicated task in building a model of full Iris is
defining the semantic model of Prop. We start by defining the functor that assembles the CMRAs

15



we need to the global resource CMRA:
ResF(T) & {w : Ac(»T),r : Ex(State),g : F(T)}

where F' is the user-chosen bifunctor from COFE to CMRA. ResF(T) is a CMRA by lifting the
individual CMRAs pointwise. Furthermore, if F' is locally contractive, then so is ResF(—).
Now we can write down the recursive domain equation:

iPreProp = UPred(ResF(iPreProp))

iPreProp is a COFE, which exists by America and Rutten’s theorem [1, 3]. We do not need to
consider how the object is constructed. We only need the isomorphism, given by

Res £ ResF(iPreProp)
iProp = UPred(Res)
¢ : iProp =% iPreProp
&1 iPreProp =5 iProp
We then pick iProp as the interpretation of Prop:

[Prop] £ iProp

Interpretation of assertions. iProp is a UPred, and hence the definitions from §6.1 apply. We
only have to define the missing connectives, the most interesting bits being primitive view shifts and
weakest preconditions.

World satisfaction — = —: AState x Ap(N) x Res == SProp

pre-wsat(n, £,0, R,r) £ 1 € Vi1 Ar.m = ex(0) Adom(R) C € N dom(r.w) A

n

Vi€ &, Poraw() "t ag(next(£(P))) = n € P(R(1))

olEer={0}U {n +1]3R: N ™ Res. pre-wsat(n,E, o, R, T - HR(L))}

Primitive view-shift pus” (=) : A(p(N)) x A(p(N)) x iProp 2% iProp

Vre,m, E,0.0 <m < nA (& UEg)#é’f/\kEU):glugfr-rfé}

2(P)=r.
pusgl (P) = Ar {n ds.k € P(s) Nk € 0 Egyug STt

Weakest precondition wp_(—, =) : A(p(N)) x A(Bap) x (A(Val) 2% iProp) = iProp

wp is defined as the fixed-point of a contractive function.

Vre,m,E,0.0 <m<nAE#H EEAm+1Eo0 Esug -1 =
(Vv.expr2val(e) =v =3s.m+1 € P(r') Am+1€ 0 Eeue ' - 76) A
pre-wp(wp)(E,e,0) = . { n| (expr2val(e) = L A0 < m = red(e,0) AVea, 00, 6r.€,0 — e2,02, 6 =
Js1,82.m € 0 FEeug, ' e Am € wp(E, ez, p)(s1) A
(ef =L Vme wp(T,er, A\ A_.N)(s2))

wpg (€, ) £ fiz(pre-wp) (€, e, ¢)
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Interpretation of program logic assertions [T Ft:Prop] : [T] 2% iProp

[T F[P]" : Prop], £ Own([c + ag(next(£(P)))], , )
[T Fal: Prop], £ Own(e, ¢, a)
[T F Phy(o) : Prop], £ Own(e, ex(c),e)
[T - 5% P Propl, £ pusiyy v (I - P : Propl)
[T+ wpge{z. P} : Prop], £ prF,_&,nvMask]]w([F Fe: Expr],, Av. [I'+ P: Prop]],y[x,ﬁ,,})

Remaining semantic domains, and interpretation of non-assertion terms. The remaining
domains are interpreted as follows:

[InvName] £ AN [Val] £ AVal 1] 2 A0}
[InvMask] £ Agp(N) [Expr] = AExpr [ x 7] =[] x [7]
[M] £ F(iProp) [State] & AState [ = 7] 2 [7] = [7]

The balance of our signature S is interpreted as follows. For each base type 7 not covered by the
preceding table, we pick an object X, in ¢ and define

[r] £ X~
For each function symbol F : 71,...,7, — Tny1 € F, we pick a function [F] : [r1] x -+ x [r.] ==
[[TnJrlH'
Interpretation of non-propositional terms [CFt:7]:[T] = [7]

[T F 7]y £ y(2)
[CFFty,.. o tn): Togily = [Tt 7alqs e, [T F 0 Tlly)
[CEXe:rt:r—= 7]y EXu:[r]. [Tz 7t 7]y
[CEtwu): 7], &[Tt = 7] ([CFu:T],)
[Tk pz:7t:7]y 2 fis(Au: [r] T2 7t 7] )

[CHO:1],20
[[F = (tl,tg) t7T1 X 7'2]]7 £ ([[F = tl : 7'1]],\{, [[F = tg : TQH,Y)
[TFmt):nly S2r([CHt:m x 7))

[T'Fe:M],
[T+ |a] :M]]WéL[[F}—a:M]]WJ
[CFa-b:M], &[T Fa:M],-[TFb:M],

3

An environment I is interpreted as the set of finite partial functions p, with dom(p) = dom(T")
and p(z) € [T'(2)].

Logical entailment. We can now define semantic logical entailment.
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Interpretation of entailment [T|©FP]:2

[l|©F Q]2 VneN.Vr e Res. Vy € [I7],
(VQ €©.n€[I'+Q : Prop],(r)) = n € [+ P: Prop],(r)

The soundness statement of the logic reads

I e-P=[|OF P|

18



7 Derived proof rules and other constructions

We will below abuse notation, using the term meta-variables like v to range over (bound) variables
of the corresponding type.. We omit type annotations in binders and equality, when the type is clear
from context. We assume that the signature S embeds all the meta-level concepts we use, and their
properties, into the logic. (The Coq formalization is a shallow embedding of the logic, so we have
direct access to all meta-level notions within the logic anyways.)

7.1 Base logic

We collect here some important and frequently used derived proof rules.

P=QFP +Q P+32.Q4+3.P+xQ Px32.QF3a.PxQ OPxQ)0OP«0Q

O(P = Q) F 0P = 0Q O(P Q) FOP +0Q O(P Q) 4 0O(P = Q)
P FeP P FeP ©>PF P
>(P=Q)F>P=1>Q >(P— Q) F>P —«>Q “orp

Persistent assertions.
Definition 18. An assertion P is persistent if P+ OP.

Of course, OJP is persistent for any P. Furthermore, by the proof rules given in §5.3, t = ¢/
as well as [Lail, V(a) and L are persistent. Persistence is preserved by conjunction, disjunction,
separating conjunction as well as universal and existential quantification.

In our proofs, we will implicitly add and remove [J from persistent assertions as necessary, and

generally treat them like normal, non-linear assumptions.

Timeless assertions. We can show that the following additional closure properties hold for time-
less assertions:

I - timeless(P) I+ timeless(Q) I - timeless(P) I+ timeless(Q)
T F timeless(P A Q) I'F timeless(P V Q)
I + timeless(P) I+ timeless(Q) I - timeless(P)
I' F timeless(P * Q) I' F timeless(CJP)

7.2 Program logic

Hoare triples and view shifts are syntactic sugar for weakest (liberal) preconditions and primitive
view shifts, respectively:

{P}e{v.Q}, £0(P = wpg e {\v.Q}) e A e e o &

P 1§2Q:P 132@/\@ 31P

We write just one mask for a view shift when & = &;. Clearly, all of these assertions are persistent.
The convention for omitted masks is similar to the base logic: An omitted £ is T for Hoare triples
and () for view shifts.
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View shifts. The following rules can be derived for view shifts.
VS-UPDATE VS-TRANS VS-IMP
a~ B P&z Q QBB R ECEUE 0P = Q)
al= 3be B. b P 525 R P=Q

VS-MASK-FRAME VS-FRAME VS-TIMELESS vs-ALLOCI
P S1& Q P finé Q timeless(P) infinite(&)
P 51Lﬂ5'35265’ Q PxR 51352 Q+*R W >P =¢ ELGE.L

VS-DISJ
VS-OPENI VS-CLOSEI P 61352 R Q 51362 R
L F True (U=2%5p L FoP =13 True PvQ =% R
VS-EXIST VS-BOX
Vo (P 925 Q) O0Q+-P “=%R VSFALSE
(3z.P) =% Q PAOQ 2% R False ©1=%2 p

Hoare triples. The following rules can be derived for Hoare triples.

HT-BIND
HT-RET K is a context {P}e{v.Q}¢ Vo.{Q} K(v) {w. R},
{True} w {v.v = w}, {P} K(e) {w. R},

HrT-CsqQ HT-MASK-WEAKEN

PP  {Plefv.Q}, Q' >Q Pre{v.Q}e
{P}e{v.Ql}, {P} e {v.Qtewe

HT-FRAME HT-FRAME-STEP
{P}e{v.Q}¢ {P}e{v.Q}¢ expr2val(e) = L
{P+R}e{v.Q=xR}g {P+>R}e{v.Q* R},

HT—ATO/MIC ,
p 988 pr {(Pre{v.Qly Yu.Q *=2°Y Q  atomic(e)
{P}e{v.Q}eue

Hr-DISJ HT-EXIST Hr-BOX
{P}e{v. R} {Q} e {v. R}, V. {P} e {v.Q}; 0Q - {P} e {v. R}, HT-FALSE
{PVQ}e{v. R}, {3z. P} e {v.Q}, {P AOQ} e {v. R}, {False} e {v. P},
Hr-1nv HT-INV-TIMELESS
{pR+ P} e{v.0R*Q}, atomic(e) {R*P}ef{v.R*Q}, atomic(e) timeless(R)
L F{P}e {UQ}gw{L} L F{P} e {v. Q}g@{L}

Lifting of operational semantics. We can derive some specialized forms of the lifting axioms
for the operational semantics.

WP-LIFT-ATOMIC-STEP
atomic(eq) red(eq, 01) Veq, 09, €5.€1,01 = €3,02, et = @(ea, 02, €r)
>Phy(o1) * >V, 02, er. p(val2expr(v), o2, ef) A Phy(og) — Plva/x] x wpr ef {_. True} - wpg e1 {z. P}

WP-LIFT-ATOMIC-DET-STEP
atomic(e; ) red(eq,o1) Vey, 0h, et e1,01 —> €2,09,ef = 09 = 04 A expr2val(ey) = vy A er = ef
>Phy(o1) * >(Phy(o2) — Plva/x] * wpr eg {_. True}) - wpg, e1 {z. P}
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WP-LIFT-PURE-DET-STEP
expr2val(e;) = L Vop.red(e1,01) Vo, ey, 09, €. 1,01 — €2,09,6f = 01 = 03 A ea = €5 N ep = ef

>(wpg, €2 {x. P} * wpr er {_. True}) = wpg, e1 {z. P}

Furthermore, we derive some forms that directly involve view shifts and Hoare triples.

HT-LIFT-STEP
& C & expr2val(e;) = L red(ey,o01) Ves, 09, €5. 1,01 — €3,02, e = (e, 09, €f)
P &= pPhy(oy) * b P’ Vea, 09, €5. (e, 09, ) * Phy(og) x P1 £2281 Q1 « Qs
Vea, o2, e {Q1} €2 {v. R}¢, Vea, 09, e5. {Q2} ef {_. True}+

{Pyer (v R,

HT-LIFT-ATOMIC-STEP
atomic(ey) red(eq, 01) Veq, 09, €5. 1,01 = ea,02,er = @(ea, 02, €f)
P &% 5Phy(gy) * P’ Vea, 02, e5. {p(ea, 02, €5) * P} eg {_. True}

{>Phy(01) *>P} e {v. 3oa, er. Phy(o2) * p(val2expr(ez), o2, 1) } ¢,

HT-LIFT-PURE-STEP
expr2val(e;) = L Voi.red(ey,01) Voi,e9,09,€.€1,01 — €3,09,€r = 01 = 02 A\ @(ea, er)

Vey, er. {@(ez, er) * P} ez {v. Qlg, Vea, er. {p(ea, er) * P'} eg {_. True}+
{>(PxP')} e {v.Qlg,

HT-LIFT-PURE-DET-STEP
expr2val(e;) = L Voi.red(eq,01) Yoy, eh,09,¢.€1,01 — €3,00,6; = 01 = 02 Aeg = ey A e = ef

{P} ez {v. Ql¢, {P'} er {_. True}+
{(P* P} ey {v. Q}81

7.3 Global functor and ghost ownership

Hereinafter we assume the global CMRA functor (served up as a parameter to Iris) is obtained from
a family of functors (F;);ecs for some finite I by picking

F(T) 2 J] GhName ™ F,(T)

iel

::]‘7 asserts that in the current state of monoid M;, the “ghost location” ~ is

allocated and we own piece a.
From Pvs-UPDATE, vs-UPDATE and the frame-preserving updates in §3.1 and §3.2, we have the
following derived rules.

GHOST-ALLOC-STRONG GHOST-UPDATE

G infinite GHOST-ALLOC a~u, B
””” Y LAY
|

B
a .
J @: M;" = 3be B.b: M,

GHOST-TIMELESS
a is a discrete COFE element

a: M;" =V, (a) timeless(

7.4 Invariant identifier namespaces

Let N > InvNamesp £ list(InvName) be the type of namespaces for invariant names. Notice that
there is an injection namesp_inj : InvNamesp — InvName. Whenever needed (in particular, for masks
at view shifts and Hoare triples), we coerce A to its suffix-closure:

NT2 ) 3IN. L = namesp_inj(N' +H N}
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We use the notation N.c for the namespace [t] H N.

We define the inclusion relation on namespaces as N7 C Ny < IN3. No = N3 H N, ie., N7 is
a suffix of M5. We have that N7 C N5 = ./\/2T - J\/’lT.

Similarly, we define N7 # Ny £ AN, NG N] T Ny ANG T No AN]| = NG| AN] # N3,
i.e., there exists a distinguishing suffix. We have that N7 # Ny = N, # N, and furthermore
11 # 1o = Ny # N.io.

We will overload the usual Iris notation for invariant assertions in the following:

PN 23 ent [P

We can now derive the following rules for this derived form of the invariant assertion:

N - DN >P - E)NN

atomic(e) NCE (C) I—N O F P —x wpg\pr e {v.0P x Q}
O+ wpge{v.Q}

NCE G)FN OF P g P xQ
OFBEQ

atomic(e) NCE (PP« Qb e{v.oPx Rlg NCE PP+ Q San PP xR
N N
F{Q} e {v. R}, FQ=:R
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