
Recursive Type Generativity

Derek Dreyer
Toyota Technological Institute at Chicago

dreyer@tti-c.org

Abstract
Existential types provide a simple and elegant foundation for un-
derstanding generative abstract data types, of the kind supported by
the Standard ML module system. However, in attempting to extend
ML with support for recursive modules, we have found that the tra-
ditional existential account of type generativity does not work well
in the presence of mutually recursive module definitions. The key
problem is that, in recursive modules, one may wish to define an
abstract type in a context where a name for the type already exists,
but the existential type mechanism does not allow one to do so.

We propose a novel account of recursive type generativity that
resolves this problem. The basic idea is to separate the act of gener-
ating a name for an abstract type from the act of defining its under-
lying representation. To define several abstract types recursively,
one may first “forward-declare” them by generating their names,
and then define each one secretly within its own defining expres-
sion. Intuitively, this can be viewed as a kind of backpatching se-
mantics for recursion at the level of types. Care must be taken to
ensure that a type name is not defined more than once, and that
cycles do not arise among “transparent” type definitions.

In contrast to the usual continuation-passing interpretation of
existential types in terms of universal types, our account of type
generativity suggests a destination-passing interpretation. Briefly,
instead of viewing a value of existential type as something that
creates a new abstract type every time it is unpacked, we view it as
a function that takes as input a pre-existing undefined abstract type
and defines it. By leaving the creation of the abstract type name up
to the client of the existential, our approach makes it significantly
easier to link abstract data types together recursively.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Recursion, Ab-
stract data types, Modules; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs—Type structure

General Terms Languages, Theory

Keywords Type systems, abstract data types, recursion, genera-
tivity, recursive modules, effect systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’05 September 26–28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

1. Introduction
Recursive modules are one of the most frequently requested exten-
sions to the ML languages. After all, the ability to have cyclic de-
pendencies between different files is a feature that is commonplace
in mainstream languages like C and Java. To the novice program-
mer especially, it seems very strange that the ML module system
should provide such powerful mechanisms for data abstraction and
code reuse as functors and translucent signatures, and yet not allow
mutually recursive functions and data types to be broken into sepa-
rate modules. Certainly, for simple examples of recursive modules,
it is difficult to convincingly argue why ML could not be extended
in some ad hoc way to allow them. However, when one considers
the semantics of a general recursive module mechanism, one runs
into several interesting problems for which the “right” solutions are
far from obvious.

One problem involves the interaction of recursion and com-
putational effects. The evaluation of an ML module may in-
volve impure computations such as I/O or the creation of mu-
table state. Thus, if recursion is introduced at the module level,
it appears necessary to adopt a backpatching semantics of recur-
sion (in the style of Scheme’s letrec construct) in order to en-
sure that the effects within recursive module definitions are only
performed once. Under such a semantics, a recursive definition
letrec X = M in ... is evaluated by (1) binding X to an unini-
tialized ref cell, (2) evaluating M to a value V, and (3) backpatching
the contents of X’s cell with V, thereby tying the recursive knot. As
a matter of both methodology and efficiency, it is desirable to know
statically that this recursive definition is well-founded, i.e., that M
will evaluate to V without requiring the value of X prematurely. In
previous work [4], we studied this problem in detail and proposed
a type-based approach to guaranteeing well-founded recursion.

In this paper, we focus on a second, orthogonal problem with re-
cursive modules that we and other researchers have struggled with.
This problem is of particular importance and should be of interest to
a general audience because it concerns the interaction of two funda-
mental concepts in programming, recursion and data abstraction,
and it is possible to understand and explore the problem indepen-
dently of modules. (In fact, that is precisely what we are going to
do later in the paper.) To begin, however, we will use some infor-
mal examples in terms of ML modules as a way of illustrating the
problem.

1.1 Mutually Recursive Abstract Data Types

Suppose we want to write two mutually recursive ML modules A
and B, as shown in Figure 1. Module A (resp. B) defines a type t
(resp. u) and a function f (resp. g) among other components. It is
sealed with a signature SIGA(X) (resp. SIGB(X)) that hides the
definition of its type component.1 Note that the type of the function

1 We make use of parameterized signatures here as a matter of syntactic
convenience, although ML does not currently support them.

ICFP’05 1 2005/7/11

signature SIGA(X) = sig
type t
val f : t -> X.B.u * t
...

end
signature SIGB(X) = sig

type u
val g : X.A.t -> u * X.A.t
...

end
signature SIG(X) = sig

structure A : SIGA(X)
structure B : SIGB(X)

end

structure rec X :> SIG(X) = struct
structure A :> SIGA(X) = struct
type t = int
fun f (x:t) : X.B.u * t =

let val (y,z) = X.B.g(x+3) (* Error 1 *)

in (y,z+5) end (* Error 2 *)
...

end
structure B :> SIGB(X) = struct
type u = bool
fun g (x:X.A.t) : u * X.A.t = ...X.A.f(...)...
...

end
end

Figure 1. Mutually Recursive Abstract Data Types

component in each module refers to the abstract type provided by
the other module.

The code here is clearly contrived—e.g., A.t and B.u are im-
plemented as int and bool—but it serves to concisely demonstrate
the kind of type errors that can arise very easily due to the interac-
tion of recursion and abstract types. The first type error comes in
the first line of the body of A.f. The function takes as input a vari-
able x of type t (which is defined to be int), and makes a recursive
call to the function X.B.g, passing it x+3. The error arises because
the type of X.B.g is X.A.t -> X.B.u * X.A.t, and X.A.t is
not equivalent to int. To see this, observe that the variable X is
bound with the signature SIG(X), whose A.t component is speci-
fied opaquely.2 The second type error, appearing in the next line of
the same function, is similar. The value z returned from the call to
X.B.g has type X.A.t, but the function attempts to use z as if it
were an integer.

Both of these type errors are of course symptoms of the same
problem: Alice, the programmer of module A, “knows” that X.A.t
is implemented internally as int, because she is writing the imple-
mentation! Yet this fact is not observable from the signature of X.
The only simple way that has been proposed to address this prob-
lem is to reveal the identity of A.t in the signature SIGA(X) as
transparently equal to int. This is not really a satisfactory solu-
tion, though, since it exposes the identity of A.t to the implementor
of module B and essentially suggests that we give up on trying to
impose any data abstraction within the recursive module definition.

A more complex suggestion would be that we change the way
that recursive modules are typechecked. Intuitively, when we are

2 Incidentally, you may wonder how it can be legal for the signature X is
bound with to refer to X. This is achieved through the use of recursively
dependent signatures, which were proposed by Crary, Harper and Puri [3] in
theory, and implemented by Russo [19] and Leroy [13] in practice. Subject
to certain restrictions, they are not semantically problematic, but they are
beyond the scope of this paper.

signature ORDERED = sig
type t
val compare : t * t -> order

end
signature HEAP = sig

type item; type heap;
val insert : item * heap -> heap
...

end
functor MkHeap : (X : ORDERED)

-> HEAP where type item = X.t

structure rec Boot : ORDERED = struct
datatype t = ...Heap.heap...
fun compare (x,y) = ...

end
and Heap : (HEAP where type item = Boot.t) = MkHeap(Boot)

Figure 2. Bootstrapped Heap Example

typechecking the body of module A, we ought to know that X.A.t
is int, but we ought not know anything about X.B.u. When we are
typechecking the body of module B, we ought to know that X.B.u is
bool, but we ought not know anything about X.A.t. Additionally,
when typechecking B, we ought to be able to observe that a direct
hierarchical reference to A.t is interchangeable with a recursive
reference to X.A.t.

In the case of the module from Figure 1, such a typechecking
algorithm seems fairly straightforward, but it becomes much more
complicated if the recursive module body contains, for instance,
nested uses of opaque sealing. It is certainly possible to define
an algorithm that works in the general case—the author’s Ph.D.
thesis formalizes such an algorithm [5]—but it is not a pretty sight.
Furthermore, we would really like to be able to explain what is
going on using a type system, not just an algorithm.

1.2 Recursion Involving Generative Functor Application

Figure 2 exhibits another commonly desired form of recursive
module, one that is in some ways even more problematic than
the one from Figure 1. In this particular example, the goal is to
define a recursive data type Boot.t of so-called “bootstrapped
heaps,” a data structure proposed by Okasaki [17]. The important
feature of bootstrapped heaps (for our purposes) is that they are
defined recursively in terms of heaps of themselves, where “heaps
of themselves” are created by applying the library functor MkHeap
to the Boot module.

The problem with this definition, at least in the case of Standard
ML semantics [14], is that functors in SML behave generatively,
so each application of MkHeap produces a fresh abstract heap type
at run time. The way this is typically modeled in type theory is
by treating the return signature of MkHeap as synonymous with an
existential type. Consequently, while Boot.t must be defined be-
fore MkHeap(Boot) can be evaluated, the type Heap.heap will
not even exist until MkHeap(Boot) has been evaluated and “un-
packed.” It does not make sense in the ML type system to define
Boot.t in terms of a type (Heap.heap) that does not exist yet.

The usual solution to this problem is to assume that MkHeap is
not generative, but rather applicative [12]. Under applicative func-
tor semantics, MkHeap(Boot) is guaranteed to produce the same
heap type every time it is evaluated, and thus the definition of
Boot.t is allowed to refer to the type MkHeap(Boot).heap stati-
cally, without having to evaluate MkHeap(Boot) first. This solution
is certainly sensible if one is designing a recursive module exten-
sion to O’Caml [11], for O’Caml only supports applicative func-
tors. There are good reasons, however, for supporting generative

ICFP’05 2 2005/7/11

functors. Their interpretation in type theory is simpler than that of
applicative functors, and they provide stronger abstraction guaran-
tees that are desirable in many cases.3 It seems unfortunate that
MkHeap is required to be applicative.

1.3 Overview

Our exposition thus far begs the question: Is recursion fundamen-
tally at odds with type generativity? In this paper, we will argue that
the answer is no. We propose a novel account of type abstraction
that resolves the problems encountered in the above recursive mod-
ule examples and provides an elegant foundation for understanding
how recursion can coexist peacefully with generativity.

The basic idea is to separate the act of generating a name for an
abstract type from the act of defining its underlying representation.
To define several abstract types recursively, one may first “forward-
declare” them by generating their names, and then define each one
secretly within its own defining expression. Intuitively, this can
be viewed as a kind of backpatching semantics for recursion at
the level of types! The upshot is that there is a unique name for
each abstract type, which is visible to everyone (within a certain
scope), but the identity of each abstract type is only known inside
the term that defines it. This is exactly what was desired in both of
the recursive module examples discussed above.

While our new approach to type generativity is operationally
quite different from existing approaches, it is fundamentally com-
patible with the traditional interpretation of ADT’s in terms of exis-
tential types. The catch is that, while existential types are typically
understood via the continuation-passing Church encoding in terms
of universals4, we offer an alternative destination-passing interpre-
tation. Briefly, instead of viewing a value of existential type ∃α. A
as something that creates a new abstract type every time it is un-
packed, we view it as a function that takes as input a pre-existing
undefined type name β and defines it, returning a value of type A
(with β substituted for α). How the function has defined β, how-
ever, we do not know. By leaving the creation of the abstract type
name β up to the client of the existential, our approach makes it
significantly easier to link abstract data types together recursively.

The rest of the paper is structured as follows. In Section 2, we
discuss the details of our approach informally, and give examples to
illustrate how it works. In Section 3, we define a type system for re-
cursive type generativity as a conservative extension of System Fω .
In order to ensure that abstract types do not get defined more than
once, we treat type definitions as a kind of effect and track them
in the manner of an effect system [9, 22]. The intention is that this
type system may eventually serve as the basis of a recursive mod-
ule language. In Section 4, we explore the expressive power of our
destination-passing interpretation of ADT’s. Finally, in Section 5,
we discuss related work, and in Section 6, we conclude.

2. The High-Level Picture
We will now try to paint a high-level picture of how our approach
to recursive type generativity works. The easiest way to understand
is by example, so in Section 2.1, we use the recursive module
examples from Section 1 as a way of introducing the key constructs
of our language. In particular, we show how those examples would
be encoded in our language and why, under this new encoding, they
typecheck. Then, in Section 2.2, we also show how our approach
makes it possible to support separate compilation of recursive
abstract data types. Lastly, in Section 2.3, we discuss some of the
subtler issues that we encounter in attempting to prevent “bad”
cycles in type definitions.

3 For more details, see the discussion in Dreyer, Crary and Harper [6].
4 See Section 2.2 for details.

SIGA = λα :T. λβ :T. {f:α→β×α,...}
SIGB = λα :T. λβ :T. {g:α→β×α,...}
SIG = λα :T. λβ :T. {A:SIGA(α)(β), B:SIGB(α)(β)}

new α ↑T, β ↑T in

letrec X : SIG(α)(β) =

{A = (let () = α := int in
{f = ...})

: SIGA(α)(β) defines α,

B = (let () = β := bool in

{g = ...})
: SIGB(α)(β) defines β}

in ...

Figure 3. New Encoding of Example from Figure 1

2.1 Reworking the Examples

Figure 3 shows our new encoding of the recursive module exam-
ple from Figure 1. The first thing to notice here is that we have
dispensed with modules. SIGA, SIGB and SIG are represented here
via the well-known encoding of ML signatures as type operators in
System Fω. The idea is simply to view the types of a signature’s
value components as being parameterized over the signature’s ab-
stract type components. Correspondingly, the ML feature of using
where type to add type definitions to signatures is encodable in
Fω by type-level function application.5 (We employ this encoding
here merely so that we can study the interaction of recursion and
data abstraction at the foundational level of Fω, with which we as-
sume the reader is familiar. In the future, we intend to scale the
ideas of this paper to a more easily programmable language of re-
cursive modules.)

Starting on the fourth line, however, we see something that is
not standard. (The underlined portions of the code indicate new
features that are not part of Fω .) What the “new” declaration does
is create two new type variables α and β of kind T, the kind of base
types. Throughout this example, you can think of α as standing for
A.t, and β as standing for B.u, in the original example of Figure 1.

What does it mean to “create a new type variable”? Intuitively,
you can think of it much like creating a reference cell in memory.
Imagine that during the execution of the program you maintain a
type store, mapping locations (represented by type variables) to
types. Eventually, each location will get filled in with a type, but
when a type memory cell is first created (by the “new” construct),
its contents are uninitialized.6 Formally speaking, what the new
declaration does is to insert α and β into the type context with a
special binding of the form α ↑T, which indicates that they have
not yet been defined. We refer to such type variables as writable.

Next, we make use of a letrec construct to define A and B.
For simplicity, the letrec construct employs an unrestricted (i.e.,
potentially ill-founded) backpatching semantics for recursion.7

Specifically, we allocate an uninitialized ref cell X in memory,
whose type is rec(SIG(α)(β)). In order to use X within the body
of the recursive definition—i.e., in order to get a value of type
SIG(α)(β) without the “rec”—one must first dereference the

5 See Jones [10] for more examples of this encoding. Also, this is essentially
how the Definition of SML interprets signatures [14].
6 In fact, this is exactly how we are going to model “type creation” in the
dynamic semantics of our language in Section 3.4.
7 In principle, we believe it should be straightforward to incorporate static
detection of ill-founded recursion [4] into the present calculus, but we have
not yet attempted it.

ICFP’05 3 2005/7/11

ORDERED = λα : T. {compare:α×α→ order}
HEAP = λα : T. λβ :T. {insert:α×β→ β,...}

HEAPGEN = λα : T.∀β ↑T. unit
β↓
−→ HEAP(α)(β)

MkHeap : ∀α ↓T. ORDERED(α)→ HEAPGEN(α)

new α ↑T, β ↑T in

letrec X : {Boot:ORDERED(α), Heap:HEAP(α)(β)} =
let Boot = (let () = α :≈ (. . . β . . .)

in {compare = ...}) in

let Heap = MkHeap [α](Boot)[β]() in
{Boot=Boot, Heap=Heap}

in ...

Figure 4. New Encoding of Example from Figure 2

memory location by writing fetch(X). This fetch operation must
check whether X’s contents have been initialized and, if not, raise
a run-time error. Finally, when the body of the letrec is finished
evaluating, the resulting value (of type SIG(α)(β)) is backpatched
into the location X. (There are good reasons to require the derefer-
encing of X to be explicit, as we will see in Figure 5.)

Now for the definition of “module” A: The first thing we do here
is to backpatch the type name α with the definition int. The use
of “:=” notation is appropriate because at run time we can think
of this operation as modifying the contents of the α location in
the type store. At compile time, it results in a change to the type
context so that the typechecking of the remainder of A is done with
the knowledge that α is equal to int. As a result, the type errors
from Figure 1 disappear!

Once we have finished typechecking A, however, we want to
hide the knowledge that α is int from the rest of the program.
We achieve this in the next line by “sealing” the definition of A. Al-
though it is a bit hard to tell from Figure 3, the sealing construct has
the form “e : τ defines α”, where in this case τ is SIGA(α)(β).
The sealing construct does two things simultaneously: it exports e
at the type τ , and it removes the definition of α from the type con-
text in which the rest of the program is typechecked.8 While the
hiding of α’s definition is obviously important, it is critical to un-
derstand that the ascription of the type τ is just as important. In the
case of module A, it is the type ascription SIGA(α)(β) that ensures
that A.f is exported at the type α→β×α and not, say, at the type
int→ β× int.

Finally, there is the definition of B, which works similarly to the
definition of A.

Voilà! To summarize, by distinguishing the point at which α and
β are created from the points at which they are defined, we have
made it possible for all parties to refer to these types by the same
names, but also for the underlying representation of each type to be
specified and made visible only within its own defining expression.

Let us move on to Figure 4, which shows our new encoding of
the bootstrapped heap example. As in the previous example, we de-
fine two abstract types here, α and β, but now α stands for Boot.t,
and β for Heap.heap. The signatures ORDERED and HEAP are in pa-
rameterized form as expected, with the former parameterized over
the type α of items being compared, and the latter parameterized
over both the item type α and the heap type β.

The most unusual (and important) part of this encoding is the
type that we require for the MkHeap functor. Under the standard

8 Note that sealing is purely a compile-time notion—at run time, the defini-
tion of α is not actually removed from the type store.

encoding of generative functors into Fω , we would expect MkHeap
to have the type

∀α :T. ORDERED(α)→∃β :T. HEAP(α)(β)

The type shown in Figure 4 differs from our expectations in two
ways. First, while α is universally quantified, the quantification is
written α ↓T. The reason for this has to do with avoiding cycles
in transparent type definitions, and we will defer explanation of
it until Section 2.3. For the moment, read α ↓T as synonymous
with α :T. Second, MkHeap’s result type, HEAPGEN(α), is not an
existential, but some weird kind of universal!

Indeed, HEAPGEN(α) = ∀β ↑T. unit
β↓
−→ HEAP(α)(β) is a uni-

versal type, but a very special one. Specifically, a function of this
type requires its type argument to be a type variable that has not
yet been defined (hence, the notation ∀β ↑T). Moreover, when
the function is applied, it will not only return a value of type
HEAP(α)(β), but also define β in the process. We write β ↓ on the
arrow type to indicate that the application of the function engenders
the effect of defining β, but how it defines β we cannot tell.

The reason for defining HEAPGEN(α) in this fashion is that it
allows us to come up with a name (β) for the Heap.heap type
ahead of time, before the MkHeap functor is applied. In this way, it
is possible for the definition of α (i.e., Boot.t) to refer to β before
β has actually been defined. As we explained in Section 1.2, this is
something that is not possible under the ordinary interpretation of
HEAPGEN(α) as an existential type.

The only other point of interest in this encoding is that α is
defined by a new kind of assignment (:≈). One can think of
this assignment as analogous with datatype definitions in SML,
just as := is analogous with transparent type definitions (type
synonyms). The definition of α in Boot does not change the fact
that α is an abstract type, but it introduces fold and unfold
coercions that allow one to coerce back and forth between α and
its underlying definition. This form of type definition is necessary
in order to break up cycles in the type-variable dependency graph.
We discuss this point further in Section 2.3.

2.2 Destination-Passing Style and Separate Compilation

The strange new universal type that we used to define HEAPGEN(α)
in the last example can be viewed as a kind of existential type
in sheep’s clothing. Under the usual Church encoding of existen-
tial types in terms of universals, ∃α : K. τ can be understood as
shorthand for ∀β :T. (∀α : K. τ→ β)→β. This is quite similar to

∀α ↑K. unit
α↓
−→ τ in the sense that a function of either type has

some type constructor α of kind K and some value of type τ hidden
inside it, but the function’s type won’t tell you what α is. The dif-
ference is that the Church encoding is a function in continuation-
passing style (CPS), whereas our new encoding is a function in
destination-passing style (DPS) [24]. In Section 4.2, we will make
the DPS encoding of existentials precise.

So, one may wonder, if our DPS universal type is really an
existential in disguise, why don’t we just write, say, ∃α ↑K. A

instead of ∀α ↑K. unit
α↓
−→ τ? Why bother with the unit? The

answer is that in some cases we want to write a function of type

∀α ↑K. τ1

α↓
−→ τ2 where α ∈ FV(τ1)—that is, a function that

takes as input a writable type name α, together with a value whose
type depends on α. In typical programming this does not come up
often, but with recursive modules it arises naturally, especially in
the context of separate compilation.

Figure 5 illustrates such a situation. The goal here is to allow
the recursive “modules” A and B from Figure 3 to be compiled
separately. We have put the implementations of A and B inside of
two separate “functors” SeparateA and SeparateB, represented
as polymorphic functions. SeparateA takes β (i.e., B.u) as its first

ICFP’05 4 2005/7/11

SeparateA : ∀β :T.∀α ↑T. rec(SIG(α)(β))
α↓
−→ SIGA(α)(β)

= Λβ :T. Λα ↑T. λX : rec(SIG(α)(β)). ...

SeparateB : ∀α :T.∀β ↑T. rec(SIG(α)(β))
β↓
−→ SIGB(α)(β)

= Λα :T. Λβ ↑T. λX : rec(SIG(α)(β)). ...

new α ↑T, β ↑T in
letrec X : SIG(α)(β) =
{A = SeparateA [β][α](X), B = SeparateB [α][β](X)}

in ...

Figure 5. Separate Compilation of A and B from Figure 3

argument, α (i.e., A.t) as its second argument, and the recursive
module variable X as its third argument. The type of SeparateA
employs a DPS universal type to bind α because SeparateA wants
to take a writable A.t and define it. Note, however, that β is
bound normally as β :T. (SeparateB of course does the opposite,
because it wants to define β, not α.) The important point here is
that the type of the argument X refers to both α and β and therefore
cannot be moved outside of the DPS universal.9 If all we had was a
DPS universal of the form ∀α ↑K. unit

α↓
−→ τ , we would have no

way of typing SeparateA and SeparateB.
If it is so important to be able to write a function that takes a

value argument after an α ↑K argument, it is natural to ask why
we do not just offer two separate type constructs, ∀α ↑K. τ and

τ1

α↓
−→ τ2, of which ∀α ↑K. τ1

α↓
−→ τ2 would be the composition.

The former construct would require its argument to be a writable
variable, and the latter would be a standard sort of effectful function
type, in this case the effect being the definition of some externally-
bound type variable α.

The reason we do not divide up the DPS universal type in this
way is that such a division would result in serious complications for

our type system. The main complication is that, while τ1

α↓
−→ τ2

looks like a standard sort of effect type, the effect in question is
highly unusual. In particular, if f were a function of that type, it
could only be applied once because, for soundness purposes, we
require that a type variable α can only be defined once. Another

way of saying this is that the type τ1

α↓
−→ τ2 only makes sense

while α is writable.
Meta-theoretically speaking, this becomes problematic from the

point of view of defining type substitution. If at some point in the
program α gets defined as τ , and α’s binding in the context changes
correspondingly from α ↑T to α :T= τ , then we should be able
to substitute τ for free occurrences of α. But substituting τ for α

in τ1

α↓
−→ τ2 does not make sense. In contrast, our type system has

the property that well-formed types stay well-formed, regardless of
whether their free type variables go from being writable to being
defined.

2.3 Avoiding Cycles in Transparent Type Definitions

We have now presented all the key constructs in our language and
shown how they can be used to support recursive definitions of
generative abstract data types. In order to make this approach work,
there are two points of complexity that our type system has to deal
with. One involves making sure that writable type variables get
defined once and only once. This is a kind of linearity property

9 Also important to the success of this encoding is the fact that X must be
explicitly dereferenced. Otherwise, the references to X in the linking module
would result in a run-time error. See Dreyer [4] for more discussion of this
issue.

and it is not fundamentally difficult to track using a type-and-effect
system, as we explain in Section 3.

The other point concerns our desire to avoid cycles in trans-
parent type definitions. While our language is designed to permit
recursive definitions of abstract types, we require that every cy-
cle in the type dependency graph must go through a “datatype,”
i.e., one that was defined by α :≈A.10 We make this restriction
because we want to keep the definition of type equivalence sim-
ple. If we were able to define α := β×β and β := α×α, then we
would need to support some form of equi-recursive types [1, 3]. In
fact, since we allow definitions of type constructors of higher kind,
we would need to support equi-recursive type constructors, whose
equational theory is not fully understood.

The mechanism we employ to guarantee that no transparent
type cycles arise is slightly involved, but the reasoning behind it
is straightforward to understand. Let us step through it. First of all,
if α is defined by α :≈A, then clearly no restrictions are necessary.
If, however, α is defined transparently by α := A, then we must
require at the very least that A does not depend on α. By “depend
on,” we mean that if all known type synonyms were expanded out,
then α would not appear in the free variables of the expanded A.

Unfortunately, in the presence of data abstraction, this restric-
tion alone is not sufficient. Suppose, for instance, that in our exam-
ple from Figure 3 the type variable α were defined by A and β by B
(instead of by int and bool). The definition of α and the definition
of β each occur in contexts where the other variable is considered
abstract. Consequently, the restriction that A not depend on α and
B not depend on β would not prevent A from depending on β and
B from depending on α. How can our type system ensure that each
definition does not contribute to a transparent cycle without peek-
ing at what the other one is (and hence violating abstraction)?

A simple, albeit conservative, solution to this dilemma is to de-
mand that, if α is defined by α := A, then A may not depend on any
abstract type variables except those that are known to be datatypes.
We will say that a type A obeying this restriction is stable. While
this approach does the trick, it is rather limiting. For example, in
ML, it is common to define a type transparently in terms of an
abstract type imported from another module (which may or may
not be known to be a datatype). The stability restriction, however,
would prohibit such a type definition inside a recursive module.

Therefore, to make our type system less draconian, we employ
a modified form of the above conservative solution, in which the
restriction on transparent definitions is relaxed in two ways. First,
in order to permit transparent definitions to depend on abstract
types that are not datatypes, we expand the notion of stability by
allowing type variables to be considered stable if they are bound in
the context as such. A stable type variable, bound as α ↓K, may
only be instantiated with other stable types. We also introduce a
new form of universal type, ∀α ↓K. τ , describing functions whose
type arguments must be stable.

We have already seen an instance where a stable universal is
needed, namely in the type of the MkHeap functor from Figure 4.
The reason for quantifying the item type α as a stable variable
is that it enables the MkHeap functor to define the heap type β
transparently in terms of α (e.g., β :=α list). If α were only
bound as α :T, then β would have to be defined as a datatype in
order to ensure stability. Since MkHeap requires its item argument
to be stable, it is imperative that the actual type α to which it is
applied be stable. In the case of the Boot module, α is defined as a
datatype, so all is well.

The second way in which we relax the restriction on transpar-
ent type definitions is that, while we require them to be stable, we

10 We use A and B here to denote type constructors of arbitrary kind, as
opposed to τ , which represents types of kind T.

ICFP’05 5 2005/7/11

Type Variables α, β
Kinds K, L ::= T | 1 | K1×K2 | K1→K2

Constructors A,B ::= α | b | 〈〉 | 〈A1, A2〉 | πiA |
λα : K. A | A1(A2)

Base Types b ::= unit | A1×A2 | A1→A2 |
rec(A) | ∀α : K. A | ∀α ↓K. A |

∀α ↑K. A1

α↓
−→A2

Eliminations E ::= • | πiE | E(A)
Type Contexts ∆ ::= ∅ | ∆, α : K | ∆, α ↑K | ∆, α ↓K |

∆, α : K =A | ∆, α : K≈A
Type Effects ϕ ::= ∅ | ϕ, α :=A | ϕ, α :≈A | ϕ, α ↓

Figure 6. Syntax of Types

do not need them to be immediately stable. For example, say we
have two writable type variables α and β. It is clearly ok to define
β := int, followed by α := β, but what about processing the defini-
tions in the reverse order? If α := β comes first, then α’s definition
is momentarily unstable. Ultimately, though, the definitions are still
perfectly acyclic because α’s definition is eventually stable. More-
over, there are situations where it is useful to have the flexibility of
defining α and β in either order (in particular, see Section 4.1).

To afford this flexibility, when typechecking α := A, we allow
A to depend on some set of writable variables {βi} not including α,
so long as the βi are all backpatched with stable definitions by the
time α is sealed (i.e., by the time e, in “e : τ defines α,” has fin-
ished evaluating). While this requirement is not strictly necessary,
it allows us to treat all sealed abstract types as stable, which in turn
means that subsequent code may depend on them freely, without
any restrictions.

3. The Type System
3.1 Type Structure

The syntax of our type structure is shown in Figure 6. The base type
constructors b include all the usual Fω base types, plus the new type
constructs introduced in the examples of Section 2. The language
of higher type constructors and kinds is standard Fω , extended
with products. Type eliminations E are used in the typing rules
for fold’s and unfold’s (see the discussion of Rules 13 and 14
in Section 3.2).

Type contexts ∆ include bindings for ordinary types (α : K),
writable types (α ↑K), stable types (α ↓K), transparent type
synonyms (α : K =A) and datatypes (α : K≈A). We treat type
contexts as unordered sets and assume implicitly that all bound
variables are distinct. We write writable(∆) to denote the set of
writable type variables bound in ∆. We write ∆(α) to denote the
kind to which α is bound in ∆. Type contexts are permitted to con-
tain cycles as long as those cycles are broken by a datatype binding.
To be precise:

Definition 3.1 (Acyclic Type Contexts)
We say that a type context ∆ is acyclic if there is an order-
ing of its domain—α1, · · · , αn—such that, for all i ∈ 1..n, if
αi : Ki = Ai ∈ ∆, then FV(Ai) ⊆ {α1, · · · , αi−1}. In this case,
we call α1, · · · , αn an acyclic ordering of ∆.

Definition 3.2 (Well-Formed Type Contexts)
We say that a type context ∆ is well-formed, written ` ∆ ok, if:

1. ∆ is acyclic
2. (α : K =A ∈ ∆ ∨ α : K≈A ∈ ∆)⇒ ∆ ` A : K

Value Variables x, y
Values v ::= x | () | (v1, v2) | λx : A. e |

Λα : K. e | Λα ↓K. e |
Λα ↑K. λx : A. e |
foldA | unfoldA | foldA(v)

Terms e, f ::= v | πiv | v1(v2) | v[A] | v1[α](v2) |
recA(x. e) | fetch(v) |
let α =A in e | let x= e1 in e2 |
new α ↑K in e : A |
α := A | α :≈A | e : A defines α

Value Contexts Γ ::= ∅ | Γ, x : A

Figure 7. Syntax of Terms

The type well-formedness judgment (∆ ` A : K) referred to
in part 2 of Definition 3.2 is defined in the obvious way (some
representative rules appear in Appendix A). The only thing that
the type well-formedness judgment needs to know from ∆ is what
the kinds of its bound variables are. It does not care whether type
variables are writable or transparent, or even whether ∆ is acyclic.

Type equivalence is slightly more complicated, due to the pres-
ence of type synonyms. To account for these, we use the equiva-
lence judgment (∆ ` A1 ≡ A2 : K) defined by Stone in Sec-
tion 9.1 of Pierce’s ATTAPL book [20].11 Our new base types, like
the DPS universal type, do not at all complicate type equivalence,
which Stone shows is relatively easy to prove decidable (assum-
ing ∆ is well-formed). Note that the type equivalence judgment
treats datatype bindings (α : K≈A) no different from ordinary ab-
stract type bindings (α : K). See Appendix A for some representa-
tive equivalence rules.

In order to define what it means to be a stable type constructor,
we first define a useful auxiliary notion, which we call the basis of a
type constructor. Intuitively, the basis of a type constructor A is the
set of unstable abstract type variables on which A depends. This
is determined by inductively crawling through the type context.
Stable types are precisely those types whose bases are empty.
Formally:

Definition 3.3 (Basis of a Type Constructor)
Given a type constructor A and an acyclic context ∆, where
FV(A) ⊆ dom(∆), let basis∆(A) be defined as

⋃

{basis∆(α) |
α ∈ FV(A)}, where basis∆(α) is defined inductively as follows:

basis∆(α)
def

=

∅ if α : K≈A ∈ ∆ or α ↓K ∈ ∆
{α} if α ↑K ∈ ∆ or α : K ∈ ∆
basis∆(A) if α : K= A ∈ ∆

Note: assuming α1, · · · , αn is an acyclic ordering of ∆, the above
definition is sensible because basis∆(αi) is defined only in terms
of basis∆(αj) for j < i.

Definition 3.4 (Stable Type Constructor)
We say that a type constructor A (with kind K in acyclic context ∆)
is stable, written ∆ ` A ↓ K, if ∆ ` A : K and basis∆(A) = ∅.

The final and most interesting element of Figure 6 is the defi-
nition of type effects ϕ. A type effect is an unordered set of type
variable definitions (backpatchings). The domain of ϕ is the set of
type variables being defined in ϕ (each entry in ϕ must define a dis-
tinct variable). A type variable α can either be defined transparently

11 N.B. The language we are referring to is not the Stone-Harper singleton
kind language [21]; it is just Fω with β-η equivalence, extended with
support for type definitions in the context.

ICFP’05 6 2005/7/11

Well-formed terms: ∆; Γ ` e : A with ϕ

We write ∆; Γ ` e : A as shorthand for ∆; Γ ` e : A with ∅.

x : A ∈ Γ
∆; Γ ` x : A

(1)
∆; Γ ` () : unit

(2)
∆; Γ ` v1 : A1 ∆; Γ ` v2 : A2

∆; Γ ` (v1, v2) : A1×A2

(3)
∆; Γ ` v : A1×A2 i ∈ {1, 2}

∆; Γ ` πiv : Ai

(4)

∆ ` A : T ∆; Γ, x : A ` e : B

∆; Γ ` λx : A. e : A→B
(5)

∆; Γ ` v1 : A→B ∆; Γ ` v2 : A

∆; Γ ` v1(v2) : B
(6)

∆, α : K; Γ ` e : A

∆; Γ ` Λα : K. e : ∀α : K. A
(7)

∆; Γ ` v : ∀α : K.B ∆ ` A : K

∆; Γ ` v[A] : {α 7→A}B
(8)

∆, α ↓K; Γ ` e : A

∆; Γ ` Λα ↓K. e : ∀α ↓K.A
(9)

∆; Γ ` v : ∀α ↓K. B ∆ ` A ↓ K

∆; Γ ` v[A] : {α 7→A}B
(10)

∆, α : K ` A : T ∆, α ↑K; Γ, x : A ` e : B with α ↓

∆; Γ ` Λα ↑K. λx : A. e : ∀α ↑K. A
α↓
−→B

(11)

∆; Γ ` v1 : ∀α ↑K. A
α↓
−→B ∆; Γ ` v2 : {α 7→β}A β ↑K ∈ ∆

∆; Γ ` v1[β](v2) : {α 7→β}B with β ↓
(12)

∆ ` A ≡ E{α} : T α : K≈B ∈ ∆

∆; Γ ` foldA : E{B}→A
(13)

∆ ` A ≡ E{α} : T α : K≈B ∈ ∆

∆; Γ ` unfoldA : A→E{B}
(14)

∆ ` A : T ∆; Γ, x : rec(A) ` e : A with ϕ

∆; Γ ` recA(x. e) : A with ϕ
(15)

∆; Γ ` v : rec(A)

∆; Γ ` fetch(v) : A
(16)

∆ ` A : K ∆, α : K =A; Γ ` e : B with ϕ

∆; Γ ` let α =A in e : {α 7→A}B with {α 7→A}ϕ
(17)

∆; Γ ` e1 : A1 with ϕ1 ∆ @ϕ1; Γ, x : A1 ` e2 : A2 with ϕ2

∆; Γ ` let x = e1 in e2 : A2 with ϕ1, ϕ2

(18)

∆, α ↑K; Γ ` e : A with ϕ, α ↓ α 6∈ FV(A) ∪ FV(ϕ)

∆; Γ ` (new α ↑K in e : A) : A with ϕ
(19)

α ↑K ∈ ∆ ∆ ` A : K basis∆(A) ⊆ writable(∆) \ {α}

∆; Γ ` α := A : unit with α := A
(20)

α ↑K ∈ ∆ ∆ ` A : K

∆; Γ ` α :≈A : unit with α :≈A
(21)

α ↑K ∈ ∆ ∆; Γ ` e : A with ϕ ∆ @ϕ ` α ↓ K

∆; Γ ` (e : A defines α) : A with (ϕ sealing α)
(22)

∆; Γ ` e : B with ϕ ∆ @ϕ ` A ≡ B : T

∆; Γ ` e : A with ϕ
(23)

Figure 8. Static Semantics

(α := A), by a datatype definition (α :≈A), or abstractly (α ↓). The
last kind of definition only arises as the result of the sealing opera-
tion (e : A defines α), as discussed in the next section.

In our type system, it is useful to have a shorthand ∆ @ϕ
for “applying” the type effect ϕ to ∆. The application results in
a type context that reflects the definitions in ϕ. Assuming that
dom(ϕ) ⊆ writable(∆), we define ∆ @ ϕ as follows:

∆ @ϕ
def

= (∆ \ {α ↑K | α ↑K ∈ ∆ ∧ α ∈ dom(ϕ)})
∪{α : K =A | α ↑K ∈ ∆ ∧ α := A ∈ ϕ}
∪{α : K≈A | α ↑K ∈ ∆ ∧ α :≈A ∈ ϕ}
∪{α ↓K | α ↑K ∈ ∆ ∧ α ↓ ∈ ϕ}

Note that variables that have been defined abstractly (α ↓) are
classified as stable in the new context. This is sound because α ↓
arises from uses of sealing, and sealed types are always stable (see
the end of Section 2.3).

Definition 3.5 (Well-Formed Type Effects)
We say that a type effect ϕ is well-formed in type context ∆,
written ∆ ` ϕ ok, if:

1. dom(ϕ) ⊆ writable(∆)

2. ` ∆ @ϕ ok

3. ∀α :=A ∈ ϕ. basis∆(A) ⊆ writable(∆)

The first two conditions are straightforward. The third condition
checks that for all transparent definitions α :=A in ϕ, the right-
hand side A does not depend on any variables β bound as β : K.
The reason for this is simple: if A depends on an unstable, non-
writable β, there is no way that A can eventually become stable via
the backpatching of β. Thus, since A is irrevocably unstable, there
is no point in allowing the definition α := A.

3.2 Term Structure

The syntax of our term structure is shown in Figure 7. After the
exposition of Section 2, the new term constructs in our language
should all look familiar. A few minor exceptions: let α = A in e
enables local transparent type definitions inside expressions. One
can think of this as shorthand for {α 7→A}e, that is, e with A
substituted for free occurrences of α. Also, instead of a letrec,
we employ a self-contained recA(x. e) expression. One can think
of this as shorthand for letrec x : A = e in x.

For simplicity, we require that all sequencing of operations be
done explicitly with the use of a let expression (let x = e1 in e2).

ICFP’05 7 2005/7/11

It is straightforward to code up standard left-to-right (or right-to-
left) call-by-value semantics for function application, etc., using a
let.

We say that a value context Γ is well-formed under type context
∆, written ∆ ` Γ ok, if ` ∆ ok and ∀x : A ∈ Γ. ∆ ` A : T.

Figure 8 defines the typing rules for terms. Our typing judgment
(∆; Γ ` e : A with ϕ) is read: “Under type context ∆ and value
context Γ, the term e has type A and type effects ϕ.” We leave off
the “with ϕ” if ϕ = ∅.

Rules 1 through 8 are completely standard. Note that func-
tion bodies are not permitted to have type effects, i.e., to define
externally-bound type variables. If they were, we would need to

support effect types like A1

α↓
−→ A2, which we argued in Sec-

tion 2.2 is a problematic feature.
Rules 9 and 10 for stable universals are completely analogous

to the normal universal rules (7 and 8).
Rules 11 and 12 for DPS universals are straightforward as well.

The body of a DPS universal is required to define its type argument,
but that is the only type effect it is allowed to have since that is
the only effect written on its arrow. What if we want to write a
function that takes multiple writable type arguments and defines
all of them? It turns out that such a function is already encodable
within the language by packaging all the writable types together as
a single writable type constructor of product kind. See Section 4.1
for details.

Rules 13 and 14 for foldA and unfoldA require that the type
A that is being folded into or out of is some type path E{α} rooted
at a datatype variable α, whose underlying definition is B. These
coercions witness the isomorphism between E{α} and E{B}.12

Rules 15 and 16 for rec and fetch are completely straight-
forward. Notice that the body of a rec may have arbitrary type
effects. Also, the canonical forms of type rec(A) are variables.
In the dynamic semantics (Section 3.4), we use variables to model
backpatchable memory locations.

Rule 17 processes the let binding of α =A by adding that
type definition to the context when typechecking the let body. It
substitutes A for α, however, in the result type and type effect. Note
that there is no need to restrict A to be stable because α’s definition
as A is never hidden.

Rule 18 for let x = e1 in e2 is slightly interesting in that the
type effect ϕ1 engendered by e1 must be applied to the type context
∆ before typechecking e2.

Rule 19 for new α ↑K in e : A, as a matter of simplicity, re-
quires e to define and seal the new writable variable α. However,
α may not escape its scope by appearing in the free variables of
the result type A or in any other type effects ϕ that e might have.
We ask for new to be annotated with its result type so that the type-
checking algorithm does not have to guess one (via normalization)
that does not refer to α.

Rule 20 for transparent type definitions, α := A, implements
what we described at the end of Section 2.3. In particular, the third
premise, basis∆(A) ⊆ writable(∆) \ {α}, allows A to depend on
any writable type variables besides α. The rule does not check that
A is immediately stable. Stability will be checked later on, at the
point when α is sealed (Rule 22).

Rule 21 for datatype definitions simply checks that the variable
being defined is in fact writable. There is nothing else interesting
to check because datatype definitions cannot introduce any cycles.

Rule 22 concerns the sealing construct (e : A defines α). The
first premise ensures that α is a writable variable (otherwise, e

12 For simplicity, we have made foldA and unfoldA into new canonical
forms of the ordinary arrow type. In practice, one may wish to classify these
values using a separate coercion type, so as to indicate to the compiler that
they behave like the identity function at run time [23].

should certainly not be allowed to define it!). The second premise
checks that e has the export type A along with some effects ϕ.
The third premise then checks that, once ϕ has been applied to the
type context ∆, α is stable. It is now safe to seal the definition of
α. To denote the sealing of α’s definition in the type effect of the
conclusion, we write “ϕ sealing α,” defined as follows:

Definition 3.6 (Sealing a Type Variable in a Type Effect)
Suppose ϕ is a type effect whose domain includes the type variable
α. Let ϕ = ϕ1, ϕ2, where dom(ϕ2) = {α} (so α 6∈ dom(ϕ1)).
Then, we will write “ϕ sealing α” as shorthand for ϕ1, α ↓.

Finally, Rule 23 allows for type conversion. The rule is slightly
interesting in that type conversion is done in the context ∆ @ϕ
instead of ∆. This is because the type of e describes the value that
e evaluates to. That value exists in the “post-ϕ” world of ∆ @ϕ,
where more type definitions may be available, so it is useful to
allow type conversion to occur there.

3.3 Some Interesting Properties of the Static Semantics

Here we discuss some useful properties of our type system. For any
type judgment J , we will use the notation “∆ J ” to signify that
` ∆ ok and ∆ ` J . For any term judgment J , we will use the
notation “∆; Γ J ” to signify that ∆ ` Γ ok and ∆; Γ ` J .

First, we have a validity property, stating that well-formed terms
have well-formed types and well-formed type effects.

Proposition 3.7 (Validity)
If ∆; Γ e : A with ϕ, then ∆ ` A : T and ∆ ` ϕ ok.

Next, we have some substitution properties. Let a type substitu-
tion δ be a total mapping from type variables to type constructors
that behaves like the identity on all but a finite set of variables,
called its domain, written dom(δ). Let id stand for the identity sub-
stitution. We will write δA (resp. δe, δϕ, or δΓ) to signify the result
of performing the substitution δ on the free variables of A (resp. e,
ϕ, or Γ) in the usual capture-avoiding manner. Note that the free
type variables of ϕ include dom(ϕ).

We must actually define the notion of well-formed substitution
quite carefully in order to make the theorems go through:

Definition 3.8 (Well-Formed Type Substitutions)
We say that a type substitution δ maps ∆ to ∆′, written ∆′ ` δ : ∆,
if:

1. dom(δ) ⊆ dom(∆)

2. ` ∆ ok and ` ∆′ ok

3. ∀α ↑K ∈ ∆. ∃α′ ↑K ∈ ∆′. α′ = δα

4. ∀α1 ↑K1 ∈ ∆. ∀α2 ↑K2 ∈ ∆. (α1 6= α2)⇒ (δα1 6= δα2)

5. ∀α : K= A ∈ ∆.
(∆′ ` δα ≡ δA : K) ∧ (basis∆′ (δα) ⊆ basis∆′(δA))

6. ∀α : K≈A ∈ ∆. ∃α′ : K≈A′ ∈ ∆′.
(α′ = δα) ∧ (∆′ ` A′ ≡ δA : K)

7. ∀α ↓K ∈ ∆. ∆′ ` δα ↓ K

8. ∀α : K ∈ ∆. ∆′ ` δα : K

Conditions 1, 2 and 8 are completely straightforward. Conditions 3
and 6 require that δ maps writable and datatype variables to type
variables of the same classes. Condition 7 guarantees that δ maps
stable type variables to stable types (not necessarily variables).
Condition 4 ensures that δ does not alias two writable variables
that were distinct in the original ∆. This is critical, since writable
variables may only be backpatched once.

Condition 5 checks that δ maps transparent type variables to
types that match their definitions. The second conjunct of this

ICFP’05 8 2005/7/11

condition may seem redundant, but it is not. For example, suppose
α :T= unit ∈ ∆, β ↑T ∈ ∆′, and δ(α) = (λα′ : T. unit)(β).
While it is certainly true that δ(α) is equivalent to δ(unit), it is
not the case that basis∆′(δ(α)) ⊆ basis∆′(δ(unit)) because δ(α)
refers to β (albeit in a useless way). This situation could potentially
be avoided by defining basis∆(A) in a more sophisticated way
(e.g., by first normalizing A, and then computing the set of type
variables that its normal form depends on).

In any case, the reason we care about the second conjunct of
Condition 5 is in order to obtain the following monotonicity prop-
erty, which is useful in proving various theorems. It says essen-
tially that, if a type A only depends on some set of writable vari-
ables, then the basis of A cannot grow unexpectedly to include
other variables when the type undergoes a well-formed substitu-
tion. One obvious instance where this is important is in proving
substitution (Proposition 3.12 below) for the construct “α := A”
(Rule 20). When we apply a substitution δ to this construct, we
want to make sure that δA does not suddenly depend on δα.

If S is a set of type variables, let δS denote {δα | α ∈ S}.

Proposition 3.9 (Monotonicity)
If ∆′ ` δ : ∆ and basis∆(A) ⊆ writable(∆),
then basis∆′ (δA) ⊆ δ(basis∆(A)).

We can now state several type substitution properties:

Proposition 3.10 (Substitution on Types)
Suppose ∆′ ` δ : ∆. Then:

1. If ∆ ` A : K, then ∆′ ` δA : K.
2. If ∆ ` A ↓ K, then ∆′ ` δA ↓ K.
3. If ∆ ` A1 ≡ A2 : K, then ∆′ ` δA1 ≡ δA2 : K.
4. If ∆ ` Γ ok, then ∆′ ` δΓ ok.

Proposition 3.11 (Substitution on Type Effects)
If ∆′ ` δ : ∆ and ∆ ` ϕ ok,
then ∆′ ` δϕ ok and ∆′ @ δϕ ` δ : ∆ @ϕ.

Proposition 3.12 (Type Substitution on Terms)
If ∆′ ` δ : ∆ and ∆; Γ e : A with ϕ,
then ∆′; δΓ ` δe : δA with δϕ.

A similar property holds for value substitutions, but the definition
of a well-formed value substitution is much more obvious. See
Appendix B for details and statements of other useful properties.

In proving type soundness, we have found the following lemma
to be very handy. We call it the “use it or lose it” lemma because it
states this simple strengthening property: if a term e is well-typed
in a context where a type variable α is bound as writable, but e does
not use the fact that α is writable, then e will also be well-typed in
a context where α is not writable. Like the validity and substitution
properties, this lemma is provable by straightforward induction on
derivations.

Lemma 3.13 (Use It Or Lose It)
If ∆, α ↑K; Γ e : A with ϕ and ∆, α : K ` ϕ ok,
then ∆, α : K; Γ e : A with ϕ.

One corollary of this lemma says that terms that have no type
effects (most notably, values) remain well-typed even if type effects
are applied to their context. This fact is important in showing
that the mutable value store maintained by our dynamic semantics
remains well-formed throughout execution.

Corollary 3.14 (“Pure” Terms Stay Well-Typed Under Effects)
If ∆; Γ e : A and ∆ ` ϕ ok, then ∆@ ϕ; Γ e : A.

Proof:
Let ∆′ = (∆ \ {α ↑K | α ↑K ∈ ∆}) ∪ {α : K | α ↑K ∈ ∆}. By
Lemma 3.13, ∆′; Γ e : A. It is easy to see that ∆ @ ϕ ` id : ∆′.
Thus, the desired result follows by Proposition 3.12. �

Another corollary says that if we have an expression e referring
to two writable type variables of the same kind, and e only depends
on one of them being writable, then we can merge them into one
writable type variable. As stated here, this is exactly what we need
in order to prove type preservation in the case of β-reduction for
DPS universal types (cf. Rule 11 in Figure 8, and Rule 28 in
Figure 9).

Corollary 3.15 (Merging Together Two Writable Types)
If ∆ ` Γ ok and β ↑K ∈ ∆
and ∆, α ↑K; Γ, x : A e : B with α ↓,
then ∆; Γ, x : {α 7→ β}A {α 7→ β}e : {α 7→β}B with β ↓.

Proof: Let ∆ = ∆′, β ↑K.
By Lemma 3.13, ∆′, β : K, α ↑K; Γ, x : A e : B with α ↓. It is
easy to see that ∆ ` {α 7→ β} : ∆′, β : K, α ↑K. Thus, the desired
result follows by Proposition 3.12. �

Finally, although we do not provide a typechecking algorithm
here, it is completely straightforward to write one that, given well-
formed contexts ∆ and Γ and a well-formed term e, synthesizes a
unique type effect ϕ for e, as well as a type A that is unique up to
type conversion under ∆ @ ϕ.

3.4 Dynamic Semantics and Type Soundness

We define the dynamic semantics of our language in Figure 9
using an abstract machine semantics. A machine state Ω is either
of the form BlackHole or (∆; ω; C; e). The former arises when
an attempt is made to fetch a recursive location whose contents
have not yet been initialized. In the normal state, ∆ is the current
type context (i.e., the type store), ω is the current value store, C
is the current continuation, and e is the expression currently being
evaluated.

In the language defined here, the only purpose of the value
store is to support a backpatching semantics for recursion. It could
naturally be extended to support other things, such as mutable
references. A value store ω binds variables to either values (v) or
junk (?). Assuming x ∈ dom(ω), we write ω(x) to denote the
contents of location x in ω. Mirroring the syntax of type effect
application, we write ω @ x := v to signify the store ω′ with the
property that dom(ω′) = dom(ω), ω′(x) = v, and ω′(y) = ω(y)
for all y ∈ dom(ω), y 6= x.

We define well-formedness of value stores as follows:

Definition 3.16 (Run-Time Value Contexts)
We say that a value context Γ is run-time if it only contains bindings
of the form x : rec(A).

Definition 3.17 (Well-Formed Value Stores)
We say that a value store ω is well-formed in ∆ and has type Γ,
written ∆ ` ω : Γ, if:

1. ∆ ` Γ ok and Γ is run-time
2. dom(ω) = dom(Γ)

3. ∀x : rec(A) ∈ dom(Γ).
either ω(x) = ? or ∆; Γ ` ω(x) : A

Continuations C are represented as stacks of continuation
frames F . There are only two continuation frames. The first is
let x= • in e, which waits for x’s binding to evaluate to a value
v and then plugs v in for x in e. The second is recA(x←•), which

ICFP’05 9 2005/7/11

Machine States Ω ::= (∆; ω; C; e) | BlackHole
Value Stores ω ::= ∅ | ω, x 7→ v | ω, x 7→ ?
Continuations C ::= • | C ◦ F
Continuation Frames F ::= let x = • in e | recA(x← •)

Reductions: e ; e′

πi(v1, v2) ; vi

(24)
(λx : A. e)(v) ; {x 7→ v}e

(25)

(Λα : K. e)[A] ; {α 7→A}e
(26)

(Λα ↓K. e)[A] ; {α 7→A}e
(27)

(Λα ↑K. λx : A. e)[β](v) ; {α 7→β}{x 7→ v}e
(28)

unfoldA(foldB(v)) ; v
(29)

let α =A in e ; {α 7→A}e
(30)

e : A defines α ; e
(31)

Machine state transitions: Ω ; Ω′

e ; e′

(∆; ω; C; e) ; (∆; ω; C; e′)
(32)

(∆; ω; C; let x = e1 in e2) ; (∆; ω; C ◦ let x= • in e2; e1)
(33)

(∆; ω; C ◦ let x= • in e; v) ; (∆; ω; C; {x 7→ v}e)
(34)

x 6∈ dom(ω)

(∆; ω; C; recA(x. e)) ; (∆; ω, x 7→ ?; C ◦ recA(x← •); e)
(35)

x ∈ dom(ω)

(∆; ω; C ◦ recA(x← •); v) ; (∆; ω @ x := v; C; v)
(36)

x ∈ dom(ω) ω(x) = v

(∆; ω; C; fetch(x)) ; (∆; ω; C; v)
(37)

x ∈ dom(ω) ω(x) = ?

(∆; ω; C; fetch(x)) ; BlackHole
(38)

α 6∈ dom(∆)

(∆; ω; C; new α ↑K in e : A) ; (∆, α ↑K; ω; C; e)
(39)

α ↑K ∈ ∆

(∆; ω; C; α :=A) ; (∆ @ α := A; ω; C; ())
(40)

α ↑K ∈ ∆

(∆; ω; C; α :≈A) ; (∆@ α :≈A; ω; C; ())
(41)

Well-formed continuations: ∆; Γ ` C : A cont

∆ ` A : T
∆; Γ ` • : A cont

(42)
∆; Γ ` F : A B with ϕ ∆ @ ϕ; Γ ` C : B cont

∆; Γ ` C ◦ F : A cont
(43)

∆; Γ ` C : B cont ∆ ` A ≡ B : T

∆; Γ ` C : A cont
(44)

Well-formed continuation frames: ∆; Γ ` F : A B with ϕ

∆ ` A : T ∆; Γ, x : A ` e : B with ϕ

∆; Γ ` let x= • in e : A B with ϕ
(45)

x : rec(A) ∈ Γ

∆; Γ ` recA(x← •) : A A with ∅
(46)

Figure 9. Dynamic Semantics

waits for the body of a recursive term to evaluate to a value v and
then backpatches the recursive memory location x with v.

The typing judgments for continuations and continuation frames
are shown in Figure 9. The latter is slightly interesting in that a
frame may have type effects. One can read the judgment (∆; Γ `
F : A B with ϕ) as: “starting in type context ∆, the frame
F takes a value of type A and returns a value of type B while
engendering the effects in ϕ.” Continuations C may of course have
type effects as well, but they are irrelevant because we never return
from a continuation.

The dynamic semantics itself is entirely what one would expect
given our discussion from Section 2. Like sealing in ML, sealing
in our language is a static abstraction mechanism with no run-time
significance. The new construct, on the other hand, has the effect of
creating a new entry in the type store at run time. Backpatching a

writable type is modeled by actually updating its entry in the type
store. In short, the semantics is faithful to our intuition.

That said, it is worth noting that, while the type store ∆ is useful
in defining the dynamic semantics and proving type soundness, it
does not have any real influence on run-time computation. In other
words, the dynamic semantics of Figure 9 never consults the type
store in order to determine the identity of a type variable and make
a transition based on that information. Consequently, there is no
need in an actual implementation to construct and maintain the type
store, and the operations for creation and definition of abstract type
variables may both be compiled as no-ops.

We can now define what it means to be a well-formed machine
state and state the standard preservation and progress theorems
leading to type soundness. The interesting part of the definition
is that the expression e currently being evaluated may have type

ICFP’05 10 2005/7/11

[[∀α1 ↑K1, α2 ↑K2. A(α1)(α2)
α1↓, α2↓

−−−−→ B(α1)(α2)]]

def

= ∀α ↑K1×K2. A(π1α)(π2α)
α↓
−→B(π1α)(π2α)

[[Λα1 ↑K1, α2 ↑K2. λx : A(α1)(α2). (e : B(α1)(α2))]]

def

= Λα ↑K1×K2. λx : A(π1α)(π2α).
new α1 ↑K1, α2 ↑K2 in

(let () = α := 〈α1, α2〉 in e)
: B(π1α)(π2α) defines α

[[v1[α1][α2](v2) : B(α1)(α2)]]

def

= new α ↑K1×K2 in
(let () = α1 := π1α in
let () = α2 := π2α in

v1[α](v2))
: B(α1)(α2) defines α1, α2

Figure 10. Encoding of Multiple-Argument DPS Universals

effects ϕ, so these effects must be incorporated into the “starting”
context of the continuation C.

Definition 3.18 (Well-Formed Machine States)
We say that a machine state Ω is well-formed, written ` Ω ok, if
either Ω = BlackHole, or Ω = (∆; ω; C; e) and there exist Γ, A
and ϕ such that:

1. ∆ ` ω : Γ

2. ∆; Γ ` e : A with ϕ and ∆ @ϕ; Γ ` C : A cont

Theorem 3.19 (Preservation)
If ` Ω ok and Ω ; Ω′, then ` Ω′ ok.

Definition 3.20 (Terminal States)
A machine state Ω is terminal if it is of the form BlackHole or
(∆; ω; •; v).

Definition 3.21 (Stuck States)
A machine state Ω is stuck if it is not terminal and there is no state
Ω′ such that Ω ; Ω′.

Theorem 3.22 (Progress)
If ` Ω ok, then Ω is not stuck.

(The progress theorem depends on a standard canonical forms
lemma, which is given in Appendix B.)

Corollary 3.23 (Type Soundness)
If ∅; ∅ ` e : A, then the execution of (∅; ∅; •; e) never enters a
stuck state.

4. Encodings in Destination-Passing Style
4.1 Multiple-Argument DPS Universal Types

It is likely that in practice one may wish to define a function of DPS
universal type that takes multiple writable type arguments and de-
fines all of them. However, our language as presented in Section 3
appears to allow DPS universals to take only a single writable type
argument. Figure 10 illustrates that in fact multiple-argument DPS
universals can be encoded in terms of single-argument ones. For
simplicity, we take “multiple-argument” to mean “two-argument,”
but the technique can easily be generalized to n arguments.

The idea is to encode a function taking two writable type argu-
ments α1 and α2 (of kinds K1 and K2) as a function taking one

[[∃α ↓K. A]]DPS

def

= ∀α ↑K. unit
α↓
−→A

[[pack [A, v] as ∃α ↓K. B]]DPS

def

= Λα ↑K. λ().
(let () = α := A in v)
: B defines α

[[let [α, x] = unpack v in (e : A)]]DPS

def

= new α ↑K in
(let x = v[α]() in e) : A

Figure 11. DPS Universal Encoding of Existentials

writable type argument α (of kind K1×K2). In Figure 10, we as-
sume the value argument and result types have the form A(α1)(α2)
and B(α1)(α2), respectively, where α1, α2 6∈ FV(A) ∪ FV(B).

In the introduction form, we divide the single α into two
writable variables α1 and α2 by creating those variables with a
new and then defining the original α in terms of them. For the
elimination form, it is the reverse. We start with two writable vari-
ables, and in order to apply the DPS universal we must package
them up as one. This is achieved by simply creating a new α of
the pair kind, and then defining the original writable variables as
projections from it. For the elimination form to be well-typed, it is
important of course that α1 and α2 be distinct. Also note that we
make use of new and sealing constructs that create (or seal) multi-
ple variables. These are simply shorthand for several nested new’s
or sealings.

In the encoding of both the introduction and elimination forms,
we rely heavily on the ability to define a writable variable trans-
parently in terms of another writable variable, which is then subse-
quently defined in some stable way. This provides good motivation
for our policy that definitions of writable variables need not be sta-
ble immediately, but only by the time they are sealed (as discussed
at the end of Section 2.3).

4.2 Existential Types

In Section 2.2, we argued that the special case of the DPS universal
in which the value argument has unit type can be viewed as
a kind of existential type. We now make that argument precise.
Figure 11 shows how existential types and their introduction and
elimination forms may be encoded using that special case of the
DPS universal type. The caveat is that DPS universals are not
capable of encoding arbitrary existentials ∃α : K. A, but only what
we call stable existentials, which we write ∃α ↓K. A. As the name
suggests, a value of stable existential type is a package whose type
component is stable, and the standard CPS encoding of existentials
can be trivially modified to define ∃α ↓K. A as shorthand for
∀β : T. (∀α ↓K. A→ β)→β.

To package type constructor A with value v, we write a DPS
function that asks for a writable abstract type name α, and then
returns v after defining α to be A. The data abstraction one nor-
mally associates with existential introduction is achieved here by
our sealing construct. Note that A must be stable in order for the
encoding of pack to be well-typed, since A is used to define the
writable variable α.

To unpack an existential value v, we (the client) must first create
a new writable type name α and then pass it to v to be defined. A
potential benefit of the DPS encoding over the CPS encoding is that
it allows the body e of the unpack to have arbitrary type effects, so
long as they do not refer to α. In the CPS encoding of unpack, e
must be encapsulated in a function, so it is not allowed to define
any externally-bound variables.

ICFP’05 11 2005/7/11

The DPS encoding is encouraging because it means that our
approach to recursive type generativity is fundamentally compat-
ible with the traditional understanding of generativity in terms of
existential types. For instance, returning to the bootstrapped heap
example from Figure 4, we can now rewrite the type of MkHeap as

∀α ↓T. ORDERED(α)→∃β ↓T. HEAP(α)(β)

This looks just like the standard Fω interpretation of a generative
functor signature, except that we have replaced the normal type
variable bindings by stable ones. It is not even necessary for the
existential in the result type of MkHeap to be encoded in DPS—a
value of stable existential type (under any encoding) can always be
coerced to [[∃α ↓K. A]]DPS by first unpacking its components and
then repacking them using the DPS encoding of pack.

5. Related Work
As discussed in Section 1, there has been much work on extend-
ing ML with recursive modules, but a clear account of recursive
type generativity has until now remained elusive. Crary, Harper and
Puri [3] have given a foundational type-theoretic account of recur-
sive modules, but it does not consider the interaction of recursion
with ML’s sealing mechanism (opaque signature ascription). Russo
has formalized and implemented recursive modules as an exten-
sion to the Moscow ML compiler [15]. Under his extension, any
type components of a recursive module that are referred to recur-
sively must have their definitions made public to the whole module.
Leroy has implemented recursive modules in O’Caml [11], but has
not provided any formal account of its semantics. With none of
these approaches is it possible to implement the bootstrapped heap
example using a generative MkHeap functor.

In reaction to the difficulties of incorporating recursive linking
into the ML module system, others have investigated ways of re-
placing ML’s notion of module with some alternative mechanism
for which recursive linking is the norm and hierarchical linking a
special case. Ancona and Zucca’s CMS calculus, in particular, has
been highly influential and led to a considerable body of work on
“mixin modules” [2]. However, it basically ignores all issues in-
volving type components (and hence, data abstraction) in modules.

More recently, Duggan has developed a language of “recursive
DLLs” [7]. His calculus is not intended as the basis of a source-
level language, but rather as an “interconnection” language for dy-
namic linking and loading of shared libraries. Based on his informal
discussion, Duggan appears to address some of the problems of re-
cursive ADT’s in a manner similar to the typechecking algorithm
we suggested in Section 1.1. It is difficult, though, to determine
precisely how his approach relates to ours because he is working
in a relatively low-level setting. In addition, Duggan simplifies the
problem to some extent by not supporting full ML-style transparent
type definitions, but only a limited form of sharing constraint that
is restricted to atomic types.

Interestingly, the work that seems most closely related to our
approach comes from the Scheme community. Flatt and Felleisen
developed a recursive-module-like construct called “units” for use
in MzScheme [16]. While MzScheme is dynamically-typed, their
paper formalizes an extension of units to the statically-typed setting
as well [8]. A unit has some set of imports and exports, which may
include abstract types. Two units may be “compounded” into one,
with each unit’s exports being used to satisfy the other’s imports.

While our approach differs from units in many details, there are
considerable similarities in terms of expressive power. For instance,

one can think of the DPS universal type ∀α ↑K. A
α↓
−→B as the

type of a unit with a value import of type A, a value export of
type B, and a type export α. (We model type imports separately,
via standard universal quantification.) The avoidance of transparent

type cycles, which we handle by distinguishing between stable and
unstable forms of universal quantification, is dealt with in the unit
language by means of unit “signatures,” which explicitly specify
which export types of a unit depend on which import types.

Ultimately, the main distinction between our approach and units
is that, while units do many things at once, we have tried instead
to isolate orthogonal concerns as much as possible. As a result, our
language constructs are more lightweight, and our semantics is eas-
ier to follow. In contrast, the unit typing rules are large and com-
plex. Given that units were intended as a realistic, programmable
language construct, this complexity is understandable, but there are
some other problems with units as well. In particular, they lack
support for ML-style type sharing, and their emphasis on “exter-
nal linking” forces one to program in a recursive analogue of “fully
functorized” style. Nonetheless, we hope that our present account
of recursive type generativity will help draw attention to some of
the interesting and novel features of units that the existing work on
recursive ML-style modules has heretofore ignored.

Finally, unrelated to recursive modules, Rossberg [18] gives
an account of type generativity that, like ours, provides a new
construct for creating fresh abstract types at run time. Rossberg’s
focus, however, is not on recursion but on the interaction of data
abstraction and run-time type analysis. Thus, his system requires
one to define an abstract type at the same point where it is created.

6. Conclusion
In previous work with Karl Crary and Bob Harper [6], we gave an
interpretation of ML-style modularity in which type generativity
was treated as a computational effect. We view the present work
as a continuation and refinement of that interpretation. Specifically,
while we still model the definition of new abstract types as a kind
of effect, we allow abstract types to be created and used before they
are defined, thus making it possible to link such types recursively.

One complaint that can be leveled against our approach is that
the interpretation of type-level recursion in terms of backpatching
is highly operational and may make it difficult to reason about ab-
straction guarantees. Admittedly, while it is possible to state a weak
syntactic abstraction property—e.g., that if a program contains a
subterm e in which a writable abstract type is defined and sealed,
then e may be replaced by another subterm e′ that defines the ab-
stract type in a different way—it is not clear what a stronger ab-
straction theorem would look like. This remains an important con-
sideration for future work.

Another interesting question is whether the full power of our
language is useful, or only a fragment of it is really needed for
practical purposes. For example, our type system allows the pro-
grammer to define types at run time based on information that is
only dynamically available. If one is only interested in supporting
“second-class” recursive modules, then the language we have pre-
sented here is more powerful than necessary. In that case, it is worth
considering whether there is a weaker subset of the language that
suffices and is easier to implement in practice.

This question is of course tied in with the more general problem
of scaling the ideas of this paper to the level of a module language.
The path from this paper to a full-blown module system is not
immediate, primarily because the approach to data abstraction we
have taken here is at least superficially quite different from the way
that type systems for modules have traditionally been formalized.
That said, we believe it should not be fundamentally difficult.

Acknowledgments
We would like to thank Aleks Nanevski for suggesting that we pur-
sue an idea along these lines years ago, as well as the anonymous
referees for giving such helpful and detailed comments.

ICFP’05 12 2005/7/11

References
[1] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM

Transactions on Programming Languages and Systems, 15(4):575–
631, 1993.

[2] Davide Ancona and Elena Zucca. A primitive calculus for module
systems. In International Conference on Principles and Practice of
Declarative Programming (PPDP), volume 1702 of Lecture Notes in
Computer Science, pages 62–79. Springer-Verlag, 1999.

[3] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive
module? In ACM Conference on Programming Language Design
and Implementation (PLDI), pages 50–63, Atlanta, GA, 1999.

[4] Derek Dreyer. A type system for well-founded recursion. In ACM
Symposium on Principles of Programming Languages (POPL), pages
293–305, Venice, Italy, January 2004.

[5] Derek Dreyer. Understanding and Evolving the ML Module System.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, May 2005.

[6] Derek Dreyer, Karl Crary, and Robert Harper. A type system
for higher-order modules. In ACM Symposium on Principles of
Programming Languages (POPL), New Orleans, LA, January 2003.

[7] Dominic Duggan. Type-safe linking with recursive DLL’s and
shared libraries. ACM Transactions on Programming Languages and
Systems, 24(6):711–804, November 2002.

[8] Matthew Flatt and Matthias Felleisen. Units: Cool modules for
HOT languages. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 236–248,
Montreal, Canada, June 1998.

[9] David K. Gifford and John M. Lucassen. Integrating functional
and imperative programming. In ACM Conference on LISP and
Functional Programming, Cambridge, MA, August 1986.

[10] Mark P. Jones. Using parameterized signatures to express modular
structure. In ACM Symposium on Principles of Programming
Languages (POPL), pages 68–78, St. Petersburg Beach, FL, 1996.

[11] Xavier Leroy. The Objective Caml system: Documentation and user’s
manual. http://www.ocaml.org/.

[12] Xavier Leroy. Applicative functors and fully transparent higher-
order modules. In ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL), pages 142–153, San Francisco,
CA, January 1995.

[13] Xavier Leroy. A proposal for recursive modules in Objective Caml,
May 2003. Available from the author’s website.

[14] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). MIT Press, 1997.

[15] Moscow ML. www.dina.kvl.dk/~sestoft/mosml.html.
[16] MzScheme. www.plt-scheme.org/software/mzscheme/.
[17] Chris Okasaki. Purely Functional Data Structures. Cambridge

University Press, 1998.
[18] Andreas Rossberg. Generativity and dynamic opacity for abstract

types. In International Conference on Principles and Practice of
Declarative Programming (PPDP), Uppsala, Sweden, 2003.

[19] Claudio V. Russo. Recursive structures for Standard ML. In
International Conference on Functional Programming (ICFP), pages
50–61, Florence, Italy, September 2001.

[20] Christopher A. Stone. Type definitions. In Benjamin C. Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 9.
MIT Press, 2005.

[21] Christopher A. Stone and Robert Harper. Extensional equivalence
and singleton types. ACM Transactions on Computational Logic,
2005. To appear.

[22] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline.
Information and Computation, 111(2):245–296, 1994.

[23] Joseph C. Vanderwaart, Derek Dreyer, Leaf Petersen, Karl Crary,
Robert Harper, and Perry Cheng. Typed compilation of recursive
datatypes. In ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI), New Orleans, January 2003.

[24] Philip Wadler. Listlessness is Better than Laziness. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, August 1985.

A. Representative Rules for Kinding and
Equivalence of Type Constructors

The definition of well-formedness and equivalence for type con-
structors in our language is entirely straightforward. Here we give
some representative rules.

Well-formed type constructors: ∆ ` A : K

∆(α) = K

∆ ` α : K

∆, α : K ` A1 : T ∆, α : K ` A2 : T

∆ ` ∀α ↑K.A1

α↓
−→A2 : T

Type constructor equivalence: ∆ ` A1 ≡ A2 : K

α : K= A ∈ ∆
∆ ` α ≡ A : K

∆, α : K ` A1 ≡ B1 : T ∆, α : K ` A2 ≡ B2 : T

∆ ` ∀α ↑K.A1

α↓
−→A2 ≡ ∀α ↑K. B1

α↓
−→B2 : T

∆, α : K ` A1 ≡ B1 : K′ ∆ ` A2 ≡ B2 : K

∆ ` (λα : K. A1)(A2) ≡ {α 7→B2}B1 : K′

∆, α : K ` A(α) ≡ B(α) : K′ α 6∈ FV(A) ∪ FV(B)

∆ ` A ≡ B : K→K′

B. Additional Meta-Theoretic Properties
Proposition B.1 (Properties of Type Effect Application)
Suppose ∆ ` ϕ ok. Then:

1. ∆ ` A : K if and only if ∆ @ϕ ` A : K.
2. If ∆ ` A1 ≡ A2 : K, then ∆ @ϕ ` A1 ≡ A2 : K.
3. If basis∆(A) ⊆ basis∆(B),

then basis∆@ ϕ(A) ⊆ basis∆@ ϕ(B).
4. If ∆ @ ϕ ` ϕ′ ok,

then ∆ ` ϕ, ϕ′ ok and ∆ @(ϕ, ϕ′) = (∆ @ϕ) @ ϕ′.

Definition B.2 (Well-Formed Value Substitutions)
We say that a value substitution γ maps Γ to Γ′ under ∆,
written ∆; Γ′ ` γ : Γ, if:

1. dom(γ) ⊆ dom(Γ)

2. ∆ ` Γ ok and ∆ ` Γ′ ok

3. ∀x : A ∈ Γ. ∆; Γ′ ` γx : A

Proposition B.3 (Value Substitution on Terms)
If ∆; Γ′ ` γ : Γ and ∆; Γ ` e : A with ϕ,
then ∆; Γ′ ` γe : A with ϕ.

Lemma B.4 (Canonical Forms)
Suppose ∆; Γ v : A and Γ is run-time. Then:

1. If A = unit, then v is of the form ().
2. If A = A1×A2, then v is of the form (v1, v2).
3. If A = A1→A2,

then v is of the form λx : B. e or foldB or unfoldB.
4. If A = ∀α : K. A, then v is of the form Λα : K. e.
5. If A = ∀α ↓K. A, then v is of the form Λα ↓K. e.

6. If A = ∀α ↑K. A1

α↓
−→A2,

then v is of the form Λα ↑K. λx : B. e.
7. If A = rec(A′), then v is of the form x.
8. If A = E{α}, where α : K≈B ∈ ∆,

then v is of the form foldA′(v′).

ICFP’05 13 2005/7/11

