DimSum

A Decentralized Approach to Multilanguage Semantics and Verification

Michael Sammler, Simon Spies, Youngju Song, Emanuele D'Osualdo, Robbert Krebbers, Deepak Garg, and Derek Dreyer

POPL'23

January 18, 2023

How can we **reason modularly** about **multi-language programs**?

```
void main() {
    char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
    memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
    print(x[1]); print(x[2]);
}
```


Library print print : mov x8, PRINT; syscall; ret

#1 Extend **C** with system calls via **print** library

 $\begin{array}{c} {\bf Library \ print} \\ {} {\rm print:mov \ x8, \ PRINT; syscall; ret} \end{array} \end{array}$

Key aspects

#1 Extend **C** with system calls via **print** library

```
void main() {
    char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
    memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
    print(x[1]); print(x[2]);
}
```

Library memmove void memmove(char *d, char *s, int n) { if (locle(d, s)) { return memcpy(d, s, n, 1); } else { return memcpy(d+n-1, s+n-1, n, -1); } } void memcpy(char *d, char *s, int n, int o) { if (0 < n) { *d = *s; memcpy(d+o, s+o, n-1, o) } }</pre>

Library	print		
U	•	print : mov $\mathbf{x8}$,	$\mathbf{PRINT}; syscall; ret$

Library	print	
· ·	-	$print:mov\ \mathbf{x8},\ \mathbf{PRINT};syscall;ret$

Key aspects

#1 Extend **C** with system calls via **print** library

#2 Use Asm's concrete memory model to provide address comparison to C via locle

```
void main() {
   char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
  memmove(x + 1, x + 0, 2); //x = \{1, 1, 2\}
   print(x[1]); print(x[2]);
                        Address comparison
Library memmove
 void memmove(char *d, char *s, int n) {
   if (locle(d, s)) { return memcpy(d, s, n, 1); }
   else { return memcpy(d+n-1, s+n-1, n, -1); } }
 void mem py(char *d, char *s, int n, int o) {
   if (0 n) { *d = *s; memcpy(d+o, s+o, n-1, o) } }
Library locle
                     locle : sle x0, x0, x1; ret
```

```
Library print
```

print : mov x8, **PRINT**; syscall; ret

Key aspects

```
void main() {
    char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
    memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
    print(x[1]); print(x[2]);
}
```

#1 Extend **C** with system calls via **print** library

#2 Use Asm's concrete memory model to provide address comparison to C via locle

#3 Reason about memcpy independent of Asm

```
Library memmove
void memmove(char *d, char *s, int n) {
  if (locle(d, s)) { return memcpy(d, s, n, 1); }
  else { return memcpy(d+n-1, s+n-1, n, -1); } }
void memcpy(char *d, char *s, int n, int o) {
  if (0 < n) { *d = *s; memcpy(d+o, s+o, n-1, o) } }</pre>
```

Library locle

 $\mathsf{locle}:\mathsf{sle}\ \mathbf{x0},\ \mathbf{x0},\ \mathbf{x1};\mathsf{ret}$

Library print

print : mov x8, **PRINT**; syscall; ret

Existing approaches

Fixes the source language as specification language: disallows **print** and **locle**

2. CompCert-based approaches [Stewart et al. 2015, ...]

Link all languages via a common interaction protocol.

Fixes the source language as specification language: disallows **print** and **locle**

2. CompCert-based approaches [Stewart et al. 2015, ...]

Link all languages via a common interaction protocol.

Fixes the source language as specification language: disallows **print** and **locle**

Fixes (abstract) memory model: disallows **locle**

2. CompCert-based approaches [Stewart et al. 2015, ...]

Link all languages via a common interaction protocol.

3. Syntactic multi-languages [Ahmed and Blume 2011, ...]

Embed all languages into one large multi-language.

Fixes the source language as specification language: disallows **print** and **locle**

Fixes (abstract) memory model: disallows **locle**

2. CompCert-based approaches [Stewart et al. 2015, ...]

Link all languages via a common interaction protocol.

3. Syntactic multi-languages [Ahmed and Blume 2011, ...] *Embed all languages into one large multi-language.*

Fixes (abstract) memory model: disallows locle

Fixes the set of languages: requires reasoning about **Asm** context for **memcpy**

Fixes the source language

as specification language:

disallows print and locle

#1 No fixed source language as specification language

Can link with target code that is not representable in the source

#1 No fixed source language as specification language

Can link with target code that is not representable in the source

#2 No fixed memory model

Supports languages with different memory models

#1 No fixed source language as specification language

Can link with target code that is not representable in the source

#2 No fixed memory model

Supports languages with different memory models

#3 No fixed set of languages

Allows language-local reasoning

#1 No fixed source language as specification language

Can link with target code that is not representable in the source

#2 No fixed memory model

Supports languages with different memory models

#3 No fixed set of languages

Allows language-local reasoning

#4 No fixed notion of linking

#1 No fixed source language as specification language

Can link with target code that is not representable in the source

#2 No fixed memory model

Supports languages with different memory models

#3 No fixed set of languages Allows language-local reasoning

#4 No fixed notion of linking

Decentralized Multi-language Reasoning

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Decentralized Multi-language Reasoning

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Decentralized Multi-language Reasoning

Combining ideas from process algebra, Kripke relations, angelic non-determinism, ...

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Decentralized Multi-language Reasoning

Combining ideas from process algebra, Kripke relations, angelic non-determinism, ...

Instantiations

Rec: *C*-like language

Asm: assembly language

Spec: *specification language*

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Decentralized Multi-language Reasoning

Combining ideas from process algebra, Kripke relations, angelic non-determinism, ...

Instantiations

Rec: C-like language Asm: assembly language Spec: specification language **Evaluation**

↓ R : Compiler from *Rec* to *Asm*locle : pointer comparison
⊕coro: coroutines

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Decentralized Multi-language Reasoning

Combining ideas from

process algebra, Kripke relations, angelic non-determinism, ...

Instantiations

Rec: C-like language Asm: assembly language Spec: specification language **Evaluation**

↓ R : Compiler from *Rec* to *Asm*locle : pointer comparison
⊕coro: coroutines

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Decentralized Multi-language Reasoning

process algebra, Kripke relations, angelic non-determinism, ...

Instantiations

Rec: C-like language Asm: assembly language Spec: specification language **Evaluation**

↓ **R** : Compiler from *Rec* to *Asm*

locle : pointer comparison

⊕_{coro}: coroutines

Example: onetwo

```
void main() {
    char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
    memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
    print(x[1]); print(x[2]);
}
```

```
Library memmove
void memmove(char *d, char *s, int n) {
    if (locle(d, s)) { return memcpy(d, s, n, 1); }
    else { return memcpy(d+n-1, s+n-1, n, -1); } }
void memcpy(char *d, char *s, int n, int o) {
    if (0 < n) { *d = *s; memcpy(d+o, s+o, n-1, o) } }</pre>
```

Library locle

locle : sle x0, x0, x1; ret

Library print

print : mov x8, **PRINT**; syscall; ret

Specification

onetwo $a \leq s$ **onetwo**_{spec}

Specification

onetwo a≤s onetwo_{spec}

via events!

syntactic program to semantic LTS (i.e., module)

 $\begin{bmatrix} onetwo \end{bmatrix}_{a} = \llbracket \downarrow main & \bigcup_{a} \downarrow memmove & \bigcup_{a} locle & \bigcup_{a} print \rrbracket_{a} \\ \leq \llbracket \downarrow main \rrbracket_{a} & \oplus_{a} \llbracket \downarrow memmove \rrbracket_{a} & \oplus_{a} \llbracket locle \rrbracket_{a} & \oplus_{a} \llbracket print \rrbracket_{a} \\ \leq \llbracket main \rrbracket_{r} \urcorner_{r \rightleftharpoons a} \oplus_{a} \llbracket memmove \rrbracket_{r} \urcorner_{r \rightleftharpoons a} \oplus_{a} \llbracket locle \rrbracket_{a} & \oplus_{a} \llbracket print \rrbracket_{a} \\ \leq \llbracket main \rrbracket_{r} \urcorner_{r \rightleftharpoons a} \oplus_{a} \llbracket memmove \rrbracket_{r} \urcorner_{r \rightleftharpoons a} \oplus_{a} \llbracket locle \rrbracket_{a} & \oplus_{a} \llbracket print \rrbracket_{a} \\ \leq \llbracket main \rrbracket_{r} \urcorner_{r \rightleftharpoons a} \oplus_{a} \llbracket memmove \rrbracket_{r} \urcorner_{r \rightleftharpoons a} \oplus_{a} \llbracket locle \rrbracket_{spec} \urcorner_{r \rightleftharpoons a} \oplus_{a} print_{spec} \\ \leq \llbracket main \bigcup_{r} memmove \rrbracket_{r} \oplus_{r} locle_{spec} \urcorner_{r \rightleftharpoons a} & \oplus_{a} print_{spec} \\ \leq main_{spec} \urcorner_{r \rightleftharpoons a} & \oplus_{a} print_{spec} \end{bmatrix}$

 \leq onetwo_{spec}

 \leq onetwo_{spec}

Syntactic vs. semantic linking

 $[[onetwo]]_a = []\downarrow main \cup_a \downarrow memmove \cup_a locle \cup_a print]]_a$ $\leq [] main]_a \oplus_a [] memmove]_a \oplus_a [] locle]_a \oplus_a [] print]_a$

Syntactic vs. semantic linking

 $[onetwo]_a = [\downarrow main \cup_a \downarrow memmove]$

 $\leq [\] main]_a \qquad \oplus_a [\] memmove]_a$

 $\mid Syscall!(v_1, v_2, m) \mid SyscallRet?(v, m)$

Key property: Horizontal compositionality ASM-LINK-HORIZONTAL

 $\begin{array}{ccc} M_1 \leq M'_1 & M_2 \leq M'_2 \\ \hline M_1 \oplus_a M_2 \leq M'_1 \oplus_a M'_2 \end{array} & \begin{array}{c} \oplus_a \text{ en} \\ reason \end{array}$

 \oplus_a enables *modular* reasoning using \leq .

 \leq onetwo_{spec}

Translating between languages: wrapper [·]_{r⇒a}

Key technical idea:

rely-guarantee protocol via demonic and angelic non-determinism

Translating between languages: wrapper [·]_{r⇒a}

Key technical idea:

rely-guarantee protocol via demonic and angelic non-determinism

> inspired by *Conditional Contextual Refinement* [Song et al., POPL'23]

 $\begin{bmatrix} onetwo \end{bmatrix}_{a} = \llbracket \downarrow main & \cup_{a} \downarrow memmove & \cup_{a} locle & \cup_{a} print \rrbracket_{a} \\ \leq \llbracket \downarrow main \rrbracket_{a} & \oplus_{a} \llbracket \downarrow memmove \rrbracket_{a} & \oplus_{a} \llbracket locle \rrbracket_{a} & \oplus_{a} \llbracket print \rrbracket_{a} \\ \leq \llbracket main \rrbracket_{r} \rceil_{r \rightleftharpoons a} \oplus_{a} \llbracket memmove \rrbracket_{r} \rceil_{r \rightleftharpoons a} \oplus_{a} \llbracket locle \rrbracket_{a} & \oplus_{a} \llbracket print \rrbracket_{a} \end{bmatrix}$

$[onetwo]_a = [] main \cup_a] memmove \cup_a locle \cup_a print]_a$ \leq $[\mbox{main}]_{a} \oplus_{a} [\mbox{memmove}]_{a} \oplus_{a} [\mbox{locle}]_{a} \oplus_{a} [\mbox{print}]_{a}]$ $\leq [[main]_r]_{r \rightleftharpoons a} \oplus_a [[memmove]_r]_{r \rightleftharpoons a} \oplus_a [[locle]_a \oplus_a [print]_a]$

COMPILER-CORRECT $\llbracket \downarrow R \rrbracket_a \preceq \llbracket R \rrbracket_r \rrbracket_{r \rightleftharpoons a}$

$[onetwo]_a = [] main \cup_a] memmove \cup_a locle \cup_a print]_a$ \leq $[] main]_{a} \oplus_{a} [] memmove]_{a} \oplus_{a} [locle]_{a} \oplus_{a} [print]_{a}$ $\leq [[main]_r]_{r \rightleftharpoons a} \oplus_a [[memmove]_r]_{r \rightleftharpoons a} \oplus_a [[locle]_a \oplus_a [print]_a]$

COMPILER-CORRECT syntactically translated $\rightarrow [] R_a \leq [[R_r]_r \rightarrow]_r \Rightarrow a$

$\begin{bmatrix} onetwo \end{bmatrix}_{a} = \llbracket \downarrow main & \cup_{a} \downarrow memmove & \cup_{a} locle & \cup_{a} print \end{bmatrix}_{a} \\ \leq \llbracket \downarrow main \end{bmatrix}_{a} & \oplus_{a} \llbracket \downarrow memmove \end{bmatrix}_{a} & \oplus_{a} \llbracket locle \end{bmatrix}_{a} & \oplus_{a} \llbracket print \end{bmatrix}_{a} \\ \leq \llbracket main \rrbracket_{r} \rceil_{r \rightleftharpoons a} \oplus_{a} \llbracket memmove \rrbracket_{r} \rceil_{r \rightleftharpoons a} \oplus_{a} \llbracket locle \rrbracket_{a} & \oplus_{a} \llbracket print \rrbracket_{a} \end{bmatrix}$

syntactically translated
$$\rightarrow []\downarrow R]_a \leq [[R]_r]_{r \Rightarrow a}$$
 semantically translated

Abstracting Asm to Rec transition system

$\begin{bmatrix} onetwo \end{bmatrix}_{a} = \begin{bmatrix} \downarrow main \\ & \downarrow main \end{bmatrix}_{a} \qquad \cup_{a} \downarrow memmove \qquad \cup_{a} \quad locle \qquad \cup_{a} \quad print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} \downarrow main \end{bmatrix}_{a} \qquad \oplus_{a} \begin{bmatrix} \downarrow memmove \end{bmatrix}_{a} \qquad \oplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} \qquad \oplus_{a} \begin{bmatrix} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} [main]]_{r}]_{r \neq a} \oplus_{a} \begin{bmatrix} [memmove]]_{r}]_{r \neq a} \oplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} \qquad \oplus_{a} \begin{bmatrix} print]]_{a} \\ \leq \begin{bmatrix} [main]]_{r}]_{r \neq a} \oplus_{a} \begin{bmatrix} [memmove]]_{r}]_{r \neq a} \oplus_{a} \begin{bmatrix} locle]]_{spec} \end{bmatrix}_{r \neq a} \oplus_{a} print_{spec} \end{bmatrix}$

LOCLE-CORRECT $[locle]_a \leq [locle_{spec}]_{r \rightleftharpoons a}$

Abstracting Asm to Rec transition system

Abstracting Asm to Rec transition system

Desideratum #1 No syntactic **Rec** program required!

 \leq onetwo_{spec}

Bundling **Rec** modules

 $\begin{bmatrix} onetwo \end{bmatrix}_{a} = \begin{bmatrix} \downarrow main & \cup_{a} \downarrow memmove & \cup_{a} locle & \cup_{a} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} \downarrow main \end{bmatrix}_{a} & \oplus_{a} \begin{bmatrix} \downarrow memmove \end{bmatrix}_{a} & \oplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} & \oplus_{a} \begin{bmatrix} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} [main]]_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} [memmove]]_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} locle]]_{a} & \oplus_{a} \begin{bmatrix} print]]_{a} \\ \leq \begin{bmatrix} [main]]_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} [memmove]]_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} locle]_{spec} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} print_{spec} \\ \leq \begin{bmatrix} [main \cup_{r} memmove]]_{r} \oplus_{r} locle_{spec} \end{bmatrix}_{r \rightleftharpoons a} & \oplus_{a} print_{spec} \end{bmatrix}_{r \bowtie a} print_{spec}$

Bundling **Rec** modules

 $\begin{bmatrix} onetwo \end{bmatrix}_{a} = \begin{bmatrix} \downarrow main & \cup_{a} \downarrow memmove & \cup_{a} locle & \cup_{a} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} \downarrow main \end{bmatrix}_{a} & \oplus_{a} \begin{bmatrix} \downarrow memmove \end{bmatrix}_{a} & \oplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} & \oplus_{a} \begin{bmatrix} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} \begin{bmatrix} main \end{bmatrix}_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} \llbracket memmove \end{bmatrix}_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} & \oplus_{a} \begin{bmatrix} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} \begin{bmatrix} main \end{bmatrix}_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} \llbracket memmove \end{bmatrix}_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} locle \\ spec \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} print_{spec} \\ \leq \begin{bmatrix} \begin{bmatrix} main \bigcup_{r} memmove \end{bmatrix}_{r} \oplus_{r} locle_{spec} \end{bmatrix}_{r \rightleftharpoons a} & \oplus_{a} print_{spec} \\ \oplus_{a} print_{spec} \end{bmatrix}_{r \bigoplus a} \begin{bmatrix} memmove \end{bmatrix}_{r} \oplus_{r} bcle_{spec} \end{bmatrix}_{r \rightleftharpoons a} & \oplus_{a} print_{spec} \end{bmatrix}_{r \bowtie a} \begin{bmatrix} memmove \end{bmatrix}_{r} \oplus_{r} bcle_{spec} \end{bmatrix}_{r \bowtie a} & \oplus_{a} print_{spec} \end{bmatrix}_{r \bigoplus a} \begin{bmatrix} memmove \end{bmatrix}_{r} \oplus_{r} bcle_{spec} \end{bmatrix}_{r \bowtie a} & \oplus_{a} print_{spec} \end{bmatrix}_{r \bigoplus a} \begin{bmatrix} memmove \end{bmatrix}_{r \bigoplus r} bcle_{spec} \end{bmatrix}_{r \bowtie a} & \oplus_{a} print_{spec} \end{bmatrix}_{r \bigoplus a} print_{spec} \oplus_{a} print_{spec} \oplus_{a} print_{spec} \oplus_{a} print_{spec} \oplus_{a} print_{spec} \end{bmatrix}_{r \bigoplus a} \oplus_{a} print_{spec} \oplus_{a} pr$

 $[M_1]_{r \rightleftharpoons a} \oplus_a [M_2]_{r \rightleftharpoons a} \leq [M_1 \oplus_r M_2]_{r \rightleftharpoons a}$

Rec-level reasoning

 $\begin{bmatrix} onetwo \end{bmatrix}_{a} = \begin{bmatrix} \downarrow main & \bigcup_{a} \downarrow memmove & \bigcup_{a} locle & \bigcup_{a} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} \downarrow main \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} \downarrow memmove \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} [main]]_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} [memmove]]_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} [main]]_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} [memmove]]_{r} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} locle]_{spec} \end{bmatrix}_{r \rightleftharpoons a} \oplus_{a} print_{spec} \\ \leq \begin{bmatrix} [main \bigcup_{r} memmove]]_{r} \oplus_{r} locle_{spec} \end{bmatrix}_{r \rightleftharpoons a} & \bigoplus_{a} print_{spec} \\ \leq \begin{bmatrix} [main \bigcup_{r} memmove]]_{r} \oplus_{r} locle_{spec} \end{bmatrix}_{r \rightleftharpoons a} & \bigoplus_{a} print_{spec} \\ \Rightarrow \begin{bmatrix} main_{spec} \end{bmatrix}_{r \rightleftharpoons a} & \oplus_{a} print_{spec} \end{bmatrix}_{r \bowtie a} \\ \end{bmatrix}_{r \bowtie a} print_{spec} \oplus_{a} print_{spec} \end{bmatrix}_{r \bowtie a} & \oplus_{a} print_{spec} \end{bmatrix}_{r \bowtie a} \\ \oplus_{a} print_{spec} \end{bmatrix}_{r \bowtie a} \\ \oplus_{a} print_{spec} \oplus_{a} print_{spec} \end{bmatrix}_{r \bowtie a} \\ \oplus_{a} print_{spec} \oplus_{a} print_{spec} \oplus_{a} print_{spec} \oplus_{a} print_{spec} \end{bmatrix}_{r \bowtie a} \\ \oplus_{a} print_{spec} \oplus_{a} \oplus_{a} print_{spec} \oplus_{a} print_{spec} \oplus_{a} \oplus_{a} print_{spec} \oplus_{a} \oplus_{a}$

Rec-level reasoning

 $\begin{bmatrix} onetwo \end{bmatrix}_{a} = \begin{bmatrix} \downarrow main & \bigcup_{a} \downarrow memmove & \bigcup_{a} locle & \bigcup_{a} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} \downarrow main \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} \downarrow memmove \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} [main]]_{r}]_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} [memmove]]_{r}]_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} locle]]_{a} & \bigoplus_{a} \begin{bmatrix} print]]_{a} \\ \oplus_{a} \begin{bmatrix} print]]_{a} \\ \leq \begin{bmatrix} [main]]_{r}]_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} [memmove]]_{r}]_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} locle]_{spec}]_{r \rightleftharpoons a} \oplus_{a} print_{spec} \\ \leq & \begin{bmatrix} [main \bigcup_{r} memmove]]_{r} \oplus_{r} locle_{spec}]_{r \rightleftharpoons a} & \bigoplus_{a} print_{spec} \\ \leq & \begin{bmatrix} [main \bigcup_{r} memmove]]_{r} \oplus_{r} locle_{spec}]_{r \rightleftharpoons a} & \oplus_{a} print_{spec} \\ \oplus_{a} print_{spec} \end{bmatrix} \\ \end{bmatrix}$

 $[main \cup_{r} memmove]_{r} \oplus_{r} locle_{spec} \leq main_{spec}$

Reasoning with specifications

 $\begin{bmatrix} onetwo \end{bmatrix}_{a} = \begin{bmatrix} \downarrow main & \bigcup_{a} \downarrow memmove & \bigcup_{a} locle & \bigcup_{a} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} \downarrow main \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} \downarrow memmove \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} [main]]_{r} \end{bmatrix}_{r \Rightarrow a} \oplus_{a} \begin{bmatrix} [memmove]]_{r} \end{bmatrix}_{r \Rightarrow a} \oplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} & \bigoplus_{a} \begin{bmatrix} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} [main]]_{r} \end{bmatrix}_{r \Rightarrow a} \oplus_{a} \begin{bmatrix} [memmove]]_{r} \end{bmatrix}_{r \Rightarrow a} \oplus_{a} \begin{bmatrix} locle \\ spec \end{bmatrix}_{r \Rightarrow a} \oplus_{a} print_{spec} \\ \leq & \begin{bmatrix} [main \bigcup_{r} memmove]]_{r} \oplus_{r} locle_{spec} \end{bmatrix}_{r \Rightarrow a} & \bigoplus_{a} print_{spec} \\ \oplus_{a} print_{spec} \\ \oplus_{a} print_{spec} \\ \oplus_{a} print_{spec} \end{bmatrix}$

Complete verification

 $\begin{bmatrix} onetwo \end{bmatrix}_{a} = \begin{bmatrix} \downarrow main & \bigcup_{a} \downarrow memmove & \bigcup_{a} locle & \bigcup_{a} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} \downarrow main \end{bmatrix}_{a} & \oplus_{a} \begin{bmatrix} \downarrow memmove \end{bmatrix}_{a} & \oplus_{a} \begin{bmatrix} locle \end{bmatrix}_{a} & \oplus_{a} \begin{bmatrix} print \end{bmatrix}_{a} \\ \leq \begin{bmatrix} [main]]_{r}]_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} [memmove]]_{r}]_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} locle]]_{a} & \oplus_{a} \begin{bmatrix} print]]_{a} \\ \leq \begin{bmatrix} [main]]_{r}]_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} [memmove]]_{r}]_{r \rightleftharpoons a} \oplus_{a} \begin{bmatrix} locle]_{spec}]_{r \rightleftharpoons a} \oplus_{a} print_{spec} \\ \leq & \begin{bmatrix} [main \bigcup_{r} memmove]]_{r} \oplus_{r} locle_{spec}]_{r \rightleftharpoons a} & \oplus_{a} print_{spec} \\ \leq & \begin{bmatrix} [main \bigcup_{r} memmove]]_{r} \oplus_{r} locle_{spec}]_{r \rightleftharpoons a} & \oplus_{a} print_{spec} \\ \oplus_{a} print_{spec} \end{bmatrix}_{r \rightleftharpoons a} & \oplus_{a} print_{spec} \end{bmatrix}_{r \bowtie a} & \oplus_{a} print_{spec} \end{bmatrix}_{r \bigoplus a} \oplus_{a} print_{spec} \end{bmatrix}_{r \bigoplus a} \oplus_{a} print_{spec} \oplus_{a} print_{spec} \end{bmatrix}_{r \bigoplus a} \oplus_{a} print_{spec} \oplus_{a} print_{s$

 \leq onetwo_{spec}

Recap: Desiderata for multi-language reasoning
#1 No fixed source language as specification language

Labeled transition systems as semantic domain

#1 No fixed source language as specification language Labeled transition systems as semantic domain

#2 No fixed memory model

Wrappers like $\lceil \cdot \rceil_{r \rightleftharpoons a}$ translate between memory models

#1 No fixed source language as specification language Labeled transition systems as semantic domain

#2 No fixed memory model

Wrappers like $\lceil \cdot \rceil_{r \rightleftharpoons a}$ translate between memory models

#3 No fixed set of languages

Language-local reasoning via compatibility with refinement

#1 No fixed source language as specification language Labeled transition systems as semantic domain

#2 No fixed memory model

Wrappers like $\lceil \cdot \rceil_{r \rightleftharpoons a}$ translate between memory models

#3 No fixed set of languages

Language-local reasoning via compatibility with refinement

#4 No fixed notion of linking

DimSum allows defining custom linking operators

#1 No fixed source language as specification language Labeled transition systems as semantic domain

#2 No fixed memory modelhttps://plv.mpi-sws.org/dimsumWrappers like $\lceil \cdot \rceil_{r \rightleftharpoons a}$ translate between memory models

#3 No fixed set of languages

Language-local reasoning via compatibility with refinement

#4 No fixed notion of linking

DimSum allows defining custom linking operators

https://plv.mpi-sws.org/dimsum

Questions?

In the paper

Wrappers via demonic and angelic non-determinism [·]r⇒a

Verification of $\downarrow R$

Language-generic combinators

 $\begin{array}{ccc} M_1 \times M_2 & M_1 \setminus M_2 \\ \lceil M \rceil_X & M_1 \oplus_X M_2 \end{array}$

Operational semantics for dual non-determinism $\rightarrow \in \mathcal{P}(S \times \operatorname{option}(E) \times \mathcal{P}(S))$

Coroutines [[main]]_r ⊕_{coro} [[stream]]_r **#1** No fixed source / spec. language

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Questions?

https://plv.mpi-sws.org/dimsum

Decentralized Multi-language Reasoning

Combining ideas from

process algebra, wrappers, Kripke relations, and angelic non-determinism

Instantiations

Rec: C-like language Asm: assembly language Spec: specification language Evaluation

↓ R : Compiler from *Rec* to *Asm*locle : pointer comparison
⊕coro: coroutines

Backup slides

Other language features *e.g. closures, concurrency, ...*

Other language features *e.g. closures, concurrency, ...* Combine with existing verification tools *e.g. RefinedC, Islaris, ...*

Other language features e.g. closures, concurrency, ... Combine with existing verification tools *e.g. RefinedC, Islaris, ...*

Investigate meta-level properties *e.g. boundary cancellation, ...*

Other language features e.g. closures, concurrency, ... Combine with existing verification tools *e.g. RefinedC, Islaris, ...*

Investigate meta-level properties *e.g. boundary cancellation, ...*

Events

Asm

Events \ni e ::= Jump!(r, m) | Jump?(r, m) | Syscall!(v₁, v₂, m) | SyscallRet?(v, m) RecEvents \ni e ::= Call!(f, \overline{v} , m) | Call?(f, \overline{v} , m)| Return!(\overline{v} , m) | Return?(\overline{v} , m)

Spec(*E*) $\ni p ::=_{coind} any | vis(e); p | assume(\phi); p | \exists x : T; p(x) | \cdots$

Spec(E) $\ni p ::=_{coind} any | vis(e); p | assume(\phi); p | \exists x : T; p(x) | \cdots$

onetwo_{spec} $\triangleq \exists r, m_0; vis(Jump?(r, m_0)); assume(r(pc) = a_{main} \land has_stack(r(sp), m_0));$ $\exists m_1; vis(Syscall!(PRINT, 1, m_1)); \exists m_2; vis(SyscallRet?(*, m_2)); assume(m_2 = m_1);$ vis(Syscall!(PRINT, 2, *)); vis(SyscallRet?(*, *)); any

Spec(E) $\ni p ::=_{coind} any | vis(e); p | assume(\phi); p | \exists x : T; p(x) | \cdots$

 $\approx \text{"Assuming the environment calls the main function, ..."}$ onetwo_{spec} $\triangleq \exists r, m_0; vis(Jump?(r, m_0)); assume(r(pc) = a_{main} \land has_stack(r(sp), m_0));$ $\exists m_1; vis(Syscall!(PRINT, 1, m_1)); \exists m_2; vis(SyscallRet?(*, m_2)); assume(m_2 = m_1);$ vis(Syscall!(PRINT, 2, *)); vis(SyscallRet?(*, *)); any

Spec(E) $\ni p ::=_{\text{coind}} \text{any} | \text{vis}(e); p | \text{assume}(\phi); p | \exists x : T; p(x) | \cdots$

- $\approx \text{"Assuming the environment calls the main function, ..."}$ onetwo_{spec} $\triangleq \exists r, m_0; vis(Jump?(r, m_0)); assume(r(pc) = a_{main} \land has_stack(r(sp), m_0));$ $\exists m_1; vis(Syscall!(PRINT, 1, m_1)); \exists m_2; vis(SyscallRet?(*, m_2)); assume(m_2 = m_1);$ vis(Syscall!(PRINT, 2, *)); vis(SyscallRet?(*, *)); any
 - ≈ "... the program prints 1 and then 2."

Library print print : mov x8, PRINT; syscall; ret

\leq

 $print_{spec} \triangleq_{coind} \exists r, m; vis(Jump?(r, m)); assume(r(pc) = a_{print});$ $vis(Syscall!(PRINT, r(x0), m)); \exists v, m'; vis(SyscallRet?(v, m'));$ $vis(Jump!(r[pc \mapsto r(x30)][x0 \mapsto v][x8 \mapsto *], m')); print_{spec}$

Assembly verification

$[\![locle]\!]_{a} \leq \lceil [\![locle_{spec}]\!]_{s} \rceil_{r \rightleftharpoons a}$

locle : sle $x0$, $x1$; ret	Library locle	locle : sle $x0$, $x0$, $x1$; ret	
-------------------------------	---------------	--------------------------------------	--

 \leq

 $| \text{locle}_{\text{spec}} \triangleq_{\text{coind}} \exists f, \overline{v}, m; \text{vis}(\text{Call}?(f, \overline{v}, m)); \text{assume}(f = \text{locle}); \text{assume}(\overline{v} \text{ is } [\ell_1, \ell_2]); \\ \text{if } \ell_1.\text{blockid} = \ell_2.\text{blockid then vis}(\text{Return}!(\ell_1.\text{offset} \le \ell_2.\text{offset}, m)); \text{locle}_{\text{spec}} \ \uparrow \rightleftharpoons \exists b; \text{vis}(\text{Return}!(b, m)); \text{locle}_{\text{spec}}$

"When the environment calls locle with ℓ_1 and ℓ_2 , ... \leq

 $\begin{bmatrix} \text{locle}_{\text{spec}} \triangleq_{\text{coind}} \exists f, \overline{v}, m; \text{vis}(\text{Call}?(f, \overline{v}, m)); \text{assume}(f = \text{locle}); \text{assume}(\overline{v} \text{ is } [\ell_1, \ell_2]); \\ \text{if } \ell_1.\text{blockid} = \ell_2.\text{blockid then vis}(\text{Return}!(\ell_1.\text{offset} \le \ell_2.\text{offset}, m)); \text{locle}_{\text{spec}} \end{bmatrix} r \rightleftharpoons dr$ $else \exists b; \text{vis}(\text{Return}!(b, m)); \text{locle}_{\text{spec}}$

"When the environment calls locle with ℓ_1 and ℓ_2 , ... \leq $\begin{bmatrix} \text{locle}_{\text{spec}} \triangleq_{\text{coind}} \exists f, \bar{v}, m; \text{vis}(\text{Call}?(f, \bar{v}, m)); \text{assume}(f = \text{locle}); \text{assume}(\bar{v} \text{ is } [\ell_1, \ell_2]); \\ \text{if } \ell_1.\text{blockid} = \ell_2.\text{blockid then vis}(\text{Return}!(\ell_1.\text{offset} \leq \ell_2.\text{offset}, m)); \text{locle}_{\text{spec}} \end{bmatrix} r \rightleftharpoons a \\ \text{else } \exists b; \text{vis}(\text{Return}!(b, m)); \text{locle}_{\text{spec}} \end{bmatrix}$

"When the environment calls locle with ℓ_1 and ℓ_2 , ... $\leq \int_{|c| < 2} |c| < |c| < 2 \le 2$ $|c| < |c| < |c| < 2 \le 2$ |c| < |c|

"When the environment calls locle with ℓ_1 and ℓ_2 , ... \leq $\begin{bmatrix} \text{locle}_{\text{spec}} \triangleq_{\text{coind}} \exists f, \bar{v}, m; \text{vis}(\text{Call}?(f, \bar{v}, m)); \text{assume}(f = \text{locle}); \text{assume}(\bar{v} \text{ is } [\ell_1, \ell_2]); \\ \text{if } \ell_1.\text{blockid} = \ell_2.\text{blockid then vis}(\text{Return}!(\ell_1.\text{offset} \leq \ell_2.\text{offset}, m)); \text{locle}_{\text{spec}} \end{bmatrix} r \rightleftharpoons a$ $else \exists b; \text{vis}(\text{Return}!(b, m)); \text{locle}_{\text{spec}}$

$$\begin{bmatrix} \cdot \\ r \rightleftharpoons a \end{bmatrix}^{r} \underset{r}{\overset{\text{Call!(locle, [d, s], m)}}{\underset{\text{Return?(v', m')}}{\overset{\text{Return?(v', m')}}{\overset{\text{Call!}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{$$

$$\begin{bmatrix} \cdot \\ r \rightleftharpoons a \end{bmatrix}^{r} \underset{r}{\overset{\text{Call!(locle, [d, s], m)}}{\underset{\text{Return?(v', m')}}{\overset{\text{Return?(v', m')}}{\overset{\text{Call!}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\text{Call}}{\overset{\text{Call}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}}{\overset{\tilde{}}}}{\overset{\tilde{}$$

fn memmove $(d, s, n) \triangleq$ if locle(d, s) then memcpy(d, s, n, 1) else memcpy(d+n-1, s+n-1, n, -1)

 $z \sim_w z$ $b \sim_w (\text{if } b \text{ then 1 else 0})$ $\ell \sim_w w(\ell \text{.blockid}) + \ell \text{.offset}$

 $z \sim_w z \qquad b \sim_w (\text{if } b \text{ then 1 else 0}) \qquad \ell \sim_w w(\ell.\text{blockid}) + \ell.\text{offset}$ Kripke world: map from block ids to base addresses

 $z \sim_{w} z \qquad b \sim_{w} (\text{if } b \text{ then 1 else 0}) \qquad \ell \sim_{w} w(\ell.\text{blockid}) + \ell.\text{offset}$ Kripke world: map from block ids to base addresses Call!(f, \overline{v} , m) $\rightarrow_{w} \text{Jump!}(\mathbf{r}, \mathbf{m}) \triangleq \mathbf{r}(\mathbf{pc}) = a_{f} \land \overline{v} \sim_{w} \mathbf{r}(\mathbf{x0} \dots \mathbf{x8}) \land \mathbf{m} \sim_{w} \mathbf{m}$

 $\ell \sim_w w(\ell.\text{blockid}) + \ell.\text{offset}$ $z \sim_w z$ $b \sim_w$ (if b then 1 else 0) Kripke world: map from block ids to base addresses Translating events: Call!(f, \overline{v} , m) \rightharpoonup_{w} Jump!(r, m) \triangleq r(pc) = $a_{f} \land \overline{v} \sim_{w} r(x0 \dots x8) \land m \sim_{w} m$ PC contains address of the function

 $\ell \sim_w w(\ell.\text{blockid}) + \ell.\text{offset}$ $z \sim_w z$ $b \sim_w (\text{if } b \text{ then } 1 \text{ else } 0)$ Kripke world: map from block ids to base addresses Translating events: Call!(f, \overline{v} , m) \rightarrow_w Jump!(r, m) $\triangleq r(pc) = a_f \land \overline{v} \sim_w r(x0 \dots x8) \land m \sim_w m$ PC contains address of the function **Rec arguments** are related to Asm argument registers

 $\ell \sim_w w(\ell.\text{blockid}) + \ell.\text{offset}$ $z \sim_w z$ $b \sim_w$ (if b then 1 else 0) Kripke world: map from block ids to base addresses Translating events: Call!(f, \overline{v} , m) \rightarrow_w Jump!(r, m) $\triangleq r(pc) = a_f \land \overline{v} \sim_w r(x0 \dots x8) \land m \sim_w m$ PC contains address memories of the function **Rec arguments** are related are related to Asm argument registers

$$\begin{bmatrix} \cdot \\ r \rightleftharpoons a \end{bmatrix}^{r} \xleftarrow{Call!(locle, [d, s], m)}_{Return?(v', m')} \downarrow^{Jump!(r, m)}_{Jump?(r', m')} \oplus_{a} [locle]_{a}$$

$$In [[\downarrow memmove]]_{a} \leq [[memmove]]_{r}]_{r \rightleftharpoons a}, consider locle returning 0:$$

$$[[\downarrow memmove]]_{a} \xleftarrow{Jump?(r(x0) = 0, ..., m)}_{\leq}$$

$$[[memmove]]_{r} \xleftarrow{Return?(?, m)}_{l} \downarrow^{Jump?(r(x0) = 0, ..., m)}_{l} \qquad false \sim_{w} 0$$

$$Which value should [\cdot]_{r \rightleftharpoons a} pick? \qquad false \sim_{w} 0$$

$$0 \sim_{w} 0$$

$$\ell_{0} \sim_{w} 0$$

$$[[memmove]]_r \leftarrow [[memmove]]_r \leftarrow [[memmove]]_$$

Non-determinism summary

implementation \leq specification

Angelic non-determinism

Demonic non-determinism

 \forall in specification

∃ in specification

3 in implementation

Assumption about the environment *Rely*

 \forall in implementation

Guarantee to the environment *Guarantee*

Program main	fn main() \triangleq let $x :=$ yield(0) in print(x); let $x :=$ yield(0) in print(x); yield(0)
Library stream	fn stream(n) \triangleq yield(n); stream(n + 1);
Library yield	yield : save and restore registers, and switch stack

CORO-LINK $\llbracket yield \rrbracket_a \oplus_a \lceil M_1 \rceil_{r \rightleftharpoons a} \oplus_a \lceil M_2 \rceil_{r \rightleftharpoons a} \leq \lceil M_1 \oplus_{coro} M_2 \rceil_{r \rightleftharpoons a}$

Non-determinism in Spec

demonic angelic

 $\operatorname{Spec}(E) \ni p ::=_{\operatorname{coind}} \operatorname{vis}(e); p \mid \exists x : T; p(x) \mid \forall x : T; p(x) \quad (e \in E)$

SIM-EX-R	SIM-EX-L
$\exists y \in T. M \leq \llbracket p(y) \rrbracket_{s}$	$\forall y \in T. \llbracket p(y) \rrbracket_{s} \le M$
$M \leq [\![\exists x : T; p(x)]\!]_{s}$	$\llbracket \exists x:T;p(x) \rrbracket_{s} \leq M$
SIM-ALL-R	SIM-ALL-L
$\forall y \in T. M \leq \llbracket p(y) \rrbracket_{s}$	$\exists y \in T. \llbracket p(y) \rrbracket_{s} \le M$
$M \leq \llbracket \forall x : T; p(x) \rrbracket_{s}$	$\llbracket \forall x:T; p(x) \rrbracket_{s} \le M$

Non-determinism in Spec

demonic angelic Spec(E) $\ni p ::=_{coind} vis(e); p \mid \exists x : T; p(x) \mid \forall x : T; p(x)$ $(e \in E)$

SIM-EX-R	SIM-EX-L
$\exists y \in T. M \leq \llbracket p(y) \rrbracket_{s}$	$\forall y \in T. \llbracket p(y) \rrbracket_{s} \leq M$
$\overline{M} \leq [\![\exists x:T;p(x)]\!]_{s}$	$\llbracket \exists x:T;p(x)\rrbracket_{s} \leq M$
SIM-ALL-R	SIM-ALL-L
$\forall y \in T. M \leq \llbracket p(y) \rrbracket_{s}$	$\exists y \in T. \llbracket p(y) \rrbracket_{s} \le M$
$\overline{M \leq [\![\forall x:T;p(x)]\!]_{s}}$	$\overline{[\![\forall x:T;p(x)]\!]_{s}} \le M$
Non-determinism in Spec

demonic angelic
Spec(E)
$$\ni p ::=_{coind} vis(e); p \mid \exists x : T; p(x) \mid \forall x : T; p(x)$$
 $(e \in E)$

	SIM-EX-R $\exists u \in T M \prec \llbracket p(u) \rrbracket$	$SIM-EX-L \\ \forall u \in T \ \left[p(u) \right] < M$	
demonic:	$\frac{\exists g \in T : M \leq [p(g)]_{s}}{M \leq [\exists x : T; p(x)]_{s}}$	$\frac{\forall g \in T : [[p(g)]]_{s} \leq M}{[[\exists x : T; p(x)]]_{s} \leq M}$	∀ and ∃ behave
			like the logical
angelic:	SIM-ALL-R $\forall y \in T. M \leq \llbracket p(y) \rrbracket_{s}$	$\underbrace{\exists y \in T. \llbracket p(y) \rrbracket_{s} \leq M}_{\text{SIM-ALL-L}}$	quantifiers
	$M \leq \llbracket \forall x : T; p(x) \rrbracket_{s}$	$[\![\forall x:T;p(x)]\!]_{s} \le M$	

Operational semantics for angelic non-determinism Definition of modules: set of states

$$M = (S, \rightarrow, \sigma^0)$$

$$\rightarrow \in \mathcal{P}(S \times \operatorname{option}(E) \times \mathcal{P}(S))$$

 $(\exists x:T;p(x)) \xrightarrow{\tau} \{p(y)\} \text{ (for } y \in T) \qquad (\forall x:T;p(x)) \xrightarrow{\tau} \{p(y) \mid y \in T\}$ $(\text{vis}(e);p) \xrightarrow{e} \{p\}$

Definition of modules:

$$M = (\overset{\bullet}{S}, \rightarrow, \sigma^{0})$$

set of states initial state

$$\rightarrow \in \mathcal{P}(S \times \operatorname{option}(E) \times \mathcal{P}(S))$$

 $(\exists x:T;p(x)) \xrightarrow{\tau} \{p(y)\} \text{ (for } y \in T) \qquad (\forall x:T;p(x)) \xrightarrow{\tau} \{p(y) \mid y \in T\}$ $(\text{vis}(e);p) \xrightarrow{e} \{p\}$

Definition of modules:

set of states initial state
$$M = (S, \rightarrow, \sigma^0)$$

$$\rightarrow \in \mathcal{P}(S \times \operatorname{option}(E) \times \mathcal{P}(S))$$

 $(\exists x:T;p(x)) \xrightarrow{\tau} \{p(y)\} \text{ (for } y \in T) \qquad (\forall x:T;p(x)) \xrightarrow{\tau} \{p(y) \mid y \in T\}$ $(\text{vis}(e);p) \xrightarrow{e} \{p\}$

Definition of modules:

set of states initial state

$$M = (S, \rightarrow, \sigma^{0})$$
transition relation

$$\rightarrow \in \mathcal{P}(S \times \operatorname{option}(E) \times \mathcal{P}(S))$$

demonic
$$\exists x : T; p(x)) \xrightarrow{\tau}_{S} \{p(y)\} (\text{for } y \in T) \qquad (\forall x : T; p(x)) \xrightarrow{\tau}_{S} \{p(y) \mid y \in T\}$$

$$(\operatorname{vis}(e); p) \xrightarrow{e}_{S} \{p\}$$

Definition of modules:

set of states initial state

$$M = (S, \rightarrow, \sigma^{0})$$
transition relation

$$\rightarrow \in \mathcal{P}(S \times \operatorname{option}(E) \times \mathcal{P}(S))$$

demonic angelic
$$(\exists x : T; p(x)) \xrightarrow{\tau} \{p(y)\} (\text{for } y \in T) \qquad (\forall x : T; p(x)) \xrightarrow{\tau} \{p(y) \mid y \in T\}$$

$$(\operatorname{vis}(e); p) \xrightarrow{e} \{p\}$$

Definition of modules:

$$M = (S, \rightarrow, \sigma^0)$$

transition relation

set of states initial state

$$\rightarrow \in \mathcal{P}(S \times \operatorname{option}(E) \times \mathcal{P}(S))$$

demonic angelic
$$(\exists x : T; p(x)) \xrightarrow{\tau} \{p(y)\} (\text{for } y \in T) \qquad (\forall x : T; p(x)) \xrightarrow{\tau} \{p(y) \mid y \in T\}$$

$$(\operatorname{vis}(e); p) \xrightarrow{e} \{p\}$$

$$M_1 \leq M_2 \triangleq (M_1, \sigma_{M_1}^0) \leq_{\rm co} (M_2, \sigma_{M_2}^0)$$

 $(M_1, \sigma_1) \leq_{\mathrm{co}} (M_2, \sigma_2) \triangleq_{\mathrm{coind}}$

For each demonic choice in M₁

$$\forall e, \Sigma_1. \sigma_1 \xrightarrow{e} M_1 \Sigma_1 \Rightarrow \exists \Sigma_2. \sigma_2 \xrightarrow{e} M_2 \Sigma_2 \land$$
$$\forall \sigma_2' \in \Sigma_2. \exists \sigma_1' \in \Sigma_1. (M_1, \sigma_1') \leq_{\mathrm{co}} (M_2, \sigma_2')$$

$$M_1 \leq M_2 \triangleq (M_1, \sigma_{M_1}^0) \leq_{\rm co} (M_2, \sigma_{M_2}^0)$$

 $(M_1, \sigma_1) \leq_{\mathrm{co}} (M_2, \sigma_2) \triangleq_{\mathrm{coind}}$

For each demonic choice in M_1 exists a demonic choice in M_2 , s.t. $\forall e, \Sigma_1. \sigma_1 \xrightarrow{e} M_1 \Sigma_1 \Rightarrow \exists \Sigma_2. \sigma_2 \xrightarrow{e} M_2^* \Sigma_2 \land$ $\forall \sigma'_2 \in \Sigma_2. \exists \sigma'_1 \in \Sigma_1. (M_1, \sigma'_1) \leq_{co} (M_2, \sigma'_2)$

$$M_1 \leq M_2 \triangleq (M_1, \sigma_{M_1}^0) \leq_{\rm co} (M_2, \sigma_{M_2}^0)$$

 $(M_1, \sigma_1) \leq_{\mathrm{co}} (M_2, \sigma_2) \triangleq_{\mathrm{coind}}$

For each demonic choice in M_1 exists a demonic choice in M_2 , s.t. $\forall e, \Sigma_1. \sigma_1 \xrightarrow{e} M_1 \Sigma_1 \Rightarrow \exists \Sigma_2. \sigma_2 \xrightarrow{e} M_2 \Sigma_2 \land$ $\forall \sigma'_2 \in \Sigma_2. \exists \sigma'_1 \in \Sigma_1. (M_1, \sigma'_1) \leq_{co} (M_2, \sigma'_2)$ for each angelic choice in M_2 exists an angelic choice in M_1 .

$$M_1 \leq M_2 \triangleq (M_1, \sigma_{M_1}^0) \leq_{\rm co} (M_2, \sigma_{M_2}^0)$$

 $(M_1, \sigma_1) \leq_{co} (M_2, \sigma_2) \triangleq_{coind}$

For each demonic choice in M_1 exists a demonic choice in M_2 , s.t. $\forall e, \Sigma_1. \sigma_1 \xrightarrow{e} M_1 \Sigma_1 \Rightarrow \exists \Sigma_2. \sigma_2 \xrightarrow{e} M_2 \Sigma_2 \land$ $\forall \sigma'_2 \in \Sigma_2. \exists \sigma'_1 \in \Sigma_1. (M_1, \sigma'_1) \leq_{co} (M_2, \sigma'_2)$ for each angelic choice in M_2 exists an angelic choice in M_1 .

$$M_1 \leq M_2 \triangleq (M_1, \sigma_{M_1}^0) \leq_{\rm co} (M_2, \sigma_{M_2}^0)$$

 $(M_1, \sigma_1) \leq_{\mathsf{co}} (M_2, \sigma_2) \triangleq_{\mathsf{coind}}$

For each demonic choice in M_1 exists a demonic choice in M_2 , s.t. $\forall e, \Sigma_1. \sigma_1 \xrightarrow{e} M_1 \Sigma_1 \Rightarrow \exists \Sigma_2. \sigma_2 \xrightarrow{e} M_2 \Sigma_2 \land$ $\forall \sigma'_2 \in \Sigma_2. \exists \sigma'_1 \in \Sigma_1. (M_1, \sigma'_1) \leq_{co} (M_2, \sigma'_2)$ for each angelic choice in M_2 exists an angelic choice in M_1 .