
DimSum
A Decentralized Approach to Multi-
language Semantics and Verification

Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo,
Robbert Krebbers, Deepak Garg, and Derek Dreyer

POPL’23

January 18, 2023

1Dimsum icon by Icons8

https://icons8.com/icon/weE02UJLhPLW/dimsum
https://icons8.com/

2

How can we reason modularly
about multi-language programs?

void main() {
char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
print(x[1]); print(x[2]);

}

Example

4

void main() {
char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
print(x[1]); print(x[2]);

}

Example

4

System call

void main() {
char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
print(x[1]); print(x[2]);

}

Example

4

System call

void main() {
char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
print(x[1]); print(x[2]);

}

Example

4

System call

Key aspects

#1 Extend C with system
calls via print library

void main() {
char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
print(x[1]); print(x[2]);

}

Example

4

Key aspects

#1 Extend C with system
calls via print library

void memmove(char *d, char *s, int n) {
if (locle(d, s)) { return memcpy(d, s, n, 1); }
else { return memcpy(d+n-1, s+n-1, n, -1); } }

void memcpy(char *d, char *s, int n, int o) {
if (0 < n) { *d = *s; memcpy(d+o, s+o, n-1, o) } }

void main() {
char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
print(x[1]); print(x[2]);

}

Example

4

Key aspects

#1 Extend C with system
calls via print library

void memmove(char *d, char *s, int n) {
if (locle(d, s)) { return memcpy(d, s, n, 1); }
else { return memcpy(d+n-1, s+n-1, n, -1); } }

void memcpy(char *d, char *s, int n, int o) {
if (0 < n) { *d = *s; memcpy(d+o, s+o, n-1, o) } }

Address comparison

void main() {
char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
print(x[1]); print(x[2]);

}

Example

4

Key aspects

#1 Extend C with system
calls via print library

void memmove(char *d, char *s, int n) {
if (locle(d, s)) { return memcpy(d, s, n, 1); }
else { return memcpy(d+n-1, s+n-1, n, -1); } }

void memcpy(char *d, char *s, int n, int o) {
if (0 < n) { *d = *s; memcpy(d+o, s+o, n-1, o) } }

Address comparison

void main() {
char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
print(x[1]); print(x[2]);

}

Example

4

Key aspects

#1 Extend C with system
calls via print library

#2 Use Asm’s concrete
memory model to
provide address
comparison to C
via locle

void memmove(char *d, char *s, int n) {
if (locle(d, s)) { return memcpy(d, s, n, 1); }
else { return memcpy(d+n-1, s+n-1, n, -1); } }

void memcpy(char *d, char *s, int n, int o) {
if (0 < n) { *d = *s; memcpy(d+o, s+o, n-1, o) } }

Address comparison

void main() {
char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
print(x[1]); print(x[2]);

}

Example

4

Key aspects

#1 Extend C with system
calls via print library

#2 Use Asm’s concrete
memory model to
provide address
comparison to C
via locle

#3 Reason about memcpy
independent of Asm

void memmove(char *d, char *s, int n) {
if (locle(d, s)) { return memcpy(d, s, n, 1); }
else { return memcpy(d+n-1, s+n-1, n, -1); } }

void memcpy(char *d, char *s, int n, int o) {
if (0 < n) { *d = *s; memcpy(d+o, s+o, n-1, o) } }

Existing approaches

5

Existing approaches

5

1. Pilsner [Neis et al. 2015], …

All target-level (Asm) code is specified
using source-level (C) code.

Existing approaches

5

1. Pilsner [Neis et al. 2015], …

All target-level (Asm) code is specified
using source-level (C) code.

Fixes the source language
as specification language:
disallows print and locle

Existing approaches

5

1. Pilsner [Neis et al. 2015], …

All target-level (Asm) code is specified
using source-level (C) code.

2. CompCert-based approaches
[Stewart et al. 2015, …]

Link all languages via a common
interaction protocol.

Fixes the source language
as specification language:
disallows print and locle

Existing approaches

5

1. Pilsner [Neis et al. 2015], …

All target-level (Asm) code is specified
using source-level (C) code.

2. CompCert-based approaches
[Stewart et al. 2015, …]

Link all languages via a common
interaction protocol.

Fixes the source language
as specification language:
disallows print and locle

Fixes (abstract) memory
model: disallows locle

Existing approaches

5

1. Pilsner [Neis et al. 2015], …

All target-level (Asm) code is specified
using source-level (C) code.

3. Syntactic multi-languages
[Ahmed and Blume 2011, …]

Embed all languages into one large
multi-language.

2. CompCert-based approaches
[Stewart et al. 2015, …]

Link all languages via a common
interaction protocol.

Fixes the source language
as specification language:
disallows print and locle

Fixes (abstract) memory
model: disallows locle

Existing approaches

5

1. Pilsner [Neis et al. 2015], …

All target-level (Asm) code is specified
using source-level (C) code.

3. Syntactic multi-languages
[Ahmed and Blume 2011, …]

Embed all languages into one large
multi-language.

2. CompCert-based approaches
[Stewart et al. 2015, …]

Link all languages via a common
interaction protocol.

Fixes the source language
as specification language:
disallows print and locle

Fixes (abstract) memory
model: disallows locle

Fixes the set of languages:
requires reasoning about
Asm context for memcpy

Desiderata for multi-language reasoning

6

Desiderata for multi-language reasoning

#1 No fixed source language as specification language
Can link with target code that is not representable in the source

6

Desiderata for multi-language reasoning

#1 No fixed source language as specification language
Can link with target code that is not representable in the source

#2 No fixed memory model
Supports languages with different memory models

6

Desiderata for multi-language reasoning

#1 No fixed source language as specification language
Can link with target code that is not representable in the source

#2 No fixed memory model
Supports languages with different memory models

#3 No fixed set of languages
Allows language-local reasoning

6

Desiderata for multi-language reasoning

#1 No fixed source language as specification language
Can link with target code that is not representable in the source

#2 No fixed memory model
Supports languages with different memory models

#3 No fixed set of languages
Allows language-local reasoning

#4 No fixed notion of linking

6

Desiderata for multi-language reasoning

#1 No fixed source language as specification language
Can link with target code that is not representable in the source

#2 No fixed memory model
Supports languages with different memory models

#3 No fixed set of languages
Allows language-local reasoning

#4 No fixed notion of linking

6

DimSum

Dimsum icon by Icons8

https://icons8.com/icon/weE02UJLhPLW/dimsum
https://icons8.com/

Decentralized Multi-language Reasoning

7

DimSum

Dimsum icon by Icons8

https://icons8.com/icon/weE02UJLhPLW/dimsum
https://icons8.com/

Decentralized Multi-language Reasoning

7

DimSum

Dimsum icon by Icons8

#1 No fixed source / spec. language

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

https://icons8.com/icon/weE02UJLhPLW/dimsum
https://icons8.com/

Decentralized Multi-language Reasoning

7

DimSum

Dimsum icon by Icons8

#1 No fixed source / spec. language

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Combining ideas from
process algebra, Kripke relations, angelic non-determinism, …

https://icons8.com/icon/weE02UJLhPLW/dimsum
https://icons8.com/

Decentralized Multi-language Reasoning

7

DimSum

Dimsum icon by Icons8

Instantiations

Rec: C-like language

Asm: assembly language

Spec: specification language

#1 No fixed source / spec. language

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Combining ideas from
process algebra, Kripke relations, angelic non-determinism, …

https://icons8.com/icon/weE02UJLhPLW/dimsum
https://icons8.com/

Decentralized Multi-language Reasoning

7

DimSum

Dimsum icon by Icons8

Instantiations

Rec: C-like language

Asm: assembly language

Spec: specification language

Evaluation

: Compiler from Rec to Asm

: pointer comparison

: coroutines

#1 No fixed source / spec. language

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Combining ideas from
process algebra, Kripke relations, angelic non-determinism, …

https://icons8.com/icon/weE02UJLhPLW/dimsum
https://icons8.com/

Decentralized Multi-language Reasoning

7

DimSum

Dimsum icon by Icons8

Instantiations

Rec: C-like language

Asm: assembly language

Spec: specification language

Evaluation

: Compiler from Rec to Asm

: pointer comparison

: coroutines

#1 No fixed source / spec. language

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Combining ideas from
process algebra, Kripke relations, angelic non-determinism, …

https://icons8.com/icon/weE02UJLhPLW/dimsum
https://icons8.com/

Decentralized Multi-language Reasoning

7

DimSum

Dimsum icon by Icons8

Instantiations

Rec: C-like language

Asm: assembly language

Spec: specification language

Evaluation

: Compiler from Rec to Asm

: pointer comparison

: coroutines

#1 No fixed source / spec. language

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Combining ideas from
process algebra, Kripke relations, angelic non-determinism, …

https://icons8.com/icon/weE02UJLhPLW/dimsum
https://icons8.com/

void main() {
char x[3]; x[0] = 1; x[1] = 2; // x = {1, 2, *}
memmove(x + 1, x + 0, 2); // x = {1, 1, 2}
print(x[1]); print(x[2]);

}

Example: onetwo

9

void memmove(char *d, char *s, int n) {
if (locle(d, s)) { return memcpy(d, s, n, 1); }
else { return memcpy(d+n-1, s+n-1, n, -1); } }

void memcpy(char *d, char *s, int n, int o) {
if (0 < n) { *d = *s; memcpy(d+o, s+o, n-1, o) } }

Specification

10

Specification

10

Specification

10

Rec to Asm
compilation

Specification

10

syntactic linking, i.e.
union of instructions

“The program
prints 1 and

then 2.”

Specification

10

Specification

11

How to define
refinement in a
decentralized

fashion? ?

?

defined as

Specification

11

How to define
refinement in a
decentralized

fashion?

Use labeled
transition
systems as

semantic domain
with interaction

via events!

? !

defined as

Specification

11

syntactic program to semantic LTS (i.e., module)

How to define
refinement in a
decentralized

fashion?

Use labeled
transition
systems as

semantic domain
with interaction

via events!

? !

defined as

Specification

11

“are in simulation”

How to define
refinement in a
decentralized

fashion?

Use labeled
transition
systems as

semantic domain
with interaction

via events!

? !

defined as

Proof outline

12

Proof outline

12

1. Modularize proof via semantic linking
2. Translate between languages via semantic wrapping
3. Language-local verification in Rec

Proof outline

12

1. Modularize proof via semantic linking
2. Translate between languages via semantic wrapping
3. Language-local verification in Rec

Syntactic vs. semantic linking

13

Syntactic vs. semantic linking

13

syntactic linking, i.e.
union of instructions

Syntactic vs. semantic linking

13

semantic linking, i.e. synchronization on events

syntactic linking, i.e.
union of instructions

Syntactic vs. semantic linking

13

semantic linking, i.e. synchronization on events

syntactic linking, i.e.
union of instructions

matches outgoing Jump! with incoming Jump?

Syntactic vs. semantic linking

13

semantic linking, i.e. synchronization on events

syntactic linking, i.e.
union of instructions

Key property: Horizontal compositionality

enables modular
reasoning using .

Proof outline

14

1. Modularize proof via semantic linking
2. Translate between languages via semantic wrapping
3. Language-local verification in Rec

Translating between languages: wrapper

15

…

…

?
…

…

…

Translating between languages: wrapper

15

…

… r⇌a

…

…

…

…

…

Translating between languages: wrapper

15

…

… r⇌a

Desideratum #2:
enables

interoperation
between

language and
memory models

…

…

…

…

…

Translating between languages: wrapper

16

…

… r⇌a

…

…

Key technical idea:
rely-guarantee protocol via

demonic and angelic
non-determinism

Translating between languages: wrapper

16

…

… r⇌a

…

…

inspired by Conditional
Contextual Refinement
[Song et al., POPL’23]

Key technical idea:
rely-guarantee protocol via

demonic and angelic
non-determinism

Compiler correctness

17

Compiler correctness

17

Compiler correctness

17

syntactically translated

Compiler correctness

17

syntactically translated semantically translated

Abstracting Asm to Rec transition system

18

Abstracting Asm to Rec transition system

18

Abstracting Asm to Rec transition system

18

Desideratum #1
No syntactic Rec

program required!

Proof outline

19

1. Modularize proof via semantic linking
2. Translate between languages via semantic wrapping
3. Language-local verification in Rec

Bundling Rec modules

20

Bundling Rec modules

20

Rec-level reasoning

21

Rec-level reasoning

21

Rec-level reasoning

21

Desideratum #3:
Language-local

reasoning
(independent of Asm)

Rec-level reasoning

21

Desideratum #3:
Language-local

reasoning
(independent of Asm)

via

Reasoning with specifications

22

Complete verification

23

Recap: Desiderata for multi-language reasoning

24

Recap: Desiderata for multi-language reasoning

#1 No fixed source language as specification language
Labeled transition systems as semantic domain

24

Recap: Desiderata for multi-language reasoning

#1 No fixed source language as specification language
Labeled transition systems as semantic domain

#2 No fixed memory model
Wrappers like translate between memory models

24

Recap: Desiderata for multi-language reasoning

#1 No fixed source language as specification language
Labeled transition systems as semantic domain

#2 No fixed memory model
Wrappers like translate between memory models

#3 No fixed set of languages
Language-local reasoning via compatibility with refinement

24

Recap: Desiderata for multi-language reasoning

#1 No fixed source language as specification language
Labeled transition systems as semantic domain

#2 No fixed memory model
Wrappers like translate between memory models

#3 No fixed set of languages
Language-local reasoning via compatibility with refinement

#4 No fixed notion of linking
DimSum allows defining custom linking operators

24

Recap: Desiderata for multi-language reasoning

#1 No fixed source language as specification language
Labeled transition systems as semantic domain

#2 No fixed memory model
Wrappers like translate between memory models

#3 No fixed set of languages
Language-local reasoning via compatibility with refinement

#4 No fixed notion of linking
DimSum allows defining custom linking operators

24

DimSum
https://plv.mpi-sws.org/dimsum

https://plv.mpi-sws.org/dimsum

In the paper

25

Verification of

Operational semantics
for dual non-determinism

Coroutines

Language-generic combinators

Wrappers via demonic and angelic
non-determinism

Questions?
https://plv.mpi-sws.org/dimsum

https://plv.mpi-sws.org/dimsum

Decentralized Multi-language Reasoning

26

DimSum

Dimsum icon by Icons8

Instantiations

Rec: C-like language

Asm: assembly language

Spec: specification language

Evaluation

: Compiler from Rec to Asm

: pointer comparison

: coroutines

#1 No fixed source / spec. language

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Combining ideas from
process algebra, wrappers, Kripke relations, and angelic non-determinism

Questions?

https://plv.mpi-sws.org/dimsum

https://icons8.com/icon/weE02UJLhPLW/dimsum
https://icons8.com/
https://plv.mpi-sws.org/dimsum

Backup slides

28

What next?

29

Other language features

e.g. closures, concurrency, …

What next?

29

Other language features

e.g. closures, concurrency, …

Combine with existing
verification tools

e.g. RefinedC, Islaris, …

What next?

29

Other language features

e.g. closures, concurrency, …

Combine with existing
verification tools

e.g. RefinedC, Islaris, …

Investigate meta-level properties

e.g. boundary cancellation, …

What next?

29

Other language features

e.g. closures, concurrency, …

Combine with existing
verification tools

e.g. RefinedC, Islaris, …

Investigate meta-level properties

e.g. boundary cancellation, …
…

Events

30

Asm Rec

Events

30

unstructured jumps vs. call and return

Asm Rec

Events

30

unstructured jumps vs. call and return

system
calls

Asm Rec

Events

30

unstructured jumps vs. call and return

system
calls

Asm Rec

Events

30

unstructured jumps vs. call and return

system
calls unstructured vs.

structured values

Asm Rec

Events

30

unstructured jumps vs. call and return

system
calls unstructured vs.

structured values

Asm Rec

Events

30

unstructured jumps vs. call and return

system
calls unstructured vs.

structured values

flat vs. block-based memory

Asm Rec

Specification

31

Specification

31

Specification

31

≈ “Assuming the environment calls the main function, …”

Specification

31

≈ “… the program prints 1 and then 2.”

≈ “Assuming the environment calls the main function, …”

Assembly verification

32

Assembly verification

32

When the environment
jumps to print, …

Assembly verification

32

When the environment
jumps to print, …

… invoke PRINT
syscall with

argument r(x0) …

Assembly verification

32

When the environment
jumps to print, …

… invoke PRINT
syscall with

argument r(x0) …
…, and jump to return address r(x30).

Assembly verification

32

When the environment
jumps to print, …

… invoke PRINT
syscall with

argument r(x0) …
…, and jump to return address r(x30).

register with syscall id

Assembly verification

33

Assembly verification

33

“set if less or equal”

Assembly verification

33

“set if less or equal”

Assembly verification

33

“When the environment calls locle with l1 and , …

“set if less or equal”

Assembly verification

33

“When the environment calls locle with l1 and , …

“set if less or equal”

Assembly verification

33

“When the environment calls locle with l1 and , …

“set if less or equal”

Assembly verification

33

“When the environment calls locle with l1 and , …

“set if less or equal”

Assembly verification

33

“When the environment calls locle with l1 and , …

… if the blocks are equal,
compare the offsets, …

“set if less or equal”

Assembly verification

33

“When the environment calls locle with l1 and , …

… if the blocks are equal,
compare the offsets, …

“set if less or equal”

Assembly verification

33

“When the environment calls locle with l1 and , …

… if the blocks are equal,
compare the offsets, …

“set if less or equal”

Assembly verification

33

… otherwise return a
non-deterministic Boolean.”

“When the environment calls locle with l1 and , …

… if the blocks are equal,
compare the offsets, …

“set if less or equal”

Assembly verification

33

… otherwise return a
non-deterministic Boolean.”

“When the environment calls locle with l1 and , …

… if the blocks are equal,
compare the offsets, …

“set if less or equal”

Assembly verification

33

… otherwise return a
non-deterministic Boolean.”

“When the environment calls locle with l1 and , …

… if the blocks are equal,
compare the offsets, …

“set if less or equal”

Assembly verification

33

… otherwise return a
non-deterministic Boolean.” No syntactic Rec program

required!

“When the environment calls locle with l1 and , …

… if the blocks are equal,
compare the offsets, …

“set if less or equal”

wrapper

34

wrapper

34

Translating values:

:

35

Translating values:

:

35

Kripke world: map from block ids
to base addresses

Translating values:

Translating events:

:

35

Kripke world: map from block ids
to base addresses

Translating values:

Translating events:

:

35

Kripke world: map from block ids
to base addresses

PC contains address
of the function

Translating values:

Translating events:

Rec arguments are related
to Asm argument registers

:

35

Kripke world: map from block ids
to base addresses

PC contains address
of the function

Translating values:

Translating events:

Rec arguments are related
to Asm argument registers

:

35

Kripke world: map from block ids
to base addresses

PC contains address
of the function

memories
are related

:

36

:

In , consider locle returning 0:

37

:

In , consider locle returning 0:

37

:

In , consider locle returning 0:

37

Which value should pick?

:

In , consider locle returning 0:

37

Which value should pick?

Choose non-deterministically!

:

38

Demonic non-determinism

:

38

Demonic non-determinism

?

:

38

Demonic non-determinism

?

:

38

Demonic non-determinism Angelic non-determinism

?

:

38

Demonic non-determinism Angelic non-determinism

?

:

38

Demonic non-determinism Angelic non-determinism

?

:

39

:

40

Resolving the angelic choice

41

Consider

, , or ?

Resolving the angelic choice

41

Consider

, , or ?

Resolving the angelic choice

41

Consider

, , or ?

Resolving the angelic choice

41

Consider

, , or ?

Resolving the angelic choice

41

Consider

Angelic choice
behaves like ꓱ in
implementation

Non-determinism summary

Demonic non-determinism

ꓱ in specification

ꓯ in implementation

Angelic non-determinism

ꓯ in specification

ꓱ in implementation

42

Assumption about the environment
Rely

Guarantee to the environment
Guarantee

implementation specification

43

Non-determinism in Spec

44

demonic angelic

Non-determinism in Spec

44

demonic angelic

Non-determinism in Spec

44

demonic angelic

demonic:

angelic:

ꓯ and ꓱ behave
like the logical

quantifiers

Operational semantics for angelic non-determinism

Definition of modules:

45

set of states

Operational semantics for angelic non-determinism

Definition of modules:

45

set of states initial state

Operational semantics for angelic non-determinism

Definition of modules:

45

set of states initial state

Operational semantics for angelic non-determinism

Definition of modules:

45

set of states initial state

transition relation

demonic

Operational semantics for angelic non-determinism

Definition of modules:

45

set of states initial state

transition relation

demonic angelic

Operational semantics for angelic non-determinism

Definition of modules:

45

set of states initial state

transition relation

demonic angelic

Refinement / Simulation

46

For each demonic choice in M1

Refinement / Simulation

46

For each demonic choice in M1 exists a demonic choice in M2, s.t.

Refinement / Simulation

46

For each demonic choice in M1 exists a demonic choice in M2, s.t.

for each angelic choice in M2 exists an angelic choice in M1.

Refinement / Simulation

46

For each demonic choice in M1 exists a demonic choice in M2, s.t.

for each angelic choice in M2 exists an angelic choice in M1.

Refinement / Simulation

46

For each demonic choice in M1 exists a demonic choice in M2, s.t.

for each angelic choice in M2 exists an angelic choice in M1.

