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How can we reason modularly 
about multi-language programs?



void main() {
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print(x[1]); print(x[2]);

}
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Key aspects

#1 Extend C with system
calls via print library

#2 Use Asm’s concrete
memory model to 
provide address 
comparison to C
via locle

#3 Reason about memcpy
independent of Asm

void memmove(char *d, char *s, int n) { 
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1. Pilsner [Neis et al. 2015], …

All target-level (Asm) code is specified 
using source-level (C) code.

3. Syntactic multi-languages
[Ahmed and Blume 2011, …]

Embed all languages into one large 
multi-language.

2. CompCert-based approaches 
[Stewart et al. 2015, …]

Link all languages via a common 
interaction protocol.

Fixes the source language 
as specification language: 
disallows print and locle

Fixes (abstract) memory 
model: disallows locle

Fixes the set of languages:
requires reasoning about 
Asm context for memcpy
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void main() {
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void memmove(char *d, char *s, int n) { 
if (locle(d, s)) { return memcpy(d, s, n, 1); }
else { return memcpy(d+n-1, s+n-1, n, -1); } }

void memcpy(char *d, char *s, int n, int o) { 
if (0 < n) { *d = *s; memcpy(d+o, s+o, n-1, o) } } 
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“are in simulation”

How to define 
refinement in a 
decentralized 

fashion?

Use labeled 
transition 
systems as 

semantic domain 
with interaction 

via events!

? !

defined as 
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semantic linking, i.e. synchronization on events

syntactic linking, i.e. 
union of instructions

Key property: Horizontal compositionality

enables modular 
reasoning using     .
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…

… r⇌a

…

…

inspired by Conditional 
Contextual Refinement 
[Song et al., POPL’23]

Key technical idea: 
rely-guarantee protocol via

demonic and angelic
non-determinism
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Desideratum #1
No syntactic Rec

program required!
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1. Modularize proof via semantic linking
2. Translate between languages via semantic wrapping
3. Language-local verification in Rec
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Desideratum #3:
Language-local 

reasoning
(independent of Asm)
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Verification of 

Operational semantics 
for dual non-determinism

Coroutines

Language-generic combinators

Wrappers via demonic and angelic 
non-determinism

Questions?
https://plv.mpi-sws.org/dimsum
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Instantiations

Rec: C-like language

Asm: assembly language

Spec: specification language

Evaluation

: Compiler from Rec to Asm

: pointer comparison

: coroutines

#1 No fixed source / spec. language 

#2 No fixed memory model

#3 No fixed set of languages

#4 No fixed notion of linking

Combining ideas from 
process algebra, wrappers, Kripke relations, and angelic non-determinism

Questions?
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unstructured jumps vs. call and return

system 
calls unstructured vs. 

structured values

flat vs. block-based memory

Asm Rec
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When the environment 
jumps to print, …

… invoke PRINT
syscall with 

argument r(x0) …
…, and jump to return address r(x30).

register with syscall id
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… otherwise return a
non-deterministic Boolean.” No syntactic Rec program 

required!

“When the environment calls locle with l1 and     , … 

… if the blocks are equal,
compare the offsets, …

“set if less or equal”



wrapper

34



wrapper

34



Translating values:

:

35



Translating values:

:

35

Kripke world: map from block ids 
to base addresses



Translating values:

Translating events:

:

35

Kripke world: map from block ids 
to base addresses



Translating values:

Translating events:

:

35

Kripke world: map from block ids 
to base addresses

PC contains address 
of the function



Translating values:

Translating events:

Rec arguments are related 
to Asm argument registers

:

35

Kripke world: map from block ids 
to base addresses

PC contains address 
of the function



Translating values:

Translating events:

Rec arguments are related 
to Asm argument registers

:

35

Kripke world: map from block ids 
to base addresses

PC contains address 
of the function

memories 
are related
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Resolving the angelic choice 

41

Consider

Angelic choice 
behaves like ꓱ in 
implementation
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Angelic non-determinism

ꓯ in specification

ꓱ in implementation
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Assumption about the environment
Rely

Guarantee to the environment
Guarantee

implementation     specification 
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demonic angelic

demonic:

angelic:

ꓯ and ꓱ behave 
like the logical 

quantifiers
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