
39

Conditional Contextual Refinement
YOUNGJU SONG, Seoul National University, Korea & MPI-SWS, Germany

MINKI CHO, Seoul National University, Korea
DONGJAE LEE, Seoul National University, Korea
CHUNG-KIL HUR, Seoul National University, Korea
MICHAEL SAMMLER,MPI-SWS, Germany

DEREK DREYER,MPI-SWS, Germany

Much work in formal verification of low-level systems is based on one of two approaches: refinement or
separation logic. These two approaches have complementary benefits: refinement supports the use of programs

as specifications, as well as transitive composition of proofs, whereas separation logic supports conditional

specifications, as well as modular ownership reasoning about shared state. A number of verification frameworks

employ these techniques in tandem, but in all such cases the benefits of the two techniques remain separate.

For example, in frameworks that use relational separation logic to prove contextual refinement, the relational

separation logic judgment does not support transitive composition of proofs, while the contextual refinement

judgment does not support conditional specifications.

In this paper, we propose Conditional Contextual Refinement (or CCR, for short), the first verification
system to not only combine refinement and separation logic in a single framework but also to trulymarry them

together into a unified mechanism enjoying all the benefits of refinement and separation logic simultaneously.

Specifically, unlike in prior work, CCR’s refinement specifications are both conditional (with separation

logic pre- and post-conditions) and transitively composable. We implement CCR in Coq and evaluate its

effectiveness on a range of interesting examples.

CCS Concepts: • Theory of computation→ Logic and verification; Separation logic.

Additional Key Words and Phrases: contextual refinement, separation logic, Coq, verification

ACM Reference Format:
Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional

Contextual Refinement. Proc. ACM Program. Lang. 7, POPL, Article 39 (January 2023), 31 pages. https://doi.

org/10.1145/3571232

1 INTRODUCTION
In recent years, great progress has been made on the problem of formally verifying correctness of

complex, low-level software systems with machine-checked proof [Klein et al. 2009; Appel 2014;

Gu et al. 2011, 2016]. Much work in this space is based on one of two approaches: refinement or
separation logic. In this paper, we argue that these two approaches in fact have complementary

benefits, and thus it is worth exploring how to marry them together in a single framework. We

propose such a framework, which we call Conditional Contextual Refinement (CCR), and we

Authors’ addresses: Youngju Song, Seoul National University, Korea & MPI-SWS, SIC, Germany, youngju@mpi-sws.org;

Minki Cho, Seoul National University, Korea, minki.cho@sf.snu.ac.kr; Dongjae Lee, Seoul National University, Korea,

dongjae.lee@sf.snu.ac.kr; Chung-Kil Hur, Seoul National University, Korea, gil.hur@sf.snu.ac.kr; Michael Sammler, MPI-

SWS, SIC, Germany, msammler@mpi-sws.org; Derek Dreyer, MPI-SWS, SIC, Germany, dreyer@mpi-sws.org.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART39

https://doi.org/10.1145/3571232

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

HTTPS://ORCID.ORG/0000-0001-7093-3824
HTTPS://ORCID.ORG/0000-0002-6684-0921
HTTPS://ORCID.ORG/0000-0003-2576-1220
HTTPS://ORCID.ORG/0000-0002-1656-0913
HTTPS://ORCID.ORG/0000-0003-4591-743X
HTTPS://ORCID.ORG/0000-0002-3884-6867
https://doi.org/10.1145/3571232
https://doi.org/10.1145/3571232
https://orcid.org/0000-0001-7093-3824
https://orcid.org/0000-0002-6684-0921
https://orcid.org/0000-0003-2576-1220
https://orcid.org/0000-0002-1656-0913
https://orcid.org/0000-0003-4591-743X
https://orcid.org/0000-0002-3884-6867
https://doi.org/10.1145/3571232
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by-nd/4.0/

39:2 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

demonstrate its utility on a range of representative examples. But before we get to CCR, let us

begin with a brief overview of what refinement and separation logic bring to the table.

1.1 Refinement vs. Separation Logic
Common to essentially all approaches to program verification is the idea that we have a program

(or program component) we wish to verify—call it the implementation—and we wish to show that

it satisfies some formal specification. However, two key axes along which different verification

methods differ—and in particular, how methods based on refinement vs. separation logic differ—are:

(1) how the specification is formalized, and

(2) the sense in which the verification method is compositional.

Separation logic. Separation logic is an extension of Hoare logic; as such, it specifies program

components 𝐶 (rather than whole programs) using a precondition 𝑃 and postcondition 𝑄 , written
{𝑃} 𝐶 {𝑄}. The precondition 𝑃 specifies the assumption that 𝐶 makes about its program context

and the starting state in which it is executed, and the postcondition 𝑄 specifies the guarantee 𝐶
makes about the final state after it has executed. A key benefit of this approach is that it enables us

to verify the correctness of a component 𝐶 even if 𝐶 only satisfies a conditional specification—i.e., 𝐶
only behaves correctly under certain conditions (say, when 𝑥 is a pointer to a well-sorted linked list,

or when some initialization routine has been run before 𝐶 is executed).

In terms of compositionality, separation logic goes beyond Hoare logic by additionally equipping

the assertions 𝑃 and 𝑄 with the ability to talk about ownership of resources (e.g., memory) that are

transferred to 𝐶 from its context (in 𝑃) and back to its context (in 𝑄). This in turn is essential for

supporting modular reasoning about shared state: when𝐶 operates on a piece of state (e.g., memory)

that is shared with its program context, the ownership model of separation logic assertions can

dramatically simplify reasoning about potential interference between 𝐶 and its context. And even

ignoring the program context, ownership reasoning can also be helpful in modularly decomposing

the verification of 𝐶 itself—e.g., if, say, 𝐶 spawns several threads manipulating shared state, each of

which we wish to verify separately without considering all concurrent interleavings.

Refinement. In contrast, refinement formalizes the specification of a program (or program

component
1
) as itself another (higher-level) program: in order to verify that the implementation

program 𝐼 satisfies the specification represented by the program 𝑆 , we show that the set of possible

behaviors exhibited by 𝐼 refines (i.e., is included in) the set of possible behaviors exhibited by 𝑆 ,

written 𝐼 ⊑ 𝑆 . One key benefit of refinement is that, by representing the specification 𝑆 as a program

rather than as a logical formula, refinement supports verification even in cases where we either (1)

lack a logic rich enough to express 𝐼 ’s behavior or (2) want to express the end-to-end result of our

verification in terms that an external user can understand (i.e., using code, rather than an assertion

in a bespoke logic known only to verification experts).

In terms of compositionality, an advantage of refinement is transitive composition of proofs:
one can conduct the verification of 𝐼 ⊑ 𝑆 compositionally by introducing 𝑛 mediating programs

𝑀1, . . . , 𝑀𝑛 , which gradually refine the behavior of the program 𝐼 until it reaches the specification 𝑆—

i.e., 𝐼 ⊑ 𝑀1 ⊑ . . . ⊑ 𝑀𝑛 ⊑ 𝑆 ; then, by transitivity, one obtains 𝐼 ⊑ 𝑆 . The gradual refinement afforded

by transitivity lets one focus on orthogonal aspects of 𝐼 separately—e.g., one step of a refinement

proof might deal with how 𝐼 represents a data structure in memory, while another step might focus

on the higher-level functional correctness of 𝐼 ’s algorithm. Moreover, transitivity supports proof

reuse, since refinement proofs can share “common legs”—the proofs of 𝐼1 ⊑ 𝑆, . . . , 𝐼𝑛 ⊑ 𝑆 might all

go through a common mediating𝑀 (such that 𝐼1 ⊑ 𝑀, . . . , 𝐼𝑛 ⊑ 𝑀), reusing the proof that𝑀 ⊑ 𝑆 .
1
Some refinement-based approaches support verification of modular program components, while others concern only whole

programs. We use the term “program” here loosely to refer to both.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:3

In summary:

• Separation logic supports conditional specifications and modular reasoning about shared state.
• Refinement supports programs as specifications and transitive composition of proofs.

It is therefore quite natural to ask:

Can we marry the complementary benefits of refinement and separation logic in one framework?

Marrying separation logic and refinement. We are certainly not the first to ask this question.

In particular, a number of verification frameworks [Liang and Feng 2016; Turon et al. 2013; Gäher

et al. 2022; Frumin et al. 2021a] have employed separation logic in conjunction with refinement.

However, what the existing work in this space has not done so far is to truly synthesize separa-

tion logic and refinement into a unified method providing all the benefits each method enjoys

individually.

Consider, for example, the main judgment in Simuliris [Gäher et al. 2022]: it takes the form

{𝑃} 𝐼 ≤ 𝑆 {𝑄}—where here 𝑃 and 𝑄 can talk about (and relate) the states of both 𝐼 and 𝑆 . This

relational separation logic judgment has the advantage that it lets one place precise ownership-based

conditions on when 𝐼 refines 𝑆 . Furthermore, for certain restricted choices of 𝑃 and𝑄 , this judgment

implies contextual refinement (𝐼 ⊑ctx 𝑆), a strong property that says 𝐼 refines 𝑆 when placed in

an arbitrary (well-formed) program context C. Hence, on the one hand, Simuliris uses relational

separation logic as an effective technique for establishing contextual refinement. Yet the benefits of

separation logic and refinement here are kept separate. The relational separation logic judgment

{𝑃} 𝐼 ≤ 𝑆 {𝑄} is a conditional refinement, but it does not enjoy transitive composability; in contrast,

the contextual refinement 𝐼 ⊑ctx 𝑆 is transitively composable but it is also un-conditional (i.e., it
does not support placing precise conditions on the program context).

In this paper, we propose Conditional Contextual Refinement (or CCR, for short), the first
verification system to not only combine refinement and separation logic in a single framework

but also fuse their complementary benefits together in a unified mechanism. Specifically, unlike in

prior work, CCR’s refinement specifications are both conditional (with separation logic pre- and

post-conditions) and transitively composable. Furthermore, CCR is fully mechanized in the Coq

proof assistant. To give a sense of what CCR is capable of, we now present a concrete example.

1.2 Motivating Example
Consider the verification of a simple key-value storage module depicted in Fig. 1. The implemen-

tation 𝐼Map uses a pointer data to store an array mapping the integer keys to their values. This

array is initially NULL and initialized by the function init(sz: int) with an array consisting of

sz zeros (returned by calloc(sz)). The functions get and set retrieve and update, respectively,

the entry at a given index in the array. Finally, set by user updates an entry with the value given

by the user (i.e., that obtained via the system call input()).
Now we consider and compare two kinds of specifications of 𝐼Map, one using separation logic

and the other using refinement. First, in separation logic, we can introduce a points-to predicate

k ↦→Map v, asserting that the key k is a valid entry of the map and stores the value v. With k ↦→Map v,
the functions of 𝐼Map can be specified in terms of pre- and postconditions as shown in the rightmost

column of Fig. 1. Here, init allocates k ↦→Map 0 for each entry in the map. Note that the exclusive
token 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 is consumed when calling init and thus encodes that init can only be called

once. Then get(k) returns v given k ↦→Map v, and set(k,v) updates k ↦→Map w to the new value v.
Note that set by user(k) updates k ↦→Map w to an unknown value that is given by the user.

On the plus side, it is well known that this kind of separation logic specification offers powerful

modular reasoning principles for verifying clients of 𝐼Map [Jung et al. 2018]. On the minus side, the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:4 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

(* module 𝐼Map *)
private data := NULL

def init(sz: int) ≡
data := calloc(sz)

def get(k: int): int ≡
return *(data + k)

def set(k: int, v: int) ≡
*(data + k) := v

def set_by_user(k: int) ≡
set(k, input())

(* module 𝐴Map *)
private map := (fun k => 0)

def init(sz: int) ≡
skip

def get(k: int): int ≡
return map[k]

def set(k: int, v: int) ≡
map := map[k← v]

def set_by_user(k: int) ≡
set(k, input())

(* pre & postconditions 𝑆Map *)
∀sz. { 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 }

init(sz)
{∗𝑘∈[0,sz) k ↦→Map 0}

∀k v. {k ↦→Map v}
get(k)
{𝑟 . 𝑟 = v ∧ k ↦→Map v}

∀k w v. {k ↦→Map w}
set(k,v)
{k ↦→Map v}

∀k w. {k ↦→Map w}
set by user(k)
{∃v. k ↦→Map v}

Fig. 1. An implementation module 𝐼Map, its abstraction 𝐴Map, and its pre- and postconditions.

separation logic spec does not fully capture the behavior of the code itself. In particular, the above

specification of set by user(k) does not capture how the function interacts with the user.

Alternatively, under the refinement approach, we can specify 𝐼Map using a more abstract program

𝐴Map (the middle column of Fig. 1), which fully captures the observable behavior of 𝐼Map. Specifically,

this abstraction 𝐴Map adequately retains the implementation’s interactions with its environment

(i.e., the system call input()) while at the same time abstracting away internal implementation

details (i.e., it abstracts the low-level memory-based representation of the map into a high-level

representation as a mathematical function from int to int).
On the plus side, thanks to transitivity, the refinement approach allows us to verify 𝐼Map incre-

mentally, in a stepwise fashion. For example, as we will see shortly, a refinement proof of 𝐼Map
against 𝐴Map, denoted 𝐼Map ⊑ 𝐴Map, can be established by introducing an intermediate abstraction

𝑀Map and transitively composing the proofs of 𝐼Map ⊑ 𝑀Map and 𝑀Map ⊑ 𝐴Map. On the minus side,

however—and this is a big minus—the refinement doesn’t hold! To be specific, it only holds under
the condition that init is called only once, and that the other functions are only called after the call

to init and with index arguments that are in range. (Otherwise, the refinement would be broken,

since functions in 𝐼Map would raise errors while those in𝐴Map would not.) This condition is of course

precisely what the separation logic specification for 𝐼Map enforces.

Conditional contextual refinement. As the above example makes clear, separation logic and

refinement are truly complementary methods. Separation logic supports the enforcement of precise

conditions on how a module is used, while refinement supports incremental stepwise verification

of the module (via transitivity) against a specification represented as code. How can we marry

these advantages in one mechanism?

To achieve this, we propose the notion of conditional contextual refinement (CCR). At a high level,

the idea of CCR is natural: we develop a notion of refinement that allows the imposition of precise

separation-logic conditions under which the refinement holds. For instance, in our motivating

example, we will be able to prove 𝑆Map ⊢ 𝐼Map ⊑ 𝐴Map, which establishes that 𝐼Map refines 𝐴Map under

the condition that the module is used according to the separation logic spec 𝑆Map. This conditional

refinement relation satisfies several key desiderata.

First, CCR’s conditional refinement supports modular reasoning as in separation logic. For

example, suppose that we have a client module of Map—call it CL for “client”—with an implemen-

tation 𝐼CL, an abstraction 𝐴CL, and conditions 𝑆CL. Then we want to modularly verify conditional

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:5

refinement for CL only relying on the separation logic specification 𝑆Map of Map and without need-
ing to reason directly about Map’s implementation 𝐼Map or abstraction 𝐴Map. In other words, we

want to prove 𝑆Map ∪ 𝑆CL ⊢ 𝐼CL ⊑ 𝐴CL, which is then composed with 𝑆Map ⊢ 𝐼Map ⊑ 𝐴Map to obtain

𝑆Map ∪ 𝑆CL ⊢ 𝐼CL ◦ 𝐼Map ⊑ 𝐴CL ◦𝐴Map (here, ◦ denotes the linking operator on modules). This kind of

composition is called horizontal composition. Moreover, such modular reasoning should be allowed

even in the presence of mutual dependence/recursion between modules.

Second, CCR’s conditional refinement allows incremental verification via transitive composi-

tion (sometimes known in the literature as vertical composition). For example, consider proving

𝑆Map ⊢ 𝐼Map ⊑ 𝐴Map via the following intermediate abstraction 𝑀Map, which simply adds the field

size and the range checking code assume(0 ≤ k < size) to 𝐴Map:

(* module 𝑀Map *)

private map := (fun k => 0)
private size := 0

def init(sz: int) ≡
size := sz

def get(k: int): int ≡
assume(0 ≤ k < size)
return map[k]

def set(k: int, v: int) ≡
assume(0 ≤ k < size)
map := map[k← v]

def set_by_user(k: int) ≡
set(k, input())

Here, the command assume(0 ≤ k < size) triggers undefined behavior, rendering all possible
behaviors, if k is out of range. This facilitates a decomposition of the refinement into two steps.

In the first step, we show that thanks to the range checking, 𝐼Map refines𝑀Map as long as init is

called at most once, a condition that is enforceable by the following simple specification 𝑆0Map:

∀sz. { 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 } init(sz) {⊤}
∀k v. {⊤} get(k), set(k,v), set by user(k) {⊤}

Here, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 is an exclusive token like 𝑝𝑒𝑛𝑑𝑖𝑛𝑔, which is used in a similar manner as in the

original 𝑆Map. (The motivation for differentiating between 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 and 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 will be clarified in

§2.3). The verification of 𝑆0Map ⊢ 𝐼Map ⊑ 𝑀Map then amounts to only proving data abstraction from

the memory-based representation of the map into the function-based representation assuming that

init is called at most once, but without bothering to prove that the module satisfies the functional

correctness properties specified in 𝑆Map.

In the second step, we show that 𝑀Map refines 𝐴Map under 𝑆Map.
2
This amounts to proving that

the module satisfies 𝑆Map, but based on the higher-level function-based representation rather than

the lower-level memory-based representation.

In order to cleanly formalize our notion of conditional refinement, as well as prove its horizontal

and vertical composition properties, CCR employs separation logic wrappers, a novel mechanism

for “operationalizing” the enforcement of separation logic specs. Concretely, CCR defines a notion

of a wrapper, written ⟨ 𝑆 ⊢ 𝑀 ⟩, which converts𝑀 into a module that “self-enforces” the pre- and

postconditions of 𝑆 at the points where𝑀 interacts with its program context. With these wrappers

in hand, CCR then can define conditional refinement as just a mode of use of the standard notion

of contextual refinement, denoted ⊑ctx, between wrapped modules:

𝑆 ⊢ 𝐼 ⊑ 𝐴 ≜ 𝐼 ⊑ctx ⟨ 𝑆 ⊢ 𝐴 ⟩
This allows us to easily establish the horizontal and vertical composition of conditional refinement by

leveraging the fact that contextual refinement enjoys these properties by construction. Concerning

our example, we can verify 𝐼Map via the following chain of refinements, whose transitive composition

follows directly from the transitivity of contextual refinement:

𝐼Map ⊑ctx ⟨ 𝑆0Map ⊢ 𝑀Map ⟩ ⊑ctx ⟨ 𝑆Map ⊢ 𝐴Map ⟩
2
To be precise, we prove that the wrapped module ⟨ 𝑆0Map ⊢ 𝑀Map ⟩ refines 𝐴Map under 𝑆Map. Wrapping is discussed below.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:6 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

Of course, this leaves the question of how exactly to define these separation logic wrappers. The

key challenge in defining such a wrapper is that separation logic reasoning involves non-trivial

cooperation across interacting modules, such as a transfer of resource ownership, which is not

readily observable in the program state. To tackle this challenge, we use a combination of angelic
and demonic non-determinism which is often called dual non-determinism. In prior work, this was

mainly studied in the context of game semantics [Back and Wright 2012; Koenig and Shao 2020]. In

CCR, we apply this idea instead as a way to express implicit resource transfer between the caller

and callee of a function, using non-deterministic choices of both parties.

In summary, we develop the theory of CCR, which fully fuses together the benefits of refinement

and separation logic in a unified mechanism. In this paper, we present the ideas and formalization

of CCR in detail, along with a variety of motivating examples (and others in the supplementary

material) involving shared-memory reasoning, mutual recursion, function pointers, and termination.

Structure of the paper. The rest of the paper is structured as follows. We first give an overview

of the main ideas of CCR by showing (semi-formally) how it applies to our motivating example

(§2). Next, we explain how CCR is formalized as a general verification framework. This is done

in two steps: we first present a general, language-agnostic module system we developed (§3), and

then develop the key definitions and meta-theory of the CCR framework (§4). The framework

presented in §4 is self-contained and sufficient to handle our motivating example. However, the

full-fledged CCR framework has additional features, which we motivate with further examples (§5).

The formalization for the full framework is given in the appendix [Song et al. 2022]. Finally, we

present an evaluation for our development (§6), discuss related work (§7) and future directions (§8).

2 MAIN IDEAS OF CCR
In this section, we will explain the key ideas behind the central mechanism of CCR, namely the

wrapper ⟨ 𝑆 ⊢ 𝑀 ⟩. Toward this end, we will show (𝑖) how the wrapper ⟨ 𝑆 ⊢ 𝑀 ⟩ is defined
(i.e., how the implementation 𝑀 is instrumented so as to enforce the pre- and postconditions of

𝑆 operationally), and (𝑖𝑖) how we reason about the wrapper in conjunction with a simulation

argument in order to establish conditional contextual refinement. Specifically, we will demonstrate

that such a conditional refinement indeed enjoys the promised properties:modular reasoning (in the

sense that each module can be verified independently with separation logic pre- and postconditions),

and incremental verification in the sense that the verification of each module can be decomposed into

multiple stepwise refinements. Finally, we will also present (𝑖𝑖𝑖) a (global) adequacy theorem—we

call it the Wrapper Elimination Theorem (WET)—which establishes that the wrappers we

introduce as part of conditional contextual refinement proofs can be safely erased at the level of a

whole-program verification.

In §2.1, we first discuss these three points with a simplified wrapper that only involves pure
conditions (i.e., without involving separation logic). Then, in §2.2–§2.4, we move on to the more

complex and interesting situation where the wrapper enforces separation logic conditions as well.

2.1 Stateless Conditional Refinement
To see how one can encode pure conditions, consider the following contrived yet illustrative

example consisting of two function implementations (𝐼Sq, 𝐼Main) and their abstractions (𝐴Sq, 𝐴Main):

(* module 𝐼Sq *)
def is_sq(x: int): int ≡

if (x < 0) error()
var r := ...
return r

(* module 𝐴Sq *)
def is_sq(x: int): int ≡

var r := ...
return r

(* module 𝐼Main *)
def main() ≡
var x := 16
var r := is_sq(x)
output(r)

(* module 𝐴Main *)
def main() ≡

var x := 16
var r := is_sq(x)
output(1)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:7

The function is sq(x) checks if x is a square number (elided here in the ... part), and returns 1

if so and 0 otherwise. In its implementation 𝐼Sq, if x is negative, it calls the system call error, but
this check is eliminated in its abstraction 𝐴Sq. The main function invokes is sq(16) and outputs

its result, which is abstracted to 1 in its abstraction 𝐴Main since 16 is in fact a square number.

Now, let us see whether we can prove 𝐼Sq ⊑ctx 𝐴Sq as a standard unconditional contextual
refinement. For this, we would need to show that for any value of the argument x, the two

implementations of is sq(x) in 𝐼Sq and 𝐴Sq are related by the simulation relation ≾ defined by

the following rules:

(STL)

T ↩→ T′ T′ ≾ S
T ≾ S

(STR)

S ↩→ S′ T ≾ S′

T ≾ S

(CALL)

∀𝑤. r:=𝑤 ;T ≾ r:=𝑤 ;S

r:=𝑓 (®𝑣);T ≾ r:=𝑓 (®𝑣);S

(RET)

return 𝑣 ≾ return 𝑣

Here, T denotes the “target” (or lower-level) side of the refinement, and S the “source” (or higher-
level) side of the refinement. T ↩→ T′ denotes the silent (deterministic) step of the code (or program

state) according to its small-step operational semantics. The first two rules say that one can freely

take silent steps on either side and then continue to show simulation between the resulting states.

The third rule says that at a function call point both sides should call the same function 𝑓 with

the same arguments ®𝑣 and the resulting states for the same arbitrary return value 𝑤 should be

simulated. The last rule says that at a return point both sides should return the same value.

As one can easily see, the simulation between 𝐼Sq and 𝐴Sq does not hold when x is negative

since error() is called in 𝐼Sq but not in 𝐴Sq. To make the refinement hold, we will therefore place a

condition on the contextual refinement. Furthermore, to demonstrate the potential for incremental

verification of this example (even though it is not really needed in such a simple example), we will

consider two possible conditional specifications. The first is the following spec, 𝑆0Sq, which is the

simplest possible condition ensuring that 𝐼Sq refines 𝐴Sq (by ruling out the case where x < 0):

∀x. {x ≥ 0} is sq(x) {⊤}

The second is the following spec, 𝑆Sq, which fully describes the behavior of the Sq module and is

thus an ideal spec for other modules in the program to rely on:
3

∀x. {x ≥ 0} is sq(x) {𝑟 . 𝑟 = 1 ⇐⇒ ∃𝑖 . x = 𝑖 ∗ 𝑖}

Our goal now is to prove the conditional contextual refinement 𝑆Sq ⊢ 𝐼Sq ⊑ 𝐴Sq, which establishes

that 𝐼Sq refines𝐴Sq when used by contexts that respect the specification 𝑆Sq. Recall that, as discussed

in §1.2, 𝑆Sq ⊢ 𝐼Sq ⊑ 𝐴Sq is encoded as an ordinary contextual refinement 𝐼Sq ⊑ctx ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩, where
the “source” side of the refinement wraps the abstract implementation 𝐴Sq with the spec 𝑆Sq using

the “wrapper” ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩. Our proof strategy is then to prove this refinement, but using the

wrapper with 𝑆0Sq as an intermediate step:

𝐼Sq ⊑ctx ⟨ 𝑆0Sq ⊢ 𝐴Sq ⟩ ⊑ctx ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩

Before proving this, though, let us first explain how the wrappers are encoded.

Encoding conditional wrappers. We encode the wrapper ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩ following the approach
of Refinement Calculus [Back and Wright 2012] (see §7 for a more detailed comparison). The idea is

to encode the pre- and postconditions via assume and assert statements. Concretely, ⟨ 𝑆0Sq ⊢ 𝐴Sq ⟩

3
Note that the “𝑟 .” in the postcondition is a binder for the return value of is sq(x).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:8 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

and ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩ are encoded as follows.

(* ⟨ 𝑆0Sq ⊢ 𝐴Sq ⟩ *)
def is_sq(x: int): int ≡

assume(x ≥ 0)
var r := ...
assert(⊤)
return r

(* ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩ *)
def is_sq(x: int): int ≡

assume(x ≥ 0)
var r := ...
assert(r = 1 ⇐⇒ ∃𝑖 . x = 𝑖 ∗ 𝑖)
return r

The wrapper adds an assume with the precondition at the start of the function and an assert with

the postcondition at the end. The behavior of assume and assert is formally described by the

following simulation rules:

(ASMR)

𝑃 =⇒ T ≾ S

𝑇 ≾ assume(𝑃);S

(ASTR)

𝑃 T ≾ S

T ≾ assert(𝑃);S

(ASML)

𝑃 T ≾ S

assume(𝑃);T ≾ S

(ASTL)

𝑃 =⇒ T ≾ S

assert(𝑃);T ≾ S

The intuition behind these rules and their use in our wrappers is easiest to grasp from considering

the case—covered by rules (ASMR) and (ASTR)—where the assume or assert appears on the source

(right-hand) side of a refinement. In that case, assume(𝑃) lets one assume 𝑃 , which is why we use

assume in the encoding of wrappers to model preconditions; whereas assert(𝑃) turns 𝑃 into a

proof obligation, which is why we use assert in the encoding of wrappers to model postconditions.

Dually, as shown in rules (ASML) and (ASTL), these operators swap their roles (assume becoming

a proof obligation and assert becoming an assumption) when appearing on the target (left-hand)

side of a refinement. These rules are validated w.r.t. a trace-based model of computation in §3.2.

For now, however, it is easiest to understand the behavior of assume and assert axiomatically in

terms of the refinements they enable.

Proving refinement incrementally. As explained above, we are going to prove the desired

refinement for the Sqmodule in two stages: 𝐼Sq ⊑ctx ⟨ 𝑆0Sq ⊢ 𝐴Sq ⟩ and ⟨ 𝑆0Sq ⊢ 𝐴Sq ⟩ ⊑ctx ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩,
which can then be combined to yield 𝐼Sq ⊑ctx ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩.

For the first refinement, 𝐼Sq ⊑ctx ⟨ 𝑆0Sq ⊢ 𝐴Sq ⟩, the intuitive idea of the proof is that the presence
of the precondition x ≥ 0 in 𝑆0Sq ensures that the dynamic check x ≥ 0 in 𝐼Sq succeeds. More

formally, the proof proceeds as follows: for any value of x, by (ASMR) with assume(x ≥ 0), we
can assume the value x is non-negative; by (STL), we can skip the if-statement without calling

error() since x ≥ 0; by applying (STL) and (STR) in lock step without any interesting reasoning

we can reach after var r := ... with the same value for r since the implementations on both

sides are identical; by (ASTR), we can simply skip assert(⊤); finally we can conclude by (RET)

since the return values are the same. Note that here the only non-trivial verification is to prove the

absence of error() relying on the assumption x ≥ 0.
For the second refinement ⟨ 𝑆0Sq ⊢ 𝐴Sq ⟩ ⊑ctx ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩, the assumptions on the two sides of the

refinement match, so the only interesting part is showing that the result satisfies the postcondition

in 𝑆Sq. More formally, the proof proceeds as follows: for any value of x, by (ASMR) we can assume x
≥ 0 and then by (ASML) we need to prove x ≥ 0, which immediately follows from the assumption

we just made; similarly as before we can easily reach var r := ... with the same value for r
by applying (STL) and (STR) in lock step; by (ASTL) we can skip assert(⊤); then by (ASTR) we

need to prove r = 1 ⇐⇒ ∃𝑖 . x = 𝑖 ∗ 𝑖 holds, which means basically proving that the code in

... correctly checks whether x is a square when x ≥ 0; finally we can conclude by (RET). Here

the only non-trivial verification is to prove the assert statement by (ASTR), which essentially

amounts to verification of 𝐴Sq against 𝑆Sq in Hoare logic.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:9

Using pre- and postconditions modularly. Now consider what happens when we want to

verify the Main module (see the beginning of this section), which is a client of the Sq module.

With the spec 𝑆Sq in hand, we can verify Main modularly (i.e., relying only on 𝑆Sq and without

needing to have access to its implementation). To do so, we will prove the conditional refinement

𝐼Main ⊑ctx ⟨ 𝑆Sq ∪ 𝑆Main ⊢ 𝐴Main ⟩, where the source side of the refinement wraps the abstraction

𝐴Main with two specs: the spec 𝑆Main = { {⊤} main() {⊤} } for Main, as well as the spec 𝑆Sq that is
assumed for Sq. This wrapping is encoded as follows:

def main() ≡ assume(⊤); var x := 16
assert(x ≥ 0); var r := is_sq(x); assume(r = 1 ⇐⇒ ∃𝑖 . x = 𝑖 ∗ 𝑖)
output(1); assert(⊤)

Note that the precondition of is sq is asserted before the call and its postcondition is assumed
after the call, which means that during the simulation proof of 𝐼Main ⊑ctx ⟨ 𝑆Sq ∪ 𝑆Main ⊢ 𝐴Main ⟩,
by (ASTR) the condition x ≥ 0 needs to be proven (this is trivial since x = 16), and by (ASMR)

the condition r = 1 ⇐⇒ ∃𝑖 . x = 𝑖 ∗ 𝑖 can be assumed, from which r = 1 follows (since

x = 16 = 4 ∗ 4); thus, both sides of the refinement call output(1), and the proof is done.

Eliminating wrappers. Now that we have verified the Sq module and the Main module sepa-

rately, we want to be able to put the proofs together into a verification of the whole program—i.e.,
to prove 𝐼Sq ◦ 𝐼Main ⊑beh 𝐴Sq ◦𝐴Main, where ⊑beh is a notion of whole-program behavioral refinement

(roughly, trace refinement—see §3.2). To do so, we first rely on the horizontal compositionality of

contextual refinement, which says that we can compose our proofs of 𝐼Sq ⊑ctx ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩ and
𝐼Main ⊑ctx ⟨ 𝑆Sq ∪ 𝑆Main ⊢ 𝐴Main ⟩ to obtain a refinement for the linked program (where ◦ denotes
linking):

𝐼Sq ◦ 𝐼Main ⊑ctx ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩ ◦ ⟨ 𝑆Sq ∪ 𝑆Main ⊢ 𝐴Main ⟩
And since these are closed programs, this implies also the same with ⊑beh instead of ⊑ctx:

𝐼Sq ◦ 𝐼Main ⊑beh ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩ ◦ ⟨ 𝑆Sq ∪ 𝑆Main ⊢ 𝐴Main ⟩
But this is not quite what we want yet, because the source side of the refinement is cluttered

with wrappers. Thus, to get to our end goal, we need to eliminate the wrappers by proving:

⟨ 𝑆Sq ⊢ 𝐴Sq ⟩ ◦ ⟨ 𝑆Sq ∪ 𝑆Main ⊢ 𝐴Main ⟩ ⊑beh 𝐴Sq ◦ 𝐴Main

Fortunately, this falls out as an instance of a more general “adequacy” result of CCR, which we call

the Wrapper Elimination Theorem (WET).
The intuition behind the WET is simple: we should be able to eliminate these wrappers because

we have already shown that both modules satisfy their specs. A bit more formally, the key idea

of the proof is that in the linked program ⟨ 𝑆Sq ⊢ 𝐴Sq ⟩ ◦ ⟨ 𝑆Sq ∪ 𝑆Main ⊢ 𝐴Main ⟩, every assume(𝑃)
will get executed immediately after a corresponding assert(𝑃)4: either 𝑃 is the precondition of a

function f and the assume(𝑃) occurs at the beginning of the body of f, in which case the caller

of f must have done assert(𝑃) right before calling it; or 𝑃 is the postcondition of a function f
and the assume(𝑃) occurs right after a call to f (on the caller’s side), in which case the body of f
must have done assert(𝑃) right before returning to the caller. Thus, both can be eliminated by

repeatedly applying the following refinement (where 𝐾 is an arbitrary evaluation context):

𝐾 [assert(𝑃); assume(𝑃)] ⊑beh 𝐾 [skip]
This refinement is easily provable by applying (ASTL) followed by (ASML) at the condition state-

ments and otherwise applying (STL) and (STR) in lock step. CCR includes the machinery to

automatically apply this cancellation and thus eliminate the wrappers.

4
Except for the trivial precondition ⊤ of Main.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:10 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

Note that theWrapper Elimination Theorem is only applicable to closed programs (and behavioral

refinement)—not open programs and contextual refinement—because for open programs it is not

sound in general to eliminate the conditions on the context. We describe the WET more formally

in Theorem 4.1 (§4.2).

2.2 Stateful Conditional Refinement via Separation Logic
We have just given an overview of how CCRworks in the simple case where pre- and postconditions

in specs are pure propositional formulae. In this and the following subsections, we describe how to

generalize this technique to handle conditions expressed in separation logic.
The high-level idea is simple: We define more elaborate versions of assume and assert—which

we call ASSUME and ASSERT—that work on separation logic assertions instead of pure propositions.

Recall, for instance, the example from §1.2, in which we wanted to prove 𝐼Map ⊑ctx ⟨ 𝑆0Map ⊢ 𝑀Map ⟩.
The wrapper on the right will be encoded by adding ASSUME and ASSERT statements, so that the

init function (for example) will look roughly as follows:

def init(sz: int) ≡ ASSUME(𝑝𝑒𝑛𝑑𝑖𝑛𝑔0); size := sz; ASSERT(⊤)
This may look simple enough, but the devil is in the details: in particular, what does it even mean—

operationally—to assume or assert a separation logic condition?! Before we can explain this, though,

let us first begin by giving a short review of how separation logic assertions are modeled.

Model of separation logic. Consider the assertion 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 . This assertion denotes ownership

of an exclusive resource called 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0, and in some sense the whole point of separation logic is to

provide a rich set of proof principles for reasoning modularly about ownership of such resources.

In separation logic, resources are usually modeled as (variants of) Partial Commutative Monoids
(PCMs). For our purposes, a PCM Σ5

is a set equipped with a commutative and associative binary

operator + on Σ, called addition, an identity element 𝜀, and a validity predicateV on Σ satisfying (𝑖)
V(𝜀) and (𝑖𝑖) ∀𝑎, 𝑏.V(𝑎 +𝑏) =⇒ V(𝑎). Since the PCMs can be naturally composed via Cartesian

product, each module can pick its own PCM and then the whole system can be instantiated with

the global PCM, which is just a product of the PCMs used by each module.

A PCM Σ yields a notion of separation logic proposition which we call rPropΣ
6
, which is defined

simply as Σ → Prop. We define the logical connectives on rPropΣ following Jung et al. [2018].

Specifically, for an arbitrary rPropΣ 𝑃 and 𝑄 , a resource 𝑎 ∈ Σ, and a Prop 𝑅, the connectives in
our example have the following definitions (where 𝑟 ≥ 𝑎 ≜ ∃𝑏.𝑟 = 𝑎 + 𝑏):
𝑎 ≜ 𝜆𝑟 . 𝑟 ≥ 𝑎 𝑃 ∗𝑄 ≜ 𝜆𝑟 . ∃𝑎 𝑏. 𝑟 = 𝑎 + 𝑏 ∧ 𝑃 𝑎 ∧𝑄 𝑏 ∃𝑥 . 𝑃 ≜ 𝜆𝑟 . ∃𝑥 . 𝑃 𝑟 ⌜𝑅⌝ ≜ 𝜆 . 𝑅

For instance, in our running example, we use a PCM Σ0

Map (for 𝑆
0

Map) with the following elements:

𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 | 𝜀 |
Here, 𝜀 is the identity element, and all elements except are valid (i.e., satisfyV). The crucial part is

the definition of addition:We define 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0+𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 to result in ; thus, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 ∗ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0
is false, which is the essence of what is meant when we say that 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 is an “exclusive” resource:

if one module in the program owns 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0, then no other module can own another copy.

With our resource model in hand, we can state the fundamental invariant of separation logic:

The summation of all resources always are and should remain valid.
This invariant is the core rely/guarantee principle of separation logic. Specifically, a user of separa-

tion logic can rely on the summation of all current resources being valid, which means that if they

are verifying a module which locally owns a resource 𝑟 , then they know that whatever “frame”

5
In the development, we use a custom version of resource algebra ([Jung et al. 2018]) without step-indexing.

6
We omit Σ when it is a referring to a global PCM.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:11

ASSUME(Cond) ≡ {
var 𝜎 := take(Σ) (* L1 *)
assume(Cond 𝜎) (* L2 *)
ctx := take(Σ) (* L3 *)
assume(V(mrs + frs + 𝜎 + ctx)) } (* L4 *)

ASSERT(Cond) ≡ {
var 𝜎 := choose(Σ) (* R1 *)
assert(Cond 𝜎) (* R2 *)
(mrs, frs) := choose(Σ × Σ) (* R3 *)
assert(V(mrs + frs + 𝜎 + ctx)) } (* R4 *)

(* 𝐼Map *)

private data := NULL

def init(sz: int) ≡

data := calloc(sz)

def get(k: int): int ≡
return *(data + k)

(* ⟨ 𝑆0Map ⊢ 𝑀Map ⟩ *)
private map := (fun k => 0)
private size := 0
private mrs: Σ := 𝜀

def init(sz: int) ≡
var (frs, ctx) := (𝜀, 𝜀)
ASSUME(𝑝𝑒𝑛𝑑𝑖𝑛𝑔0)
size := sz
ASSERT(⊤)

def get(k: int): int ≡
var (frs, ctx) := (𝜀, 𝜀)

ASSUME(⊤)
assume(0 ≤ k < size)
var r := map[k]
ASSERT(⊤)
return r

(* ⟨ 𝑆Map ⊢ 𝐴Map ⟩ *)
private map := (fun k => 0)

private mrs: Σ := •𝜆 .None

def init(sz: int) ≡
var (frs, ctx) := (𝜀, 𝜀)
ASSUME(𝑝𝑒𝑛𝑑𝑖𝑛𝑔)
skip
ASSERT(∗𝑘∈[0,sz) 𝑘 ↦→Map 0)

def get(k: int): int ≡
var (frs, ctx) := (𝜀, 𝜀)
var v := take(int)
ASSUME(k ↦→Map v)

var r := map[k]
ASSERT(r = v ∧ 𝑘 ↦→Map v)
return r

Fig. 2. The implementation and condition-wrapped abstractions for Map (excerpt).

resource 𝑓 is owned by the rest of the program, it must be the case that 𝑟 is “compatible” with 𝑓

(i.e.,V(𝑟 + 𝑓)). At the same time, they must also guarantee that if they update the module’s local

resource to 𝑟 ′, then they can only do so if 𝑟 ′ remains compatible with 𝑓 (i.e.,V(𝑟 ′ + 𝑓)). This is
known in the separation logic literature as a “frame-preserving update” [Jung et al. 2018].

ASSUME and ASSERT. So how does this rely/guarantee principle of separation logic help with

defining ASSUME and ASSERT? The idea is simple: We use ASSUME to encode the rely condition,

while ASSERT encodes the guarantee condition. In particular, ASSUME assumes the validity of the

summation of all separation logic resources while ASSERT asserts their validity. These definitions
of ASSUME and ASSERT are shown at the top of Fig. 2. The key component of these definitions

is the assume (resp. assert) on line L4 (resp. R4) that assumes (resp. asserts) the validity of the

summation of “all” resources. To make this intuition more precise, we consider three questions: (i)

What constitutes “all” resources? (ii) How does the wrapper transform the code to allow ASSUME

and ASSERT to track these resources? (iii) How do we define ASSUME and ASSERT?

The first question (i) is what constitutes “all” resources. The answer is that the summation on

line L4 / R4 consists of the following resources:

• A module resource mrs: This is the resource owned privately by the current module—it is used to

state invariants about the private state of the module. This resource is scoped module-locally.

• A function resource frs: This is the resource owned privately by the current function—it is used
when reasoning about function calls (to other functions) to keep track of the local resources that

should be framed around the function call. This resource is scoped function-locally.

• A call/return resource 𝜎 : This is the resource that is transferred to a function when calling it, or

back from it when the function returns. Line L2 (resp. R2) assumes (resp. asserts) Cond 𝜎 to state

that 𝜎 corresponds to the ownership of Cond.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:12 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

• A context resource, ctx: This resource corresponds to the “frame”—it represents the summation of

all other resources owned by other modules/functions besides the one we are currently verifying.

Now onto the second question (ii): how the wrapper transforms the code to track these resources.

The output of the wrapper ⟨ 𝑆Map ⊢ 𝐴Map ⟩ is shown in Fig. 2. Consider init: similar to the stateless

wrapper described in §2.1, the wrapper inserts an ASSUME statement to assume the precondition

(i.e., 𝑝𝑒𝑛𝑑𝑖𝑛𝑔) and an ASSERT statement to guarantee the postcondition (i.e.,∗𝑘∈[0,𝑠𝑧) k ↦→Map 0).
Additionally, the wrapper inserts some boilerplate code (shown background-colored) to track the

module, function, and context resources. Concretely, the wrapper introduces a module-scoped

private variable to store the module resource mrs throughout the whole program’s lifetime, which

is initialized to the initial ownership of the module.
7
Also, the wrapper introduces function-scoped

variables to store the function resource frs and the context resource ctx throughout the current

function’s lifetime, which are initialized to the unit of the PCM.

Now we are ready to consider question (iii) and look at the definition of ASSUME and ASSERT

in detail. To understand their definition, it is important to realize that each ASSUME on the callee

(resp. caller) side will be matched by a ASSERT on the caller (resp. callee) side that directly precedes

it in the execution of the program. (These matching ASSUME/ASSERT pairs will eventually be

cancelled out with the WET as described in §2.1.) With this in mind, let us look at the definitions of

ASSUME and ASSERT in Fig. 2, which employ two new operators, take and choose. Intuitively,
the lines L1-L4 of ASSUME(Cond) take a call/return resource 𝜎 that the callee (resp. caller) is

receiving from the caller (resp. callee) (L1), as well as a context resource ctx representing the

“frame” (L3) and assume that 𝜎 satisfies Cond (L2) and that the summation of all resources is valid

(L4). Dually, the lines R1-R4 of ASSERT(Cond) choose a call/return resource 𝜎 that the caller (resp.

callee) is sending to the callee (resp. caller) (R1), as well as updated values for the caller’s (resp.

callee’s) module- and function-local resources, mrs and frs (R3), so long as we can guarantee that
𝜎 satisfies Cond (R2) and that the summation of all (updated) resources remains valid (R4).

We will soon see how these definitions of ASSUME and ASSERT play out when proving condi-

tional contextual refinements, but we first need to understand take and choosemore formally—i.e.,
what these operators do and how they allow resource transfer between the caller and callee.

Implicit value passing via dual non-determinism. As we described above, the definitions

of ASSUME and ASSERT make use of choose and take in order to transfer resources back and

forth between caller and callee. The reader may wonder, however, why we don’t simply pass

the resources as explicit arguments instead of introducing these new choose and take operators.
Indeed, a natural idea would be to add an additional argument to each function that corresponds to

the call/return resource 𝜎 . However, recall that we are establishing contextual refinement: if we

are making any change to the argument/return value, the context will be able to differentiate it and

thus contextual refinement cannot hold. For instance, the following refinement where the source

adds explicit 𝜎 argument does not hold

def f(x) ≡ 10 ̸⊑ctx def f(x, 𝜎) ≡ 10

because of the following context: def bad ctx() ≡ f(x, 𝜀). This context linked with the target

side of the refinement leads to an undefined behavior since the number of arguments does not

match, but it can be linked with the source side without a problem.

Thus, what we need here is a mechanism that effectively gives an illusion of passing an additional

resource argument, but where the resource argument is not actually passed as a parameter. At a

high level, our insight is the following: As we have seen in §2.1, assume and assert can be seen as

7
To be precise, the initial resource of each module (𝜀 for𝑀Map and (•𝜆 .None) for 𝐴Map) should be given as an additional

parameter to the wrapper. For brevity, we will omit them in the wrapper notation when they are made explicit in the figure.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:13

allowing implicit passing of proofs of pre- and postconditions (i.e., the fact that the condition holds)

between caller and callee. The downside of assume and assert is that they can only be used to

pass logical proofs, not actual values. However, we can generalize the mechanism of assume and
assert to a more powerful one, dual non-determinism, that can be used to “assume” and “assert”

actual values, including separation logic resources!

In particular, we consider two kinds of non-determinism [Back and Wright 2012]: On the one

hand, there is so-called demonic non-determinism, corresponding to assert, which we denote

as choose(𝑋). On the other hand, there is so-called angelic non-determinism, corresponding to

assume, which we denote as take(𝑋). The easiest way to gain intuition for them is to consider

their simulation relation rules, which are analogous to the ones for assume and assert:

(CHR)

∃𝑣 ∈ 𝑋 . T ≾ var x := 𝑣; S

T ≾ var x := choose(𝑋); S

(TKR)

∀𝑣 ∈ 𝑋 . T ≾ var x := 𝑣; S

T ≾ var x := take(𝑋); S

(CHL)

∀𝑣 ∈ 𝑋 . var x := 𝑣; T ≾ S

var x := choose(𝑋); T ≾ S

(TKL)

∃𝑣 ∈ 𝑋 . var x := 𝑣; T ≾ S

var x := take(𝑋); T ≾ S

The rules, which we will validate w.r.t. an underlying trace model in §3.2, can be interpreted

as follows. Choosing on the right side of the refinement (CHR) requires providing a value for the

choice—just like an assert on the right side (ASTR) requires proving the assertion. Taking on the

right side (TKR) means receiving a value for the choice—i.e., similar to how assume on the right

side (ASMR) means assuming the assertion. As before, the rules for the left side are dual to those

for the right.

2.3 Incremental and Modular Verification of the Motivating Example
To properly illustrate how take and choose work, we now revisit the example from §1.2 and

demonstrate our wrappers in action: we will sketch how to incrementally prove 𝐼Map ⊑ ⟨ 𝑆0Map ⊢
𝑀Map ⟩ ⊑ ⟨𝑆Map ⊢ 𝐴Map ⟩, and how to modularly verify a client of this library using the separation

logic spec, 𝑆Map. In the course of doing so, we will also see the role that each of the resources in the

encoding of ASSUME and ASSERT plays in the refinement verification. But first, before we dive

into the proof, let us set up some preliminaries.

Simulationwith relational invariant. Since modules are now equipped with their own private

states, we extend the previous (stateless) simulation relation with a notion ofmodule-local relational
invariant. Specifically, when proving a simulation between a pair of modules, one can fix up front a

relation Inv between the possible private states of the two (i.e., Inv ∈ P(statetgt × statesrc)). Then,
the simulation (i) allows one to rely on Inv whenever this pair of modules acquires control (i.e.,
at the beginning of the function and after a function call), and (ii) obligates one to guarantee Inv
holds whenever this pair of modules releases control (i.e., at the end of the function and before a

function call). Note that the private state of the modules includes both their physical private state

(i.e., module-local variables, like data and map in the Map example) and their module resources

(mrs, which is a kind of module-local ghost state that ASSUME and ASSERT manipulate). Indeed,

as we will see concretely below, a key purpose of the module-local relational invariant Inv is to
dictate how the modules’ private physical and ghost state relate to each other.

First refinement for Map. To prove 𝐼Map ⊑ ⟨ 𝑆0Map ⊢ 𝑀Map ⟩, we use the following module-local

relational invariant Inv0 between the private states of the two modules (i.e., data from the former

and map, size, mrs from the latter):

J⌜size = 0 ∧ map = (fun k => 0)⌝ ∨ (𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 ∗ data ↦→Mem map[0 : size])K(mrs)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:14 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

The invariant is a disjunction of two cases: the former (i.e., size = 0 ∧ map = (fun k => 0)) states
the relation before init is called, and the latter states the relation after init is called. In the former

case, the 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 token is not contained within the module resource mrs, which means a client of

Map may have it and can use it to invoke init. In the latter case, the module resource mrs must
contain 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0—thus preventing a client from owning it and trying to invoke init again—and the
pointer data should point to an array with contents map[0 : size] (i.e., map[0], . . . , map[size-1]).
Intuitively, the points-to predicate ↦→Mem gives exclusive ownership of the memory it points to and

thus rules out interference by other modules. The way we model memory accesses and modularly

reason about them is presented in §5.2.

With the invariant Inv0, we can prove the refinement for each function by applying the simulation

rules and doing a case analysis on Inv0. We first note that, for the functions in Map module, one can

completely ignore the frs; it will be initialized as 𝜀 and remain the same all the time (i.e., we will
always choose it to be 𝜀 in R3). To see where frs gets used, see the proof of Main below.

Consider init. At the beginning, by the relational invariant we have mrs which satisfies Inv0,
and by simulation argument we are given some resource 𝜎 (L1, TKR) which satisfies 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0
(L2, ASMR), so 𝜎 ≥ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0. We are then also givenV(mrs + 𝜎) (L4, ASMR), which means that

mrs cannot also contain 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0, so it must be in the uninitialized state (left disjunct). At the end

of init, we update 𝜎 to 𝜀 and mrs to 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 (R1, R3, CHR) so that Inv0 and the postcondition

are satisfied (R2, ASTR). We also check that this update maintains the validity of the sum of all

resources (L3, TKR, R4, ASTR)—i.e., that it is a “frame-preserving update”.

For get and set, a high-level proof is as follows: we know that the module is in the initialized

state (i.e., the latter case of Inv0) since in the former case with size = 0, the range checking

assume(0 ≤ k < size) fails and thus the refinement holds trivially. Then, thanks to the ownership

data ↦→Mem map[0 : size], we can prove that both source and target (i) (in case of get) retrieve the
same value, and (ii) (in case of set) update data and map equivalently, reestablishing Inv0.

Second refinement for Map. We now explain how to prove ⟨ 𝑆0Map ⊢ 𝑀Map ⟩ ⊑ ⟨𝑆Map ⊢ 𝐴Map ⟩,
the second refinement. The structure of the proof is largely similar to that of the first refinement, but

there is one new twist because the precondition of the spec 𝑆0Map on the target side of the refinement

poses a bit of a challenge: we must somehow discharge its precondition (in this case, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0).

One way to discharge it would be to simply take 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 as the precondition of 𝑆Map as well:

that way, we would get to ASSUME ownership of 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 on the source side and then use it to

discharge the ASSUME on the target. However, if we did that, we could no longer actually use the
𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 token in the remainder of the proof, which would be a problem: we would have no way

to reason (in this proof) that init is only called once.

To solve this problem, we define 𝑆Map so that its precondition is the separating conjunction of

𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 (the precondition of 𝑆0Map) and a second token 𝑝𝑒𝑛𝑑𝑖𝑛𝑔1, which enjoys the same exclusive

property (i.e., 𝑝𝑒𝑛𝑑𝑖𝑛𝑔1 + 𝑝𝑒𝑛𝑑𝑖𝑛𝑔1 is invalid). We then define 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 to be 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 + 𝑝𝑒𝑛𝑑𝑖𝑛𝑔1.
By using 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 (instead of 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0) as the precondition for the source side, we ensure that

(i) we can discharge the ASSUME on the target side using the 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 component of 𝑝𝑒𝑛𝑑𝑖𝑛𝑔;

but (ii) even after giving up 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0, we will still be left with an exclusive token 𝑝𝑒𝑛𝑑𝑖𝑛𝑔1 that

(together with the relational invariant we are about to define) we can use to establish that the

module is in the uninitialized state. Note, however, that a client of Map need not know this internal

technical detail of how 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 is defined: to the client, it is just an exclusive resource.

We define the relational invariant Inv between the private states of the two modules (i.e., map
M
,

size, mrsM from the former and map
A
, mrsA from the latter) as follows:

J mrsM ∗ ⌜mapM = map
A
⌝ ∗ •(map

A
⟨0 : size⟩) ∗ (⌜size = 0⌝ ∨ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔1)K(mrsA)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:15

(* 𝐼Main *)

def main() ≡

var sz := 100
init(sz)
var k := 42

r := get(k)
output(r)

(* ⟨ 𝑆Map ∪ 𝑆Main ⊢ 𝐴Main ⟩ *)
private mrs: Σ := 𝜀

def main() ≡
var (frs, ctx) := (𝜀, 𝜀)
ASSUME(𝑝𝑒𝑛𝑑𝑖𝑛𝑔)
var sz := 100
ASSERT(𝑝𝑒𝑛𝑑𝑖𝑛𝑔); init(sz); ASSUME(∗𝑘∈[0,sz) 𝑘 ↦→Map 0)
var k := 42
var v := choose(int)
ASSERT(k ↦→Map v); r := get(k); ASSUME(r = v ∧ k ↦→Map v)
output(0)
ASSERT(∗𝑘∈[0,sz) 𝑘 ↦→Map 0)

Fig. 3. An implementation and its condition-wrapped abstraction for the client module, Main.

Here, let map
A
⟨0 : size⟩ ≜ (fun k => if (0 ≤ k < size) then Some map(k) else None).

Inv says several things: (i) mrsA ≥ mrsM—as we will see shortly, this is needed to discharge the

validity condition in the target-side ASSUME; (ii) map
M
and map

A
coincide; (iii) mrsA contains the

resource •(map
A
⟨0 : size⟩), which means that k ↦→Map v is only valid for 0 ≤ 𝑘 < size and its

value v is equal to map
A
[k]; and (iv) either size = 0 or mrsA contains 𝑝𝑒𝑛𝑑𝑖𝑛𝑔1 (analogous to the

corresponding condition in Inv0).
With this invariant in hand, we can prove simulation for each function. At a high level, the proof

is straightforward: since𝑀Map and 𝐴Map are identical except for the range checking, the verification

essentially amounts to the usual separation logic reasoning to prove that 𝐴Map satisfies 𝑆Map, plus a

few easy reasoning steps to rule out failure of the range checking in𝑀Map. The most interesting bit

is how the connection between mrsM and mrsA is handled.

For space reasons, we just sketch the proof of init: After executing the ASSUME(𝑝𝑒𝑛𝑑𝑖𝑛𝑔)
in the source and quantifying over mrsA which satisfies the relational invariant, we learn that

mrsA ≥ mrsM + •(mapA⟨0 : 0⟩) along with the validity conditionV(mrsA + 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 + ctxA). We

then execute ASSUME in the target by picking 𝜎M to be 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0, proving (trivially) that it satisfies

the precondition 𝑝𝑒𝑛𝑑𝑖𝑛𝑔0 , picking ctxM to be ctxA + 𝑝𝑒𝑛𝑑𝑖𝑛𝑔1 + •(mapA⟨0 : 0⟩), and proving

the validity condition for the target—V(mrsM + 𝜎M + ctxM)—which is implied directly from the

assumed validity condition for the source since all we did was shuffle the resources around.

At the end of the function, we execute ASSERT in the target, which gives us the updated

mrs′
M
and the validity conditionV(mrs′

M
+ ctxM) (we ignore the return resource since the target

post is ⊤). We then execute ASSERT in the source by picking 𝜎A to be the resource satisfying

∗𝑘∈[0,size) k ↦→Map 0, updating mrs′
A
to be mrs′

M
+ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔1 + •(mapA⟨0 : size⟩), and proving the

validity conditionV(mrs′
A
+ 𝜎A + ctxA). This validity condition is implied by the validity condition

from the target and the fact that the allocation of∗𝑘∈[0,size) k ↦→Map 0 (and corresponding update

to •(map
A
⟨0 : size⟩)) are frame-preserving updates (i.e., they preserve validity of composition with

any frame context). Finally, we have to reestablish the invariant, which is straightforward since

map
M
and map

A
are not modified and mrs′

A
contains mrs′

M
, •(map

A
⟨0 : size⟩), and 𝑝𝑒𝑛𝑑𝑖𝑛𝑔1.

Using pre- and postconditions modularly. Let us see now how to reason modularly about

a client of Map using 𝑆Map. The interesting bit here is that this proof involves an analogue of the

“frame rule” of separation logic, which (as we will see shortly) is operationalized in our wrappers

via the function resource frs.
The client module we consider here, given in Fig. 3, consists of a single function main. In the

implementation 𝐼Main, main initializes the Map module with size 100, retrieves the 42nd value, and

outputs the result. In the abstraction 𝐴Main, the output value is abstracted into the constant 0. We

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:16 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

define 𝑆Main as follows:

{ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 } main() {∗𝑘∈[0,100) k ↦→Map 0}

In proving the refinement 𝐼Main ⊑ ⟨ 𝑆Map ∪ 𝑆Main ⊢ 𝐴Main ⟩, there is a point where we need to

reason about the call to get(42), which has the following spec:

{42 ↦→Map 0} get(42) {𝑟 . (⌜𝑟 = 0⌝ ∧ 42 ↦→Map 0)}

However, at that point in the proof, we know not only that 42 ↦→Map 0 but that k ↦→Map 0 for all

0 ≤ 𝑘 < 100. So, what we want to do is frame 𝐹 ≜ ∗𝑘∈[0,42)∪[43,100) k ↦→Map 0 around the call to

get(42), effectively relying on the spec:

{𝐹 ∗ 42 ↦→Map 0} get(42) {𝑟 . 𝐹 ∗ (⌜𝑟 = 0⌝ ∧ 42 ↦→Map 0)}

We represent this “frame” in CCR using the function resource frs, which is a function-scoped

local variable. Concretely, R3 of the Fig. 2 says that when executing the ASSERT(42 ↦→Map 0) in the

source (as precondition of get(42)), one needs to split its “current resources” (resources that are

disjoint from ctx) into: (i) 𝜎 satisfying the condition 42 ↦→Map 0, (ii) mrs satisfying the relational

invariant, and (iii) frs, which will be defined as the frame 𝐹 above. Then, when executing the

following ASSUME(𝑄) in the source (where𝑄 is the postcondition 𝑟 = 0∧42 ↦→Map 0), one is given
a new 𝜎 ′ (satisfying 𝑄), a new module resource mrs′ (satisfying the relational invariant), a new

context resource ctx′, and the fact that mrs′ + frs + 𝜎 ′ + ctx′ is valid. The “current resources” are
thus reconstituted, with frs and 𝜎 ′ coming together to form ownership of the full key map again.

One point that we glossed over in the above explanation is how we handle auxiliary variables in

function specifications. In the case of get, for instance, the actual spec for get quantifies universally
over the value v that is stored at the k-th index. Here, v is an auxiliary variable in the spec because

it does not appear in the code (get(k)). We handle such a universally quantified auxiliary variable

again using dual non-determinism: on the caller side, that means we get to non-deterministically

choose the right value for v before ASSERTing the precondition. Dually, on the callee side, v is

chosen using take (see the body of get).

2.4 Wrapper Elimination
Recall that in §2.1, we concluded our discussion of stateless wrapper with a global adequacy

theorem, the Wrapper Elimination Theorem (WET), which shows how wrappers can be eliminated

once we have a closed whole program (e.g., ⟨ 𝑆 ⊢ 𝑀1 ⟩ ◦ ⟨ 𝑆 ⊢ 𝑀2 ⟩ ⊑beh 𝑀1 ◦𝑀2). Similarly, we

conclude this section by sketching the proof of WET for separation logic wrappers. For expository

purposes, we show the proof in multiple gradual refinements.

In the first step, we eliminate R1/R2 and L1/L2 of neighboring ASSERT(𝑃) and ASSUME(𝑃)
statements (Fig. 2) with local reasoning as follows:

𝐾 [ASSERT(Cond); ASSUME(Cond)]
≡ 𝐾 [var 𝜎 := choose(Σ); assert(Cond 𝜎);𝑅34[𝜎]; var 𝜎′ := take(Σ); assume(Cond 𝜎′); 𝐿34[𝜎′]]
⊑
beh

𝐾 [var 𝜎 := choose(Σ); assert(Cond 𝜎);𝑅34[𝜎]; assume(Cond 𝜎); 𝐿34[𝜎]]
⊑
beh

𝐾 [var 𝜎 := choose(Σ); 𝑅34[𝜎]; 𝐿34[𝜎]]

We first (i) unfold the definitions, where 𝑅34 and 𝐿34 refer to the combined lines R3/R4 and L3/L4,

(ii) turn implicit value passing between choose and take to explicit value passing so that the

resource 𝜎 coincides on both sides (the proof is a simple application of the (TKL) rule), and (iii)

eliminate the matching assert and assume as done in §2.1.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:17

fundef(𝐸) ≜ Any→ itree 𝐸 Any 𝑋 |𝑐𝑜𝑛𝑑 ≜ if 𝑐𝑜𝑛𝑑 holds, then 𝑋 else ∅
EP (𝑋) ≜ {Choose} ⊎ {Take} ⊎ {Obs 𝑓𝑛 𝑎𝑟𝑔 | 𝑓𝑛 ∈ string, 𝑎𝑟𝑔 ∈ Any}|𝑋=Any

EEMS (𝑋) ≜ EP (𝑋) ⊎ {Call 𝑓𝑛 𝑎𝑟𝑔 |𝑓𝑛 ∈ string, 𝑎𝑟𝑔 ∈ Any}|𝑋=Any ⊎ {Put 𝑎 | 𝑎 ∈ Any}|𝑋=() ⊎ {Get}|𝑋=Any

Mod ≜
{
(init, funs) ∈ Any × (string fin−−⇀ fundef(EEMS))

}
Mods ≜ list Mod ◦ ∈ Mods→ Mods→ Mods ≜ append
𝑀𝑠 ⊑

beh
𝑀𝑠′ ≜ Beh(𝑀𝑠) ⊆ Beh(𝑀𝑠′) 𝑀 ⊑ctx 𝑀′ ≜ ∀𝐶 ∈ Mods . 𝐶 ◦𝑀 ⊑

beh
𝐶 ◦𝑀′

Fig. 4. Definitions of module and contextual refinement.

In the second step, we eliminate the remaining R3/R4 and L3/L4 with global reasoning as follows:

𝐾 [var 𝜎 := choose(Σ);𝑅34[𝜎]; 𝐿34[𝜎]]
≡ 𝐾 [var 𝜎 := choose(Σ); (mrs, frs) := choose(Σ × Σ); assert(V(mrs + frs + 𝜎 + ctx));

ctx′ := take(Σ); assume(V(mrs′ + frs′ + 𝜎 + ctx′))]
⊑
beh

𝐾 [var 𝜎 := choose(Σ); (mrs, frs) := choose(Σ × Σ); assert(V(allrs)); assume(V(allrs))]
⊑
beh

𝐾 [skip]

In this proof, we maintain the global invariant (see §2.2) that the summation of all module resources

in the program is valid. Moreover, while a module is executing, we enforce the invariant that its

context resource ctx is equal to the summation of the mrs and frs resources from all other modules

in the program. Then, when control is transferred to a different module in the program (e.g., at
the point where ctx′ is updated to take(Σ) above), we correspondingly update that module’s

context resource ctx′ (TKL) so that the global invariant is maintained. This means that, in the

proof above, both mrs + frs + 𝜎 + ctx of the asserter and mrs′ + frs′ + 𝜎 + ctx′ of the assumer
can be guaranteed to be equal to the summation of all resources in the system at the given moment,

named allrs. With this invariant in place, we can eliminate the matching assert and assume as
before, and conclude by removing the now-unused chooses.
In summary:

Dual non-determinism can give an illusion of value passing among cooperative modules.

3 EXECUTABLE MODULE SEMANTICS (EMS)
Before discussing the formal definition of the wrapper and the wrapper elimination theorem in the

next section, this section introduces CCR’s module system and its semantics.

3.1 Module and Contextual Refinement
As seen in the examples in the previous sections, programs in CCR are organized into modules that
combine functions with module-local state. We call this module system EMS (Executable Module

Semantics). Before we can introduce EMS formally, we must first review interaction trees [Xia et al.
2019] which are used extensively in the definition of EMS.

Interaction trees. For a given event type 𝐸 : Set → Set and a return type 𝑇 , an interaction

tree of type itree 𝐸 𝑇 can be seen as an open small-step semantics that can (𝑖) take a silent

deterministic step, (𝑖𝑖) terminate with a return value of type 𝑇 , or (𝑖𝑖𝑖) trigger an event in 𝐸 (𝑋)
for some 𝑋 and continues execution for each possible return value in 𝑋 . Since itree 𝐸 forms a

monad for any 𝐸, we henceforth use the monad notations: 𝑥← 𝑖;𝑘 and 𝑖 >>= 𝑘 for bind and ret 𝑣
for return.

Interaction trees provide the following benefits: (𝑖) they can be extracted to executable programs

in OCaml (thus “Executable”), (𝑖𝑖) they provide useful combinators and theorems, and (𝑖𝑖𝑖) the
monad notation serves as a shallow-embedded programming language in Coq, with which we

write the semantics of abstractions.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:18 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

ObsEvent ≜ {(Obs 𝑓𝑛 𝑎𝑟𝑔, 𝑟𝑒𝑡) | 𝑓𝑛 ∈ string, 𝑎𝑟𝑔, 𝑟𝑒𝑡 ∈ Any}
Trace

coind

= {𝑒 :: 𝑡𝑟 | 𝑒 ∈ ObsEvent, 𝑡𝑟 ∈ Trace} ⊎ {Term 𝑣 | 𝑣 ∈ Any} ⊎ {Diverge} ⊎ {Error} ⊎ {Partial}
Beh(𝑀𝑠) ∈ P(Trace) ≜ beh(concat(𝑀𝑠)) concat(𝑀𝑠) ∈ itree EP Any ≜ ...
beh ∈ itree EP Any→ P(Trace) ≜ 𝜆𝑖. {Partial} ∪ {Diverge}|𝑖∈div ∪

match 𝑖 with
|| tau >>= 𝑘⇒⇒ beh(𝑘 ()) || choose(𝑋) >>= 𝑘⇒⇒⋃

𝑥∈𝑋 beh(𝑘 (𝑥)) || take(𝑋) >>= 𝑘⇒⇒⋂
𝑥∈𝑋 beh(𝑘 (𝑥))

|| obs 𝑓𝑛 𝑎𝑟𝑔 >>= 𝑘⇒⇒⋃
𝑟𝑒𝑡 ∈Any (Obs 𝑓𝑛 𝑎𝑟𝑔, 𝑟𝑒𝑡) :: beh(𝑘 (𝑟𝑒𝑡)) |valid obs 𝑓𝑛 𝑎𝑟𝑔 𝑟𝑒𝑡 || ret 𝑣⇒⇒{Term 𝑣} end

div ∈ P(itree EP Any) coind= { tau >>= 𝑘 | 𝑘 () ∈ div } ∪ { choose(𝑋) >>= 𝑘 | ∃𝑥 ∈ 𝑋 . 𝑘 (𝑥) ∈ div } ∪
{ take(𝑋) >>= 𝑘 | ∀𝑥 ∈ 𝑋 . 𝑘 (𝑥) ∈ div }

Fig. 5. Definitions of trace and behavior.

Function and module. Now we see how we define the notion of module, given in Fig. 4. The

semantic domain of EMS functions fundef(𝐸) is given by meta-level functions that take an arbitrary

value (denoted by the type Any) as an argument and return an itree w.r.t. the event type 𝐸 and the

return type Any. (Any can be understood as the set of all mathematical values.) Mod is the semantic

domain for a module, which is given by (𝑖) the initial value of the module local state, init, and (𝑖𝑖)
the definitions of the module’s functions, funs, with the event type EEMS. EEMS is the event type

for EMS consisting of (𝑖) Choose and Take for nondeterministically choosing and taking a value

from any given set 𝑋 , (𝑖𝑖) Obs for triggering observable events (e.g., input, output), (𝑖𝑖𝑖) Call for
making a call to (internal or external) functions, (𝑖𝑣) Get and Put for accessing the module local

state of type Any, The instructions choose(𝑋) and take(𝑋) are defined as an itree triggering

Choose(𝑋) and Take(𝑋), respectively. We use call 𝑓𝑛 𝑥 to denote an itree triggering Call 𝑓𝑛 𝑥 ,
and similarly for put, get and obs. Also, tau denotes the interaction tree taking a silent step and

immediately returns the unit value of the unit type.

Contextual refinement. Fig. 4 shows formal definition for the (whole-program) behavioral

refinement and contextual refinement. We say modules (Mods) to refer to a list of modules and

linking ◦ of modules is defined as list append. Throughout the paper we use implicit casting from

Mod to Mods as a singleton list.

Behavioral refinement between two modules𝑀 and𝑀 ′ is defined as set inclusion between the

set of possible traces given by Beh(-), which will be explained shortly (§3.2). Contextual refinement

between two modules 𝑀 and 𝑀 ′ is defined as behavioral refinement under an arbitrary context

modules 𝐶 . As expected, this definition enjoys both vertical and horizontal compositionality:

(Vertical) 𝐼 ⊑ctx 𝑀 ∧𝑀 ⊑ctx 𝐴 ⇒ 𝐼 ⊑ctx 𝐴
(Horizontal) 𝐼1 ⊑ctx 𝐴1 ∧ 𝐼2 ⊑ctx 𝐴2⇒ (𝐼1 ◦ 𝐼2) ⊑ctx (𝐴1 ◦𝐴2)

3.2 Traces and Behavior
As promised, we now present how we define the set of possible traces for a list of modules (Fig. 5).

Traces. To give the notion of behavior, we first define the set of traces, denoted Trace, coinduc-

tively. A trace is a finite or infinite sequence of ObsEvent (i.e., pairs of an observable event and

its return value) that can possibly end with one of the four cases: (𝑖) normal termination with an

Any value, (𝑖𝑖) silent divergence without producing any events, (𝑖𝑖𝑖) erroneous termination, or (𝑖𝑣)
partial termination. The notion of trace is mostly equivalent to that of CompCert, except for the

partial termination. Partial termination will serve as a dual of erroneous termination: intuitively,

erroneous termination is terminating due to an error in the program, while partial termination is

due to the user (e.g., by killing the process via Ctrl+C).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:19

Behavior. The behavior Beh(𝑀𝑠) for modules is defined in two steps. First, we concatenate

the computations described in each function semantics to create a single, large itree using the

standard concat combinator on interaction trees. Then, we define a set of possible traces for such

an itree (beh). The predicate beh(−) is defined by a mixed induction coinduction
8
as follows,

where a dashed box denotes coinduction and a solid box denotes induction. For a given itree 𝑖 ,

beh(𝑖) includes the partial termination (Partial) since the program can be terminated by the user

at any point; the divergence (Diverge) if 𝑖 is divergent according to the predicate div(−) defined
below; and the following depending on the first step of 𝑖: (i) if 𝑖 executes tau, the behaviors of its
continuation; (ii) if 𝑖 executes choose, the union of the behaviors of each chosen continuation; (iii)

if 𝑖 executes take, the intersection of the behavior of each taken continuation; (iv) if 𝑖 executes an

observable event with 𝑓𝑛 and 𝑎𝑟𝑔, the union of the behaviors of each continuation 𝑘 (𝑟𝑒𝑡) prefixed
by (Obs 𝑓𝑛 𝑎𝑟𝑔, 𝑟𝑒𝑡) for each valid return value 𝑟𝑒𝑡 satisfying valid obs 𝑓𝑛 𝑎𝑟𝑔 𝑟𝑒𝑡9; and (v) if 𝑖

returns a value 𝑣 , the normal termination (Term 𝑣). Note that the erroneous termination (Error)

can only arise from take(∅). The divergence predicate div coinductively defines the set of those

itrees that take infinite steps without triggering any observable events, as shown in Fig. 5.

Though it is not our main contribution, our definition of beh(−) is novel in the sense that it

addresses (possibly) infinite traces and dual non-determinism at the same time. Previous work, to

our knowledge, considered dual non-determinism only for finite traces [Back and Wright 2012;

Koenig and Shao 2020], or considered (possibly) infinite traces but without dual non-determinism

(including the trace interpretation of itree [Xia et al. 2019]).

Commands and operators. Now, we define and discuss several derived commands/operators

that we use throughout the paper. First, UB and NB are defined as take(∅) and choose(∅), respec-
tively. Note that beh(UB) includes all the traces including Error, while beh(NB) includes only Partial.

Also we have the following duality:

(Prefix-closed) ∀𝑖, 𝑡0, 𝑡1. 𝑡0 ++ 𝑡1 ∈ beh(𝑖) =⇒ 𝑡0 ++ Partial ∈ beh(𝑖)
(Postfix-closed) ∀𝑖, 𝑡0, 𝑡1. 𝑡0 ++ Error ∈ beh(𝑖) =⇒ 𝑡0 ++ 𝑡1 ∈ beh(𝑖)

The prefix-closed property holds because Partial appears in the constructor of beh(−) uncondi-
tionally (Fig. 5). The postfix-closed property holds because Error never appears explicitly in the

definition of beh(−) but can only arise implicitly from executing take(∅) = UB. In particular,

take(∅) denotes the set of all traces (i.e., the unit of intersection), so if Error is a possible trace, all

other traces must be possible as well.

Next, we define the following operators:

assume(𝑃) ≜ if 𝑃 then () else UB x? ≜ match x with | Some(𝑐) ⇒ 𝑐 | ⇒ UB end
assert(𝑃) ≜ if 𝑃 then () else NB x! ≜ match x with | Some(𝑐) ⇒ 𝑐 | ⇒ NB end

For a proposition 𝑃 , we define assume (resp. assert) to trigger UB (resp. NB) if 𝑃 does not hold. The

two unwrap operators ? and ! extract the internal value of an option-typed value and result in UB
resp. NB on failure.

3.3 Simulation Relation
In CCR, we establish contextual refinement using a standard simulation technique. We have a

common simulation relation which relates a pair of an interaction tree (of type itree EEMS)

together with its module-private state (of type Any). Specifically, the simulation allows imposing

relational invariants, I, on the module-private states of both sides. An invariant I can depend on

8
We use Paco library [Hur et al. 2013] in the formalization.

9
Following CompCert, the parameter predicate valid obs specifies the possible return values of each observable event.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:20 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

𝐾
𝜏
↩→ 𝐾 ′ (𝑠𝑡, 𝐾 ′) ≲𝑤0

S

(𝑠𝑡, 𝐾) ≲𝑤0
S

∀𝑥 ∈ 𝑋 . (𝑠𝑡, 𝐾 𝑥) ≲𝑤0
S

(𝑠𝑡, 𝑥 ← choose(𝑋) ;𝐾 𝑥) ≲𝑤0
S

∃𝑥 ∈ 𝑋 . (𝑠𝑡, 𝐾 𝑥) ≲𝑤0
S

(𝑠𝑡, 𝑥 ← take(𝑋) ;𝐾 𝑥) ≲𝑤0
S

T ≲𝑤0
(𝑠𝑡, 𝐾 ′) 𝐾

𝜏
↩→ 𝐾 ′

T ≲𝑤0
(𝑠𝑡, 𝐾)

∃𝑥 ∈ 𝑋 . T ≲𝑤0
(𝑠𝑡, 𝐾 𝑥)

T ≲𝑤0
(𝑠𝑡, 𝑥 ← choose(𝑋) ;𝐾 𝑥)

∀𝑥 ∈ 𝑋 . T ≲𝑤0
(𝑠𝑡, 𝐾 𝑥)

T ≲𝑤0
(𝑠𝑡, 𝑥 ← take(𝑋) ;𝐾 𝑥)

(𝑠𝑡 ′, 𝐾) ≲𝑤0
S

(𝑠𝑡, put 𝑠𝑡 ′; 𝐾) ≲𝑤0
S

(𝑠𝑡, 𝐾 𝑠𝑡) ≲𝑤0
S

(𝑠𝑡, get >>= 𝐾) ≲𝑤0
S

T ≲𝑤0
(𝑠𝑡 ′, 𝐾)

T ≲𝑤0
(𝑠𝑡, put 𝑠𝑡 ′; 𝐾)

T ≲𝑤0
(𝑠𝑡, 𝐾 𝑠𝑡)

T ≲𝑤0
(𝑠𝑡, get >>= 𝐾)

𝑤0 ⊑W 𝑤1 I𝑤1
𝑠𝑡t 𝑠𝑡s

(𝑠𝑡t, ret 𝑟) ≲𝑤0
(𝑠𝑡s, ret 𝑟)

I𝑤1
𝑠𝑡t 𝑠𝑡s ∀𝑟, 𝑤2, 𝑠𝑡

′
t, 𝑠𝑡

′
s . 𝑤1 ⊑W 𝑤2 ∧ I𝑤2

𝑠𝑡 ′t 𝑠𝑡
′
s ⇒ (𝑠𝑡 ′t, 𝐾t 𝑟) ≲𝑤0

(𝑠𝑡 ′s, 𝐾s 𝑟)
(𝑠𝑡t, 𝑟 ← call 𝑓 𝑥 ; 𝐾t 𝑟) ≲𝑤0

(𝑠𝑡s, 𝑟 ← call 𝑓 𝑥 ; 𝐾s 𝑟)

Fig. 6. Constructors for our common simulation relation (simplified).

Kripke-style possible worlds, i.e., an arbitrary typeW equipped with a preorder (⊑W). With these,

the simulation relation ≲𝑤
10
at a given world𝑤 ∈ W is coinductively defined (i.e., as a greatest

fixpoint) with constructors (rules) shown in Fig. 6.

The definition comprises constructors for: (𝑖) executing a tau step, choose, and take in the left

side (first row), (𝑖𝑖) executing the same for the right side (second row), (𝑖𝑖𝑖) executing put and get
(third row), and (𝑖𝑣) executing function return and call (fourth row). (𝑖) and (𝑖𝑖) are unchanged from
the presentation in §2, and (𝑖𝑖𝑖) is straightforward. For (𝑖𝑣) those constructors are now equipped

with worlds following the standard open simulations [Song et al. 2019]. That is, at each call or

return one needs to guarantee that I holds for some future world𝑤1. In return, at the beginning of a

function and after a function call, one can rely on the fact that there is some (future) world𝑤2 such

that I holds. Note that the simulation relation is meant to imply contextual refinement where the

context is completely arbitrary and can be reentrant to the module being verified (i.e., performing

mutual recursion). This is precisely the reason why I needs to be reestablished before all function

calls (see the first precondition of the rule for calls). Consequently, CCR supports mutual recursion

between different modules.
11

The common simulation relation satisfies the following adequacy theorem.

Theorem 3.1 (Adeqacy). For a pair of modules𝑀t and𝑀s, a possible worldW, and a relational
invariant I w.r.t.W, if we have (i) ∃𝑤0. I𝑤0

𝑀t .init 𝑀s .init, (ii) 𝑑𝑜𝑚(𝑀t .funs) = 𝑑𝑜𝑚(𝑀s .funs),
and (iii) for each pair of function 𝑓t and 𝑓s with the same name, ∀ 𝑣 𝑤 𝑠𝑡t 𝑠𝑡s . I𝑤 𝑠𝑡t 𝑠𝑡s =⇒
(𝑠𝑡t, 𝑓t 𝑣) ≲𝑤 (𝑠𝑡s, 𝑓s 𝑣), the following holds:

𝑀t ⊑ctx 𝑀s

4 CCR FRAMEWORK, SIMPLIFIED
In this section, we present the CCR framework, which formalizes ideas presented in §2. Specifically,

we show how to formally define the wrapper and the WET theorem for a basic (yet expressive

10
We omit the stuttering index for brevity.

11
It could seem restrictive that the invariant should be reestablished at every function call: for some function calls that are

known to not be reentrant, one may want to temporarily break the invariant. Fortunately, such reasoning is also supported

in CCR—without any extension to the core mechanism—by employing a well-known trick from separation logic (e.g., used
by the masks of Iris invariants [Jung et al. 2015, 2018]). That is, one can add an exclusive token 𝑋 as a precondition to the

functions of a module𝑀 , which means that only functions with ownership of 𝑋 can call functions of𝑀 . So if a function of

𝑀 calls another function without 𝑋 in the precondition, there cannot be reentrancy and one does not have to reestablish

the invariant of 𝑀 (technically, this works by adding a disjunction with 𝑋 to the invariant of 𝑀 so it can be trivially

reestablished by giving up 𝑋).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:21

rProp ≜ Σ→ Prop for Σ ∈ PCM
Cond ∋ 𝑠 ≜ { (W, P, Q) | W ∈ Set ∧ P, Q ∈ W→ Any→ rProp}
Conds ∋ 𝑆 ≜ string

fin−⇀ Cond

⟨ 𝑆 ⊢𝛼 𝑀 ⟩ ≜ ((𝑀.init, 𝛼), 𝜆 𝑓𝑛 ∈ dom(𝑀.funs) .WrapF(𝑆, 𝑆 𝑓𝑛, 𝑀.funs 𝑓𝑛))
(* defined only when dom(𝑀.funs) ⊆ dom(𝑆) *)

WrapC((W, P, Q), ctx, 𝑓𝑛, 𝑥) ≜
(*C1*) 𝑤 ← choose(W);
(*C2*) frs ← ASSERT(P(𝑤),𝑥,ctx);
(*C3*) 𝑟 ← call 𝑓𝑛 𝑥;
(*C4*) ctx ← ASSUME(Q(𝑤),𝑟,frs);
(*C5*) ret (𝑟, ctx)

WrapF(𝑆, (W, P, Q), 𝑓 ∈ fundef(EEMS)) ≜ 𝜆 𝑥.

(*F1*) 𝑤 ← take(W); ctx ← ASSUME(P(𝑤), 𝑥, 𝜀);
(*F2*) (𝑟, ctx) ← 𝑓 (𝑥)[Call 𝑓𝑛 𝑥 ↦→ 𝜆 ctx. WrapC((𝑆 𝑓𝑛)!, ctx, 𝑓𝑛, 𝑥),
(*F3*) Put mps ↦→ 𝜆 ctx. (, mrs) ← get; put (mps, mrs); ret ((), ctx),
(*F4*) Get ↦→ 𝜆 ctx. (mps,) ← get; ret (mps, ctx)](ctx);
(*F5*) () ← ASSERT(Q(𝑤), 𝑟, ctx); ret 𝑟

ASSUME(Cond, 𝑥𝑟, frs) ≜
𝜎 ← take(Σ);
assume(Cond 𝑥𝑟 𝜎);
ctx ← take(Σ); (, mrs) ← get;
assume(V (mrs + frs + ctx + 𝜎));
ret ctx

ASSERT(Cond, 𝑥𝑟, ctx) ≜
𝜎 ← choose(Σ);
assert(Cond 𝑥𝑟 𝜎);
(mrs, frs) ← choose(Σ × Σ); (mps,) ← get; put (mps, mrs);
assert(V (mrs + frs + ctx + 𝜎));
ret frs

Fig. 7. Definition of the wrapper.

enough to handle the running example) version of CCR. Additional advanced features will be

presented in subsequent sections.

4.1 Condition Wrapped Abstractions
At the heart of CCR framework is the wrapper, ⟨ 𝑆 ⊢𝛼 𝑀 ⟩. Its formal definition is given in Fig. 7.

The whole framework is parameterized with a global PCM, Σ. For each function, we specify its

condition 𝑠 ∈ Cond consisting of three components (W, P, Q) each standing for the type of auxiliary

variable and pre- and postconditions. The auxiliary variable𝑤 [Schreiber 1997; Kleymann 1999] is

shared between P and Q (e.g., v in the specification of get in Fig. 1). The passing of𝑤 ∈ W from a caller

to a callee is also encoded via choose and take as we have seen in Fig. 2 for v in the specification

of get. P(𝑤) resp. Q(𝑤), given 𝑤 ∈ W, specify a separation logic pre- resp. postcondition on the

concrete argument resp. return value. A collection of conditions 𝑆 ∈ Conds collects such conditions

for a finite set of functions. The wrapper ⟨ 𝑆 ⊢𝛼 𝑀 ⟩ for a module M, conditions 𝑆 , and an initial

module resource 𝛼 is again a module with its initial private state now paired
12

with the initial

module resource 𝛼 , and its functions wrapped via WrapF. In Fig. 7 and hereafter, we will implicitly

cast between Any and a certain type such as Σ. Casting failures in the wrapper are technically

defined as UB, but they are spurious (they never acutually happen) and get eliminated in the WET.

Inserting conditions. In Fig. 7, we wrap (𝑖) each function definition by inserting a precondition

at the beginning and a postcondition at the end (WrapF), and (𝑖𝑖) each function call by inserting

a precondition before the call and a postcondition after the call (WrapC). WrapF is parametrized

by the conditions 𝑆 for outgoing function calls, the condition (W, P, Q) of the function to wrap,

and the definition 𝑓 of the function. WrapF generates a function that takes the auxiliary variable,

ASSUMEs the precondition (F1), executes the function body 𝑓 with the given argument 𝑥 (F2-4),

and ASSERTs the postcondition and returns (F5).

In lines F2-4, we use a combinator of interaction trees with type:

itree 𝐸 𝑇 → (∀𝑋 . 𝐸 (𝑋) → 𝑆𝑇 → itree 𝐸′ (𝑋 × 𝑆𝑇)) → 𝑆𝑇 → itree 𝐸′ (𝑇 × 𝑆𝑇)
It takes an itree 𝑖 ∈ itree 𝐸 𝑇 , adds a local state of type 𝑆𝑇 , and interprets each event in 𝐸 as an

itree in a new event type 𝐸′ that can access and update the local state. In our case, such a local state

12
The Any type provides a pair operator of type Any→ Any→ Any and a split operator of type Any→ option(Any × Any) .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:22 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

will store the context resource ctx, which was stored in a function-local variable in pseudocode of

the previous examples. We use the notation 𝑖 [𝑒1 ↦→ 𝜆𝑠. 𝑡1, . . . , 𝑒𝑛 ↦→ 𝜆𝑠. 𝑡𝑛] (𝑠0) to denote the resulting
itree when the combinator is applied to an itree 𝑖 , with an initial local state 𝑠0, by interpreting each

event 𝑒𝑖 to an itree 𝑡𝑖 for a given local state 𝑠 . We omit the events that are interpreted identically,

and the state component when it is the unit type.

Now we can discuss lines F2-4 in more detail. In line F2, whenever a function call (i.e., Call
event) is made, it is wrapped by the wrapper WrapC with the callee’s condition in 𝑆 . Specifically,

WrapC chooses the auxiliary variable (C1), ASSERTs the precondition (C2), makes the intended

function call (C3), ASSUMEs the postcondition (C4), and returns (C5). Lines F3-4 make sure that 𝑓

accesses the correct private state. Recall that a module’s private state is now a pair of a physical

state (used by the module) and a module resource (used by the wrapper). The lines F3-4 simply

convert the Put/Get to access the first element of the pair.

Encoding conditions. The formal definitions of ASSUME and ASSERT in Fig. 7 are basically

the same as those presented in Fig. 2. The only difference is that ctx and frs, which were stored

in function-local variables in the pseudocode, are now explicitly threaded through. Concretely, the

ctx taken at the ASSUME in line F1, is passed to the ASSERT in line C2 or F5 via the interpretation

combinator. Similarly, the ctx taken at the ASSUME in line C4 is passed to line C2 or F5. Also, frs
is explicitly passed from line C2 to line C4.

4.2 Key Theorems of CCR
Nowwe are ready to formally state theWET theorem (described in §2) that removes those wrappers.

Theorem 4.1 (Wrapper Elimination Theorem (WET)). For a global PCM Σ, wrapped abstractions
⟨ 𝑆 ⊢𝛼𝑖 𝐴𝑖 ⟩ for 𝑖 ∈ {1, ... , 𝑛} and an initial resource 𝛼 to main that satisfies its precondition and
V(𝛼 +𝛼1 + . . . +𝛼𝑛), if 𝐴1 ◦ . . . ◦𝐴𝑛 is a closed program:

⟨ 𝑆 ⊢𝛼1 𝐴1 ⟩ ◦ . . . ◦ ⟨ 𝑆 ⊢𝛼𝑛 𝐴𝑛 ⟩ ⊑beh 𝐴1 ◦ . . . ◦𝐴𝑛
The validity condition ensures that the summation of all resources at the beginning of the

program is valid. We also have the following extensionality theorem.

Theorem 4.2 (Extensionality). For any 𝑆, 𝑆 ′, 𝐴, 𝛼, 𝑆𝐴, the following holds:

𝑆 ⊆ 𝑆 ′ =⇒ ⟨ 𝑆 ⊢𝛼 𝐴 ⟩ ⊑ctx ⟨ 𝑆 ′ ⊢𝛼 𝐴 ⟩
Although Theorem 4.1 can be applied to arbitrary abstractions, if we consider the special case

where the abstractions are trivially safe programs, CCR behaves similarly to a standard unary

separation logic. To be specific, we define a special module Safe (𝑛𝑠in, 𝑛𝑠out), which defines functions
with names in 𝑛𝑠out that non-deterministically invoke arbitrary functions in 𝑛𝑠in with arbitrary

arguments an arbitrary (finite or infinite) number of times. Then, we have:

Lemma 4.3 (Safety). For 𝑛𝑠 ⊆ 𝑛𝑠1 ⊎ . . . ⊎𝑛𝑠𝑛 , Safe (𝑛𝑠, 𝑛𝑠1) ◦ . . . ◦ Safe (𝑛𝑠, 𝑛𝑠𝑛) produces no Error.
This lemma holds since the whole program only consists of internal function calls and the

precondition ensures that all invoked functions exist. Combining Lemma 4.3 and Theorem 4.1 leads

to the following corollary, showing how CCR can be used to prove safety of programs:

Corollary 4.4 (SL). Given a global PCM Σ, (𝐼𝑖 , 𝛼𝑖) for 𝑖 ∈ {1, ... , 𝑛}, 𝑛𝑠 ⊆ dom(𝐼1.funs) ⊎ . . . ⊎
dom(𝐼𝑛.funs), and an initial resource 𝛼 to main satisfying its precondition and V(𝛼 +𝛼1 + . . . +𝛼𝑛),

(∀𝑖 . 𝐼𝑖 ⊑ctx ⟨ 𝑆 ⊢𝛼𝑖 Safe (𝑛𝑠, dom(𝐼𝑖.funs)) ⟩) =⇒ 𝐼1 ◦ . . . ◦ 𝐼𝑛 produces no Error.
Proving 𝐼𝑖 ⊑ctx ⟨ 𝑆 ⊢𝛼𝑖 Safe (𝑛𝑠, dom(𝐼𝑖.funs)) ⟩ essentially amounts to verifying 𝐼𝑖 against 𝑆 in

separation logic, and Corollary 4.4 mirrors the corresponding adequacy result of separation logic.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:23

5 MORE EXAMPLES AND FEATURES
In this section, we present advanced features of CCR with motivating examples. The formalization

of the full version of CCR is given in the appendix [Song et al. 2022].

5.1 Cancellable Calls
Consider the following example where, in the implementation side (left), function f calls fib with

argument 10 and outputs the result, and in the abstraction side (right), f directly outputs 55.

def f() ≡ var x := fib(10); output(x) ̸⊑ctx ⟨ 𝑆 ⊢ def f() ≡ output(55) ⟩

One would expect this contextual refinement to hold if one assumes a suitable Hoare triple 𝑆

for fib, e.g., stating that it returns the n-th fibonacci number. However, there is a problem: This

refinement eliminates a call to an unknown function (fib), which may interact with the user (e.g.,
via output), and thus may not hold in general. One workaround for this problem is to always put

matching function calls in the abstraction. For example, if we change the code of the abstraction

into fib(10); output(55), the refinement would hold. However, we would like to eliminate such

spurious function calls at the top-level.

CCR supports this with the following features: (𝑖) we support a mechanism to specify whether

a function call is “cancellable” (defined below) and remove those in the WET, and (𝑖𝑖) we allow
the user to omit those cancellable function calls when writing an abstraction. Note that the same

function may be cancellable or not depending on its argument and thus cancellability is a property

of a function call instead of a function definition. First, let us consider what makes a function call

cancellable. Pure function calls, i.e., function calls that does not trigger any visible event (including

Diverge) and does not modify any state, are clearly cancellable. The class of cancellable functions

is slightly larger: we allow cancellable calls to modify resources which anyway get removed by the

WET. In other words, cancellable calls are those function calls that become pure after eliminating

conditions and resources. Then, those pure calls can also be removed by WET.

Now, how do we specify and enforce the notion of cancellability? To enforce that a function does

not trigger visible events or modify the physical state, CCR imposes a simple syntactic restriction

(to be described in more detail shortly). A more interesting question is how to enforce that a

cancellable function call terminate, as diverging function calls are not cancellable. For this, we add

a new component D(𝑤) to Cond (Fig. 7), where D(𝑤), given 𝑤 ∈ W, specifies the maximum call

depth. Specifically, a depth 𝑑 ∈ Depth is either∞ denoting the call is not specified as cancellable, or

an ordinal ⟨𝑜⟩ denoting the call is cancellable and has a maximum call depth 𝑜 . In particular, a call

with depth ⟨𝑜⟩ is only allowed to call functions with depth strictly smaller than 𝑜 . Those conditions
together allows WET to remove those cancellable calls, solving the issue (𝑖) above.

As an example, the above fib function can have the following specification:

∀𝑛 : N. {𝜆 𝑥. ⌜𝑛 < INTMAX ∧ 𝑥 = 𝑛⌝} {𝜆 𝑟 . ⌜𝑟 = 𝑓𝑖𝑏𝑚𝑎𝑡ℎ(𝑛)⌝} {⟨𝑛⟩}

where N and the three components in the curly brackets correspond to (W, P, Q, D) ∈ Cond, respec-
tively. The pre- and postconditions state that given a non-negative 𝑛 ∈ N, the return value for

fib(n) is specified as the n-th fibonacci number (denoted by a mathematical function).
13
The last

bracket is a newly added component saying fib(n) is cancellable and its maximum call depth is n.
After seeing how the notion of the cancellable call is defined, we now turn to the issue (𝑖𝑖) above.

For this, first observe that the abstraction after WET does not change even if the wrapper adds

arbitrary cancellable calls to the abstractions since the cancellable calls are removed by WET. Thus,

13
There are implicit castings from N to int and ordinal.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:24 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

𝛼Mem := •𝜀 ∈ Auth (ptr→ Ex (val)) ⊆ Σ
𝑆Mem := {
calloc: ∀𝑛 : int. {𝜆 𝑥. ⌜𝑥 = [𝑛] ∧ 𝑛 ≥ 0⌝}{𝜆 𝑟 . ∃ 𝑝:ptr. (𝑝 ↦→Mem (𝑟𝑒𝑝𝑒𝑎𝑡 0 𝑛)) ∗ ⌜𝑟 =𝑝⌝}{⟨0⟩},
load: ∀(𝑝, 𝑣) : ptr × val. {𝜆 𝑥. (𝑝 ↦→Mem [𝑣]) ∗ ⌜𝑥 = [𝑝]⌝}{𝜆 𝑟 . (𝑝 ↦→Mem [𝑣]) ∗ ⌜𝑟 = 𝑣⌝}{⟨0⟩},
store: ∀(𝑝, 𝑣) : ptr × val. {𝜆 𝑥. (𝑝 ↦→Mem []) ∗ ⌜𝑥 = [𝑝, 𝑣]⌝}{𝜆 𝑟 . (𝑝 ↦→Mem [𝑣]) ∗ ⌜𝑟 ∈ val⌝}{⟨0⟩},
free: ∀ : (). {𝜆 𝑥. ∃ 𝑝 : ptr. (𝑝 ↦→Mem []) ∗ ⌜𝑥 = [𝑝]⌝}{𝜆 𝑟 . ⌜𝑟 ∈ val⌝}{⟨0⟩} }

Fig. 8. Selected specifications for Mem module.

the wrapper implicitly and automatically inserts the following boilerplate code at every line.

var n := choose(Ordinal); repeat n { ASSERT(...); ; ASSUME(...) }

We call this construction ACC (Arbitrary Cancellable Calls). ACC executes the part for a

nondeterministically chosen number of times, where the part makes a nondeterministically

chosen cancellable call according to the given spec. In other words, an ACC is an over-approximation

of possible cancellable calls in the implementation. With this, the refinement of f above now holds

because there is an automatically inserted ACC on the abstraction side which one can instantiate n
as 1 and then instantiate as fib(10). Note that if there is no cancellable call to be matched in

the implementation, one can simply instantiate n to be 0 to skip the ACC in the simulation proof.

Finally, the aforementioned syntactic enforcement is made as follows: we enforce the body of a

cancellable call to be an ACC. This captures the notion of cancellable call well since the only thing a

cancellable call is supposed to do is (other than pure computations) to make other cancellable calls

(with strictly decreasing depth) with their conditions (which could modify the module resource).

5.2 Memory as a Module
Now we see how we handle memory as promised in §2.2. When it comes to handling memory (or a

global state in general), it is common in other module systems [Gu et al. 2015; Song et al. 2019] to

pass the memory as an additional argument resp. return value each time a function gets invoked

resp. returns. In CCR, we explore a rather different design: we handle memory as a module.
In particular, we define a module, Mem, representing memory and implement each memory opera-

tion as a function of this module. The benefits of this approach are as follows: First, defining memory

as a module allows us to reuse CCR’s existing mechanism for specifying pre- and postconditions

on functions. In particular, we can give a standard separation logic pre- and postconditions for

memory operations [Reynolds 2002] involving the points-to predicate ↦→ Mem. Second, defining

memory as a module makes it easy to support different memory allocators and memory models

as they can be defined independently. This means CCR does not “bake-in” the memory itself as a

primitive in the framework, but its notion of modules allows encoding of memory. These together

means that we do not need to extend the framework to handle memory.

The memory module we use, 𝐼Mem, is defined using a simplified version of the CompCert memory

model. Specifically, its private state consists of a finite partial mapping from pointers to values

(mem : ptr
fin−⇀ val). Its specification, 𝑆Mem in Fig. 8, follows the usual style of specifying memory

operations in separation logic. In particular, it is specified using a points-to predicate 𝑝 ↦→ Mem 𝑙

denoting the ownership of a list of data, 𝑙 , stored in the memory location from 𝑝 to 𝑝 + 𝑙𝑒𝑛(𝑙). This
predicate is defined using the same kind of PCM as the Map module described in §2.3.

One interesting aspect of the specifications in 𝑆Mem is that those calls are cancellable, as manifested

by the depth ⟨0⟩. This might be surprising since a call to e.g., store in 𝐼Mem modifies the memory

mem, which is not a pure operation. However, in ⟨ 𝑆Mem ⊢𝛼Mem 𝐴Mem ⟩, mem is abstracted to a module

resource (i.e., 𝐴Mem has a module-private state of type unit), and the operations like store modify

the module resource instead. As described in §5.1, cancellable function calls are allowed to modify

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:25

module resources as these resources are eliminated by theWET. This allows the memory operations

to be cancellable and thus be eliminated through refinement. For instance, in the running example

of Fig. 1, we do not need to write calls to the memory module in the abstraction 𝐴Map since they are

implicitly inserted and removed.

5.3 Abstraction of Arguments and Return Values
Consider the following example where, in the implementation module (left), there is one function,

popall, which takes a pointer (h) to a linked-list containing integer values (stored in memory),

then pops all the elements while printing it along the way. In the abstraction (right), it basically

does the same thing but now it takes a mathematical list (l).

def popall(h: ptr) ≡ if h then print(pop(h)); popall(h) else skip ̸⊑ctx
def popall(l: list Z) ≡ match l with | hd::tl ⇒ print(hd); popall(tl) | ⇒ skip end
def main() ≡ var h := newlist(); push(h, 9); popall(h) ̸⊑ctx def main() ≡ popall([9])

Here, the issue is that this seemingly sensible contextual refinement does not hold because the

type of the argument has changed. As seen in §2.1, in contextual refinement all the arguments and

return values in both sides should be and expected to be equal. For the same reason, the refinement

for a client module containing one function main also does not hold: the implementation (lower

left) calls popall with a linked-list containing 9 in the memory and the abstraction (lower right)

calls popall with a singleton mathematical list containing 9.

This section describes how to extend CCR to support this kind of refinement. Again, the idea is to

use dual non-determinism to give an illusion of value passing discussed in §2.2. That is, the wrapper

will automatically insert choose and take adequately so that the user can write abstractions as if
they are sending/receiving those abstract values (e.g., [9] and l) around, but under the hood the

wrapper adjusts it so that it physically sends/receives the same value as in the implementation (e.g.,
h and h), which is needed for the module-wise contextual refinement to hold.

Those abstract values (either an argument or a return value) are illusory things at the wrapped-

abstractions, just like resources. However, the WET will now do one additional task: it will materi-

alize those abstract values so that, after the elimination of wrappers, they get physically passed

around. In the above example, what will be left after the WET will exactly be the abstraction on the

right hand sides, now physically passing those abstract values (e.g., [9] and l). Note the difference
between the notion of resources and those abstract values where the former gets erased in the

WET, and the later gets materialized.

For all those mechanisms to make sense, at least the relation between abstract values and physical

values should somehow be specified so that the wrapper can make an illusion with respect to it.

To this end, we extend our pre- and post-conditions to have one additional parameter, 𝑥a and 𝑟a,

meaning an abstract argument and an abstract return value, respectively. With this, the specification

for the above popall could be written as follows:

∀ℎ : ptr. {𝜆 𝑥 𝑥a . ∃ℓ : list Z. ⌜𝑥 = [ℎ] ∧ 𝑥a = ℓ⌝ ∗ is list ℎ ℓ} {𝜆 𝑟 𝑟a . ⊤} {∞}

saying that (𝑖) in the implementation a pointer h is passed (𝑥), (𝑖𝑖) in the abstraction a mathematical

list will be passed (𝑥a), and (𝑖𝑖𝑖) h is pointing to a linked list containing the values of l. The
postcondition is simply true, and this function is not cancellable since it makes visible effects.

Now we see how we make such an illusion of abstract value passing, again with dual non-

determinism. When sending a value to another module, the abstraction (user writes) will send

an abstract value and the wrapper will change it to a physical value choosen with respect to the

condition. On the other hand, when receiving a value from another module, the physical value will

be received and the wrapper will change it to an abstract value taken with respect to the condition.

The formal definition of such wrapping is given in [Song et al. 2022].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:26 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

(* module 𝐼RP *)
def repeat(f:ptr, n:int, m:int) ≡

if n ≤ 0 then return m
else { var v := (*f)(m)

return repeat(f, n-1, v) }

(* module 𝐼SC *)
def succ(m:int) ≡

m + 1

(* module 𝐼AD *)
def main() ≡
var n := getint()
print(str(repeat(&succ,n,n)))

𝐻RP (𝑆f) := {repeat : ∀(𝑓 , 𝑛,𝑚, 𝑓sem) : ptr× int× int× (int→int).
{𝜆 𝑥. ⌜𝑥 = [𝑓 , 𝑛,𝑚] ∧ 𝑛 ≥ 0 ∧ 𝑆f ⊒ {*𝑓 :∀𝑚 :int, {𝜆 𝑥. ⌜𝑥 = [𝑚]⌝}{𝜆 𝑟 . ⌜𝑟 = 𝑓sem (𝑚)⌝}}⌝}
{𝜆 𝑟 . ⌜𝑟 = 𝑓sem𝑛 (𝑚)⌝}}

𝑆SC:={succ:∀𝑚 : int. {𝜆 𝑥. ⌜𝑥 = [𝑚]⌝}{𝜆 𝑟 . ⌜𝑟 =𝑚 + 1⌝}}
𝑆AD:={main:∀ : (). {𝜆 𝑥. ⌜𝑥 = []⌝}{𝜆 . ⊤}}

Fig. 9. An example of higher-order reasoning.

When 𝑥a/𝑟a in the pre/postcondition is omitted, it means they are equal to 𝑥/𝑟 , respectively.

We conclude this section with a few remarks. First, the abstract argument can contain essentially

more information – that was only available in the ghost resource – than the argument in the

implementation. In this example, the h itself does not have any information about the contents,

but l carries such information. Second, while the mechanism is used here to abstract the values

of implementation language into the values of specification (language), the mechanism is more

general than that and we anticipate its wider applications. As a case study, we show how to do

CompCertM-style compiler verification using this mechanism in [Song et al. 2022]. There, the

target memory is passed as a physical value, and the source memory is passed as an abstract value.

5.4 Function Pointers
Finally, we present how we can do higher-order reasoning involving function pointers of C-

like languages without extending the framework. The idea is simple. As already known in the

literature [Charguéraud 2020] – “Nested triples are naturally supported by shallow embeddings of

Separation Logic in higher-order logic proof assistants.” – we can use higher-order quantification of

the meta-logic, Coq. In our setting, since the collection of specifications (Conds in Fig. 7) themselves

are an object in the meta-logic, Coq, they can be made higher order in the meta-logic.

Concretely, consider the example given in Fig. 9. The function repeat(f,n,m) in 𝐼RP recursively

applies *f, n times, to m, where *f is the function pointed to by the pointer value f. The definitions
in 𝐼SC and 𝐼AD are straightforward to understand except that &succ is the pointer value pointing

to the function succ. The abstractions are simple and omitted in the figure: 𝐴RP and 𝐴SC directly

returns an arbitrary integer – which is then enforced to satisfy their postcondition by ASSERT –

and 𝐴AD prints (n + n).
To specify repeat, we essentially need to embed expected conditions for argument functions

f inside the condition of repeat. First, we give a higher-order condition 𝐻RP to the module RP,
given in Fig. 9, which is given as a function from conditions to conditions. Concretely, given 𝑆f, for

arguments 𝑓 , 𝑛,𝑚 and a mathematical function 𝑓sem, the condition 𝐻RP (𝑆f) assumes 𝑆f to include

the expected specification for *𝑓 (saying that *𝑓 returns 𝑓sem (𝑚) for any argument𝑚), and then

guarantees that the return value is 𝑓sem
𝑛 (𝑚). We have omitted the Depth parameter for those

conditions since the notion of cancellable calls are orthogonal to higher-order reasoning.

Then we verify RP. For any 𝑆f and any 𝑆 ⊇S (𝑆f ∪𝐻RP (𝑆f)) (since repeat calls *𝑓 and itself), we
prove:

𝐼RP ⊑ctx ⟨ 𝑆 ⊢𝜀 𝐴RP ⟩.
Also, we verify SC. For any 𝑆 ⊇S 𝑆SC, we prove:

𝐼SC ⊑ctx ⟨ 𝑆 ⊢𝜀 𝐴SC ⟩.
Also, we verify AD. For any 𝑆f ⊇S 𝑆SC (since succ is passed to repeat) and any 𝑆 ⊇S (𝐻RP (𝑆f) ∪𝑆AD)
(since add makes a call to repeat), we prove:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:27

𝐼AD ⊑ctx ⟨ 𝑆 ⊢𝜀 𝐴AD ⟩.
Finally, we instantiate those proofs with 𝑆f = 𝑆SC and 𝑆 = 𝐻RP (𝑆SC) ∪ 𝑆SC ∪ 𝑆AD and apply WET:

𝐼RP ◦ 𝐼SC ◦ 𝐼AD ⊑beh ⟨ 𝑆 ⊢𝜀 𝐴RP ⟩◦⟨ 𝑆 ⊢𝜀 𝐴SC ⟩◦⟨ 𝑆 ⊢𝜀 𝐴AD ⟩ ⊑beh 𝐴RP ◦𝐴SC ◦𝐴AD

As an advanced example, we also verify Landin’s knot [Birkedal and Bizjak 2020] (see our Coq

development [Song et al. 2022]).

6 IMPLEMENTATION AND EVALUATION
6.1 Imp and its Verified Compiler
For an end-to-end verification, we develop a deeply embedded language, IMP, for implementing

the modules. The IMP language is extended from Imp [Xia et al. 2019], and has standard syntax:

𝑥 ∈ LVarName 𝑓 ∈ GlobName

𝑒 ∈ 𝐸𝑥𝑝𝑟 ::= 𝑥 | 𝑖 : int64 | 𝑒1 == 𝑒2 | 𝑒1 < 𝑒2 | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | 𝑒1 × 𝑒2
𝑠 ∈ 𝑆𝑡𝑚𝑡 ::= skip | 𝑥 := 𝑒 | 𝑠1; 𝑠2 | if 𝑒 then 𝑠1 else 𝑠2 | 𝑥 = &𝑓 | 𝑥 = 𝑓 (𝑒1, ..., 𝑒𝑛) | 𝑥 = (∗𝑒) (𝑒1, ..., 𝑒𝑛) |

𝑥 = malloc(𝑒) | free(𝑒) | 𝑥 = load(𝑒) | store(𝑒1, 𝑒2)
As with Imp, IMP is semantically interpreted into an itree (i.e., EMS module here). The semantics

is also standard except that the memory operations are interpreted as function calls to the Mem
module (§5.2). The notion of value consists of 64-bit integers and pointers.

We also develop a verified compiler from IMP to Csharpminor of CompCert [Leroy 2006], which

is then composed with CompCert to give a verified compiler L−M from IMP to assembly.

Theorem 6.1 (Separate Compilation Correctness). Given (𝐼𝑖 , 𝐴𝑠𝑚𝑖) with L𝐼𝑖M = Some 𝐴𝑠𝑚𝑖

for 𝑖 ∈ {1, ... , 𝑛},
BehCC (𝐴𝑠𝑚1 • · · · •𝐴𝑠𝑚𝑛) ⊆ Beh(𝐼Mem ◦ 𝐼1 ◦ · · · ◦ 𝐼𝑛)

Here • is the syntactic linking operator of CompCert, and BehCC computes a set of CompCert traces

for a given CompCert program, which are then implicitly casted into EMS traces. 𝐼Mem is an EMS

module (directly written as itrees) that implements our memory model (i.e., a simplified version of

CompCert’s).

6.2 Evaluation
Our development comprises 42,794 SLOC of Coq (counted by coqwc), including 12,925 SLOC for the

examples. The examples reason about various representative features of C-like languages including

shared memory, mutual recursion, function pointers, (non-)termination, and interaction with the

user. In these examples, we use the Iris Proof Mode [Krebbers et al. 2017] when proving logical

entailments. Further explanations for most of these examples are in the appendix [Song et al. 2022].

As already mentioned (§2.2), vertical compositionality played a crucial role in simplifying the

proof of the WET (Theorem 4.1). Specifically, the theorem is established by transitively composing

six refinements, where major ones of which are (𝑖) removing ASSUME and ASSERT while mate-

rializing the abstract arguments (§5.3) and (𝑖𝑖) removing cancellable calls (§5.1) by proving their

termination using the depth information.

Since our formalization is built on top of Interaction Trees, all the examples in the paper and

appendix can be extracted to OCaml and run. Note that all the itree events are handled inside Coq
except for the primitive events, EP. EP gets extracted to OCaml and is handled by special handlers

written in OCaml. Specifically, we wrote a few handlers doing IO for Obs and a handler for Choose
and Take, which asks the user for a nondeterministic choice (currently only supports int).

The extraction allows differential testing between implementations and abstractions (i.e., execut-
ing both and comparing the results). Interestingly, we found two mis-downcast bugs in one of our

example (the Echo example [Song et al. 2022, §3.4]) by testing it before verification.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:28 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

7 DISCUSSION AND RELATEDWORK
As explained in the introduction, we are not the first to consider how to combine separation logic

and refinement in a single framework, but prior work in this direction does not fully marry the

benefits of separation logic and refinement in a unified mechanism. We compare here with the

most closely related work.

Contextual refinement. In general, refinement techniques may or may not be modular in the

structure of a program (i.e., they may require whole-program reasoning). Contextual refinement
is a variant of refinement that is inherently modular : component 𝐼 contextually refines 𝑆 (written

𝐼 ⊑ctx 𝑆) if C[𝐼] ⊑ C[𝑆] under all closing program contexts C. It is also inherently transitive
by definition. Since contextual refinement is typically difficult to establish directly (due to the

quantification over all contexts C), many techniques have been developed for proving it locally (i.e.,
without explicitly reasoning about the context), including some based on separation logic [Turon

et al. 2013; Frumin et al. 2021a; Gäher et al. 2022]. A key limitation of contextual refinement,

however, is that it is in a certain sense too strong: it only applies to refinements that hold under

all program contexts, thus excluding refinements that hold only under contexts that satisfy some

conditions. Although some formulations of contextual refinement restrict the context—e.g., to
be well-typed—this still does not provide a very fine-grained method of expressing the precise

conditions on C under which C[𝐼] ⊑ C[𝑆].
Relational separation logics for contextual refinement. There has been a long line of work

on using relational separation logics [Benton 2004; Yang 2007] as a tool for effectively proving

contextual refinement in higher-order, imperative, and concurrent languages [Dreyer et al. 2010;

Turon et al. 2013; Frumin et al. 2018, 2021b; Gäher et al. 2022]. In these frameworks, separation

logic plays a critical role as a way of modularizing the proof of the contextual refinement itself, and

contextual refinement (by virtue of its transitivity) plays a critical role of enabling the verification of

the program to be performed in a stepwise, incremental fashion. But as explained in the introduction,

the benefits of the two mechanisms remain separate: they offer no way to express refinements

that are both conditional (with separation logic conditions) and transitively composable, as CCR
refinements are.

Hierarchical refinement. Another popular approach to refinement, as a program verification

technique, is what we call hierarchical refinement. Here, we first prove some notion of refinement for

the lowest-level (i.e., has no dependence on other modules) library module 𝐼1 against its abstraction:

𝐼1 ⊑ . . . ⊑ 𝐴1. Then, we prove that a client module 𝐼2 refines its abstraction 𝐴2, as follows:

𝐴1 ⊕ 𝐼2 ⊑ . . . ⊑ 𝐴2. Note that all the functions and private state of 𝐴1 are inlined into its client

module. Next, we prove 𝐴2 ⊕ 𝐼3 ⊑ . . . ⊑ 𝐴3—where 𝐴2 serves as a library module this time—and

this process is repeated until the whole system is verified.

This rather simple and elegant idea was popularized by Gu et al. [2015] in their work on Certified

Abstraction Layers (CAL), and it has proven to be powerful enough to verify both the CertiKOS

concurrent OS kernel [Gu et al. 2016] and the SeKVMhypervisor [Li et al. 2021]. Specifically, it enjoys

full compositionality—both vertical and horizontal—and it supports conditional refinement proofs

in a specific sense: the refinement proof for a client of a library module can depend conditionally

on the specification of the library module [Lorch et al. 2020] because the proof can literally inline

the (abstracted) code of the library module.

However, in terms of modular reasoning, the CAL approach also has limitations: (i) it does not

support mutual recursion—since there is a strict order between modules, imposed by dependence—

and (ii) its support for modular reasoning about shared state is limited compared to that of separation

logic. In particular, if the private state of a library module is shared among multiple client modules—

as in our running example (Fig. 1)—one needs to employ non-local reasoning across the client

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

Conditional Contextual Refinement 39:29

modules. We believe the idea of CCR could potentially be applied in this setting to overcome the

second limitation.

Simulation versus behavioral refinement. It is perfectly valid to take a simulation relation

(Fig. 4)—instead of contextual refinement—as a universal building block. However, we advocate here

for using contextual refinement as a building block since (i) it gives vertical compositionality for

free, and more importantly, (ii) it is extensional: it specifies the property at a higher level without

mentioning how a pair of modules are simulated internally. This extensional definition is beneficial

because there could be multiple different simulation relations (implying contextual refinement),

and it is unclear whether there is a universal simulation relation that can be used for all examples.

Moreover, such an extensional nature of behavioral refinement can make gluing different projects

together easier. Specifically, in our end-to-end verification, the simulation being used in program

verification (Fig. 6), IMP Compiler (§6.1), and CompCert [Leroy 2006] are vastly different. However,

we can still compose them by first converting each of them to behavioral refinement; the notion of

behavior remains (almost) the same among these. This is in contrast to simulation-based frameworks

(e.g., CAL) where a uniform simulation is used across the compiler and program verifications.

Dual non-determinism. The notion of dual angelic/demonic non-determinism—which is

central to how we operationally enforce separation-logic specifications on modules—is an old idea,

but has mainly been studied in the context of game semantics. Refinement Calculus [Back 1981;

Back and Wright 2012] was a pioneer in this direction in that they employed assume and assert
statements and dual non-determinism (which we borrow from them) to write specifications as

programs, which in turn allows incremental verification. However, they only considered a simple

language with global state (no module-private states), and also did not consider the interaction

with separation logic. The most recent and relevant work to ours in this space is the work on

Refinement-Based Game Semantics (RBGS) [Koenig and Shao 2020; Koenig 2020]. They extend

Refinement Calculus into a setting similar to ours where there is a notion of layer (akin to module)

and its local state. However, their focus was on unifying the notions of refinement, game semantics,

and algebraic effects, and they also did not consider the interaction with separation logic.

8 LIMITATIONS AND FUTUREWORK
At the moment, CCR does not support any form of concurrency. While we believe the approach

used in §5.4 should be applicable for most programming patterns in C, we do not yet support all the

features of higher-order concurrent separation logic [Jung et al. 2018], which have proven useful in

reasoning about higher-order, imperative, and concurrent languages like Rust and OCaml.

Since CCR is a new framework that spans refinement-style verification, Hoare-style verification,

and testing, there are various future research directions: (𝑖) supporting concurrency in the style

of Iris [Jung et al. 2018]; (𝑖𝑖) developing property-based testing tools for efficient differential

testing between an implementation and its abstraction; and (𝑖𝑖𝑖) integrating the idea of Parametric

Bisimulations [Hur et al. 2012] to support general higher-order languages.

Finally, we have focused here on developing a “model” that unifies separation logic and contextual

refinement, and the proofs we presented (in §2) work directly on the model level. In the future, we

plan to develop higher-level proof techniques which can hide low-level details of the model.

ACKNOWLEDGMENTS
We thank Ralf Jung and Simon Spies for helpful feedback. Chung-Kil Hur is the corresponding author.

This research was funded in part by Samsung Research Funding Center of Samsung Electronics

under Project Number SRFC-IT2102-03, a Google PhD Fellowship (Sammler), and awards from

Android Security’s ASPIRE program and from Google Research.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

39:30 Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer

REFERENCES
AndrewW. Appel. 2014. Program Logics for Certified Compilers. Cambridge University Press. https://www.cambridge.org/de/

academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers

R.J.R. Back. 1981. On correct refinement of programs. J. Comput. System Sci. 23, 1 (1981), 49–68. https://doi.org/10.1016/0022-

0000(81)90005-2

Ralph-Johan Back and Joakim Wright. 2012. Refinement calculus: a systematic introduction. Springer Science & Business

Media.

Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL ’04). Association
for Computing Machinery, New York, NY, USA, 14–25. https://doi.org/10.1145/964001.964003

Lars Birkedal and Aleš Bizjak. 2020. Lecture notes on iris: Higher-order concurrent separation logic. https://iris-

project.org/tutorial-material.html

Arthur Charguéraud. 2020. Separation Logic for Sequential Programs (Functional Pearl). Proc. ACM Program. Lang. 4, ICFP,
Article 116 (aug 2020), 34 pages. https://doi.org/10.1145/3408998

Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. 2010. A Relational Modal Logic for Higher-Order Stateful

ADTs. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
https://doi.org/10.1145/1706299.1706323

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A mechanised relational logic for fine-grained concurrency.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. 442–451.
Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021a. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained

Concurrency and Logical Atomicity. Log. Methods Comput. Sci. 17, 3 (2021). https://doi.org/10.46298/lmcs-17(3:9)2021

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021b. ReLoC Reloaded: A Mechanized Relational Logic for Fine-

Grained Concurrency and Logical Atomicity. Logical Methods in Computer Science Volume 17, Issue 3 (Jul 2021).

https://doi.org/10.46298/lmcs-17(3:9)2021

Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, and Derek

Dreyer. 2022. Simuliris: a separation logic framework for verifying concurrent program optimizations. Proc. ACM
Program. Lang. 6, POPL (2022), 1–31. https://doi.org/10.1145/3498689

Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David Costanzo. 2011. CertiKOS: A Certified Kernel for Secure

Cloud Computing. In Proceedings of the 2nd ACM SIGOPS Asia-Pacific Workshop on Systems (APSys 2011).
Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2015).

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2016).

Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012. The Marriage of Bisimulations and Kripke Logical

Relations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2012).

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013. The Power of Parameterization in Coinductive Proof.

In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy)

(POPL ’13). Association for Computing Machinery, New York, NY, USA, 193–206. https://doi.org/10.1145/2429069.2429093

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),

e20. https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. https://doi.org/10.1145/2676726.2676980

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal

verification of an OS kernel. In SOSP. ACM, 207–220. https://doi.org/10.1145/1629575.1629596

Thomas Kleymann. 1999. Hoare Logic and Auxiliary Variables. Form. Asp. Comput. 11, 5 (dec 1999), 541–566. https:

//doi.org/10.1007/s001650050057

Jérémie Koenig. 2020. Refinement-Based Game Semantics for Certified Components. https://flint.cs.yale.edu/flint/

publications/koenig-phd.pdf

Jérémie Koenig and Zhong Shao. 2020. Refinement-Based Game Semantics for Certified Abstraction Layers. In Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany) (LICS ’20). Association
for Computing Machinery, New York, NY, USA, 633–647. https://doi.org/10.1145/3373718.3394799

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

https://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers
https://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers
https://doi.org/10.1016/0022-0000(81)90005-2
https://doi.org/10.1016/0022-0000(81)90005-2
https://doi.org/10.1145/964001.964003
https://iris-project.org/tutorial-material.html
https://iris-project.org/tutorial-material.html
https://doi.org/10.1145/3408998
https://doi.org/10.1145/1706299.1706323
https://doi.org/10.46298/lmcs-17(3:9)2021
https://doi.org/10.46298/lmcs-17(3:9)2021
https://doi.org/10.1145/3498689
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/s001650050057
https://doi.org/10.1007/s001650050057
https://flint.cs.yale.edu/flint/publications/koenig-phd.pdf
https://flint.cs.yale.edu/flint/publications/koenig-phd.pdf
https://doi.org/10.1145/3373718.3394799

Conditional Contextual Refinement 39:31

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-Order Concurrent Separation Logic.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL 2017).
Association for Computing Machinery, New York, NY, USA, 205–217. https://doi.org/10.1145/3009837.3009855

Xavier Leroy. 2006. Formal Certification of a Compiler Back-end or: Programming a Compiler with a Proof Assistant. In

Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2006).
Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. 2021. A Secure and Formally Verified Linux KVM

Hypervisor. In IEEE Symposium on Security and Privacy. IEEE, 1782–1799. https://doi.org/10.1109/SP40001.2021.00049

Hongjin Liang and Xinyu Feng. 2016. A program logic for concurrent objects under fair scheduling. In POPL. 385–399.
https://doi.org/10.1145/2837614.2837635

Jacob R Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz Qadeer, Upamanyu Sharma, James R Wilcox, and Xueyuan

Zhao. 2020. Armada: low-effort verification of high-performance concurrent programs. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation. 197–210.

John C Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In Proceedings 17th Annual IEEE
Symposium on Logic in Computer Science. IEEE, 55–74.

Thomas Schreiber. 1997. Auxiliary Variables and Recursive Procedures. In Proceedings of the 7th International Joint Conference
CAAP/FASE on Theory and Practice of Software Development (TAPSOFT ’97). Springer-Verlag, Berlin, Heidelberg, 697–711.

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2019. CompCertM: CompCert

with C-Assembly Linking and Lightweight Modular Verification. Proc. ACM Program. Lang. 4, POPL, Article 23 (Dec.
2019), 31 pages. https://doi.org/10.1145/3371091

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2022. CCR: Technical

documentation and Coq development. https://sf.snu.ac.kr/ccr/

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and Hoare-style reasoning in a logic for

higher-order concurrency. In Proceedings of the 18th ACM SIGPLAN international conference on Functional programming.
377–390.

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2019.

Interaction Trees: Representing Recursive and Impure Programs in Coq. Proc. ACM Program. Lang. 4, POPL, Article 51
(Dec. 2019), 32 pages. https://doi.org/10.1145/3371119

Hongseok Yang. 2007. Relational separation logic. Theor. Comput. Sci. 375, 1-3 (2007), 308–334. https://doi.org/10.1016/j.tcs.

2006.12.036

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 39. Publication date: January 2023.

https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/3371091
https://sf.snu.ac.kr/ccr/
https://doi.org/10.1145/3371119
https://doi.org/10.1016/j.tcs.2006.12.036
https://doi.org/10.1016/j.tcs.2006.12.036

	Abstract
	1 Introduction
	1.1 Refinement vs. Separation Logic
	1.2 Motivating Example

	2 Main ideas of CCR
	2.1 Stateless Conditional Refinement
	2.2 Stateful Conditional Refinement via Separation Logic
	2.3 Incremental and Modular Verification of the Motivating Example
	2.4 Wrapper Elimination

	3 Executable Module Semantics (EMS)
	3.1 Module and Contextual Refinement
	3.2 Traces and Behavior
	3.3 Simulation Relation

	4 CCR Framework, Simplified
	4.1 Condition Wrapped Abstractions
	4.2 Key Theorems of CCR

	5 More Examples and Features
	5.1 Cancellable Calls
	5.2 Memory as a Module
	5.3 Abstraction of Arguments and Return Values
	5.4 Function Pointers

	6 Implementation and Evaluation
	6.1 Imp and its Verified Compiler
	6.2 Evaluation

	7 Discussion and Related work
	8 Limitations and Future work
	Acknowledgments
	References

