
F-ing Modules

Andreas Rossberg
MPI-SWS

rossberg@mpi-sws.org

Claudio V. Russo
Microsoft Research

crusso@microsoft.com

Derek Dreyer
MPI-SWS

dreyer@mpi-sws.org

Abstract
ML modules are a powerful language mechanism for decomposing
programs into reusable components. Unfortunately, they also have
a reputation for being “complex” and requiring fancy type theory
that is mostly opaque to non-experts. While this reputation is cer-
tainly understandable, given the many non-standard methodologies
that have been developed in the process of studying modules, we
aim here to demonstrate that it is undeserved. To do so, we give a
very simple elaboration semantics for a full-featured, higher-order
ML-like module language. Our elaboration defines the meaning of
module expressions by a straightforward, compositional translation
into vanilla System Fω (the higher-order polymorphic λ-calculus),
under plain Fω typing environments. We thereby show that ML
modules are merely a particular mode of use of System Fω .

Our module language supports the usual second-class modules
with Standard ML-style generative functors and local module def-
initions. To demonstrate the versatility of our approach, we further
extend the language with the ability to package modules as first-
class values—a very simple extension, as it turns out. Our approach
also scales to handle OCaml-style applicative functor semantics,
but the details are significantly more subtle, so we leave their pre-
sentation to a future, expanded version of this paper.

Lastly, we report on our experience using the “locally nameless”
approach in order to mechanize the soundness of our elaboration
semantics in Coq.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Modules, Ab-
stract data types; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Operational semantics;
F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs—Type structure

General Terms Languages, Design, Theory

Keywords Type systems, ML modules, abstract data types, exis-
tential types, System F, elaboration, first-class modules

1. Introduction
Modularity is essential to the development and maintenance of
large programs. Although most modern languages support modular
programming and code reuse in one form or another, the languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI’10, January 23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-891-9/10/01. . . $10.00

in the ML family employ a particularly expressive style of mod-
ule system. The key features shared by all the dialects of the ML
module system are their support for hierarchical namespace man-
agement (via structures), a fine-grained variety of interfaces (via
translucent signatures), client-side data abstraction (via functors),
and implementor-side data abstraction (via sealing).

Unfortunately, while the utility of ML modules is not in dis-
pute, they have nonetheless acquired a reputation for being “com-
plex”. Simon Peyton Jones, in an oft-cited POPL 2003 keynote
address [35], likened ML modules to a Porsche, due to their
“high power, but poor power/cost ratio”. (In contrast, he likened
Haskell—extended with various “sexy” type system extensions—
to a Ford Cortina with alloy wheels.) Although we disagree with
Peyton Jones’ amusing analogy, it seems, based on conversations
with many others in the field, that the view that ML modules are
too complex for mere mortals to understand is sadly predominant.

Why is this so? Are ML modules really more difficult to
program/implement/understand than other ambitious modularity
mechanisms, such as GHC’s type classes with type equality coer-
cions [44] or Java’s classes with generics and wildcards [45]? We
think not (although this is obviously a fundamentally subjective
question). One can certainly engage in a constructive debate about
whether the mechanisms that comprise the ML module system are
put together in the ideal way, and in fact the first and third authors
have recently done precisely that [11]. But we do not believe that
the design of the ML module system is the primary source of the
“complexity” complaint.

Rather, we believe the problem is that the literature on the se-
mantics of ML-style module systems is so vast and fragmented that,
to an outsider, it must surely be bewildering. Many non-standard
type-theoretic [18, 16, 26, 25, 41, 9] (as well as several ad hoc, non-
type-theoretic [30, 31, 3]) methodologies have been developed for
explaining, defining, studying, and evolving the ML module sys-
tems, most with subtle semantic differences that are not spelled out
clearly and are known only to experts. As a rich type theory has de-
veloped around a number of these methodologies—e.g., the beauti-
ful metatheory of singleton kinds [43]—it is perfectly understand-
able for someone encountering a paper on module systems for the
first time to feel intimidated by the apparent depth and breadth of
knowledge required to understand module typechecking, let alone
module compilation.

In response to this problem, Dreyer, Crary and Harper [9] de-
veloped a unifying type theory, in which previous systems can be
understood as sublanguages that selectively include different fea-
tures. Although formally and conceptually elegant, their unifying
account—which relies on singleton kinds, dependent types, and a
subtle effect system—still gives one the impression that ML mod-
ule typechecking requires sophisticated type theory.

In this paper, we take a different approach. Our modest goal is to
show once and for all that, contrary to popular belief, the semantics
of ML modules is immediately accessible to anyone familiar with
System Fω (the higher-order polymorphic λ-calculus).

1

How do we achieve this goal? First, instead of defining the se-
mantics of modules via a “direct” static and dynamic semantics, we
employ an elaboration semantics in which the meaning of module
expressions is defined by a simple, compositional translation into
vanilla Fω , under plain Fω typing environments. Our approach thus
synthesizes elements of the two alternative definitions of Standard
ML modules given by Harper and Stone [20] and Russo [37]. Like
the former, we define our semantics by elaboration; but whereas
Harper and Stone elaborate ML modules into yet another mod-
ule type system (a variant of Harper-Lillibridge [16]), we elabo-
rate them into Fω , which is a significantly simpler system. Like the
latter, we classify ML modules using Fω types; our elaboration ef-
fectively provides an evidence translation for a simplified variant
of Russo’s semantics, which lacked a dynamic semantics and type
soundness proof.

The main task of the elaboration translation is to insert introduc-
tion and elimination forms for existential types and universal types
in the appropriate places, as well as to infer coercions between var-
ious Fω types. Thus, our approach substantiates the slogan that ML
modules are just a particular mode of use of System Fω . While
other researchers have given translations from various dialects of
ML modules into System Fω before, we are (to our knowledge) the
first to define the semantics of ML modules directly in terms of Fω .

Second, we focus in Sections 4–5 on showing how to typecheck
and implement a representative ML-style module language—
essentially a higher-order variant of Standard ML’s—and do not
attempt to treat all possible variants of ML module semantics.
In particular, our language supports only second-class modules
(not first-class modules [16, 38]) and only generative functors (not
OCaml-style applicative functors [25]).

Our main reason for focusing on an SML-like module system
is that its semantics is very simple. As evidence of this simplicity,
the inference rules comprising our elaboration translation are (with
only one mild exception) short and sweet. For purposes of compar-
ison, the semantics of Featherweight GJ [21] has roughly the same
number of inference rules as our elaboration translation.1 However,
Featherweight GJ only defines a toy version of GJ, whereas our
elaboration defines the semantics of a full-featured programmable
module language, omitting no defining feature of Standard ML
modules.

As an aside, we note that, for a (higher-order) SML-like module
language, the generality of Fω’s higher kinds is only required when
the core language supports type constructors—as is the case in
ML. Viewed separately, our module elaboration does not rely on
higher-kinded type abstraction. Indeed, for a simpler core language
with just type (but not type constructor) definitions, all modules
can be elaborated to plain System F. (By contrast, the extension to
applicative functors, mentioned below, does require higher kinds.)

To demonstrate the versatility of our approach, we show in Sec-
tion 6 how to extend our language (and its semantics) with the
ability to package modules as first-class values. This turns out
to be a very easy extension. Our approach also scales (following
ideas in Russo’s thesis [37]) to handle OCaml-style applicative
functor semantics. However, this latter extension is significantly
more involved. This makes sense since many of the subtle differ-
ences between the various accounts of ML modules in the liter-
ature [37, 25, 41, 9] revolve around the semantics of applicative
functors. To avoid opening a whole can of worms, we leave the pre-
sentation of our applicative functor extension to a future, expanded
version of this paper.

1 Of course, the complete semantics of our language would additionally
include the static and dynamic semantics of Fω , but concerning the “effort
required to grok”, we think it makes more sense to compare the sizes of the
non-standard components of the semantics.

(identifiers) X
(kinds) K ::= . . .
(types) T ::= . . . | P
(expressions) E ::= . . . | P

(paths) P ::= M
(modules) M ::= X | {B} |M .X |

funX:S⇒M |XX |X:>S
(bindings) B ::= valX=E | typeX=T |

moduleX=M | signatureX=S |
ε | B;B | includeM

(signatures) S ::= P | {D} | (X:S)→S |
S where typeX=T

(declarations) D ::= valX:T | typeX=T | typeX:K |
moduleX:S | signatureX=S |
ε |D;D | include S

Figure 1. Syntax of the module language

(types) let B in T := {B; typeX=T}.X
(expr’s) let B in E := {B; valX=E}.X
(sig’s) let B in S := {B; signatureX=S}.X
(modules) let B inM := {B; moduleX=M}.X

M1 M2 := let moduleX1=M1;
moduleX2=M2

inX1 X2

M :>S := let moduleX=M inX:>S
M :S := (funX:S⇒X)M

(dec’s) local B inD := include (let B in {D})
(bindings) local B in B′ := include (let B in {B′})

Figure 2. Derived forms

Finally, as a way of corroborating the simplicity of our approach
(and also as an excuse to learn Coq), we mechanized the soundness
of our elaboration translation in Coq using the “locally nameless”
approach of Aydemir et al. [1]. Towards the end of the paper
(Section 7), we report on our mechanization experience, which,
while ultimately successful, was not as pleasant as we had hoped.

In general, we have tried to give this paper the flavor of a brisk
tutorial, assuming of the reader no prior knowledge concerning the
typechecking and implementation of ML modules. However, this is
not (intended to be) a tutorial on programming with ML modules,
nor is it a tutorial on the design considerations that influenced the
development of ML modules. For the former, there are numerous
sources to choose from, such as Harper’s draft book on SML [15]
and Paulson’s book [34]. For the latter, we refer the reader to Harper
and Pierce [19], as well as the early chapters of the second and third
authors’ PhD theses [37, 6].

2. The Module Language
Figure 1 presents the syntax of our module language. We assume
a core language consisting of syntax for kinds, types, and expres-
sions, whose details do not matter for our development. The mod-
ule language is very similar to that of Standard ML, except that
functors are higher-order, and signature declarations may be nested
inside structures. The syntax contains all the features one would
expect to find: value/type/module/signature bindings/declarations;
hierarchical structures with projection via the “dot notation”; struc-
ture/signature inheritance via include; functors and functor signa-
tures; and sealing (aka opaque signature ascription). In some cases,
the syntax restricts module expressions in certain positions (e.g.,
the components of a functor application) to be identifiers X . This

2

signature EQ = {
type t;
val eq : t × t → bool

};
signature ORD = {

include EQ;
val less : t × t → bool

};

signature SET = {
type set;
type elem;
val empty : set;
val add : elem × set → set;
val mem : elem × set → bool

};

module Set = fun Elem :ORD ⇒ {
type elem = Elem.t;
type set = list elem;
val empty = [];
val add (x, s) = case s of
| [] ⇒ [x]
| y :: s’ ⇒ if Elem.eq (x, y) then s

else if Elem.less (x, y) then x :: s
else y :: add (x, s’);

val mem (x, s) = case s of
| [] ⇒ false
| y :: s’ ⇒ Elem.eq (y, x) or (Elem.less (y, x) and mem (x, s’))

} :> SET where type elem = Elem.t;

module IntSet = Set {type t = int; val eq = Int.eq; val less = Int.less}

Figure 3. Example: a functor for sets

is merely to make the semantics of the language that we define
in Section 4 as simple as possible. More general variants of these
constructs, as well as other constructs such as “local” bindings, are
definable as derived forms (Figure 2). Using these derived forms,
Figure 3 shows the implementation of a standard Set functor.

One point of note is the notion of paths. A path P is the mech-
anism by which types, values, and signatures may be projected out
of modules. In SML and OCaml, paths are syntactically restricted
module expressions, such as an identifier X followed by a series
of projections. The reason for the syntactic restriction is essentially
that not all projections from modules are sensible. For example,
consider a module M = (M ′ :> {type t; val x:t}) that defines
both an abstract type t and a value x of type t. Then M .t is not a
valid path, because it denotes a type that is not in scope outside of
the module. Likewise, M .x is not valid because it cannot be given
a type that makes sense outside of the module.

Here, for simplicity, instead of restricting the syntax of paths P ,
we instead restrict their semantics. That is, paths are syntactically
just arbitrary module expressions, but the typing rule for paths P
will impose additional restrictions on P ’s signature.

It is worth noting that our more permissive notion of path is
what allows us to define very general forms of local module bind-
ings simply as derived syntax (Figure 2).

3. System Fω

Figure 4 gives the syntax of the variant of System Fω that we
use as the target of our elaboration translation. It includes record
types (where we assume that labels are always disjoint), but is
otherwise completely standard. The only point of note is that,
unlike in most presentations, our typing environments Γ permit
shadowing of bindings for value variables x (but not for type
variables α). Allowing shadowing turns out to be convenient for
our purposes. The full static semantics is given in Appendix A.1.

We assume a standard left-to-right call-by-value dynamic se-
mantics, which is defined in Appendix A.2. Other choices of eval-
uation order are possible as well.

Figure 5 defines some syntactic sugar for n-ary pack’s and
unpack’s that introduce/eliminate existential types ∃α.τ quantify-
ing over several type variables at once. We will use n-ary forms

(kinds) κ ::= Ω | κ→ κ
(types) τ ::= α | τ → τ | {l:τ} | ∀α:κ.τ | ∃α:κ.τ |

λα:κ.τ | τ τ
(terms) e, f ::= x | λx:τ.e | e e | {l=e} | e.l | λα:κ.e | e τ |

pack 〈τ, e〉τ | unpack 〈α, x〉=e in e

(values) v ::= λx:τ.e | {l=v} | λα:κ.e | pack 〈τ, v〉τ
(environ’s) Γ ::= · | Γ, α:κ | Γ, x:τ

Figure 4. Syntax of Fω
∃ε.τ := τ
∃α.τ := ∃α1.∃α′.τ
pack 〈ε, e〉∃ε.τ0 := e
pack 〈τ , e〉∃α.τ0 := pack 〈τ1,

pack 〈τ ′, e〉∃α′.τ0[τ1/α1]〉∃α.τ0
unpack 〈ε, x:τ〉 = e1 in e2 := let x:τ = e1 in e2

unpack 〈α, x:τ〉 = e1 in e2 := unpack 〈α1, x1〉 = e1 in
unpack 〈α′, x:τ〉 = x1 in e2

let x:τ = e1 in e2 := (λx:τ .e2) e1

(where τ = τ1τ
′ and α = α1α

′)

Figure 5. Notational abbreviations for Fω

of other constructs (e.g., application of a type λ), defined in all in-
stances in the obvious way.

Lastly, to ease notation in the elaboration rules that follow,
we will typically omit kind annotations on type variables in the
environment and on binders. Where needed, we use the notation
κα to refer to the kind implicitly associated with α. For brevity,
we will also usually drop the type annotations from let, pack, and
unpack when they are clear from context.

4. Elaboration
We will now define the semantics of the module language by
elaboration into System Fω . That is, we will give (syntax-directed)
translation rules that interpret signatures as Fω types, and modules
as Fω terms. Our elaboration translation builds on a number of
ideas for representing modules that originate in previous work (see
Section 8 for a detailed discussion), but we do not assume that the
reader is familiar with any of these ideas and thus explain them all
from first principles.

Identifiers In order to treat identifier bindings in as simple a man-
ner as possible, we make several assumptions. First, we assume that
identifiers X of the module language can be injectively mapped
to variables x of Fω . To streamline the presentation, we assume
that this mapping is applied implicitly, and thus we use module-
language identifiers as if they were Fω variables.

Second, we assume that there is an injective embedding of Fω
variables into Fω labels. That is, for every (free) variable x there is
a unique label lx from which x can be reconstructed. Together with
the first assumption this means that, wherever we write lX (with X
being a module language identifier), we take this to mean that X
has been embedded into the set of Fω variables, which in turn has
been embedded into the set of labels. Since both embeddings are
injective, X uniquely determines lX and vice versa.

Judgments The judgments comprising our elaboration semantics
are listed in Figure 6. Most of these are translation judgments,
which translate module-language entities into Fω entities of the
corresponding variety. The last two are auxiliary judgments for sig-
nature matching and subtyping, which we will explain a bit later.
A number of the elaboration judgments concern semantic signa-
tures Ξ or Σ. Semantic signatures are just a subclass of Fω types

3

Γ ` K κ (kind elaboration)
Γ ` T : κ τ (type elaboration)
Γ ` E : τ e (expression elaboration)

Γ ` P : Σ e (path elaboration)
Γ `M : Ξ e (module elaboration)
Γ ` B : Ξ e (binding elaboration)

Γ ` S Ξ (signature elaboration)
Γ ` D Ξ (declaration elaboration)
Γ ` Σ ≤ Ξ ↑ τ f (signature matching)
Γ ` Ξ ≤ Ξ′ f (signature subtyping)

Figure 6. Elaboration judgments

(abstract signatures) Ξ ::= ∃α.Σ
(concrete signatures) Σ ::= [τ] | [= τ : κ] | [= Ξ] |

{lX : Σ} | ∀α.Σ→ Ξ

(projection) Σ.ε := Σ
{l : Σ, l′ : Σ′}.l.l := Σ.l

(types) [τ] := {val : τ}
[= τ : κ] := {typ : ∀α : (κ→ Ω). α τ → α τ}
[= Ξ] := {sig : Ξ→ Ξ}

(terms) [e] := {val = e}
[τ : κ] := {typ = λα : (κ→ Ω). λx : α τ. x}
[Ξ] := {sig = λx : Ξ. x}

Figure 7. Semantic signatures

that serve as the semantic interpretations of syntactic (i.e., module-
language) signatures S, as well as the classifiers of modules M .
Since semantic signatures are so central to elaboration, we’ll start
by explaining how they work.

Semantic Signatures The syntax for semantic signatures is given
in Figure 7. (And no, this is not an oxymoron, for in our setting
the “semantic objects” we are using to model modules are merely
pieces of Fω syntax.)

Following Mitchell and Plotkin [32], the basic idea behind se-
mantic signatures is to view a signature as an existential type, with
the existential serving as a binder for all the abstract types de-
clared in the signature. In particular, an abstract semantic signa-
ture Ξ has the form ∃α.Σ, where α names all the abstract types
declared in the signature, and where Σ is a concrete version of the
signature. Σ is concrete in the sense that each (formerly) abstract
type declaration is made transparently equal to the corresponding
existentially-bound variable among the α. (We will see an example
of this shortly.)

A concrete signature Σ, in turn, can be either an atomic signa-
ture ([τ], [= τ : κ], or [= Ξ], each denoting a single anonymous
value, type, or signature declaration, respectively), a structure sig-
nature (represented as a record type {lX : Σ}), or a functor signa-
ture (represented by the polymorphic function type ∀α.Σ→ Ξ).

The atomic signature forms are just syntactic sugar for Fω types
of a certain form. Their encodings (shown in Figure 7) refer to spe-
cial labels val, typ, and sig, which we assume are disjoint from
the set of labels lX corresponding to module-language identifiers.
Of particular note are the encodings for type and signature decla-
rations, which may seem slightly odd because they both appear to
declare a value of the same type as the identity function. This is
merely a coding trick: type and signature declarations are only rel-
evant at compile time, and thus the actual values that inhabit these
atomic signatures are irrelevant. The important point is that (1) they

Signatures Γ ` S Ξ

Γ ` P : [= Ξ] e

Γ ` P Ξ

Γ ` D Ξ

Γ ` {D} Ξ

Γ ` S1 ∃α.Σ Γ, α,X:Σ ` S2 Ξ

Γ ` (X:S1)→S2 ∀α.Σ→ Ξ

Γ ` S ∃α1αα2.Σ Σ.lX ≡ [= α : κ] Γ ` T : κ τ

Γ ` S where typeX=T ∃α1α2.Σ[τ/α]

Declarations Γ ` D Ξ
Γ ` T : Ω τ

Γ ` valX:T {lX : [τ]}

Γ ` T : κ τ

Γ ` typeX=T {lX : [= τ : κ]}

Γ ` K κα
Γ ` typeX:K ∃α.{lX : [= α : κα]}

Γ ` S ∃α.Σ
Γ ` moduleX:S ∃α.{lX : Σ}

Γ ` S Ξ

Γ ` signatureX=S {lX : [= Ξ]}

Γ ` D1 ∃α1.{lX1 : Σ1}
Γ, α1, X1:Σ1 ` D2 ∃α2.{lX2 : Σ2} lX1 ∩ lX2 = ∅

Γ ` D1;D2 ∃α1α2.{lX1 : Σ1, lX2 : Σ2}

Γ ` ε {}
Γ ` S ∃α.{lX : Σ}

Γ ` include S ∃α.{lX : Σ}

Figure 8. Signature elaboration

are inhabited, and (2) the signatures [= τ : κ] and [= Ξ] uniquely
(up to Fω type equivalence) determine τ and Ξ, respectively. The
encoding for [= τ : κ] is chosen such that it supports arbitrary κ.

Signature Elaboration The elaboration of signatures (Figure 8)
is really very straightforward. The only significant difference be-
tween a syntactic module-language signature and its semantic in-
terpretation is that, in the latter, all the abstract types declared in
the signature are collected together, hoisted out, and bound exis-
tentially at the outermost level of the signature.

For example, consider the following syntactic signature:

{module A : {type t; val v : t};
signature S = {val f : A.t → int}}

This signature declares one abstract type (A.t), so the semantic Fω
interpretation of the signature will bind one abstract type α:

∃α.{ lA : {lt : [= α : Ω], lv : [α]}, lS : [= {lf : [α→ int]}] }

For legibility, in the sequel we’ll finesse the injections (lX) from
source identifiers into labels, instead writing this signature as:

∃α.{ A : {t : [= α : Ω], v : [α]}, S : [= {f : [α→ int]}] }

The signature is modeled as a record type with two fields, A and S.
The A field has two subfields—t and v—the first of which has an
atomic signature denoting that t is a type component equal to α, the
second of which has an atomic signature denoting that v is a value
component of type α (i.e., t). The S field has an atomic signature

4

SET ∃α1α2.{set : [= α1 : Ω],
elem : [= α2 : Ω],
empty : [α1],
add : [α2 × α1 → α1],
member : [α2 × α1 → bool]}

(Elem : ORD) → (SET where type t = Elem.t)
 ∀α.{t : [= α : Ω],

eq : [α× α→ bool],
less : [α× α→ bool]}
→ ∃β.{set : [= β : Ω],

elem : [= α : Ω],
empty : [β],
add : [α× β → β],
member : [α× β → bool]}

Figure 9. Example: signature elaboration

denoting that S is a signature component whose definition is the
semantic signature {f : [α→ int]}.

Note that, by hoisting the binding for the abstract type α to the
outermost scope of the signature, we have made the apparent de-
pendency between the declaration of signature S and the declara-
tion of module A—i.e., the reference in S’s declaration to the type
A.t—disappear! Moreover, whereas in the original syntactic signa-
ture the abstract type was referred to as t in one place and as A.t
in another, in the semantic signature all references to the same ab-
stract type component use the same name (here, α). These simplifi-
cations (1) make clear that you do not need dependent types in order
to model ML signatures, and (2) allow us to avoid any “signature
strengthening” (aka “selfification”) machinery, of the sort one finds
in all the “syntactic” type systems for modules [16, 26, 25, 41, 9].

The only semantic signature form not exhibited in the above ex-
ample is the functor signature ∀α.Σ → Ξ. The important point
about this signature is that the α are universally quantified, which
enables them to be mentioned both in the argument signature Σ
and the result signature Ξ. If functor signatures were instead repre-
sented as Ξ→ Ξ′, then the result signature Ξ′ would not be able to
depend on any abstract types declared in the argument.

An example of a functor signature can be seen in Figure 9. It
gives the translations of the signature SET from the example in
Figure 3, along with the translation of the signature

(Elem : ORD) → (SET where type t = Elem.t)

which classifies the Set functor itself.
Given our informal explanation, the formal rules in Figure 8

should now be very easy to follow. A few points of note, though.
The rule for where type employs a convenient bit of shorthand

notation defined in Figure 7, namely: Σ.lX denotes the signature
of the lX component of Σ. This is used to check that the type
component being refined is in fact an abstract type component (i.e.,
equivalent to one of the α bound existentially by the signature).

In the rule for sequences of declarations D1;D2, note that the
side condition on the label sets lX1 and lX2 is in place because
signatures may not declare two components with the same name.
Also, note that the identifiers X1, implicitly embedded as Fω vari-
ables, may shadow other bindings in Γ. This is one place where
it is convenient to rely on shadowing being permissible in the Fω
environments.

Finally, the rule for signature paths P refers in its premise to
the path elaboration judgment (which we will discuss later) solely
in order to look up the semantic signature Ξ that P should expand
to. As noted above in the discussion of atomic signatures, the actual
term e inhabiting the atomic signature [= Ξ] is irrelevant.

Matching Γ ` Σ ≤ Ξ ↑ τ f

Γ ` τ : κα Γ ` Σ ≤ Σ′[τ/α] f

Γ ` Σ ≤ ∃α.Σ′ ↑ τ f

Subtyping Γ ` Ξ ≤ Ξ′ f
Γ ` τ ≤ τ ′ f

Γ ` [τ] ≤ [τ ′] λx:[τ].[f(x.val)]

τ ≡ τ ′

Γ ` [= τ : κ] ≤ [= τ ′ : κ] λx:[= τ : κ].x

Γ ` Ξ ≤ Ξ′ f Γ ` Ξ′ ≤ Ξ f ′

Γ ` [= Ξ] ≤ [= Ξ′] λx:[= Ξ]. [Ξ′]

Γ ` Σ1 ≤ Σ′1 f

Γ ` {l1 : Σ1, l2 : Σ2} ≤ {l1 : Σ′1}
λx:{l1 : Σ1, l2 : Σ2}.{l1 = f (x.l1)}

Γ, α′ ` Σ′ ≤ ∃α.Σ ↑ τ f1 Γ, α′ ` Ξ[τ/α] ≤ Ξ′ f2

Γ ` (∀α.Σ→ Ξ) ≤ (∀α′.Σ′ → Ξ′)
λf :(∀α.Σ→ Ξ). λα′. λx:Σ′. f2 (f τ (f1 x))

Γ, α ` Σ ≤ ∃α′.Σ′ ↑ τ f

Γ ` ∃α.Σ ≤ ∃α′.Σ′
λx:(∃α.Σ). unpack 〈α, y〉 = x in pack 〈τ , f y〉

Figure 10. Signature matching and subtyping

Signature Matching and Subtyping Signature matching (Fig-
ure 10) is a key element of the ML module system. At functor ap-
plications, we must check that the signature of the actual argument
matches the formal argument signature of the functor. For sealed
module expressions, we must check that the signature of the mod-
ule being sealed matches the sealing signature.

What happens during signature matching is really quite sim-
ple. First of all, in all places where signature matching occurs,
the source signature—i.e., the signature of the module being
matched—is expressible as a concrete semantic signature Σ. (To
see why, skip ahead to module elaboration.) The target signature—
i.e., the signature being matched against—on the other hand is
abstract. To match against an abstract signature ∃α.Σ′, we must
solve for the α. That is, we must find some τ such that the source
signature matches Σ′[τ/α]. (Fortunately, if such a τ exists, it is
unique, and there is an easy way of finding it by inspecting Σ—the
details are in Section 5.2.) Then, the problem of signature match-
ing reduces to the question of whether Σ is a subtype of Σ′[τ/α],
which can be determined by a straightforward structural analysis
of the two concrete signatures.

As a simple example, consider matching

{A : {t : [= int : Ω], u : [int], v : [int]}, S : [= {f : [int→ int]}] }

against the abstract signature

∃α.{A : {t : [= α : Ω], v : [α]}, S : [= {f : [α→ int]}] }

from our signature elaboration example (above). The τ returned by
the matching judgment would here be simply int, and the subtyping
check would determine that the first signature is a width/depth
subtype of the second after substituting int for α.

The signature matching judgment has the form Γ ` Σ ≤ Ξ ↑
τ f . It matches a concrete Σ against an abstract Ξ of the form
∃α.Σ′ as described above, synthesizing the solution τ for α, as well
as the coercion f from Σ to Σ′[τ/α].

5

While the purpose of signature matching is to relate concrete to
abstract signatures, signature subtyping, Γ ` Ξ ≤ Ξ′ f , only
relates signatures within the same class and synthesizes a respective
coercion. Consequently, subtyping is defined by cases on Ξ and Ξ′.

For value declarations, signature subtyping appeals to the sub-
typing judgment for the core language, Γ ` τ ≤ τ ′ f . For
an ML-like core language, subtyping serves to specialize a more
general polymorphic type scheme to a less general one. To take
a concrete example, the empty field of the Set functor in Fig-
ure 3 would, in ML, receive polymorphic scheme ∀β.listβ, but
when the functor body is matched against the sealing signature
(SET where type . . .), the type of empty would be coerced to the
monomorphic type list α (where α represents Elem.t).

For type declarations, we require type equivalence, so subtyping
just produces a literal identity coercion.

For signature declarations, we do not require that they are equal
(as types), but merely mutual subtypes, because type equivalence
would be too fine-grained. In particular, signatures that differ syn-
tactically only in the order of their declarations will elaborate to
semantic signatures that differ only in the order in which their exis-
tential type variables are bound. Such differences should be incon-
sequential in the source program, and thus signature equivalence
has to be coarse enough to ignore such semantically irrelevant dif-
ferences.

For structure signatures, we allow both width and depth sub-
typing. For functor signatures, ∀α.Σ → Ξ and ∀α′.Σ′ → Ξ′,
subtyping proceeds in the usual contra/co-variant manner. After in-
troducing α′, we match the domains contra-variantly to determine
an instantiation τ for α such that Σ′ ≤ Σ[τ/α]; then, we (co-
variantly) check that the (instantiated) co-domain Ξ[τ/α] subtypes
Ξ′. This allows for polymorphic specialization, i.e., a more poly-
morphic functor signature may subtype a less polymorphic one.

Dually, for abstract semantic signatures ∃α.Σ and ∃α′.Σ′, sub-
typing recursively reduces to eliminating ∃α.Σ, then matching Σ
against Σ′ to determine witness types τ for α′; thus, a less abstract
signature may subtype a more abstract one.

The coercion terms f synthesized by the subtyping rules are
straightforward—given the required invariant, Γ ` f : Ξ → Ξ′,
they practically write themselves. The invariant also determines the
elided pack annotation in the last rule.

Module Elaboration The module elaboration judgment (Fig-
ure 11), which has the form Γ ` M : Ξ e, assigns module
M the semantic signature Ξ and additionally translatesM to an Fω
term e of type Ξ. (The invariant, Γ ` e : Ξ, determines elided pack
annotations.) As in signature elaboration, the basic idea in module
elaboration is to assign M an abstract signature ∃α.Σ such that α
represent all the abstract types that M defines. The difference here
is that we must also construct the term e that has this signature (i.e.,
the evidence).

The easiest way to understand the evidence construction is to
think of the existential type ∃α.Σ as a monad that encapsulates
the “effect” of defining abstract types. When we want to use a
module of this signature, we must first unpack it (think: monadic
bind), obtaining some fresh abstract types α and a variable x of
type Σ. We can then do whatever we want with x, ultimately
producing another module of signature ∃α′.Σ′. Of course, Σ′ may
have free references to the α, so at the end we must repack the
result with the α to form a module of signature ∃αα′.Σ′. Thus, the
abstract typesα defined byM propagate monadically into the set of
abstract types defined by any module that usesM . While—as many
researchers have pointed out—this monadic unpack/repack style of
existential programming would be annoying to program manually,
it is nonetheless easy for module elaboration to do automatically.

Figure 11 shows the rules for elaborating modules and bindings.
The rules for projections (M .X), module bindings, and binding se-

Modules Γ `M : Ξ e

Γ(X) = Σ

Γ ` X : Σ X

Γ ` B : Ξ e

Γ ` {B} : Ξ e

Γ `M : ∃α.{lX : Σ, lX′ : Σ′} e

Γ `M .X : ∃α.Σ unpack 〈α, y〉 = e in pack 〈α, y.lX〉

Γ ` S ∃α.Σ Γ, α,X:Σ `M : Ξ e

Γ ` funX:S⇒M : ∀α.Σ→ Ξ λα.λX:Σ.e

Γ(X1) = ∀α.Σ′ → Ξ Γ(X2) = Σ Γ ` Σ ≤ ∃α.Σ′ ↑ τ f

Γ ` X1 X2 : Ξ[τ/α] X1 τ (f X2)

Γ(X) = Σ Γ ` S Ξ Γ ` Σ ≤ Ξ ↑ τ f

Γ ` X:>S : Ξ pack 〈τ , f X〉

Bindings Γ ` B : Ξ e
Γ ` E : τ e

Γ ` valX=E : {lX : [τ]} {lX = [e]}

Γ ` T : κ τ

Γ ` typeX=T : {lX : [= τ : κ]} {lX = [τ : κ]}

Γ `M : ∃α.Σ e

Γ ` moduleX=M : ∃α.{lX : Σ}
 unpack 〈α, x〉 = e in pack 〈α, {lX = x}〉

Γ ` S Ξ

Γ ` signatureX=S : {lX : [= Ξ]} {lX = [Ξ]}

Γ ` B1 : ∃α1.{lX1 : Σ1} e1 l′X1
= lX1 − lX2

Γ, α1, X1 : Σ1 ` B2 : ∃α2.{lX2 : Σ2} e2 l′X1
:Σ′1 ⊆ lX1:Σ1

Γ ` B1;B2 : ∃α1α2.{l′X1
: Σ′1, lX2 : Σ2}

 unpack 〈α1, y1〉 = e1 in
unpack 〈α2, y2〉 = (let X1 = y1.lX1 in e2) in

pack 〈α1α2, {l′X1
= y1.l′X1

, lX2 = y2.lX2}〉

Γ ` ε : {} {}
Γ `M : ∃α.{lX : Σ} e

Γ ` includeM : ∃α.{lX : Σ} e

Figure 11. Module elaboration

quences (B1;B2) show the unpack/repack idiom in action. The last
of these is somewhat involved, but only because ML modules allow
bindings to be shadowed—a practical complication, incidentally,
that is glossed over in most module type systems in the literature.2

The rule for functors is completely analogous to the one for
functor signatures from Figure 8. Note that this rule and the binding
sequence rule are the only two that extend the environment Γ, and
that in both cases the new variable X is bound with a concrete
signature Σ. As a result, when we look up an identifier X in the
environment (as in the identifier elaboration rule), we may assume
it has a concrete signature.

The rules for functor applications (X1 X2) and sealed modules
(X :> S) both appeal to the signature matching judgment. In the
former, the τ represent the type components of the actual functor
argument corresponding to the abstract types α declared in the for-

2 A realistic implementation of modules would want to optimize the con-
struction of structure representations and avoid the repeated record con-
catenation. Such an optimization is fairly easy, it essentially boils down to
partially evaluating the expressions generated by our sequencing rule.

6

Set
λα.λElem : {t : [= α : Ω],

eq : [α× α→ bool],
less : [α× α→ bool]}.

pack 〈listα,
f (let y1 = {elem = [α]} in

let y′1 =
let elem = y1.elem in
let y2 = {set = [listα]} in
let y′2 =

let set = y2.set in
. . .

in {elem = y1.elem, set = y′1.set,
empty = y′1.empty,
add = y′1.add,mem = y′1.mem})

〉∃β.{set:[=β:Ω], elem:[=α:Ω], empty:[β], add:[...], mem:[...]}

{module IS = Set Int; val s = IS.add (7, IS.empty)}
unpack 〈β, y1〉 = {IS = Set int (f Int)} in
let y2 = (let IS = y1.IS in {s = [IS .add 〈7, IS .empty〉]}) in
pack 〈β, {IS = y1.IS, s = y2.s}〉∃β.{IS:{... },s:[β]}

Figure 12. Example: module elaboration

mal argument signature. For instance, in the functor application in
Figure 3, τ would be simply int, since that is how the argument
module defines the abstract type t declared in the argument signa-
ture ORD. This information is then propagated to the result of the
functor application by substituting τ for α in the result signature Ξ.
The sealing rule works similarly, except that τ is not used to elim-
inate a universal type, but dually, to introduce an existential type.
Hence, τ is not propagated to the signature of the sealed module,
but rather hidden within the existential. This makes sense because
of course the point of sealing is to hide the identity of the abstract
types α.

As an example of the translation, Figure 12 sketches the result
of elaborating the Set functor from Figure 3. It also shows the Fω
representation of a simple program involving the application of this
functor. We assume that there is a suitable library module Int that
matches signature ORD, and whose Fω representation is Int . In
order to avoid too much clutter, we do not spell out the respective
coercions f occurring in both examples.

Generativity Functors in Standard ML are said to behave gen-
eratively, meaning that every application of a functor F will
have the effect of generating fresh abstract types corresponding
to whichever types are declared abstractly in F ’s result signature.
With the existential interpretation of type abstraction that we em-
ploy here, this generativity comes for free. Applying a functor pro-
duces a module with an existential type of the form ∃α.Σ. Thus,
if a functor is applied twice (say, to the same argument) and the
results are bound to two different identifiers X1 and X2, then the
binding sequence rule will ensure that two separate copies of the α
will be added to the environment Γ—call them α1 and α2—along
with the bindings X1 : Σ[α1/α] and X2 : Σ[α2/α]. In this way,
the abstract type components of X1 and X2 will be made distinct.

Path Elaboration Figure 13 displays the last three rules of elab-
oration, concerning the elaboration of paths. (The elaboration rule
for signature paths appeared in Figure 8.)

Paths are the means by which value, type, and signature com-
ponents are projected out of modules. As explained in Section 2, in
order for paths to make sense, the values, types, or signatures that
they project out must be well-formed in the ambient environment.
To ensure this, the path elaboration judgment, Γ ` P : Σ e,

Paths Γ ` P : Σ e

Γ ` P : ∃α.Σ e Σ ≡ Σ′ Γ ` Σ′ : Ω

Γ ` P : Σ′ unpack 〈α, x〉 = e in x

Types Γ ` T : κ τΓ ` P : [= τ : κ] e

Γ ` P : κ τ

Expressions Γ ` E : τ eΓ ` P : [τ] e

Γ ` P : τ e.val

Figure 13. Path elaboration

uses the ordinary module elaboration judgment to synthesize P ’s
semantic signature ∃α.Σ, and then checks that Σ does not actu-
ally depend on any of the “local” abstract types α that P may
have defined. The rules for type, expression, and signature paths
use the path elaboration judgment to check the well-formedness of
the path, and then project the component out accordingly.

For instance, consider the example from Section 2 of an ill-
formed path. Let M be the module expression

{type t = int; val v = 3} :> {type t; val v : t}
The semantic signature that module elaboration assigns to M is:

∃α.{t : [= α : Ω], v : [α]}
Thus, if we try to project either t or v fromM directly, the resulting
type or expression would not be well-formed, since both [= α : Ω]
and [α] refer to the local abstract type α. If, on the other hand,
we were to first bind M to an identifier X , and then subsequently
project out X.t or X.v, the paths would be well-formed. The
reason is that the binding sequence rule would extend the ambient
environment with a fresh α, as well as X : {t : [= α : Ω], v : [α]}.
Under such an extended environment, X.t would simply elaborate
to α, and X.v would elaborate to X.v.val of type α, both of
which are well-formed since α is now bound in the environment. In
general, since identifiers have concrete signatures, any well-formed
module of the form X.lY will also be a well-formed path.

If one views existential types as a monad, then the path elab-
oration rule may seem superficially odd because it allows one to
“escape” the monad by going from ∃α.Σ to Σ. However, the point
is that one can only do this if the “effects” encapsulated by the
monad—i.e., the abstract types α defined by the path—are strictly
local. This is similar conceptually to the hiding of “benign” effects
by Haskell’s runST mechanism [23].

5. Metatheoretic Properties
Don’t believe a type system until you have shown it unsound [10],
or better yet, proven it sound. We will do so in this section, with
a proof that we mechanized in the Coq proof assistant [4]. We
also prove that our elaboration is decidable, which is an important
property if the semantics is to be useful. Finally, we give some
additional properties of signature matching.

5.1 Soundness
Proving soundness of a language specified by an elaboration se-
mantics consists of two steps:

1. Proving that elaboration only produces well-typed terms of the
target language.

2. Showing that the type system of the target language is sound.

Fortunately, in our case, since the target language is the very well-
studied System Fω , we can simply borrow the second part from the
literature. It remains to be shown that the elaboration rules produce

7

well-formed Fω programs. Of course, since our development is
parametric in the concrete choice of a core language, the result only
holds relative to suitable assumptions about the soundness of the
elaboration rules for the core language.

Theorem 1 (Soundness of Elaboration)
Provided Γ ` 2 we have:

1. If Γ ` T : κ τ , then Γ ` τ : κ.
2. If Γ ` E : τ e, then Γ ` e : τ .
3. If Γ ` τ ≤ τ ′ f and Γ ` τ : Ω and Γ ` τ ′ : Ω, then

Γ ` f : τ → τ ′.
4. If Γ ` S Ξ, then Γ ` Ξ : Ω.
5. If Γ ` D Ξ, then Γ ` Ξ : Ω.
6. If Γ `M : Ξ e, then Γ ` e : Ξ.
7. If Γ ` B : Ξ e, then Γ ` e : Ξ.
8. If Γ ` P : Σ e, then Γ ` e : Σ.
9. If Γ ` Ξ ≤ Ξ′ f and Γ ` Ξ : Ω and Γ ` Ξ′ : Ω,

then Γ ` f : Ξ→ Ξ′.
10. If Γ ` Σ ≤ ∃α.Σ′ ↑ τ f and Γ ` Σ : Ω and Γ, α ` Σ′ : Ω,

then Γ ` τ : κα and Γ ` f : Σ→ Σ′[τ/α].

Proof (sketch): The proof is by relatively straightforward simul-
taneous induction on derivations. The arguments for properties 1-3
clearly depend on the core language. We have performed the en-
tire proof in Coq (Section 7), and transliterate only two interesting
cases here:

Case X1 X2 By induction we know that (1) Γ ` τ : κα and (2)
Γ ` f : Σ′ → Σ[τ/α]. From (1) we can derive that Γ ` X1 τ :
(Σ→ Ξ)[τ/α]. From (2) it follows that Γ ` f X2 : Σ[τ/α]. Thus,
we can conclude Γ ` X1 τ (f X2) : Ξ[τ/α] by the typing rule for
application.

Case B1;B2 By induction on the first premise we know that (1)
Γ ` e1 : ∃α1.{lX1 : Σ1}. Let Γ1 = Γ, α1, X1:Σ1. By validity and
inversion, from (1) we derive Γ, α1 ` Σ1 : Ω, so Γ1 ` 2. By in-
duction on the second premise, (2) Γ1 ` e2 : ∃α1.{lX2 : Σ2}. It is
easy to show Γ, α1, y1:{lX1 : Σ1} ` y1.lX1 : Σ1. By convention,
y1 and y2 are fresh, so Γ, α1, y1:{lX1 : Σ1}, α2, y2:{lX2 : Σ2} `
{l′X1

= y1.l′X1
, lX2 = y2.lX2} : {l′X1

: Σ′1, lX2 : Σ2} as well.
From (1) and weakening (2), the overall goal follows by inner in-
duction on the lengths of α1, α2, and lX1 , and expanding the n-ary
versions of pack, unpack and let. �

5.2 Decidability
All our elaboration rules are syntax-directed, so they can be inter-
preted directly as an algorithm. Provided core elaboration is termi-
nating, this algorithm clearly terminates as well.

There is one niggle, though: the signature matching rule re-
quires a non-deterministic guess of suitable instantiating types τ .
To prove elaboration decidable, we must provide a sound and com-
plete algorithm for finding these types. It’s not obvious that such an
algorithm should exist at all. For example, consider the following
matching problem (cf. [9]):

∀α.[= α : κ]→ [= τ1 : κ′] ≤β [= β : κ]→ [= τ2 : κ′]

The matching rule must find an instantiation type τ : κ for β such
that the left signature is a subtype of [= τ : κ]→ [= τ2[τ/β] : κ′],
which in turn will only hold if τ1[τ/α] ≡ τ2[τ/β]. Since κ may be
a higher kind, this amounts to a higher-order unification problem,
which is undecidable in general [14].

Fortunately, under minimal assumptions about the initial envi-
ronment, we can show that such problematic cases never arise dur-
ing elaboration. More precisely, we can show that, whenever we

invoke Σ ≤ ∃α.Σ′, the target signature Σ′ has the property that
each abstract type variable α ∈ α actually occurs explicitly in the
form of an embedded type field [= α : κα]. We say that α is rooted
in Σ′ in this case. An abstract signature in which all quantified vari-
ables are rooted is called explicit.

Figure 14 gives a judgmental definition of these properties.
However, this is not all. Subtyping is contra-variant for functors,
so we also need to ensure that, whenever we invoke subtyping
to determine whether Σ ≤ Σ′ and Σ is a functor signature, its
argument signature is explicit as well. The figure hence defines the
second notion of a valid signature that captures this property and
extends it to environments. Ultimately, we require all signatures
and environments used in elaboration to be valid.

We can show that validity and explicitness of signatures are
established and maintained by our elaboration:

Lemma 2 (Signature Validity)

1. If Ξ explicit, then Ξ valid.
2. If Ξ explicit (valid), then Ξ[τ/α] explicit (valid).
3. If Γ valid and Γ ` S Ξ or Γ ` D Ξ, then Ξ explicit.
4. If Γ valid and Γ ` M : Ξ e or Γ ` B : Ξ e, then Ξ

valid.
5. If Γ valid and Γ ` P : Σ e, then Σ valid.

If the ∃α.Σ′ in the matching rule is explicit, then the instanti-
ation of each α can be found by a simple pre-pass on Σ and Σ′,
thanks to the following observation: if the subsequent subtyping
check is ever going to succeed, then Σ must feature an atomic type
signature [= τ : κα] at the same location where α is rooted in Σ′.
Moreover, α must be instantiated with a type equivalent to τ .

Consequently, the lookup function defined in Figure 15 im-
plements a suitable algorithm, through a straightforward parallel
traversal of the two signatures. One slight twist is that an abstract
type variable actually may have multiple roots in a signature. For
example, the external signature {type t; type u = t} elaborates
to ∃α.{t : [= α : Ω], u : [= α : Ω]}. Intuitively, it does not mat-
ter which one we pick, so the algorithm simply chooses the “first”
one. To this end, we impose some fixed but arbitrary total order-
ing on labels (solely for the purpose of the lookup algorithm) and
choose the first root that we find in an ordered, depth-first traversal
of the signature. Note that we never need to lookup inside a functor
signature (this would change were one to add applicative functors).

Our definition of lookup is a suitably sound and complete algo-
rithm for finding instantiations:

Theorem 3 (Soundness of Type Lookup)
Let Γ ` Σ : Ω and Γ, α ` Σ′ : Ω. If lookupα(Σ,Σ′) = τ , then
Γ ` τ : κα.

Theorem 4 (Completeness of Type Lookup)
Let Γ ` Σ : Ω and Γ ` ∃α.Σ′ : Ω, with Σ valid and ∃α.Σ′
explicit. If there exists τ such that Γ ` Σ ≤ Σ′[τ/α], then
lookupα(Σ,Σ′) = τ ′ with τ ≡ τ ′.

Proof (sketch): By induction on the structure of Σ′. Since ∃α.Σ′
is explicit, and thus α rooted in Σ′, and since also Σ ≤ Σ[τ/α],
it is clear from the definitions that lookupα(Σ,Σ′) = τ ′ for some
τ ′. However, the choice may be different from τ . Assume α is a
variable for which the choices differ, i.e., τ 6= τ ′. Then the deriva-
tion Γ ` Σ ≤ Σ′[τ/α] will necessarily contain a subderivation
Γ ` [= τ ′ : κ] ≤ [= τ : κ] for the location used in the lookup. By
inversion, τ ′ ≡ τ . �

Corollary 5 (Decidability of Matching)
Assume that Γ ` τ ≤ τ ′ f is decidable. If Σ valid and Ξ
explicit, then Γ ` Σ ≤ Ξ ↑ τ f is decidable.

8

Rootedness α rooted in Σα ≡ τ
α rooted in [= τ : κ]

α rooted in Σ

α rooted in {l : Σ, l′ : Σ′}

Explict Signatures Ξ explicit

[τ] explicit [= τ : κ] explicit
Ξ explicit

[= Ξ] explicit
Σ explicit

{l : Σ} explicit
∃α.Σ explicit Ξ explicit
∀α.Σ→ Ξ explicit

α rooted in Σ Σ explicit
∃α.Σ explicit

Valid Signatures and Environments Ξ valid Γ valid

[τ] valid [= τ : κ] valid
Ξ explicit

[= Ξ] valid
Σ valid

{l : Σ} valid
∃α.Σ explicit Ξ valid
∀α.Σ→ Ξ valid

Σ valid
∃α.Σ valid

∀(X:Σ) ∈ Γ, Σ valid
Γ valid

Figure 14. Signature explicitness and validity

lookupα(Σ,Σ′) = τ if lookupα(Σ,Σ′) = τ for each α, τ ∈ α, τ
lookupα([= τ : κ], [= τ ′ : κ]) = τ if τ ′ ≡ α
lookupα({l1 : Σ1}, {l2 : Σ2}) = τ if lookupα({l1 : Σ1}.l, {l2 : Σ2}.l) = τ (for the smallest possible l)

Figure 15. Algorithmic type lookup

Corollary 6 (Decidability of Elaboration)
Under valid Γ, provided we can (simultaneously) show that core
elaboration is decidable, then all judgments of module elaboration
are decidable too.

5.3 Declarative Properties of Signature Matching
Finally, we want to show that signature matching has the declar-
ative properties that you would expect from a subtype relation,
namely it is a preorder. This is not actually relevant for soundness
or decidability, but provides a sanity check that the language we are
defining actually makes sense. It is also relevant to our translation
of modules as first-class values in the next section.

One complication in stating the following properties is that sub-
typing is defined in terms of the core language subtyping judgment
Γ ` τ ≤ τ ′ e. Most of the properties only hold if we assume
that the respective property has already been shown for that judg-
ment. To avoid clumsy repetition, we leave this assumption implicit
in the theorem statements (similarly in Theorem 11 in Section 6).

First, we need a technical lemma stating that subtyping is stable
under substitution:

Lemma 7 (Subtyping under Substitution)
Let Γ ` τ : κα. If Γ, α ` Ξ ≤ Ξ′, then Γ ` Ξ[τ/α] ≤ Ξ′[τ/α].
Moreover, the derivations have the same size, up to core language
judgments.

Now for the actual theorems:

Theorem 8 (Reflexivity of Subtyping)
If Γ ` Ξ : Ω and Γ ` Ξ′ : Ω and Ξ ≡ Ξ′, then Γ ` Ξ ≤ Ξ′.

Theorem 9 (Transitivity of Subtyping)
If Γ ` Ξ : Ω and Γ ` Ξ′ : Ω and Γ ` Ξ′′ : Ω and Γ ` Ξ ≤ Ξ′ and
Γ ` Ξ′ ≤ Ξ′′, then Γ ` Ξ ≤ Ξ′′.

6. Modules as First-Class Values
ML modules exhibit a strict stratification between module and
core language, turning modules into second-class entities. Conse-
quently, the kinds of computations that are possible on the module
level are quite restricted. Extending modules computation to make
modules first-class leads to undecidable typechecking [28]. How-
ever, it is straightforward to allow modules to be used as first-class
core values after explicit injection into a core type of packaged
modules [38]. In fact, in our setting, the extension is almost trivial.

Syntax Figure 16 summarizes the syntax added to the exter-
nal language. We add package types of the form pack S to the
core language. These are inhabited by packaged modules of signa-
ture S. Correspondingly, there is a core language expression form
pack M :S that produces values of this type. To unpack such a
module, the inverse form unpack E:S is introduced as an addi-
tional module expression. It expects E to be a package of type
pack S and extracts the constituent module of signature S. (This is
more liberal than the closed-scope open expression of [38].)

Why all the signature annotations? To avoid running into the
same problems as caused by first-class modules, we do not assume
any form of subtyping on package types (even if the core language
had subtyping). That is, package types are only compatible if they
consist of equivalent signatures. The type annotation for pack en-
sures that packaged modules still have principal types under these
circumstances, so that core type checking is not compromised. For
unpack, the annotation determines the type of E — which is nec-
essary if we want to support ML-style type inference in the core
language (but could be omitted otherwise).

Elaboration Figure 17 gives the corresponding elaboration rules.
Let us ignore the use of signature normalization norm(Ξ) in these
rules for a minute and think of it as the identity function (which,
morally, it is). Then a module M and its packaged version have es-
sentially the same Fω representation as a value of existential type.
Consequently, elaboration becomes almost trivial. A package type
simply elaborates to the very existential type that represents the
constituent signature. Packing has to check that the module’s sig-
nature actually matches the annotation and coerce it accordingly.
Unpacking is a real no-op: there is no subtyping on package types,
so the type of E has to coincide exactly with the annotated signa-
ture. No coercion is necessary. Proving soundness of these rules is
straightforward given Lemma 10 below.

Signature Normalization So what is the business with normal-
ization? Unfortunately, typing of packaged modules would be
overly restrictive if we just used signature representations imme-
diately to represent the corresponding package type. Consider the
following example:

signature A = {type t; type u}
signature B = {type u; type t}
val f = fun p : (pack A) ⇒ . . .
val g = fun p : (pack B) ⇒ f p

9

(types) T ::= . . . | pack S
(expressions) E ::= . . . | packM :S
(modules) M ::= . . . | unpack E:S

Figure 16. Extension with modules as first-class values

Types Γ ` T : κ τ
Γ ` S Ξ

Γ ` pack S : Ω norm(Ξ)

Expressions Γ ` E : τ e

Γ `M : Ξ′ e Γ ` S Ξ Γ ` Ξ′ ≤ norm(Ξ) f

Γ ` packM :S : norm(Ξ) f e

Modules Γ `M : Ξ e

Γ ` S Ξ Γ ` E : norm(Ξ) e

Γ ` unpack E:S : norm(Ξ) e

Figure 17. Elaboration of modules as first-class values

Intuitively, the signatures A and B are equivalent, and in fact, their
semantic representations are in mutual subtyping relation. But these
representations will not actually be equivalent System Fω types—
A elaborates to ∃α1α2.{t : [= α1 : Ω], u : [= α2 : Ω]} and
B to ∃α2α1.{t : [= α1 : Ω], u : [= α2 : Ω]} according to our
rules (cf. Figure 8). In the module language this is no problem:
whenever we have to check a signature against another we are
using coercive matching, which is oblivious to the internal ordering
of quantifiers. But in the core language no signature matching is
performed; package types really have to be equivalent Fω types
in order to be compatible. In that case, the order matters. So the
definition of g above would not type check.

To compensate, our elaboration must ensure that two package
types pack S1 and pack S2 translate to equivalent Fω types when-
ever S1 and S2 are mutual subtypes. Toward this end, we employ
the normalization function defined in Figure 18. All this function
does is put the quantifiers of a semantic signature into a canonical
order. For example, for a signature ∃α.Σ, normalization will sort
the variables α according to their (first) appearance as a root in a
left-to-right depth-first traversal of Σ. As in Section 5.2, we assume
a total ordering on the set of labels to make this well-defined. Note
that we only need to normalize the representations of signatures ap-
pearing as annotations, so normalization is defined only for explicit
signatures (Section 5.2), where every variable is rooted.

In the base case of atomic value signatures [τ], we assume that a
similar normalization function normcore(τ) exists for normalizing
core-level types according to core-level subtyping Γ ` τ ≤ τ ′. (For
instance, for ML this core type normalization would canonicalize
the order of quantified type variables in polymorphic types.)

It is not difficult to show the following properties:

Lemma 10 (Signature Normalization)

1. If Ξ explicit, then norm(Ξ) explicit.
2. If Γ ` Ξ : Ω, then Γ ` norm(Ξ) : Ω.
3. If Ξ explicit, then Γ ` Ξ ≤ norm(Ξ) and Γ ` norm(Ξ) ≤ Ξ.

The main result then is a form of anti-symmetry for subtyping:

Theorem 11 (Antisymmetry of Subtyping up to Normalization)

Let Γ ` Ξ : Ω and Γ ` Ξ′ : Ω, and Ξ, Ξ′ explicit. If Γ ` Ξ ≤ Ξ′

and Γ ` Ξ′ ≤ Ξ, then norm(Ξ) ≡ norm(Ξ′).

By normalizing semantic signatures in all places where they are
used as package types, we hence establish the desired property

norm([τ]) = [normcore(τ)]
norm([= τ : κ]) = [= τ : κ]
norm([= Ξ]) = [= norm(Ξ)]

norm({l : Σ}) = {l : norm(Σ)}
norm(∀α.Σ→ Ξ) = ∀α′.norm(Σ)→ norm(Ξ)

where α′ = dfv(α,norm(Σ))
norm(∃α.Σ) = ∃α′.norm(Σ)

where α′ = dfv(α,norm(Σ))

dfv(α, [τ]) = ε
dfv(α, [= τ : κ]) = α if τ ≡ α for some α ∈ α
dfv(α, [= τ : κ]) = ε otherwise
dfv(α, [= Ξ]) = ε
dfv(α, {}) = ε
dfv(α, {l1 : Σ1, l2 : Σ2}) = α1,dfv(α− α1, {l2 : Σ2})

where α1 = dfv(α,Σ1), l1l2 sorted
dfv(α,∀α′.Σ→ Ξ) = ε

Figure 18. Signature normalization

that type equivalence coincides with signature equivalence. By
applying the coercion f in the rule for pack, we also ensure that
the representation of the module itself is normalized accordingly.

7. Mechanization in Coq
Although our elaboration semantics is small, it is still large and
informal enough to contain errors, so we embarked on mechaniz-
ing it in Coq [4] using the locally nameless approach (LN) of Ay-
demir et al. [1]. (There is no reason we could not have used other
proof assistants such as Twelf or Isabelle; we were just interested
in learning Coq and testing the effectiveness of the locally name-
less approach.) We have mechanized the elaboration semantics of
Section 4 and Section 6 (but omitting normalization) and proved the
soundness result of Theorem 1. This effort required roughly 13,000
lines of Coq code. As inexpert users of Coq, we made little use of
automation, so probably the proofs could easily be shortened.

As with any mechanization, there are some minor differences
compared with the informal system. Our mechanized Fω is simpler
than the one we use here in that it supports just binary products,
not records. Instead, we encode ordered records as derived forms
using pairs, with derived typing rules, and target those during
elaboration. Ordered records are easier to mechanize, yet adequate
for elaboration.

The Fω mechanization does not allow rebindings of term vari-
ables in the context as our informal presentation does. Indeed, using
the LN approach, subderivations arising from binding constructs
have to hold for all locally fresh names. In the mechanization, we
had to abandon the use of the injection from source identifiers to
Fω variables, and instead use a translation environment that twins
source identifiers (which may be shadowed) with locally fresh Fω
variables (which may not). In this way, source identifiers are used
to determine record labels, while their twinned variables are used to
translate free occurrences of identifiers. Lee et al. [24] use a similar
trick in their Twelf mechanization of Standard ML.

Our use of a non-injective record encoding means that different
semantic signatures may be encoded by the same type. To avoid
ambiguity, the mechanization therefore introduces a special syntac-
tic class of semantic signatures (corresponding to the grammar in
Figure 7), and separately defines the interpretation of semantic sig-
natures as System Fω types by an inductive definition (again much
like the syntactic sugar definitions in Figure 7). Consequently, the
mechanized soundness theorems state that if C ` M : Ξ e,
then C◦ ` e : Ξ◦, where ◦ denotes the interpretation of elabora-
tion environments and semantic signatures into plain Fω contexts
and types. In retrospect, it would perhaps have been simpler to just

10

beef up our target language with primitive records (as we have done
on paper here). In any case, this issue is orthogonal to the rest of
the mechanization effort.

Our experience of applying the LN approach as advertised was
more painful than we had anticipated. Compared to the sample LN
developments, ours was different in making use of various forms of
derived n-ary (as well as basic unary binders) and in dealing with a
larger number of syntactic categories. Out of a total of around 550
lemmas, approximately 400 were tedious “infrastructure” lemmas;
only the remainder had direct relevance to the metatheory of Fω or
elaboration. The number of required infrastructure lemmas appears
to be quadratic in the number of variable classes (type and value
variables for us), the number of “substitution” operations needed
per class (we got away with only using LN’s subst and open,
and avoiding close) and the arity (unary and n-ary) of binding
constructs. So we cannot, hand-on-heart, recommend the vanilla
LN style for anything but small, kernel language developments.
Recent proposals to streamline the LN approach [2] may help.

8. Related Work and Discussion
The literature on ML module semantics is voluminous and varied.
We will therefore focus on the most closely related work.

Existential Types for ADTs Mitchell and Plotkin [32] were the
first to connect the informal notion of “abstract type” to the exis-
tential types of System F. In F, values of existential type are first-
class, in the sense that the construction of an ADT may depend
on run-time information. We exploit this observation in our sup-
port for modules as first-class values (Section 6), which are simply
existential packages.

Dependent Type Systems for Modules In a very influential po-
sition paper, MacQueen [29] criticized existential types as a basis
for modular programming, arguing that the closed-scope elimina-
tion construct for existentials (unpack) is too weak and awkward
to be usable in practice. MacQueen instead promoted the use of de-
pendent function types and “strong sums” (i.e., dependently-typed
record/tuple types) as a basis for modular programming. Since then,
there has been a long line of work on understanding and evolving
the ML module system in terms of increasingly more refined de-
pendent type theories [17, 18, 16, 26, 25, 41, 9].

On the design side, the work on dependent type systems led
to significant improvements in the expressiveness of ML modules,
most notably the idea of translucency—i.e., the ability to include
both abstract and transparent type declarations in signatures—
which was independently proposed by Harper and Lillibridge [16]
and Leroy [26]. On the semantics side, however, the use of depen-
dent type formalisms unleashed quite a can of worms. Several ideas
and issues pop up again and again in the literature, and for the most
part the “F-ing modules” approach either renders these issues moot
or offers straightforward ways of handling them.

One recurrent notion is phase separation, which is essentially
the observation that the “dependent” types in these module systems
are not really dependent. The signature of a module may depend
on the type components of another module, but not on its value
components. Thus, as Harper, Mitchell, and Moggi [18] showed
(for an early ML-style module system without translucency or
sealing), one can “phase-split” a (higher-order) module into an
Fω type (representing its type components) and an Fω expression
(representing its value components). Our approach of interpreting
ML modules into Fω is of course completely compatible with the
idea of phase separation, since we don’t pretend our type system is
dependent in the first place.

Another recurrent notion is projectibility—that is, from which
module expressions can one project out the type and value compo-
nents? As Dreyer, Crary, and Harper [9] observed, the differences

between several different dialects of the ML module system can
be characterized by how they define projectibility. Most dependent
module type systems define projectibility by only allowing pro-
jections from modules from a certain restricted syntactic class of
paths. We also employ paths, but define them semantically to be
any module expressions whose signatures do not mention any “lo-
cal” (i.e., existentially-quantified) abstract types. We consider this
criterion to be simpler to understand and less ad hoc.

A common stumbling block in dependent module type systems
is the so-called avoidance problem. Originally observed in the set-
ting of (a bounded existential extension of) System F≤ by Ghelli
and Pierce [13], the avoidance problem is roughly that a module
might not have a principal signature (i.e., minimal in the subtyp-
ing hierarchy) that “avoids” (i.e., does not depend on) some local
abstract type. As principal signatures are important for practical
typechecking, dependent module type systems typically either lack
complete typechecking algorithms (e.g., [28, 27]) or else require
(at least in some cases) extra signature annotations when leaving
the scope of an abstract type (e.g., [41, 9]). In contrast, under our
approach the avoidance problem does not arise at all: the seman-
tic signature ∃α.Σ of a module M keeps track of all the abstract
types α defined by M , even those which have “gone out of scope”
in the sense that they are not “rooted” anywhere in Σ (to use the
terminology of Section 5). Thus, the only point at which we need
to “avoid” anything is when we typecheck a path and need to make
sure that its signature does not depend on any local abstract types.
Of course, at that point the avoidance check is not a “problem” but
rather the crucial defining element of well-formedness for paths.

Elaboration Semantics for Modules Our avoidance of the avoid-
ance problem is due primarily to our use of an elaboration seman-
tics, which gives us the flexibility to classify a module using a se-
mantic signature Ξ that is not the translation of any syntactic sig-
nature S. Harper and Stone [20] exploit elaboration in a similar
fashion and to similar ends. One downside of this approach, some
would argue [41], is that one loses “fully syntactic” signatures, but
it is not clear that in practice this is such a big deal.

Perhaps a more serious concern is: how does the elaboration se-
mantics we have given here correspond to existing specifications
of ML modules, such as the Definition of SML or Harper-Stone?
In what sense are we formalizing the semantics of “ML modules”?
The short answer is that it is very difficult to prove a precise corre-
spondence between different accounts of the ML module system. In
the few cases where such proofs have been attempted, the formal-
izations in question were either not representative of the full ML
module system (e.g., [26]) or were lacking some key component,
such as a dynamic semantics (e.g., [37]). Moreover, one of the main
advantages of our approach (we believe) is that it is simpler than
previous approaches. We are not so interested in “correctness”, i.e.,
whether our semantics precisely matches that of Standard ML, the
archaeological artifact; rather, we wish to suggest a way forward in
the understanding and evolution of ML-style module systems. That
said, we believe (based on experience) that our semantics for mod-
ules is essentially a conservative extension of SML’s, capturing the
generative fragment of Moscow ML [39].

Higher-Order Modules and Applicative Functors The main way
in which we diverge from SML is that we support higher-order
modules. Our semantics for higher-order modules is similar to that
of Leroy [26] and Harper-Lillibridge [16]. As in those systems, all
functors in our language behave generatively, thus causing the sig-
natures of some higher-order functors to be more abstract than is ar-
guably desirable. MacQueen and Tofte [30] proposed a more flex-
ible semantics for functors, but it relies conceptually on the idea
of re-elaborating a functor’s body at each application. Leroy [25],
Shao [41], and others have proposed applicative functors as a more

11

type-theoretic way of supporting “fully transparent” higher-order
modules. As Dreyer et al. [9] point out, however, applicative func-
tors are not a replacement for generative functors, both varieties
being useful in different circumstances. We will show how to sup-
port applicative functors, F-ing style, in a future, expanded version
of this paper.

Interpreting ML Modules into Fω We are certainly not the first
to explain ML modules by translation into Fω . Harper, Mitchell,
and Moggi [18] give a “phase-splitting” translation of an early ML
module calculus into Fω . Shao [41] gives a multi-stage translation
of his module calculus into Fω . Shan [40] presents a type-directed
translation of the Dreyer-Crary-Harper calculus [9] into Fω .

The difference between these previous translations and ours is
that the previous ones all start from a pre-existing dependently-
typed module language and show how to compile it down to Fω .
We instead use the type structure of Fω in order to give a static
semantics for ML modules directly. Thus, we feel our approach is
simpler and more accessible to someone who already understands
Fω and does not want to learn a new dependent type system just in
order to understand the semantics of ML modules.

As explained in the introduction, our approach can be viewed
as giving an evidence translation, and thus a soundness proof,
for (a variant of) the static semantics of SML modules given in
Russo’s thesis [37, 36]. Russo started with the Definition of Stan-
dard ML [31], and observed that its ad hoc “semantic object” lan-
guage could be understood quite clearly in terms of universal and
existential types. A key observation, also made by Elsman [12], was
that the state of generated type variables, threaded monadically as it
was through the static semantics of SML, could be presented more
declaratively as the systematic introduction and elimination of ex-
istential types. Given the non-dependent, Fω-like structure of the
semantic objects, it was also relatively straightforward to extend
them to higher-order and first-class modules [37, 38].

Our approach also scales to handle more ambitious module-
language extensions, at least if one is willing to beef up the target
language somewhat. Inspired by Russo’s work, Dreyer proposed
an extension of Fω called RTG [7], which he and coauthors later
used as the target of an elaboration semantics for recursive mod-
ules [5], mixin modules [11], and modules in the presence of type
inference [8]. These elaboration semantics are similar to ours in
that they use the type structure of the (beefed-up) Fω language in
order to directly encode semantic signatures for ML-style modules.
However, our semantics is significantly simpler, since we are only
trying to formalize an SML-like module system and we are only
using vanilla Fω as the target language.

Mechanization of Module Semantics Lee et al. [24] mechanized
the metatheory of full Standard ML, based on a variant of Harper-
Stone elaboration given by Dreyer in his thesis [6]. It is difficult to
compare the mechanizations, since theirs uses Twelf. However, it
is worth noting that a significant piece of their mechanization is de-
voted to proving metatheoretic properties of their target language,
which employs singleton kinds [43]. In contrast, since our inter-
nal language is so simple and well-studied, we largely took it for
granted (though we have proved the Fω properties that we use).

Direct Modular Programming in Fω Lastly, several authors have
advocated doing modular programming directly in a rich Fω-like
core language like Haskell’s [22, 42, 40], using universal types for
client-side data abstraction and existential types for implementor-
side data abstraction. Several other authors [29, 19] have argued
why this approach is not practical. The common theme of the ar-
guments is that Fω is too low-level a language to program mod-
ules in directly, and that ML modules provide a much higher-
level idiom for modular programming. More recently, Montagu
and Rémy [33] have proposed directly programming in a variant

of Dreyer’s RTG [7] (see above), because RTG addresses to some
extent the limitations of closed-scope existential elimination. How-
ever, RTG is still quite low-level compared to ML modules.

In some sense, the point of this paper is to observe that the high-
level elegance of ML modules and the simplicity of Fω typing are
not mutually exclusive. One can understand ML modules precisely
as a stylized idiom—a design pattern, if you will—for constructing
Fω programs. The key benefit of programming this idiom using the
ML module system, instead of directly in Fω , is that elaboration of-
fers a significant degree of automation (e.g., by inferring signature
coercions and implicitly unpacking/repacking existentials), which
in practice is extremely useful.

9. Conclusion
Our contribution is a dead simple, type-theoretic semantics for a
representative ML module system. The language defined here is
essentially a generalization of Standard ML modules with higher-
order functors and first-class packages. We have shown not only
how to typecheck this language, but also how to compile it, by
translation into a vanilla, off-the-shelf target language Fω . Essen-
tially, the translation does little more than inserting introduction
and elimination forms for existential and universal quantifiers in
the appropriate places. The semantics is so elementary, it could be
mechanized by novice users of Coq using textbook meta-theory. In
an expanded version of this paper, we will report on how to extend
our elaboration semantics, without changing the target language of
Fω , in order to account for OCaml-style applicative functors.

References
[1] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich.

Engineering formal metatheory. In POPL ’08.

[2] B. Aydemir, S. Weirich, and S. Zdancewic. Abstracting syntax. Tech-
nical Report MS-CIS-09-06, U. Penn, 2009.

[3] S. K. Biswas. Higher-order functors with transparent signatures. In
POPL ’95.

[4] Coq Development Team. The Coq proof assistant reference manual,
v. 8.1. INRIA, 2007. http://coq.inria.fr/.

[5] D. Dreyer. A type system for recursive modules. In ICFP ’07.

[6] D. Dreyer. Understanding and Evolving the ML Module System. PhD
thesis, CMU, 2005.

[7] D. Dreyer. Recursive type generativity. JFP, 17(4&5):433–471, 2007.

[8] D. Dreyer and M. Blume. Principal type schemes for modular pro-
grams. In ESOP ’07.

[9] D. Dreyer, K. Crary, and R. Harper. A type system for higher-order
modules. In POPL ’03.

[10] D. Dreyer, K. Crary, and R. Harper. Moscow ML’s higher-order
modules are unsound, 17 September 2002. (Types Forum).

[11] D. Dreyer and A. Rossberg. Mixin’ up the ML module system. In
ICFP ’08.

[12] M. Elsman. Program Modules, Separate Compilation, and Intermod-
ule Optimisation. PhD thesis, U. of Copenhagen, 1999.

[13] G. Ghelli and B. Pierce. Bounded existentials and minimal typing.
TCS, 193(1-2):75–96, 1998.

[14] W. D. Goldfarb. The undecidability of the second-order unification
problem. Theoretical Computer Science, 13:225–230, 1981.

[15] R. Harper. Programming in Standard ML. Working draft available at:
http://www.cs.cmu.edu/~rwh/smlbook/.

[16] R. Harper and M. Lillibridge. A type-theoretic approach to higher-
order modules with sharing. In POPL ’94.

[17] R. Harper and J. C. Mitchell. On the type structure of Standard ML.
In TOPLAS, volume 15(2), pages 211–252, 1993.

12

[18] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and
the phase distinction. In POPL ’90.

[19] R. Harper and B. Pierce. Design considerations for ML-style module
systems. In B. C. Pierce, editor, Advanced Topics in Types and
Programming Languages, chapter 8. MIT Press, 2005.

[20] R. Harper and C. Stone. A type-theoretic interpretation of Standard
ML. In Proof, Language, and Interaction: Essays in Honor of Robin
Milner. MIT Press, 2000.

[21] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. TOPLAS, 23(3), 2001.

[22] M. P. Jones. Using parameterized signatures to express modular
structure. In POPL ’96.

[23] J. Launchbury and S. L. Peyton Jones. State in Haskell. Lisp and
Symbolic Computation, 8(4):293–341, Dec. 1995.

[24] D. K. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory
of Standard ML. In POPL ’07.

[25] X. Leroy. Applicative functors and fully transparent higher-order
modules. In POPL ’95.

[26] X. Leroy. A syntactic theory of type generativity and sharing. JFP,
6(5):1–32, September 1996.

[27] X. Leroy. A modular module system. JFP, 10(3):269–303, 2000.

[28] M. Lillibridge. Translucent Sums: A Foundation for Higher-Order
Module Systems. PhD thesis, CMU, 1997.

[29] D. MacQueen. Using dependent types to express modular structure.
In POPL ’86.

[30] D. MacQueen and M. Tofte. A semantics for higher-order functors. In
ESOP ’94.

[31] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[32] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type.
TOPLAS, 10(3):470–502, July 1988.

[33] B. Montagu and D. Rémy. Modeling abstract types in modules with
open existential types. In POPL ’09.

[34] L. C. Paulson. ML for the Working Programmer, 2nd Edition. Cam-
bridge University Press, 1996.

[35] S. Peyton Jones. Wearing the hair shirt: a retrospective on Haskell.
Invited talk, POPL ’03.

[36] C. V. Russo. Non-dependent types for Standard ML modules. In
PPDP ’99.

[37] C. V. Russo. Types For Modules. PhD thesis, LFCS, University of
Edinburgh, 1998.

[38] C. V. Russo. First-class structures for Standard ML. Nordic Journal
of Computing, 7(4):348–374, November 2000.

[39] C. V. Russo. Types for Modules. ENTCS, 60, 2003. Chapter 10.

[40] C. Shan. Higher-order modules in System Fω and Haskell, 2004.
http://www.cs.rutgers.edu/~ccshan/xlate/xlate.pdf.

[41] Z. Shao. Transparent modules with fully syntactic signatures. In
ICFP ’99.

[42] M. Shields and S. Peyton Jones. First-class modules for Haskell. In
FOOL 9, 2002.

[43] C. A. Stone and R. Harper. Extensional equivalence and singleton
types. TOCL, 7(4):676–722, 2006.

[44] M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Don-
nelly. System F with type equality coercions. In TLDI ’07.

[45] M. Torgersen, E. Ernst, and C. P. Hanser. Wild FJ. In FOOL 12, 2005.

Proof Script
The interested reader can find our Coq [4] proof script at:

http://www.mpi-sws.org/~rossberg/f-ing/

A. Semantics of System Fω

A.1 Static Semantics
Environments Γ ` 2

· ` 2

Γ ` 2 α /∈ dom(Γ)

Γ, α:κ ` 2

Γ ` τ : Ω

Γ, x:τ ` 2

Types Γ ` τ : κ

Γ ` τ1 : Ω Γ ` τ2 : Ω

Γ ` τ1 → τ2 : Ω

Γ ` τ : Ω

Γ ` {l:τ} : Ω

Γ ` 2

Γ ` α : Γ(α)

Γ, α:κ ` τ : Ω

Γ ` ∀α:κ.τ : Ω

Γ, α:κ ` τ : Ω

Γ ` ∃α:κ.τ : Ω

Γ, α:κ ` τ : κ′

Γ ` λα:κ.τ : κ→ κ′
Γ ` τ1 : κ′ → κ Γ ` τ2 : κ′

Γ ` τ1 τ2 : κ

Terms Γ ` e : τ

Γ ` 2

Γ ` x : Γ(x)

Γ ` e : τ ′ τ ′ ≡ τ Γ ` τ : Ω

Γ ` e : τ

Γ, x:τ ` e : τ ′

Γ ` λx:τ.e : τ → τ ′
Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ ` e : τ

Γ ` {l=e} : {l:τ}
Γ ` e : {l:τ, l′:τ ′}

Γ ` e.l : τ

Γ, α:κ ` e : τ

Γ ` λα:κ.e : ∀α:κ.τ

Γ ` e : ∀α:κ.τ ′ Γ ` τ : κ

Γ ` e τ : τ ′[τ/α]

Γ ` τ : κ Γ ` e : τ ′[τ/α] Γ ` ∃α:κ.τ ′ : Ω

Γ ` pack 〈τ, e〉∃α:κ.τ ′ : ∃α:κ.τ ′

Γ ` e1 : ∃α:κ.τ ′ Γ, α:κ, x:τ ′ ` e2 : τ Γ ` τ : Ω

Γ ` unpack 〈α, x〉=e1 in e2 : τ

Type Equivalence τ ≡ τ ′

τ ≡ τ
τ ′ ≡ τ
τ ≡ τ ′

τ ≡ τ ′ τ ′ ≡ τ ′′

τ ≡ τ ′′

τ1 ≡ τ ′1 τ2 ≡ τ ′2
τ1 → τ2 ≡ τ ′1 → τ ′2

τ ≡ τ ′

{l:τ} ≡ {l:τ ′}
τ ≡ τ ′

∀α:κ.τ ≡ ∀α:κ.τ ′
τ ≡ τ ′

∃α:κ.τ ≡ ∃α:κ.τ ′

τ ≡ τ ′

λα:κ.τ ≡ λα:κ.τ ′
τ1 ≡ τ ′1 τ2 ≡ τ ′2

τ1 τ2 ≡ τ ′1 τ ′2

(λα:κ.τ1) τ2 ≡ τ1[τ2/α]

α /∈ fv(τ)

(λα:κ.τ α) ≡ τ

A.2 Dynamic Semantics

Reduction e ↪→ e′

(λx:τ.e) v ↪→ e[v/x]
{l1=v1, l=v, l2=v2}.l ↪→ v

(λα:κ.e) τ ↪→ e[τ/α]
unpack 〈α, x〉 = pack 〈τ, v〉τ ′ in e ↪→ e[τ/α][v/x]

e ↪→ e′

C[e] ↪→ C[e′]

where:

C ::= [] | C e | v C | {l1=v, l=C, l2=e} | C.l |
C τ | pack 〈τ, C〉τ | unpack 〈α, x〉=C in e

13

