
What is a Recursive Module?*

Karl Gary
Carnegie Mellon University

Robert Harper
Carnegie Mellon University

Sidd Puri
Microsoft Corporation

Abstract also support parameterized, or generic, modules to bet-
ter support code reuse.

A hierarchical module system is an effective tool for
structuring large programs. Strictly hierarchical mod-

There is no question that hierarchical design is an
important tool for structuring large systems. It has of-

ule systems impose an acyclic ordering on import depen- ten been noted, however, that strict adherence to a hi-
dencies among program units. This can impede modu- erarchical architecture can preclude the decomposition
lar programming by forcing mutually-dependent compo- of a system into “mind-sized” components. In some
nents to be consolidated into a single module. Recently situations the natural decomposition of a system into
there have been several proposals for module systems modules introduces cyclic dependencies, which cannot
that admit cyclic dependencies, but it is not clear how be expressed in a purely hierarchical formalism. The
these proposals relate to one another, nor how one might only solution is to consolidate mutually-dependent frag-
integrate them into an expressive module system such ments into a single module, which partially undermines
as that of ML. the very idea of modular organization.

To address this question we provide a type-theoretic
analysis of the notion of a recursive module in the con-
text of a “phase-distinction” formalism for higher-order
module systems. We extend this calculus with a recur-
sive module mechanism and a new form of signature,
called a recursively dependent signature, to support the
definition of recursive modules. These extensions are
justified by an interpretation in terms of more primitive
language constructs. This interpretation may also serve
as a guide for implementation.

In response several authors have proposed linguis-
tic mechanisms to support non-hierarchical modular
decomposition. Recent examples include: Sirer, et
al.‘s extension of Modula-3 with a “cross-linking”
mechanism [21]; Flatt and Felleisen’s extension of
their MzScheme language with cyclically-dependent
“units” [8]; Duggan and Sourelis’s “mixin modules” that
extend the Standard ML module system with a special
“mixlink” construct for integrating mutually-dependent
structures [6, 71; and Ancona and Zucca’s algebraic for-
malism for mixin modules [2]. Each of these proposals
seeks to address the problem of cyclic dependencies in a
module system, but each does so in a slightly. different
way. For example, Flatt and Felleisen’s formalism does
not address the critical issue of controlling propagation
of type information across module boundaries. Duggan
and Sourelis’s framework relies on a syntactic transfor-
mation that, in effect, coalesces the code of mutually-
dependent modules into a single module. It is not clear
what are the fundamental ideas, nor is it clear how to
integrate the various aspects of these proposals into a
full-featured module system.

1 Introduction

Hierarchical decomposition is a fundamental design
principle for controlling the complexity of large pro-
grams. According to this principle a software sys-
tem is to be decomposed into a collection of modules
whose dependency relationships form a directed, acyclic
graph. Most modern programming languages include
module systems that support hierarchical decomposi-
tion. Many, such as Standard ML [16] and O’Caml[14],

‘This research was sponsored by the Advanced Research
Projects Agency CSTO under the title “The Fox Project: Ad-
vanced Languages for Systems Software”, ARPA Order No.
C533, issued by ESC/ENS under Contract No. F19628-95-C-
0050. The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent-
ing official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom uss is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation On the first Page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN ‘99 (PLDI) 5/99 Atlanta, GA., USA
0 1999 ACM l-581 13-033.3/99/001 l-85.00

It is natural to ask: what is a recursive module? We
propose to address this question in the framework of
type theory, which has proved to be a powerful tool for
both the design and implementation of module systems.
We conduct our analysis in the context of the “phase
distinction” module formalism introduced by Harper,
Mitchell, and Moggi [ll] (hereafter, HMM), augmented
to support recursive types and functions, and to support
type definitions in signatures [9, 131. The phase distinc-
tion calculus provides a rigorous account of higher-order
modules (supporting hierarchy and parameterization) in
a framework that makes explicit the critical distinction
between the static, or compile-time, part of a module

50

and the dynamic, or run-time, part. This calculus has
proved to be of fundamental importance to the imple-
mentation of higher-order modules, as evidenced by its
use in Shao’s FLINT formalism used in the SML/NJ
compiler [18, 201 and in the TIL/ML compiler [23].

Our analysis proceeds in two stages. First we con-
sider a straightforward extension of the phase distinc-
tion calculus with a notion of recursive (self-referential)
module. An interpretation of this new construct is pro-
vided by an interpretation of it into the primitive mod-
ule formalism of the phase distinction calculus. This
interpretation renders the compile-time part as a recur-
sive type and the run-time part as a recursive function,
as might be expected. In essence a recursive module is
just a convenient way of introducing recursive types and
functions.

Unfortunately this simple-minded extension does
not go far enough to be of much practical use. As Dug-
gan and Sourelis have observed [7], it is of critical impor-
tance for most practical examples that the type equa-
tions that hold of a recursive module be propagated into
the definition of the recursive module itself. In essence
the definitions of the type components of a recursive
module must be taken to be the types that they will
eventually turn out to be once the recursive declara-
tion has been processed. Accounting for this “forward
reference” is the core contribution of our work. We in-
troduce a new form of signature (interface) for recursive
modules, called a recursively dependent signature, that
allows us to capture the required type identities during
type checking of a recursive module binding. This sig-
nificantly increases the expressive power of the recursive
module formalism, and is, we assert, of fundamental im-
portance to the very idea of recursive modules.

In this paper we aim to focus on the core issues lying
at the center of a recursive module system, so we study
recursive modules in the framework of a small internal
language that is sufficient to bring out the main issues
and that could be used by a type-directed compiler to
implement recursive modules. Therefore, we make no
specific proposals as to what form an external language
supporting recursive modules should take, although we
do present most of our examples in a hypothetical ex-
ternal language. Indeed, some important questions re-
garding the design of an external language remain open,
such as the practicality of typechecking. In Section 5 we
make some observations and preliminary proposals re-
garding the design of an external language.

2 Type-Theoretic Framework

We begin by presenting the framework in which we con-
duct our analysis. We will conduct our examples us-
ing an informal external language closely modeled af-
ter the syntax of Standard ML. The external language
is then elaborated into the type-theoretic internal lan-
guage that we describe below. We will treat the elab-
oration process informally, illustrating it by examples.
Details of how elaboration may be formalized in a gen-
eral setting appear in Harper and Stone [12].

Our internal language is an extension of the phase
distinction calculus of Harper, Mitchell, and Moggi [ll].
The language consists of two main components: a core
calculus, a predicative variant of Girard’s F,, and a

structure calculus, extending the core language with
a primitive module construct without explicit mecha-
nisms for hierarchy (e.g., substructures) or parameter-
ization (e.g., functors). Primitive modules consist of a
static, or compile-time, part containing the type con-
structors of the module, together with a dynamic, or
run-time, part containing the executable code of the
module. This separation is known as the phase distinc-
tion. An important property of the formalism is that
the phase distinction is maintained, even in the pres-
ence of higher-order (and, as we shall see, recursive)
module constructs.

The main result of HMM is that higher-order mod-
ule constructs are a definitional extension of the prim-
itive structure calculus. In other words higher-order
constructs are already present in the primitive struc-
ture calculus in the sense that they may be defined in
terms of existing constructs. (This interpretation may
be thought of as a compilation strategy for higher-order
modules, and indeed this fact has been exploited in the
FLINT [20] and TIL [23] compilers.) This means that
we need not explicitly discuss higher-order module con-
structs in this paper, but rather appeal to HMM for a
detailed discussion of their implicit presence.

To support the extension with recursive modules we
enrich the core phase distinction calculus with these ad-
ditional constructs:

Singleton and dependent kinds to allow expression
of type sharing information in signatures. Related
formalisms for expressing type sharing informa-
tion are given by Harper and Lillibridge [9] and
Leroy [13].

A fixed point operation for building collections
of mutually-recursive type constructors. These
recursive constructors are definitionally equal to
their unrollings. We term such constructors equi-
recursive, to distinguish them from the more con-
ventional iso-recursive constructors, for which con-
versions between the constructors and their un-
rollings must be mediated by the explicit use of
an isomorphism. We discuss the interplay of equi-
and iso-recursive constructors in Section 5.3.

A fixed point operation for building collections of
mutually-recursive functions. As will become ap-
parent later on, we cannot (as in SML) limit this
operation to collections of explicit lambda abstrac-
tions. Instead we formalize a notion of valuabil-
ity (indicating terminating expressions) and a cor-
responding notion of total function, essentially as
in Harper and Stone [12], but with the additional
idea that recursively defined variables are not con-
sidered valuable within the body of their defini-
tions, but are considered valuable in their subse-
quent scope.

In subsequent sections of this paper, we will further aug-
ment our structure calculus with various constructs for
recursive modules, and then show how those constructs
can be reduced to the elementary constructs discussed
in this section.

51

kinds K ..- ..-
constructors c ::=

types u ..- ..-

terms e ..- ..-

contexts r ..- ..-

T 1 1 1 s(c) 1 lk/cl.n;2 1 CCY:Q.K~
a 1 * 1 kmc.c 1 ClC2 I (Cl, c2) I

Ti(C) 1 1 I Cl A C2 1 Cl X C2 1 /J(YX.C

c 1 61 + 62 1 u1 A a2 / Ul x 62 I

vcr:n.u

x I * I Xx:u.e I ele2 I (el, e2) I

Xi(e) 1 hcr:n.e 1 e[c] 1 fix(x:u.e)
e 1 qcr : n] 1 r[x : u] 1
rb t 4 i r[x t 4

Figure 1: The Core Calculus

s(c : T) gf S(c)

qc : IIcml .tc2) Sf l-Iwcl.5(Ccr : fez)

(for Q not free in c)

S(c : Kl x K2) F 5(*1(c) : /cl) x 5(7rz(c) : 62)
S(c : 1) Zf 1

n

Figure 2: Higher-Order Singletons

2.1 The Core Calculus

The core phase distinction calculus contains four syn-
tactic classes: kinds, type constructors (or just “con-
structors”), types, and terms. As usual, types classify
terms and kinds classify constructors. The constructors
provide a lambda calculus for constructing types. The
syntax of the core calculus appears in Figure 1. We
shall consider expressioti that differ only in the names
of bound variables to be identical, and write capture-
avoiding substitution of E for X in E’ as E’[E/X].

The kinds include the kind T of all monotypes; the
trivial kind 1, containing only the constructor *; de-
pendent products lk~l .K, containing constructor func-
tions from ~1 to ~2 where (Y stands for the argument and
may appear free in ~2; and dependent sums CCK:K~.Q,
containing constructor pairs built from ~1 and ~2 (re-
spectively) where cy stands for the left-hand member and
may appear free in ~2. As usual, if cr does not appear
free in ~2, we write ~1 + ~2 for &:~1.~2 and ~1 x ~2
for Ca:~l .KZ.

Finally, for any constructor c having kind T, the sin-
gleton kind 5(c) contains monotypes definitionally equal
to c. Thus, if c has kind S(c’), the calculus permits
the deduction of the equation c = c’ : T. Singleton
kinds provide a mechanism for expressing type sharing
information [9, 131. ‘Although singleton kinds exist only
for monotypes, they may be used in conjunction with
dependent kinds to express higher-order sharing infor-
mation. For instance, if c has kind lkT.S(list(cr)), it
follows that c = list : T + T. The definition in Figure
2 generalizes this idea.’

‘Note that higher-order singletons are not defined for kinds
containing strictly positive singleton or dependent sum kinds;
this would eliminate the useful property that n is a kind when-
ever 5(c : K) is. This does not reduce the expressive power of the
construct; any constructor whose kind contains strictly positive
singletons or dependent sums can be given a kind (exactly as
coarse) without them.

The type constructors are largely standard. The
trivial type 1 contains the trivial term *. The types
cl + c2 and cl J c2 are the types of total and partial
functions from cl to c2 and are discussed in more detail
below. The equi-recursive constructor /.~~:r;.c[a] is is a
fixed point of the equation (Y = c[cy]. Thus /.KZ:K.C[CU] is
equal to its unrolling c[~cKK.c[~]]. This is in contrast to
the somewhat more conventional iso-recursive formula-
tion, where conversions between the two must be me-
diated by explicit operations. In Section 5.3 we discuss
how to simplify the type theory to use only iso-recursive
constructors.

The final construct, fix(x:u.e) at the term level, al-
lows the definition of recursive values. However, we wish
to prevent the definition of cyclic data structures such
as fix(z : int list. 1: :z), which cannot be defined in
ML. We do this by imposing a value restriction on
the bodies of recursive definitions. The calculus con-
tains judgements I’ I- e J- u asserting that e has type u
and terminates without computational effects. (In the
present setting, the only computational effect is nonter-
mination.) With this so-called value restriction in place,
the formation rule for recursive values is:

r[x t U] I- e 4 u r I- u type (x G Dam(r))
r I- fix(x:u.e) : u

This rule is read: fix(x:u.e) has type u if e terminates
with type u under the assumption that I has type u but
cannot be taken as valuable. This rules out the cyclic list
proposed above, since 1: : z is not valuable unless x is
valuable. The value restriction implies that all appear-
ances of x must be guarded by (i.e., within the body of)
a lambda abstraction; lambda abstractions are always
valuable, regardless of the valuability status of their free
variables. As in Harper and Stone [12], the collection of
valuable expressions is enlarged by including a type for
total (pure) functions, such as cons (: :). The applica-
tion of a valuable total function to a valuable argument
is considered valuable. Total functions are considered to
be types, but not type constructors, in order to prevent
their erroneous use in conjunction with recursive types.

A similar restriction is made on the formation of
equi-recursive type constructors. In order to show that
~CY:V;.C is well-formed, one must show that c is contrac-
tiue in (Y [l]. This is in contrast to iso-recursive types,
which require no such condition. InforpEblly, contrac-
tiveness means that the infinite tree specified by iterat-
ing the body c is actually infinite, or, even more infor-
mally, that iterating the body “goes somewhere.” Thus,
pa:T.int x (Y is legal, but ,LKY:T.CY is not. Contractive-
ness is formalized in the type theory by a judgement
[CY t K] t- c J- K, which is read: c is contractive in kind
n under the assumption that (Y has kind K but cannot
be taken as contractiue. The rules for contractiveness of
constructors are similar to those for valuability of terms;
they ensure that all occurrences of the recursive variable
are guarded by a type construction operation (such as
int x (Y in the above example).

2.2 The Structure Calculus

Atop the core calculus we erect a structure calculus,
exactly as in HMM. To review, we add two syntactic
classes, one for flat signatures and one for flat structures

52

constructors C ..- ..- . . . 1 Fsts
terms

signatures ;

..-

;I= 2 : 7 Zds
modules M ::= [c,e]
contexts r ..- ..- . * * 1 r[s : q 1 r[S t S]

Figure 3: The Structure Calculus

(Figure 3). Structures are pairs [c, e] of constructors and
terms. The left-hand component is referred to as the
compile-time (or, static) component, and the right-hand
component is referred to as the run-time (or, dynamic)
component. Signatures, which classify structures, have
the form [(Yx, 01, where LY stands for the compile-time
component and may appear free in 6. The structure,
[c, e] has kind [OI:IE, u] if c has kind IC and e has type
u[c/o]. Often we will write [o = c,e] as shorthand for
[c, e[c/o]]. We also add constructor and term constructs
Fst s and Snd s for extracting the first and second com-
ponents out of structures named by variables. We will
occasionally treat these constructs as variables and al-
low substitution for them.

The structure calculus shows an explicit phase dis-
tinction between compile-time and run-time expres-
sions [ll, 41. Static expressions may be separated from
dynamic ones, and static ones will never depend on dy-
namic ones. This ensures that programs may be type-
checked without the need to execute any run-time code.

HMM show that higher-order modules can be re-
duced to the simple structure calculus given here.
Therefore we will omit explicit discussion of higher-
order modules, without any loss of generality. In this
paper, we show how recursive modules may similarly
be reduced to the structure calculus given here. In so
doing, we will show that despite the apparent intertwin-
ing of static and dynamic expressions in recursive mod-
ules, that the phase distinction can be preserved, just
as HMM showed for higher-order modules.

3 Opaque Recursive Modules

We begin our examination by considering what we call
“opaque” recursive modules. These will prove to insuf-
ficiently expressive for most applications, but they will
serve to illustrate the main ideas and motivate the more
complex machinery in the next section.

In the (informal) external language, we write an
opaque recursive module definition as:

structure ret S :> SIG = struct . . . end

The structure variable S is, of course, permitted to ap-
pear free within the structure’s body. The signature SIG
then expresses all the information that is known about S
in the body or in the subsequent code. (We borrow the
“: >” symbol from Standard ML 1997 [16] to suggest this
opacity.) In particular, the opaque signature obscures
the-fact that the types in S are recursively defined.

This declaration construct corresponds to a module
fixed point operation in the internal language, written
fix(s:S.M). For reasons similar to those in the previ-
ous section, we must impose a value restriction on M,

r I- K kind
r[atK] t- ~4%

qCY :n]l- u type
r-La : K][Z t U] I- e .J u

r I- fix(s:[cwc.u].[c[Fsts/~], e[Fst s, Snds/cr, xl]) =
[a = /.4cm.c,fix(x:u.e)] : [LYXU]

(a, 2, s s! DON?)

Figure 4: Phase-Splitting Recursive Modules

resulting in the following typing rule:

r’s t ~~fi~sf~Mf:~ sig (S fZ Dam(P))

Thus, a recursive module is valid if its body (M) is
valuable without assuming the recursive variable (s) to
be valuable. If a module M is [c, e], then M will be
valuable exactly when e is valuable (i.e., constructors
are always valuable).

Following HMM, we wish to reduce recursive mod-
ules to the primitive structure formalism by defin-
ing fix(s:S.M) in terms of primitive constructs. We
will do this by phase-splitting recursive modules
into run-time and compile-time components. SW-
pose S is the signature [cr:~.u] and M is the struc-
ture [c(Fst s), e(Fst s, Snd s)]. Then we can interpret
fix(s:S.M) by wrapping the static and dynamic compo-
nents in fixed point expressions:

fix(s:S.M) = [a = ~cwc.c(cv),fix(x : u.e(cy,x))]

This definition is formalized in the type theory by the
equational rule in Figure 4. This rule parallels the non-
standard equational rules from HMM, and illustrates
that recursive modules are already present in the un-
derlying calculus. In particular, the formation rule for
recursive modules given above follows from the defini-
tion and need not appear as a primitive rule.

3.1 Trouble with Opacity

The opaque interpretation of recursive modules is pleas-
antly simple, but unfortunately, it is not sufficiently
expressive to support some desired programming id-
ioms. One common application of recursive modules
is to break up mutually recursive data types. As a par-
ticularly simple (though somewhat contrived) example,
consider an implementation of integer lists as a recursive
module that defers recursively to itself for an implemen-
tation of the tail:

signature LIST =
sig

type t
val nil : t
val null : t -> boo1
val cons : int * t -> t
val uncons : t -> int * t

end

structure ret List :> LIST =
struct

datatype t = NIL 1 CONS of int * Li8t.t

53

val nil = NIL

fun null NIL = true
I null (CONS -) = false

fun cons (n : int, 1 : t) =
case 1 of

NIL => CONS (n, List.nil)
I CONS (n’ : int, 1’ : List.t) =>

CONS (n, List.cons (n’, 1’))

fun uncons NIL = raise Fail
I uncons (CONS (n : int, 1 : List.t)) =

if List.null 1 then
(n, NIL)

else

end
(n, CONS (List.uncons 1))

This implementation typechecks properly, and it is
observationally equivalent to a conventional implemen-
tation. However, intensionally it is very different, be-
cause each use of cons and uncons must traverse the
entire list, leading to poor behavior in practice. A more
direct implementation is impossible because the opacity
of List. t precludes any knowledge that List. t is the
same as t.

Some other examples cannot be written in the
opaque case at all (but see Section 4.3). For exam-
ple, consider an implementation of abstract syntax trees
using mutually dependent modules for expressions and
declarations. These modules interact with each other
through the let expression, which contains a declara-
tion, and the val declaration, which contains an expres-
sion. To optimize a common case, the expression code
includes a function for let val expressions that defers
to the declaration code to build a declaration:

signature EXPR =
sig

type exp
type dec
val make-let : dec * exp -> exp

val
(* let DEC in EXP end *)

make-let-val :
identifier * exp * exp -> exp
(* let val ID = EXP in EXP end *)

. . .
end

signature DECL =
sig

type dec
type exp
val make-val : identifier * exp -> dec

(* val ID = EXP *)
. .

end

structure ret Expr :> EXPR =
struct

datatype exp = LET of Decl.dec * exp 1
type dec = Decl.dec

. .

fun make-let (d : dec, e : exp) =
LET (d, e)

fun make-let-val (id : identifier,
el : exp, e2 : exp) =

let val d = Decl.make-val (id, el)
(* type error! el : exp # Decl.exp *)

in
LET (d, e2)

end

end
and Decl :> DECL =

struct
datatype dec =

VAL of identifier * Expr . exp 1 . . .
type exp = Expr.exp

end

Unfortunately, this code does not typecheck. The call
to make-val within makelet-val expects an argument
with type Decl.exp, which, because of the opacity of
Decl, is not known to be the same type as exp, the
type of its actual argument el. The type error occurs
because the type system cannot tell that exp is equal to
Decl . exp, even though an examination of the recursive
definition reveals that it is actually true.

4 Transparent Recursive Modules

The difficulties described in the previous section can be
traced to the inability to track sufficient type informa-
tion in the context of a recursive structure binding. In
the abstract syntax example the proposed binding fails
to typecheck because within the definition of Expr it is
not apparent that the type exp is equivalent to the type
Decl.exp, even though this equation will be valid once
the recursive binding is in force. Similarly, within the
definition of Decl it is not apparent that the type dec
is equivalent to the type Expr . dec, which will turn out
to be true once the binding is in force. Were this equa-
tion available while the definitions of Expr and Decl are
being typechecked, the entire declaration would be seen
to be valid, and these very equations would hold true
afterwards. Similarly, the inefficiency of the suggested
implementation of lists may be traced to the failure to
identify the types List. t and t inside the definition of
List.

What is needed is a means of propagating the type
equations that will turn out to be true of the recur-
sively defined structures into the scope of the recursive
definition itself. This makes it possible to exploit the
recursive definitions of the types involved during type-
checking of the dynamic part of the recursively defined
modules, leading to a much more flexible and useful no-
tion of recursive module. In effect we are exploiting the
phase distinction by solving the static recursion equa-
tions prior to checking the dynamic typing conditions
of the module.

How is this additional type sharing information to
be propagated? The obvious solution is to add the ap-

propriate equations to the signatures of the modules in-
volved. For example, in the list example we may prop-
agate the required information as follows:

structure ret List :>
sie

datatype t = NIL 1 CONS of int * m]

val cons : int * t -> t
val uncons : t -> int * t

end = . . .

The boxed phrase highlights the occurrence of the struc-
ture variable introduced by the recursive structure bind-
ing. Since the signatures of the recursively defined
structure variables depend on the structures themselves,
we call these signatures recursively dependent signa-
tures, or rds’s for short. In Section 4.2 we shall see
how recursively dependent signatures are formalized.

The purpose of a recursively dependent signature is
to express the sorts of recursive type equations that are
required to recover the ill-formed examples of the pre-
ceding section. Let us now revisit those examples to see
how rds’s are used to resolve the difficulties those ex-
amples raise. Using a recursively dependent signature
it is possible to give an implementation of lists with
constant-time primitive operations as follows:

structure ret List :>
sig

datatype t = NIL 1 CONS of int * List.t

val cons : int * t -> t
val uncons : t -> int * t

end =
struct

datatype t = NIL 1 CONS of int * List .t

fun cons (n : int, 1 : t) = CONS (n, 1)
fun uncons NIL = raise Fail

I uncons (CONS (n, 1)) = (n, 1)
end

The effect of the recursively dependent signature in this
example is to ensure that the implementation type of
the recursive datatype List. t coincides with the imple-
mentation type of the type t within the body of the
definition.

This example also raises a important point about re-
cursive datatypes in the context of a recursive structure
binding. We must impose a structural, or transparent,
interpretation of recursive datatypes within the scope
of a recursive structure binding, rather than the more
familiar nominal, or opaque, interpretation used in Stan-
dard ML. In type-theoretic terms the rds ascribed to
List is tantamount to a signature that transparently de-
fines the type t to be the underlying iso-recursive type
of the recursive datatype. We note, however, that this
interpretation can be limited to the recursive structure
binding itself, and need not propagated into the subse-
quent scope of the binding: the elaborator may “seal”
the structure with an opaque signature hiding the im-
plementation type of List. t after the binding has been
processed.

The abstract syntax example may be handled sim-
ilarly to the list example, as shown below. The recur-
sively dependent signatures ascribed to Expr and Decl
allow Decl .make-val’s second argument to be given the
type Expr.exp, and under the transparent interpreta-
tion of datatypes, exp = Expr. exp holds within the
scope of exp. Consequently, the call to Decl.make-val
is type correct.

structure ret Expr :>
sig

datatype exp =

vaZS:-~[I & -> exp
val make-let-val :

identifier * exp * exp -> exp

end =
struct

datatype exp = LET of Decl .dec * exp I . . .

fun make-let (d : Decl.dec, e : exp) =
LET (d, e)

fun make-let-val (id, el : exp, e2 : exp) =
let val d = Decl.VAL (id, el)

(* typechecks, since exp = Expr.exp *)
in

LET (d, e2)
end

end
end Decl :>

sig
iatatype dec =

VAL of identifier * -1 I . . .
val make-val :

identifier * (ExDr.exDI -> dec

end = struct . . . end

In each of these examples, the recursively dependent
signatures used were fully transparent, in the sense that
every type component was given by an explicit type def-
inition. This was necessary in order to make the given
examples typecheck. More generally, fully transparent
rds’s provide optimal propagation of type information,
thereby maximizing the set of programs that can be
typechecked. Moreover, we will see in Section 4.2 that
in order to phase-split recursively dependent signatures,
it is necessary to require full transparency of all rds’s,
and to require a contractiveness condition of them as
well In Section 5.1 we illustrate how the elaborator
can ensure that these conditions are satisfied.

4.1 Functorr and Separate Compilation

In the preceding abstract syntax example, the mutually
recursive modules Expr and Decl were compiled simul-
taneously in a single recursive definition. In practice,
however, it is important for it to be possible to compile
each mutually recursive module separately [7j. In the

55

absence of separate compilation, the structuring of code
as mutually recursive module definitions would often be
a largely cosmetic exercise.

One may separately compile mutually recursive
modules by rewriting them as closed functors and then
gluing those functors together by instantiating them in
a recursive structure binding. Each closed functor may
then be separately compiled. However, it is instructive
to examine the details, as a naive attempt to do so runs
afoul of the opacity problem once again. This problem
is demonstrated by the following functorized version of
the abstract syntax example:

structure ret Expr :> sig . . . end =
ExprFun (Expr, Decl)

and Decl :> sig . . . end =
DeclFun (Expr, Decl)

functor ExprFun (structure Expr : EXPR
structure Decl : DECL) =

. . . as above . . .

functor DeclFun (structure Expr : EXPR
structure Decl : DECL) =

. . . as above . . .

When defined in this manner, ExprFun does not type-
check because the arguments Expr and Decl are given
opaque signatures, causing exactly the same problem as
in Section 3.1. To make this work, we must use recur-
sively dependent signatures for the functor’s parame-
ters:

functor ExprFun
(structure ret Expr :

sig
datatype exp =

LET of Decl.Dec * exp I . . .

end
and Decl : sig . . . end) =

. . . as above . . .

This example now reveals an important limitation
on the degree of separate compilation that is possible.
This version of the functor typechecks and may be com-
piled independently, but in order to make it typecheck,
we have been forced to provide a recursively dependent
signature for both Expr and Decl, thereby specifying all
the type components of the other module Decl. Hence
we observe that the code may be independently com-
piled, but in some sense the types may not, since they
must be kept consistent among both mutually recursive
components.

This is not a frivolous restriction; it is a simple con-
sequence of supplying enough type information to al-
low each module to typecheck. However, the restric-
tion is stronger than necessary in one regard: we re-
quire that rds’s be fully transparent, but it is not al-
ways necessary to know the definitions of all the type
components of a mutually recursive module (though it
was in the abstract syntax example). Therefore we may
gain some additional expressiveness by relaxing the full
transparency requirement of rds’s. We discuss how to
do this in Section 5.1.

4.2 Formalization of Recursively Dependent Signa-
tures

The addition of recursively dependent signatures to the
phase distinction calculus is performed in two stages.
First, we extend the syntax of signatures with the recur-
sively dependent form, which we write pa.S, and extend
the signature formation and equivalence rules with rules
governing this new form. We also extend the module
formation rules to include introductory and eliminatory
rules for recursively dependent signatures. Second, we
show that this enrichment of the structure calculus may
be interpreted into the original structure calculus (over
the extended core language described in Section 2) by
exhibiting an equation between rds’s and ordinary sig-
natures.

Informally, the recursively dependent signature pa.S
contains those modules M that belong to S where s may
appear free in S and stands for M. In other words, M
belongs to pa.S when M belongs to S[M/a]. Formally,
rds’s adhere to the following introductory and elimina-
tory rules:

r k M : S[M/a] r I- p3.s sig l- I- M : pa.S

I? i- M : pa.S r‘ I- M : S[M/a]

As discussed previously, in the rds pa.S we require that
the static component of S be fully transparent, that
is, that it completely specify the identity of its static
component using singleton kinds. Thus, in order for an
rds pa.S to be well-formed, S must be fully transparent
and well-formed under the assumption that a has signa-
ture S’, where S’ is obtained from S by stripping out
the singleton kinds specifying the identity of the static
component. Formally, rds’s have the following forma-
tion rule:*

rt- s sig r+ t s] t- c -1 K
qS : q I [Ly:5(c : K),B] sig
r t- ps.[a5(c : K), u] ig (i!::;;:,;;I)

The third subgoal is the contractiveness condition al-
luded to previously. This may be seen as part of the full
transparency requirement, since if c is noncontractive in
s, then it is just retelling a, and provides no useful infor-
mation. Both the full transparency and contractiveness
conditions are necessary in order to interpret rds’s into
the basic structure calculus, as we will see in a moment.

As with the recursive modules of Section 3, we wish
to reduce recursively dependent signatures to primitive
constructs of the structure formalism. We do this by
wrapping the compile-time component of the rds in a
fixed point expression, and by redirecting recursive ref-
erences in the run-time component:

ps.[cu:b(c(Fs’sts) : K), b(ct, Fst a)]

[a5(aP:n.c(P)I : K), u(c+J)]

In the second highlighted fragment, recursive references
using Fsts are redirected to use cr. The interesting
part is the first highlighted fragment: Suppose [c’,e]

aRecall that we consider Fst 8 to be a variable and allow sub-
stitution for it.

56

r I- K: kind I’[p : K] i- S(C : K) kind l?p t K] !- c 4 rc I$: rc] I- u[a/Fsts] type
r t- ps.[~5(~[m s/p] : K), U] = [ccs(~~x.~ : K), +/i+t s]] 3ig h A 8 s;r Dam(r))

Figure 5: Phase-Splitting Recursively Dependent Signatures

is a prospective member of the rds on the left. Since
Fst [c’, e] (so to speak) is c’, the rds dictates that c’ have
kind S(c(c’) : IC), and consequently that c’ = c(c’) : IC.
Therefore, c’ may be taken to be @:~.c(/3), as provided
by the first highlighted fragment.

This definition makes clear the need for full trans-
parency and contractiveness of rds’s. When translated
into the structure calculus, an rds specifies its static
component to be @:K.c(~), as above. To extract the
necessary constructor c, the rds must be fully transpar-
ent. Furthermore, c(p) must be contractive in p, or else
the specified static component is ill-formed.

The definition is formalized in the type theory by the
equational rule in Figure 5. As in Section 3, this rule
illustrates that recursively dependent signatures are al-
ready present in the underlying calculus. In particular,
the introductory and eliminatory rules given above fol-
low from the definition and need not appear as primitive
rules.

4.3 Opacity Revisited

The phase-splitting rule for recursively dependent sig-
natures reveals an interesting fact: of the two forms
of recursive dependency, static-on-static (i.e., types on
types) and dynamic-on-static (i.e., terms on types),
only static-on-static dependencies are essentially recur-
sive (as shown in the first highlighted fragment above).
In contrast, dynamic-on-static dependencies were re-
solved without recursion (in the second fragment), sim-
ply by redirecting them from the recursive variable
(Fst s) to the variable standing for the signature’s static
component (o). Thus, dynamic-on-static dependencies
are not truly recursive at all. (In fact, such dependencies
would never arise when programming in a fully phase-
split style [ll].)

Is it possible to program with only dynamic-on-
static dependencies and thereby largely dispense with
recursively dependent signatures? To some degree,
yes. (This is the expressiveness provided by Flatt and
Felleisen’s “units” [S].) Recall the abstract syntax ex-
ample as corrected using a recursively dependent signa-
ture. That example used static-on-static dependencies
in the specifications of exp and dec, and used dynamic-
on-static dependencies in the specifications of makelet
and make-val. The dependency of dec on exp was used
in makelet-val when constructing a dec (named d)
from an identifier and an exp. However, the need to
know dec’s specification in terms of exp can be elimi-
nated by instead using the function make-val, which is
specified by a dynamic-on-static dependency. The cost
of this is that one must incur a function call whenever
going between exp and dec, and such function calls can-
not be safely inlined without using static-on-static de-
pendency information.

This is an instance of the well-known fact that one

can always program opaquely (i.e., without any type
sharing information) if one is willing to incur mediat-
ing function calls between types that are actually equal.
Tools for supplying type equality information, such as
sharing [15], translucent sums [9,13], and recursively de-
pendent signatures, serve only to improve performance.

5 External Language Issues

5.1 Elaboration of Recursively Dependent Signatures

As discussed previously, the internal language requires
that all recursively dependent signatures be fully trans-
parent and contractive in their static component. In
an external language, however, this requirement can be
burdensome to satisfy. Therefore, we would like to re-
move that requirement from the external language, and
instead have the compiler satisfy the requirement as it
elaborate external code into the internal language.

In the case of a recursive module definition, it is
easy for the elaborator to supply any omitted type def-
initions, because it may inspect the actual module to
discover the omitted information. However, as we saw
in Section 4.1, it is important to allow rds’s as signa-
tures for functor arguments. In such cases there is no
particular module to inspect for the missing informa-
tion, so if the elaborator is to rewrite such an rds to be
transparent, it must do so without supplying additional
information.

Given a prospective rds that fails to be fully trans-
parent, the elaborator may transform it to an isomor-
phic signature that is permitted by naming any abstract
types within the rds and hoisting them out. (A similar
device is used by the generative stamps in the Definition
of Standard ML [16].) For example, the signature

ret S : sig
type t
type u = s.u -> t

end

can be made permissible by introducing a type defini-
tion for t setting it equal to an abstract type that is
defined outside the rds. The resulting signature is per-
missible because the rds, which now lies within an outer
signature, is fully transparent:

sig
type t’
structure ret S :

sig
type t = t’
type u = S.u -> t

end
end

Recall that we also require that recursively depen-
dent signatures be contractive. In most cases, the elab-

57

orator can transform signatures to satisfy this require-
ment in the same manner as to satisfy transparency. For
example, consider the noncontractive signature:

ret S : sig
type t = S.t
type u = S.u -> t

end

Note that the signature does not provide any informa-
tion as to the identity of t (except that it is equal to
itself). In this case, t is essentially abstract, as it was
in the previous example, so the signature can be trans-
formed to a permissible one exactly as before.

It should be noted that this technique can fail in the
presence of unknown type constructors. Suppose f is
an unknown constructor with kind T + T and consider
the signature:

ret S : sig
type t = S.t f
type u = S.u -> t

end

In this signature it is not clear whether or not t is ab-
stract. If f were the identity, then this signature would
reduce to the previous example, and t could be hoisted.
On the other hand, if f were, say, Xa:T.int + (Y, then
t would not be abstract and it would incorrect to hoist
t, and indeed the signature would be properly contrac-
tive. The fact that f is unknown stymies any attempt
to resolve this situation.

5.2 Typechecking

An important problem in a practical implementation
is typechecking of recursive modules. Suppose a type-
checker is presented with a recursive module definition:

structure ret A : ASIG(A) =
struct . . . body . . . end

In terms of the external language, an appealing type-
checking strategy is to check first that the rds ps.ASIG(s)
is well-formed, and second that the body of the struc-
ture definition has signature ASIG(A) under the assump-
tion that A does. However, it is not immediately clear
that this strategy is sound or complete, since the type
theory requires (instead of the second condition above)
that the body have signature ps.ASIG(s) under the as-
sumption that A does.

We wish to show that these two typechecking strate-
gies are equivalent. The conditions on the recursive vti-
able A are certainly equivalent, using the introductory
and eliminatory rules for rds’s. To show the conditions
on the body to be equivalent, we observe that the signa-
tures ASIG(A) and ps.ASIG(s) are equal whenever A has
signature ps.ASIG(s).

Suppose ps.S(s) is a well-formed rds, and suppose
that the variable s is given that signature. Then (for
some c, K and 0):

S(s) = [cr:5(c(Fst s) : K), a(Fd s)]
= [a:s(c(&kc(p)) : K), a(pp:r;.c(p))]
= [a:5(/Jp:bLc(p) : K), a(pp:K.c(p))]
= [cr:s(/Jp:K.c(p) : K), u(a)]
= ps.S(s)

r t- c = c’[c/a] : K qa j- K] k c’ J. K
r k c = pcr:IE.c’ : K

Figure 6: Bisimilarity

That S(s) has the form given in the first line follows
from the well-formedness of ps.S(s); the second line
follows since s’s signature and phase-splitting dictate
that Fst s = /@XC(P); the third and fourth lines fol-
low by equational reasoning using recursive constructors
and singleton kinds; and the last follows by the phase-
splitting rule.

Constructor equality With or without this external-
level typechecking strategy, one significant problem for
typechecking remains: the typechecker must be able to
determine whether two constructors are equal. This
problem is made difficult by singleton kinds and by equi-
recursive constructors. At this time neither problem is
known to be decidable, although algorithms exist for
singleton kinds that work well in practice.

For equi-recursive constructors, Amadio and
Cardelli [l] give an algorithm for checking equality at
kind type, but this algorithm does not extend to higher
kinds. Some recent work suggests that the problem
may be decidable at higher kinds as well: Solomon [22]
showed in 1978 that type equality with a somewhat
similar notion of recursive type could be reduced
to equivalence of deterministic pushdown automata,
which was recently shown decidable by SCnizergues [17],
though not by a very practical algorithm.

These two problems remain the main outstanding is-
sues confronting a practical implementation of recursive
modules.

5.3 Equi- versus Iso-recursive Constructors

Given the difficulty of typechecking in the presence
of equi-recursive constructors, a natural question is
whether the reliance on equ&ecursive constructors is es-
sential for supporting recursive modules. (For example,
Duggan and Sourelis’s formalism does not rely on this
form of recursive types.) We conjecture that it is not es-
sential, based on the following observations. Under the
standard type-theoretic interpretation of ML (for exam-
ple, Harper and Mitchell [lo]), the implementation of a
recursive datatype is an iso-recursive type. (We will
write iso-recursive types as p-c~.c.) If we restrict recur-
sive modules to datatypes (as in Duggan and Sourelis’
formalism), and adopt the “transparent” interpretation
outlined in Section 4, then equi-recursive types are com-
pletely eliminable by the translation into the underlying
structure calculus, provided that we adopt Shao’s equa-
tion for iso-recursive types:

p,a.c(a) = pra.C(p~a.C(a))

This equation was introduced by Shao [19] in his FLINT
formalism in order to support the compilation of Stan-
dard ML. It is also discussed by Crary et al. [5], who
argue that this equation is already essential for efficient

58

Shao’s equation += contractiveness

r I- P&.C(p&3) = P4.C(~l,P) r-b t Tl!- cId.C(~,P) -4

r b p&.c(p,P) = pa:T.p,P.c(a,P) : T

Figure 7: Elimination of Equi-Recursive Types

compilation of Standard ML’s opaque datatypes, even
in the absence of recursive modules.

The relevance of Shao’s equation to the elimination
of equi-recursive types is based on the following observa-
tion. After translation into the pure structure calculus,
datatypes in the body of a recursive module definition
have implementation types of the form

for some constructor c, where a results from recur-
sion via recursive modules and p results from ordi-
nary datatype recursion. By invoking a bisimilarity rule
for equi-recursive types (Figure 6) and applying Shao’s
equation, as shown in Figure 7, we may prove that this
type is equivalent to the type

which is a purely iso-recursive type.
This observation sheds light on the nature of Duggan

and Sourelis’s restriction on the recursively defined type
components of a mixin module to datatypes, which are
implicitly iso-recursive. Strictly speaking, this restric-
tion is not necessary, but if it were to be adopted, it
would, by the observation above, allow the elimination
of equi-recursive types from the internal language of a
type-based compiler for ML.

5.4 Transparent Signature Ascription

Transparent signature ascription raises significant issues
for the design of an external language with recursive
modules. In Standard ML it is common practice to
write structure declarations in the form

structure S : SIG =
struct type t=int . . . end

where SIG specifies, but does not define, a type compo-
nent t. The elaborator processes the right-hand side,
extracting the binding of t, and implicitly propagating
it to the signature SIG. In effect, the binding is made
opaque, but with an augmented signature containing
additional defining equations for types, as follows:

structure S :> SIG where type t=int =
struct type t=int . . . end

It is natural to consider whether transparent ascription
may be extended to recursive module bindings. The
difficulty is that the right-hand side of the binding can
involve references to S itself. As we have seen, the code
on the right cannot be type-checked in the absence of
equations for the type components of the module. One
approach to this problem is to adopt a two-pass elabo-
ration process. In the first pass the right-hand side is

(bisimilarity)

processed to extract the type information that is to be
added to the ascribed signature. In the second pass, the
augmented, fully-transparent signature can be used to
elaborate the run-time parts of the right-hand to com-
plete elaboration.

A related question is whether an ascribed signature
may be omitted entirely in the recursive case. Here we
face the difficulty that it is not even apparent what are
the type components of the recursively-defined struc-
ture, let alone what are their definitions. To recover
this information would seem to require the kind of
pre-elaboration used in the SML/NJ Compilation Man-
ager [3], whereby the defined components of a module
are determined before processing begins.

6 Conclusions

Purely hierarchical module systems, such as the Stan-
dard ML module system, may be criticized on the
grounds that they lack adequate support for cyclic de-
pendencies among components. Several authors (in-
cluding Duggan and Sourelis [6, 71 and Flatt and
Felleisen [S]) have proposed module systems that better
support such cyclic dependencies among units. With
at least two different proposals for recursive modules in
hand, it is natural to ask “what is a recursive module?”
We provide an answer to this question in the form of
a type-theoretic analysis of recursive modules based on
the “phase distinction” calculus of higher-order mod-
ules [9].

We propose an extension of the phase distinction cal-
culus with a new form of recursive module and a new
form of signature, called a recursively dependent signa-
ture. Following the paradigm of the phase distinction
interpretation of higher-order modules, we demonstrate
the sensibility of this extension by giving an interpreta-
tion of it into a pure calculus of structures (without ex-
plicit recursive module constructs). This interpretation
demonstrates that in a precise sense, recursive modules
are already present in the pure structure calculus.

To make these ideas practical more work remains to
be done. It is important to demonstrate that typecheck-
ing is decidable in this framework. The central issue is
decidability of type equality in the presence of singleton
kinds and equi-recursive constructors of higher kind. It
is also important to consider a dynamic semantics for
the extended language and to demonstrate the sound-
ness of the type system for this dynamic semantics.

Acknowledgements

We would like to thank Matthias Felleisen, Matthew
Flatt, Xavier Leroy, David MacQueen, Zhong Shao, and
the anonymous referees for many helpful comments.

59

References [I71

ill

PI

[31

141

[51

k31

171

[81

PI

WJI

Pll

WI

1131

1141

1151

[161

Roberto Amadio and Luca Cardelli. Subtypingrecursive
types. ACM TOPLAS, 15(4):575+%1, 1993.

Davide Ancona and Elena Zucca. An algebra of mixin
modules. In F. Parisi-Presicce, editor, WADT ‘97 12th
Workshop on Algebraic Development Techniques - Se-
lected Papers, volume 1376 of Lecture Notes in Com-
puter Science, pages 92-106, Berlin, 1997. Springer Ver-
lag.

Matthias Blume. Hierarchical Modularity and Inter-
module Optimization. PhD thesis, Princeton Univer-
sity, Department of Computer Science, Princeton, New
Jersey, November 1997.

Luca Cardelli. Phase distinctions in type theory. Un-
published manuscript.

Karl Crary, Robert Harper, Perry Cheng, Leaf Petersen,
and Chris Stone. Transparent and opaque interpreta-
tions of datatypes. Technical Report CMU-CS-98-177,
Carnegie Mellon University, School of Computer Sci-
ence, November 1998.

Dominic Duggan and Constantinos Sourelis. Mixin
modules. In 1996 ACM SIGPLAN International Con-
ference on Functional Programming, pages 262-273,
Philadelphia, Pennsylvania, June 1996.

Dominic Duggan and Constantinos Sourelis. Parameter-
ized modules, recursive modules, and mixin modules. In
1998 ACM SIGPLAN Workshop on ML, pages 87-96,
Baltimore, Maryland, September 1998.

Matthew Flatt and Matthias Felleisen. Units: Cool
modules for HOT languages. In 1998 ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, pages 236-248, Montreal, Canada, June
1998.

Robert Harper and Mark Lillibridge. A type-theoretic
approach to higher-order modules with sharing. In
Twenty-First ACM Symposium on Principles of Pro-
gramming Languages, pages 123-137, Portland, Ore-
gon, January 1994.

Robert Harper and John C. Mitchell. On the type
structure of Standard ML. ACM Transactions on
Programming Languages and Systems, 15(2):211-252,
April 1993.

Robert Harper, John C. Mitchell, and Eugenio Moggi.
Higher-order modules and the phase distinction. In
Seventeenth ACM Symposium on Principles of Pro-
gramming Languages, San Francisco, California, Jan-
uary 1990.

Robert Harper and Chris Stone. A type-theoretic in-
terpretation of Standard ML. In Proof, Language and
Interaction: Essays in Honour of Robin Milner. The
MIT Press, 1998. To appear.

Xavier Leroy. Manifest types, modules, and separate
compilation. In Proceedings of the Twenty-first Annual
ACM Symposium on Principles of Programming Lan-
guages, pages 109-122, Portland, Oregon, January 1994.

Xavier Leroy. The Objective Cam1 system:
Documentation and user’s guide. Available at
http://pauillac.inria.fr/ocaml/htmlaan/.,1996.

David MacQueen. Modules for Standard ML. In 1984
ACM Conference on Lisp and Functional Program-
ming, pages 198-207, Austin, Texas, August 1984.

Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The Definition of Standard ML (Revised).
MIT Press, 1997.

I181

[191

PO1

WI

WI

1231

A

G6raud SCnizergues. The equivalence problem for deter-
ministic pushdown automata is decidable. In Twenty-
Fourth International Colloquium on Automata, Lan-
9uwe4 and Programming, volume 1256 of Lecture
Notes in Computer Science, pages 671-681, Bologna,
Italy, July 1997. Springer-Verlag.

Zhong Shao. An overview of the FLINT/ML compiler.
In Proceedings of the 1997 ACM SIGPLAN Workshop
on Types in Compilation, Kyoto, Japan, June 1997.

Zhong Shao. Equality of recursive types. (Private com-
munication), September 1998.

Zhong Shao. Typed cross-module compilation. In 1998
ACM SIGPLAN International Conference on Func-
tional PFogramming, pages 141-152, Baltimore, Mary-
land, September 1998.

Emin Giin Sirer, Marc E. Fiucynski, Przemyslaw
Pardyak, and Brian N. Bershad. Safe dynamic link-
ing in an extensible operating system. In Workshop
on Compiler Support for System Software, Tucson, Ari-
zona, February 1996.

Marvin Solomon. Type definitions with parameters (ex-
tended abstract). In Fifth ACM Symposium on Princi-
ples of Programming Languages, pages 3138, Tucson,
Arizona, January 1978.

David Tarditi, Greg Morrisett, Perry Cheng, Chris
Stone, Robert Harper, and Peter Lee. TIL: A type-
directed optimizing compiler for ML. In ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation, pages 181-192, Philadelphia,
Pennsylvania, May 1996.

Type Theory

A.1 Core Calculus

II-l-n kind]

r t- c : Type

r I- T kind r I- 1 kind r I- 5(c) kind

1 I- I- nl = n2 kind 1

r k T = T kind r’ I- I= 1 kind

r I- cl = c2 : Type

r k B(Q) = 5(c2) kind

r t- sE1 = K{ kind
r[a : nl] I- n2 = 6; kind

r I- lJa:nl .n2 = rI~a:,+$.K; kind
(a ~2 DON’))

r I- IQ = s: kind
r[o : nl] I- n2 = 6; kind

r k CCX:~~ .n2 = &Y:K; .K; kind
(a e Dam(r))

60

I? I- T 5 T kind I? I- 1 5 1 kind

r I- cl = c2 : Type ri-c:T
I? I- S(Q) 5 S(Q) kind I? t 5(c) 5 T kind

r I- 6; 5 IE~ kind
r[a : K;] I- n2 < tc; kind

r[a : tq] I- n2 kind

I? I- IIcz:K~ .KZ 5 IIa:n; .K; kind
(a 4 Dom(W

Irt-C:Kl

m t-w rl-a:n (d-7 - rk*:l

rkcl:na:nl.n2 rkc2:nI
rt- clc2 : n2[c2/a1

r t- cz : n2[cI/a]
r[a:4 t- ~2 khf

rk (CIrC2) : ~~:~l.~z
(~ ~ Dam(r))

rt- c: knl.n2 r b c: xa:nl.n2
rt-sl(c):nl r t- ~~(4 : fi2h w4

rl-q:T Jl’i-c2:T rl-q:T rl-cz:T
rl-clAq:T rkcl xcz:T

r I- c : 6’ r t- 6’ < n kind
rkczn

r t- ~~~~~~~~ : na:nl.K2
rk c: rb:~~.~~

(a not free in c)

r t- (nI(C),ff2(c)) :ccwc~.~~
rk c: xa:nl.n2

iY[a : It] if [B] is [a t 8c]

F’[Bl otherwise

I’ I- nl kind I’[, : nl] t- c J. ~2

r I- Xcwc~ .c 1 na:tcl.nz (a 4 Dam(r))

rtc, ~~~~~~~~~ rkc24nl
r t- clc2 4 fi2hb1

r t- c2 4. ~2kli4
r[a : ~1 I- 62 kind

rt- (ClrC2) ~~wc~.K~
(a ~ Dam(r))

r t- c 1 Ca:nl .Ic2 r i- c~~a:nl.n2
rf-+)hl r t- r2 (4 4 ~~t7b kv4

i=Fcl:T i=bc2:T FFcl:T i=‘t-c2:T

ri-cl~cz$T rl-ClXC2J.T

r!-ccJ.d rl-fi’<n kind rFc=c’:n rl-cc’J.n

rt-c4n rkcJn

-1

rkc:% rkc2=cI:K
rtcEczn rkcI=c2:n

rkCl=C2:n rbc2=C3:n
rt--c 1=c3:n

rk nl = TV: kind r[a : nl] I- c = C' : n2

r k k:nI.c= A~:~;.~': rrcu:nl.K2 (a e Do+?)

rk c1 = c; : na:nl.n2 rb c2 = c; : nI
r b clcz = c;c; : n2[c2/a]

rI-cl=c; : K.1
r k c2 = C; : Q[c~/~]

I?[& : Q] I- ~2 kind

rf- (cl,c2) = (c;l~;j : ~Y:K~.K~
b e Do4’))

rkc=c':Ca:61.62
r b A1tC) = ~~(2) : nl

r k c = d : ~~~~~~~~
r F T2(c) = ~~(2) : ~c~[v(c)/c~

rtcl=c; :T rI-cz=4:T

r k c1 2 c2 = c; 2 c; : T

rkclzc: :T rtc2=4:T
r f- Cl x c2 = c; x c; : T

61

r I- M: S' r I- S' 5 s sig
~ -- I

i+ in] t ~4%
l?[a t K] t c' 1 n

r-t- pa:K.c = p~:~~.c~ : K (a e Dam(r))

rtul xu2 = ui x ui type

r-t- n = K' qa :t~] I- D = 0' type

r b v~:K.~ = Va:n’.a’ type (a e Dam(r))

r t- c1 = c2 : d I- t tc’ 5 n kind

rbccl=c2:6

r k- c :$(c') rkc:i
rkczc':T rkc=*:i

r k c1 : nl qo: 611 tc2 :s2
r k (k~:~l.~~)~l = c~[c~/cY]: K~[cI/~ (a e DOW))

jrte:ul

G (X : 0 E r) rl-l:a w-r) - rt*:i

r k u type rp:u]t eJ-a
r t Xx:u.e:u --f u' (X !Z Dam(r))

rtg type ql:u]t e:o
rt h7.e: D --L d (x @ D-(r))

r t el :U+U rte2:u
rl-elez :u’

ri-el:~--Id rl-ee;l:u

l?telez :d

rt el : 6, rt e2 :u2 ri-e:al xu2

rt(el,ez):cq xu2 r t K;(e): Ui
(i = 1,2)

r i- C: na:~l.~2
rt (x~:K~.~~) = c :rhnl.~2

(a not free in c)

r I- Cl : ICI r k c2 : K2
r t .1ri((cl,c2))= c; : fci

(i = 1,2)

rk C: ~PQ.K~
r t- (H1(C),AZ(C)) = c: Ccml.IEZ

rtK kind rpt6]tcan
r t pLa:~.~ = c[(p~:~.c)/a] : K (a e Dam(r))

r t c = cq~/a] : n rya tn] t C' J-IC
r k c= pa:d : n (0 e Dam(r))

l?kc:T r b cl type r to2 type

r t- c type rt ol 3 u2 type

r t o1 type r b b2 type r k u1 type r +a2 type

r t cl A 62 type r t u1 x u2 type

r I- K kind r[a : K] I- u type

r t Vff:t~ type
(0 St DOG’))

r I- u1 = u2 type

r t 0 type rt-a2 = ul type

r t u = u type r bual = u2 type

r t o1 = u2 type r i- u2 = ~3 type

r t UI = c3 type

rtc= c': T
r t c = C' type

rtal = 0; type rt02 = u; type

r t cl -b u2 = U; + U: type

r I- n kind I’[& : IC] I- e J-U

r t Aaxe :Va:n.u (a fl Dam(r))

r t e:va:n.a r k C: K
r t e[c] : u[c/a]

r FU type r[zfa]te.4g
r t jix(x:u.e) :a (a ~2 Do&T)

rt- e:d rtu = 6' type
rt-e:u

rtsJO txruer) - rt*Ji

rt 0 type qz:~]k eJ.u
r t Xx:u.e J. 0 3 u’

(X sl DOW))

r t 0 type r[33:g]t e :(I
r t Xx:u.e .I. u 2 u’

(X t! Do+))

ri-e14ul ri-eez402
r~(el,e2)lalxo2

ytex;pe; ;z (i = 172)

r t PC kind r[a : K] I- e 1 u

I? I- Aaxe .j. VWLU
(a sf Dam(r))

rteJ.va:n.0 rkc:6
r I- +I L 444

rku type qxta]t e&u
r I- jix(x:u.e) -1 u

(X e Do43)

rt e3. U’ rt 0 = 0' type rtul = u; type rtu2 = 01 type
rt- u1 2 u2 = U: - ui type rtelo

62

A.2 Structure Calculus

[IYC:Kl

r t s = [cm, u] aig

l-‘l-Fata:n (3 t s E q

r k s = [CS,U] 3ig
l- I- Snd s : a[Fat s/a]

r f- s = [w,u] 3ig
r I- Snd s : @at a/a]

[WJ.al

r k s = [cKK,~] 3ig
r I- Snd s 4 a[Fat s/o]

ri?Gq

(a : s E I-)

(8 t s E 0

ta: s E r)

r I- n kind r[a : tc] I- Q type

r-i- pzn,O] .9ig (a e Dam(r))

[FFXZZZl

I-l-s aig r b s2 = s1 3;s
rcs=s 3ig rbs, =s2 3ig

r i- s1 = s, aig r k s2 = s3 3;s
r k s1 = s3 3ig

r + 6 = IC’ kind r[a : n] k u = u’ type

r i- [w,~] = [cw',u~ 5ig (a G DomU’)

(-1

r i- s1 = s2 aig
r k s1 5 s, aig

r t- s1 5 s2 8ig r I- s2 2 s3 aig

rks,ss, sig

r I- IG < K’ kind
qa : K] I- 0 = 0' type

rp :d]l- 0' type

r f- [a:K,u] 5 [cw?,u~ hg (a eDom(r))

r k M : s r k s L: s 3ig
rI-M:S

r k e J. u[c/a]
ricr :K] i- u type

r i- [c,~] 4 [wc,~] (a 61 Do43

r I- M&S’ r b S' 5 s aig
rl-ML.5

rkM’J.S PI-M=M’:S

rkM&S

ri-M:S I-i-M2 =M1:S
rl-M=M:S ri-Ml =M2:S

l-‘l-Ml=M2:S I-!-Mz=Ms:S
I’!-Ml=Ms:S

rt- c=c':K
I? I- e : u[c/cr]

q. :n] k 0 type

r k [c, e] = [c',e] : [a:n,a] (a 4 Dome’))

l-l-Ml= M2 : S’ r I- S 5 S’ aig

rl-Ml=M2:S

A.3 Recursive Module Calculus

jr!-M:S[

r[a t q I- M J. S r k S aig

ri-fiz(da4): s (3 z Dam(r))

l-l-Ml =M2:S(

I’ !- n kind r[a :ri] i-u type
qat K] I- CJ K qa : K][Z tu] k e 4.0

r I- fir(a:[ol:n.u].\ciFat s/cu],e[Fat S, Snd s/a,z]l) =
[a = pa:n.c,fiz(z:u.e)] : [ax, u]

(a, zc, s tz DomP’))

Iri- S aigl

r b s 3ig rbtswc~
qs: .q t- [LY~C: ~c),u] Jig

r t- ps.[a:5(~: ~c),u] 3ig ($::;::,",;l)

I? I- K kind I’[/3 : K] t S(c : K) kind
r-10 t 4 t- c J K r[a : K] I- +/Fat S] type

r t- ps.[c&(c[Fat s/p] : n), u] =
[&(&:n.c : ~),u[a/Fst s]] aig

(~4 s B! D-03)

63

