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Abstract also support parameterized, or generic, modules to bet- 
ter support code reuse. 

A hierarchical module system is an effective tool for 
structuring large programs. Strictly hierarchical mod- 

There is no question that hierarchical design is an 
important tool for structuring large systems. It has of- 

ule systems impose an acyclic ordering on import depen- ten been noted, however, that strict adherence to a hi- 
dencies among program units. This can impede modu- erarchical architecture can preclude the decomposition 
lar programming by forcing mutually-dependent compo- of a system into “mind-sized” components. In some 
nents to be consolidated into a single module. Recently situations the natural decomposition of a system into 
there have been several proposals for module systems modules introduces cyclic dependencies, which cannot 
that admit cyclic dependencies, but it is not clear how be expressed in a purely hierarchical formalism. The 
these proposals relate to one another, nor how one might only solution is to consolidate mutually-dependent frag- 
integrate them into an expressive module system such ments into a single module, which partially undermines 
as that of ML. the very idea of modular organization. 

To address this question we provide a type-theoretic 
analysis of the notion of a recursive module in the con- 
text of a “phase-distinction” formalism for higher-order 
module systems. We extend this calculus with a recur- 
sive module mechanism and a new form of signature, 
called a recursively dependent signature, to support the 
definition of recursive modules. These extensions are 
justified by an interpretation in terms of more primitive 
language constructs. This interpretation may also serve 
as a guide for implementation. 

In response several authors have proposed linguis- 
tic mechanisms to support non-hierarchical modular 
decomposition. Recent examples include: Sirer, et 
al.‘s extension of Modula-3 with a “cross-linking” 
mechanism [21]; Flatt and Felleisen’s extension of 
their MzScheme language with cyclically-dependent 
“units” [8]; Duggan and Sourelis’s “mixin modules” that 
extend the Standard ML module system with a special 
“mixlink” construct for integrating mutually-dependent 
structures [6, 71; and Ancona and Zucca’s algebraic for- 
malism for mixin modules [2]. Each of these proposals 
seeks to address the problem of cyclic dependencies in a 
module system, but each does so in a slightly. different 
way. For example, Flatt and Felleisen’s formalism does 
not address the critical issue of controlling propagation 
of type information across module boundaries. Duggan 
and Sourelis’s framework relies on a syntactic transfor- 
mation that, in effect, coalesces the code of mutually- 
dependent modules into a single module. It is not clear 
what are the fundamental ideas, nor is it clear how to 
integrate the various aspects of these proposals into a 
full-featured module system. 

1 Introduction 

Hierarchical decomposition is a fundamental design 
principle for controlling the complexity of large pro- 
grams. According to this principle a software sys- 
tem is to be decomposed into a collection of modules 
whose dependency relationships form a directed, acyclic 
graph. Most modern programming languages include 
module systems that support hierarchical decomposi- 
tion. Many, such as Standard ML [16] and O’Caml[14], 
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It is natural to ask: what is a recursive module? We 
propose to address this question in the framework of 
type theory, which has proved to be a powerful tool for 
both the design and implementation of module systems. 
We conduct our analysis in the context of the “phase 
distinction” module formalism introduced by Harper, 
Mitchell, and Moggi [ll] (hereafter, HMM), augmented 
to support recursive types and functions, and to support 
type definitions in signatures [9, 131. The phase distinc- 
tion calculus provides a rigorous account of higher-order 
modules (supporting hierarchy and parameterization) in 
a framework that makes explicit the critical distinction 
between the static, or compile-time, part of a module 
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and the dynamic, or run-time, part. This calculus has 
proved to be of fundamental importance to the imple- 
mentation of higher-order modules, as evidenced by its 
use in Shao’s FLINT formalism used in the SML/NJ 
compiler [18, 201 and in the TIL/ML compiler [23]. 

Our analysis proceeds in two stages. First we con- 
sider a straightforward extension of the phase distinc- 
tion calculus with a notion of recursive (self-referential) 
module. An interpretation of this new construct is pro- 
vided by an interpretation of it into the primitive mod- 
ule formalism of the phase distinction calculus. This 
interpretation renders the compile-time part as a recur- 
sive type and the run-time part as a recursive function, 
as might be expected. In essence a recursive module is 
just a convenient way of introducing recursive types and 
functions. 

Unfortunately this simple-minded extension does 
not go far enough to be of much practical use. As Dug- 
gan and Sourelis have observed [7], it is of critical impor- 
tance for most practical examples that the type equa- 
tions that hold of a recursive module be propagated into 
the definition of the recursive module itself. In essence 
the definitions of the type components of a recursive 
module must be taken to be the types that they will 
eventually turn out to be once the recursive declara- 
tion has been processed. Accounting for this “forward 
reference” is the core contribution of our work. We in- 
troduce a new form of signature (interface) for recursive 
modules, called a recursively dependent signature, that 
allows us to capture the required type identities during 
type checking of a recursive module binding. This sig- 
nificantly increases the expressive power of the recursive 
module formalism, and is, we assert, of fundamental im- 
portance to the very idea of recursive modules. 

In this paper we aim to focus on the core issues lying 
at the center of a recursive module system, so we study 
recursive modules in the framework of a small internal 
language that is sufficient to bring out the main issues 
and that could be used by a type-directed compiler to 
implement recursive modules. Therefore, we make no 
specific proposals as to what form an external language 
supporting recursive modules should take, although we 
do present most of our examples in a hypothetical ex- 
ternal language. Indeed, some important questions re- 
garding the design of an external language remain open, 
such as the practicality of typechecking. In Section 5 we 
make some observations and preliminary proposals re- 
garding the design of an external language. 

2 Type-Theoretic Framework 

We begin by presenting the framework in which we con- 
duct our analysis. We will conduct our examples us- 
ing an informal external language closely modeled af- 
ter the syntax of Standard ML. The external language 
is then elaborated into the type-theoretic internal lan- 
guage that we describe below. We will treat the elab- 
oration process informally, illustrating it by examples. 
Details of how elaboration may be formalized in a gen- 
eral setting appear in Harper and Stone [12]. 

Our internal language is an extension of the phase 
distinction calculus of Harper, Mitchell, and Moggi [ll]. 
The language consists of two main components: a core 
calculus, a predicative variant of Girard’s F,, and a 

structure calculus, extending the core language with 
a primitive module construct without explicit mecha- 
nisms for hierarchy (e.g., substructures) or parameter- 
ization (e.g., functors). Primitive modules consist of a 
static, or compile-time, part containing the type con- 
structors of the module, together with a dynamic, or 
run-time, part containing the executable code of the 
module. This separation is known as the phase distinc- 
tion. An important property of the formalism is that 
the phase distinction is maintained, even in the pres- 
ence of higher-order (and, as we shall see, recursive) 
module constructs. 

The main result of HMM is that higher-order mod- 
ule constructs are a definitional extension of the prim- 
itive structure calculus. In other words higher-order 
constructs are already present in the primitive struc- 
ture calculus in the sense that they may be defined in 
terms of existing constructs. (This interpretation may 
be thought of as a compilation strategy for higher-order 
modules, and indeed this fact has been exploited in the 
FLINT [20] and TIL [23] compilers.) This means that 
we need not explicitly discuss higher-order module con- 
structs in this paper, but rather appeal to HMM for a 
detailed discussion of their implicit presence. 

To support the extension with recursive modules we 
enrich the core phase distinction calculus with these ad- 
ditional constructs: 

Singleton and dependent kinds to allow expression 
of type sharing information in signatures. Related 
formalisms for expressing type sharing informa- 
tion are given by Harper and Lillibridge [9] and 
Leroy [13]. 

A fixed point operation for building collections 
of mutually-recursive type constructors. These 
recursive constructors are definitionally equal to 
their unrollings. We term such constructors equi- 
recursive, to distinguish them from the more con- 
ventional iso-recursive constructors, for which con- 
versions between the constructors and their un- 
rollings must be mediated by the explicit use of 
an isomorphism. We discuss the interplay of equi- 
and iso-recursive constructors in Section 5.3. 

A fixed point operation for building collections of 
mutually-recursive functions. As will become ap- 
parent later on, we cannot (as in SML) limit this 
operation to collections of explicit lambda abstrac- 
tions. Instead we formalize a notion of valuabil- 
ity (indicating terminating expressions) and a cor- 
responding notion of total function, essentially as 
in Harper and Stone [12], but with the additional 
idea that recursively defined variables are not con- 
sidered valuable within the body of their defini- 
tions, but are considered valuable in their subse- 
quent scope. 

In subsequent sections of this paper, we will further aug- 
ment our structure calculus with various constructs for 
recursive modules, and then show how those constructs 
can be reduced to the elementary constructs discussed 
in this section. 
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kinds K ..- ..- 
constructors c ::= 

types u ..- ..- 

terms e ..- ..- 

contexts r ..- ..- 

T 1 1 1 s(c) 1 lk/cl.n;2 1 CCY:Q.K~ 
a 1 * 1 kmc.c 1 ClC2 I (Cl, c2) I 

Ti(C) 1 1 I Cl A C2 1 Cl X C2 1 /J(YX.C 

c 1 61 + 62 1 u1 A a2 / Ul x 62 I 

vcr:n.u 

x I * I Xx:u.e I ele2 I (el, e2) I 

Xi(e) 1 hcr:n.e 1 e[c] 1 fix(x:u.e) 
e 1 qcr : n] 1 r[x : u] 1 
rb t 4 i r[x t 4 

Figure 1: The Core Calculus 

s(c : T) gf S(c) 

qc : IIcml .tc2) Sf l-Iwcl.5(Ccr : fez) 

(for Q not free in c) 

S(c : Kl x K2) F 5(*1(c) : /cl) x 5(7rz(c) : 62) 
S(c : 1) Zf 1 

n 

Figure 2: Higher-Order Singletons 

2.1 The Core Calculus 

The core phase distinction calculus contains four syn- 
tactic classes: kinds, type constructors (or just “con- 
structors”), types, and terms. As usual, types classify 
terms and kinds classify constructors. The constructors 
provide a lambda calculus for constructing types. The 
syntax of the core calculus appears in Figure 1. We 
shall consider expressioti that differ only in the names 
of bound variables to be identical, and write capture- 
avoiding substitution of E for X in E’ as E’[E/X]. 

The kinds include the kind T of all monotypes; the 
trivial kind 1, containing only the constructor *; de- 
pendent products lk~l .K, containing constructor func- 
tions from ~1 to ~2 where (Y stands for the argument and 
may appear free in ~2; and dependent sums CCK:K~.Q, 
containing constructor pairs built from ~1 and ~2 (re- 
spectively) where cy stands for the left-hand member and 
may appear free in ~2. As usual, if cr does not appear 
free in ~2, we write ~1 + ~2 for &:~1.~2 and ~1 x ~2 
for Ca:~l .KZ. 

Finally, for any constructor c having kind T, the sin- 
gleton kind 5(c) contains monotypes definitionally equal 
to c. Thus, if c has kind S(c’), the calculus permits 
the deduction of the equation c = c’ : T. Singleton 
kinds provide a mechanism for expressing type sharing 
information [9, 131. ‘Although singleton kinds exist only 
for monotypes, they may be used in conjunction with 
dependent kinds to express higher-order sharing infor- 
mation. For instance, if c has kind lkT.S(list(cr)), it 
follows that c = list : T + T. The definition in Figure 
2 generalizes this idea.’ 

‘Note that higher-order singletons are not defined for kinds 
containing strictly positive singleton or dependent sum kinds; 
this would eliminate the useful property that n is a kind when- 
ever 5(c : K) is. This does not reduce the expressive power of the 
construct; any constructor whose kind contains strictly positive 
singletons or dependent sums can be given a kind (exactly as 
coarse) without them. 

The type constructors are largely standard. The 
trivial type 1 contains the trivial term *. The types 
cl + c2 and cl J c2 are the types of total and partial 
functions from cl to c2 and are discussed in more detail 
below. The equi-recursive constructor /.~~:r;.c[a] is is a 
fixed point of the equation (Y = c[cy]. Thus /.KZ:K.C[CU] is 
equal to its unrolling c[~cKK.c[~]]. This is in contrast to 
the somewhat more conventional iso-recursive formula- 
tion, where conversions between the two must be me- 
diated by explicit operations. In Section 5.3 we discuss 
how to simplify the type theory to use only iso-recursive 
constructors. 

The final construct, fix(x:u.e) at the term level, al- 
lows the definition of recursive values. However, we wish 
to prevent the definition of cyclic data structures such 
as fix(z : int list. 1: :z), which cannot be defined in 
ML. We do this by imposing a value restriction on 
the bodies of recursive definitions. The calculus con- 
tains judgements I’ I- e J- u asserting that e has type u 
and terminates without computational effects. (In the 
present setting, the only computational effect is nonter- 
mination.) With this so-called value restriction in place, 
the formation rule for recursive values is: 

r[x t U] I- e 4 u r I- u type (x G Dam(r)) 
r I- fix(x:u.e) : u 

This rule is read: fix(x:u.e) has type u if e terminates 
with type u under the assumption that I has type u but 
cannot be taken as valuable. This rules out the cyclic list 
proposed above, since 1: : z is not valuable unless x is 
valuable. The value restriction implies that all appear- 
ances of x must be guarded by (i.e., within the body of) 
a lambda abstraction; lambda abstractions are always 
valuable, regardless of the valuability status of their free 
variables. As in Harper and Stone [12], the collection of 
valuable expressions is enlarged by including a type for 
total (pure) functions, such as cons (: :). The applica- 
tion of a valuable total function to a valuable argument 
is considered valuable. Total functions are considered to 
be types, but not type constructors, in order to prevent 
their erroneous use in conjunction with recursive types. 

A similar restriction is made on the formation of 
equi-recursive type constructors. In order to show that 
~CY:V;.C is well-formed, one must show that c is contrac- 
tiue in (Y [l]. This is in contrast to iso-recursive types, 
which require no such condition. InforpEblly, contrac- 
tiveness means that the infinite tree specified by iterat- 
ing the body c is actually infinite, or, even more infor- 
mally, that iterating the body “goes somewhere.” Thus, 
pa:T.int x (Y is legal, but ,LKY:T.CY is not. Contractive- 
ness is formalized in the type theory by a judgement 
[CY t K] t- c J- K, which is read: c is contractive in kind 
n under the assumption that (Y has kind K but cannot 
be taken as contractiue. The rules for contractiveness of 
constructors are similar to those for valuability of terms; 
they ensure that all occurrences of the recursive variable 
are guarded by a type construction operation (such as 
int x (Y in the above example). 

2.2 The Structure Calculus 

Atop the core calculus we erect a structure calculus, 
exactly as in HMM. To review, we add two syntactic 
classes, one for flat signatures and one for flat structures 
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constructors C ..- ..- . . . 1 Fsts 
terms 

signatures ; 

..- 

;I= 2 : 7 Zds 
modules M ::= [c,e] 
contexts r ..- ..- . * * 1 r[s : q 1 r[S t S] 

Figure 3: The Structure Calculus 

(Figure 3). Structures are pairs [c, e] of constructors and 
terms. The left-hand component is referred to as the 
compile-time (or, static) component, and the right-hand 
component is referred to as the run-time (or, dynamic) 
component. Signatures, which classify structures, have 
the form [(Yx, 01, where LY stands for the compile-time 
component and may appear free in 6. The structure, 
[c, e] has kind [OI:IE, u] if c has kind IC and e has type 
u[c/o]. Often we will write [o = c,e] as shorthand for 
[c, e[c/o]]. We also add constructor and term constructs 
Fst s and Snd s for extracting the first and second com- 
ponents out of structures named by variables. We will 
occasionally treat these constructs as variables and al- 
low substitution for them. 

The structure calculus shows an explicit phase dis- 
tinction between compile-time and run-time expres- 
sions [ll, 41. Static expressions may be separated from 
dynamic ones, and static ones will never depend on dy- 
namic ones. This ensures that programs may be type- 
checked without the need to execute any run-time code. 

HMM show that higher-order modules can be re- 
duced to the simple structure calculus given here. 
Therefore we will omit explicit discussion of higher- 
order modules, without any loss of generality. In this 
paper, we show how recursive modules may similarly 
be reduced to the structure calculus given here. In so 
doing, we will show that despite the apparent intertwin- 
ing of static and dynamic expressions in recursive mod- 
ules, that the phase distinction can be preserved, just 
as HMM showed for higher-order modules. 

3 Opaque Recursive Modules 

We begin our examination by considering what we call 
“opaque” recursive modules. These will prove to insuf- 
ficiently expressive for most applications, but they will 
serve to illustrate the main ideas and motivate the more 
complex machinery in the next section. 

In the (informal) external language, we write an 
opaque recursive module definition as: 

structure ret S :> SIG = struct . . . end 

The structure variable S is, of course, permitted to ap- 
pear free within the structure’s body. The signature SIG 
then expresses all the information that is known about S 
in the body or in the subsequent code. (We borrow the 
“: >” symbol from Standard ML 1997 [16] to suggest this 
opacity.) In particular, the opaque signature obscures 
the-fact that the types in S are recursively defined. 

This declaration construct corresponds to a module 
fixed point operation in the internal language, written 
fix(s:S.M). For reasons similar to those in the previ- 
ous section, we must impose a value restriction on M, 

r I- K kind 
r[atK] t- ~4% 

qCY :n]l- u type 
r-La : K][Z t U] I- e .J u 

r I- fix(s:[cwc.u].[c[Fsts/~], e[Fst s, Snds/cr, xl]) = 
[a = /.4cm.c,fix(x:u.e)] : [LYXU] 

(a, 2, s s! DON?) 

Figure 4: Phase-Splitting Recursive Modules 

resulting in the following typing rule: 

r’s t ~~fi~sf~Mf:~ sig (S fZ Dam(P)) 

Thus, a recursive module is valid if its body (M) is 
valuable without assuming the recursive variable (s) to 
be valuable. If a module M is [c, e], then M will be 
valuable exactly when e is valuable (i.e., constructors 
are always valuable). 

Following HMM, we wish to reduce recursive mod- 
ules to the primitive structure formalism by defin- 
ing fix(s:S.M) in terms of primitive constructs. We 
will do this by phase-splitting recursive modules 
into run-time and compile-time components. SW- 
pose S is the signature [cr:~.u] and M is the struc- 
ture [c( Fst s), e( Fst s, Snd s)]. Then we can interpret 
fix(s:S.M) by wrapping the static and dynamic compo- 
nents in fixed point expressions: 

fix(s:S.M) = [a = ~cwc.c(cv),fix(x : u.e(cy,x))] 

This definition is formalized in the type theory by the 
equational rule in Figure 4. This rule parallels the non- 
standard equational rules from HMM, and illustrates 
that recursive modules are already present in the un- 
derlying calculus. In particular, the formation rule for 
recursive modules given above follows from the defini- 
tion and need not appear as a primitive rule. 

3.1 Trouble with Opacity 

The opaque interpretation of recursive modules is pleas- 
antly simple, but unfortunately, it is not sufficiently 
expressive to support some desired programming id- 
ioms. One common application of recursive modules 
is to break up mutually recursive data types. As a par- 
ticularly simple (though somewhat contrived) example, 
consider an implementation of integer lists as a recursive 
module that defers recursively to itself for an implemen- 
tation of the tail: 

signature LIST = 
sig 

type t 
val nil : t 
val null : t -> boo1 
val cons : int * t -> t 
val uncons : t -> int * t 

end 

structure ret List :> LIST = 
struct 

datatype t = NIL 1 CONS of int * Li8t.t 
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val nil = NIL 

fun null NIL = true 
I null (CONS -) = false 

fun cons (n : int, 1 : t) = 
case 1 of 

NIL => CONS (n, List.nil) 
I CONS (n’ : int, 1’ : List.t) => 

CONS (n, List.cons (n’, 1’)) 

fun uncons NIL = raise Fail 
I uncons (CONS (n : int, 1 : List.t)) = 

if List.null 1 then 
(n, NIL) 

else 

end 
(n, CONS (List.uncons 1)) 

This implementation typechecks properly, and it is 
observationally equivalent to a conventional implemen- 
tation. However, intensionally it is very different, be- 
cause each use of cons and uncons must traverse the 
entire list, leading to poor behavior in practice. A more 
direct implementation is impossible because the opacity 
of List. t precludes any knowledge that List. t is the 
same as t. 

Some other examples cannot be written in the 
opaque case at all (but see Section 4.3). For exam- 
ple, consider an implementation of abstract syntax trees 
using mutually dependent modules for expressions and 
declarations. These modules interact with each other 
through the let expression, which contains a declara- 
tion, and the val declaration, which contains an expres- 
sion. To optimize a common case, the expression code 
includes a function for let val expressions that defers 
to the declaration code to build a declaration: 

signature EXPR = 
sig 

type exp 
type dec 
val make-let : dec * exp -> exp 

val 
(* let DEC in EXP end *) 

make-let-val : 
identifier * exp * exp -> exp 
(* let val ID = EXP in EXP end *) 

. . . 
end 

signature DECL = 
sig 

type dec 
type exp 
val make-val : identifier * exp -> dec 

(* val ID = EXP *) 
. . 

end 

structure ret Expr :> EXPR = 
struct 

datatype exp = LET of Decl.dec * exp 1 
type dec = Decl.dec 

. . 

fun make-let (d : dec, e : exp) = 
LET (d, e) 

fun make-let-val (id : identifier, 
el : exp, e2 : exp) = 

let val d = Decl.make-val (id, el) 
(* type error! el : exp # Decl.exp *) 

in 
LET (d, e2) 

end 

end 
and Decl :> DECL = 

struct 
datatype dec = 

VAL of identifier * Expr . exp 1 . . . 
type exp = Expr.exp 

end 

Unfortunately, this code does not typecheck. The call 
to make-val within makelet-val expects an argument 
with type Decl.exp, which, because of the opacity of 
Decl, is not known to be the same type as exp, the 
type of its actual argument el. The type error occurs 
because the type system cannot tell that exp is equal to 
Decl . exp, even though an examination of the recursive 
definition reveals that it is actually true. 

4 Transparent Recursive Modules 

The difficulties described in the previous section can be 
traced to the inability to track sufficient type informa- 
tion in the context of a recursive structure binding. In 
the abstract syntax example the proposed binding fails 
to typecheck because within the definition of Expr it is 
not apparent that the type exp is equivalent to the type 
Decl.exp, even though this equation will be valid once 
the recursive binding is in force. Similarly, within the 
definition of Decl it is not apparent that the type dec 
is equivalent to the type Expr . dec, which will turn out 
to be true once the binding is in force. Were this equa- 
tion available while the definitions of Expr and Decl are 
being typechecked, the entire declaration would be seen 
to be valid, and these very equations would hold true 
afterwards. Similarly, the inefficiency of the suggested 
implementation of lists may be traced to the failure to 
identify the types List. t and t inside the definition of 
List. 

What is needed is a means of propagating the type 
equations that will turn out to be true of the recur- 
sively defined structures into the scope of the recursive 
definition itself. This makes it possible to exploit the 
recursive definitions of the types involved during type- 
checking of the dynamic part of the recursively defined 
modules, leading to a much more flexible and useful no- 
tion of recursive module. In effect we are exploiting the 
phase distinction by solving the static recursion equa- 
tions prior to checking the dynamic typing conditions 
of the module. 

How is this additional type sharing information to 
be propagated? The obvious solution is to add the ap- 



propriate equations to the signatures of the modules in- 
volved. For example, in the list example we may prop- 
agate the required information as follows: 

structure ret List :> 
sie 

datatype t = NIL 1 CONS of int * m] 

val cons : int * t -> t 
val uncons : t -> int * t 

end = . . . 

The boxed phrase highlights the occurrence of the struc- 
ture variable introduced by the recursive structure bind- 
ing. Since the signatures of the recursively defined 
structure variables depend on the structures themselves, 
we call these signatures recursively dependent signa- 
tures, or rds’s for short. In Section 4.2 we shall see 
how recursively dependent signatures are formalized. 

The purpose of a recursively dependent signature is 
to express the sorts of recursive type equations that are 
required to recover the ill-formed examples of the pre- 
ceding section. Let us now revisit those examples to see 
how rds’s are used to resolve the difficulties those ex- 
amples raise. Using a recursively dependent signature 
it is possible to give an implementation of lists with 
constant-time primitive operations as follows: 

structure ret List :> 
sig 

datatype t = NIL 1 CONS of int * List.t 

val cons : int * t -> t 
val uncons : t -> int * t 

end = 
struct 

datatype t = NIL 1 CONS of int * List .t 

fun cons (n : int, 1 : t) = CONS (n, 1) 
fun uncons NIL = raise Fail 

I uncons (CONS (n, 1)) = (n, 1) 
end 

The effect of the recursively dependent signature in this 
example is to ensure that the implementation type of 
the recursive datatype List. t coincides with the imple- 
mentation type of the type t within the body of the 
definition. 

This example also raises a important point about re- 
cursive datatypes in the context of a recursive structure 
binding. We must impose a structural, or transparent, 
interpretation of recursive datatypes within the scope 
of a recursive structure binding, rather than the more 
familiar nominal, or opaque, interpretation used in Stan- 
dard ML. In type-theoretic terms the rds ascribed to 
List is tantamount to a signature that transparently de- 
fines the type t to be the underlying iso-recursive type 
of the recursive datatype. We note, however, that this 
interpretation can be limited to the recursive structure 
binding itself, and need not propagated into the subse- 
quent scope of the binding: the elaborator may “seal” 
the structure with an opaque signature hiding the im- 
plementation type of List. t after the binding has been 
processed. 

The abstract syntax example may be handled sim- 
ilarly to the list example, as shown below. The recur- 
sively dependent signatures ascribed to Expr and Decl 
allow Decl .make-val’s second argument to be given the 
type Expr.exp, and under the transparent interpreta- 
tion of datatypes, exp = Expr. exp holds within the 
scope of exp. Consequently, the call to Decl.make-val 
is type correct. 

structure ret Expr :> 
sig 

datatype exp = 

vaZS:-~[ I & -> exp 
val make-let-val : 

identifier * exp * exp -> exp 

end = 
struct 

datatype exp = LET of Decl .dec * exp I . . . 

fun make-let (d : Decl.dec, e : exp) = 
LET (d, e) 

fun make-let-val (id, el : exp, e2 : exp) = 
let val d = Decl.VAL (id, el) 

(* typechecks, since exp = Expr.exp *) 
in 

LET (d, e2) 
end 

end 
end Decl :> 

sig 
iatatype dec = 

VAL of identifier * -1 I . . . 
val make-val : 

identifier * (ExDr.exDI -> dec 

end = struct . . . end 

In each of these examples, the recursively dependent 
signatures used were fully transparent, in the sense that 
every type component was given by an explicit type def- 
inition. This was necessary in order to make the given 
examples typecheck. More generally, fully transparent 
rds’s provide optimal propagation of type information, 
thereby maximizing the set of programs that can be 
typechecked. Moreover, we will see in Section 4.2 that 
in order to phase-split recursively dependent signatures, 
it is necessary to require full transparency of all rds’s, 
and to require a contractiveness condition of them as 
well In Section 5.1 we illustrate how the elaborator 
can ensure that these conditions are satisfied. 

4.1 Functorr and Separate Compilation 

In the preceding abstract syntax example, the mutually 
recursive modules Expr and Decl were compiled simul- 
taneously in a single recursive definition. In practice, 
however, it is important for it to be possible to compile 
each mutually recursive module separately [7j. In the 
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absence of separate compilation, the structuring of code 
as mutually recursive module definitions would often be 
a largely cosmetic exercise. 

One may separately compile mutually recursive 
modules by rewriting them as closed functors and then 
gluing those functors together by instantiating them in 
a recursive structure binding. Each closed functor may 
then be separately compiled. However, it is instructive 
to examine the details, as a naive attempt to do so runs 
afoul of the opacity problem once again. This problem 
is demonstrated by the following functorized version of 
the abstract syntax example: 

structure ret Expr :> sig . . . end = 
ExprFun (Expr, Decl) 

and Decl :> sig . . . end = 
DeclFun (Expr, Decl) 

functor ExprFun (structure Expr : EXPR 
structure Decl : DECL) = 

. . . as above . . . 

functor DeclFun (structure Expr : EXPR 
structure Decl : DECL) = 

. . . as above . . . 

When defined in this manner, ExprFun does not type- 
check because the arguments Expr and Decl are given 
opaque signatures, causing exactly the same problem as 
in Section 3.1. To make this work, we must use recur- 
sively dependent signatures for the functor’s parame- 
ters: 

functor ExprFun 
(structure ret Expr : 

sig 
datatype exp = 

LET of Decl.Dec * exp I . . . 

end 
and Decl : sig . . . end) = 

. . . as above . . . 

This example now reveals an important limitation 
on the degree of separate compilation that is possible. 
This version of the functor typechecks and may be com- 
piled independently, but in order to make it typecheck, 
we have been forced to provide a recursively dependent 
signature for both Expr and Decl, thereby specifying all 
the type components of the other module Decl. Hence 
we observe that the code may be independently com- 
piled, but in some sense the types may not, since they 
must be kept consistent among both mutually recursive 
components. 

This is not a frivolous restriction; it is a simple con- 
sequence of supplying enough type information to al- 
low each module to typecheck. However, the restric- 
tion is stronger than necessary in one regard: we re- 
quire that rds’s be fully transparent, but it is not al- 
ways necessary to know the definitions of all the type 
components of a mutually recursive module (though it 
was in the abstract syntax example). Therefore we may 
gain some additional expressiveness by relaxing the full 
transparency requirement of rds’s. We discuss how to 
do this in Section 5.1. 

4.2 Formalization of Recursively Dependent Signa- 
tures 

The addition of recursively dependent signatures to the 
phase distinction calculus is performed in two stages. 
First, we extend the syntax of signatures with the recur- 
sively dependent form, which we write pa.S, and extend 
the signature formation and equivalence rules with rules 
governing this new form. We also extend the module 
formation rules to include introductory and eliminatory 
rules for recursively dependent signatures. Second, we 
show that this enrichment of the structure calculus may 
be interpreted into the original structure calculus (over 
the extended core language described in Section 2) by 
exhibiting an equation between rds’s and ordinary sig- 
natures. 

Informally, the recursively dependent signature pa.S 
contains those modules M that belong to S where s may 
appear free in S and stands for M. In other words, M 
belongs to pa.S when M belongs to S[M/a]. Formally, 
rds’s adhere to the following introductory and elimina- 
tory rules: 

r k M : S[M/a] r I- p3.s sig l- I- M : pa.S 

I? i- M : pa.S r‘ I- M : S[M/a] 

As discussed previously, in the rds pa.S we require that 
the static component of S be fully transparent, that 
is, that it completely specify the identity of its static 
component using singleton kinds. Thus, in order for an 
rds pa.S to be well-formed, S must be fully transparent 
and well-formed under the assumption that a has signa- 
ture S’, where S’ is obtained from S by stripping out 
the singleton kinds specifying the identity of the static 
component. Formally, rds’s have the following forma- 
tion rule:* 

rt- s sig r+ t s] t- c -1 K 
qS : q I [Ly:5(c : K),B] sig 
r t- ps.[a5(c : K), u] ig (i!::;;:,;;I) 

The third subgoal is the contractiveness condition al- 
luded to previously. This may be seen as part of the full 
transparency requirement, since if c is noncontractive in 
s, then it is just retelling a, and provides no useful infor- 
mation. Both the full transparency and contractiveness 
conditions are necessary in order to interpret rds’s into 
the basic structure calculus, as we will see in a moment. 

As with the recursive modules of Section 3, we wish 
to reduce recursively dependent signatures to primitive 
constructs of the structure formalism. We do this by 
wrapping the compile-time component of the rds in a 
fixed point expression, and by redirecting recursive ref- 
erences in the run-time component: 

ps.[cu:b(c(Fs’sts) : K), b(ct, Fst a)] 

[a5(aP:n.c(P)I : K), u(c+J)] 

In the second highlighted fragment, recursive references 
using Fsts are redirected to use cr. The interesting 
part is the first highlighted fragment: Suppose [c’,e] 

aRecall that we consider Fst 8 to be a variable and allow sub- 
stitution for it. 
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r I- K: kind I’[p : K] i- S(C : K) kind l?p t K] !- c 4 rc I$ : rc] I- u[a/Fsts] type 
r t- ps.[~5(~[m s/p] : K), U] = [ccs(~~x.~ : K), +/i+t s]] 3ig h A 8 s;r Dam(r)) 

Figure 5: Phase-Splitting Recursively Dependent Signatures 

is a prospective member of the rds on the left. Since 
Fst [c’, e] (so to speak) is c’, the rds dictates that c’ have 
kind S(c(c’) : IC), and consequently that c’ = c(c’) : IC. 
Therefore, c’ may be taken to be @:~.c(/3), as provided 
by the first highlighted fragment. 

This definition makes clear the need for full trans- 
parency and contractiveness of rds’s. When translated 
into the structure calculus, an rds specifies its static 
component to be @:K.c(~), as above. To extract the 
necessary constructor c, the rds must be fully transpar- 
ent. Furthermore, c(p) must be contractive in p, or else 
the specified static component is ill-formed. 

The definition is formalized in the type theory by the 
equational rule in Figure 5. As in Section 3, this rule 
illustrates that recursively dependent signatures are al- 
ready present in the underlying calculus. In particular, 
the introductory and eliminatory rules given above fol- 
low from the definition and need not appear as primitive 
rules. 

4.3 Opacity Revisited 

The phase-splitting rule for recursively dependent sig- 
natures reveals an interesting fact: of the two forms 
of recursive dependency, static-on-static (i.e., types on 
types) and dynamic-on-static (i.e., terms on types), 
only static-on-static dependencies are essentially recur- 
sive (as shown in the first highlighted fragment above). 
In contrast, dynamic-on-static dependencies were re- 
solved without recursion (in the second fragment), sim- 
ply by redirecting them from the recursive variable 
(Fst s) to the variable standing for the signature’s static 
component (o). Thus, dynamic-on-static dependencies 
are not truly recursive at all. (In fact, such dependencies 
would never arise when programming in a fully phase- 
split style [ll].) 

Is it possible to program with only dynamic-on- 
static dependencies and thereby largely dispense with 
recursively dependent signatures? To some degree, 
yes. (This is the expressiveness provided by Flatt and 
Felleisen’s “units” [S].) Recall the abstract syntax ex- 
ample as corrected using a recursively dependent signa- 
ture. That example used static-on-static dependencies 
in the specifications of exp and dec, and used dynamic- 
on-static dependencies in the specifications of makelet 
and make-val. The dependency of dec on exp was used 
in makelet-val when constructing a dec (named d) 
from an identifier and an exp. However, the need to 
know dec’s specification in terms of exp can be elimi- 
nated by instead using the function make-val, which is 
specified by a dynamic-on-static dependency. The cost 
of this is that one must incur a function call whenever 
going between exp and dec, and such function calls can- 
not be safely inlined without using static-on-static de- 
pendency information. 

This is an instance of the well-known fact that one 

can always program opaquely (i.e., without any type 
sharing information) if one is willing to incur mediat- 
ing function calls between types that are actually equal. 
Tools for supplying type equality information, such as 
sharing [15], translucent sums [9,13], and recursively de- 
pendent signatures, serve only to improve performance. 

5 External Language Issues 

5.1 Elaboration of Recursively Dependent Signatures 

As discussed previously, the internal language requires 
that all recursively dependent signatures be fully trans- 
parent and contractive in their static component. In 
an external language, however, this requirement can be 
burdensome to satisfy. Therefore, we would like to re- 
move that requirement from the external language, and 
instead have the compiler satisfy the requirement as it 
elaborate external code into the internal language. 

In the case of a recursive module definition, it is 
easy for the elaborator to supply any omitted type def- 
initions, because it may inspect the actual module to 
discover the omitted information. However, as we saw 
in Section 4.1, it is important to allow rds’s as signa- 
tures for functor arguments. In such cases there is no 
particular module to inspect for the missing informa- 
tion, so if the elaborator is to rewrite such an rds to be 
transparent, it must do so without supplying additional 
information. 

Given a prospective rds that fails to be fully trans- 
parent, the elaborator may transform it to an isomor- 
phic signature that is permitted by naming any abstract 
types within the rds and hoisting them out. (A similar 
device is used by the generative stamps in the Definition 
of Standard ML [16].) For example, the signature 

ret S : sig 
type t 
type u = s.u -> t 

end 

can be made permissible by introducing a type defini- 
tion for t setting it equal to an abstract type that is 
defined outside the rds. The resulting signature is per- 
missible because the rds, which now lies within an outer 
signature, is fully transparent: 

sig 
type t’ 
structure ret S : 

sig 
type t = t’ 
type u = S.u -> t 

end 
end 

Recall that we also require that recursively depen- 
dent signatures be contractive. In most cases, the elab- 
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orator can transform signatures to satisfy this require- 
ment in the same manner as to satisfy transparency. For 
example, consider the noncontractive signature: 

ret S : sig 
type t = S.t 
type u = S.u -> t 

end 

Note that the signature does not provide any informa- 
tion as to the identity of t (except that it is equal to 
itself). In this case, t is essentially abstract, as it was 
in the previous example, so the signature can be trans- 
formed to a permissible one exactly as before. 

It should be noted that this technique can fail in the 
presence of unknown type constructors. Suppose f is 
an unknown constructor with kind T + T and consider 
the signature: 

ret S : sig 
type t = S.t f 
type u = S.u -> t 

end 

In this signature it is not clear whether or not t is ab- 
stract. If f were the identity, then this signature would 
reduce to the previous example, and t could be hoisted. 
On the other hand, if f were, say, Xa:T.int + (Y, then 
t would not be abstract and it would incorrect to hoist 
t, and indeed the signature would be properly contrac- 
tive. The fact that f is unknown stymies any attempt 
to resolve this situation. 

5.2 Typechecking 

An important problem in a practical implementation 
is typechecking of recursive modules. Suppose a type- 
checker is presented with a recursive module definition: 

structure ret A : ASIG(A) = 
struct . . . body . . . end 

In terms of the external language, an appealing type- 
checking strategy is to check first that the rds ps.ASIG(s) 
is well-formed, and second that the body of the struc- 
ture definition has signature ASIG(A) under the assump- 
tion that A does. However, it is not immediately clear 
that this strategy is sound or complete, since the type 
theory requires (instead of the second condition above) 
that the body have signature ps.ASIG(s) under the as- 
sumption that A does. 

We wish to show that these two typechecking strate- 
gies are equivalent. The conditions on the recursive vti- 
able A are certainly equivalent, using the introductory 
and eliminatory rules for rds’s. To show the conditions 
on the body to be equivalent, we observe that the signa- 
tures ASIG(A) and ps.ASIG(s) are equal whenever A has 
signature ps.ASIG(s). 

Suppose ps.S(s) is a well-formed rds, and suppose 
that the variable s is given that signature. Then (for 
some c, K and 0): 

S(s) = [cr:5(c(Fst s) : K), a(Fd s)] 
= [a:s(c(&kc(p)) : K), a(pp:r;.c(p))] 
= [a:5(/Jp:bLc(p) : K), a(pp:K.c(p))] 
= [cr:s(/Jp:K.c(p) : K), u(a)] 
= ps.S(s) 

r t- c = c’[c/a] : K qa j- K] k c’ J. K 
r k c = pcr:IE.c’ : K 

Figure 6: Bisimilarity 

That S(s) has the form given in the first line follows 
from the well-formedness of ps.S(s); the second line 
follows since s’s signature and phase-splitting dictate 
that Fst s = /@XC(P); the third and fourth lines fol- 
low by equational reasoning using recursive constructors 
and singleton kinds; and the last follows by the phase- 
splitting rule. 

Constructor equality With or without this external- 
level typechecking strategy, one significant problem for 
typechecking remains: the typechecker must be able to 
determine whether two constructors are equal. This 
problem is made difficult by singleton kinds and by equi- 
recursive constructors. At this time neither problem is 
known to be decidable, although algorithms exist for 
singleton kinds that work well in practice. 

For equi-recursive constructors, Amadio and 
Cardelli [l] give an algorithm for checking equality at 
kind type, but this algorithm does not extend to higher 
kinds. Some recent work suggests that the problem 
may be decidable at higher kinds as well: Solomon [22] 
showed in 1978 that type equality with a somewhat 
similar notion of recursive type could be reduced 
to equivalence of deterministic pushdown automata, 
which was recently shown decidable by SCnizergues [17], 
though not by a very practical algorithm. 

These two problems remain the main outstanding is- 
sues confronting a practical implementation of recursive 
modules. 

5.3 Equi- versus Iso-recursive Constructors 

Given the difficulty of typechecking in the presence 
of equi-recursive constructors, a natural question is 
whether the reliance on equ&ecursive constructors is es- 
sential for supporting recursive modules. (For example, 
Duggan and Sourelis’s formalism does not rely on this 
form of recursive types.) We conjecture that it is not es- 
sential, based on the following observations. Under the 
standard type-theoretic interpretation of ML (for exam- 
ple, Harper and Mitchell [lo]), the implementation of a 
recursive datatype is an iso-recursive type. (We will 
write iso-recursive types as p-c~.c.) If we restrict recur- 
sive modules to datatypes (as in Duggan and Sourelis’ 
formalism), and adopt the “transparent” interpretation 
outlined in Section 4, then equi-recursive types are com- 
pletely eliminable by the translation into the underlying 
structure calculus, provided that we adopt Shao’s equa- 
tion for iso-recursive types: 

p,a.c(a) = pra.C(p~a.C(a)) 

This equation was introduced by Shao [19] in his FLINT 
formalism in order to support the compilation of Stan- 
dard ML. It is also discussed by Crary et al. [5], who 
argue that this equation is already essential for efficient 
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Shao’s equation += contractiveness 

r I- P&.C(p&3) = P4.C(~l,P) r-b t Tl!- cId.C(~,P) -4 

r b p&.c(p,P) = pa:T.p,P.c(a,P) : T 

Figure 7: Elimination of Equi-Recursive Types 

compilation of Standard ML’s opaque datatypes, even 
in the absence of recursive modules. 

The relevance of Shao’s equation to the elimination 
of equi-recursive types is based on the following observa- 
tion. After translation into the pure structure calculus, 
datatypes in the body of a recursive module definition 
have implementation types of the form 

for some constructor c, where a results from recur- 
sion via recursive modules and p results from ordi- 
nary datatype recursion. By invoking a bisimilarity rule 
for equi-recursive types (Figure 6) and applying Shao’s 
equation, as shown in Figure 7, we may prove that this 
type is equivalent to the type 

which is a purely iso-recursive type. 
This observation sheds light on the nature of Duggan 

and Sourelis’s restriction on the recursively defined type 
components of a mixin module to datatypes, which are 
implicitly iso-recursive. Strictly speaking, this restric- 
tion is not necessary, but if it were to be adopted, it 
would, by the observation above, allow the elimination 
of equi-recursive types from the internal language of a 
type-based compiler for ML. 

5.4 Transparent Signature Ascription 

Transparent signature ascription raises significant issues 
for the design of an external language with recursive 
modules. In Standard ML it is common practice to 
write structure declarations in the form 

structure S : SIG = 
struct type t=int . . . end 

where SIG specifies, but does not define, a type compo- 
nent t. The elaborator processes the right-hand side, 
extracting the binding of t, and implicitly propagating 
it to the signature SIG. In effect, the binding is made 
opaque, but with an augmented signature containing 
additional defining equations for types, as follows: 

structure S :> SIG where type t=int = 
struct type t=int . . . end 

It is natural to consider whether transparent ascription 
may be extended to recursive module bindings. The 
difficulty is that the right-hand side of the binding can 
involve references to S itself. As we have seen, the code 
on the right cannot be type-checked in the absence of 
equations for the type components of the module. One 
approach to this problem is to adopt a two-pass elabo- 
ration process. In the first pass the right-hand side is 

(bisimilarity ) 

processed to extract the type information that is to be 
added to the ascribed signature. In the second pass, the 
augmented, fully-transparent signature can be used to 
elaborate the run-time parts of the right-hand to com- 
plete elaboration. 

A related question is whether an ascribed signature 
may be omitted entirely in the recursive case. Here we 
face the difficulty that it is not even apparent what are 
the type components of the recursively-defined struc- 
ture, let alone what are their definitions. To recover 
this information would seem to require the kind of 
pre-elaboration used in the SML/NJ Compilation Man- 
ager [3], whereby the defined components of a module 
are determined before processing begins. 

6 Conclusions 

Purely hierarchical module systems, such as the Stan- 
dard ML module system, may be criticized on the 
grounds that they lack adequate support for cyclic de- 
pendencies among components. Several authors (in- 
cluding Duggan and Sourelis [6, 71 and Flatt and 
Felleisen [S]) have proposed module systems that better 
support such cyclic dependencies among units. With 
at least two different proposals for recursive modules in 
hand, it is natural to ask “what is a recursive module?” 
We provide an answer to this question in the form of 
a type-theoretic analysis of recursive modules based on 
the “phase distinction” calculus of higher-order mod- 
ules [9]. 

We propose an extension of the phase distinction cal- 
culus with a new form of recursive module and a new 
form of signature, called a recursively dependent signa- 
ture. Following the paradigm of the phase distinction 
interpretation of higher-order modules, we demonstrate 
the sensibility of this extension by giving an interpreta- 
tion of it into a pure calculus of structures (without ex- 
plicit recursive module constructs). This interpretation 
demonstrates that in a precise sense, recursive modules 
are already present in the pure structure calculus. 

To make these ideas practical more work remains to 
be done. It is important to demonstrate that typecheck- 
ing is decidable in this framework. The central issue is 
decidability of type equality in the presence of singleton 
kinds and equi-recursive constructors of higher kind. It 
is also important to consider a dynamic semantics for 
the extended language and to demonstrate the sound- 
ness of the type system for this dynamic semantics. 

Acknowledgements 

We would like to thank Matthias Felleisen, Matthew 
Flatt, Xavier Leroy, David MacQueen, Zhong Shao, and 
the anonymous referees for many helpful comments. 

59 



References [I71 

ill 

PI 

[31 

141 

[51 

k31 

171 

[81 

PI 

WJI 

Pll 

WI 

1131 

1141 

1151 

[161 

Roberto Amadio and Luca Cardelli. Subtypingrecursive 
types. ACM TOPLAS, 15(4):575+%1, 1993. 

Davide Ancona and Elena Zucca. An algebra of mixin 
modules. In F. Parisi-Presicce, editor, WADT ‘97 12th 
Workshop on Algebraic Development Techniques - Se- 
lected Papers, volume 1376 of Lecture Notes in Com- 
puter Science, pages 92-106, Berlin, 1997. Springer Ver- 
lag. 

Matthias Blume. Hierarchical Modularity and Inter- 
module Optimization. PhD thesis, Princeton Univer- 
sity, Department of Computer Science, Princeton, New 
Jersey, November 1997. 

Luca Cardelli. Phase distinctions in type theory. Un- 
published manuscript. 

Karl Crary, Robert Harper, Perry Cheng, Leaf Petersen, 
and Chris Stone. Transparent and opaque interpreta- 
tions of datatypes. Technical Report CMU-CS-98-177, 
Carnegie Mellon University, School of Computer Sci- 
ence, November 1998. 

Dominic Duggan and Constantinos Sourelis. Mixin 
modules. In 1996 ACM SIGPLAN International Con- 
ference on Functional Programming, pages 262-273, 
Philadelphia, Pennsylvania, June 1996. 

Dominic Duggan and Constantinos Sourelis. Parameter- 
ized modules, recursive modules, and mixin modules. In 
1998 ACM SIGPLAN Workshop on ML, pages 87-96, 
Baltimore, Maryland, September 1998. 

Matthew Flatt and Matthias Felleisen. Units: Cool 
modules for HOT languages. In 1998 ACM SIGPLAN 
Conference on Programming Language Design and Im- 
plementation, pages 236-248, Montreal, Canada, June 
1998. 

Robert Harper and Mark Lillibridge. A type-theoretic 
approach to higher-order modules with sharing. In 
Twenty-First ACM Symposium on Principles of Pro- 
gramming Languages, pages 123-137, Portland, Ore- 
gon, January 1994. 

Robert Harper and John C. Mitchell. On the type 
structure of Standard ML. ACM Transactions on 
Programming Languages and Systems, 15(2):211-252, 
April 1993. 

Robert Harper, John C. Mitchell, and Eugenio Moggi. 
Higher-order modules and the phase distinction. In 
Seventeenth ACM Symposium on Principles of Pro- 
gramming Languages, San Francisco, California, Jan- 
uary 1990. 

Robert Harper and Chris Stone. A type-theoretic in- 
terpretation of Standard ML. In Proof, Language and 
Interaction: Essays in Honour of Robin Milner. The 
MIT Press, 1998. To appear. 

Xavier Leroy. Manifest types, modules, and separate 
compilation. In Proceedings of the Twenty-first Annual 
ACM Symposium on Principles of Programming Lan- 
guages, pages 109-122, Portland, Oregon, January 1994. 

Xavier Leroy. The Objective Cam1 system: 
Documentation and user’s guide. Available at 
http://pauillac.inria.fr/ocaml/htmlaan/.,1996. 

David MacQueen. Modules for Standard ML. In 1984 
ACM Conference on Lisp and Functional Program- 
ming, pages 198-207, Austin, Texas, August 1984. 

Robin Milner, Mads Tofte, Robert Harper, and David 
MacQueen. The Definition of Standard ML (Revised). 
MIT Press, 1997. 

I181 

[191 

PO1 

WI 

WI 

1231 

A 

G6raud SCnizergues. The equivalence problem for deter- 
ministic pushdown automata is decidable. In Twenty- 
Fourth International Colloquium on Automata, Lan- 
9uwe4 and Programming, volume 1256 of Lecture 
Notes in Computer Science, pages 671-681, Bologna, 
Italy, July 1997. Springer-Verlag. 

Zhong Shao. An overview of the FLINT/ML compiler. 
In Proceedings of the 1997 ACM SIGPLAN Workshop 
on Types in Compilation, Kyoto, Japan, June 1997. 

Zhong Shao. Equality of recursive types. (Private com- 
munication), September 1998. 

Zhong Shao. Typed cross-module compilation. In 1998 
ACM SIGPLAN International Conference on Func- 
tional PFogramming, pages 141-152, Baltimore, Mary- 
land, September 1998. 

Emin Giin Sirer, Marc E. Fiucynski, Przemyslaw 
Pardyak, and Brian N. Bershad. Safe dynamic link- 
ing in an extensible operating system. In Workshop 
on Compiler Support for System Software, Tucson, Ari- 
zona, February 1996. 

Marvin Solomon. Type definitions with parameters (ex- 
tended abstract). In Fifth ACM Symposium on Princi- 
ples of Programming Languages, pages 3138, Tucson, 
Arizona, January 1978. 

David Tarditi, Greg Morrisett, Perry Cheng, Chris 
Stone, Robert Harper, and Peter Lee. TIL: A type- 
directed optimizing compiler for ML. In ACM SIG- 
PLAN Conference on Programming Language De- 
sign and Implementation, pages 181-192, Philadelphia, 
Pennsylvania, May 1996. 

Type Theory 

A.1 Core Calculus 

II-l-n kind] 

r t- c : Type 

r I- T kind r I- 1 kind r I- 5(c) kind 

1 I- I- nl = n2 kind 1 

r k T = T kind r’ I- I= 1 kind 

r I- cl = c2 : Type 

r k B(Q) = 5(c2) kind 

r t- sE1 = K{ kind 
r[a : nl] I- n2 = 6; kind 

r I- lJa:nl .n2 = rI~a:,+$ .K; kind 
(a ~2 DON’)) 

r I- IQ = s: kind 
r[o : nl] I- n2 = 6; kind 

r k CCX:~~ .n2 = &Y:K; .K; kind 
(a e Dam(r)) 
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I? I- T 5 T kind I? I- 1 5 1 kind 

r I- cl = c2 : Type ri-c:T 
I? I- S(Q) 5 S(Q) kind I? t 5(c) 5 T kind 

r I- 6; 5 IE~ kind 
r[a : K;] I- n2 < tc; kind 

r[a : tq] I- n2 kind 

I? I- IIcz:K~ .KZ 5 IIa:n; .K; kind 
(a 4 Dom(W 

Irt-C:Kl 

m t-w rl-a:n (d-7 - rk*:l 

rkcl:na:nl.n2 rkc2:nI 
rt- clc2 : n2[c2/a1 

r t- cz : n2[cI/a] 
r[a:4 t- ~2 khf 

rk (CIrC2) : ~~:~l.~z 
(~ ~ Dam(r)) 

rt- c: knl.n2 r b c: xa:nl.n2 
rt-sl(c):nl r t- ~~(4 : fi2h w4 

rl-q:T Jl’i-c2:T rl-q:T rl-cz:T 
rl-clAq:T rkcl xcz:T 

r I- c : 6’ r t- 6’ < n kind 
rkczn 

r t- ~~~~~~~~ : na:nl.K2 
rk c: rb:~~.~~ 

(a not free in c) 

r t- (nI(C),ff2(c)) :ccwc~.~~ 
rk c: xa:nl.n2 

iY[a : It] if [B] is [a t 8c] 

F’[Bl otherwise 

I’ I- nl kind I’[, : nl] t- c J. ~2 

r I- Xcwc~ .c 1 na:tcl.nz (a 4 Dam(r)) 

rtc, ~~~~~~~~~ rkc24nl 
r t- clc2 4 fi2hb1 

r t- c2 4. ~2kli4 
r[a : ~1 I- 62 kind 

rt- (ClrC2) ~~wc~.K~ 
(a ~ Dam(r)) 

r t- c 1 Ca:nl .Ic2 r i- c~~a:nl.n2 
rf-+)hl r t- r2 (4 4 ~~t7b kv4 

i=Fcl:T i=bc2:T FFcl:T i=‘t-c2:T 

ri-cl~cz$T rl-ClXC2J.T 

r!-ccJ.d rl-fi’<n kind rFc=c’:n rl-cc’J.n 

rt-c4n rkcJn 

-1 

rkc:% rkc2=cI:K 
rtcEczn rkcI=c2:n 

rkCl=C2:n rbc2=C3:n 
rt--c 1=c3:n 

rk nl = TV: kind r[a : nl] I- c = C' : n2 

r k k:nI.c= A~:~;.~': rrcu:nl.K2 (a e Do+?) 

rk c1 = c; : na:nl.n2 rb c2 = c; : nI 
r b clcz = c;c; : n2[c2/a] 

rI-cl=c; : K.1 
r k c2 = C; : Q[c~/~] 

I?[& : Q] I- ~2 kind 

rf- (cl,c2) = (c;l~;j : ~Y:K~.K~ 
b e Do4’)) 

rkc=c':Ca:61.62 
r b A1tC) = ~~(2) : nl 

r k c = d : ~~~~~~~~ 
r F T2(c) = ~~(2) : ~c~[v(c)/c~ 

rtcl=c; :T rI-cz=4:T 

r k c1 2 c2 = c; 2 c; : T 

rkclzc: :T rtc2=4:T 
r f- Cl x c2 = c; x c; : T 
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i+ in] t ~4% 
l?[a t K] t c' 1 n 

r-t- pa:K.c = p~:~~.c~ : K (a e Dam(r)) 

rtul xu2 = ui x ui type 

r-t- n = K' qa :t~] I- D = 0' type 

r b v~:K.~ = Va:n’.a’ type (a e Dam(r)) 

r t- c1 = c2 : d I- t tc’ 5 n kind 

rbccl=c2:6 

r k- c :$(c') rkc:i 
rkczc':T rkc=*:i 

r k c1 : nl qo: 611 tc2 :s2 
r k (k~:~l.~~)~l = c~[c~/cY]: K~[cI/~ (a e DOW)) 

jrte:ul 

G (X : 0 E r) rl-l:a w-r) - rt*:i 

r k u type rp:u]t eJ-a 
r t Xx:u.e:u --f u' (X !Z Dam(r)) 

rtg type ql:u]t e:o 
rt h7.e: D --L d (x @ D-(r)) 

r t el :U+U rte2:u 
rl-elez :u’ 

ri-el:~--Id rl-ee;l:u 

l?telez :d 

rt el : 6, rt e2 :u2 ri-e:al xu2 

rt(el,ez):cq xu2 r t K;(e): Ui 
(i = 1,2) 

r i- C: na:~l.~2 
rt (x~:K~.~~) = c :rhnl.~2 

(a not free in c) 

r I- Cl : ICI r k c2 : K2 
r t .1ri((cl,c2))= c; : fci 

(i = 1,2) 

rk C: ~PQ.K~ 
r t- (H1(C),AZ(C)) = c: Ccml.IEZ 

rtK kind rpt6]tcan 
r t pLa:~.~ = c[(p~:~.c)/a] : K (a e Dam(r)) 

r t c = cq~/a] : n rya tn] t C' J-IC 
r k c= pa:d : n (0 e Dam(r)) 

l?kc:T r b cl type r to2 type 

r t- c type rt ol 3 u2 type 

r t o1 type r b b2 type r k u1 type r +a2 type 

r t cl A 62 type r t u1 x u2 type 

r I- K kind r[a : K] I- u type 

r t Vff:t~ type 
(0 St DOG’)) 

r I- u1 = u2 type 

r t 0 type rt-a2 = ul type 

r t u = u type r bual = u2 type 

r t o1 = u2 type r i- u2 = ~3 type 

r t UI = c3 type 

rtc= c': T 
r t c = C' type 

rtal = 0; type rt02 = u; type 

r t cl -b u2 = U; + U: type 

r I- n kind I’[& : IC] I- e J-U 

r t Aaxe :Va:n.u (a fl Dam(r)) 

r t e:va:n.a r k C: K 
r t e[c] : u[c/a] 

r FU type r[zfa]te.4g 
r t jix(x:u.e) :a (a ~2 Do&T) 

rt- e:d rtu = 6' type 
rt-e:u 

rtsJO txruer) - rt*Ji 

rt 0 type qz:~]k eJ.u 
r t Xx:u.e J. 0 3 u’ 

(X sl DOW)) 

r t 0 type r[33:g]t e :(I 
r t Xx:u.e .I. u 2 u’ 

(X t! Do+)) 

ri-e14ul ri-eez402 
r~(el,e2)lalxo2 

ytex;pe; ;z (i = 172) 

r t PC kind r[a : K] I- e 1 u 

I? I- Aaxe .j. VWLU 
(a sf Dam(r)) 

rteJ.va:n.0 rkc:6 
r I- +I L 444 

rku type qxta]t e&u 
r I- jix(x:u.e) -1 u 

(X e Do43) 

rt e3. U’ rt 0 = 0' type rtul = u; type rtu2 = 01 type 
rt- u1 2 u2 = U: - ui type rtelo 
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A.2 Structure Calculus 

[IYC:Kl 

r t s = [cm, u] aig 

l-‘l-Fata:n (3 t s E q 

r k s = [CS,U] 3ig 
l- I- Snd s : a[Fat s/a] 

r f- s = [w,u] 3ig 
r I- Snd s : @at a/a] 

[WJ.al 

r k s = [cKK,~] 3ig 
r I- Snd s 4 a[Fat s/o] 

ri?Gq 

(a : s E I-) 

(8 t s E 0 

ta: s E r) 

r I- n kind r[a : tc] I- Q type 

r-i- pzn,O] .9ig (a e Dam(r)) 

[FFXZZZl 

I-l-s aig r b s2 = s1 3;s 
rcs=s 3ig rbs, =s2 3ig 

r i- s1 = s, aig r k s2 = s3 3;s 
r k s1 = s3 3ig 

r + 6 = IC’ kind r[a : n] k u = u’ type 

r i- [w,~] = [cw',u~ 5ig (a G DomU’) 

(-1 

r i- s1 = s2 aig 
r k s1 5 s, aig 

r t- s1 5 s2 8ig r I- s2 2 s3 aig 

rks,ss, sig 

r I- IG < K’ kind 
qa : K] I- 0 = 0' type 

rp :d]l- 0' type 

r f- [a:K,u] 5 [cw?,u~ hg (a eDom(r)) 

r k M : s r k s L: s 3ig 
rI-M:S 

r k e J. u[c/a] 
ricr :K] i- u type 

r i- [c,~] 4 [wc,~] (a 61 Do43 

r I- M&S’ r b S' 5 s aig 
rl-ML.5 

rkM’J.S PI-M=M’:S 

rkM&S 

ri-M:S I-i-M2 =M1:S 
rl-M=M:S ri-Ml =M2:S 

l-‘l-Ml=M2:S I-!-Mz=Ms:S 
I’!-Ml=Ms:S 

rt- c=c':K 
I? I- e : u[c/cr] 

q. :n] k 0 type 

r k [c, e] = [c',e] : [a:n,a] (a 4 Dome’)) 

l-l-Ml= M2 : S’ r I- S 5 S’ aig 

rl-Ml=M2:S 

A.3 Recursive Module Calculus 

jr!-M:S[ 

r[a t q I- M J. S r k S aig 

ri-fiz(da4): s (3 z Dam(r)) 

l-l-Ml =M2:S( 

I’ !- n kind r[a :ri] i-u type 
qat K] I- CJ K qa : K][Z tu] k e 4.0 

r I- fir(a:[ol:n.u].\ciFat s/cu],e[Fat S, Snd s/a,z]l) = 
[a = pa:n.c,fiz(z:u.e)] : [ax, u] 

(a, zc, s tz DomP’)) 

Iri- S aigl 

r b s 3ig rbtswc~ 
qs: .q t- [LY~C: ~c),u] Jig 

r t- ps.[a:5(~: ~c),u] 3ig ($::;::,",;l ) 

I? I- K kind I’[/3 : K] t S(c : K) kind 
r-10 t 4 t- c J K r[a : K] I- +/Fat S] type 

r t- ps.[c&(c[Fat s/p] : n), u] = 
[&(&:n.c : ~),u[a/Fst s]] aig 

(~4 s B! D-03) 
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