
Type Systems for Programming Languages1

(DRAFT)

Robert Harper
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

E-mail: rwh@cs.cmu.edu

WWW: http://www.cs.cmu.edu/~rwh

Spring, 2000

Copyright c© 1995-2000. All rights reserved.

1These are course notes Computer Science 15–814 at Carnegie Mellon University.
This is an incomplete, working draft, not intended for publication. Citations to the
literature are spotty at best; no results presented here should be considered original
unless explicitly stated otherwise. Please do not distribute these notes without the
permission of the author.

ii

Contents

I Type Structure 1

1 Basic Types 3
1.1 Introduction . 3
1.2 Statics . 3
1.3 Dynamics . 4

1.3.1 Contextual Semantics . 4
1.3.2 Evaluation Semantics . 5

1.4 Type Soundness . 7
1.5 References . 8

2 Function and Product Types 9
2.1 Introduction . 9
2.2 Statics . 9
2.3 Dynamics . 10
2.4 Type Soundness . 11
2.5 Termination . 12
2.6 References . 13

3 Sums 15
3.1 Introduction . 15
3.2 Sum Types . 15
3.3 References . 16

4 Subtyping 17
4.1 Introduction . 17
4.2 Subtyping . 17

4.2.1 Subsumption . 18
4.3 Primitive Subtyping . 18
4.4 Tuple Subtyping . 19
4.5 Record Subtyping . 22
4.6 References . 24

iii

5 Variable Types 25
5.1 Introduction . 25
5.2 Variable Types . 25
5.3 Type Definitions . 26
5.4 Constructors, Types, and Kinds 28
5.5 References . 30

6 Recursive Types 31
6.1 Introduction . 31
6.2 Gödel’s T . 31

6.2.1 Statics . 31
6.2.2 Dynamics . 32
6.2.3 Termination . 32

6.3 Mendler’s S . 34
6.4 General Recursive Types . 36
6.5 References . 37

7 Polymorphism 39
7.1 Introduction . 39
7.2 Statics . 39
7.3 Dynamics . 40
7.4 Impredicative Polymorphism . 41

7.4.1 Termination . 42
7.4.2 Definability of Types . 46

7.5 References . 47

8 Abstract Types 49
8.1 Statics . 49
8.2 Dynamics . 50
8.3 Impredicativity . 50
8.4 Dot Notation . 51
8.5 References . 53

9 Higher Kinds 55
9.1 Introduction . 55
9.2 Functional Kinds . 55
9.3 Subtyping and Higher Kinds . 56
9.4 Bounded Quantification and Power Kinds 57
9.5 Singleton Kinds, Dependent Kinds, and Subkinding 59
9.6 References . 59

10 Modularity 61
10.1 Introduction . 61
10.2 A Critique of Some Modularity Mechanisms 68
10.3 A Modules Language . 71

10.3.1 Structures . 72

iv

10.3.2 Module Hierarchies . 76
10.3.3 Parameterized Modules 77

10.4 Second-Class Modules . 79
10.5 Higher-Order Modules . 79
10.6 References . 79

11 Objects 81
11.1 Introduction . 81
11.2 Primitive Objects . 81
11.3 Object Subtyping . 81
11.4 Second-Order Object Types . 81
11.5 References . 81

12 Dynamic Types 83
12.1 Type Dynamic . 83
12.2 Hierarchical Tagging . 83

13 Classes 85
13.1 Introduction . 85
13.2 Public, Private, and Protected 85
13.3 Constructors . 85
13.4 Subtyping and Inheritance . 85
13.5 Dynamic Dispatch . 85
13.6 References . 85

II Computational Effects 87

14 Recursive Functions 89
14.1 Introduction . 89
14.2 Statics . 89
14.3 Dynamics . 90
14.4 Type Soundness . 90
14.5 Compactness . 91
14.6 References . 93

15 Continuations 95
15.1 Introduction . 95
15.2 Statics . 95
15.3 Dynamics . 96
15.4 Soundness . 98
15.5 References . 100

v

16 References 101
16.1 Introduction . 101
16.2 Statics . 101
16.3 Dynamics . 102
16.4 Type System . 102
16.5 Allocation and Collection . 103
16.6 References . 105

17 Exceptions 107
17.1 Introduction . 107
17.2 Statics . 107
17.3 Dynamics . 108
17.4 Exceptions and First-Class Continuations 110
17.5 References . 111

III Implementation 113

18 Type Checking 115
18.1 Introduction . 115
18.2 Type Synthesis . 115
18.3 Definitional Equality . 116
18.4 Subtyping . 118
18.5 Subtyping . 119
18.6 References . 120

19 Type Reconstruction 121
19.1 Introduction . 121
19.2 Type Reconstruction for L→,∀

Ω . 121
19.3 Type Reconstruction as Static Semantics 122
19.4 Reconstruction as Constraint Solving 124

19.4.1 Unification Logic . 124
19.4.2 Constraint Generation . 126

19.5 Reconstruction and Definitions 128
19.6 References . 129

20 Coercion Interpretation of Subtyping 131

21 Named Form 133
21.1 Introduction . 133
21.2 References . 136

22 Continuation-Passing Style 137
22.1 Continuation-Passing Style . 137
22.2 References . 143

23 Closure-Passing Style 145

vi

24 Data Representation 147

25 Garbage Collection 149

IV Models and Logics 151

26 Denotational Semantics 153
26.1 Introduction . 153
26.2 Types as Domains . 153

26.2.1 Denotational Semantics 153
26.2.2 Computational Adequacy 155
26.2.3 Compactness, Revisited 158

26.3 References . 160

27 Inequational Reasoning 161
27.1 Introduction . 161
27.2 Operational Orderings . 161

27.2.1 Kleene Ordering . 162
27.2.2 Contextual Ordering . 163
27.2.3 UCI Ordering . 164
27.2.4 Applicative Ordering . 167
27.2.5 Simulation Ordering . 169
27.2.6 Logical Ordering . 170

27.3 Denotational Ordering . 172
27.4 References . 172

V Background 173

A Inductive Definitions 175
A.1 Introduction . 175
A.2 Inductive and Coinductive Definitions 175
A.3 Admissible and Derivable Rules 177
A.4 References . 178

B Domains 179
B.1 Introduction . 179
B.2 Domains . 179
B.3 References . 181

C Term Rewriting Systems 183
C.1 Introduction . 183
C.2 Abstract Term Rewriting Systems 183

vii

viii

Foreword

These notes were prepared for use in the graduate course Computer Science 15–
814: Type Systems for Programming Languages at Carnegie Mellon University.
Their purpose is to provide a unified account of the role of type theory in
programming language design and implementation. The stress is on the use of
types as a tool for analyzing programming language features and studying their
implementation.

A number of excellent books and articles are available as background reading
for this course. Of particular relevance are Proofs and Types by Jean-Yves
Girard [20], Intuitionistic Type Theory by Per Martin-Löf [33], Semantics of
Programming Languages by Carl Gunter [22], and The Formal Semantics of
Programming Languages by Glynn Winskel [57]. Other sources are mentioned
at the end of each chapter, but no attempt is made to provide a comprehensive
list of sources.

This is the first draft of a planned text on type theory for programming
languages. The author welcomes suggestions and corrections. Please direct
correspondence to rwh@cs.cmu.edu.

The author is grateful to those who have contributed to these notes by
making comments, suggestions, or corrections: Lars Birkedal, Perry Cheng,
Herb Derby, Jürgen Dingel, Matthias Felleisen, Andrzej Filinski, Rajit Manohar,
Greg Morrisett, Chris Stone.

ix

x

Part I

Type Structure

1

Chapter 1

Basic Types

1.1 Introduction

We begin with an extremely simple language of arithmetic and logical expres-
sions to illustrate the main features of the type-theoretic approach to program-
ming language definition. In subsequent chapters we will extend this language
with additional types corresponding to more interesting language features.

1.2 Statics

The abstract syntax of LInt,Bool is defined inductively as follows:

Types τ : : = Int | Bool
Expressions e : : = n | true | false | e1 + e2 | e1− e2 | e1 = e2 |

ifτ e1 then e2 else e3 fi

A typing judgement for LInt,Bool has the form e : τ . The rules for deriving
typing judgements are as follows:

n : Int (n ∈ ω) (t-num)

true : Bool (t-true)

false : Bool (t-false)

e1 : Int e2 : Int
e1 + e2 : Int

(t-plus)

3

e1 : Int e2 : Int
e1− e2 : Int

(t-minus)

e1 : Int e2 : Int
e1 = e2 : Bool

(t-eql)

e1 : Bool e2 : τ e3 : τ
ifτ e1 then e2 else e3 fi : τ

(t-if)

These rules are said to be syntax-directed because at most one rule applies
to a given expression, and that rule is determined by the outermost form of that
expression.

1.3 Dynamics

1.3.1 Contextual Semantics

A contextual semantics is given by a set of values, a set of evaluation contexts,
and a primitive reduction relation. Values are “fully evaluated” expressions.
Evaluation contexts determine the order of evaluation of sub-expressions of a
non-value expression. They are defined as follows:

Values v : : = n | true | false
EvaluationContexts E : : = • | E+ e | v+E | E− e | v−E | E= e | v=E |

ifτ E1 then e2 else e3 fi

An evaluation context is an expression fragment with a designated “hole”, writ-
ten “•”. If E is an evaluation context and e is an expression, then E[e] is the
expression obtained by “filling the hole” in E with the expression e, i.e.the
expression obtained by replacing the occurrence of • in E by e.

The primitive reduction relation defines the behavior of the primitive oper-
ations (“primop’s”) on values:

n1 +n2 ; n1 + n2

n1−n2 ; n1 − n2

n1 =n2 ;

{
true if n1 = n2

false otherwise
ifτ true then e1 else e2 fi ; e1
ifτ false then e1 else e2 fi ; e2

An expression e such that e ; e′ for some e′ is sometimes called a redex, in
which case e′ is called its contractum. We shall occasionally use the metavariable
r to range over redices and c over their contracta.

4

The one-step evaluation relation e 7→ e′ is defined to hold iff e = E[r],
e′ = E[c], and r ; c. The multi-step evaluation relation e 7→∗ e′ is the reflexive
and transitive closure of the one-step evaluation relation. We say that the
expression e evaluates to the value v iff e 7→∗ v.

Lemma 1.1
1. If v is a value, then v = E[e] iff E = • and e = v.

2. If e is not a value, then there is at most one E such that e = E[r] and r
is a redex.

Theorem 1.2 (Determinacy)
For any closed expression e there is at most one value v such that e 7→∗ v.

Exercise 1.3
Structured operational semantics (SOS) is an alternative method of defining
the one-step evaluation in which the “search” for a redex and the actual reduc-
tion steps are defined simultaneously by a direct axiomatization of the one-step
evaluation relation. The general pattern is illustrated by the following rules for
addition:

e1 7→ e′1
e1 + e2 7→ e′1 + e2

(sos-add-l)

e2 7→ e′2
v1 + e2 7→ v1 + e′2

(sos-add-r)

n1 +n2 7→ n1 + n2 (sos-add)

Give a complete definition of the one-step evaluation relation for LInt,Bool using
structured operational semantics, and prove that this relation coincides with the
contextual semantics.

1.3.2 Evaluation Semantics

An evaluation semantics is given by an inductive definition of the evaluation
relation e ⇓ v. The rules for LInt,Bool are as follows:

n ⇓ n (ns-num)

true ⇓ true (ns-true)

false ⇓ false (ns-false)

e1 ⇓ n1 e2 ⇓ n2

e1 + e2 ⇓ n1 + n2

(ns-plus)

5

e1 ⇓ n1 e2 ⇓ n2

e1− e2 ⇓ n1 − n2

(ns-minus)

e1 ⇓ n1 e2 ⇓ n2

e1 = e2 ⇓ true
(n1 = n2) (ns-eql-1)

e1 ⇓ n1 e2 ⇓ n2

e1 = e2 ⇓ false
(n1 6= n2) (ns-eql-2)

e ⇓ true e1 ⇓ v
ifτ e then e1 else e2 fi ⇓ v

(ns-if-1)

e ⇓ false e2 ⇓ v
ifτ e then e1 else e2 fi ⇓ v

(ns-if-2)

Theorem 1.4 (Determinacy)
For any closed expression e there is at most one v such that e ⇓ v.

The evaluation semantics is equivalent to the contextual semantics in the
sense that e ⇓ v iff e 7→∗ v.

Exercise 1.5
Prove the equivalence of the evaluation and contextual semantics for LInt,Bool

by establishing the following two claims:

1. The relation e 7→∗ v is closed under the defining conditions of the ⇓
relation, the smallest relation closed under these conditions. Therefore, if
e ⇓ v, then e 7→∗ v.

2. The ⇓ relation is closed under “head expansion”. That is, if e ⇓ v and
e′ 7→ e, then e′ ⇓ v.

3. If e 7→∗ v, then e ⇓ v.

The proof of equivalence of the contextual and evaluation semantics simpli-
fies the proofs of some useful properties of the dynamic semantics of LInt,Bool.

Exercise 1.6
Prove the following facts about the contextual semantics:

1. If e1 + e2 7→∗ v, then e1 7→∗ v1 and e2 7→∗ v2 for some values v1 and v2.
(A similar property holds of the other primitives of LInt,Bool.)

2. If ifτ e then e1 else e2 fi 7→∗ v, then e 7→∗ v′ for some value v′.

6

1.4 Type Soundness

Lemma 1.7 (Replacement)
If E[e] : τ then there exists τe such that e : τe and E[e′] : τ for every e′ such
that e′ : τe.

Proof: By induction on the derivation of E[e] : τ , making use of the syntax-
directed nature of the rules. �

Lemma 1.8 (Subject Reduction)
If e ; e′ and e : τ , then e′ : τ .

Proof: By inspection of the primitive reduction steps. �

Theorem 1.9 (Preservation)
If e : τ and e 7→ e′, then e′ : τ .

Proof: By Lemmas 1.7 and 1.8. �

Lemma 1.10 (Canonical Forms)
If v : Int, then v = n for some n. If v : Bool, then either v = true or v = false.

Proof: Inspection of the typing rules and the definition of values. �

Theorem 1.11 (Progress)
If e : τ , then either e is a value, or there exists e′ such that e 7→ e′.

Proof: By induction on typing derivations. Let us consider the case e =
e1 + e2; the other cases follow by similar reasoning. Since e : τ , it follows that
τ = Int and e1 : Int and e2 : Int. We proceed by cases on the form of e1
and e2. If both are values, then by the canonical forms lemma e1 = n1 and
e2 = n2 for some n1 and n2. Taking E = •, and e′ = n1 + n2, it follows that
e = E[e] 7→ E[e′] = e′. If e1 is a value and e2 is not, then by the inductive
hypothesis e2 7→ e′2 for some e′2, and hence e2 = E2[r] and e′2 = E2[c]. Taking
E = e1 +E2, we observe that e = E[r] 7→ E[c] = e′. If e1 is not a value, then by
inductive hypothesis there exists E1, r, and c such that e1 = E1[r] 7→ E1[c] = e′1.
Taking E = E1 + e2, we observe that e = E[r] 7→ E[c] = e′. �

The progress theorem (and not the preservation theorem!) is the analogue
of Milner’s soundness theorem for ML, which states that “well-typed programs
cannot go wrong”. In the present setting soundness is expressed more accurately
by “well-typed programs cannot get stuck” — evaluation cannot terminate in
an expression other than a value.

It is difficult to state soundness for evaluation semantics. While it is straight-
forward to prove preservation in the form that if e : τ and e ⇓ v, then v : τ ,

7

it is harder to see what is the appropriate analogue of progress. The typical
approach is to “instrument” the rules to account explicitly for type errors, then
prove that these rules cannot apply in a well-typed program. This approach
is somewhat unsatisfactory in that the instrumentation is ad hoc, and included
only for the sake of a proof. We outline the method in the following exercise.

Exercise 1.12
In this exercise we explore the standard formalization of type soundness in
the setting of evaluation semantics. We begin by introducing the notion of an
answer, the ultimate result of evaluation. For the present purposes answers may
be defined as follows:

Answers a : : = Ok(v) | Wrong

We define a : τ iff a = Ok(v) and v : τ ; thus Wrong is ill-typed.

1. Re-write the evaluation semantics of LInt,Bool as a relation e ⇓ a, where a
is an answer of the form Ok(v) for some value v.

2. Instrument the evaluation semantics of LInt,Bool with rules e ⇓ Wrong
corresponding to “run-time type errors”. For example,

e1 ⇓ Ok(true)
e1 + e2 ⇓ Wrong

(ns-plus-wrong-left)

3. Prove that if e : τ and e ⇓ a, then a : τ . How are rules such as ns-plus-
wrong-left handled?

Exercise 1.13
Consider adding integer division to LInt,Bool. Since division by zero is undefined,
how will you define an operational semantics to handle this case? What happens
to the progress and preservation theorems?

1.5 References

Mitchell’s book [40] is a comprehensive introduction to type systems for pro-
gramming languages, covering operational, denotational, and axiomatic aspects.
Other basic references are Gunter’s book [22] and Winskel’s book [57].

Plotkin’s Aarhus lecture notes on operational semantics [50] contain a thor-
ough account of a wide range of programming language features using structured
operational semantics. The use of evaluation semantics (under the name “nat-
ural semantics”) was popularized by Gilles Kahn [8, 9]. However, Martin-Löf
made earlier use of this approach in his highly influential constructive type
theory [32, 33].

The definition of Standard ML constitutes an extensive experiment in pro-
gramming language specification based on type theory and operational seman-
tics [38, 37].

8

Chapter 2

Function and Product
Types

2.1 Introduction

In this chapter we consider the language L1,×,→ with product and function
types.

2.2 Statics

The abstract syntax of L1,×,→ is given by the following grammar:

Types τ : : = Unit | τ1×τ2 | τ1→τ2
Expressions e : : = x | ∗ | <e1,e2>τ1,τ2 | proj1

τ1,τ2
(e) | proj2

τ1,τ2
(e) |

fun (x:τ1):τ2 in e | appτ1,τ2
(e1,e2)

In the expression fun (x:τ1):τ2 in e the variable x is bound in e. Capture-
avoiding substitution of an expression e for free occurrences of x in an expression
e′, written {e/x}e′, is defined as usual.

A typing judgement for L1,×,→ is a triple of the form Γ ` e : τ , where Γ is a
type assignment, a finite partial function mapping variables to types. We write
Γ[x : τ], where x /∈ dom(Γ), to denote the extension of Γ mapping x to τ and y
to Γ(y).

The rules for deriving typing judgements are as follows:

Γ ` x : Γ(x) (t-var)

Γ ` ∗ : Unit (t-unit)

9

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` <e1,e2>τ1,τ2 : τ1×τ2

(t-pair)

Γ ` e : τ1×τ2
Γ ` proji

τ1,τ2
(e) : τi

(i = 1, 2) (t-proj)

Γ[x:τ1] ` e : τ2
Γ ` fun (x:τ1):τ2 in e : τ1→τ2

(x /∈ dom(Γ)) (t-abs)

Γ ` e1 : τ2→τ Γ ` e2 : τ2
Γ ` appτ1,τ2

(e1,e2) : τ
(t-app)

2.3 Dynamics

The contextual semantics for L1,×,→ is specified by the set of values, the set of
evaluation contexts, and the set of primitive reductions.

Values and evaluation contexts are defined by the following grammar:

Values v : : = x | ∗ | <v1,v2>τ1,τ2 | fun (x:τ1):τ2 in e
Eval Ctxts E : : = • | <E,e>τ1,τ2 | <v,E>τ1,τ2 | proj1

τ1,τ2
(E) |

proj2
τ1,τ2

(E) | appτ1,τ2
(E,e) | appτ1,τ2

(v,E)

A closed value is a value with no free variables.
The primitive reduction relation, e ; e′, for L1,×,→ is defined by the follow-

ing conditions:

proji
τ1,τ2

(<v1,v2>τ1,τ2) ; vi (i = 1, 2)
appτ1,τ2

((fun (x:τ1):τ2 in e),v) ; {v/x}e

The one-step evaluation relation, e 7→ e′, is defined to hold iff e and e′ are
closed expressions such that e = E[e1], e′ = E[e2], and e1 ; e2.

Remark 2.1
Two common variations on the semantics of L1,×,→ are commonly considered.
In the lazy pairing1 variant all pairs of the form <e1,e2>τ1,τ2 are regarded as a
value, without restriction on e1 or e2. In the lazy evaluation,2 or call-by-name,
variant the primitive reduction step for application is

appτ1,τ2
((fun (x:τ1):τ2 in e),e′) ; {e′/x}e.

1This is a misnomer since it does not account for memoization.
2Also a misnomer.

10

Exercise 2.2
Formulate the dynamic semantics of L1,×,→ using evaluation semantics, and
prove that it is equivalent to the contextual semantics.

Lemma 2.3
1. If v is a value, then v = E[e] iff E = • and e = v.

2. If e is not a value, then there is at most one E such that e = E[r] and r
is a redex.

Theorem 2.4 (Determinacy)
For any closed expression e there is at most one value v such that e 7→∗ v.

2.4 Type Soundness

Lemma 2.5 (Substitution)
If Γ[x:τ] ` e : τ ′ and Γ ` v : τ , then Γ ` {v/x}e : τ ′.

Proof: By induction on typing derivations. The limitation to values is not
essential here, but is all that is needed for the development. �

Lemma 2.6 (Replacement)
If ` E[e] : τ then there exists τe such that ` e : τe and ` E[e′] : τ for every e′

such that ` e′ : τe.

Lemma 2.7 (Subject Reduction)
If ` e : τ and e ; e′, then ` e′ : τ .

Theorem 2.8 (Preservation)
If ` e : τ and e 7→ e′, then ` e′ : τ .

Proof: By Lemmas 2.5, 2.6, and 2.7. �

Lemma 2.9 (Canonical Forms)
Suppose that ` v : τ . If τ = Unit, then v = ∗; if τ = τ1×τ2, then v =
<v1,v2>τ1,τ2 with ` vi : τi (i = 1, 2); if τ = τ1→τ2, then v = fun (x:τ1):τ2 in e
with x:τ1 ` e : τ2.

Theorem 2.10 (Progress)
If ` e : τ , then either e is a value or there exists e′ such that e 7→ e′.

Proof: We consider here the case that e has the form appτ1,τ2
(e1,e2) for some

closed expressions e1 and e2; the other cases follow a similar pattern. Since ` e :
τ , there exists τ2 such that ` e1 : τ2→τ and ` e2 : τ2. By induction either e1 is a
value or there exists e′1 such that e1 7→ e′1, and similarly for e2. Suppose that e1
is a value v1. Then by Lemma 2.9 v1 = fun (x:τ1):τ2 in e for some x and e. If e2

11

is a value v2, then appτ1,τ2
(e1,e2) = appτ1,τ2

((fun (x:τ1):τ2 in e),v2) 7→ {v2/x}e.
If e2 is not a value, then e = appτ1,τ2

(v1,e2) 7→ appτ1,τ2
(v1,e′2). Finally, if e1 is

not a value, then e = appτ1,τ2
(e1,e2) 7→ appτ1,τ2

(e′1,e2). �

2.5 Termination

While it may seem intuitively obvious, it is not at all straightforward to prove
that all computations in L1,×,→ terminate.

Exercise 2.11
Try to prove directly by induction on the structure of typing derivations that if
` e : τ , then there exists v such that e 7→∗ v. Where do you run into problems?

The termination property of L1,×,→ may be proved using Tait’s computability
method in which types are interpreted as predicates.3

Definition 2.12
1. The predicate Compτ (e) holds iff there exists v such that e ⇓ v and

Valτ (v).

2. The predicate Valτ (v) is defined by induction on the structure of τ as
follows:

(a) If τ = Unit, then Valτ (v) iff v = ∗.
(b) If τ = τ1×τ2, then Valτ (v) iff v = <v1,v2>τ1,τ2 with Valτ1(v1) and

Valτ2(v2).

(c) If τ = τ1→τ2, then Valτ (v) iff v = fun (x:τ1):τ2 in e and Compτ2
({v1/x}e)

for every v1 such that Valτ1(v1).

The predicate Compτ (−) may be thought of as describing the “computa-
tions” of type τ , and the predicate Valτ (−) as describing “values” of type τ .
It is immediately obvious that the predicate Compτ (−) is closed under head
expansion in the sense that if Compτ (e) and e′ 7→ e, then Compτ (e′). It is also
obvious that if Valτ (v), then Compτ (v) since v ⇓ v.

The value predicate is extended to type assignments as follows. An envi-
ronment, γ, is a finite function assigning closed values to variables. The sub-
stitution induced by an environment γ is written γ̂, and we define γ̂(e) by
induction on the structure of e in the obvious way. The predicate ValΓ(γ) holds
iff dom(γ) = dom(Γ) and ValΓ(x)(γ(x)) holds for every x ∈ dom(Γ).

Theorem 2.13
If Γ ` e : τ and ValΓ(γ), then Compτ (γ̂(e)).

3Don’t make too much of the term “computability” here. It’s chosen for historical, rather
than descriptive, reasons.

12

Proof: By induction on typing derivations. We consider some illustrative
cases.

t-var Follows directly from the assumption that ValΓ(γ).

t-app By induction we have that Compτ2→τ (γ̂(e1)) and Compτ2
(γ̂(e2)), and we

are to show that Compτ (γ̂(appτ1,τ2
(e1,e2))). It follows from the definitions

that γ̂(e1) ⇓ fun (x:τ2):τ in e, γ̂(e2) ⇓ v2, and Compτ ({v2/x}e), which
together suffice for the result.

t-abs We are to show that Compτ1→τ2
(γ̂(fun (x:τ1):τ2 in e)). It suffices to show

that Compτ2
({v1/x}γ̂(e)) for any v1 such that Valτ1(v1). But {v1/x}γ̂(e) =

̂γ[x 7→ v1](e), and clearly ValΓ[x:τ1](γ[x 7→ v1]). So the result follows by
the inductive hypothesis.

�

Corollary 2.14 (Termination)
If ` e : τ , then e ⇓ v for some value v.

Exercise 2.15
Complete the proof of Theorem 2.13.

Remark 2.16
In this chapter we have used what might be called a “fully explicit” syntax
in which all primitive expression constructors are labelled with sufficient type
information to determine precisely the type of the constructed expression. In
practice we omit this information when it is clear from context. For example, we
often write e1(e2) for appτ1,τ2

(e1,e2) when τ1 and τ2 may be determined from e1
and e2. Similarly we write <e1,e2> for <e1,e2>τ1,τ2 and fun (x:τ) in e or just
funx in e for fun (x:τ1):τ2 in e when the omitted types are clear from context.
These informal conventions will be made precise in Chapter 19 when we discuss
type reconstruction, the process of determining the omitted type information
from context whenever it can be uniquely determined.

2.6 References

A good general introduction to the typed λ-calculus is Girard’s monograph [20].
The method of logical relations is fundamental to the study of the typed

λ-calculus, as emphasized by Friedman [16], Statman [56], and Plotkin [49].
The metaphor of “computations” (versus “values”) was made explicit by

Constable and Smith in their partial object type theory [10, 55] and by Moggi
in his monadic treatment of computational effects [42].

13

14

Chapter 3

Sums

3.1 Introduction

In this chapter we briefly summarize the extension of L1,×,→ with sum types,
otherwise known as disjoint union types. This addition presents few complica-
tions beyond those considered in Chapter 2.

3.2 Sum Types

The syntax of L0,1,+,×,→ is defined by the following extension to the syntax of
L1,×,→:

Types τ : : = . . . | Void | τ1+τ2
Expressions e : : = anyτ (e) | inlτ1,τ2(e) | inrτ1,τ2(e) |

caseτ e of inl(x1:τ1) =>e1 | inr(x2:τ2) =>e2 esac

Informally, Void is the empty type (with no members) and τ1+τ2 is the disjoint
union of the types τ1 and τ2. In the expression

caseτ e of inl(x1:τ1) =>e1 | inr(x2:τ2)=>e2 esac

the variable x1 is bound in e1 and the variable x2 is bound in e2.
The static semantics of these additional constructs is given by the following

rules:
Γ ` e : Void

Γ ` anyτ (e) : τ
(t-any)

Γ ` e : τ1
Γ ` inlτ1,τ2(e) : τ1+τ2

(t-inl)

Γ ` e : τ2
Γ ` inrτ1,τ2(e) : τ1+τ2

(t-inr)

15

Γ ` e : τ1+τ2 Γ[x1:τ1] ` e1 : τ Γ[x2:τ2] ` e2 : τ
Γ ` caseτ e of inl(x1:τ1)=>e1 | inr(x2:τ2) =>e2 esac : τ

(x1, x2 /∈ dom(Γ))

(t-case)

The dynamic semantics is given by the following data. First, the languages
of values and evaluation contexts are enriched as follows:

Values v : : = . . . | inlτ1,τ2(v) | inrτ1,τ2(v)
EvalCtxts E : : = . . . | anyτ (E) | caseτ E of inl(x1:τ1) =>e1 | inr(x2:τ2) =>e2 esac

The primitive instructions are as follows:

caseτ inlτ1,τ2(v1) of inl(x1:τ1) =>e1 | inr(x2:τ2) =>e2 esac 7→ {v1/x1}e1
caseτ inrτ1,τ2(v2) of inl(x1:τ1) =>e1 | inr(x2:τ2) =>e2 esac 7→ {v2/x2}e2

Exercise 3.1
State and prove soundness for L0,1,+,×,→.

Exercise 3.2
Extend the interpretation of types as predicates given in Chapter 2 to establish
termination for L0,1,+,×,→.

Exercise 3.3
Show that the type Bool is definable in the language L0,1,+,×,→ by taking Bool
to be the type Unit+Unit. What are the interpretations of true and false?
What is the interpretation of ifτ e then e1 else e2 fi? Show that both typing
and evaluation are preserved by these interpretations.

Remark 3.4
We often omit the type subscripts on the primitive constructs when they are
clear from context.

3.3 References

16

Chapter 4

Subtyping

4.1 Introduction

Subtyping is a relationship between types validating the subsumption principle:
if σ is a subtype of τ , then a value of type σ may be provided whenever a value
of type τ is required. In this chapter we introduce the fundamental mechanisms
of subtyping, and consider three typical situations in which it arises, namely
primitive subtyping, tuple subtyping, and record subtyping. To simplify the
discussion we work with the extension L→<: of L→ with subtyping.

4.2 Subtyping

A subtyping relation, σ <: τ , is a binary relation between types that is closed
under the following rules of inference:

σ <: σ (s-refl)

ρ <: σ σ <: τ
ρ <: τ

(s-trans)

τ1 <: σ1 σ2 <: τ2
σ1→σ2 <: τ1→τ2

(s-arrow)

These rules require that subtyping be a pre-order (reflexive and transitive)
and specify that the function space constructor is contravariant in the domain
position (i.e., the subtype ordering is reversed) and covariant in the co-domain
position (i.e., the subtype ordering is preserved).

We will be concerned with various forms of subtyping for various extensions
of L→<:. These will all have the property that subtyping is structural in the sense
that primitive types are subtypes only of primitive types, and function types are
subtypes only of function types. More precisely, a subtype relation is normal iff
it satisfies the following two properties:

17

1. σ1→σ2 <: τ1→τ2 iff τ1 <: σ1 and σ2 <: τ2, and

2. if σ <: τ1→τ2, then σ = σ1→σ2, and conversely if σ1→σ2 <: τ , then
τ = τ1→τ2.

4.2.1 Subsumption

Not just any pre-order on types validating the co- and contra-variance of the
function space constructor is a subtype relation. Only those pre-orders that
validate the principle of subsumption qualify:

Γ ` e : τ τ <: τ ′

Γ ` e : τ ′
(t-sub)

This rule may be paraphrased as follows: wherever a value of type τ ′ is required,
a value of type τ may be provided.

Since the rule t-sub can be applied to any expression at any time, the
typing rules for L→<: are not syntax-directed. This can present problems for
type checking, and requires that we take special care in formulating its meta-
theory.

4.3 Primitive Subtyping

One familiar form of subtyping arises from the standard mathematical practice
of regarding the integers to be a subset of the reals. Strictly speaking, the
inclusion Z ⊆ R fails for the standard definitions of these sets — but of course
there is an insertion Z ↪→ R that we use implicitly when regarding an integer as
a real number.

The analogous situation for a programming language arises in an extension
LInt,Float,→

<: of L→ with base types Int and Float. It is convenient to regard
an integer as a floating point number, even though the typical machine repre-
sentations of integers and floats are completely different. We will explore the
implications of postulating Int <: Float in a modest extension of L→ with
integer and floating point operations:

Expressions e : : = n | e1 +Int e2 | e1−Int e2 |
q | e1 +Float e2 | e1−Float e2

where n is an integer and q is a rational number.1 The typing rule for these
expressions are as expected.

The operational semantics for LInt,Float,→
<: is defined as follows. We take as

values the integer literals, n, and the floating point literals, q. What are the
closed values of type Int and Float? For the type Int, these are clearly the

1We will ignore matters of precision in this discussion. Obviously not every integer is
representable in a computer, nor is every rational representable as a floating point number.

18

numerals n, where n ∈ Z. The closed values of type Float include not only the
numerals q, where q ∈ Q, but also the integer numerals n, where n ∈ Z!

The evaluation contexts are defined in the obvious way, corresponding to a
left-to-right evaluation order for the primitive expression forms. The primitive
evaluation steps include these basic steps:

m+Int n ; m+ n
m−Int n ; m− n
q+Float r ; q + r
q−Float r ; q − r

However, these instructions are not enough to ensure that well-typed programs
make progress! We must also define the behavior of the floating point operations
on integer arguments. This is achieved by augmenting the operational semantics
with these rules (together with a similar set of rules for the other floating point
operations):

m+Float r ; (m/1) + r

q+Float n ; q + (n/1)
m+Float n ; (m/1) + (n/1)

Exercise 4.1
Prove progress and preservation for LInt,Float,→

<: . Note that if the “extra” rules
were omitted, then progress would fail.

One thing to notice about this operational semantics is that it relies on the
ability to distinguish floating point values from integer values at run time. This
corresponds to a “tagging” scheme whereby values come with type information
on which we may dynamically dispatch. While dynamically-typed languages
take this as a design principle, it is unreasonable to impose such a scheme on a
statically-typed language. In Chapter 20 we will describe methods for avoiding
run-time type dispatch in cases such as this by introducing coercions at compile-
time that change the representations of values whenever subtyping is used.

Exercise 4.2
Suppose that we define a type Nat such that Nat <: Int <: Float. What
adjustments must be made to the operational semantics and to its meta-theory?

4.4 Tuple Subtyping

An important form of subtyping is derived from tupling. Let us consider the
extension L<>,→

<: of L→ with the variadic tuple type, <τ1, . . . ,τn>, where n ≥ 0.
Informally, this is the type of n-tuples whose ith component has type τi for each
1 ≤ i ≤ n. When n = 0 this is just the Unit type; when n ≥ 1, these are just
familiar n-tuples of values.2

2We permit the case n = 1 for uniformity, but do not identify < τ1, . . . ,τn > with τ .

19

The syntax of the distinctive expressions of this extension is as follows:

Expressions e : : = <e1, . . . ,en>τ1,...,τn
| proji

τ1,...,τn
(e)

The typing rules governing these expressions are as follows:

Γ ` e1 : τ1 · · · Γ ` en : τn
Γ ` <e1, . . . ,en>τ1,...,τn : <τ1, . . . ,τn>

(t-tuple)

Γ ` e : <τ1, . . . ,τn>
Γ ` proji

τ1,...,τn
(e) : τi

(1 ≤ i ≤ n) (t-proj)

Informally, we use the abbreviated syntax <e1, . . . ,en> for tuples and proji(e)
for projections.

The operational semantics is given as follows. The closed values of type
<τ1, . . . ,τn> are expressions of the form <τ1, . . . ,τn>v, where vi is a closed
value of type τi for each 1 ≤ i ≤ n. Evaluation contexts are defined as follows:

EvalCtxt ′s E : : = <v1, . . . , vi−1, E, ei+1, . . . , en>τ1...τn
| proji

τ1,...,τn
(E)

The primitive reduction steps are defined as follows:

proji
τ1,...,τn

(<v1, . . . ,vn>τ1,...,τn
) ; vi

where 1 ≤ i ≤ n. Notice that we require the types of the fields ascribed to the
projection to coincide with those ascribed to the tuple itself. In the presence of
subtyping this requirement will be relaxed, as we shall see shortly.

Two forms of subtyping arise in connection with tuple types:

1. Width subtyping : a “wider” tuple type is regarded as a subtype of a “nar-
rower” tuple type. This is captured by the subtyping axioms

<τ1, . . . ,τm+n> <: <τ1, . . . ,τm> (s-tuple-width)

where m,n ≥ 0.

2. Depth subtyping : one tuple type is a subtype of another with the same
width if every field of the former is a subtype of the latter. That is,

τ1 <: τ ′1 · · · τn <: τ ′n
<τ1, . . . ,τn> <: <τ ′1, . . . ,τ ′n>

(s-tuple-depth)

Thus width subtyping allows us to neglect “extra” components at the end of a
tuple, and depth subtyping allows us to apply subtyping “recursively” through
components of a tuple.

How does the operational semantics change in the presence of tuple subtyp-
ing? To accommodate width subtyping, we must change the primitive opera-
tions as follows:

proji
τ1,...,τm

(<v1, . . . ,vm+n>τ1,...,τm+n
) ; vi

20

This accounts for the fact that the closed values of type <τ1, . . . ,τm> are
tuples of the form <v1, . . . ,vm+n>τ1,...,τm+n . To account for depth subtyping
we further generalize this instruction to

proji
τ1,...,τm

(<v1, . . . ,vm+n>τ ′1,...,τ ′
m+n

) ; vi

(taking n = 0 if width subtyping is to be disallowed).

Exercise 4.3
Check soundness for width and depth tuple subtyping.

To understand the implications of these rules for implementation, it is essen-
tial to pay close attention to the fully-explicit syntax. Let us consider first pure
width subtyping (no depth subtyping). A value of type <τ1, . . . ,τn> may be
thought of as a pointer to a heap-allocated structure consisting of n consecutive
values of type τ1, . . . , τn.3 For example, if values of type Int are words and
values of type Float are doublewords, then a tuple of type < Float,Int> is
represented by a pointer to a doubleword followed by a word, and a tuple of
type < Int,Float> is represented by a pointer to a word followed by a double-
word. The type determines the layout of the data. Given this, the behavior of
a projection proji

τ1,...,τn
(−) is fully determined by the index i and the types

τ1,. . . ,τi−1 — the ith component is an object of size determined by τi at offset
determined by τ1, . . . , τi−1. All of this data (apart from the pointer itself) is
determined at compile-time, as is made clear in the fully-explicit syntax.

Width subtyping alone presents no significant complications. Since the be-
havior of a projection is determined by the index and the types of the preceding
components of the tuple, the presence or absence of succeeding components is
of no consequence. Thus width subtyping can be had “for free” in the sense
that no additional overhead is required to support it. However, depth subtyping
introduces complications since the type <τ1, . . . ,τn> of a tuple no longer de-
termines the offset or size of any given component of that tuple! If a subtyping
relation implies a change of representation, then applying subtyping at position
i of a tuple type leads to a loss of information about the size of that component
and the offsets of all succeeding components in the tuple. For example, we may
think of a value of type < Int,Int> as a value of type < Float,Float>. But
the second component lies at offset 1, not 2, and is of size 1, not 2, despite what
the type may suggest!

What can we do about this? The fully-explicit syntax suggests one solu-
tion: the value itself carries enough information to determine its “true” type,
regardless of its “apparent” type as the argument to a projection. Continuing
the example, the tuple <v1,v2>Int,Int has the true type < Int,Int>, which is
a subtype of its apparent type < Float,Float>. Thus a projection operation
must ignore the apparent type determined by the explicit syntax for the pro-
jection, and instead make use of the true type attached to the tuple itself. This
has two implications:

3Similar remarks apply to schemes for allocating tuples in registers.

21

1. Type information must be explicitly attached to the tuple at run-time, at
the expense of both space (for the type information) and time (to maintain
it).

2. Projections must analyze the “true” type of their tuple argument at run-
time to determine the size and offset of its components. This is costly,
and difficult, in general, to optimize away.

Is there any alternative? One choice is to introduce a universal represen-
tation assumption whereby we ensure that every value has unit size so that
projections may be implemented independently of any type information: the
ith component is always one word at offset i from the start of the tuple. This
precludes “flattening” tuples by allocating them as consecutive data items in
their natural representation, at least for those types having subtypes with a
different natural representation. (Integers and floating point numbers provide
one example, as do tuples themselves, in the presence of width subptying. Such
values must be heap-allocated to ensure that their representation is predictable
at compile time.) A third choice is to adopt a “coercive” interpretation of sub-
typing whereby a use of depth subtyping causes the tuple to be reconstructed
as a value of the supertype, ensuring that the type once again fully determines
the layout. We will discuss this approach in Chapter 20.

4.5 Record Subtyping

Records are a form of tuple in which the components are labelled to allow more
convenient access. Record types have the form { l1:τ1, . . . , ln:τn }, where each li
is a distinct label, drawn from some countable alphabet disjoint from variables.
Records are constructed using record-formation expressions, and accessed using
labelled selection expressions. These are defined by the following grammar:

Expressions e : : = { l1=e1, . . . , ln=en }τ1,...,τn
| sell

l1:τ1,...,ln:τn
(e)

We often use the abbreviated syntax { l1=e1, . . . , ln=en } and e.l when it is not
important to emphasize the type information associated with the fully-explicit
forms given above.

The typing rules for these expressions are as follows:

Γ ` e1 : τ1 · · · Γ ` en : τn
Γ ` { l1=e1, . . . , ln=en }τ1,...,τn

: { l1:τ1, . . . , ln:τn }
(n ≥ 0, i 6= j ⊃ li 6= lj)

(t-record)

Γ ` e : { l1:τ1, . . . , ln:τn }
Γ ` sell

l1:τ1,...,ln:τn
(e) : τi

(l = li, 1 ≤ i ≤ n) (t-select)

There are two interpretations of record types, according to whether or not
the order of fields is considered significant. Under the ordered interpretation

22

the types { l:τ ,l′:τ ′ } and { l′:τ ′,l:τ } are distinct types since the fields occur in a
different order. This view is typical of languages such as C that attempt to match
their data representations with externally-given constraints (such as network
packet layouts). Under the unordered interpretation the above two types are
identified, as are any two record types differing only in the order of their fields.
The unordered interpretation affords more flexibility to the programmer, but
precludes the satisfaction of externally-given layout constraints on records.

The dynamic semantics of record operations is similar to that for tuples.
Closed values of type { l1:τ1, . . . , lm:τm } are records of the form

{ τ1=v1, . . . , τm+n=vm+n },

where vi is a closed value of type τi for each 1 ≤ i ≤ m. Evaluation contexts
are defined as follows:

EvalCtxt ′s E : : = { l1=v1, . . . ,li−1=vi−1,li=E,li+1=ei+1, . . . ,ln=en } |
sell

l1:τ1,...,ln:τn
(E)

Field selection is given by the following instruction:

sell
l1:τ1,...,lm:τm

({ l1=v1, . . . , lm+n=vm+n }τ1,...,τm+n
) ; vi

where l = li for some 1 ≤ i ≤ m. This instruction is formulated with subtyping
in mind; without subtyping, we would take n = 0 in the above instruction.

Remark 4.4
Tuples may be regarded as records whose fields are labelled by the integers
1, . . . , n, so that the ith projection proji(e) stands for the selection i.e of the
field labelled i.

Just as for tuples we may consider both width and depth subtyping for record
types:

{ l1:τ1, . . . , lm+n:τm+n } <: { l1:τ1, . . . , lm:τm } (s-record-width)

τ1 <: τ ′1 · · · τn <: τ ′n
{ l1:τ1, . . . , ln:τn } <: { l1:τ ′1, . . . , ln:τ ′n }

(s-record-depth)

The interpretation of the width subtyping rule differs according to whether
or not we admit reordering of fields. If not, then the rule s-record-width
specifies that we may neglect fields occurring at the end of a record, but nowhere
else. If so, then the rule s-record-width specifies that we may neglect any
field of a record when passing to a supertype. The depth subtyping rule has the
same interpretation, irrespective of whether we admit reordering of fields.

What are the implementation implications for the various choices of re-
ordering and subtyping principles? If re-ordering is precluded, then the trade-
off’s are precisely as for tuple types: width subtyping is “free”, but depth sub-
typing incurs some overhead. If re-ordering is admitted, then the situation is

23

more complex. Re-ordering in the absence of width subtyping (but possibly
in the presence of depth subtyping) may be implemented by imposing a stan-
dard ordering of fields (e.g., alphabetical ordering of labels). In the presence
of width subtyping field selection must involve search since the apparent type
of the record does not reveal the position of that field in the underlying record
value. Record values must carry their “true” type, revealing the position and
type of each field, and selection must refer to this type to retrieve a component.

An alternative is to employ a “coercive” interpretation of subtyping in which
a use of record subtyping induces the creation of a fresh record whose principal
type is the supertype. This ensures that the apparent type is always the true
type of the record value so that selection operations may be fully determined at
compile-time, without the need for run-time type analysis. A variant is based
on the idea of a dictionary (or vtable) that mediates access to a fixed underlying
record. We will discuss these interpretations in more detail in Chapter 20.

4.6 References

[7, 5]

24

Chapter 5

Variable Types

5.1 Introduction

This chapter is concerned with the concept of variable types, fundamental to
a rigorous treatment of separate compilation, data abstraction, polymorphism,
and modularity. We consider the extension of L1,×,→ with variable types, desig-
nated L1,×,→

Ω , and re-consider the problem of separate compilation in this larger
context. A rudimentary form of data abstraction arises naturally in this setting.
Finally, we consider type definitions for introducing concrete (i.e., non-abstract)
types.

5.2 Variable Types

The language L1,×,→
Ω is the enrichment of L1,×,→ with a new form of type

expression, the type variable:

Types τ : : = . . . | t

We let t range over an unspecified countably infinite set of type variables. The
enrichment of a language with variable types is of course not dependent on the
presence of any particular type constructors; we consider L1,×,→ as the basis
for our discussion for the sake of specificity.

The set of type contexts is defined as follows:

TypeContexts ∆ : := ∅ | ∆[t]

We abuse notation slightly and regard ∆ as a finite set of type variables whenever
convenient.

The judgement ∆ ` τ means that the type variables occurring in τ are drawn
from the set ∆. Similarly, the judgement ∆ ` Γ means that ∆ ` Γ(x) for every
x ∈ dom(Γ). Both of these judgements could be defined an an explicit set of
derivation rules, but we will refrain from doing so at this stage.

25

Typing judgements for L1,×,→
Ω have the form Γ `∆ τ , where ∆ ` Γ and

∆ ` τ . The rules for deriving these judgements are the same as for L1,×,→,
except for the presence of the type context ∆, which determines the set of type
variables that may be used in the judgement. At this stage the set ∆ of type
variables does not vary; it is a fixed parameter for all judgements of the system.

Lemma 5.1
The following rules are admissible:

Γ `∆[t] e : τ
{t′/t}Γ `∆[t′] {t′/t}e : {t′/t}τ

(t′ /∈ ∆) (t-typ-rename)

Γ `∆ e : τ
Γ `∆′ e : τ

(∆′ ⊇ ∆) (t-typ-weaken)

Γ `∆ e : τ
Γ `∆′ e : τ

(∗) (t-typ-strengthen)

provided that FTV(∆′) ∪ FTV(e) ∪ FTV(τ) ⊆ ∆′ ⊆ ∆.

Γ `∆[t] e : τ ′ ∆ ` τ
{τ/t}Γ `∆ {τ/t}e : {τ/t}τ ′

(t /∈ ∆) (t-subst)

Exercise 5.2
Prove Lemma 5.1. Observe that the rules t-typ-rename and t-typ-strengthen
are derivable from the other two.

5.3 Type Definitions

The type variables in ∆ are opaque in the sense that their ultimate definition
(provided by a substitution) is not available during type-checking. Type vari-
ables behave like “new” types, distinct from one another and from any other
types in the system. You might reasonably wonder whether such opaque types
are of any use. At this stage we do not have sufficient machinery available to
exploit them to any significant extent, but this will be remedied in subsequent
chapters.

Of more immediate use is the ability to introduce type definitions in a pro-
gram using what are called transparent type bindings. These are strictly an
abbreviatory construct introduced for the convenience of the programmer. The
grammar of expressions is extended as follows:

Expressions e : : = . . . | type t is τ in e end

Informally, this construct binds the type variable t to the type expression τ
within the expression e. It is a binding operator, and is subject to the usual
rules of α-conversion.

26

There are two approaches to the static semantics of type definitions. The
most obvious is to use the following typing rule:

∆ ` τ Γ `∆ {τ/t}e : τ ′

∆ ` type t is τ in e end : τ ′
(t /∈ ∆) (t-typdef)

We require that the variable t not occur in ∆ to avoid accidental clashes during
substitution.

The dynamic semantics of type definitions is defined similarly:

type t is τ in e end ; {τ/t}e

It is a simple matter to check that this extension is sound.

A slightly more sophisticated approach is to extend type contexts with type
definitions as follows:

Type Contexts ∆ : := ∅ | ∆[t] | ∆[t=τ]

Notice that a typical type context ∆ contains both opaque and transparent
type definitions. Such type contexts are sometimes dubbed translucent for this
reason.

Introduction of type definitions into type contexts complicates the formalism
somewhat. In particular, we must now explicitly define well-formedness of type
contexts, and, more importantly, we must introduce the notion of definitional
equality between types to take account of type definitions in contexts.

Exercise 5.3
Give rules for well-formedness of translucent type contexts.

Definitional equality between types, ∆ ` τ1 ≡ τ2, is generated by the follow-
ing “lookup” rule

∆[t=τ] ` t ≡ τ (e-typ-def)

together with rules ensuring that it is an equivalence relation and is compatible
with all type-forming constructs.

Exercise 5.4
Give a precise formulation of definitional equality of types relative to a translu-
cent type context.

The force of definitional equality is captured by the following rule stating
that typing respects definitional equality of types:

Γ `∆ e : τ ∆ ` τ ≡ τ ′

Γ `∆ e : τ ′
(t-def-eq)

27

Using definitional contexts we may give the rule for type definitions as fol-
lows:

∆ ` τ Γ `∆[t=τ] e : τ ′

Γ ` type t is τ in e end : {τ/t}τ ′
(t /∈ dom(∆)) (t-type-def’)

Notice that we must substitute τ for t in τ ′ in the conclusion of this rule!
Otherwise the type variable t, which might occur in τ ′, would escape its scope
of significance, which is nonsensical.

Exercise 5.5
State and prove soundness of typing for type definitions presented using translu-
cent type contexts.

5.4 Constructors, Types, and Kinds

At this point it is useful to introduce some machinery. The main idea is to
introduce a careful distinction between “types as data” and “types as classifiers”,
with a view towards extensions to the language that we will consider shortly. As
data types may be bound to type variables (and, as we shall see in Chapters 7
and 8, passed as parameters and stored in data structures). As classifiers types
are used to govern the formation of ordinary expressions. In many situations it
is perfectly sensible, and convenient, to gloss over this distinction. Nevertheless
it is important to know what is being glossed over whenever this is done.

To make explicit the distinction between types as classifiers and types as
data, we consider the following formulation of L1,×,→

Ω :

Kinds κ : : = Ω
Constructors τ : : = t | int | bool | τ1→τ2

Types σ : : = T (τ) | Int | Bool | σ1→σ2

Term Contexts Γ : : = ∅ | Γ[x:σ]
Type Contexts ∆ : := ∅ | ∆[t::κ]

There is, at present, only one kind, Ω, which classifies well-formed type con-
structors. The type-forming operation T (−) is an inclusion of constructors
into types. Thinking of constructors (of kind Ω) as names for types, the type
T (τ) is the type named by τ . This correspondence will be made precise shortly.
The language of expressions remains unchanged, apart from the enrichment of
types to include type variables.

28

The judgement forms are as follows:

∆ ` τ :: κ τ has kind κ over ∆
∆ ` τ1 ≡ τ2 :: κ τ1 and τ2 are equivalent constructors of kind κ

`∆ σ σ is a valid type over ∆
`∆ σ1 ≡ σ2 σ1 and σ2 are equivalent types

Γ `∆ e : σ e has type σ relative to Γ and ∆

The judgement ∆ ` τ :: κ expresses that τ is a well-formed type constructor.
This is just the judgement ∆ ` τ given above, but written using the more general
notation. The judgement ∆ ` τ1 ≡ τ2 :: κ expresses definitional equality of type
constructors. At present we take it to be the identity relation, but later less
trivial notions of definitional equivalence will be considered.

The judgement `∆ σ expresses that σ is a well-formed type relative to the
type context ∆. It is defined by the following rules:

∆ ` τ :: Ω
`∆ T (τ)

(t-coerce)

`∆ Int (t-int)

`∆ Bool (t-bool)

`∆ σ1 `∆ σ2

`∆ σ1→σ2

(t-arrow)

The judgement `∆ σ1 ≡ σ2 expresses definitional equality of the types σ1

and σ2. (We assume that `∆ σ1 and `∆ σ2.) It is defined to be the least
congruence relation closed under the following rules:

`∆ T (int) ≡ Int (e-T-int)

`∆ T (bool) ≡ Bool (e-T-bool)

`∆ T (τ1→τ2) ≡ T (τ1)→T (τ2) (e-T-arrow)

∆ ` τ1 ≡ τ2 :: Ω
`∆ T (τ1) ≡ T (τ2)

(e-T-cong)

Typing respects type equivalence:

Γ `∆ e : σ `∆ σ ≡ σ′

Γ `∆ e : σ′
(t-equiv)

29

Exercise 5.6
Definitional equality may be extended to contexts in the obvious way: `∆ Γ ≡ Γ′

iff dom(Γ) = dom(Γ′) and `∆ Γ(x) ≡ Γ′(x) for every x ∈ dom(Γ). Prove that if
Γ `∆ e : σ and `∆ Γ ≡ Γ′, then Γ′ `∆ e : σ.

It is easy to see that every type is equivalent to one in which the only
occurrences of T (−) are applied to type variables. By keeping types in simplest
form, all uses of the rule t-equiv may be eliminated. For this reason we often
ellide mention of T (−), and simply regard every constructor of kind Ω as a type.
This is called the implicit formulation of the system, in contrast to the explicit
formulation in which all coercions are supplied. At this point the distinction
between the implicit and explicit formulations may seem like hair-splitting1. We
will see later on, however, that it is useful to sort things out this way.

Exercise 5.7
State and prove the equivalence of the implicit and explicit presentations of

L1,×,→
Ω .

A further simplification is possible in some cases. Often the distinction
between types as data and types as classifiers is dropped entirely by conflating
the level of constructors and types. Then types = constructors are classified by
kinds, and expressions are classified by types. This formulation often streamlines
the syntax, but at the expense of precluding the possibility of subjecting the
constructor and type levels to different closure conditions. In Chapter 7 we will
exploit this distinction to distingish the notions of predicative and impredicative
quantification.

5.5 References

The treatment of variable types separately from polymorphism was inspired by
Girard [18] and the recent categorial accounts of type theory [11].

1That would only be because it is.

30

Chapter 6

Recursive Types

6.1 Introduction

In this chapter we consider recursive types. First, we consider two important
special cases, one the natural numbers treated as an inductive type, the other
streams of natural numbers treated as a co-inductive type. Second, we generalize
these two examples to arbitrary recursive types, including so-called reflexive
types that (in a sense) contain their own function spaces.

6.2 Gödel’s T

Gödel’s system T is the extension Lnat,→ of L→ with a type of natural numbers,
equipped with primitive recursion at all types. This language is sufficiently
expressive that every function on the naturals that is provably total in first-order
Peano arithmetic is definable in system T. (The proof, which we do not give
here, is based on the so-called Dialectica interpretation of arithmetic outlined
in Gödel’s seminal paper on the consistency of arithmetic.) Our purpose in
introducing system T is as a particular case of a language with an inductive
type. The methods that we use to analyze system T generalize to the case of
arbitrary inductive types.

6.2.1 Statics

The syntax of system T is as follows:

Types τ : : = Nat | τ1→τ2
Expressions e : : = x | fun (x:τ) in e | e1(e2) | 0 | succ(e) |

natrecτ e of 0=>e0 | succ(x:τ) =>es end

The typing rules are those of L→, extended with the following rules:

Γ ` 0 : Nat (t-zero)

31

Γ ` e : Nat
Γ ` succ(e) : Nat

(t-succ)

Γ ` e : Nat Γ ` e0 : τ Γ[x:τ] ` es : τ
Γ ` natrecτ e of 0=>e0 | succ(x:τ) =>es end : τ

(x /∈ dom(Γ))

(t-natrec)

6.2.2 Dynamics

The syntax of values and evaluation contexts is as follows:

Values v : : = x | fun (x:τ) in e | 0 | succ(v)
EvalCtxt ′s E : : = • | E(e2) | v1(E) | succ(E)

| natrecτ E of 0=>e0 | succ(x:τ) =>es end

The primitive reduction steps for natrec are these:1

natrecτ 0 of 0=>e0 | succ(x:τ) =>es end ; e0
natrecτ succ(v) of 0=>e0 | succ(x:τ) =>es end ;

letx:τ be natrecτ v of 0=>e0 | succ(x:τ) =>es end in e3

Exercise 6.1
Check type soundness (progress and preservation) for system T.

6.2.3 Termination

We prove termination by constructing a family of sets Valτ for each type τ as
follows:

ValNat = { 0 } ∪ { succ(v) | v ∈ ValNat }
Valτ1→τ2 = { v : τ1→τ2 | ∀v1 ∈ Valτ1 v(v1) ∈ Compτ2

, }

We then define Compτ = { e : τ | e 7→∗ v ∈ Valτ }.
Why is the family of sets Valτ well-defined? Let ΦNat be defined by the

equation
ΦNat(X) = { 0 } ∪ { succ(v) | v ∈ X }.

Clearly ΦNat is monotone, and we seek ValNat such that ValNat = ΦNat(ValNat).
We will take ValNat to be the least fixed point, µ(ΦNat).

Exercise 6.2
Check that the operator ΦNat is monotone, i.e., if X ⊆ Y , then ΦNat(X) ⊆
ΦNat(Y).

1We may either take letx:τ be e1 in e2 as a primitive sequencing form, or as an abbreviation
for the obvious function application. This is a technical device to ensure that we only ever
substitute values for variables.

32

We are now in a position to prove the termination theorem for system T.

Theorem 6.3
Suppose that Γ ` e : τ . If γ ∈ ValΓ, then γ̂(e) ∈ Compτ

Proof: We consider only the numerals and the recursor. The other cases follow
as before. We write ê for γ̂(e) wherever the meaning is clear from context.

• Γ ` 0 : Nat. Clearly 0 ∈ ValNat ⊆ CompNat.

• Γ ` succ(e) : Nat by Γ ` e : Nat. By induction we have that ê ∈ CompNat,
so ê 7→∗ v ∈ ValNat. Hence succ(ê) 7→∗ succ(v) ∈ ValNat, as required.

• Γ ` natrecτ e of 0=>e0 | succ(x:τ) =>es end : τ by Γ ` e : Nat, Γ ` e0 :
τ , and Γ[x:τ] ` es : τ . By inductive hypothesis we have that ê ∈ CompNat,
ê0 ∈ Compτ , and {v/x}ês ∈ Compτ whenever v ∈ ValNat. We are to show
that

natrecτ ê of 0=> ê0 | succ(x:τ) => ês end ∈ Compτ .

Since ê ∈ CompNat, there exists a value v ∈ ValNat such that ê 7→∗ v. We
show that for every v ∈ ValNat, the property P (v) given by

natrecτ v of 0=> ê0 | succ(x:τ)=> ês end ∈ Compτ

holds, from which the result follows immediately.

Since ValNat = µ(ΦNat), it suffices to show P is ΦNat-closed, which is to say
that ΦNat(P) ⊆ P (regarding P as a subset of ValNat). This means that
we must show that P (0) and if P (v), then P (succ(v)). For the former,
observe that

natrecτ 0 of 0=> ê0 | succ(x:τ) => ês end 7→ ê0

from which the result follows by the inductive hypothesis. Turning to the
latter, we assume that

natrecτ v of 0=> ê0 | succ(x:τ)=> ês end ∈ Compτ

and argue that

natrecτ succ(v) of 0=> ê0 | succ(x:τ) => ês end ∈ Compτ .

The latter expression steps to

letx:τ be natrecτ v of 0=> ê0 | succ(x:τ) => ês end in ês.

By our assumption P (v), there exists w ∈ ValNat such that

natrecτ v
′ of 0=> ê0 | succ(x:τ) => ês end 7→∗ w.

Therefore

letx:τ be natrecτ v
′ of 0=> ê0 | succ(x:τ) => ês end in ês 7→∗ {w/x}ês.

But by the outer inductive hypothesis {w/x}ês ∈ Compτ , from which the
result follows by closure under head expansion.

33

�

Exercise 6.4
Generalize the foregoing to the type of Brouwer ordinals, Ord, which have as
introductory forms 0, succ(e), where e : Ord, and sup(e), where e : Nat→Ord.
Ordinal recursion is expressed by the form

ordrecτ e of 0=>e0 | succ(x:τ) =>es | sup(y:Nat→τ) =>el end : τ

where e : Ord, e0 : τ , es : τ , assuming x : τ , and el : τ , assuming y : Nat→τ .
Writing O(e) for

ordrecτ e of 0=>e0 | succ(x:τ) =>es | sup(y:Nat→τ) =>el end,

the primitive reduction steps are these:

O(0) ; e0
O(succ(v)) ; letx:τ beO(v) in es

O(sup(v)) ; let y:Nat→τ be fun (n:Nat):τ inO(v(n)) in el

Prove termination for the language of Brouwer ordinals.

6.3 Mendler’s S

Mendler’s system S2 is the extension Lnat,stream,→ of L→ with a type of streams
of natural numbers, equipped with operations for creating and manipulating
streams. System S is an example of a language with a coinductive type.

The syntax of S is given by the following grammar:

Types τ : : = . . . | Stream
Expressions e : : = . . . | hd(e) | tl(e) |

streamτ hd(x:τ) =>eh & tl(y:τ)=>et from e end

In the expression streamτ hd(x:τ)=>eh & tl(y:τ) =>et from e end the variable
x is bound in eh and the variable y is bound in et.

The meaning of these constructs is made precise by the following primitive
instructions:

hd(streamτ hd(x:τ) =>eh & tl(y:τ) =>et from v end) ; {v/x}eh

tl(streamτ hd(x:τ)=>eh & tl(y:τ) =>et from v end) ;

streamτ hd(x:τ) =>eh & tl(y:τ) =>et from {v/y}et end

where evaluation contexts and values are defined as follows:

Values v : : = . . . | streamτ hd(x:τ) =>eh & tl(y:τ) =>et from v end
EvalCtxt ′s E : : = . . . | hd(E) | tl(E) | streamτ hd(x:τ) =>eh & tl(y:τ) =>et fromE end

2Not so-called by Mendler, but in light of Section 6.2 the terminology is irresistable.

34

Exercise 6.5
State and prove soundness for the the language S.

Perhaps surprisingly, the combination of T and S is terminating.3 The proof
relies on the construction of the set ValStream as the largest set of closed values
v of type Stream such that hd(v) ∈ CompNat and tl(v) ∈ CompStream. Written
as a formula:

ValStream = { v : Stream | hd(v) ∈ CompNat ∧ tl(v) ⇓ v′ ∈ CompStream }

As with ValNat, we regard this as a recursion equation whose solution is a fixed
point of the monotone operator

ΦStream(X) = { v : Stream | hd(v) ∈ CompNat ∧ tl(v) ⇓ v′ ∈ X }.

We take ValStream to be the greatest fixed point of ΦStream. (The least fixed point
is the empty set!)

Exercise 6.6
Check that ΦStream is monotone.

Theorem 6.7
If Γ ` e : τ , and γ ∈ ValΓ, then γ̂(e) ∈ Compτ .

Proof: hWe write ê for γ̂(e). We consider here only the interesting cases.

• If ê = hd(ê1), then we have by IH that ê1 ∈ CompStream, so hd(ê1) ∈
CompNat, and similarly for ê = tl(ê1).

• Suppose that ê = streamτ hd(x:τ) => êh & tl(y:τ) => êt from ê1 end. We
are to show that ê ∈ CompStream. We prove by coinduction that it is
consistent to add to ValStream all values of the form

streamτ hd(x:τ) => êh & tl(y:τ) => êt from v1 end,

where e1 ⇓ v1 for some e1 ∈ Compτ . That is, if X is ValStream unioned
with all such values, then X ⊆ ΦStream(X). If so, then X ⊆ ValStream, and
hence ê ∈ CompStream, as required. To see this, observe that ê1 ∈ Compτ

by the inductive hypothesis, and hence ê1 ⇓ v1 for some v1 ∈ Valτ , and
so ê evaluates to

streamτ hd(x:τ) => êh & tl(y:τ)=> êt from v1 end ∈ X.

To establish consistency of X, it suffices to show that if

v = streamτ hd(x:τ) => êh & tl(y:τ) => êt from v1 end,

3It is sometimes thought that streams are inherently “non-terminating” and that lazy eval-
uation is required to manipulate them. Mendler’s work, outlined in this section, demonstrates
that this is nonsense.

35

then hd(v) ∈ CompNat and tl(v) ⇓ v′ ∈ X. The former follows from the
outer inductive hypothesis, since v1 ∈ Valτ . As for the latter, observe
that

tl(v) 7→ streamτ hd(x:τ) => êh & tl(y:τ) => êt from {v1/y}êt end.

By inductive hypothesis {v1/y}êt ∈ Compτ , and hence {v1/y}êt ⇓ v′1 for
some v′1 ∈ Valτ . But then

streamτ hd(x:τ) => êh & tl(y:τ) => êt from {v1/y}êt end

evaluates to

streamτ hd(x:τ) => êh & tl(y:τ) => êt from v
′
1 end ∈ X,

which is sufficient for the result.

�

Corollary 6.8
If e : τ , then e ⇓.

Remark 6.9
Gödel’s T and Mendler’s S may be generalized to a language with (respectively)
inductive and co-inductive types, for which Nat and Stream are but special
cases. The idea is simple — extend the language with recursive types subject to
a positivity condition to ensure that the associated operator is monotone — but
the technical details are surprisingly involved. We refer the reader to Mendler’s
dissertation [34] for a general treatment of inductive and co-inductive types in
the context of the NuPRL type theory.

6.4 General Recursive Types

Both the type of natural numbers and the type of streams of natural numbers are
examples of recursive types since their semantic definitions are “self-referential”
and hence involve fixed points. The syntax may be seen as establishing the
isomorphisms

Nat ∼= Unit+Nat

and
Stream ∼= Nat×Stream.

Exercise 6.10
Write down the required isomorphism pairs and argue informally that they are
indeed mutually inverse to one another.

36

This motivates a more general approach to recursive types based on the
requirement that a recursive type should be isomorphic to its “unrolling”. This
approach generalizes the inductive and co-inductive types described above since
it licenses arbitrary recursive types, rather than just those that induce monotone
operators on value sets.

The syntax of this extension L→,rec of L→ is as follows:

Types τ : : = rec t is τ
Expressions e : : = inrec t is τ (e) | outrec t is τ (e)

The static semantics is as follows:

∆[t] ` τ
∆ ` rec t is τ

(t /∈ ∆) (t-rec)

Γ `∆ e : {rec t is τ/t}τ
Γ `∆ inrec t is τ (e) : rec t is τ

(t-in)

Γ `∆ e : rec t is τ
Γ `∆ outrec t is τ (e) : {rec t is τ/t}τ

(t-out)

The dynamic semantics is given by the following grammar of values and
evaluation contexts:

Values v : : = inrec t is τ (v)
EvalCtxt ′s E : : = outrec t is τ (E)

and the following primitive instruction:

outrec t is τ (inrec t is τ (v)) ; v

Exercise 6.11
Check the soundness of this extension.

There is no question of termination for this extension: if we add general
recursive types to L→ we introduce non-terminating computations into the lan-
guage. Thus recursive types may only be properly added to L⇀ (or its exten-
sions) with partial function types and the possibility of non-termination.

Exercise 6.12
Let τ be the type rec t is t→t. Let Ω be the expression fun (x:τ):τ in out(x)(x).
Check that Ω has type τ→τ , so that in(Ω) has type τ . Show that the expression
Ω(in(Ω)) does not terminate.

6.5 References

[57, 22, 51, 34]

37

38

Chapter 7

Polymorphism

7.1 Introduction

Polymorphism is the ability to abstract expressions over types (more generally,
type constructors). Such expressions have universally quantified, or polymorphic,
types. There are two main varieties of polymorphism. The predicative variant
is characterized by the limitation of quantifiers to range only over unquantified
types; the impredicative has no such restriction. We begin with the predicative
variant, in the context of the “explicit” formulation of variable types described
in Section 5.4.

7.2 Statics

The language L→,∀p

Ω is the extension of L→ with predicative type abstraction.
We work in the “explicit” framework of Chapter 5.

Kinds κ : : = Ω
Constructors µ : : = t | µ1→µ2

Types σ : : = T (σ) | σ1→σ2 | ∀(t)σ
Expressions e : : = x | fun (x:τ) in e | e1(e2) | Fun (t) in e | e[µ]

Type Contexts ∆ : := ∅ | ∆[t]
Term Contexts Γ : : = ∅ | Γ[x:σ]

The types consist of the inclusions of constructors of kind Ω, and are closed
under formation of function spaces and universal quantification. The expres-
sions are those of L→, extended with polymorphic abstractions, Fun (t) in e, and
polymorphic applications (or instantiations), e[µ].

It is also possible to enrich other base languages with polymorphism; we
consider L→ as the base language for the sake of specificity.

39

The judgement forms of L→,∀p

Ω are as follows:

∆ ` µ :: κ µ has kind κ over ∆
∆ ` µ1 ≡ µ2 :: κ µ1 and µ2 are equivalent constructors of kind κ

`∆ σ σ is a valid type over ∆
`∆ σ1 ≡ σ2 σ1 and σ2 are equivalent types

Γ `∆ e : σ e has type σ relative to Γ and ∆

In addition we define `∆ Γ to mean `∆ Γ(x) for every x ∈ domΓ.
The rules for constructor formation and equivalence are as in Section 5.4.

The rules for type formation and equivalence are those of Section 5.4, extended
with the following rules:

`∆[t] σ

`∆ ∀(t)σ
(t /∈ ∆) (t-all)

`∆[t] σ ≡ σ′

`∆ ∀(t)σ ≡ ∀(t)σ′
(e-all)

The typing rules for the distinctive expressions of L→,∀p

Ω are defined as fol-
lows:

Γ `∆[t] e : σ
Γ `∆ Fun (t) in e : ∀(t)σ

(t /∈ dom(∆) (t-tabs)

Γ `∆ e : ∀(t)σ ∆ ` µ
Γ `∆ e[µ] : {µ/t}σ

(t-tapp)

We also include the rule t-equiv from Chapter 5 to ensure that typing re-
spects equivalence of types.

7.3 Dynamics

The operational semantics of L→,∀p

Ω is defined as follows:

Values v : : = x | fun (x:σ) in e | Fun (t) in e
Eval Ctxts E : : = • | E(e) | v(E) | E[µ]

The evaluation relation e 7→ e′ is defined for closed expressions e and e′ iff
e = E[r] and e′ = E[c], where r ; c according to the following rules:

(fun (x:σ) in e)(v) ; {v/x}e
(Fun (t) in e)[µ] ; {µ/t}e

Exercise 7.1
Prove the soundness of the operational semantics for L→,∀p

Ω given above by
stating and proving progress and preservation theorems for this interpretation.

40

A useful technical property of types in L→,∀p

Ω is that {µ/t}σ is always
“smaller” than ∀(t)σ, regardless of how often (if at all) t occurs in σ. Specif-
ically, substitution into the matrix of a quantified type strictly reduces the
number of quantifiers in the resulting type, perhaps at the expense of increasing
its overall length. This property is not shared by the impredicative variant of
L→,∀p

Ω (presented below), and may be understood as the distinguishing feature
of predicative polymorphism.

With this in mind, the termination proof for L→ given in Chapter 2 may
be extended to L→,∀p

Ω by associating predicates Valσ and Compσ to each closed
type σ in such a way that definitional equivalence is respected. In the present
case respect for definitional equivalence can be achieved by considering types
in T (−) normal form in which T (τ) occurs only when τ is a type variable.
We may then define the interpretation of normal form quantified types by the
equation

Val∀(t)σ(v) iff µ :: Ω implies Comp{µ/t}σ(v[µ]).

It is easy to check that the system of predicates obtained by extending the
definition in Chapter 2 with this clause is well-defined.

To prove termination, let us define a closed type substitution for a type
context ∆ to be a finite function δ assigning a closed type expression to each
t ∈ dom(∆).

Theorem 7.2
If Γ `∆ e : σ, then Comp δ̂(σ)(γ̂(δ̂(e))) for every closed type substitution δ for ∆
and every closed value substitution γ such that Val δ̂(Γ)(γ).

Exercise 7.3
Prove Theorem 7.2 by induction on typing derivations. Be sure to take account
of the rule t-equiv!

7.4 Impredicative Polymorphism

The distinction between predicative and impredicative polymorphism may be
located in the separation between constructors and types. While every construc-
tor µ (of kind Ω) “names” a type T (µ), not every type arises in this way. Since
type variables range only over constructors, quantified types are excluded from
the domain of quantification. By ensuring that every type is named by some
constructor — or, what is the same, doing away with the distinction entirely
— we arrive at the so-called impredicative variant of the system, called L→,∀

Ω .
This system is known variously as Girard’s System F, or Reynolds’ polymorphic
λ-calculus, or the second-order typed λ-calculus.1

The passage to impredicative quantification may be formalized by enriching
the constructor level of L→,∀p

Ω with a universal quantifier, say all t inµ. Its

1The qualifier “second order” stems from the close connection between L→,∀
Ω and second-

order arithmetic.

41

interpretation is determine by the definitional equivalence

∆ ` T (all t inµ) ≡ ∀(t)T (µ).

With this addition every type is equivalent to a type of the form T (µ) for some
constructor µ.

A more streamlined presentation of L→,∀
Ω may be obtained by eliminating

altogether the distinction between constructors and types. This leads to the
following grammar for L→,∀

Ω :

Kinds κ : : = Ω
Types σ : : = t | σ1→σ2 | ∀(t)σ
Expressions e : : = x | fun (x:σ) in e | e1(e2) | Fun (t) in e | e[σ]

In this system types are classified by kinds, and expressions are classified by
types; in effect, we identify types and constructors. The judgement forms are
similar to those of the predicative variant, with the change that type formation
and equivalence are written ∆ ` σ :: κ and ∆ ` σ1 ≡ σ2 :: κ, respectively, and
the judgements governing constructors are eliminated.

Exercise 7.4
Prove that the streamlined presentation is equivalent to the presentation based
on an explicit inclusion of constructors as types.

For the remainder of this section we will work with the streamlined presen-
tation of L→,∀

Ω .

7.4.1 Termination

Although the identification of constructors and types leads to a syntactically
simpler system, it is by no means semantically simpler. In particular quantified
types may now be substituted for free type variables, and so it is no longer
the case that {σ/t}σ′ is “simpler” than ∀(t)σ′. For example, if σ = ∀(t)t and
σ′ = t, then {σ/t}t = σ — a quantified type can have itself as instance. Worse,
a quantified type such as σ = ∀(t)t→t has as instance σ→σ, which has more
occurrences of quantifiers than σ itself. These phenomena can be traced to a
kind of “circularity” inherent in the notion of impredicative quantification: the
quantifier ranges over all types, including the quantified type itself.

One consequence is that the termination proof for L→,∀p

Ω cannot easily be
extended to L→,∀

Ω — since quantifier instantiation does not reduce the complex-
ity of a type, some other treatment of the quanifier is required. A solution to
this problem — due to Girard — is to broaden the interpretation of the quanti-
fier to range over a wider class of predicates than are denotable by closed type
expressions. In other words, the quantifier is interpreted “semantically”, rather
than “syntactically”, thereby avoiding the problem of circularity inherent in
the impredicative framework. This technique is known as Girard’s candidates
method.

42

Following Girard, we employ a technical device to avoid complications with
empty types.2 We extend the language L→,∀

Ω with constants 0σ of type σ for
every type σ. These constants are considered to be values of the appropriate
type. At higher type they are subject to the following reduction rules:

0σ1→σ2(v) ; 0σ2

0∀(t)σ[σ0] ; 0{σ0/t}σ

Thus we may think of 0σ1→σ2 as the function fun (x:σ1) in0σ2 , and of 0∀(t)σ as
Fun (t) in0σ. We will prove termination for this extension of L→,∀

Ω , from which
termination of the language without these constants follows immediately.

A candidate for a closed type σ is a (non-empty) set of closed values of type σ
such that 0σ ∈ T for every T ∈ Candσ.3 Let Candσ be the set of all candidates
for type σ.

We will need three operations on candidates to model computations, function
spaces, and quantification.

Definition 7.5
1. If T ∈ Candσ, then [T]σ = { e : σ | e ⇓ v ∈ T }.

2. If T1 ∈ Candσ1 and T2 ∈ Candσ2 , then

[T1 → T2]σ1→σ2 = { v : σ1→σ2 | ∀v1 ∈ T1, v(v1) ⇓ v2 ∈ T2 }.

3. If Cσ(T) ∈ Cand{σ/t}σ′ for every closed type σ and every T ∈ Candσ,
then

[
∏

σ closed

∏
T∈Candσ

Cσ(T)]∀(t)σ′ =
{ v : ∀(t)σ′ | ∀σ closed , v[σ] ⇓ v ∈

⋂
T∈Candσ

Cσ(T) }.

Lemma 7.6
1. If T1 ∈ Candσ1 and T2 ∈ Candσ2 , then [T1 → T2]σ1→σ2 ∈ Candσ1→σ2 .

2. If Cσ(T) ∈ Cand{σ/t}σ′ for every closed type σ and every T ∈ Candσ,
then [

∏
σ

∏
T∈Candσ

Cσ(T)]∀(t)σ′ ∈ Cand∀(t)σ′ .

Proof:

1. Clearly [T1 → T2]σ1→σ2 is a set of values of type σ1→σ2. To show that it is
non-empty, we show that 0σ1→σ2 is a member of this set. To this end sup-
pose that v1 ∈ T1. We are to show that 0σ1→σ2(v1) ∈ [T2]σ2 . By definition
of the reduction rules governing the “zero” elements, 0σ1→σ2(v1) ⇓ 0σ2 .
But 0σ2 ∈ T2 since T2 is a candidate for σ2.

2. (Left as an exercise.)

2This device is not strictly necessary, but it simplifies the argument in a few spots.
3If we were to add base types such as Int or Bool to the language, we would further assume

that the constants of a type are elements of each candidate for that type.

43

�

Exercise 7.7
Complete the proof of Lemma 7.6.

Definition 7.8
The interpretations |∆ ` σ|δξ and ||∆ ` σ||δξ, where δ is a closed type substi-
tution for ∆ and ξ is an assignment of a candidate for δ(t) to each variable t in
∆, are defined by induction on the structure of types as follows:

|∆ ` σ|δξ = [T]δ̂(σ), where
T = ||∆ ` σ||δξ

||∆ ` t||δξ = ξ(t)

||∆ ` σ1→σ2||δξ = [T1 → T2]δ̂(σ1)→δ̂(σ2)
, where

T1 = ||∆ ` σ1||δξ and
T2 = ||∆ ` σ1||δξ

||∆ ` ∀(t)σ′||δξ = [
∏

σ

∏
T∈Candσ

Cσ(T)]∀(t)δ̂(σ′), where
Cσ(T) = ||∆[t] ` σ′||δ[t 7→ σ]ξ[t 7→ T] (σ closed , T ∈ Candσ)

Lemma 7.9
If ∆ ` σ, then ||∆ ` σ||δξ ∈ Cand δ̂(σ) for every closed type substitution δ for ∆
and every candidate assignment ξ for δ.

Proof: By induction on the structure of types. The result follows immediately
from Definition 7.8 and Lemma 7.6. �

In effect ||∆ ` σ||δξ picks out one candidate among many as the “meaning”
of the type σ, relative to the meanings of the types in ∆.

Exercise 7.10
Prove Lemma 7.9 by induction on the structure of types.

Note that by Definition 7.8 and Lemma 7.9, if v ∈ ||∆ ` ∀(t)σ′||δξ, then for
every closed type σ,

v[σ] ∈ |∆[t] ` σ′|δ[t 7→ σ]ξ[t 7→ ||σ||∅∅],

but this condition is not reversible.

Lemma 7.11
The interpretation of types is compositional:

||∆ ` {σ/t}σ′||δξ = ||∆[t] ` σ′||δ[t 7→ δ̂(σ)]ξ[t 7→ ||∆ ` σ||δξ]

44

Proof: Straightforward induction on the structure of types. �

Exercise 7.12
Prove Lemma 7.11.

Theorem 7.13
If Γ `∆ e : σ, then γ̂(δ̂(e)) ∈ |∆ ` σ|δξ for every closed type substitution δ for
∆, every candidate assignment ξ for δ, and every closed value substitution γ
such that γ(x) ∈ ||∆ ` Γ(x)||δξ for every x ∈ dom(Γ).

Proof (sketch): By induction on typing derivations. The case of an ordinary
variable is covered by the assumption on γ. Ordinary and type abstractions
are handled by closure under head expansion. Ordinary and type applications
are handled by applying Lemma 7.6. Respect for type equivalence is assured
because definitional equality of types is trivial in the present setting. �

Exercise 7.14
Complete the proof of Theorem 7.13.

Corollary 7.15
If ` e : σ, then there exists v such that e ⇓ v.

Proof: By considering the empty assignment of types and candidates to type
variables and the empty assignment of values to expression variables, and ap-
plying Theorem 7.13, we determine that e ∈ |∆ ` σ|∅∅, from which it follows
that e ⇓ v for some value v. �

Exercise 7.16
Consider extending L→,∀

Ω with a constant J : ∀(t)∀(u)t→u with the following
evaluation rules:

J[σ1][σ2] ; fun (x:σ1) inx if σ1 = σ2

J[σ1][σ2] ; fun (x:σ1) in0σ2 otherwise

Consider the term

v = Fun (t) inJ[ε→ε][t](fun (x:ε) inx[ε→ε](x))

of type ε = ∀(t)t (!).

1. Prove that this extension of L→,∀
Ω is not terminating by considering the

evaluation of v[ε→ε](v).

2. Show that J /∈ ||∅ ` ∀(t)∀(u)t→u||∅∅ by arguing that otherwise Candσ

would be a singleton for all closed types σ, which is a contradiction.

45

7.4.2 Definability of Types

An intriguing property of L→,∀
Ω is that an impressive variety of types are defin-

able within it. By a type being definable we mean that there is an encoding of
the type and its introduction and elimination forms in L→,∀

Ω in such a way that
the operational semantics is preserved.4 We will illustrate here a few examples,
and suggest a few exercises to give a flavor of what is involved.

We begin with product types. The product type is defined in L→,∀
Ω by the

following equation:
τ1×τ2 = ∀(t)(τ1→τ2→t)→t.

The idea is to think of an element of the product type as a polymorphic operation
for computing a value of a given “answer” type in terms of a “continuation” that
computes the answer in terms of the components of the product. Thus we define
the pairing and projection operations as follows:

<e1,e2>τ1,τ2 = Fun (t) in fun (f :τ1→τ2→t) in f(e1)(e2)

proji
τ1,τ2

(e) = e[τi](fun (x1:τ1) in fun (x2:τ2) inxi)

Observe that proji
τ1,τ2

(<v1,v2>τ1,τ2) ;∗ vi according to the rules of L→,∀
Ω —

in other words, the operational semantics of product types is preserved by these
definitions.

Exercise 7.17
Show that the Unit type is definable in L→,∀

Ω .

By a similar pattern of reasoning we arrive at the following definition of the
sum type in L→,∀

Ω :

τ1+τ2 = ∀(t)(t1→t)→(t2→t)→t

inlτ1,τ2(e) = Fun (t) in fun (f1:τ1→t) in fun (f2:τ2→t) in f1(e)

inrτ1,τ2(e) = Fun (t) in fun (f1:τ1→t) in fun (f2:τ2→t) in f2(e)

caseτ e of inl(x1:τ1) =>e1 | inr(x2:τ2) =>e2 esac
=

e[τ](fun (x1:τ1) in e1)(fun (x2:τ2) in e2)

Exercise 7.18
Check that the operational semantics of sums is properly captured by these

definitions. Show that the Void type is definable in L→,∀
Ω .

4In many situations more is required than mere preservation of operational semantics.
In many situations equational theories are considered, and it is required that the equations

governing the defined type be derivable in the equational theory of L→,∀
Ω .

46

The natural numbers are also definable in L→,∀
Ω :

Nat = ∀(t)t→(t→t)→t

0 =
Fun (t) in fun (z:t) in fun (s:t→t) in z

succ(n) =
Fun (t) in fun (z:t) in fun (s:t→t) inn[t](s(z))(s)

natrecτ n of 0=>b | succ(x:τ) =>s end = t[n](b)(fun (x:τ) in s(x))

Exercise 7.19
Check that the operational semantics of the recursor is accurately mimicked

by these definitions. Show that the type Bool is definable in L→,∀
Ω by giving

definitions for true, false, and if − then − else − fi.

Exercise 7.20
Show that streams are definable in L→,∀

Ω .

The question arises: which number-theoretic functions are definable in L→,∀
Ω ?

In view of the termination theorem only total functions are definable, and it
should be clear that all such functions are recursive (by an arithmetization of the
operational semantics). A simple diagonal argument shows that not every total
recursive function is definable in L→,∀

Ω . But can we say more? Girard proved
that the number-theoretic functions definable in L→,∀

Ω are precisely those that
can be proved total in second-order arithmetic. The proof breaks into two parts.
The termination proof for L→,∀

Ω can be formalized in second-order arithmetic,
so the definable functions of L→,∀

Ω are provably total in this system. In the other
direction we may define an “extraction” function that associates a term of L→,∀

Ω

with proofs in second-order arithmetic which ensures that every provably total
function is in fact represented in L→,∀

Ω .
Impressive though it is, this fact must be kept in proper perspective. In

particular, Girard’s theorem says nothing about efficiency of encoding, neither
in terms of size of program nor the complexity of the encoding. In fact, Parigot
has established a linear time (!) lower bound for the predecessor operation in
L→,∀

Ω .

7.5 References

The polymorphic typed λ-calculus was introduced by Girard [19] and Reynolds [53].
Our presentation of the termination proof for L→,∀

Ω is based on Gallier’s paper
in the Odifreddi volume [17].

47

48

Chapter 8

Abstract Types

Support for data abstraction is provided by existential types, which are “dual”
to the universal types associated with polymorphism.

8.1 Statics

The language L→,∀p,∃p

Ω is defined to be an enrichment of L→,∀p

Ω with the following
additional constructs:

Types σ : : = ∃u::κ(σ)
Expressions e : : = packµ with e asσ | openσ′ e asu::κ withx:σ in e′

The variables u and x are bound in e′, and, as usual, we identify expressions
that differ only in the names of the bound variables.

The expression

openσ (packµ with e′ as∃u::κ(σ′)) asu::κ withx:σ′ in e

is sometimes written

abstypeu::κ isµ withx:σ′=e′ in e end

to emphasize the connection with the data abstraction mechanisms found in ML
and CLU where the only expressions of existential type are explicit packages.

The formation rules for these constructs are as follows:

`∆[u::κ] σ

`∆ ∃u::κ(σ)
(u /∈ dom(∆)) (t-exist)

∆ ` µ :: κ Γ `∆ e : {µ/u}σ
Γ `∆ packµ with e as∃u::κ(σ) : ∃u::κ(σ)

(t-pack)

49

∆ ` σ′ Γ `∆ e : ∃u::κ(σ) Γ[x:σ] `∆[u::κ] e
′ : σ′

Γ `∆ openσ′ e asu::κ withx:σ in e′ : σ′
(u /∈ dom(∆);x /∈ dom(Γ))

(t-open)
In the rule t-pack the type of e depends on the choice of µ. The idea is that µ
is the implementation type (more generally, implementation constructor) of the
abstraction, and that e is the implementation of its operations, which are defined
over the implementation type. In the rule t-open the constructor variable u is
required to be “new” (i.e., not be already declared in ∆), reflecting the informal
idea that an abstract type is distinct from all other types for the purposes of type
checking. The requirement that u /∈ dom(∆) can always be met by appropriate
use of α-conversion prior to type checking. This approach to data abstraction is
sometimes called a closed scope or a client-enforced abstraction mechanism —
when opening a package the client holds the implementation type abstract in
a given body of code. If the client opens the same package twice, the abstract
types introduced by the two occurrences of open are, by α-conversion, distinct
from one another, and their associated operations cannot be intermixed. In a
manner of speaking, in the existential type framework there are no intrinsic, or
implementation-enforced, abstract types, rather only abstract uses of types.

8.2 Dynamics

The operational semantics of these constructs is given as follows.

Values v : : = packµ with v asσ
EvalCtxt ′s E : : = packµ withE asσ | openσ′ E asu::κ withx:σ in e′

The evaluation relation is generated by the following primitive reduction step:

openσ′ (packµ with v as∃u::κ(σ)) asu::κ withx:σ in e ; {v/x}{µ/u}e.

Note that during evaluation of an open expression the constructor µ replaces
the variable u before evaluation of its body commences: there are no “new”
types at run time. We emphasize that data abstraction is purely a matter of
type checking, and has no significance at run time.

Exercise 8.1
State and prove progress and preservation theorems for L→,∀p,∃p

Ω .

Exercise 8.2
Prove termination for L→,∀p,∃p

Ω by extending the termination argument given for

L→,∀p

Ω .

8.3 Impredicativity

An impredicative variant, L→,∀,∃
Ω , of L→,∀p,∃p

Ω may be defined analogously to
the polymorphic case, either by introducing a constructor corresponding to the

50

existential type, or by simply collapsing the constructor and type levels into
one.

Existential types are definable in L→,∀
Ω using the following definitions:

∃u::κ(σ) := ∀t::Ω((∀u::κ(σ → t)) → t)

packµ with e as∃u::κ(σ) := Fun (t::Ω) in fun (f :∀u::κ(σ → t)) in f [µ](e)
openσ′ e asu::κ withx:σ in e′ : = e[σ′](Fun (u::κ) in fun (x:σ) in e′)

Exercise 8.3
Check that the typing and evaluation rules for L→,∀,∃

Ω are derivable under the

above definitions. Conclude that L→,∀,∃
Ω enjoys the progress, preservation, and

termination properties.

8.4 Dot Notation

The open construct is somewhat awkward to use in practice because of the
requirement that the “client” of the abstraction be specified at the time that
the package is opened. For example, if the package is an implementation of a
widely-used concept such as a priority queue, then the programmer must open
the package at a very early stage to ensure that it is accessible to the entire
program. Thus abstract types must be given very wide scope, which tends to
obstruct the goal to decompose programs into separable components. It would
be useful to admit a more flexible means of handling packages that is nevertheless
equivalent to the original language in the sense that programs using the more
flexible notation can be re-written automatically into uses of open.

A natural proposal is to augment the language with a pair of operations,
Typ(e) and ops(e), that extract the type part and the code part of the package,
respectively. This allows us to refer directly to the operations of the package
without having to delineate the complete scope of the abstraction. In view of
the dependency of the type of the code part of a package on the type part of
that package, we expect to have typing rules of roughly the following form:

Γ `∆ e : ∃u::κ(σ)
Γ `∆ Typ(e) :: κ

(t-wit?)

Γ `∆ e : ∃u::κ(σ)
Γ `∆ ops(e) : {Typ(e)/u}σ

(t-opns?)

We can see immediately a technical problem with the rule t-wit?: the phase
distinction between types and terms is not preserved. Specifically, a type ex-
pression can now involve ordinary expressions (including free ordinary variables)
as sub-expressions, so that types now depend on run-time values. This is re-
flected formally in the use of the judgement Γ `∆ Typ(e) :: κ in the rule t-wit?,
where now both Γ and ∆ must be considered in defining the well-formed types.

51

Furthermore, the potential replication of the expression e in forming the sub-
stitution {Typ(e)/u}σ is suspect in the case that e can have an effect — two
separate occurrences of e can have distinct meanings.

But are these serious problems? Yes, unless further restrictions are imposed.
Specifically, the type expression Typ(e) appears to stand for a specific type (“the
type part of e”), even though emay not have a single, determinate type part! For
example, e may be the expression if∃u::κ(σ) flip(∗) then e1 else e2 fi, where e1
and e2 are packages of type ∃u::κ(σ), each with distinct type components, and
flip alternately yields true and false when applied to ∗. Roughly speaking,
Typ(e) changes its meaning every time you look at it! This can be turned into
a counterexample to type soundness.

Exercise 8.4
Turn this example into a proof of unsoundness of L→,∀p,∃p

Ω augmented with
Typ(−) and ops(−) as described above.

A natural restriction is to limit the application of Typ(−) to values so that
indeterminacies of the kind just described are avoided. This ensures that Typ(v)
is well-defined (stands for a specific type). As we will see in Chapter 10, this
restriction leads to a sensible language, but it is interesting to note that it is not
equivalent to L→,∀p,∃p

Ω . That is, programs written in this language cannot be
translated back into pure L→,∀p,∃p

Ω by suitable introduction of open expressions.
Consider the expression fun (x:Typ(v)) inx of type Typ(v) → Typ(v), where
v : ∃u::κ(σ) is some package value. To paraphrase this using open, the only
possibility is to consider the expression

openu→u v asu::κ withx:σ in fun (x:u) inx.

But this is clearly nonsense because the type u→u of the open expression in-
volves a bound type variable, u, whose scope is limited to the body of the open
expression.

By imposing a further restriction it is possible admit the operations Typ(−)
and ops(−) while preserving equivalence with L→,∀p,∃p

Ω . By restricting occur-
rences of Typ(−) and ops(−) to variables, we can identify the scope of the
package with the scope of the variable to which it is bound. This is achieved
by introducing an open immediately after the introduction of a variable of ex-
istential type. Notice that if, say, fun (x:∃u::κ(σ)) in e is well-formed, then it
has a type of the form (∃u::κ(σ)) → σ′, where e : σ′, assuming x : ∃u::κ(σ).
Now suppose that e has the form {ops(x)/y}{Typ(x)/u}e′, and consider the
expression

fun (x:∃u::κ(σ)) in openσ′ x asu::Ω with y:σ in e′.

This expression is well-formed because the type of e′ is σ′, which does not involve
the bound variable of the open expression.

52

Exercise 8.5
Make this argument precise by giving a translation from a language with Typ(−
) and ops(−) restricted to variables to the language L→,∀p,∃p

Ω based on the
preceding sketch. Prove that your translation preserves typing.

It is important to note that the restriction of Typ(−) and ops(−) to
variables is somewhat unnatural because the restriction is not preserved under
evaluation. More precisely, the steps of evaluation involve the substitution of
values for variables in expressions. In other words the restriction to variables
is not preserved by evaluation — the expected type preservation property does
not hold, for a somewhat unsatisfying reason. We will see in Chapter 10 how
to avoid these difficulties.

8.5 References

The connection between data abstraction and existential types was established
by Mitchell and Plotkin [41]. The “dot notation” was studied by Leroy and
Cardelli [6].

53

54

Chapter 9

Higher Kinds

9.1 Introduction

This chapter is under construction. Most of the material here is cut from
other chapters and needs to be re-worked.

9.2 Functional Kinds

The languages L→,∀p

Ω and L→,∀
Ω have only one kind, the kind of types. To support

type operators we enrich the language with functional kinds, as described by
the following grammar:

Kinds κ : : = Ω | κ1 ⇒ κ2

Constructors µ : : = t | → | fun (u:κ) inµ | µ1(µ2)
Type Contexts ∆ : := ∅ | ∆[t :: κ]

The extension of L→,∀p

Ω with higher kinds is written L→,∀p

Ω,⇒ , and similarly L→,∀
Ω,⇒

is the extension of L→,∀
Ω with higher kinds.

The rules for constructor formation are readily derived from those given in
Chapter 2 — the kind and constructor level of L→,∀p

Ω is nothing more than a
typed λ-calculus. The only non-obvious rule is the formation rule for the arrow
constructor:

∆ ` → : Ω ⇒ Ω ⇒ Ω

This is the function space operator as a constructor of higher kind. When we
write µ1→µ2, it is shorthand for →(µ1)(µ2).

The relation ∆ ` µ1 ≡ µ2 :: κ expresses definitional equivalence of construc-
tors. It is defined as follows:

∆[u::κ2] ` µ :: κ ∆ ` µ2 :: κ2

∆ ` (fun (u:κ2) inµ)(µ2) ≡ {µ2/u}µ :: κ
(u /∈ dom(∆)) (e-beta)

55

∆ ` µ :: κ
∆ ` µ ≡ µ :: κ

(e-refl)

∆ ` µ ≡ µ′ :: κ
∆ ` µ′ ≡ µ :: κ

(e-sym)

∆ ` µ ≡ µ′ :: κ ∆ ` µ′ ≡ µ′′ :: κ
∆ ` µ ≡ µ′′ :: κ

(e-trans)

∆ ` µ1 ≡ µ′1 :: κ2 ⇒ κ ∆ ` µ2 ≡ µ′2 :: κ2

∆ ` µ1(µ2) ≡ µ′1(µ
′
2) :: κ

(e-capp)

∆[u::κ1] ` µ ≡ µ′ :: κ2

∆ ` fun (u:κ1) inµ ≡ fun (u:κ1) inµ′ :: κ1 ⇒ κ2

(u /∈ dom(∆))

(e-cabs)

Exercise 9.1
Prove that if ∆ ` µ ≡ µ′ :: κ, then ∆ ` µ :: κ and ∆ ` µ′ :: κ.

The rules for expression formation are essentially as before, generalized to
quantifiers of the form ∀t::κ(σ), where κ is an arbitrary kind.

An impredicative version of the system with higher kinds is obtained by
identifying constructors of kind Ω with types, just as for the second-order frag-
ment. In this language quantification is represented by constants ∀κ of kind
(κ ⇒ Ω) ⇒ Ω for each kind κ. The quantified type ∀t::κ(σ) is regarded as an
abbreviation for ∀κ(()fun (t:κ) inσ). This language is called Girard’s System
Fω in the literature.

Exercise 9.2 (Difficult)
Extend the proof of termination to Fω by interpreting the kind Ω as the set
of all candidates for all closed types, and the kind κ1 ⇒ κ2 as the set of all
(set-theoretic) functions from the set assigned to κ1 to the set assigned to κ2.

9.3 Subtyping and Higher Kinds

The framework of variable types and higher kinds may be extended to subtyping
by introducing a pre-order on constructors (at least at kind Ω, and possibly also
at higher kinds) as well as on types. The judgement forms are as follows:

∆ ` µ1 <: µ2 :: κ sub-constructor relation
`∆ σ1 <: σ2 sub-type relation

The rules governing the sub-type relation are essentially as for L→<:, augmented
with the following rule for the inclusion of constructors:

∆ ` µ1 <: µ2 :: Ω
`∆ T (µ1) <: T (µ2)

(s-incl)

56

In words, sub-constructors of kind Ω determine sub-types under the explicit
inclusion.

The subsumption rule is essentially as in L→<:, but relativized to the type
context:

Γ `∆ e : σ `∆ σ <: σ′

Γ `∆ e : σ′
(t-sub-poly)

The sub-constructor relation at each kind κ is defined to be the least pre-
order (reflexive and transitive relation) respecting definitional equivalence of
constructors and closed under a given set of kind-specific rules. At kind Ω we
typically consider axioms such as

∆ ` µ′1 <: µ1 :: Ω ∆ ` µ2 <: µ′2 :: Ω
∆ ` µ1→µ2 <: µ′1→µ′2 :: Ω

(s-arrow-con)

and similar rules governing the formation of constructors such as products or
sums.

At higher kinds there are two typical choices. One is to take no additional
axioms so that the sub-constructor relation coincides with definitional equiva-
lence — in other words, the sub-constructor relation is trivial and hence may
be neglected entirely. An alternative, called operator subtyping, is to extend the
sub-constructor relation “pointwise” to constructors of functional kind. Specif-
ically,

∆[t::κ] ` µ <: µ′ :: κ′

∆ ` Fun t::κ inµ <: Fun t::κ inµ′ :: κ⇒ κ′
(s-oper)

In either case we also require that constructor application respect the pre-order:

∆ ` µ1 <: µ′1 :: κ2 ⇒ κ ∆ ` µ2 <: µ′2 :: κ2

∆ ` µ1(µ2) <: µ′1(µ
′
2) :: κ

(s-appcon)

9.4 Bounded Quantification and Power Kinds

The extension of L→,∀p

Ω with subtyping, L→,∀
Ω,<:, includes not only the subtyping

mechanisms of L→<:, but also extends quantification to bounded quantification,
∀t<:µ::κ(σ). The idea is that the quantification is restricted to all subtypes of
a given type. The syntax is as follows:

Types σ : : = ∀t<:µ::κ(σ)
Expressions e : : = Fun t<:µ::κ(e) | e[µ]

We often abbreviate ∀t<:τ ::Ω(σ) to ∀t<:τ(σ).
Type contexts are extended as follows:

Type Ctxt ′s ∆ : := ∅ | ∆[t] | ∆[t<:µ::κ]

57

We restrict attention to type contexts with no repeated declarations of a con-
structor variable.

The sub-constructor relation is defined to include the axiom

∆[t<:µ::κ] ` t <: µ :: κ (s-var)

The subtyping relation is extended to quantified types as follows:

`∆[t<:τ ′] σ <: σ′ ∆ ` τ ′ <: τ
`∆ ∀t<:τ(σ) <: ∀t<:τ ′(σ′)

(t /∈ dom(∆)) (s-all)

In addition we have the expected rule for function types

`∆ σ′1 <: σ1 `∆ σ2 <: σ′2
`∆ σ1→σ2 <: σ′1→σ′2

(s-arrow-poly)

Exercise 9.3
Give an informal justification for the “contravariance” of the subtyping relation
with respect to the bounds on quantified types.

Typing judgements have the form Γ `∆ e : σ. The characteristic expressions
of L→,∀

Ω,<: have the following typing rules:

Γ[t<:µ::κ] `∆ e : σ
Γ `∆ Fun t<:µ::κ(e) : ∀t<:µ::κ(σ)

(t /∈ dom(∆)) (t-stfn)

Γ `∆ e : ∀t<:µ::κ(σ) ∆ ` µ′ <: µ :: κ
Γ `∆ e[µ′] : {µ′/t}σ

(t-stapp)

These are essentially the rules for higher-kind quantification, restricted accord-
ing to the pre-order on constructors. The ordinary quantifiers can be recovered
by postulating a “largest” constructor, Topκ of kind κ, and defining ∀t::κ(σ) to
mean ∀t<:Topκ::κ(σ).

Exercise 9.4
How should Topκ1⇒κ2

behave? Hint: what if we apply a constructor of this
kind to an argument?

Exercise 9.5
Define an operational semantics for L→,∀

Ω,<: and prove progress and preservation
for it.

58

9.5 Singleton Kinds, Dependent Kinds, and Sub-
kinding

It is also possible to regard a transparent type definition as a special form of
opaque type definition (!). This may be achieved through the use of singleton
kinds in the formalism of Section 5.4. Specifically, we consider the following
language of kinds:

Kinds κ : : = Ω | E(τ)

The kind E(τ) is the kind of type constructors that are definitionally equivalent
to the constructor τ . This is captured by the following rules:

Γ ` τ ≡ τ ′

Γ ` τ :: E(τ ′)
(t-sgl)

Γ ` τ :: E(τ ′)
Γ ` τ ≡ τ ′

(e-sgl)

In the presence of singleton kinds, we may make an opaque definition trans-
parent by simply declaring the type variable to have a singleton kind:

abstype t:: E(ρ) is ρ withx:τ=v in e′ end

As before, the type variable t is “abstract” in e′ in the sense that only its kind
is revealed. But now the kind fully determines the definition of t, rendering
the declaration completely transparent! This idea will be used again in our
discussion of modularity.

Exercise 9.6
It has been proposed to take the opposite tack of treating opaque type bindings
as a form of transparent type binding, but in which the type has been “opaqi-
fied” (e.g., by wrapping it with a special constructor). Discuss the merits and
drawbacks of this approach. (Hint: consider definitional equality.)

9.6 References

59

60

Chapter 10

Modularity

10.1 Introduction

To motivate the development it is useful to outline some properties that may
be expected of a flexible module system.

A module is a program fragment treated in isolation. In the case of typed
languages such as those that we are considering in these notes a program frag-
ment consists of a collection of definitions of types and values. These definitions
are sometimes said to have “open scope” or “indeterminate scope” because the
range of significance of the defined identifier (type or value) is not specified as
part of the definition. The scope is unspecified precisely because we seek to
treat modules in isolation from one another, insofar as that is possible.

A module is described by an interface that constrains the visibility of the
components of the module. The notion of visibility of components plays a central
role in the design of a module system. There are two aspects of visibility. One
aspect is namespace management, the determination of which components of a
module are accessible to clients — that is, which defined identifiers of a module
are considered to be “in scope” for a client of that module. Another aspect
is sharing management, the exposure of the definitions of type identifiers in a
module — should a type identifier have its definition hidden, or propagated to
the client?

We expect a given module to satisfy many interfaces. This allows the pro-
grammer to establish different views of a module appropriate for different con-
texts. For example, we may choose to neglect the fact that a module has certain
components, or the fact that a type component is defined a certain way. Com-
ponent visibility rules determine which components of a module are accessible
to clients of the module; type visibility rules determine the extent to which type
definitions are propagated from the module to its clients. Most languages pro-
vide control over component visibility through some form of export mechanism.
In contrast, little control is provided over type visibility — typical policies in-
clude making all type definitions visible (as in C) or no types visible (as in

61

Modula-2).
It is useful to provide a many-to-many relationship between interfaces and

modules. A given interface to be satisfied by many modules. For example, there
may be several distinct implementations of priority queues, all of which satisfy
the same interface. A given module may have many interfaces. For example,
we may choose to export one set of components of a module into one context
and another set into another context. Or we may limit the visibility of types to
clients of an abstraction, but not to implementors of derived abstractions.

There is a fundamental tension inherent in modular programming between
the desire to treat modules in isolation from one another and the need to combine
them into a coherent whole to form a working system. A critical issue in the
design of a module system is management of dependence between modules. We
distinguish two forms of dependence:

1. Essential, or specification, dependence.

2. Accidental, or implementation, dependence.

Implementation dependences arise when one module makes reference to another
module. That is, if the code of one module refers to the code of another, then the
former is said to depend accidentally, or to have an implementation dependence,
on the latter. The word “accidental” is meant to suggest that the dependence is
entirely a matter of programming; another implementation of the same behavior
may not exhibit such a dependence.

Specification dependences arise when one interface makes reference to an-
other module.1 That is, the description of the components of one module makes
reference to types defined in another module. The word “essential” is meant
to suggest a semantic dependence in the sense that the interface of one module
cannot be given without reference to the implementation of another. Whether
a specification dependence is truly essential is sensitive to the type visibility
rules of the language. If the interface of a module M makes reference to types
defined in module N , but N makes its types visible, then M can be used in-
dependently of N . The interesting case, however, occurs when this dependence
cannot so easily be broken, namely when N holds its types abstract so that any
manipulations of values of this type must involve the operations that N defines.

In order to treat modules in isolation from one another it is important to have
self-contained interfaces for them. But in the presence of essential dependences
between modules, how can this be achieved? There are two main methods for
achieving independent interfaces:

1. Parameterized interfaces. Essential dependents are abstracted as param-
eters of the interface that are to be instantiated into specific contexts.

2. Hierarchical interfaces. Essential dependents are included as constituents
of the interface that are to be provided by the context.

1A third possibility, dependence of one interface on another interface raises no significant
technical issues.

62

In practice not all dependences need be eliminated. Often dependences on a
common library of commonly-used modules are not suppressed. It is a matter
of judgement to determine which dependences to admit in a signature, and
which to suppress.

Regardless of however interface independence is achieved, there is a concomi-
tant problem of coherence — how can the dependencies be restored so that two
modules with these interfaces can be usefully combined? In the case of parame-
terized interfaces, the main technique is consistent instantiation. The interface
parameters of several interfaces are instantiated by the same type to ensure that
the component types are compatible by construction. In the case of hierarchical
interfaces, the main technique is the sharing constraint. The constituents of
several modules are constrained to coincide on one more components to ensure
that they may be coherently combined. We will see an example of these two
methods below.

Implementation dependences may be handled in one of two ways. In many
situations it is perfectly reasonable to admit inter-module references without re-
striction. If two modules are to be separately compiled, some means of “break-
ing” and “restoring” the references between them must be provided, using stan-
dard program linking techniques. In some situations the implementation depen-
dencies are generic — for example, the implementation of a dictionary may rely
on a comparison operation on the elements. Most often, the dictionary code
is insensitive to the particular element type, and in fact may be instantiated
at several different element types in a given situation. In this case it is usual
to use parameterized modules to define the dictionary independently of the ele-
ment to, and to instantiate this module with a specific element types for specific
situations. It is important to note that this form of parameterization is at the
module level, and is a distinct concept from parameterization at the interface
level!

To illustrate these ideas, consider the example program in Figure 10.1. It is
written using an informal pseudo-notation that it is hoped will be self-evident.
In the example, there is an essential dependence between Rect and Circ on
Pt evidenced by the occurrences of the type Pt.pt in the interfaces RECT and
CIRC. Consequently, the interfaces RECT and CIRC may only be understood in
the presence of the module Pt, which implements the interface PT. A positive
consequence of this is that the operations on rectangles and circles are compat-
ible; we may, for example, create a unit circle centered on the lower-left corner
of a rectangle r by writing Circ.mk (Rect.lower left r, 1.0). On the other
hand, we may not separate Circ and Rect from Pt; any changes to Pt requires
that Circ and Rect be reconstructed to reflect these changes.

To achieve the independence of Circ and Rect from Pt, we may employ
either parameterized or hierarchical interfaces. We consider first the use of
parameterization. In Figure 10.2 we define RECT WRT and CIRC WRT to be pa-
rameterized interfaces taking the type pt of points as a parameter. These are
instantiated by the type Pt.pt to form the interfaces of the modules Rect and
Circ. These modules are compatible in the sense described above since both

63

interface PT is type pt fun mk (x:float, y:float):pt fun x coord (p:pt):float
fun y coord (p:pt):float end

module Pt implements PT is
type pt is {x:float,y:float}
fun mk (x:float, y:float):pt = {x=x,y=y}
fun x coord (p:pt):float = p.x
fun y coord (p:pt):float = p.y

end

interface RECT is
type rect
fun mk (p:Pt.pt, q:Pt.pt):rect
fun lower left (r:rect):Pt.pt
fun upper right (r:rect):Pt.pt

end
module Rect implements RECT is
type rect is {x:float,y:float}
fun mk(ll:Pt.pt, ur:Pt.pt):rect = {ll=ll,ur=ur}
fun lower left (r:rect):Pt.pt = r.ll
fun upper right (r:rect):Pt.pt = r.ur

end

interface CIRC is
type circ
fun mk (c:Pt.pt, r:float):circ
fun center (c:circ):float
fun radius (c:circ):float

end
module Circ implements CIRC is
type circ is {c:Pt.pt, r:float}
fun mk (c:Pt.pt, r:float):circ = {c=c, r=r}
fun center (c:circ):float = c.c
fun radius (c:circ):float = c.r

end

Figure 10.1: Modularity Example

64

interface RECT WRT (type pt) is
type rect
fun mk (ll:pt, ur:pt):rect
fun lower left (r:rect):pt
fun upper right (r:rect):pt

end

interface RECT is RECT WRT (type pt is Pt.pt)

module Rect implements RECT is (see Figure~10.1)

interface CIRC WRT (type pt) is
type circ
fun mk (c:pt, r:float):circ
fun center (c:circ):float
fun radius (c:circ):float

end

interface CIRC is CIRC WRT (type pt is Pt.pt)

module Circ implements CIRC is (see Figure~10.1)

module Pt’ implements PT is (another representation of points)

interface RECT’ is RECT WRT (type pt is Pt’.pt)

module Rect’ implements RECT’ is (similar to Rect)

interface CIRC’ is CIRC WRT (type pt is Pt’.pt)

module Circ’ implements CIRC’ is (similar to Circ)

Figure 10.2: Modularity Example Using Parameterization

65

module RectBuilder (module Pt implementing PT)
implements RECT (type pt is Pt.pt) is (see Figure~10.1)

module CircBuilder (module Pt implementing PT)
implements RECT (type pt is Pt.pt) is (see Figure~10.1)

module Rect implements RECT is RectBuilder (module Pt = Pt)

module Rect’ implements RECT’ is RectBuilder (module Pt = Pt’)

module Circ implements CIRC is CircBuilder (module Pt = Pt)

module Circ’ implements CIRC’ is CircBuilder (module Pt = Pt’)

Figure 10.3: Parameterized Modules and Parameterized Interfaces

are built on the same notion of point. We then introduce a second module, Pt’,
that also implements the interface PT, and build modules Rect’ implementing
RECT WRT (type pt is Pt’.pt) and Circ’ implementing CIRC WRT (type pt
is Pt’.pt). Now Rect’ is compatible with Circ’, but neither Rect nor Circ
are compatible with either Rect’ or Circ’! Here we are assuming that the type
system segregates the types Pt.pt and Pt.pt’. If not, then we may compose
Circ’.mk with Rect.lower left, but the result will, in general, be erroneous
since the underlying implementations of points are not compatible.

It is unfortunate that the construction of the modules Rect’ and Circ’ re-
quires repetition of code. In fact, the code is “generic” in the specific implemen-
tation of points. This suggests that we may provide a generic implementation
of rectangles and circles that is parametric in the implementation of points. See
figure 10.3.

Compatibility of components in the parameterized setting is achieved by
“threading” the appropriate types through the interfaces to build compatible
instances of the parameterized interfaces. An alternative is to use hierarchical
structuring of interfaces to ensure that modules are self-contained. This is
illustrated in Figure 10.4. In this example we include an implementation of
points as part of the implementation of rectangles and circles. This means that
the rectangle and circle modules must be parameterized in the implementation
of points (otherwise code duplication would result, as before). It is important to
note, however, that Rect.lower left is incompatible with Circ.center, even
though they happen to have been built using the same Pt module! Put another
way, since each geometric object module comes with its own notion of point, we
must assume that each such module comes with a distinct notion of point —
since they can be different, we must assume they are different.

But suppose that we wish to build a unit circle centered at the lower-left
corner of a given rectangle. How are we to achieve this? It can only be sen-
sible if Rect and Circ are built with the same notion of Point, but how can
this constraint be expressed? In the parameterized case we “thread” a common
implementation of points through the interface to ensure compatibility. In the
hierarchical case we avoid the need to repeatedly instantiate interfaces, but,

66

interface RECT is
module Pt implements PT
type rect
fun mk (ll:Pt.pt, ur:Pt.pt):rect
fun lower left (r:rect):Pt.pt
fun upper right (r:rect):Pt.pt

end

interface CIRC is
module Pt implements PT
type circ
fun mk (c:Pt.pt, r:float):circ
fun center (c:circ):Pt.pt
fun radius (c:circ):float

end

module RectBuilder (module Pt:PT) implements RECT is (see Figure~10.1)

module CircBuilder (module Pt:PT) implements CIRC is (see Figure~10.1)

module Rect implements RECT is RectBuilder (module Pt is Pt)

module Rect’ implements RECT is RectBuilder (module Pt is Pt’)

module Circ implements CIRC is CircBuilder (module Pt is Pt)

module Circ’ implements CIRC is CircBuilder (module Pt is Pt’)

Figure 10.4: Modules Example Using Hierarchies and Parameterized Modules

67

module Rect implements RECT is RectBuilder (module Pt is Pt)

module Circ implements CIRC sharing type Self.Pt.pt = Rect.Pt.pt
is CircBuilder (module Pt is Rect.Pt)

module Rect’ implements RECT is RectBuilder (module Pt is Pt’)

module Circ’ implements CIRC sharing type Selt.Pt.pt = Rect.Pt.pt
is CircBuilder (module Pt is Rect’.Pt)

module Main
(module Circ implements CIRC and Rect implements RECT
sharing type Circ.Pt.pt = Rect.Pt.pt)
is ... Circ.mk (Rect.lower left r, 1.0) ...

Figure 10.5: Module Example Using Hierarchies and Sharing Constraints

in compensation, some other mechanism for ensuring compatibility is required.
Here we arrive at the notion of a sharing constraint. See Figure 10.5. The
essential idea is to make explicit in the interface of Circ that it is built with
the same notion of points as is Rect, and similarly for Circ’ and Rect’. Then
the required composition is sensible. An alternative is to build a parameter-
ized module that, when given two compatible implementations of circules and
rectangles, yields code that builds the required circle (among other things).

10.2 A Critique of Some Modularity Mechanisms

In this section we discuss the strengths and weaknesses of two well-known for-
malisms for expressing modularity, existential types (discussed in Chapter 8)
and sigma types (described below).

Existential types have a number of attributes that are desirable in a modu-
larity mechanism:

1. Data abstraction. The implementation of an abstraction is “hidden” from
clients, allowing the package to be modified without affecting the behavior
of the client.

2. Separate compilation. The client of an abstraction need know only the
type of the package, and never its contents. Consequently libraries may
be separately compiled and maintained.

3. Flexibility. Packages are “first class” values. Implementations of abstrac-
tions may be selected on the basis of run-time considerations. Packages
may be stored in data structures and passed as arguments to functions.

However existential types also have some drawbacks:

1. Closed-scope abstraction. Packages can only be opened for use in a specific
scope, and this scope must be chosen wide enough to cover all uses of the

68

package. This leads to an inversion of program structure in which the
most basic constructs must be given the widest possible scope. Different
uses of the same abstraction introduce different types, complicating the
construction of large systems from independent components.

2. Poor support for hierarchies. The hierarchical approach to managing de-
pendencies is useless in the existential formalism because there is no possi-
bility to capture the fact that two hierarchies share a common component.
For example, if we open the packages Rect and Circ defined in Figure 10.4
(regarded as having existential type), then there will be two distinct no-
tions of point, one used by the operations in Rect, the other by those in
Circ. Consequently, the operations of Rect and Circ will be incompatible
with one another.

3. Poor support for parameterized modules. It is impossible to track the
dependence of the result of a parameterized module on its input. Consider
the following pseudo-code:

interface POSET is
type elt
fun le(x:elt,y:elt:bool

end

module LexOrd (module X implements POSET) implements POSET is ...

module Int implements POSET is ...

module IntList implements POSET is LexOrd (module X is Int)

The module IntList is useless because, when opened, a new type elt is
introduced supporting only the operation le, which cannot be applied to
any value!

An alternative to the existential formalism that avoids some of these dif-
ficulties is the sigma, or strong sum, formalism. These types have the form
Σu::κ(τ). The introductory form packµ with e asΣu::κ(τ) is the same as for
existentials: Σu::κ(τ) if µ :: κ and e : {µ/u}τ . The eliminatory forms are
the “projections” Typ(e) and ops(e) discussed in Chapter 8, but subject to the
following transparency principle of type equivalence:

Typ(packµ with v asΣu::κ(τ)) ≡ µ :: κ.

This axiom ensures that the type component of a package is “visible” during
type checking. This clearly violates data abstraction, but, on the other hand,
it admits a more flexible typing system for modules.

If we regard modules as packages of strong sum type, then we have the
following equivalences

Typ(Fst(Rect)) = Typ(Fst(Circ)) = {x:float,y:float}.

69

This is so because Rect and Circ are built on the same Pt module, which im-
plements pt as the type {x:float,y:float}. For this to work, we must emply
a substitution semantics for module definitions — defined module identifiers are
replaced by their definitions before type checking. This ensures that the pack-
ages themselves are available during type checking so that the transparency
principle may be applied. Thus, type checking depends on the implementation,
and not just the interface, of a module.

By augmenting the formalism with additional equations corresponding to
β-reduction of functor applications, we may deduce type sharing properties
of functor applications. For example, returning to the lexicographic ordering
example above, we may deduce that

Typ(IntList) = Typ(Int) list

by “running” the parameterized module LexOrd on the argument IntList. This
reliance on “execution” of parameterized modules during type checking is prob-
lematic in the presence of computational effects, even non-termination. For this
(and other reasons) the strong sum formalism is restricted to “second class”
module systems, as described briefly in Section 10.4 below.

The strong sum formalism solves the problem of “over-abstraction” associ-
ated with the opaque sum formalism, but at the expense of introducing problems
of its own. Specifically,

1. No data abstraction. To achieve flexibility the underlying implementation
type of a module is propagated to the client.

2. No separate compilation. The utility of the transparent sum formalism re-
lies on the “substitution semantics” for module definitions. This precludes
separately compiling modules from one another.

3. Second-class modules. Even under the “value restriction” on the Typ(−)
operation, it is possible to encode a “type of all types” using transparent
sums, specifically Σt::Ω(Unit). This implies that types are themselves
“first class”, which precludes compile-time type checking. Consequently
strong sums may be safely used only in a stratified language in which
module types are separated from ordinary types.

It is worth noting that a form of data abstraction is available in the transpar-
ent sum formalism by introducing a non-substitutive module definition mech-
anism.2 However, this is a “closed scope” abstraction construct, which suffers
from the same problems as the open construct of the opaque sum formalism. In
particular, we cannot define a functor whose result is “intrinsically abstract”.

The discussion of the opaque and transparent sum formalisms isolates several
key ideas that are critical to a flexible module system:

1. Controlled abstraction. It should be possible to selectively propagate or
obscure the type components of a module under programmer control.

2This is called an abstraction binding in MacQueen’s original modules proposal.

70

2. Separate compilation. It should be possible to compile modules indepen-
dently of one another.

3. Computational effects. The module system should be compatible with the
full range of control and store effects.

4. Flexible combinators. It should be possible to build module hierarchies
and generic modules without undue circumlocution.

5. Views. It should be possible to consider a module to implement a variety
of interfaces, and a given interface should admit many implementations.

As we will see below, the key is to enrich the expressiveness of the type system
so that type sharing relationships can be tracked at compile time through the
type, and not the contents, of a package.

10.3 A Modules Language

There are two different approaches to formalizing a language with modules ac-
cording to whether or not modules are “first-class” values or not. By “first-
class”, we mean that modules are ordinary values that may be passed to and
returned from functions, occur in data structures, be stored in reference cells,
etc.. There are two forms of first-class module system, predicative and impred-
icative, according to whether or not type variables range over module types. The
alternative is a “second-class” module system in which modules are segregated
from the rest of the language, with only limited forms of module expression (e.g.,
no conditional module expressions). We begin by considering a language with
first-class modules since the type theory is fully compatible with this decision.
Second-class module systems raise interesting type-theoretic questions that we
defer to a later section.

The language Lsig,Σ,Π
Ω,E of predicative, first-class modules is based on the

higher-kind, variable type formalism considered in Chapters 5 and 4. For the
sake of simplicity we do no consider a pre-order on constructors, but rather only
on types and kinds. We omit explicit consideration of “generic” constructs such
as record kinds and associated sub-kinding, and of expressions and types other
than those associated with modules. The impredicative variant of Lsig,Σ,Π

Ω,E is
obtained by collapsing the constructor and type levels of the predicative system,
and dispensing with the explicit inclusion of constructors into types.

71

10.3.1 Structures

The basic form of module in Lsig,Σ,Π
Ω,E is the structure. The syntactic forms

associated with structures are as follows:

Kinds κ : : = Ω | E(µ)
Constr ′s µ : : = Typ(v)
Types σ : : = sigu::κ withσ
Expr ′s e : : = ops(e) | structµ with e asσ
Values v : : = ops(v) | structµ with v asσ

Types of the form sigu::κ withσ are called structure types; expressions of the
form structµ with e asσ are called structures. We emphasize the importance of
singleton kinds for the selective propagation of constructor sharing information.

Since constructors may involve ordinary variables, it is necessary to con-
solidate the type and kind contexts into a single, unified context consisting of
declarations for both expression variables and constructor variables.

Contexts Θ : : = ∅ | Θ[u::κ] | Θ[x:σ]

As usual we restrict attention to contexts that declare a given variable at most
once.

The type system consists of rules for deriving judgements of the following
forms:

` Θ Θ is a valid context
Θ ` κ κ is a valid kind

Θ ` κ1 <:: κ2 κ1 is a sub-kind of κ2

Θ ` κ1 ≡ κ2 κ1 and κ2 are equivalent kinds
Θ ` µ :: κ µ is a valid constructor of kind κ

Θ ` µ1 <: µ2 :: κ µ1 is a sub-constructor of µ2 of kind κ
Θ ` µ1 ≡ µ2 :: κ µ1 and µ2 are equivalent constructors

Θ ` σ1 <: σ2 σ1 is a subtype of σ2

Θ ` σ1 ≡ σ2 σ1 and σ2 are equivalent types
Θ ` e : σ e has type σ

Kinds

To track type sharing properties we employ the formalism of singleton kinds.
Roughly speaking, the kind E(µ) is the kind of types that are definitionally
equivalent to the type µ. Type sharing information may be neglected through
the use of subsumption at the constructor level for a natural pre-ordering of
kinds generated by regarding singletons as sub-kinds of Ω.

The formation rules for kinds are as follows:

Θ ` Ω (k-type)

Θ ` µ :: Ω
Θ ` E(µ)

(k-sgl)

72

The sub-kinding rules include the following rule:

Θ ` µ :: Ω
Θ ` E(µ) <:: Ω

(s-sgl)

Singleton kinds respect definitional equivalence of constructors:

Θ ` µ1 ≡ µ2 :: Ω
Θ ` E(µ1) ≡ E(µ2)

(e-sgl)

Note, however, that E(−) does not respect the sub-constructor relation!

Exercise 10.1
Give an informal argument as to why E(−) should not respect the sub-constructor
relation based on the “re-use” interpretation of the sub-kind relation.

Neglecting type constructor components of a module is achieved by augment-
ing the kind structure with record kinds. As with record types, we consider a
sub-kinding relation induced by “forgetting” record components. Record kinds
respect kind equivalence and sub-kinding in each field.

Θ ` κ1 . . . Θ ` κn

Θ ` {L1:κ1, . . . , Ln:κn}
(k-recd)

Θ ` κ1 ≡ κ′1 . . . Θ ` κn ≡ κ′n
Θ ` {L1:κ1, . . . , Ln:κn} ≡ {L1:κ′1, . . . , Ln:κ′n}

(e-recd)

Θ ` κ1 <:: κ′1 . . . Θ ` κm <:: κ′m
Θ ` κm+1 . . .Θ ` κm+n

Θ ` {L1:κ1, . . . , Lm+n:κm+n} <:: {L1:κ′1, . . . , Lm:κ′m}
(s-recd)

Singletons may be extended to record kinds by defining

E(µ :: {L1:κ1, . . . , Ln:κn}) ≡ {L1:E(µ.L)1, . . . , Ln:E(µ.L)n}

(where µ.L is the record field selection operation described below).
As an aside, we note that the extension of singletons to function kinds re-

quires dependent function spaces:

E(µ :: Πu::κ1 (κ2)) ≡ Πu::κ1 (E(µ(u) :: κ2)).

73

Constructors

The constructor formation rules are largely inherited from the ambient program-
ming language. The sole new construct is the type projection from a module:

Θ ` v : sigu::κ withσ
Θ ` Typ(v) :: κ

(t-typ)

Singleton kinds induce equivalences between constructors, and conversely:

Θ ` µ ≡ µ′ :: Ω
Θ ` µ :: E(µ′)

(k-sgl-intro)

Θ ` µ :: E(µ′)
Θ ` µ ≡ µ′ :: Ω

(k-sgl-elim)

We postulate a principle of subsumption for constructors corresponding to
the subkinding relation:

Θ ` µ :: κ Θ ` κ <:: κ′

Θ ` µ :: κ′
(k-sub)

This ensures that we may “forget” the identity of a constructor or the com-
ponents of a record constructor by using the rule k-sub in conjunction with
rules s-sgl and s-recd.

In the presence of record kinds we also have record constructors and record
selections:

Θ ` µ1 :: κ1Θ ` µn :: κn

Θ ` {L1=µ1, . . . , Ln=µn} :: {L1:κ1, . . . , Ln:κn}
(t-con-recd)

Θ ` µ :: {L1:κ1, . . . , Ln:κn}
Θ ` µ.Li :: κi

(t-con-sel)

Record types and associated ordering are as described in Chapter 4.

Types

The formation, subtyping, and equivalence rules for structure types are as fol-
lows:

Θ[u::κ] ` σ :: Ω
Θ ` sigu::κ withσ :: Ω

(t-sig)

Θ ` κ <:: κ′ Θ[u::κ] ` σ <: σ′

Θ ` sigu::κ withσ <: sigu::κ′ withσ′
(s-sig)

Θ ` κ ≡ κ′ Θ[u::κ] ` σ ≡ σ′

Θ ` sigu::κ withσ ≡ sigu::κ′ withσ′
(e-sig)

74

Rule s-sig allows sharing information, constructor components, and value com-
ponents to be neglected. Rule e-sig allows propagation of type sharing infor-
mation governing the constructor variable u to the type σ.

Terms

The formation rules for structures is as follows:

Θ ` µ :: κ Θ ` e :: {µ/u}σ
Θ ` structµ with e as sigu::κ withσ : sigu::κ withσ

(t-struct)

This rule is exactly the same as the introductory rule for existential types or
sigma types.

The run-time component of a structure is selected as follows:

Θ ` e : sigu::κ withσ
Θ ` ops(e) : σ

(u /∈ FV(σ)) (t-opns)

Notice that this rule imposes the requirement that u not occur freely in σ:
the dependence of σ on u must be eliminated by equational reasoning before
application of this rule. In the case that e is a value, this is no restriction,
but in general we cannot select the operations part of a structure without first
determining that the type part is well-defined.

The following “self-recognition” rules are critical to propagation of well-
definedness of type components:

Θ ` v : sigu::κ withσ Θ ` Typ(v) :: κ′

Θ ` v : sigu::κ′ withσ
(t-self-typ)

Θ ` v : sigu::κ withσ Θ ` ops(v) :: σ′

Θ ` v : sigu::κ withσ′
(u /∈ FV(σ)) (t-self-ops)

In practice the rule t-self-typ is used to replace the kind Ω by the kind
E(Typ(v)), expressing the fact that the type component of a structure value v is
known to be Typ(v). One use of this arises in connection with variables: if x is
a variable of type sigu::Ω withσ, then x also has type sigu::E(Typ(x)) withσ,
hence if y is defined to be x, then y also has the latter type, and so Typ(y) ≡
Typ(x). In the absence of rule t-self-typ the types Typ(x) and Typ(y) would
be distinct, even though y and x are the same structure. The rule t-self-ops
is used to propagate the rule t-self-typ into σ, the “operations” part of the
structure. We rely on ops(v) being a value whenever v is a value, otherwise the
rule t-self-typ would not apply to ops(v).

Exercise 10.2
Prove that the following are derived rules:

1. The type components of structure values are visible:

Θ ` structµ with v as sigu::κ withσ : sigu::κ withσ
Θ ` Typ(structµ with v as sigu::κ withσ) ≡ µ :: κ

(e-transparent)

75

2. Type sharing information may be propagated and forgotten:

Θ ` sigu::E(µ) withσ :: Ω
Θ ` sigu::E(µ) withσ <: sigu::Ω with {µ/u}σ

(e-propagate)

3. The operations part of a value may always be extracted:

Θ ` v : sigu::κ withσ
Θ ` ops(v) : {Typ(v)/u}σ

(t-opns-val)

Signatures mediate the propagation of type sharing information. The preced-
ing exercise demonstrates that a structure value is “transparent” in the sense
that the identity of its type component may be propagated to its type. But
what if we wish to hide this information? The sealing operation e:σ provides
the means for doing so. Its typing rule is

Θ ` e : σ
Θ ` e:σ : σ

(t-seal)

The expression e:σ is, by design, not a value. This ensures that the seal cannot
be broken using the rule t-self-typ. In typical cases the type σ has opaque
constructor components in positions where the “natural” type of e is transparent
(e.g., when e is a structure value).

10.3.2 Module Hierarchies

To support hierarchical configurations of modules, we extend the grammar of
Lsig,Σ,Π

Ω,E with the following clauses:

Types σ : : = Σx:σ1(σ2)
Expr ′s e : : = structure e1 ; e2 | FST(e) | SND(e)

A type of the form Σx:σ1(σ2) is a substructure type since it allows one to define a
constituent structure (of type σ1) of an encompassing structure (of type σ2). An
expression of the form structure e1 ; e2 is a substructure expression; expressions
of the form FST(e) and SND(e) are substructure projections.

The formation, subtyping, and equivalence rules for the substructure types
are these:

Θ ` σ1 Θ[x:σ1] ` σ2

Θ ` Σx:σ1(σ2)
(x /∈ dom(Θ)) (t-subsig)

Θ ` σ1 <: σ′1 Θ[x:σ1] ` σ2 <: σ′2
Θ ` Σx:σ1(σ2) <: Σx:σ′1(σ

′
2)

(x /∈ dom(Θ)) (s-subsig)

Θ ` σ1 ≡ σ′1 Θ[x:σ1] ` σ2 ≡ σ′2
Θ ` Σx:σ1(σ2) ≡ Σx:σ′1(σ

′
2)

(e-subsig)

76

The formation rules for substructures and projections are as follows:

Θ ` e1 : σ1 Θ[x:σ1] ` e2 : σ2

Θ ` structure e1 ; e2 : Σx:σ1(σ2)
(t-substr)

Θ ` e : Σx:σ1(σ2)
Θ ` FST(e) : σ1

(t-first)

Θ ` e : Σx:σ1(σ2)
Θ ` SND(e) : σ2

(x /∈ FV(σ2)) (t-second)

Notice that in the rule t-substr only the type σ1 of the substructure e1 is
propagated, rather than the substructure itself as in the case of transparent sum
types. This ensures the enforceability of abstraction, and avoids complications
in the case that the substructure expression has a computational effect.

The rule t-second is reminiscent of the rule t-opns for basic modules. All
dependences of the second component on the first must be resolved (by sharing
propagation) prior to projection. If the second component cannot be given a
type that is independent of the first component, then the second projection is
not well-formed. In the case that e is a value, we can always form the second
projection by using the following rules:

Θ ` v : Σx:σ1(σ2) Θ ` FST(v) : σ′1
Θ ` v : Σx:σ′1(σ2)

(t-self-subsig)

Θ ` v : Σx:σ1(σ2) Θ[x:σ1] ` SND(v) : σ′2
Θ ` v : Σx:σ1(σ′2)

(t-self-subsig’)

We regard FST(v) and SND(v) to be values to ensure that these “self” rules are
applicable.

Exercise 10.3
Prove that if v : Σx:σ1(σ2), then there exists σ′1 and σ′2 such that x /∈ FV(σ′2)
and v : Σx:σ′1(σ

′
2).

Exercise 10.4
Define a call-by-value operational semantics for substructures and verify progress
and preservation for this semantics.

10.3.3 Parameterized Modules

To support generic modules, the grammar of Lsig,Σ,Π
Ω,E is enriched as follows:

Types σ : : = Πx:σ1(σ2)
Terms σ : : = functorx:σ1(e) | inst e1(e2)

77

A type of the form Πx:σ1(σ2) is a functor type. An expression of the form
functorx:σ1(e) is a functor, and an expression of the form inst e1(e2) is a
functor application or functor instantiation.

It is interesting to note that polymorphic types are definable in this system
by regarding polymorphic operations as functors. Specifically, we may define
∀u::κ(σ) to stand for

Πx:sigu::κ with Unit({FST(x)/u}σ).

Corresponding definitions may be given for polymorphic functions and instan-
tiations.

The formation, subtyping, and equivalence rules for functor types are as
follows:

Θ ` σ1 Θ[x:σ1] ` σ2

Θ ` Πx:σ1(σ2)
(x /∈ dom(Θ)) (t-funsig)

Θ ` σ′1 <: σ1 Θ[x:σ′1] ` σ2 <: σ′2
Θ ` Πx:σ1(σ2) <: Πx:σ′1(σ

′
2)

(x /∈ dom(Θ)) (s-funsig)

Θ ` σ1 ≡ σ′1 Θ[x:σ′1] ` σ2 ≡ σ′2
Θ ` Πx:σ1(σ2) ≡ Πx:σ′1(σ

′
2)

(x /∈ dom(Θ)) (e-funsig)

The subtyping rule for functor signatures expresses the contravariance of func-
tor types in the domain position, as might be expected. An important instance
arises when σ′1 contains more type sharing information than σ1 — the functor
type is less general when the domain type is more specific. The equivalence rule
for functor signatures allows type sharing information to be propagated from
the argument to the result type of the functor.

The formation rules for functors and functor instantiation are as follows:

Θ[x:σ1] ` e : σ2

Θ ` functorx:σ1(e) : Πx:σ1(σ2)
(x /∈ dom(Θ)) (t-functor)

Θ ` e : Πx:σ2(σ) Θ ` e2 : σ2

Θ ` inst e(e2) : σ
(x /∈ FV(σ)) (t-funapp)

The application rule is limited to functors whose type can be expressed without
dependences. As before, we rely on sharing propagation to eliminate depen-
dences prior to application.

Exercise 10.5
Show that if e : Πx:σ1(σ2), v : σ′1, and σ′1 ≤ σ1, then there exists σ′2 such that
inst e(v) : σ′2. Thus applications of functors to values are always well-formed,
provided that the types match up properly.

78

10.4 Second-Class Modules

A second-class module system is one in which the modularity constructs are
segregated from the ordinary expression constructs. This allows the module
language to avoid some of the difficulties associated with first-class modules,
principally conditional module expressions. The two levels are linked by a con-
struct for introducing a module declaration in the scope of an ordinary expres-
sion. The pay-off for this restriction is that the type system can be strengthened
to take account of the limitations of the module language.

The syntax of a representative second-class module language is as follows:

Signatures Σ : := sigu::κ withσ | Σx:Σ1(Σ2) | Πx:σ1(σ2)
Modules M : : = structµ with e asΣ |M :Σ

| structureM1 ;M2 | FST(M) | SND(M)
| functorx:Σ(M) | instM1(M2)

We retain the constructor form Typ(M), where M is any module expression
other than a “sealed” module — the restriction to values is no longer neces-
sary since the type component of a module is always well-defined, regardless of
whether or not any constituent ordinary expressions are well-defined. We also
retain the expression form ops(M), where M is a module expression, without
restriction. Finally we add the expression form modulex:Σ=M in e. This form
defines a module variable x with signature Σ bound to module M in the scope
of expression e. This construct provides a link between the module language
and the core language.

The formation, subsignature, and signature equivalence rules may all be
readily derived from those given above in the first-class case. The restriction
to values in the “self” rules can be relaxed to include any module expression
except a “sealed” module.

10.5 Higher-Order Modules

1. Discussion of functor generativity.

2. Higher-order functor typing.

10.6 References

The type-theoretic approach to modularity in programming languages was pio-
neered by MacQueen [31] and Burstall and Lampson [3]. MacQueen’s approach
was subsequently developed by Harper and Mitchell [28] who suggested a com-
prehensive type theory to encompass all of Standard ML. This suggestion was
further refined by Harper, Mitchell, and Moggi [29] to account for the phase
distinction in type theory [4]. These calculi did not, however, properly account
for computational effects or separate compilation, nor did they provide an ad-
equate treatment of sharing specifications. This was rectified by Harper and

79

Lillibridge [27] and Leroy [30]. The account given here is based on the latter
two papers.

80

Chapter 11

Objects

11.1 Introduction

11.2 Primitive Objects

1. Methods and fields.

2. Self-reference.

3. Persistent case only; no mutation.

4. Records and objects.

11.3 Object Subtyping

1. Depth OK in fields and methods (what is the rule for methods?).

2. Width unsound in the absence of dictionaries.

11.4 Second-Order Object Types

1. Self-types.

2. Relation to recursive types.

11.5 References

81

82

Chapter 12

Dynamic Types

12.1 Type Dynamic

1. Basic primitives.

2. Absence of abstraction.

12.2 Hierarchical Tagging

1. SML exn type. Extensible sums.

2. Hierarchical, extensible sums.

83

84

Chapter 13

Classes

13.1 Introduction

13.2 Public, Private, and Protected

1. Public: type of generated objects.

2. Protected: interface of the class (for subclasses).

3. Private: via subsumption.

13.3 Constructors

1. Behavior under inheritance.

2. Overloading?

13.4 Subtyping and Inheritance

Subclasses may or may not induce subtypes.

13.5 Dynamic Dispatch

Hierarchical tagging for dynamic dispatch.

13.6 References

85

86

Part II

Computational Effects

87

Chapter 14

Recursive Functions

14.1 Introduction

In view of the termination theorem 2.13 for the simply-typed λ-calculus (with
base types Int and Bool), something more is needed to achieve Turing equiv-
alence. The simplest approach is to enrich L1,×,→ with the ability to define
recursive functions. We call this language L1,×,⇀, using the “partial arrow”
notation to indicate the possibility of defining partial functions. If we include
the base types Int and Bool, the language is a call-by-value variant of Plotkin’s
language PCF, which we call PCFv.

14.2 Statics

The syntax of L1,×,⇀ is a minor variation of L1,×,→:

Types τ : : = Unit | τ1×τ2 | τ1⇀τ2
Expressions e : : = x | ∗ | <e1,e2>τ1,τ2 | proj1

τ1,τ2
(e) | proj2

τ1,τ2
(e) |

fun f(x:τ1):τ2 is e | appτ1,τ2
(e1,e2)

In the function expression fun f(x:τ1):τ2 is e, the variables f and x are bound
in e, and may be consistently renamed without specific mention.

The only differences compared to L1,×,→ are the replacement of the type ex-
pression τ1→τ2 by the type expression τ1⇀τ2, and the replacement of fun (x:τ1):τ2 in e
by the “self-referential” form fun f(x:τ1):τ2 is e. The ordinary (non-recursive)
function expression fun (x:τ1):τ2 in e is defined to be the recursive function ex-
pression fun f(x:τ1):τ2 is e, where f is chosen differently from x and so as not
to otherwise occur freely in e. In other words, a non-recursive function is a
recursive function that happens to not be recursive.

The typing rules for L1,×,⇀ are essentially the same as for L1,×,→, with the

89

modification that the rule t-abs is replaced by the following rule:

Γ[f :τ1⇀τ2][x:τ1] ` e : τ2
Γ ` fun f(x:τ1):τ2 is e : τ1⇀τ2

(f, x /∈ dom(Γ)) (t-rec)

Notice the use of “self-reference” in the above typing rule: to show that
fun f(x:τ1):τ2 is e has type τ1⇀τ2, we assume that f has type τ1⇀τ2 and that
the argument has type τ1, and show that the body has type τ2 under these
assumptions.

14.3 Dynamics

The contextual semantics of L1,×,⇀ is obtained from that of L1,×,→ by gener-
alizing the primitive reduction step for non-recursive functions to the following
reduction for recursive functions:

appτ1,τ2
((fun f(x:τ1):τ2 is e),v) ; {fun f(x:τ1):τ2 is e/f}{v/x}e

Note that the recursion is “unwound” by replacing f by the recursive function
itself whenever it is applied. It is in this sense that recursive functions are
“self-referential”.

Exercise 14.1
Give an evaluation semantics for L1,×,⇀ and prove that it is equivalent to the
reduction semantics just given.

Exercise 14.2
Extend the language to account for mutual recursion by generalizing the re-
cursive function form to (a) define n ≥ 1 mutually recursive functions, and (b)
project the ith (where 1 ≤ i ≤ n) function from the n so defined. This expres-
sion form should be regarded as a value. Give suitable typing and evaluation
rules for this extension.

14.4 Type Soundness

The basic syntactic properties of typing (preservation and progress) may be
readily extended to the case of recursively-defined functions. In particular,
note that if ` appτ2,τ ((fun f(x:τ2):τ is e),v) : τ , then f :τ2⇀τ, x:τ2 ` e : τ and
` v : τ2, and consequently ` {fun f(x:τ2):τ is e/f}{v/x}e : τ .

Theorem 14.3
If ` e : τ , then either e is a value or there exists e′ such that ` e′ : τ and e 7→ e′.

Exercise 14.4
Prove Theorem 14.3.

90

14.5 Compactness

A fundamental property of L1,×,⇀ is the compactness of evaluation. Roughly
speaking, this property states that for any given complete evaluation of an
expression to a value, at most finitely many “recursive calls” of any given recur-
sive function occurring in that expression are needed to complete the evaluation.
While intuitively clear, this property is remarkably tricky to state and prove,
mostly because of the presence of higher-order functions.

To illustrate the problems that arise, and to establish a framework for the
proof of the compactness property, we extend the language of expressions of
L1,×,⇀ to include labelled recursive functions.

Expressions e : : = fun(n) f(x:τ1):τ2 is e

Intuitively, the labelled function fun(n) f(x:τ1):τ2 is e may make up to n ≥ 0
recursive calls to itself, after which it diverges when applied.

The typing rule for labelled recursive functions is precisely the same as that
for unlabelled recursive functions. The primitive reduction steps are as follows:

appτ1,τ2
((fun(0) f(x:τ1):τ2 is e),v) ; appτ1,τ2

((fun(0) f(x:τ1):τ2 is e),v)
appτ1,τ2

((fun(n+1) f(x:τ1):τ2 is e),v) ; {fun(n) f(x:τ1):τ2 is e, v/f, x}e

Notice that in the second rule the label on the recursive function is reduced by
one on the recursive call.

Exercise 14.5
Check that the type soundness property holds for this extension of L1,×,⇀.

In the following exercise we explore the behavior of labelled recursive func-
tions in PCFv.

Exercise 14.6
1. Let fact be the obvious representation of the factorial function in L1,×,⇀,

and let fact (k) be the labelling of that function with the number k. Show
that for m ≥ 0, fact(m) 7→∗ n iff for every k ≥ m + 1, fact (k)(m) 7→∗ n.

Moreover, show that if k ≤ m, then fact (k)(m) fails to terminate.

2. Let idτ be the identity function at type τ , and let id (k)
τ be its labelled

form with label k1. Clearly idInt⇀Int(fact) 7→∗ fact . Show that for

k ≥ 1, id (k)
Int⇀Int(fact) 7→∗ fact and, moreover, for k ≥ 1 and l ≥ 0,

id (k)
Int⇀Int(fact

(l)) 7→∗ fact (l).

3. Let applyτ1,τ2
be fun (f :τ1⇀τ2) in fun (x:τ1) in f(x). Check the following

assertions:

(a) For any k ≥ 1, apply(k)
Int,Int(fact) 7→∗ fun (x:Int) in fact(x).

1Remember that even the identity is (vacuously) a recursive function!

91

(b) For any k ≥ 1 and l ≥ 0, apply(k)
Int,Int(fact

(l)) 7→∗ fun (x:Int) in fact (l)(x).

(c) For any k ≥ 1, m ≥ 0, l ≥ m+ 1, apply(k)
Int,Int(fact

(l))(m) 7→∗ m!.

As can be seen from the preceding exercise a difficulty with stating com-
pactness is that labels can appear in the result of evaluation. Consequently we
cannot expect to get the same result from a labelled evaluation as we do from
an unlabelled one, even if we choose sufficiently large labels for the recursive
functions involved.

To give a concise formulation of compactness we introduce the following
notation. For a closed expression e, define Lab(e) to be the set of labellings of
e — expressions derived from e by labelling every recursive function occurring
within e with a natural number. Note that from a labelling e∗ ∈ Lab(e) we can
recover e by simply erasing the labels from the recursive functions. It is easy to
check that labelling commutes with substitution and replacement, and that the
labelled form of a value is again a value. Finally, define Lab≥k(e) ⊆ Lab(e) to the
the set of labellings of e with all labels at least k. Note that Lab≥l(e) ⊆ Lab≥k(e)
whenever l ≥ k.

Theorem 14.7 (Compactness)
1. If e 7→∗ v, then there exists k ≥ 0 such that for every e∗ ∈ Lab≥k(e), there

exists v∗ ∈ Lab(v) such that e∗ 7→∗ v∗.

2. If e∗ 7→∗ v∗ with e∗ ∈ Lab(e) and v∗ ∈ Lab(v), then e 7→∗ v.

Proof: Both parts are proved by induction on the length of evaluation se-
quences.

1. For a length 0 computation, we have e = v. Take k = 0 and observe
that v∗ 7→∗ v∗. Otherwise, let e1 be such that e 7→ e1 7→∗ v. By induc-
tive hypothesis there exists k1 ≥ 0 such that for every e∗1 ∈ Lab≥k1(e1)
there exists v∗ ∈ Lab(v) such that e∗1 7→∗ v∗. Since e 7→ e1, there exists
an evaluation context E and a redex r such that e = E[r], e1 = E[c],
and r ; c. We proceed by cases on the form of r. Suppose that r =
appτ,τ ′(fun f(x:τ):τ ′ is e2,v2) and c = {fun f(x:τ):τ ′ is e2, v2/f, x}e2. Take
k = k1 + 1, and let e∗ ∈ Lab≥k(e). Notice that

e∗ = E∗[r∗]
= E∗[appτ,τ ′(fun(i) f(x:τ):τ ′ is e∗2,v

∗
2)] (∃i ≥ k = k1 + 1)

7→ E∗[{fun(i−1) f(x:τ):τ ′ is e∗2, v
∗
2/f, x}e∗2]

∈ Lab≥k1(e1).

Applying the inductive hypothesis we obtain the required v∗ such that
e∗ 7→∗ v∗. The other cases for r follow similarly, taking k = k1 since no
recursive unrollings are involved in the reduction.

2. For a length 0 computation we have that e∗ = v∗, and so e = v, from
which it follows that e 7→∗ v. Otherwise let e∗1 be such that e∗ 7→ e∗1 7→ v∗.

92

By the inductive hypothesis we have that e1 7→∗ v. Since e∗ 7→ e∗1, there
exists an evaluation context E∗, a redex r∗ and contractum c∗ such that
e∗ = E∗[r∗], e∗1 = E∗[c∗] and r∗ ; c∗. We proceed by cases on the form
of r∗. Suppose that r∗ = appτ,τ ′(fun(k) f(x:τ):τ ′ is e∗2,v

∗
2) (where k > 0)

and c = {fun(k−1) f(x:τ):τ ′ is e∗2, v
∗
2/f, x}e∗2. By erasing labels we obtain

e = E[r], e1 = E[c], and r ; c, hence e 7→ e1. The result follows by
an application of the inductive hypothesis. The treatment of the other
primitive reduction steps follows a similar pattern of reasoning. Note that
the k = 0 case of reduction of a labelled recursive function cannot occur
since we are considering only terminating reduction sequences.

�

Exercise 14.8
Complete the proof of Theorem 14.7.

14.6 References

Plotkin’s study of PCF [48] is a landmark in the study of programming languages
based on the typed λ-calculus. The suggested treatment of mutual recursion is
adapted from the SML/NJ intermediate language.

93

94

Chapter 15

Continuations

15.1 Introduction

The call-by-value evaluation strategy has the virtue that the order of evaluation
of expressions is predictable, in contrast to the call-by-need strategy in which
expressions are evaluated only upon demand. Although sometimes considered
a stricture, the deterministic character of the call-by-value strategy admits in-
troduction of language constructs that, while mathematically sensible, are all
but useless in a demand-driven language. In particular we may add the ability
to dynamically change the flow of control during evaluation through the use of
continuation-passing primitives.

15.2 Statics

The language L→,Cont is an extension of L→ whose syntax is defined as follows:1

Types τ : : = b | τ1 → τ2 | τ Cont
Expressions e : : = v | e1(e2) | letccx:τ Cont in e | throw e1 to e2
Values v : : = x | c | fun (x:τ) in e | E
Continuations E : : = • | E(e) | v(E) | throw e toE

Note that continuations are evaluation contexts; we tend to use the word “con-
tinuation” when thinking of an evaluation context as a value to be passed in a
program. This dual usage results in a syntactic ambiguity: throw e toE may be
read either as an expression in which E occurs as a value, as as a continuation
in which the hole occurs as a sub-expression of the second argument of throw.
We rely on context to disambiguate.

The typing rules for the continuation primitives are defined as follows:

Γ[x:τ Cont] ` e : τ
Γ ` letccx:τ Cont in e : τ

(x /∈ dom(Γ)) (t-letcc)

1We restrict attention to non-recursive functions for the sake of simplicity, but there is no
difficulty in extending L⇀ with continuation primitives.

95

Γ ` e1 : τ Γ ` e2 : τ Cont
Γ ` throw e1 to e2 : τ ′

(t-throw)

Note well that the type of a throw expression is arbitrary!
It remains to define the typing rules for continuations. To do so we fix as a

parameter of the type system a base type ans of “answers”, the ultimate value
of a complete program. (In a language with side effects ans might be chosen
to be Unit, the one-element type; in our simplified setting it would be more
natural to choose an “interesting” base type such as Nat.)

Γ[x:τ] ` E[x] : ans
Γ ` E : τ Cont

(x /∈ dom(Γ)) (t-cont)

Thus a continuation of type τ Cont may be thought of as a “function” from
τ to ans. We distinguish continuations from functions in order to preserve the
abstraction boundary; in particular, we wish to preserve the canonical forms
property. The reason to establish a fixed answer type will become clearer once
the evaluation rules for continuations are presented.

Evaluation contexts enjoy a “replacement” property that is stronger than
the substitution property of arbitrary expressions:

Lemma 15.1 (Replacement)
If Γ[x:τ] ` E[x] : τ ′ and Γ ` e : τ , then Γ ` E[e] : τ ′.

Although the restriction to evaluation contexts is not necessary at present, we
prefer to state only the form that we need for the development.

15.3 Dynamics

To describe the evaluation of L→,Cont expressions using reduction semantics we
must generalize the “local” rewriting method considered earlier to a “global”
method that keeps track of the context of evaluation. This is motivated by
the informal understanding of the evalation of letccx:τ Cont in e: the “current
continuation” (evaluation context) is substituted for x during evaluation of e.
Thus the evaluation context must be explicitly represented as a value, and the
rewriting rules must be defined in such a way that the context of evaluation
is apparent. We therefore abandon the separation between “instructions” and
“evaluation steps” considered earlier, in favor of a direct specification of the
one-step evaluation relation.

Definition 15.2
The one-step evaluation relation e 7→ e′ for L→,Cont is defined as follows:

E[(fun (x:τ) in e)(v)] 7→ E[{v/x}e]
E[letccx:τ Cont in e] 7→ E[{E/x}e]

E[throw e toE′] 7→ E′[e]

96

The reduction step for throw applies for arbitrary e. We could equivalently
require that e be a value, and extend the set of evaluation contexts to include
those of the form throwE to e. However, it is easy to see that insertion of an
expression into an evaluation context ensures that that expression is evaluated
before computation proceeds. We adopt the above definition to simplify the
meta-theory below.

Notice that, as before, the application of a function to a value occurs “in
place” in the sense that the evaluation context is not disturbed. Evaluation of
a letcc expression also occurs in place, but in addition the evaluation context
is duplicated and bound to x in e. Evaluation of a throw expression causes the
evaluation context to be abandoned and replaced by the target of the throw. It
is immediately obvious that the direct definition of the one-step evaluation rela-
tion generalizes the earlier approach in which the basic instructions are defined
separately from their context of use.

Exercise 15.3
Define a function ccwf that takes a continuation k of type τ Cont and a function
f of type τ ′ → τ and yields a continuation of type τ ′ Cont that, when passed a
value v′ of type τ ′, passes f(x′) to k.

It is interesting to consider an evaluation semantics in the presence of con-
tinuations.

Definition 15.4
The relation E ` e ⇓ v is inductively defined by the following rules:

• ` v ⇓ v (e-stop)

• ` E[v] ⇓ v′

E ` v ⇓ v′
(E 6= •) (e-value)

E[•(e2)] ` e1 ⇓ v
E ` e1(e2) ⇓ v

(e-app-fn)

E[v1(•)] ` e2 ⇓ v
E ` v1(e2) ⇓ v

(e-app-arg)

E ` {v/x}e ⇓ v′

E ` (fun (x:τ) in e)(v) ⇓ v′
(e-app)

E ` {E/x}e ⇓ v
E ` letccx:τ Cont in e ⇓ v

(e-letcc)

E[throw e1 to •] ` e2 ⇓ v
E ` throw e1 to e2 ⇓ v

(e-throw-cont)

E′ ` e ⇓ v
E ` throw e toE′ ⇓ v

(e-throw)

97

Note that the process of “search” for the next evaluation step is explicit in the
evaluation semantics.

Theorem 15.5
1. If E ` e ⇓ v, then E[e] 7→∗ v.

2. If E[e] 7→ E′[e′] and E′ ` e′ ⇓ v, then E ` e ⇓ v.

3. E ` e ⇓ v iff • ` E[e] ⇓ v.

4. If e 7→∗ v, then • ` e ⇓ v.

Exercise 15.6
Prove Theorem 15.5.

Exercise 15.7
The evaluation semantics given above builds the evaluation context “inside out”
by extending E with an evaluation frame representing the suspension of a prim-
itive operation during evaluation of a constituent expression. This suggests
making explicit the operation of extending an evaluation frame in the seman-
tics. For the purposes of this exercise let us work with the following definition
of evaluation context:

EvalContext E : : = • | F ;E
EvalFrame F : : = •(e) | v(•) | throw e to •

1. Re-formulate the evaluation semantics given in Definition 15.4 by simul-
taneously defining the relations E ` e ⇓ v and v ` E ⇓ v′, where the
latter relation expresses that the continuation E, when thrown the value
v, yields the value v′. (Hint: Define v ` E ⇓ v′ by induction on the struc-
ture of E; in the case that E = F ;E′, proceed by cases on F . Modify the
definition E ` e ⇓ v so that values are passed to continuations using this
relation.)

2. State and prove the relationship between this version of the evaluation
semantics and the one given in Definition 15.4.

15.4 Soundness

The preservation theorem is stated for complete programs, i.e.closed expressions
of type ans.

Theorem 15.8 (Preservation)
If ` e : ans and e 7→ e′, then ` e′ : ans.

Proof: We proceed by induction on the structure of e. Since e 7→ e′, there
exists E and ei such that e = E[ei] and E[ei] is reducible according to the
definition of one-step evaluation. Since ` e : ans, there exists a unique type τi

98

such that ` ei : τi and ` E : τi Cont. We show that ` e′ : ans by case analysis
on ei.

If ei = (fun (x:τ) in e′i)(v), then e′ = E[{v/x}e′i], and it is a simple matter
to check that ` e′ : ans.

Suppose that ei = letccx:τ Cont in e. Then e′ = E[{E/x}e], and it suffices
to show that ` {E/x}e : τi. This follows from the fact that x:τ Cont ` e : τ and
` E : τ Cont by the substitution lemma.

Suppose that ei = throw e′i toE
′
i so that e′ = E′

i[e
′
i]. Since ` throw e′i toE

′
i :

τi, it follows that there exists τ ′i such that ` e′i : τ ′i and ` E′
i : τi Cont, which

suffices for the result by the replacement lemma. �

Lemma 15.9 (Canonical Forms)
Suppose that v is a closed value of type τ . If τ = b, then v = c for some
constant c of type b; if τ = τ1 → τ2, then v = fun (x:τ1) in e for some x and e;
if τ = τ Cont, then v = E for some continuation E.

Theorem 15.10 (Progress)
If ` e : τ , then either e is a value, or there exists e′ such that e 7→ e′.

Proof: We proceed by induction on the structure of e. If e is not a value, then
either it is an application, a letcc, or a throw. The letcc case is immediate
since letccx:τ Cont in e 7→ {•/x}e. Suppose that e = throw e1 to e2. If e2 is
a value, then by the canonical forms lemma it must be a continuation E, and
hence e 7→ E[e1]. If e2 is not a value, then by inductive hypothesis there exists
e′2 such that e2 7→ e′2. It follows that e2 = E2[ei] for some E2 and ei. Taking
E = throw e1 toE2, we note that e = E[ei]; we proceed by cases on ei. If ei =
fun (x:τ) in e′i, then e = E[ei] 7→ E[{v/x}e′i]. If ei = letccx:τi Cont in e′i, then
e = E[ei] 7→ E[{E/x}e′i]. If ei = throw e′i toE

′
i, then e = E[throw e′i toE

′
i] 7→

E′
i[e

′
i]. �

Note that e′ is not necessarily well-typed (unless τ = ans) because of the typing
restrictions on continuations.

Exercise 15.11
Complete the proof of the progress theorem for L→,Cont.

The continuation-passing primitives letcc and throw are the “goto’s” of
functional programming. In particular, letcc establishes a “label” as the target
for a future jump instruction, and throw executes the jump, providing a value
to use as the value of the labelled expression. Although “goto’s” ordinarily may
be used to define infinite loops, it is a remarkable fact that the typing conditions
imposed here ensure that L→,Cont programs terminate. This fact will follow from
our work in Chapter 22.

99

15.5 References

For historical context Reynolds’s article [54] on the history of continuations
in programming languages is highly recommended. Early studies of particular
importance were carried out by Fischer [15], Reynolds [52], and Plotkin [47].

100

Chapter 16

References

16.1 Introduction

A unique aspect of ML is the strict segregation of mutable from immutable data
structures through the use of reference types. A value of type τ Ref is a pointer
or reference to a cell containing a value of type τ . The contents of the cell may be
retrieved by explicitly de-referencing the pointer; the contents may be changed
by assigning a value to the cell given by the pointer. References may occur
as components of complex data structures; sharing is achieved by replication
of the reference to the cell. References may be tested for equality, with the
intention that two references are equal iff they determine the same memory cell.
In contrast to LISP pointer equality is defined only for reference types, and not
for other data structures (which may or may not be implemented using pointers,
and which may have different sharing properties in different implementations of
the language).

16.2 Statics

The language L→,Ref is defined by the following grammar:

Expressions e : : = v | e1(e2) | letref d in e | ! e | e1 := e2
Memories d : : = x1:τ1 is v1 and · · · andxn:τn is vn

Values v : : = c | x | fun (x:τ) in e
Programs p : : = letref d in e
Answers a : : = letref d in v

Note that cells may only be bound to values, and not to arbitrary expressions.
The binding conventions for letref expressions are essentially the same as those
governing letrec expressions given in Exercise 14.2.

The expression ref (e) : τ is defined to be letx:τ be e in letref y in τ Refxy;
the motivation for this definition will become apparent once the operational se-
mantics has been given.

101

16.3 Dynamics

A reduction semantics for L→,Ref may be given by the method of program
rewriting used in previous chapters. Evaluation contexts are defined as follows:

E : : = • | E(e) | v(E) | !E | E := e | v :=E

The relation p 7→ p′ is defined for closed programs p as follows:

letref d inE[fun (x:τ) in e(v)] 7→ letref d inE[{v/x}e]
letref d inE[letref d′ in e] 7→ letref d and d′ inE[e]

letref · · ·x:τ is v · · · inE[!x] 7→ letref · · ·x:τ is v · · · inE[v]
letref · · ·x:τ is v · · · inE[x := v′] 7→ letref · · ·x:τ is v′ · · · inE[v′]

The scope of locally-allocated references is extended to encompass the entire
program, relying on α-conversion to avoid conflicts.

Evaluation of a closed expression e is performed by considering the program
letref in e — evaluation commences with an “empty” memory.

Exercise 16.1
Evaluate ref (9) using the definition given above. What answer is returned?

Exercise 16.2
Give an evaluation semantics for L→,Ref in which the evaluation relation has the
form (d, e) ⇓ (d′, v).

16.4 Type System

The syntax of type expressions is defined as follows:

τ : : = b | τ1 → τ2 | τ Ref

Typing judgements have the form Γ ` e : τ , where Γ is a type context mapping
variable to types.

The typing rules governing the new constructs are as follows:

Γ ` d : Γd Γ + Γd ` e : τ
Γ ` letref d in e : τ

(dom(Γ) ∩ dom(Γd) = ∅) (t-letref)

Γ ` e : τ Ref
Γ ` ! e : τ

(t-deref)

Γ ` e1 : τ Ref Γ ` e2 : τ
Γ ` e1 := e2 : τ

(t-assign)

Γ + Γ′ ` vi : τi Γ′(xi) = τi Ref (1 ≤ i ≤ n)
Γ ` x1:τ1 is v1 and · · · andxn:τn is vn : Γ′

(dom(Γ) ∩ dom(Γ′) = ∅)

(t-mem)

102

The context Γd in the rule t-letref is sometimes called a “store typing”. This
rule is similar to that for letrec declaration lists; in particular, reference cells
can be mutually recursive due to assignment statements.

Exercise 16.3
Show that single recursion can be encoded using assignment. (Hint: use “back-
patching”.) Prove your encoding correct by arguing that your encoding simu-
lates the operational semantics of single recursion. How would you extend your
encoding to deal with mutual recursion?

Assume that ans is a fixed, but unspecified, base type of answers. Note that
the answer a = letref d in v has type ans iff ` d : Γd and Γd ` v : ans for some
context Γd. Thus the memory must be well-typed and the returned value must
be a constant of type ans.

Theorem 16.4 (Soundness)
If ` p : ans, then either p is an answer, or there exists p′ such that ` p′ : ans
and p 7→ p′.

Corollary 16.5
If ` p : ans and p ⇓ letref d in v, then v = c : ans.

Exercise 16.6
Prove the soundness theorem for reference types. For preservation argue that if
letref d in e 7→ letref d′ in e′, and Γd is such that ` d : Γd and Γd ` e : ans,
then there exists Γ′d extending Γd such that ` d′ : Γ′d and Γ′d ` e′ : ans.
For progress analyze the canonical forms of each type, and argue that some
evaluation rule applies to any non-answer.

Exercise 16.7
Suppose that the language is modified to admit declarations of the form letrefx1:τ1 is e1 and · · · andxn:τn is en in e,
where the bindings to the variables need not be values. What difficulties do you
encounter when attempting to give a reduction semantics for this extension?

16.5 Allocation and Collection

The reduction semantics for L→,Ref is defined in such a way that all allocated
cells are accumulated at top level, and never de-allocated. While this may not be
problematic for most theoretical purposes, it is clear that for practical purposes
cells some form of de-allocation of unused storage must be provided.

Let p be the closed program letref d in e of basic type ans, where

d = x1:τ1 is v1 and · · · andxn:τn is vn.

A variable x defined in d is said to be garbage (relative to p) iff the outcome of
the computation of p is independent of x. More precisely, p ⇓ letref d′ in v iff
px ⇓ letref d′′ in v, where px is obtained from p by dropping the binding for

103

x from d. (Consequently px may fail to be a closed program since e or the vi’s
may have a free occurrence of x; evaluation is still sensible for such programs,
provided that we recognize that we may get “stuck” if an unbound variable is
to be evaluated.)

Exercise 16.8
Consider the extension of L→,Ref with recursive functions and integers so that
all partial recursive functions may be programmed. Prove that it is recursively
undecidable to determine whether or not a given cell is garbage relative to a
given program.

A collection of the program p is obtained by removing zero or more garbage
cells from p’s memory. In view of the undecidability of determining whether or
not a cell is garbage, it is impossible to effectively compute a complete collec-
tion of a program, i.e., one for which all garbage cells have been eliminated.
In practice conservative approximations are used instead. The most common
approximation is based on the accessibility criterion — a cell is accessible iff
it occurs freely in the program or in the contents of a cell accessible from a
cell occurring freely in the program. It is clear that inaccessible cells must be
garbage (why?). Typical collectors proceed by determining the set of accessible
cells in a given program, disposing of those that are inaccessible.

Exercise 16.9
Suppose that we enrich the reduction semantics with the following free variable
rule:

letref d and d′ in e 7→fv letref d in e

provided that no variable bound in d′ occurrs free in letref d in e (i.e., no
dangling references are introduced by the removal of d′).

1. Prove that the fv rule commutes with all other evaluation rules, i.e., if
p1 7→fv p2 7→r p3, then there exists p′2 such that p1 7→r p

′
2 7→fv p3.

2. Conclude that the outcome of a computation is not affected by garbage
collection according to the free variable rule.

Exercise 16.10
A copying garbage collector computes a collection of a program p by eliminat-
ing all inaccessible locations from p’s memory. Give an algorithm for copying
garbage collection in the form of a transition system whose states are triples
(d, s, d′), where d and d′ are memories and s is a set of variables. The set s
is called the scan set, d is called from space, and d′ is called to space. The
initial state of the collector for the program p = letref d in e is the triple
(d,FV(e), ∅), where FV(e) is the set of free variables of e, and the final state
is the triple (d, ∅, d′). Transitions consist of a systematic exploration of from
space, copying accessible locations into to space. Argue that a copying collector
is an implementation of the free variable rule for garbage collection, and hence
does not affect the outcome of a computation.

104

Exercise 16.11
In practice allocation of memory is not restricted to reference cells. Give an
operational semantics for L→ extended with a base type of integers such that
numbers and functions are allocated in memory, with implicit retrieval during
evaluation. For example, if x1 is bound to fun (x:Int) in e and x2 is bound to
3, then the application x1(x2) proceeds by evaluating {3/x}e. You will need to
distinguish heap values (which occur in cells) from program values (which are
restricted to variables) in order to give the semantics.

To do:

1. Arrays.

2. Mutable fields in records and objects.

16.6 References

The treatment of references given here was inspired by the work of Felleisen
and Wright [13, 58]. The approach to proving soundness through a reduction
semantics is adapted from Felleisen and Wright and Harper [23].

105

106

Chapter 17

Exceptions

17.1 Introduction

An important feature of ML is the exception mechanism which allows programs
to effect non-local “jumps” in the flow of control by setting a handler during
evaluation of an expression that may be invoked by raising an exception. Excep-
tions are value-carrying in the sense that one may pass a value to the exception
handler when the exception is raised. Because of the dynamic nature of ex-
ception handlers, it is required that exception values have a single type, Exn,
which is shared by all exception handlers. Although this seems on the surface
to be restrictive, Standard ML compensates for this restriction by defining Exn
to be an extensible data type — new constructors may be introduced using the
exception declaration, with no restriction on the type of value that may be
associated with the constructor. Since extensible data types are separable from
the exception mechanism itself, we will simply assume that there is a distin-
guished base type Exn of exception values, and not concern ourselves here with
how values of this type are created or used. (But see Chapter 12 for a detailed
discussion.)

17.2 Statics

The language L→,Exn is the enrichment of L→ defined by the following grammar:

Expressions e : : = . . . | try e1 ow e2 | raise e
Answers a : : = v | raise v

Values remain as for L→. An answer is either a value or an uncaught exception.
Let Exn stand for a fixed, but unspecified, base type of exception values.1

1The restriction to base type is not strictly necessary, but is made to simplify the devel-
opment.

107

The typing rules governing the primitives of L→,Exn are as follows:

Γ ` e1 : τ Γ ` e2 : Exn→ τ

Γ ` try e1 ow e2 : τ
(t-try)

Γ ` e : Exn
Γ ` raise e : τ

(t-raise)

17.3 Dynamics

The main difficulty with giving a reduction semantics for exceptions is to take
account of the dynamic binding of handlers. When evaluating a try expression
we must “install” a handler to catch all uncaught exceptions raised during eval-
uation of the expression we are trying to evaluate. Of course, inner handlers
take priority over outer handlers, so there is a dynamic call chain associated
with exception handlers that must be maintained. The trick to doing this is to
define a suitable notion of evaluation context to ensure that we correctly isolate
the innermost handler (if any) during evaluation.

Evaluation contexts are defined as follows.

EvalCtxt E : : = • | E(e) | v(E) | raiseE | tryE ow e

To capture propagation of exceptions we also define a class of “raise frames” as
follows:

RaiseFrame R : : = •(e) | v(•) | raise •

The idea is that exceptions propagate through raise frames.
The reduction semantics for programs is defined by the following rules:

E[(fun (x:τ) in e)(v)] 7→ E[{v/x}e]
E[try raise v ow e] 7→ E[e(v)]

E[try v ow e] 7→ E[v]
E[R[raise v]] 7→ E[raise v]

Application steps may occur anywhere, and are evaluated as usual. A raise
expression occurring within the scope of a handler passes the raised value to that
handler. A successful evaluation of an expression with an associated handler
causes the handler to be abandoned and the value to be returned. Finally,
exceptions propagate through raise frames.

Exercise 17.1
Suppose that evaluation contexts of the form raiseE are dropped, and the
reduction rule for catching exceptions is replaced by the following rule:

E[try raise e ow e′] 7→ E[e′(e)].

108

Suppose further that the propagation rule for exceptions is generalized to

E[R[raise e]] 7→ E[raise e]

so that exceptions are propagated in un-evaluated form.

1. What happens to uncaught exceptions arising from e? Is this reasonable?

2. Give an example of a program which evaluates differently under the two
semantics. Discuss the merits of the two approaches.

Exercise 17.2
Give a natural semantics for exceptions based on the idea that an answer is
either a value v or an “exception packet” raise v.

Theorem 17.3 (Determinacy)
For every e there is at most one answer a such that e 7→∗ a.

Exercise 17.4
Give a proof of determinacy by arguing that if e is not an answer, then at most
one reduction rule applies to e.

Since the evaluation relation is defined with respect to an evaluation context,
it becomes important to consider the type of answers and the initial continua-
tion. To prove preservation we need make no assumptions about the “answer”
type.

Theorem 17.5 (Preservation)
If ` e : ans and e 7→ e′, then ` e′ : ans.

Corollary 17.6
If ` e : ans and e 7→∗ a, then either a = c : ans or a = raise v for some v.

Exercise 17.7
Give a proof of the soundness theorem.

Well-typed programs do not “get stuck”. They may, however, raise an ex-
ception.

Theorem 17.8 (Progress)
If ` e : τ , then either e is an answer, or there exists e′ such that e 7→ e′.

(We need consider expressions of arbitrary type τ in order to get the induction
to go through.)

Exercise 17.9
Give a proof of the progress theorem.

109

In practice the answer type is a fixed base type, and the initial context is
chosen so that both “normal” and “error” returns yield a value of this type.
For example, we may choose ans = String and define the initial context for an
expression of type τ to be

Eτ : = try makestringτ (•) ow fun (x:Exn) in "uncaught exception".

Evaluation of e : τ commences by considering the expression Eτ [e], terminating
with a string representation of the result of evaluation (if there is any result at
all).

17.4 Exceptions and First-Class Continuations

It is interesting to consider the interaction between exceptions and first-class
continuations. Let us suppose that we näıvely combine L→,Exn with L→,Cont by
simply merging their syntax, type rules, and evaluation rules. Although the
typing and evaluation rules are well-defined, the situation we find ourselves in
is far from clear.

The following example explores the semantics of throw in the presence of
exceptions.

letcc k0 : int cont in let k : int cont be letcc r : int cont cont in throw
(try (letcc k : int cont in throw k to r) ow λ x:exn.17) to k0 in
try (throw raise 0 to k) ow λ x:exn.1

This expression evaluates to 17, not 1! The reason is that the evaluation rule
for throw

E[throw e toE′] 7→ E′[e]

passes e unevaluated to its continuation. Thus, in particular,

E[throw raise 0 toE′] 7→ E′[raise 0]

so that E′ has the opportunity (seized in the above example) to handle the
exception. This is arguably a mistake (and is certainly not the behavior we get
in SML). The “correct” (or at any rate preferred) rule is

E[throw v toE′] 7→ E′[v],

where the set of evaluation contexts is enriched to include those of the form
throwE to e and is modified to replace throw e toE by throw v toE. Under
this definition of evaluation, the above expression evaluates to 1, as might have
been expected.

The second example explores the behavior of uncaught exceptions raised by
a continuation.

letcc k0 : int cont in let k : int cont be letcc r : int cont cont in throw if
(letcc k : int cont in throw k to r) = 0 then 1 else raise 0 to k0 in try
(throw 1 to k) ow λ x:exn.17

110

This expression evaluates to raise 0, rather than 17 — throwing to a continu-
ation is “irrevocable” in the sense that computation cannot be resumed at the
point of the throw, even if the continuation raises an exception. Formally, this
behavior arises because the seized evaluation context bound to the variable k is

let k : int cont be if •=0 then 1 else raise 0 in try (throw 1 to k) ow
λ x:exn.17

If the hole is filled with any number other than 0, then an exception is raised,
which aborts the let and yields raise 0 as final answer.

17.5 References

The treatment of exceptions is inspired by the definition of Standard ML [38]
and Felleisen and Wright’s account [58].

111

112

Part III

Implementation

113

Chapter 18

Type Checking

18.1 Introduction

18.2 Type Synthesis

The typing rules for L→,∀p

Ω are not syntax-directed. The rule t-equiv, ex-
pressing invariance of typing under definitional equality of types, applies to
an arbitrary expression e. As a result there are infinitely many derivations of
Γ `∆ e : σ, if there are any at all. This raises the question of whether type
checking for L→,∀p

Ω is decidable: given ∆, Γ, e, σ, can we effectively determine
whether or not Γ `∆ e : σ?

We proceed by reducing the type checking problem to the type equivalence
problem by introducing the technique of type synthesis. The main observation
is that typing derivations can be put into a standard form in which the rule t-
equiv is used only at function applications. The standardized typing derivations
are defined by a syntax-directed type synthesis relation, Γ `∆ e ⇒ σe, which
determines a canonical type σe for e, if e has a type at all. We then prove that
Γ `∆ e : σ iff ∆ ` σ ≡ σe.

Exercise 18.1
1. Define a type synthesis relation Γ `∆ e⇒ σe by induction on the structure

of e with the property that

Γ `∆ e : σ iff Γ `∆ e⇒ σe and ∆ ` σ ≡ σe.

Prove that the type synthesis relation you define has this property.

2. Argue that type checking is reducible to type equivalence checking.

For the language L→,Exn the type equivalence relation is trivial, hence decid-
able. It follows from the preceding exercise that type checking is decidable.

Theorem 18.2
Type checking for L→,Exn is decidable.

115

18.3 Definitional Equality

The question arises once again as to whether or not the typing relation is decid-
able. We may as before reduce the question to the decidability of constructor
equivalence: can we effectively determine whether or not ∆ ` µ1 ≡ µ2 :: κ?
We will prove that this is so by a logical relations argument similar to the ones
we’ve encountered before, except that the interpretation of a type will be a pred-
icate on open, rather than closed, expressions. The idea will be to prove that if
∆ ` µ :: κ, then µ is strongly normalizable (SN) and locally confluent (LC) with
respect to a reduction relation derived from the axioms of definitional equal-
ity of constructors. We will then prove that ∆ ` µ1 ≡ µ2 :: κ iff ∆ ` µ1 :: κ,
∆ ` µ2 :: κ and µ1 and µ2 have the same normal form. This provides an effective
(but not an especially efficient) procedure for testing definitional equality.

Put into the context of term rewriting systems (defined in Chapter C), the
relation of interest will be β-reduction on “raw” constructors (not necessarily
closed or well-formed). We define µ1 →β µ2 iff µ2 can be obtained from µ1 by
replacing a single occurrence of (fun (u:κ) inµ′)(µ) in µ1 by {µ/u}µ′ to get µ2.

Exercise 18.3
1 Give a rigorous definition of β-reduction on constructors.

Exercise 18.4
Prove the following facts about β-reduction.

1. If µ→β µ
′, then {µ2/u}µ→β {µ2/u}µ′.

2. If µ2 →β µ
′
2, then {µ2/u}µ→∗

β {µ′2/u}µ.

3. β-reduction is locally confluent.

Exercise 18.5
Prove the following facts relating reduction, typing, and definitional equality:

1. The subject reduction property for β-reduction: if ∆ ` µ :: κ and µ→β µ
′,

then ∆ ` µ′ :: κ.

2. If ∆ ` µ :: κ and µ→β µ
′, then ∆ ` µ ≡ µ′ :: κ.

3. If ∆ ` µ :: κ, ∆ ` µ′ :: κ, and µ ↓β µ
′, then ∆ ` µ ≡ µ′ :: κ.

4. If ∆ ` µ1 ≡ µ2 :: κ, then µ1 ↔∗
β µ2.

It remains to prove strong normalization for β-reduction of well-formed con-
structors. With this in place it follows that the relation µ1 ↓β µ2 is decidable for
well-formed constructors (simply reduce both sides to normal form and check
equality up to renaming of bound variables). Moreover, →β is confluent on
well-typed terms, and hence if ∆ ` µ1 :: κ, ∆ ` µ2 :: κ, and µ1 ↔∗

β µ2, then
µ1 ↓β µ2, and hence ∆ ` µ1 ≡ µ2 :: κ. This yields a sound and complete

1For the author.

116

decision procedure for definitional equality of constructors: to decide whether
or not ∆ ` µ1 ≡ µ2 :: κ, check that ∆ ` µi :: κ and µ1 ↓β µ2.

Strong normalization for β-reduction of well-formed constructors is proved
using logical relations. In contrast to the preceding applications of the method,
we must consider predicates on open, as well as closed, terms to get the desired
result. Free variables are elegantly handled using Kripke’s method of possible
worlds. The main idea is to define the interpretation of kinds relative to a
“world”, a kind context providing a set of variables and their kinds. Worlds
“evolve” by extension (addition of new variables). The definition of the function
kind accounts for the evolution of worlds.

Definition 18.6
The interpretation ||κ||∆ of a kind κ relative to a world ∆ is defined by induction
on the structure of κ as follows:

||Ω||∆ = {µ | ∆ ` µ :: Ω and SNβ(µ) }
||κ1 ⇒ κ2||∆ = {µ | ∆ ` µ :: κ1 ⇒ κ2 and ∀∆′ ⊃ ∆, ∀µ1 ∈ ||κ1||∆′ , µ(µ1) ∈ ||κ2||∆′ }

Lemma 18.7
1. If µ ∈ ||κ||∆, then ∆ ` µ :: κ.

2. If µ ∈ ||κ||∆ and ∆′ ⊇ ∆, then µ ∈ ||κ||∆′ .

Exercise 18.8
Prove Lemma 18.7 by induction on the structure of κ.

Lemma 18.9
1. If µ ∈ ||κ||∆, then SNβ(µ).

2. Suppose that ∆ ` u :: κ1 ⇒ · · ·κn ⇒ κ, and ∆′ ` µi :: κi (1 ≤ i ≤ n) for
some ∆′ ⊇ ∆. If SNβ(µi) for each 1 ≤ i ≤ n, then u(µ1) · · · (µn) ∈ ||κ||∆′ .

Proof: Simultaneously, by induction on the structure of κ.
For κ = Ω, part (1) is immediate from the definition of ||κ||∆, and part (2)

holds because SNβ(u(µ1) · · · (µn) ∈ ||κ||∆′) whenever SNβ(µi) (1 ≤ i ≤ n).
Suppose κ = κ′ ⇒ κ′′. For part (1), suppose that µ ∈ ||κ||∆, and consider

the kind context ∆′ = ∆[u::κ′] ⊇ ∆. By inductive hypothesis, part (2), we
know that u ∈ ||κ′||∆′ , and hence µ(u) ∈ ||κ′′||∆′ , and so by inductive hypoth-
esis, part (1), it follows that SNβ(µ(u)). But then SNβ(µ) since any infinite
reduction sequence in µ can be mimicked in µ(u), contradicting SNβ(µ(u)). For
part (2), let µ ∈ ||κ′||∆′ ; we are to show that u(µ1) · · · (µn)(µ) ∈ ||κ′′||∆′ . By
inductive hypothesis, part (1), SNβ(µ), and hence the result follows by inductive
hypothesis, part (2). �

Lemma 18.10
Suppose that ∆[u::κ0] ` µ :: κ1 ⇒ · · ·κn ⇒ κ, ∆ ` µi :: κi (0 ≤ i ≤ n), and
SNβ(µ0). If {µ0/u}µ(µ1) · · · (µn) ∈ ||κ||∆, then

(fun (u:κ0) inµ)(µ0)(µ1) · · · (µn) ∈ ||κ||∆.

117

Exercise 18.11
Prove Lemma 18.10 by induction on the structure of κ. Use the fact that the
strongly normalizable constructors are closed under head-β-expansion.

Let δ range over substitutions of constructors for constructor variables. The
relation ∆′ δ :: ∆ holds iff δ(u) ∈ ||∆(u)||∆′ for every u ∈ dom(∆). The
relation ∆′ µ :: κ [δ] holds iff δ̂(µ) ∈ ||κ||∆′ .

Theorem 18.12
If ∆ ` µ :: κ, and ∆′ δ :: ∆, then ∆′ µ :: κ [δ].

Proof: By induction on typing derivations, using Lemma 18.10 to deal with
λ-abstractions. �

Exercise 18.13
Prove Theorem 18.12.

Corollary 18.14
If ∆ ` µ :: κ, then SNβ(µ).

Proof: Note that ∆ id :: ∆, where id is the identity substitution. �

Corollary 18.15
Definitional equality of constructors is decidable.

18.4 Subtyping

Fortunately we can restrict attention to typing derivations in standard form that
determine the minimal, or principal, type of an expression (relative to a con-
text). This process is called type synthesis since it synthesizes the principal type
of an expression from the expression itself. Standard-form typing derivations
are defined as the least relation closed under the following rules for deriving
judgements of the form Γ ` e⇒ τ :

Γ ` x⇒ τ (Γ(x) = τ) (t-s-var)

Γ[x:τ1] ` e2 ⇒ τ2

Γ ` fun (x:τ1) in e2 : τ1→τ2
(x /∈ dom(Γ)) (t-s-abs)

Γ ` e1 : τ ′2→τ Γ ` e2 : τ2 τ2 <: τ ′2
Γ ` e1(e2) ⇒ τ

(t-s-app)

Note in particular that there is no longer an explicit rule of subsumption, but
that in compensation the application rule enforces a subtyping constraint.

Standard form derivations are sound and complete for typing in L→,Exn in
the sense that a term is typable iff it has a standard-form typing derivation,
and, moreover, every type for that term is a supertype of its minimal type.

118

Theorem 18.16 (Standardization)
Γ ` e : τ in L→,Exn iff Γ ` e⇒ τ ′ for some τ ′ such that τ ′ <: τ .

Proof: The “if” direction is obvious: every standard-form typing derivation
determines a typing derivation. More precisely, it suffices to show that the
typing relation Γ ` e : τ is closed under the rules defining the standard-form
typing relation Γ ` e⇒ τ , from which the result follows from the minimality of
the standard-form relation among relations closed under these rules.

The “only if” direction is proved similarly: we show that the relation “there
exists τ ′ <: τ such that Γ ` e⇒ τ ′” is closed under the typing rules for L→,Exn.

t-var Γ ` x : Γ(x) <: Γ(x).

t-abs By induction we have that Γ[x:τ1] ` e2 ⇒ τ ′2 <: τ2. It follows that

Γ ` fun (x:τ1) in e2 ⇒ τ1→τ ′2 <: τ1→τ2.

t-app By induction we have Γ ` e1 ⇒ τ ′1 <: τ2→τ and Γ ` e2 ⇒ τ ′2 <: τ2. Since
the subtyping relation is normal, τ ′1 = τ ′2→τ ′ with τ2 <: τ ′2 and τ ′ <: τ .
Hence Γ ` e1(e2) ⇒ τ ′ <: τ.

�

Exercise 18.17
Exhibit a non-normal subtyping system for which standardization fails. Hint:
Postulate that some base type b is a subtype of some function type, then con-
struct a valid typing derivation that cannot be put into standard form.

Remark 18.18
If we use a fully explicit syntax, then the standard-form rule for function ab-
stractions must change to the following:

Γ[x:τ1] ` e2 ⇒ τ ′2 τ ′2 <: τ2
Γ ` fun (x:τ1):τ2 in e2 ⇒ τ1→τ2

(x /∈ dom(Γ)) (t-s-abs-x)

The ascription of a specified result type to the function prohibits inferring
anything other than the ascribed type to that function. Consequently, the
result type forms a constraint that must be checked during type synthesis.

Exercise 18.19
Check that Theorem 18.16 goes through for the fully-explicit syntax.

18.5 Subtyping

1. Minimal types.

2. Subtype checking.

3. Undecidabiltiy of subtyping for L→,∀
Ω,<: with contravariant rule.

119

18.6 References

120

Chapter 19

Type Reconstruction

19.1 Introduction

All of the language we have considered so far are based on an “explicitly-typed”
syntax in which the primitive operations are decorated with sufficient type in-
formation to ensure that a type-sensitive semantics for the language can be
given.1 For example, the “fully explicit” syntax for application includes both
the domain and range types, admitting the possibility of using type information
to determine the call- and return-sequence of a function. Of course a given
implementation is free to ignore types, and implement the primitive operations
uniformly. Since we cannot recover what was not there in the first place, the
explicit syntax is more general than an implicit syntax in which this information
has been omitted.

From a programmer’s point of view, however, the explicitly-typed syntax is
rather burdensome. For example, we have routinely written e1(e2), rather than
appτ1,τ2

(e1,e2), because otherwise the notation would be too cumbersome to be
conveniently manageable. The situation is worse in the case of polymorphism,
for in that we must explicitly apply polymorphic values to constructors to select
a suitable “instance”. It quickly becomes apparent that it is necessary to provide
an external language, which is written by the programmer, together with a
mapping to an internal language, the fully explicit syntax. This mapping is
called type reconstruction.

19.2 Type Reconstruction for L→,∀
Ω

We will work with L→,∀
Ω as the internal language, presented in the “streamlined”

form discussed in Chapter 7. The fully explicit syntax of L→,∀
Ω is given by the

1This criterion is admittedly unclear, but I have been unable to formulate a precise defini-
tion of what we might mean by “explicitly-typed” syntax.

121

following grammar:

InternalExpr ′s e : : = x | c | fun (τ1:τ2):x in e | appτ1,τ2
(e1,e2) | Funφ (t) in e | Appφ(e,τ)

The type system consists of rules for deriving judgements of the following forms:

∆ ` τ :: κ τ has kind κ
∆ ` τ1 ≡ τ2 :: κ τ1 is definitionally equivalent to τ2 at kind κ
Γ `∆ e : τ e has type τ

The derivation rules for these judgements are easily derived from those given
in Chapter 7. However, as a technical convenience, we consider not just the
kind Ω, but also the kind Ω ⇒ Ω, even though polymorphic abstraction and
application are limited to the kind Ω. One reason for this is that the fully explicit
syntax for polymorphic abstraction and application is indexed by a constructor
of kind Ω ⇒ Ω in order to determine the quantified type in question. Another
is that we shall have need of variables of both kinds, and hence we admit kind
contexts in which constructor variables are ascribed either the kind Ω or the kind
Ω ⇒ Ω. The constructor formation and equality rules for this presentation of
L→,∀

Ω are readily derived from the “higher kinds” extension of L→,∀
Ω by restricting

attention to the two kinds considered here.. The meta-variable φ will be used
to range over constructors of kind Ω ⇒ Ω.

We shall work with an implicit syntax that allows the omission of a sub-
stantial amount of type information on terms. Primitive operations need not be
indexed by their types (although we may specify the domain type of a function).
Moreover, uses of polymorphic instantiation may omit explicit mention of the
type argument, indicating only that an instantiation operation is to occur at
that point. The following grammar defines an implicit syntax for L→,∀

Ω :

ExternalExpr ′s u : : = x | c | fun (x:τ) inu | funx inu | u1(u2) | Fun (t) inu | u[τ] | u[]

Expressions of the external language are sometimes called “partially typed”
since they may contain some, but not all, type information associated with fully
typed terms.

19.3 Type Reconstruction as Static Semantics

The well-formedness of external language expressions may be defined by a
static semantics consisting of a set of elaboration rules that describe a non-
deterministic procedure mapping external to internal expressions. Elaboration
judgements have the form Γ `∆ u : τ ⇒ e, where ∆ is a kind context, Γ is
a type context over ∆, τ is a type over ∆, u is an expression of the external
language, and e is an expression of the internal language. We say that e is a
reconstruction of u (equivalently, that u is an abbreviation of e whenever such
a judgement is derivable in accordance with the following rules.

∆ ` Γ(x) ≡ τ :: Ω
Γ `∆ x : τ ⇒ x

(rs-var)

122

∆ ` τ ≡ b :: Ω
Γ `∆ c : τ ⇒ c

(c : b) (rs-const)

Γ[x:τ1] `∆ u : τ2 ⇒ e ∆ ` τ1 :: Ω ∆ ` τ ≡ τ1→τ2 :: Ω
Γ `∆ fun (x:τ1) inu : τ ⇒ fun (τ1:τ2):x in e

(x /∈ dom(Γ))

(rs-fn)

Γ[x:τ1] `∆ u : τ2 ⇒ e ∆ ` τ ≡ τ1→τ2 :: Ω
Γ `∆ funx inu : τ ⇒ fun (τ1:τ2):x in e

(x /∈ dom(Γ)) (rs-ufn)

Γ `∆ u1 : τ1 ⇒ e1 Γ `∆ u2 : τ2 ⇒ e2 ∆ ` τ1 ≡ τ2→τ :: Ω
Γ `∆ u1(u2) : τ ⇒ appτ2,τ (e1,e2)

(rs-app)

Γ `∆[t::Ω] u : φ(t) ⇒ e ∆ ` τ ≡ ∀(t)φ(t) :: Ω
Γ `∆ Fun (t) inu : τ ⇒ Funφ (t) in e

(t /∈ ∆) (rs-tfn)

Γ `∆ u : τ1 ⇒ e ∆ ` τ :: Ω ∆ ` τ ′ ≡ φ(τ) :: Ω ∆ ` τ1 ≡ ∀(t)φ(t) :: Ω
Γ `∆ u[τ] : τ ′ ⇒ Appφ(e,τ)

(rs-tapp)

Γ `∆ u : τ1 ⇒ e ∆ ` τ :: Ω ∆ ` τ ′ ≡ φ(τ) :: Ω ∆ ` τ1 ≡ ∀(t)φ(t) :: Ω
Γ `∆ u[] : τ ′ ⇒ Appφ(e,τ)

(rs-utapp)

We shall have need of the following properties of the elaboration relation.

Lemma 19.1
If Γ `∆[t::κ] u : τ ⇒ e by a derivation of height h and ∆ ` τ ′ :: κ, then

{τ ′/t}Γ `∆ {τ ′/t}u : {τ ′/t}τ ⇒ {τ ′/t}e

by a derivation of height h.

Lemma 19.2
If Γ `∆ u : τ ⇒ e, ∆ ` τ ≡ τ ′ :: Ω, and for every x ∈ dom(Γ), ∆ ` Γ(x) ≡
Γ′(x) :: Ω, then Γ′ `∆ u : τ ′ ⇒ e.

Lemma 19.3
If Γ `∆ u : τ ⇒ e, then Γ `∆ e : τ .

Reconstructions are not unique, even if we fix Γ, ∆, and τ . For exam-
ple, (fun y in 3)(funx inx) : Int has infinitely many reconstructions as an
explicitly-typed term!

123

19.4 Reconstruction as Constraint Solving

The description of type reconstruction as static semantics is intuitively appeal-
ing, but is not directly amenable to implementation. How is the indeterminacy
in the rules to be captured in a reconstruction algorithm? A natural approach
is to associate with each expression of the internal language a set of constraints
governing the choices to be made by the non-deterministic static semantics in
such a way that every reconstruction arises as a solution of the constraints.

19.4.1 Unification Logic

Constraints are expressed as formulae of (second-order) unification logic whose
syntax is defined by the following grammar:

Φ : := τ1 =̇ τ2 | Φ1 ∧ Φ2 | ∃t::κ.Φ | ∀t::κ.Φ

Here κ is either Ω or Ω ⇒ Ω; higher-order unification logic is defined by relaxing
this restriction to admit arbitrary kinds.

A formula Φ is well-formed over the kind context ∆ iff the involved equa-
tions are well-formed in the extension of ∆ appropriate to their occurrence.
Specifically, the equation τ1 =̇ τ2 is well-formed over ∆ iff ∆ ` τi :: Ω (i = 1, 2);
the conjunction Φ1 ∧ Φ2 is well-formed over ∆ just in case both Φ1 and Φ2 are
well-formed over ∆; the quantified formulae ∀t::κ.Φ and ∃t::κ.Φ are well-formed
over ∆ just in case Φ is well-formed over ∆[t::κ].

The provability property, ∆ Φ, for Φ a well-formed formula over kind con-
text ∆, is defined by the following rules:

∆ ` τ1 ≡ τ2 :: Ω
∆ τ1 =̇ τ2

(ul-eq)

∆ Φ1 ∆ Φ2

∆ Φ1 ∧ Φ2

(ul-and)

∆ {τ/t}Φ ∆ ` τ :: κ
∆ ∃t::κ.Φ

(ul-some)

∆[t::κ] Φ
∆ ∀t::κ.Φ

(t /∈ ∆) (ul-all)

Lemma 19.4
1. If ∆[t::κ] Φ and ∆ ` τ :: κ, then ∆ {τ/t}Φ.

2. Suppose that ∆[t::κ] ` Φ. If ∆ {τ/t}Φ and ∆ ` τ ≡ τ ′ :: κ, then
∆ {τ ′/t}Φ.

124

A formula Φ is in Σ2-form iff it has the shape

∃t1::κ1. · · · ∃tm::κm.∀t′1::κ′1. · · · ∀t′n::κ′n.τ1 =̇ τ ′1 ∧ · · · ∧ τp =̇ τ ′p.

That is, all quantifiers appear at the front, and all existential quantifiers precede
all universal quantifiers.

Theorem 19.5
For every formula Φ of second-order unification logic there is a formula Φ′ of
higher-order unification logic in Σ2-form such that ∆ Φ iff ∆ Φ′.

Proof: The formula Φ′ is obtained by application of the following prenex op-
erations:

1. (∃t::κ.Φ1) ∧ Φ2 7→ ∃t::κ.(Φ1 ∧ Φ2) provided that t is not free in Φ2, and
similarly for the universal quantifier and for quantifiers in the right-hand
conjunct.

2. ∀t::κ.∃t′::κ′.Φ 7→ ∃u::κ⇒ κ′.∀t::κ.{u(t)/t′}Φ.

�

Exercise 19.6
Prove Theorem 19.5.

From a proof of a Σ2 formula Φ in higher-order unification logic we may
read off a substitution ρ for the existentially-quantified variables of Φ such
that the inner universally-quantified system of equations is provable under this
substitution. Such a substitution is called a unifying substitution, or unifier, for
Φ. In view of Theorem 19.5 we can reduce the problem of provability in second-
order unification logic to the problem of finding a unifier for the associated
Σ2-form of Φ. Huet’s higher-order unification algorithm2 may be used to find
a unifier, if one exists (but it may diverge looking for a non-existent unifier).
This is the best we can do: provability in second- (and higher-) order unification
logic is undecidable.

A principal unifier for Φ is a unifier for Φ through which all other unifiers
for Φ factor — that is, ρ0 is a principal unifier for Φ iff whenever ρ is a unifier
for Φ, there is a substitution ρ′ such that ρ = ρ′ ◦ ρ0. For the special case
of a Σ2-form all of whose existential variables range over the kind Ω, if any
unifier exists, then there is a principal unifier, but this is not true in general for
second- or higher-order problems. As will become clear below, it is important
for type reconstruction to determine whether or not a given unification problem
has a principal solution. There is an algorithm derived from Huet’s procedure
with the property that it always terminates, classifying the input formula Φ
as either unprovable, provable with a specified principal unifier, or ambiguous.

2By a careful analysis of the prenex operations it is possible to prove that only second-order
unification is required, but this does not materially affect the discussion.

125

The algorithm is incomplete in two senses: it can fail to classify a formula Φ
that admits a principal unifier as such, and it can fail to identify an unprovable
formula as such. It is, however, sound in that affirmative decisions are always
correct, and it is “practically complete” in the informal sense that the class of
problems for which it renders a decision appears to be sufficiently large to be
useful in practice.

19.4.2 Constraint Generation

Type reconstruction may be described by associating a formula Φ of second-
order unification logic with a partially typed term u that, in an appropriate
sense, captures all possible reconstructions of u. The relation Γ `∆ u : τ ⇒ Φ
is defined for kind contexts ∆ (as above), well-formed type contexts Γ over ∆,
well-formed type τ over ∆, and expressions u of the external language by the
following set of rules:

Γ `∆ x : τ ⇒ (τ ′ =̇ τ) (Γ(x) = τ ′) (rc-var)

Γ `∆ c : τ ⇒ (τ =̇ b) (c : b) (rc-const)

Γ[x:τ1] `∆[t2::Ω] u : t2 ⇒ Φ
Γ `∆ fun (x:τ1) inu : τ ⇒ ∃t2::Ω.(Φ ∧ τ =̇ τ1→t2)

(x /∈ dom(Γ); t2 /∈ dom(∆))

(rc-fn)

Γ[x:t1] `∆[t1::Ω,t2::Ω] u : t2 ⇒ Φ
Γ `∆ funx inu : τ ⇒ ∃t1::Ω.∃t2::Ω.(Φ ∧ τ =̇ t1→t2)

(x /∈ dom(Γ); t1, t2 /∈ dom(∆))

(rc-ufn)

Γ `∆[t1::Ω] u1 : t1 ⇒ Φ1 Γ `∆[t2::Ω] u2 : t2 ⇒ Φ2

Γ `∆ u1(u2) : τ ⇒ ∃t1::Ω.∃t2::Ω.(Φ1 ∧ Φ2 ∧ t1 =̇ t2→τ)
(t1, t2 /∈ dom(∆))

(rc-app)

Γ `∆[s::Ω⇒Ω,t::Ω] u : s(t) ⇒ Φ
Γ `∆ Fun (t) inu : τ ⇒ ∃s::Ω ⇒ Ω.(τ =̇ ∀(t)s(t) ∧ ∀t::Ω.Φ)

(s, t /∈ dom∆)

(rc-tfn)

Γ `∆[s::Ω⇒Ω,t1::Ω] u : t1 ⇒ Φ ∆ ` τ :: Ω
Γ `∆ u[τ] : τ ′ ⇒ ∃s::Ω ⇒ Ω.∃t1::Ω.(Φ ∧ τ ′ =̇ s(τ) ∧ t1 =̇ ∀(t)s(t))

(s, t1 /∈ dom(∆))

(rc-tapp)

Γ `∆[s::Ω⇒Ω,t1::Ω,t::Ω] u : t1 ⇒ Φ
Γ `∆ u[] : τ ′ ⇒ ∃s::Ω ⇒ Ω.∃t1::Ω.∃t::Ω.(Φ ∧ τ ′ =̇ s(t) ∧ t1 =̇ ∀(t)s(t))

(s, t1, t /∈ dom(∆))

(rc-utapp)

126

The constraint associated with a partially-typed term captures the context-
sensitive conditions that are implicit in the elaboration rules given in Sec-
tion 19.3. The correspondence between the two systems is easily established.

Every term determines a well-formed set of constraints.

Lemma 19.7
For any term u of the external language there exists Φ such that Γ `∆ u : τ ⇒ Φ.

Lemma 19.8
If Γ `∆[t::κ] u : τ ⇒ Φ by a derivation of height h and ∆ ` τ ′ :: κ, then

{τ ′/t}Γ `∆ {τ ′/t}u : {τ ′/t}τ ⇒ {τ/t}Φ

by a derivation of height h.

Theorem 19.9
Suppose that Γ `∆ u : τ ⇒ Φ.

1. If ∆ Φ, then there exists e such Γ `∆ u : τ ⇒ e.

2. If Γ `∆ u : τ ⇒ e, then ∆ Φ.

Proof:

1. The term e is determined by the derivations of Γ `∆ u : τ ⇒ Φ and ∆ Φ.

2. The proof of Φ is determined from the derivation of Γ `∆ u : τ ⇒ e.

�

Exercise 19.10
Prove Theorem 19.9.

Exercise 19.11
In the following exercises you are asked to consider a closed partially-typed
expression u and to exhibit the formula Φ(u) such that ∅ `t::Ω u : t⇒ Φ(u).

1. Consider the term u = funx inx(x). Argue that Φ(u) is not provable in
second-order unification logic.

2. Consider the term u = funx inx[](x). Argue that Φ(u) has no principal
solutions by exhibiting two incomparable (with respect to the factorization
ordering) unifiers for Φ(u).

3. Consider the term u = Fun (t) in funx inx. Find a principal unifier for
Φ(u).

127

19.5 Reconstruction and Definitions

The interaction between type reconstruction and definitions raises a number of
important issues. Let us first consider “closed scope” definitions of the form
defx isu1 inu2. Since the scope of the definition is explicit, we may regard
this as a derived form in one of two ways:

1. “Definition by value”: defx isu1 inu2 is an abbreviation for (funx inu2)(u1).

2. “Definition by name”: defx isu1 inu2 is an abbrevation for {u1/x}u2

(since x might not occur in u2, we may instead use K({u1/x}u2)(u1),
where K = funx in fun y inx, to ensure that u1 actually occurs in the
expansion).

Under either of these interpretations the reconstruction of the defining term,
u1, is sensitive to the context of its use. Under the “by value” interpretation
a single type τ must be derived for all occurrences of x in u2, and this type
must be correctly ascribable to u1. Under the “by name” interpretation each
occurrence of x may be assigned a different type, but each such type must be
ascribable to u1.

Either interpretation of defx isu1 inu2 is semantically sensible, provided
that we consistently interpret it as a derived form for the purposes of both type
checking and evaluation. In ML the “by name” interpretation is used for type
checking purposes, but the “by value” interpretation is used for evaluation.
This is a fundamental error in the design of ML. It leads to unsoundness in any
circumstance in which the “by value” and “by name” interpretations are not
operationally equivalent. For example, if u1 is ref[](nil[]), then it is only rarely
the case that the two interpretations coincide because replication of u1 leads to
allocation of a fresh location each time it is evaluated. This observation can be
readily turned into a counterexample to soundness.

In an interactive system or in the presence of modules or separate compi-
lation definitions have “open” scope — there is no fixed context of use of the
definition. The way is not open to use to regard an open scope definition as a
derived form in any obvious way (short of deferring interpretation until the com-
plete program is available). There are two cases to consider. In the case that an
intended type for the defined variable is given by an explicit ascription, then to
elaborate defx : τ isu, determine the constraint Φu such that Γ `∆ u : τ ⇒ Φu

and check whether or not Φu is provable. This will, in effect, impose the con-
straint that the type of u be τ , and thereby force resolution of any undetermined
existentially-quantified variables in Φu.

Elaboration of the “bare” definition defx isu is more difficult. Consider the
constraint Φu such that Γ `∆[t::Ω] u : t⇒ Φu, where t /∈ dom(∆). If ∃t::Ω.Φu is
unprovable, then the definition must be rejected — there is no type that may be
correctly ascribed to u. If it is ambiguous (according to the classification algo-
rithm mentioned above), the definition must also be rejected, with the comment
that more type information is required to disambiguate the definition. If it is
provable with a principal unifier ρ0, and there are no free variables of higher kind

128

occurring in ρ0, then we may implicitly quantify the free variables, assigning x
the type ∀t1, . . . , tn::Ω.ρ0(t), and binding x to Λt1, . . . , tn::Ω.e0, where e0 is the
reconstruction of u determined by ρ0. If free variables of higher kind remain,
it is impossible to express the principal type within L→,∀

Ω because quantifiers
range only over the kind Ω, and hence the expression must be rejected. (This
outcome can be avoided by passing to the extension of L→,∀

Ω with higher kinds
so that all free constructor variables may be quantified, but this extension has
problems of its own)

Note, however, that implicit quantification may change the operational mean-
ing of a definition in the case that we adopt a “by value” interpretation! For
example, if u = ref[](nil[]), then implicit quantification yields the expression
e = Fun (t) in ref[t list](nil[t]). The reconstruction e is a value under the
operational semantics given in Chapter 7, but u itself is not. In particular
evaluation of u (using the semantics given in Chapter 5 to account for free
constructor variables) causes memory to be allocated, whereas evaluation of
e terminates immediately. Since the semantics of memory allocation involves
“scope extrusion”, it is incorrect to quantify the type variable t after evaluation
of u, for in that case the variable t occurs in the type of a location bound by the
outermost letref, and hence is not dischargeable. This is the source of the un-
soundness of the ML type system in the presence of references (similar problems
arise with exceptions and continuations). Thus implicit quantification may only
be correctly employed under either a “by name” interpretation of definitions or
when u is restricted to be a value (in which case it is possible to prove that the
quantified variable may be discharged after evaluation).

19.6 References

The first systematic account of type inference in programming languages was
developed by Robin Milner [36]. This approach has since been extended by
numerous researchers. The generalization considered here was introduced by
Frank Pfenning [44, 45] and implemented by him for the language LEAP [46].

129

130

Chapter 20

Coercion Interpretation of
Subtyping

A variant of the coercion interpretation is based on the idea of a qdictionary,
or vtable. This approach makes width subtyping less costly than the coercive
approach, but does not affect the cost of depth subtyping. We will therefore
outline this approach for width-only record subtyping, with implicit re-ordering
of fields. The leading idea is that each use of width subtyping is witnessed
by an injection (1:1 mapping) of the supertype into the subtype that merely
determines the position of each field of the supertype in the subtype. This
suggests a simple implementation strategy. Rather than create a new record
whenever width subtyping is applied, we instead associate with record values a
dictionary representing the implicit injection of fields from the supertype to the
subtype. Each use of width subtyping leads to the creation of a new dictionary,
but the underlying record value is shared among all views of it as a value of
a supertype. Since the composition of two injections is itself an injection, we
may collapse successive uses of width subtyping into a single dictionary; there is
never a need for more than one level of dictionary governing access to a record.
Finally, since the identity mapping is injective, records start out life with a
dictionary that sends each label to itself.

131

132

Chapter 21

Named Form

21.1 Introduction

This should be reworked to use partial functions.

The distinction between values and computations in the semantic interpre-
tation of types can be made explicit in the syntax. Specifically, we introduce the
type [τ] representing the type of “computations” of type τ , and re-formulate the
system to take account of the distinction. In particular we introduce an explicit
sequencing construct into the language that evaluates a computation to extract
its value, and passes this value to another computation.

The language L→ [] is defined to be a “computational” analogue of L→ in
which the value/computation distinction is made explicit. The syntax of L→ []

is defined as follows:

τ : : = b | τ1 → τ2 | [τ]
e : : = v | letx:τ1 be e1 in e2 | e1(e2)
v : : = x | c | [v] | fun (x:τ) in e

The typing rules are as for L→, with the following additions:

Γ ` v : τ
Γ ` [v] : [τ]

(t-comp)

Γ ` e1 : [τ1] Γ[x:τ1] ` e2 : τ2
Γ ` letx:τ1 be e1 in e2 : τ2

(x /∈ dom(Γ)) (t-let)

Evaluation is defined as for L→, with the addition of an evaluation context
of the form letx:τ beE in e, and the following primitive computation step:

letx:τ be [v] in e ; {v/x}e

133

The translation from L→ to L→ [] may be motivated by considering the
following translation of types and contexts:

|τ | = [||τ ||]

||b|| = b
||τ1 → τ2|| = ||τ1|| → |τ2|

||Γ||(x) = ||Γ(x)||

The type |τ | represents the “computations” of type τ , and the type ||τ || repre-
sents the “values” of type τ .

The translation from L→ to L→ [] is a four place relation Γ ` e : τ ⇒ |e|
defined inductively by the following rules:

Γ ` x : τ ⇒ [x] (Γ(x) = τ) (c-var)

Γ ` c : b⇒ [c] (c has type b) (c-const)

Γ[x:τ1] ` e : τ2 ⇒ |e|
Γ ` fun (x:τ1) in e : τ1 → τ2 ⇒ [fun (x:||τ1||) in e]

(x /∈ dom(Γ))

(c-abs)

Γ ` e1 : τ2 → τ ⇒ |e1| Γ ` e2 : τ2 ⇒ |e2|
Γ ` e1(e2) : τ ⇒ letx1:τ2 → τ be |e1| in letx2:τ2 be |e2| inx1(x2)

(c-app)
The translation has the following notable properties:

1. Applications only arise in the form v1(v2).

2. Intermediate computation steps are named.

3. Sequencing of evaluation is made explicit using let.

Moreover, these properties are preserved under evaluation since only values are
ever substituted for variables.

Exercise 21.1
Suppose that primitive arithmetic operations are added to the source language.
What happens to the target language, and how must the translation be extended
to account for these primitives?

Theorem 21.2
1. Suppose that Γ ` e : τ ⇒ |e|. Then Γ ` e : τ and ||Γ|| ` |e| : |τ |.

2. If Γ ` e : τ , then there exists a unique |e| such that Γ ` e : τ ⇒ |e|.

134

Proof: Both parts are routine inductions based on the definitions. �

The source program and its translation are related by establishing a corre-
spondence between computations and values in the source language and com-
putations and values in the target language such that values of basic type cor-
respond only if they are equal.

Definition 21.3

e ∼τ e
′ iff e ⇓ v iff e′ ⇓ [v′] and v ≈τ v

′

v ≈b v
′ iff v = v′ = c : b

v ≈τ1→τ2 v
′ iff v1 ≈τ1 v

′
1 implies v(v1) ∼τ2 v

′(v′1)

η ≈Γ η
′ iff η(x) ≈Γ(x) η

′(x) (∀x ∈ dom(Γ))

Theorem 21.4
If Γ ` e : τ ⇒ |e| and η ≈Γ η

′, then η̂(e) ∼τ η̂′(|e|).

Proof: By induction on the derivation of the compilation relation.

c-var Follows immediately from the assumption that η ≈Γ η
′.

c-const Trivial.

c-abs It suffices to show that

fun (x:τ1) in η̂(e) ≈τ1→τ2 fun (x:||τ1||) in η̂′(|e|)

Suppose that v1 ≈τ1 v
′
1. It suffices to show that

̂η[x 7→ v1](e) ∼τ2
̂η′[x 7→ v′1](|e|)

But this follows directly from the inductive hypothesis, noting that η[x 7→
v1] ≈Γ[x:τ1] η

′[x 7→ v′1].

c-app We are to show that η̂(e)) ∼τ η̂′(|e|) where e = e1(e2) and

|e| = letx1:τ2 → τ be |e1| in letx2:τ2 be |e2| inx1(x2).

By induction we have η̂(e1) ∼τ2→τ η̂′(|e1|) and η̂(e2) ∼τ2 η̂
′(|e2|). It follows

that η̂(e1) ⇓ v1, η̂′(|e1|) ⇓ [v′1], and v1 ≈τ2→τ v′1. Similarly, η̂(e2) ⇓ v2,
η̂′(|e2|) ⇓ [v′2], and v2 ≈τ2 v

′
2. It follows that v1(v2) ∼τ v

′
1(v

′
2), from which

the result follows by closure under inverse evaluation.

�

Corollary 21.5
If ` e : b⇒ |e|, then e ⇓ c iff |e| ⇓ [c].

135

21.2 References

136

Chapter 22

Continuation-Passing Style

22.1 Continuation-Passing Style

As the operational semantics given above makes clear, it is essential to the
implementation of L→,Cont that evaluation contexts be “reified” as values. Given
a complete program one can statically determine a finite set of evaluation context
“templates” such that all evaluation contexts that arise during any execution are
substitution instances of these templates. This is directly analogous to higher-
order functions: while the “code bodies” of all functions that arise dynamically
are statically apparent, the bindings of the free variables are only determined at
run time. This analogy suggests a compilation strategy in which continuations
are reified as λ-abstractions so as to take advantage of this similarity between
the two.

The CPS transformation is a translation from L→,Cont into L→ with the
following properties:

1. The program and its translation have the same value at basic type.

2. The result of each basic computation step is bound to a variable.

3. The evaluation order of arguments to primitives (including application) is
made explicit.

4. Evaluation contexts are reified as λ-abstractions.

The first three properties are shared with the “explicit computation” translation
given in Chapter 2. The main advantage of the CPS transformation is the
explicit representation of control context.

The translation of a L→,Cont term is a L→ term of a limited form, called
CPS. The CPS sub-language of L→ is defined by the following grammar:

CPSExpressions ecps : : = vcps | vcps(v′cps) | vcps(v′cps)(v′′cps)
CPSValues vcps : : = x | c | fun (x:τ) in ecps

137

The typing rules for the CPS sub-language are simply the restriction of the
typing rules for L→ restricted to the CPS sub-language. One aspect of the
CPS sub-language that is not captured by this grammar is that the applica-
tion vcps(v′cps) in vmathitcps(v′cps)(v

′′
cps) is “trivial” in the sense that it always

terminates. In a language with products this property may be captured by
considering instead the application vcps(<v′cps ,v

′′
cps>).

It is immediately obvious from the definitions that the CPS sub-language is
closed under substitution: {vcps/x}ecps is a CPS expression and {vcps/x}v′cps
is a CPS value. With this in mind it is clear that the reduction semantics
for L→ restricts to the CPS sub-language. Note, however, that fewer evaluation
contexts are required: the restrictions on CPS ensure that evaluation contexts of
the form v(E) never arise, and consequently that there is no distinction between
call-by-name and call-by-value for the CPS sub-language.

It is remarkable that the restrictions on the CPS sub-language do not limit
the expressiveness of the language in the sense that every closed expression of
basic type has a representation in the CPS sub-language with the same value.

The call-by-value type translation associated with the CPS transformation
is a translation of types in L→,Cont to types in L→ defined as follows:

Definition 22.1

|τ | : = (||τ || → ans) → ans

||b|| : = b
||τ1 → τ2|| : = ||τ1|| → |τ2|
||τ Cont|| : = ||τ ||→ans

||Γ||(x) := ||Γ(x)||

Here the “computations” of type τ are functions mapping continuations of type
τ to answers, where a continuation of type τ is a function mapping values of
type τ to answers. The call-by-name type translation is defined similarly, except
that we take ||τ1 → τ2|| = |τ1| → |τ2|.

The call-by-value CPS transformation consists of two relations, Γ ` v : τ ⇒v

||v|| and Γ ` e : τ ⇒ |e|, that are defined as follows:

Definition 22.2

Γ ` x : τ ⇒v x (Γ(x) = τ) (cps-var)

Γ ` c : b⇒v c (c : b) (cps-const)

Γ[x:τ1] ` e : τ2 ⇒ |e|
Γ ` fun (x:τ1) in e⇒v fun (x:||τ1||) in |e|

(x /∈ dom(Γ)) (cps-abs)

138

Γ[x:τ] ` E[x] : ans⇒ |E[x]|
Γ ` E : τ Cont⇒v fun (x:||τ ||) in |E[x]|

(x /∈ dom(Γ)) (cps-cont)

Γ ` v : τ ⇒v ||v||
Γ ` v : τ ⇒ λx:||τ ||→ans.x(||v||)

(cps-val)

Γ ` e1 : τ2 → τ ⇒ |e1| Γ ` e2 : τ2 ⇒ |e2|
Γ ` e1(e2) : τ ⇒ fun (x:||τ ||→ans) in |e1|(fun (x1:||τ2 → τ ||) in |e2|(fun (x2:||τ2||) inx1(x2)(x)))

(cps-app)

Γ[x:τ Cont] ` e : τ ⇒ |e|
Γ ` letccx:τ Cont in e : τ ⇒ fun (y:||τ ||→ans) in {y/x}|e|(y)

(x /∈ dom(Γ))

(cps-letcc)

Γ ` e1 : τ ⇒ |e1| Γ ` e2 : τ Cont⇒ |e2|
Γ ` throw e1 to e2 : τ ′ ⇒ fun (x:||τ ′||→ans) in |e2|(fun (x2:||τ Cont||) in |e1|(x2))

(cps-throw)

The typing properties of the translation are summarized by the following
lemma.

Lemma 22.3
1. Γ ` v : τ in L→,Cont iff there exists a value ||v|| such that Γ ` v : τ ⇒v ||v||

and ||Γ|| ` ||v|| : ||τ || in L→.

2. Γ ` e : τ in L→,Cont iff there exists a value |e| such that Γ ` e : τ ⇒ |e|
and ||Γ|| ` |e| : |τ | in L→.

Exercise 22.4
Prove Lemma 22.3.

Exercise 22.5
Give a call-by-name CPS transformation and prove a suitable type preservation
property for it based on the call-by-name type translation given above.

Exercise 22.6
1. Extend the CPS transform to account for integers and booleans, with

primitive operations for addition, subtraction, test for zero, and condi-
tional expression.

2. Write out the CPS transform of the expression

fun (x:Int) in ifInt x=0 thenx+ 1 elsex− 1 fi

Exercise 22.7
Extend the CPS transform to account for product types under both eager and
(fully) lazy interpretations.

139

1. Give the type transforms appropriate for each interpretation of products.

2. Give the CPS transform for pairing and projection under each interpreta-
tion, and show that types are preserved (in the appropriate sense).

It remains to establish the correctness of the CPS transform. To do so we
employ an interpretation of types as binary relations between expressions of
L→,Cont and expressions of L→ that relates their behavior under evaluation.

If e is an expression of basic type b in L→,Cont and e′ is an expression of type
b in L→, then we define e ' e′ to hold iff e ⇓ c iff e′ ⇓ c.

Definition 22.8

e ∼τ ecps iff E ≈τ Cont kcps implies E[e] ' ecps(kcps)

v ≈b vcps iff v = vcps = c : b
v ≈τ1→τ2 vcps iff v′ ≈τ1 v

′
cps implies v(v′) ∼τ2 vcps(v

′
cps)

v ≈τ Cont vcps iff v′ ≈τ v
′
cps implies throw v′ to v ' vcps(v′cps)

η ≈Γ ηcps iff ∀x ∈ dom(Γ) η(x) ≈Γ(x) ηcps(x)

It is instructive to observe that v ≈τ1→τ2 vcps iff E[v(v′)] ' vcps(v′cps)(v
′′
cps)

whenever v′ ≈τ1 v
′
cps and E ≈τ2 Cont v

′′
cps .

Exercise 22.9
Convince yourself that the system of relations given above is well-defined.

Theorem 22.10
1. If Γ ` v : τ ⇒v ||v|| and η ≈Γ ηcps , then η̂(v) ≈τ η̂cps(||v||).

2. If Γ ` e : τ ⇒ |e|, and η ≈Γ ηcps , then η̂(e) ∼τ η̂cps(|e|).

Proof: We prove both parts simultaneously by induction on the translation
relation.

cps-var Immediate.

cps-const Immediate.

cps-abs We are to show that fun (x:τ1) in η̂(e) ≈τ1→τ2 fun (x:||τ1||) in η̂cps(|e|).
Suppose that v′ ≈τ1 v

′
cps . It suffices to show that

̂η[x 7→ v′](e) ∼τ2
̂ηcps [x 7→ v′cps](|e|).

This follows from the inductive hypothesis, since η[x 7→ v′] ≈Γ[x:τ1] ηcps [x 7→
v′cps]

140

cps-cont We are to show that η̂(E) ≈τ Cont fun (x:||τ ||) in η̂cps(|E[x]|). Sup-
pose that v ≈τ vcps . It suffices to show that

̂η[x 7→ v](e) ∼ans
̂ηcps [x 7→ vcps](|E[x]|)

since
ˆeta(E)[v] = ̂ηx 7→ v(E[x])

and

fun (x:||τ ||) in η̂cps(|E[x]|)(vcps) ' ̂ηcps [x 7→ vcps](|E[x]|).

But this follows directly from the inductive hypothesis since η[x 7→ v] ≈Γ[x:τ]

ηcps [x 7→ vcps].

cps-val We are to show that η̂(v) ∼τ fun (x:||τ ||→ans) inx(η̂cps(||v||)). Sup-
pose that E ≈τ Cont kcps ; we are to show that

E[η̂(v)] ' (fun (x:||τ ||→ans) inx(η̂cps(||v||)))(kcps).

Note that

(fun (x:||τ ||→ans) inx(η̂cps(||v||)))(kcps) 7→ kcps(η̂cps(||v||))

and throw η̂(v) toE 7→ E[η̂(v)]. Therefore

E[η̂(v)] ' kcps(η̂cps(||v||)),

since η̂(v) ≈τ η̂cps(||v||) by the inductive hypothesis and E ≈τ Cont kcps by
assumption.

cps-app We are to show that η̂(e) ∼τ η̂cps(|e|), where e = e1(e2) and

|e| = fun (x:||τ ||→ans) in |e1|(fun (x1:||τ2 → τ ||) in |e2|(fun (x2:||τ2||) inx1(x2)(x))).

Suppose that E ≈τ Cont kcps ; we are to show that

E[e] ' η̂cps(|e|)(kcps).

It suffices to show that E′ ≈τ2→τ Cont k′cps where E′ = E[•(e2)] and
k′cps = fun (x1:||τ2 → τ ||) in η̂cps(|e2|)(fun (x2:||τ2||) inx1(x2)(kcps)), for
then the result follows by the inductive hypothesis, together with the ob-
servation that E′[e1] = E[e1(e2)] = E[e] and

η̂cps(|e1|)(kcps) 7→ η̂cps(|e1|)(k′cps).

To this end suppose that v′ ≈τ2→τ v
′
cps ; we are to show that throw v′ toE′ '

k′cps(v
′
cps). It suffices to show that E′′ ≈τ2 Cont k

′′
cps where E′′ = E[v′(•)]

and k′′cps = fun (x2:||τ2||) in v′cps(x2)(kcps) from which the result follows

141

by the inductive hypothesis and the fact that throw v′ toE′ 7→ E′[v′] =
E′′[e2] and

k′cps(v
′
cps) 7→ |e2|(k′′cps).

Suppose that v′′ ≈τ2 v
′′
cps ; we are to show that throw v′′ toE′′ ' k′′cps(v

′′
cps).

Note that throw v′′ toE′′ 7→ E′′[v′′] = E[v′(v′′)] and that k′′cps(v
′′
cps) 7→

v′cps(v
′′
cps)(kcps), from which the result follows from the assumptions that

v′ ≈τ2→τ v
′
cps , v

′′ ≈τ2 v
′′
cps , and E ≈τ Cont kcps .

cps-letcc We are to show that

letccx:τ Cont in η̂(e) ∼τ fun (y:||τ ||→ans) in {y/x}η̂cps(|e|)(y).

Suppose that E ≈τ Cont kcps ; it suffices to show that

E[letccx:τ Cont in η̂(e) ' ̂ηcps [x 7→ kcps](|e|)(kcps).

Since E[letccx:τ Cont in η̂(e)] 7→ ̂η[x 7→ E](e), it suffices to argue that

η[x 7→ E] ≈Γ[x:τ Cont] ηcps [x 7→ kcps]

which follows directly from the assumptions.

cps-throw We are to show that

throw η̂(e1) to η̂(e2) ∼τ ′ fun (x:||τ ′||→ans) in η̂cps(|e2|)(fun (x2:||τ Cont||) in η̂cps(|e1|)(x2)).

Suppose that E ≈τ ′ Cont kcps ; we are to show that

E[throw η̂(e1) to η̂(e2)] ' η̂cps(|e2|)(fun (x2:||τ Cont||) in η̂cps(|e1|)(x2)).

It suffices to show that E′ ≈τ Cont Cont k
′
cps , where

E′ = E[throw η̂(e1) to •]

and
k′cps = fun (x2:||τ Cont||) in η̂cps(|e1|)(x2).

Suppose that E′′ ≈τ Cont k
′′
cps . Since

E′[E′′] = E[throw η̂(e) toE′′] 7→ E′′[η̂(e1)]

and
k′cps(k

′′
cps) 7→ η̂cps(|e1|)(k′′cps)

the result follows by an application of the inductive hypothesis.

�

For closed expressions of base type we may relate the “direct” and “cps”
semantics by choosing the answer type appropriately.

142

Corollary 22.11
If ` e : ans⇒ |e|, then e ' |e|(fun (x:ans) inx).

Proof: Observe that • ≈b Cont fun (x:b) inx provided that we take ans = b.
The result then follows by Theorem 22.10. �

Corollary 22.12
If ` e : ans in L→,Cont, then e ⇓.

Proof: By the previous corollary e ⇓ iff |e|(fun (x:ans) inx) ⇓. But all well-
typed programs of L→ terminate. �

For closed expressions of non-basic type τ we cannot simply take ans = τ .
Instead we must postulate that there is an initial continuation mapping values
of type τ to values of type ans. In typical cases ans = String, and we assume
given an operation makestringτ (−) of type τ → ans. The initial continuation
in the “direct” semantics is defined to be

Eτ : = makestringτ (•),

and in the “cps” semantics is defined to be the function

kτ : = λx:||τ ||.makestring||τ ||(x).

It is easy to check that Eτ ≈τ Cont kτ , from which it follows that Eτ [e] ' |e|(kτ)
by Theorem 22.10.

22.2 References

The typing properties of the cps transform were first studied by Meyer and
Wand [35] and subsequently extended to the polymorphic case by Harper and
Lillibridge [26]. The extension of typed languages with control operators was
studied by Harper, et al. [24] and Filinski [14]. The connection between control
operators, cps conversion, and classical logic was established by Griffin [21] and
Murthy [43].

143

144

Chapter 23

Closure-Passing Style

145

146

Chapter 24

Data Representation

147

148

Chapter 25

Garbage Collection

149

150

Part IV

Models and Logics

151

Chapter 26

Denotational Semantics

26.1 Introduction

26.2 Types as Domains

The language L→ admits a natural set-theoretic interpretation in which types
are interpreted as sets and terms are interpreted as functions of their free vari-
ables. In particular, the type τ1→τ2 is interpreted as the full set-theoretic
function space. This interpretation breaks down for L⇀ because of the presence
of unbounded recursion. One approach to achieving a “set-like” interpretation
of L⇀ is to interpret types as domains.

26.2.1 Denotational Semantics

A denotational semantics for L⇀ consists of an assignment of domains to types
together with an assignment of elements of suitable domains to well-typed terms.

The interpretation of types is defined as follows:

Definition 26.1

|τ | = ||τ ||⊥

||Nat|| = Z
||Bool|| = { tt , ff }

||τ1⇀τ2|| = [||τ1|| → |τ2|]

||Γ|| = { ρ | ∀x ∈ dom(Γ) ρ(x) ∈ ||Γ(x)|| }

It is easy to see that ||Γ|| is a dcpo under the pointwise ordering of environ-
ments. We may think of the dcpo’s |τ | and ||τ || as providing interpretations for
“computations” and “values” of type τ , respectively.

153

The interpretation of well-typed terms is defined by induction on typing
derivations as follows.

Definition 26.2
Given a valid typing Γ ` e : τ , we assign a function |Γ ` e : τ | : ||Γ|| → |τ | by
induction on the structure of e as follows:

|Γ ` x : τ | ρ = bρ(x)c

|Γ ` n : Int| ρ = bnc

|Γ ` true : Bool| ρ = bttc
|Γ ` false : Bool| ρ = bff c

|Γ ` e1 + e2 : Int| ρ = plus(|Γ ` e1 : Int| ρ, |Γ ` e2 : Int| ρ)
|Γ ` e1− e2 : Int| ρ = minus(|Γ ` e1 : Int| ρ, |Γ ` e2 : Int| ρ)

|Γ ` e1 = e2 : Bool| ρ = equal(|Γ ` e1 : Int| ρ, |Γ ` e2 : Int| ρ)
|Γ ` ifτ e then e1 else e2 fi : τ | ρ = cond(|Γ ` e : Bool| ρ, |Γ ` e1 : τ | ρ, |Γ ` e2 : τ | ρ)

|Γ ` fun f(x:τ1):τ2 is e : τ1⇀τ2| ρ = fix ||τ1⇀τ2||(Φ), where
Φ(ψ)(u) = |Γ[f :τ1⇀τ2][x:τ1] ` e : τ2| ρ[f 7→ ψ][x 7→ u])

|Γ ` appτ2,τ (e1,e2) : τ | ρ = apply(|Γ ` e1 : τ2⇀τ | ρ, |Γ ` e2 : τ2| ρ)

where

plus(d1, d2) =
{
bn1 + n2c if d1 = bn1c, d2 = bn2c
⊥|Int| otherwise

minus(d1, d2) =
{
bn1 − n2c if d1 = bn1c, d2 = bn2c
⊥|Int| otherwise

equal(d1, d2) =

 bttc if d1 = bnc = d2

bff c if d1 = bn1c 6= bn2c = d2

⊥|Int| otherwise

cond(d, d1, d2) =

 d1 if d = bttc
d2 if d = bff c
⊥ otherwise

apply(d1, d2) =
{
φ(u) if d1 = bφc, d2 = buc
⊥ otherwise

Note that |Γ ` v : τ | ρ = bxc 6= ⊥ for syntactic values v; we write ||Γ ` v : τ ||ρ
for x in this case.

Exercise 26.3
Extend the denotational semantics to account for the types Unit and τ1×τ2.
What is the appropriate interpretation of the product of two dcpo’s?

154

Lemma 26.4
If Γ ` e : τ is a well-typed term, then |Γ ` e : τ | is a continuous function
[||Γ|| → |τ |].

Exercise 26.5
Prove Lemma 26.4. Pay careful attention to the case of recursive functions.
(There are a lot of details to work out in this exercise regarding continuity
properties of the various constructs used in the semantics.)

Lemma 26.6
Suppose that Γ ` v : τ and Γ[x:τ] ` e′ : τ ′. The denotational semantics is
compositional in the sense that the interpretation commutes with substitution:

|Γ ` {v/x}e′ : τ ′|ρ = |Γ[x:τ] ` e′ : τ ′|ρ[x 7→ ||Γ ` v : τ ||ρ].

Exercise 26.7
Prove Lemma 26.6.

26.2.2 Computational Adequacy

Having made a passage from an operational to a denotational semantics, it is
natural to consider the relationship between the two. If we consider the value
of an expression to be its “operational meaning”, then we might conjecture that
its denotational and operational meanings coincide. That is, we might expect
that e ⇓ v iff |e : τ | ∅ = |v : τ | ∅. In particular, if τ is the type Int, then we
would have that |e : Int| = bnc iff e ⇓ n.

One direction is relatively straightforward: an expression has the same mean-
ing as its value.

Lemma 26.8
If ` e : τ and e ⇓ v, then |e : τ | ∅ = |v : τ | ∅

Proof: By induction on the evaluation derivation. The result is immediate
whenever e is a syntactic value. Consider the case e = appτ2,τ (e1,e2), where `
e1 : τ2⇀τ and ` e2 : τ2. Since e ⇓ v, it follows that e1 ⇓ v1 = fun f(x:τ2):τ is e′1,
e2 ⇓ v2, and {v1, v2/f, x}e′1 ⇓ v. By induction hypothesis we have that |e1 :
τ2⇀τ |∅ = |v1 : τ2⇀τ |∅ and that |e2 : τ2|∅ = |v2 : τ2|∅. Now ||v1 : τ2⇀τ || = φ,
where φ = fix (Φ) with Φ(ψ)(u) = |f : τ2⇀τ, u : τ2 ` e′1 : τ |[f 7→ ψ][x 7→ u] for
any ψ ∈ ||τ2⇀τ || and u ∈ ||τ2||. In particular, φ(||v2 : τ2||∅) = |f : τ2⇀τ, u :
τ2 ` e′1 : τ |[f 7→ φ][x 7→ ||v2 : τ2||∅] = |{v1, v2/f, x}e′1 : τ |∅ = |v : τ |∅. The other
cases are handled similarly. �

In particular, if τ = Int and e ⇓ n, then |e : Int| ∅ = bnc.

Exercise 26.9
Complete the proof of Lemma 26.8.

155

The converse of Lemma 26.8 fails because at higher types there are many
distinct function expressions with the same denotation. (For example, the func-
tions fun (x:Int) inx and fun (x:Int) inx+0 are given the same interpretation
by the denotational semantics, but each has only itself as value according to the
operational semantics.) The best we can hope for is to obtain such a correspon-
dence at base types. The proof is based on an interpretation of types as binary
relations between the denotational and the operational semantics.

Definition 26.10
The relations .τ between elements of |τ | and closed expressions of type τ , /τ

between elements of ||τ || and closed values of type τ , and /Γ between environ-
ments and substitutions, are defined as follows

d .τ e iff d = bxc implies e ⇓ v and x /τ v

x /Int v iff x = n and v = n
x /Bool v iff x = tt and v = true or x = ff and v = false

x /τ1⇀τ2 v iff x1 /τ1 v1 implies x(x1) .τ2 appτ1,τ2
(v,v1)

ρ /Γ γ iff ρ(x) /Γ(x) γ(x) (∀x ∈ dom(Γ))

Lemma 26.11
Let e : τ be a closed term of L⇀.

1. Pointedness: ⊥ .τ e.

2. Downward closure: if d .τ e and d′ v d, then d′ .τ e.

3. Chain completeness: If d0 v d1 v · · · is a non-empty chain in |τ |, and
di .τ e for every i ≥ 0, then

⊔
i≥0 di .τ e.

Proof: Pointedness follows immediately from the definitions. Downward clo-
sure and chain completeness are proved by induction on the structure of types.

Downward closure at base types follows from the fact that |Int| and |Bool|
are “flat”, together with pointedness. At higher types, suppose that d .τ1⇀τ2 e
and d′ v d. We are to show that d′ .τ1⇀τ2 e. Suppose that d′ = bx′c. Then
clearly d = bxc with x′ v x. But by the assumption on d it follows that e ⇓ v
and x /τ1⇀τ2 v. It suffices to show that x′(x1) .τ2 appτ1,τ2

(v,v1) whenever
x1 /τ1 v1. But this follows immediately from the monotonicity of application,
since x(x1) .τ2 appτ1,τ2

(v,v1).
For chain completeness, it suffices to consider non-trivial chains in which at

least one element is not ⊥, for otherwise the supremum is ⊥ and the result holds
by pointnedness.

At base type chain completeness follows from flatness of the interpreta-
tions of Int and Bool. For if di .Int e for every i ≥ 0, then there exists
an i ≥ 0 such that di = bxic, in which case e ⇓ v with xi /Int v. By flat-
ness xj = n for some n ∈ Z for every j ≥ i, and hence the supremum of the
xi’s is also n, from which the result follows. Suppose now that τ = τ1⇀τ2.

156

Now there exists an i ≥ 0 such that di = bφic for some φi ∈ ||τ1⇀τ2||.
Consequently, e ⇓ v for some value v of type τ1⇀τ2. Moreover, for every
j ≥ i, we have that dj = bφjc with φi /τ1⇀τ2 φj . We are to show that if
d /τ1 w, then (

⊔
i≥0 φi)(d) .τ2 appτ1,τ2

(v,w). From the assumptions we have
that φj(d) .τ2 appτ1,τ2

(v,w) for every j ≥ i, and by choice of i and downward
closure, this holds for every j ≥ 0. By inductive hypothesis it follows that⊔

j≥0 φj(d) .τ2 appτ1,τ2
(v,w). But

⊔
j≥0 φj(d) = (

⊔
i≥0 φi)(d). This completes

the proof. �

Exercise 26.12
Complete the proof of Lemma 26.11. Extend it to unit and product types.

Exercise 26.13
Show that the approximation relation .τ is directed complete for every type τ .
That is, if S ⊆ |τ | is directed, and d .τ e for every d ∈ S, then

⊔
S .τ e.

Theorem 26.14
Suppose that Γ ` e : τ . If ρ /Γ γ, then |Γ ` e : τ | ρ .τ γ̂(e).

Proof: By induction on typing derivations. The most interesting case is for
recursively-defined functions. Suppose that ρ /Γ γ. We are to show that

|Γ ` fun f(x:τ1):τ2 is e : τ1⇀τ2| ρ .τ1⇀τ2 γ̂(fun f(x:τ1):τ2 is e).

Let v = fun f(x:τ1):τ2 is γ̂(e) and let φ = fix ||τ1⇀τ2||(Φ), where

Φ(ψ)(u) = |Γ[f :τ1⇀τ2][x:τ1] ` e : τ2| ρ[f 7→ ψ][x 7→ u].

We are to show that φ /τ1⇀τ2 v. Letting φ0 = ⊥ and φi+1 = Φ(φi), the sequence
φ0 v φ1 v · · · is a non-empty chain with limit φ, and hence by Lemma 26.11
it suffices to show that φi /τ1⇀τ2 v for every i ≥ 0. We proceed by induction
on i. The basis is immediate; we have only to note that ⊥||τ1⇀τ2||(d1) = ⊥|τ2|.
Assuming that φi /τ1⇀τ2 v, we are to show that φi+1 /τ1⇀τ2 v. Suppose that
d1 /τ1 v1. By the “outer” induction hypothesis and the definition of Φ, it is
sufficient to show that

Φ(φi)(d1) .τ2
̂γ[f 7→ v][x 7→ v1](e).

This follows by induction on typing derivations provided that we can show

ρ[f 7→ φi][x 7→ d1] /Γ[f :τ1⇀τ2][x:τ1] γ[f 7→ v][x 7→ v1].

But this follows from the assumptions that ρ /Γ γ, d1 /τ1 v1, and φi /τ1⇀τ2 v.
�

Exercise 26.15
1. Complete the proof of Theorem 26.14.

157

2. Extend Theorem 26.14 to the types Unit and τ1×τ2. What is an appropri-
ate definition of the approximation relation for these types? What guides
your choice?

Corollary 26.16
If e : Int and |e : Int| ∅ = bnc, then e ⇓ n. Equivalently, |e : Int| ∅ 6= ⊥ iff e ⇓ v
for some value v.

26.2.3 Compactness, Revisited

We may derive a form of the compactness theorem from the adequacy of a deno-
tational semantics for L⇀ extended with labelled recursive functions. The form
of compactness that we obtain in this way states that for complete programs e
of observable type (say, Int), e ⇓ v iff e∗ ⇓ v for some e∗ ∈ Lab(e). This form
of compactness is sufficient for most purposes.

We define the interpretation of the labelled recursive functions as follows:

Definition 26.17

|Γ ` fun(n) f(x:τ1):τ2 is e : τ1⇀τ2| ρ = bΦ(n)(⊥) c,

where
Φ(φ)(d) = |Γ[f :τ1⇀τ2][x:τ1] ` e : τ2| ρ[f 7→ φ][x 7→ d].

Exercise 26.18
Check that |Γ ` e : τ | : ||Γ|| → |τ |.

Observe that the proof of the adequacy theorem already covers the case of
bounded recursive functions under the interpretation given in Definition 26.17.

Lemma 26.19
1. If k ≤ l, then

|Γ ` fun(k) f(x:τ1):τ2 is e : τ1⇀τ2|ρ v |Γ ` fun(l) f(x:τ1):τ2 is e : τ1⇀τ2|ρ.

2. For every n ≥ 0,

|Γ ` fun(n) f(x:τ1):τ2 is e : τ1⇀τ2| ρ v |Γ ` fun f(x:τ1):τ2 is e : τ1⇀τ2| ρ

Proof (sketch): The first is proved by induction on l, then second by induc-
tion on n, making use of monotonicity and the definition of the interpretation
of labelled recursive functions. �

Lemma 26.20
Suppose that Γ ` e : τ . For any e∗ ∈ Lab(e),

|Γ ` e∗ : τ | ρ v |Γ ` e : τ | ρ.

158

Proof (sketch): By induction on the structure of e, making use of Lemma 26.19
and monotonicity. �

Lemma 26.21
The set { |Γ ` e∗ : τ | ρ | e∗ ∈ Lab(e) } is directed, and has supremum⊔

e∗∈Lab(e)

|Γ ` e∗ : τ | ρ = |Γ ` e : τ | ρ.

Proof: For directedness observe that any two labellings of an expression e
have, by Lemma 26.19, an upper bound defined by taking the maximum of
labels of corresponding recursive functions. By directed completeness this set
has a supremum, which by Lemma 26.19 is less than |Γ ` e : τ | ρ.

To prove equality, we proceed by induction on typing derivations. The key
step is the case of a recursive function e = fun f(x:τ1):τ2 is e2 : τ1⇀τ2. Let
|Γ ` e : τ1⇀τ2|ρ = bφc, where φ = fix (Φ) and

Φ(ψ)(u) = |Γ[f : τ1⇀τ2][x : τ1] ` e2 : τ2|ρ[f 7→ ψ][x 7→ u].

Observe that any labelling e∗ of e has the form fun(k) f(x:τ1):τ2 is e∗2 for
some k ≥ 0 and some labelling e∗2 of e2. For each k ≥ 0, the labelling e∗k of e
with outermost label k is assigned the interpretation |Γ ` e∗k : τ1⇀τ2|ρ = bφ∗kc,
where φ∗k = Φ∗(k)(⊥) and

Φ∗(ψ)(u) = |Γ[f : τ1⇀τ2][x : τ1] ` e∗2 : τ2|ρ[f 7→ ψ][x 7→ u].

Applying the inductive hypothesis, we observe that the supremum of the set
all such Φ∗’s arising from labellings e∗2 of e2 is directed and has as supremum
the function Φ given above. Consequently, the set of functions φ∗k arising from
each labelling is directed and has as supremum the function φk = Φ(k)(⊥).
By Lemma 26.19 the sequence of all such φk’s forms a chain. By directed
completeness this sequence has a supremum, which by the Kleene fixed point
theorem is the fixed point of Φ. Putting it all together, we have that⊔
e∗∈Lab(e)

|Γ ` e∗ : τ1⇀τ2|ρ =
⊔
k≥0

⊔
e∗∈Lab(e)

φ∗k =
⊔
k≥0

φk =
⊔
k≥0

Φ(k)(⊥) = fix (Φ) = φ.

This completes the proof for the case of recursive functions. �

Exercise 26.22
Complete the proof of Lemma 26.21.

We may now give an alternate proof of compactness for complete programs.
Fix a program ` e : Int. Suppose that e ⇓ v. By the canonical forms lemma
v = n for some n ∈ Z, and since |e : Int|∅ = |v : Int|∅, it follows that
|e : Int| = bnc. By Lemma 26.21 and the fact that |Int| is flat, there exists

159

e∗ : Int such that |e∗|∅ = bnc. By adequacy e∗ ⇓ v∗ for some v∗ such that
n /Int v∗. But then v∗ = n — that is, e∗ ⇓ n. Conversely, suppose that
e∗ ⇓ v∗. Since e∗ : Int, it follows that v∗ = n for some n ∈ Z. Hence
|e∗ : Int|∅ = |v∗ : Int|∅ = bnc. Now |e∗ : Int|∅ v |e : Int|∅ by Lemma 26.21,
so |e : Int|∅ = bnc as well. But then by adequacy there exists v such that e ⇓ v
with n /Int v, from which it follows that v = n. That is, e ⇓ n.

26.3 References

Plotkin’s lectures notes on denotational semantics are a superb reference [51].
The denotational approach used here is adapted from Winskel’s book [57], which
is itself based on Plotkin’s notes.

160

Chapter 27

Inequational Reasoning

27.1 Introduction

In this chapter we study inequalities between expressions for the language PCFv

defined in Chapter 14.
We shall be concerned with families of binary relations R = {RΓ,τ }Γ,τ

indexed by type assignments and types, where

RΓ,τ ⊆ { (e1, e2) | Γ ` ei : τ (i = 1, 2) }.

We write Γ ` e1Re2 : τ to mean that (e1, e2) ∈ RΓ,τ . When R and S are such
families of relations, we write R ⊆ S to mean that RΓ,τ ⊆ SΓ,τ for each Γ and τ
(and similarly for set equality). We say that R is a pre-order iff each RΓ,τ is a
pre-order (reflexive and transitive). As a notational convention, we use variants
of the symbol . for pre-orders on terms, and the corresponding variant of the
symbol ∼= for the smallest equivalence relation containing the pre-order.

The open extension of a relation R = {R∅,τ }τ between closed terms is the re-
lation R◦ = {R◦Γ,τ } on open terms defined by Γ ` e1R◦ e2 : τ iff γ̂(e1)Rτ γ̂(e2)
for all substitutions γ : Γ assigning a value γ(x) of type Γ(x) to each variable
x ∈ dom(Γ). Since R◦ and R coincide on closed terms, we usually write R
instead of R◦ to avoid heavy notation. We sometimes write e1Re2 : τ , or even
just e1Re2, when the context (and type) are clear from context.

27.2 Operational Orderings

The operational semantics of PCFv induces a number of orderings of interest.
We will consider here the Kleene, contextual, uses of closed instances (uci), ap-
plicative, simulation, logical, and denotational orderings. The Kleene ordering
is most useful at base type (Unit or Nat or Bool); an expression, e, of base type
approximates another, e′, iff whenever e terminates with a value, so e′ must ter-
minate with the same value. The contextual ordering is the canonical notion of
equality for an operational semantics deriving from Leibniz’s principle of identity

161

of indiscernables: e approximates e′ in the contextual ordering iff any observable
behavior engendered by a use of e in a complete program is also engendered by
the same use of e′. The uci, applicative, simulation, and logical orderings are
characterizations of the contextual ordering that are more amenable to use in
establishing equivalences of programs. The denotational ordering derives from
an adequate denotational semantics: e and e′ are denotationally equivalent iff
they have the same “meaning” (denotation) in the model. For an adequate, but
not fully abstract, semantics this is only a sufficient condition for contextual
equivalence.

27.2.1 Kleene Ordering

Definition 27.1 (Kleene Ordering)
For closed expressions e1 and e2 of type τ , we define the Kleene ordering e1 .

kl

e2 : τ to hold iff e1 ⇓ v implies e2 ⇓ v.

The Kleene ordering is contained in the termination ordering, with the con-
tainment strict for any type with two or more values. At function types Kleene
equivalence is extremely fine-grained: any two syntactically distinct function
values are distinguished by the Kleene ordering. Consequently the Kleene or-
dering is only useful at base type.

Fix a base type o of observations. A program is a closed term of type o.
Our results are largely insensitive to the choice of observables; any type whose
elements are atomic (have no constituent expressions) will suffice.

Lemma 27.2
The Kleene ordering contains evaluation: if e : o and e 7→ e′, then e ∼=kl e′ : o.

Proof: If e 7→ e′, then e′ .kl e : o since any value of e′ is a value of e. Con-
versely e .kl e′ : o by determinacy of evaluation: the only values of e are those
of e′. �

We write E : τ τ ′ to mean that E [e] : τ ′ whenever ` e : τ .

Lemma 27.3
The Kleene ordering is preseved by evaluation contexts: if e1 .

kl e2 : τ , then

E [e1] .
kl E [e2] : o whenever E : τ o.

Definition 27.4
A pre-order R = {RΓ,τ }Γ,τ is consistent iff its restriction to closed terms of
observable type is contained in the Kleene ordering. That is, e1Re2 : o only if
e1 .

kl e2 : o.

Thus an inconsistent ordering is one that either relates a non-terminating to
a terminating program, or that relates a terminating program with value v to a
terminating program with a distinct value v′. Obviously the Kleene ordering is
consistent by definition, and is clearly a pre-order.

162

27.2.2 Contextual Ordering

The Kleene ordering is not preserved by the expression constructors of the lan-
gauge: replacing a sub-expression by a larger expression (in the Kleene ordering)
does not necessarily result in a larger expression (in the Kleene ordering). For
example, fun (x:τ1) in e 6.kl fun (x:τ1) in e′ : τ1⇀τ2 unless e is identical to e′.
But we may easily choose distinct e and e′ such that x:τ1 ` e .kl e′ : τ2.

A pre-order that is preserved by all expression-forming constructs is called a
pre-congruence. The preceding argument shows that the Kleene ordering is not
a pre-congruence. To make the definition of pre-congruence precise requires the
notion of a context.

Definition 27.5
A context is an expression with zero or more “holes” in it, as defined by the
following grammar:

Contexts C : : = • | x | n | C1 op C2 |
true | false | C1 = C2 | ifτ C1 then C2 else C3 fi |
∗ | <C1,C2> | proj1(C) | proj2(C) |
fun f(x:τ) is C | C1(C2)

We will restrict attention to unitary contexts, those with at most one hole.
Thus any expression is (degenerately) a unitary context (with no holes). The
replacement of the hole (if any) in a context C by an expression e is written C[e].
Replacement can incur capture of free variables in e by binders surrounding
the hole in C. Contexts are closed under composition in that if C1 and C2 are
contexts, then so is C1[C2[•]]. Composition is associative, with • as unit element,
where two contexts are deemed equal if they result in identical expressions
(modulo α-conversion) when filled with the same expression.

A context C is said to bind the type assignment Γ iff the hole in C occurs
in the scope of the declarations in Γ. We write C : Γ/τ Γ′/τ ′ to mean that
Γ′ ` C[e] : τ ′ whenever Γ ` e : τ . In the case that Γ′ is empty and Γ ` e : τ ,
the context C is said to be a closing context for e since C[e] : τ ′ under no typing
assumptions. In this case we write C : Γ/τ τ ′. In the case that both Γ and
Γ′ are empty, we write C : τ τ ′, as we did for the special case of evaluation
contexts (which do not bind any variables).

Definition 27.6
A pre-order R is a pre-congruence iff it is preserved by all contexts: if C :
Γ/τ Γ′/τ ′, and Γ ` e1Re2 : τ , then Γ′ ` C[e1]R C[e2] : τ ′. A pre-congruence
R is a congruence if it is also an equivalence relation.

A natural notion of equality of expressions is based on Leibniz’s principle
of identity of indiscernables: two expressions are equivalent iff we cannot tell
them apart. More precisely, two expressions are deemed equivalent iff no matter
how we use them in a complete program, the final result is always the same for
both. A “use” of an expression is a unitary closing context of observable type.

163

Thus two expressions are inequivalent iff there is some closing context that
distinguishes them.

Definition 27.7 (Contextual Ordering)
For any Γ ` e1 : τ and Γ ` e2 : τ , we define contextual approximation, written

Γ ` e1 .ctx e2 : τ , to hold iff C[e1] .
kl C[e2] : o for any context C : Γ/τ o.

Lemma 27.8
Contextual approximation is the largest consistent pre-congruence.

Proof: Contextual approximation is clearly consistent (consider the empty
context for closed terms of observable type). It is a pre-congruence because con-
texts are closed under composition. If R is any other consistent pre-congruence
such that Γ ` e1Re2 : τ , then Γ ` e1 .ctx e2 : τ . For if C : Γ/τ o is a closing
context for e1 and e2, then C[e1]R C[e2] : o since R is a pre-congruence. But
then C[e1] .

kl C[e2] : o since R is consistent. �

Thus to show that a pre-ordering is contained in contextual equivalence, it
suffices to show that it is a consistent pre-congruence.

It is usually rather difficult in practice to establish contextual equivalence
between terms, because we must reason about all possible contexts of use of
those terms. One useful technique for simplifying the reasoning is to provide
alternate characterizations of contextual equivalence that restrict the contexts
that must be considered.

27.2.3 UCI Ordering

One characterization of contextual equivalence is called the uses of closed in-
stances (uci) ordering.

Definition 27.9 (UCI Ordering)
If Γ ` e1 : τ and Γ ` e2 : τ are open terms, we define Γ ` e1 .

uci e2 : τ to
hold iff for all value substitutions γ : Γ and all evaluation contexts E : τ τ ′,
E [γ̂(e1)] .

kl E [γ̂(e2)].

Remark 27.10
Mason and Talcott introduced this ordering under the name “ciu ordering”,
which appears, at first, to be a misnomer. Their terminology may be justified
by observing that the uci ordering as defined above is the open extension of the
“uses” ordering, the restriction of the uci ordering to closed terms. Thus the
uci ordering is seen to be the “closed instances of uses” ordering.

Lemma 27.11
If Γ ` e1 .ctx e2 : τ , then Γ ` e1 .uci e2 : τ .

164

Proof: Suppose that Γ ` e1 .
ctx e2 : τ and γ : Γ. We are to show that

E [γ̂(e1)] .
kl E [γ̂(e2)] for every evaluation context E : τ o. Let C be the context

E [(fun (x1:τ1) in . . . fun (xn:τn) in •)(v1) · · · (vn)]

where dom(Γ) = {x1, . . . , xn } and for each 1 ≤ i ≤ n, Γ(xi) = τi and γ(xi) = vi.
By assumption C[e1] .

kl C[e2] : o. But C[ei] ∼=kl E [γ̂(ei)] for each i = 1, 2, from
which the result follows by transitivity of the Kleene ordering. �

The converse holds as well, but the proof is somewhat more involved.

Lemma 27.12 (Expression Constructors Preserve UCI Ordering)
Each term constructor of PCFv preserves the uci ordering. Specifically:

1. If Γ ` e1 .
uci e′1 : Nat, then Γ ` e1 op e2 .

uci e′1 op e2 : Nat and Γ `
e1 = e2 .

uci e′1 = e2 : Bool.

2. If Γ ` e2 .
uci e′2 : Nat, then Γ ` e1 op e2 .

uci e1 op e′2 : Nat and Γ `
e1 = e2 .

uci e1 = e′2 : Bool.

3. If Γ ` e .uci e′ : Bool, then

Γ ` ifτ e then e1 else e2 fi .
uci ifτ e

′ then e1 else e2 fi : τ.

4. If Γ ` e1 .uci e′1 : τ , then

Γ ` ifτ e then e1 else e2 fi .
uci ifτ e then e

′
1 else e2 fi : τ.

5. If Γ ` e2 .uci e′2 : τ , then

Γ ` ifτ e then e1 else e2 fi .
uci ifτ e then e1 else e

′
2 fi : τ.

6. If Γ ` e1 .uci e′1 : τ1, then Γ ` <e1,e2> .uci <e′1,e2> : τ1×τ2.

7. If Γ ` e2 .uci e′2 : τ2, then Γ ` <e1,e2> .uci <e1,e
′
2> : τ1×τ2.

8. If Γ ` e .uci e′ : τ1×τ2, then Γ ` proji(e) .
uci proji(e

′) : τi (i = 1, 2).

9. If Γ ` e1 .uci e′1 : τ2⇀τ , then Γ ` e1(e2) .uci e′1(e2) : τ .

10. If Γ ` e2 .uci e′2 : τ2, then Γ ` e1(e2) .uci e1(e′2) : τ .

11. If Γ[x:τ1] ` e .uci e′ : τ2, then Γ ` fun f(x:τ1) is e .
uci fun f(x:τ1) is e′.

Proof: Compatibility of the uci ordering with most of the eliminatory forms
is obvious: if E is an evaluation context, then so are E [• op e], E [v op •], E [•= e],
E [v= •], E [proji(•)], E [ifτ • then e1 else e2 fi], E [•(e)], and E [v(•)].

In the case of the second argument of an arithmetic operation, note that if
E [e1 op e2] ⇓ a, then there exists a value v1 such that E [e1 op e2] 7→∗ E [v1 op e2],
which is enough for the result.

165

For the conditional expression, it is enough to consider closed terms and
prove that if e1 .

uci e′1 : τ , then ifτ e then e1 else e2 fi .
uci ifτ e then e′1 else e2 fi.

Now if E [ifτ e then e1 else e2 fi] ⇓ a, then either e ⇓ true and E [e1] ⇓ a, or
e ⇓ false, and E [e2] ⇓ a. Consider the former case; the latter is analogous.
Then

E[ifτ e then e1 else e2 fi] 7→∗ E [ifτ true then e1 else e2 fi] 7→ E [e1] ⇓ a,

from which the result follows by assumption.
For ordered pairs, we consider the left- and right-hand positions separately.

It suffices to consider closed terms. Suppose e1 .
uci e′1 : τ1 and E ′[e1] ⇓ a for

some a : o, where E ′ = E [< • ,e2>]. Since E ′ is an evaluation context, it follows
that E ′[e′1] ⇓ a. Now suppose e2 .

uci e′2 : τ2 and E ′[e2] ⇓ a for some a : o, where
E ′ = E [<e1, •>] and e1 is a value. The result then follows directly from the
assumptions. If e1 is a not a value and E [<e1,e2>] ⇓ a, then there must exist
v1 such that E [<e1,e2>] 7→∗ E [<v1,e2>] ⇓ a. Taking E ′ = E [<v1, •>], we have
that E ′[e2] ⇓ a, and hence E ′[e′2] ⇓ a, from which the result follows.

For functions, we must significantly strengthen the inductive hypothesis to
account for the substitution of arguments for parameters at function applica-
tions. Let u = fun f(x:τ1) is e and u′ = fun f(x:τ1) is e′. We prove for every
expression e0 such that z:τ ` e : o that {u/z}e0 .kl {u′/z}e0 : o, given that
[f :τ1⇀τ2, x:τ1] ` e .uci e′ : τ2. The result follows by taking e0 = E [z] so that
E [e] .kl E [e′] : o, and hence e .uci e′ : τ1⇀τ2.

The proof proceeds by induction on the length of the evaluation sequence
{u/z}e0 ⇓ a. If the first step is independent of the value substituted for z, then
the result follows immediately from the inductive hypothesis. In particular,
this covers the case e0 = E [v(z)] (for some value v = fun f(x:τ) is e). For then
{u/z}e0 7→ {u/z}E [{v, z/f, x}e] ⇓ a, hence by induction {u′/z}(E [{v, z/f, x}e]) ⇓
a and therefore by assumption {u′/z}(E [{v, z/f, x}e′]) ⇓ a from which it follows
that {u′/z}(E [v(z)]) ⇓ a.

We are left with the case e0 = E [z(v)]. Obviously,

{u/z}e0 7→ ({u/z}E)[{u, {u/z}v/f, x}e] ⇓ a.

That is, {u/z}(E [{z, v/f, x}e]) ⇓ a by a shorter reduction sequence, hence
by induction we have that {u′/z}(E [{z, v/f, x}e]) ⇓ a. By the assumption
governing e and e′, it follows that {u′/z}(E [{z, v/f, x}e′]) ⇓ a, and hence
{u′/z}(E [z(v)]) ⇓ a. �

Lemma 27.13
The UCI ordering is a consistent pre-congruence.

Proof: Consistency is proved by considering the empty evaluation context.
Congruence follows from the preceding lemma by induction on the structure of
contexts. �

166

Corollary 27.14
The UCI ordering is contained in the contextual ordering: if Γ ` e1 .uci e2 : τ ,
then Γ ` e1 .ctx e2 : τ .

Proof: The contextual ordering is the largest consistent congruence. �

Theorem 27.15 (Equivalence of UCI and Contextual Orderings)
Γ ` e1 .uci e2 : τ iff Γ ` e1 .ctx e2 : τ .

With this in hand we may establish some useful properties of contextual
equivalence.

Lemma 27.16
If Γ ` e1 .kl e2 : τ , then Γ ` e1 .uci e2 : τ .

Proof: Suppose that E : τ τ ′ is an evaluation context and γ : Γ is a value
substitution. We are to show that E [γ̂(e1)] .

kl E [γ̂(e2)]. By definition of the
open extension of the Kleene ordering we have γ̂(e1) .

kl γ̂(e2). It follows that
E [γ̂(e1)] .

kl E [γ̂(e2)], as required. �

Corollary 27.17
If Γ ` e1 .kl e2 : τ , then Γ ` e1 .ctx e2 : τ .

Lemma 27.18 (Stability Under Substitution)
If Γ ` e1 .ctx e2 : τ and γ : Γ is a value substitution, then γ̂(e1) .

ctx γ̂(e2) : τ .

Proof: This is easily seen to be true of the uci ordering, which coincides with
the contextual ordering. �

27.2.4 Applicative Ordering

Another characterization of the contextual ordering limits the observations even
further. Let us first define the set of atomic tests as follows:

T : : = • | • op e | v op • | •= e | v= • | ifτ • then e1 else e2 fi | •(e)

An applicative evaluation context is a composition of atomic tests yielding a
value of observable type, i.e., a context of the form T1[· · · Tn[•]] of type τ o.
Let A range over the set of applicative evaluation contexts.

Definition 27.19 (Applicative Ordering)
The applicative ordering e1 .

app e2 : τ between closed terms e1 and e2 of type

τ holds iff for every applicative evaluation context A : τ o, A[e1] .
kl A[e2].

Lemma 27.20
If Γ ` e1 .uci e2 : τ , then Γ ` e1 .app e2 : τ .

167

Proof: Every applicative evaluation context is an evaluation context. �

An atomic test T : τ τ ′ is non-trivial iff T = • implies τ = τ ′ = o. That
is, a non-trivial context may only be empty at observable type.

Lemma 27.21
If E [T [v1]] .

kl E [T [v2]] : o for every E : τ ′ o and every non-trivial atomic test

T : τ τ ′, then for every x:τ ` E : τ ′ o and every x:τ ` e : τ ′, {v1/x}E [e] .kl

{v2/x}E [e].

Proof: By induction on the length of the evaluation sequence {v1/x}E [e] ⇓ v.
�

Corollary 27.22
If E [T [v1]] .

kl E [T [v2]] : o for every E : τ ′ o and every non-trivial atomic test

T : τ τ ′, then v1 .
uci v2 : τ

Proof: Take e = x in the preceding lemma. �

Corollary 27.23
If Γ ` e1 .app e2 : τ , then Γ ` e1 .uci e2 : τ .

Proof: Suppose that A[e1] .
kl A[e2] : o for every A : τ o. We are to show

that E [e1] .
kl E [e2] : o for all E : τ o. By repeated application of the preced-

ing corollary, it is sufficient to show that E [A0[e1]] .
kl E [A0[e2]] : o for some

applicative context A0 : τ o and all evaluation contexts E : o o.1 But this
follows from the fact that A0[e1] .

kl A0[e2] : o, which follows from the assump-
tion that e1 .

app e2 : τ . �

Theorem 27.24 (Coincidence of UCI and Applicative Orderings)
The applicative and uci orderings coincide: Γ ` e1 .uci e2 : τ iff Γ ` e1 .app

e2 : τ .

Corollary 27.25
The applicative ordering is a pre-congruence.

Proof: By the theorem the applicative and uci orderings coincide with the
contextual ordering, which is obviously a pre-congruence. �

Lemma 27.26 (Extensionality of Functions)
Γ ` fun f(x:τ1) is e .

ctx fun f(x:τ1) is e′ : τ1⇀τ2 iff Γ ` (fun f(x:τ1) is e)(e1) .
ctx

(fun f(x:τ1) is e′)(e1) : τ1⇀τ2 for all Γ ` e1 : τ1.

1Flesh out this argument.

168

Proof: This is easily seen to hold for the applicative ordering, which coincides
with the uci and contextual orderings. �

27.2.5 Simulation Ordering

A third characterization of contextual equivalence interleaves evaluation with
recursive descent through sub-expressions of values.

Definition 27.27 (Simulation)
A simulation between closed terms is a type-indexed family of binary relations
R such that if e1Re2 : τ , then

1. if τ = Int and e1 ⇓ n, then e2 ⇓ n.

2. if τ = Bool and e1 ⇓ true (e1 ⇓ false), then e2 ⇓ true (e2 ⇓ false).

3. if τ = τ ′×τ ′′ and e1 ⇓ <e′1,e′′1>, then e2 ⇓ <e′2,e′′2> and e′1Re
′
2 : τ ′ and

e′′1 Re
′′
2 : τ ′′.

4. if τ = τ ′⇀τ ′′ and e1 ⇓ fun f(x:τ ′) is e, then e2 ⇓ fun f(x:τ ′) is e′ and
(fun f(x:τ ′) is e)(v)R (fun f(x:τ ′) is e′)(v) : τ ′′ for every closed value v
of type τ .

Definition 27.28 (Similarity Orderings)
For closed terms e1 and e2 of type τ , we define the similarity ordering, e1 .

sim

e2 : τ , to be the largest simulation between closed terms.2

Lemma 27.29
The similarity ordering is consistent: if e1 .

sim e2 : o, then e1 .
kl e2 : o.

Proof: Follows immediately from the definition, given that observations are
at base type. �

Lemma 27.30
If Γ ` e1 .sim e2 : τ and A : τ o, then A[e1] .

sim A[e2] : o.

Proof: By induction on the structure of A.3 �

Corollary 27.31
If Γ ` e1 .sim e2 : τ , then Γ ` e1 .app e2 : τ .

Proof: Follows immediately from the preceding lemma and the consistency of
the simulation ordering. �

2In fact the least and greatest orderings coincide, as may be established by induction on
types. The two fixed points separate only in the presence of a recursive type, such as streams.

3Complete this proof.

169

Lemma 27.32
The applicative ordering is a simulation. Therefore, if Γ ` e1 .app e2 : τ , then

Γ ` e1 .sim e2 : τ .

Proof: 4 It suffices to consider closed terms. At base type b we observe that
if e1 .

app e2 : b, then e1 .
kl e2 : b, as required for a simulation. At func-

tion type τ = τ1⇀τ2, we observe that if e1 .
app e2 : τ , and e1 ⇓ v1, then

v1 = fun f(x:τ1) is e′1 and e2 ⇓ v2 with v2 = fun f(x:τ1) is e′2 because applica-
tive evaluation contexts are “strict”. But then v1(v) .

app v2(v) : τ2 for every
v : τ1, since e1(v) .

app e2(v) : τ2, once again relying on “strictness” of applica-
tive evaluation contexts. �

Theorem 27.33
.kl(.sim=.app=.uci=.ctx

27.2.6 Logical Ordering

Another characterization of the contextual ordering is logical equivalence, an
application of the more general concept of logical relations.

Definition 27.34
The logical ordering e1 .

log e2 : τ between closed terms e1 and e2 of type τ

is defined to hold iff e1 ⇓ v1 implies e2 ⇓ v2 and v1 /
log

v2 : τ . The logical

ordering v1 /
log

v2 : τ between closed values of type τ is defined by induction
on the structure of τ as follows:

v1 /
log

v2 : Int iff v1 = v2 = n

v1 /
log

v2 : Bool iff v1 = v2 = true or v1 = v2 = false

v1 /
log

v2 : τ ′×τ ′′ iff proj1(v1) .
log proj2(v2) : τ ′ and proj2(v1) .

log proj2(v2) : τ ′′

v1 /
log

v2 : τ ′⇀τ ′′ iff if v′1 /
log

v′2 : τ ′, then v1(v′1) .
log v2(v′2) : τ ′′

The logical ordering is extended to open expressions by defining Γ ` e1 .log e2 :
τ to hold iff γ̂1(e1) .

log γ̂2(e2) : τ whenever γ1 /
log

γ2 : Γ.

Notice that we do not define the logical ordering on open terms as the open
extension of the logical ordering on closed terms!

Lemma 27.35
The logical ordering is closed under pre- and post-composition with the ap-

plicative ordering. That is, if Γ ` e1 .
log e2 : τ , Γ ` e′1 .

app e1 : τ , and

Γ ` e2 .app e′2 : τ , then Γ ` e′1 .
log e′2 : τ .

4Complete this proof.

170

Proof: We first prove the result for closed terms by induction on the struc-
ture of types. The conditions on the simulation ordering determine applicative
evaluation contexts that drive the expressions to type o, where the ordering co-
incides with the Kleene ordering. That is, if e1 .

log e2 : τ , then there exists an
applicative evaluation context Aτ such that Aτ [e1] .

kl Aτ [e2] : o, from which
the result follows. The extension to open terms is achieved by appeal to the
result for closed terms.5 �

Lemma 27.36
The logical ordering is consistent and transitive.

Lemma 27.37
The logical ordering is admissible.6

Lemma 27.38
The logical ordering is preserved by each of the expression-forming constructors.

Proof: By case analysis on the possible constructors. For the case of recursive
functions we rely on admissibility. �

Lemma 27.39
The logical ordering is a pre-congruence: if Γ ` e1 .

log e2 : τ and Γ ` C :
Γ/τ Γ′/τ ′, then Γ′ ` C[e1] .

log C[e2] : τ ′.

Proof: We proceed by induction on the structure of contexts, appealing to the
preceding lemma for each case of the induction. �

Lemma 27.40
The logical ordering is reflexive: if Γ ` e : τ , then Γ ` e .log e : τ .

Proof: By the preceding lemma, taking e to be a context with no holes. �

It follows that the logical ordering contains the applicative ordering since
the logical ordering is reflexive and closed under pre-composition with the ap-
plicative ordering. Since the logical ordering is a consistent pre-congruence, it
is contained in the contextual ordering. Thus we have the following theorem.

Lemma 27.41
.app⊆.log⊆.ctx

Since the contextual ordering is contained in the applicative ordering, we
obtain the following result:

Theorem 27.42 (Relations Among Orderings)
.kl(.app=.uci=.log=.ctx

5Spell this out.
6Define admissibility.

171

27.3 Denotational Ordering

The denotational semantics given in Chapter 26 induces a consistent pre-congruence
between terms defined as follows.

Definition 27.43 (Denotational Ordering)
We define the denotational ordering Γ ` e1 .den e2 : τ between open terms to
hold iff ||Γ ` e1 : τ || ρ v ||Γ ` e2 : τ || ρ for every ρ ∈ ||Γ||.

Lemma 27.44
The denotational ordering is a consistent pre-congruence.

Proof: Consistency of the denotational ordering follows directly from ade-
quacy: if e1 .

den e2 : o and e1 ⇓ v, then ||e1 : τ ||∅ = ||v : τ ||∅ = ||e2 : τ ||∅, so by
adequacy e2 ⇓ v, and conversely. The denotational ordering is a pre-congruence
because it is defined by induction on the structure of expressions. �

Corollary 27.45
The denotational ordering is contained in the contextual ordering.

The denotational ordering does not, however, coincide with the contextual
ordering. Plotkin gave two closed terms that are distinguished in the deno-
tational ordering, but that are contextually equivalent. In other words the
denotational semantics is not fully abstract.

27.4 References

Most of the development is adapted directly from work of Mason, Talcott, and
Smith, Pitts, and Winskel.

172

Part V

Background

173

Appendix A

Inductive Definitions

A.1 Introduction

Inductive definitions of sets and relations are a fundamental technique in the
study of programming languages.

A.2 Inductive and Coinductive Definitions

Fix a set U to serve as the universe of discourse. A (finitary) rule (over a
universe U) is a pair X → x, where X ⊆ U is a finite subset of the universe
and x ∈ U . The set X is called the set of premises of the rule, and the element
x is called its consequence. A rule with an empty set of premises is sometimes
called an axiom. We often write x1 . . . , xn → x for the rule {x1 . . . , xn } → x.
A rule set (over U) is a set of rules over U . By a slight abuse of notation, we
write R ∪X, where X ⊆ U , for the rule set R ∪ { ∅ → x | x ∈ X }.

If R is a set of rules over U , we say that A ⊆ U is closed under R (briefly,
R-closed) iff for every rule X → x in R, if X ⊆ A, then x ∈ A. Dually, we say
that A ⊆ U is consistent with R (briefly, R-consistent) iff for every x ∈ A there
exists a rule X → x in R with X ⊆ A.

The set I(R) inductively defined by a rule set R is defined by the following
equation:

I(R) =
⋂
{A ⊆ U | A is R-closed }.

The set C(R) coinductively defined by a rule set R is defined by the following
equation:

C(R) =
⋃
{A ⊆ U | A is R-consistent }.

It is easy to see that I(R) is itself R-closed, for if X → x is some rule in R
with X ⊆ I(R), then, by the definition of I(R), X is a subset of every R-closed
set A, so that x is in every such set, and therefore x ∈ I(R). Furthermore, if A
is an R-closed set, then I(R) ⊆ A, since I(R) is the intersection of all such sets.

175

Dually, it is easy to see that C(R) is R-consistent, and is the largest R-consistent
set.

The minimality of I(R) licenses the following induction principle:

To show that every a ∈ I(R) has a property P , it is enough to show
that P is R-closed, i.e.that x ∈ P whenever X ⊆ P for every rule
X → x in R.

The maximality of C(R) licenses the following coinduction principle:

To show that every element a ∈ U with property P is an element
of C(R), it is enough to show that P is R-consistent, i.e.that every
x ∈ P it “witnessed” by some rule X → x in R such that X ⊆ P .

You may be accustomed to thinking of sets inductively defined by a set of
rules as being generated from axioms by repeated applications of the inference
rules. Dually, the set co-inductively defined by a set of rules may be thought
of as arising by starting with U and throwing out elements that cannot be
“justified” as arising from an application of some rule.

To make this characterization precise we fix a rule set R and define the
family of sets { In }n∈ω by induction on n as follows:

I0 = ∅
In+1 = In ∪ {x | ∃X → x ∈ R X ⊆ In }

By construction In ⊆ In+1 for every n ∈ ω. Now define I by the equation

I =
⋃
n∈ω

In.

Thus an element of I is one that is “forced” into the set at some finite stage by
successive applications of rules in R, starting with the empty set.

It is easy to show that I = I(R). To show that I ⊆ I(R), it suffices to show
that In ⊆ I(R) for every n ∈ ω. For n = 0 this is obvious. Assuming In ⊆ I(R),
we wish to show that In+1 ⊆ I(R). It suffices to show that x ∈ I(R) whenever
X → x ∈ R and X ⊆ In. But X ⊆ I(R) since In ⊆ I(R), and hence x ∈ I(R)
since I(R) is R-closed. For the converse, it suffices to show that I is R-closed.
Suppose that X → x ∈ R and X ⊆ I. Then for some n ∈ ω, we have X ⊂ In.1

But then x ∈ In+1, and hence x ∈ I.
Dually, we may define the family of sets {Cn }n∈ω as follows:

C0 = U
Cn+1 = Cn ∩ {x | ∃X → x ∈ RX ⊆ Cn }

Then define
C =

⋂
n∈ω

Cn.

Thus an element of C is one that “survives” after finitely many “tests” of rules
in R, starting with the universe U . By a dual argument to the one just given
for the set I, we may prove that C = C(R).

1The assumption that rules are finitary is essential here!

176

A.3 Admissible and Derivable Rules

We may associate a consequence relation `R⊆ P(U) × U with a rule set R by
defining

X `R x iff x ∈ I(R ∪X).

That is, x is in the set inductively defined by the extension of R with the
premises X as additional “axioms”. If Y is a finite subset of U , we define

X `R Y iff X `R y (∀y ∈ Y).

It is easy to verify the following properties of the consequence relation asso-
ciated with R:

1. If x ∈ X, then X `R x.

2. If X `R x and X ⊆ X ′, then X ′ `R x.

3. If X `R x and Y ∪ {x } `R y, then X ∪ Y `R y.

We say that a rule X → x is derivable from rules R iff X `R x. The following
properties of derivability are easily proved from the definitions:

1. If X → x ∈ R, then X `R x.

2. If X `R x and R ⊆ R′, then X `R′ x.

The latter property states that derivability is stable under extensions to the
rule set. In this sense the derivability of a rule must be “uniform” in that the
derivation does not depend on what is not in R, but only on what is in R.

We say that a rule X → x is admissible relative to rules R iff `R X implies
`R x. Clearly every derivable rule is admissible, but the converse need not
hold. For example, if R is empty, then every rule X → x with x /∈ X 6= ∅ is
admissible, but no such rule is derivable! Observe that admissibility is not stable
under extensions to R — a rule that is admissible in R may not be admissible in
some extension of R! For example, a rule that is vacuously admissible in some
rule set R may become inadmissible in some extension R′ to R — for example,
if R = and x /∈ X 6= ∅, then X → x is admissible in R, but is inadmissible in X
(treating the elements of X as axioms)!

In practical terms proofs of derivability amount to compositions of rules in
R that transform the premises of the rule into its conclusion. Since such proofs
depend only on what is in R, and not what is not in R, they are clearly stable
under extensions to R. Proofs of admissibility, on the other hand, typically
proceed by an inductive analysis of the derivations of `R y for each premise y to
conclude that `R x. Such proofs are not stable under extensions to R because
the inductive analysis relies on what is not in R, as much as on what is in it. Of
course one may prove only that a rule is admissible when it is in fact derivable,
so this description is only a heuristic.

177

A.4 References

The main reference is Aczel’s chapter “Introduction to Inductive Definitions”
in the Handbook of Mathematical Logic [1]. See also Aczel’s monograph on
non-well-founded sets [2].

178

Appendix B

Domains

B.1 Introduction

Ordered sets arise frequently in the study of programming languages. Of par-
ticular interest are ordered sets with additional structure corresponding to re-
cursive definitions. Loosely speaking such sets are called domains, although the
reader is warned that the exact definition of a domain varies depending on the
context of use.

B.2 Domains

A partially ordered set (poset) is a pair (D,v) consisting of a set D together
with a reflexive, transitive, and anti-symmetric binary relation v on D. That
is, v⊆ D ×D satisfies the following three conditions:

Reflexivity d v d for every d ∈ D.

Anti-symmetry If d v d′ and d′ v d, then d = d′.

Transitivity If d v d′ and d′ v d′′, then d v d′′.

We generally omit explicit mention of the ordering relation whenever it is clear
from context.

A subset S ⊆ D of a poset is directed iff every pair of elements of S has an
upper bound in S (equivalently, iff every finite subset of S has an upper bound
in S). A poset D is directed complete iff every non-empty directed subset S of D
has a least upper bound, or supremum,

⊔
S ∈ D. Directed complete posets are

called dcpo’s. A dcpo D is pointed if it has a least element, i.e.iff there exists
⊥ ∈ D such that ⊥ v x for every x ∈ D. Pointed dcpo’s are called dcppo’s.

Exercise B.1
A chain in a poset D is an increasing sequence x0 v x1 v · · · ∈ D. Show that
every chain is a directed subset of D. Hence if D is a dcpo, then every chain in
D has a least upper bound in D.

179

Definition B.2
Let f : D1 → D2 be a function between dcpo’s D1 and D2.

1. The function f is order-preserving (or monotone) iff f(d) v f(d′) in D2

whenever d v d′ in D1. If D1 and D2 are pointed, then f is point-
preserving (or strict) iff f(⊥) = ⊥.

2. An order-preserving function f is continuous iff it preserves suprema of
non-empty directed subsets, i.e., f(

⊔
S) =

⊔
{ f(x) | x ∈ S } whenever S

is a non-empty directed subset of D1.

Definition B.3
1. The lifting, D⊥, of a dcpo D has as elements { bdc | d ∈ D } ∪ {⊥},

ordered by (1) ⊥ v bdc for every d ∈ D, and (2) bdc v bd′c iff d v d′ in
D.

2. The Cartesian product, [D1×D2] of two dcpo’s D1 and D2 has as elements
the set { 〈d1, d2〉 | d1 ∈ D1, d2 ∈ D2 } ordered component-wise. The
smash product, [D1 ⊗ D2], of two dcppo’s has as elements { 〈d1, d2〉 |
⊥ 6= d1 ∈ D1, ⊥ 6= d2 ∈ D2 }⊥ ordered componentwise, with ⊥ as least
element.

3. The function space, [D1 → D2], between dcpo’s D1 and D2 consists of all
continuous functions f : D1 → D2 ordered by the pointwise ordering (i.e.,
f v g in [D1 → D2] iff f(d) v g(d) in D2 for every d ∈ D1).

Lemma B.4
1. If D is a dcpo, then D⊥ is a dcppo.

2. If D1 and D2 are dcpo’s, then [D1 × D2] is a dcpo. If D1 and D2 are
dcppo’s, then [D1 ⊗D2] is a dcppo.

3. If D1 and D2 are dcpo’s, then [D1 → D2] is a dcpo. If D2 is pointed, then
so is [D1 → D2].

Theorem B.5 (Kleene)
If f : D → D is a continuous function on a dcppo, then f has a least fixed point

fixD(f) given by
⊔

i≥0 f
(i)(⊥).

Proof: Observe that the sequence f (i)(⊥) is a chain, and hence has a least
upper bound. To see that this provides a fixed point we argue as follows:

f(
⊔

i≥0 f
(i)(⊥)) =

⊔
i≥0 f(f (i)(⊥))

=
⊔

i≥0 f
(i+1)(⊥)

=
⊔

i≥0 f
(i)(⊥)

To see that this is the least fixed point, observe that if f(d) = d, then each
iterate f (i)(⊥) v d, and hence

⊔
i≥0 f

(i)(⊥) v d. �

180

Of particular interest are those dcppo’s of the form D = [D1 → D2], where
D2 is pointed (D1 may or may not be). We apply Kleene’s fixed point theorem
to a continuous functional defined on D to obtain its least fixed point, which is
used as the interpretation of a recursive function.

B.3 References

Winskel’s text [57] is an excellent introduction to domain theory and denota-
tional semantics.

181

182

Appendix C

Term Rewriting Systems

C.1 Introduction

C.2 Abstract Term Rewriting Systems

We begin by introducing some general terminology and deriving some basic
results. A notion of reduction on a set X is a binary relation →⊆ X ×X. We
write →∗ for the reflexive and transitive closure of →, →+ for its transitive
closure, and ↔ for its symmetric closure. It is easy to see that ↔∗ is the least
equivalence relation containing →. We write x ↓ y iff there exists z such that
x→∗ z and y →∗ z. Similarly, we write x ↑ y iff there exists z such that z →∗ x
and z →∗ y.

If x is such that x→ x′ for no x′, then x is said to be irreducible, or in normal
form. An element x is normalizable iff there exists x′ in normal form such that
x→∗ x′; it is strongly normalizable iff there are no infinite reduction sequences
starting from x. We say that → is normalizable (resp., strongly normalizable)
iff every x is normalizable (resp., strongly normalizable). A predicate P on X is
→-complete iff P (x) holds whenever P (y) holds for every y such that x →+ y.
If → is strongly normalizable and P is →-complete, then P (x) holds for every
x ∈ X. This is called transfinite induction on →.

We say that → has the diamond property iff whenever x→ x1 and x→ x2,
then there exists y such that x1 → y and x2 → y. We say that → is locally
confluent iff whenever x → x1 and x → x2, then x1 ↓ x2. It is confluent if
x1 ↓ x2 whenever x1 ↑ x2, i.e.whenever →∗ has the diamond property. Clearly
if → has the diamond property, it is locally confluent, and if it is confluent, it
is locally confluent. The converses do not, in general, hold. However, if → is
strongly normalizable, then local confluence is equivalent to confluence.

Exercise C.1
Prove by transfinite induction on → that if a strongly normalizable relation is
locally confluent, then it is confluent.

183

Confluence has a number of significant consequences. First, normal forms
are unique: if x → x1 and x → x2 where x1 and x2 are normal forms, then
x1 = x2. Second, the “Church-Rosser” property holds: x ↔∗ y iff x ↓ y. The
“if” part is immediate since →∗⊆↔∗. For the “only if”, the interesting case is
transitivity. We have by induction that x1 ↓ x2 and x2 ↓ x3; we are to show
that x1 ↓ x3. Expanding the definitions, this means that there exists y and z
such that x1 →∗ y, x2 →∗ y, x2 →∗ z, and x3 →∗ z. By confluence at x2, we
have that y ↓ z, and hence x1 ↓ x3. Stated in other words, we use confluence to
argue that ↓ is a transitive relation; since it is clearly reflexive and symmetric
and contains →, it follows that ↔∗⊆↓ since ↔∗ is the smallest such relation.

184

Bibliography

[1] Peter Aczel. Introduction to inductive definitions. In John Barwise, editor,
The Handbook of Mathematical Logic, pages 739–782. North-Holland, 1977.

[2] Peter Aczel. Non-Well-Founded Sets. Lecture Notes. CSLI, Stanford, CA,
1988.

[3] Rod Burstall and Butler Lampson. A kernel language for abstract data
types and modules. In Gilles Kahn, David MacQueen, and Gordon Plotkin,
editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer
Science, pages 1–50. Springer-Verlag, June 1984.

[4] Luca Cardelli. Phase distinctions in type theory. unpublished manuscript.

[5] Luca Cardelli. Typeful programming. Technical Report 45, DEC Systems
Research Center, 1989.

[6] Luca Cardelli and Xavier Leroy. Abstract types and the dot notation.
Technical Report 56, DEC Systems Research Center, Palo Alto, CA, March
1990.

[7] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An
extension of System F with subtyping. Research Report 80, Digital Systems
Research Center, Palo Alto, California, December 1991.

[8] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, Laurent Has-
coet, and Gilles Kahn. Natural semantics on the computer. Technical
Report RR 416, INRIA, Sophia–Antipolis, France, June 1985.

[9] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, and Gilles
Kahn. A simple applicative language: Mini-ML. In 1986 ACM Conference
on LISP and Functional Programming, 1986.

[10] Robert L. Constable and Scott Fraser Smith. Partial objects in constructive
type theory. In Second Symposium on Logic in Computer Science, pages
183–193, June 1987.

[11] Roy Crole. Categories for Types. Cambridge Mathematical Textbooks.
Cambridge, 1993.

185

[12] Bruce Duba, Robert Harper, and David MacQueen. Typing first-class con-
tinuations in ML. In Eighteenth ACM Symposium on Principles of Pro-
gramming Languages, January 1991.

[13] Matthias Felleisen and Robert Hieb. The revised report on the syntactic
theories of sequential control and state. Theoretical Computer Science,
10(2):235–271, 1992.

[14] Andrzej Filinski. Declarative continuations: An investigation of duality
in programming language semantics. In Summer Conference on Category
Theory and Computer Science, volume 389 of Lecture Notes in Computer
Science, Manchester, UK, 1989. Springer-Verlag.

[15] Michael J. Fischer. Lambda-calculus schemata. LISP and Symbolic Com-
putation, 6(3/4):259–288, November 1993.

[16] Harvey Friedman. Equality between functionals. In Rohit Parikh, editor,
Logic Colloquium ’75, Studies in Logic and the Foundations of Mathemat-
ics, pages 22–37. North-Holland, 1975.

[17] Jean Gallier. On Girard’s “Candidats de Reductibilité”. In P. Odifreddi,
editor, Logic and Computation, volume 31 of The APIC Series, pages 123–
203. Academic Press, 1990.

[18] Jean-Yves Girard. Une extension de l’interpretation de Gödel à l’analyse,
et son application à l’élimination des coupures dans l’analyse et la théorie
des types. In J. E. Fenstad, editor, Proceedings of the Second Scanindavian
Logic Symposium, Studies in Logic and the Foundations of Mathematics,
pages 63–92. North-Holland, 1971.

[19] Jean-Yves Girard. Interprétation Fonctionnelle et Élimination des
Coupures dans l’Arithmétique d’Ordre Supérieure. PhD thesis, Université
Paris VII, 1972.

[20] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, vol-
ume 7 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, England, 1989.

[21] Timothy Griffin. A formulae-as-types notion of control. In Seventeenth
ACM Symposium on Principles of Programming Languages, San Francisco,
CA, January 1990. ACM, ACM.

[22] Carl A. Gunter. Semantics of Programming Languages. Foundations of
Computing. MIT Press, Cambridge, MA, 1992.

[23] Robert Harper. A simplified account of polymorphic references. Technical
Report CMU–CS–93–169, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, June 1993.

186

[24] Robert Harper, Bruce Duba, and David MacQueen. Typing first-class con-
tinuations in ML. Journal of Functional Programming, 3(4):465–484, Oc-
tober 1993. (See also [12].).

[25] Robert Harper and Mark Lillibridge. Polymorphic type assignment and
CPS conversion. In Olivier Danvy and Carolyn Talcott, editors, Proceedings
of the ACM SIGPLAN Workshop on Continuations CW92, pages 13–22,
Stanford, CA 94305, June 1992. Department of Computer Science, Stanford
University. Published as technical report STAN–CS–92–1426.

[26] Robert Harper and Mark Lillibridge. Polymorphic type assignment and
CPS conversion. LISP and Symbolic Computation, 6(4):361–380, November
1993. (See also [25].).

[27] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-
order modules with sharing. In Twenty-First ACM Symposium on Prin-
ciples of Programming Languages, pages 123–137, Portland, OR, January
1994.

[28] Robert Harper and John C. Mitchell. On the type structure of Stan-
dard ML. ACM Transactions on Programming Languages and Systems,
15(2):211–252, April 1993. (See also [39].).

[29] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order mod-
ules and the phase distinction. In Seventeenth ACM Symposium on Prin-
ciples of Programming Languages, San Francisco, CA, January 1990.

[30] Xavier Leroy. Manifest types, modules, and separate compilation. In Pro-
ceedings of the Twenty-first Annual ACM Symposium on Principles of Pro-
gramming Languages, Portland. ACM, January 1994.

[31] David MacQueen. Using dependent types to express modular structure.
In Thirteenth ACM Symposium on Principles of Programming Languages,
1986.

[32] Per Martin-Löf. Constructive mathematics and computer programming.
In Sixth International Congress for Logic, Methodology, and Philosophy of
Science, pages 153–175. North-Holland, 1982.

[33] Per Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof
Theory. Bibliopolis, Naples, 1984.

[34] Paul Mendler. Recursive Definition in Type Theory. PhD thesis, Cornell
University, 1987.

[35] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed
lambda calculi (summary). In Rohit Parikh, editor, Logics of Programs,
volume 193 of Lecture Notes in Computer Science, pages 219–224. Springer-
Verlag, 1985.

187

[36] Robin Milner. A theory of type polymorphism in programming languages.
Journal of Computer and System Sciences, 17:348–375, 1978.

[37] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press,
1991.

[38] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

[39] John Mitchell and Robert Harper. The essence of ML. In Fifteenth ACM
Symposium on Principles of Programming Languages, San Diego, Califor-
nia, January 1988.

[40] John C. Mitchell. Foundations for Programming Languages. Foundations
of Computing. MIT Press, 1996.

[41] John C. Mitchell and Gordon Plotkin. Abstract types have existential type.
ACM Transactions on Programming Languages and Systems, 10(3):470–
502, 1988.

[42] Eugenio Moggi. Computational lambda calculus and monads. In Fourth
Symposium on Logic in Computer Science, Asilomar, California, June 1989.

[43] Chetan Murthy. Extracting Constructive Content from Classical Proofs.
PhD thesis, Cornell University, Ithaca, NY, August 1990.

[44] Frank Pfenning. Partial polymorphic type inference and higher-order unifi-
cation. In Proceedings of the 1988 ACM Conference on Lisp and Functional
Programming, pages 153–163, Snowbird, Utah, July 1988. ACM Press.

[45] Frank Pfenning. On the undecidability of partial polymorphic type recon-
struction. Fundamenta Informaticae, 199? To appear. Preliminary version
available as Technical Report CMU–CS–92–105, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, Pennsylvania, January 1992.

[46] Frank Pfenning and Peter Lee. LEAP: A language with eval and polymor-
phism. In TAPSOFT ’89, Proceedings of the International Joint Conference
on Theory and Practice in Software Development, Barcelona, Spain, pages
345–359. Springer-Verlag LNCS 352, March 1989.

[47] Gordon Plotkin. Call-by-name, call-by-value, and the lambda calculus.
Theoretical Computer Science, 1:125–159, 1975.

[48] Gordon Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–257, 1977.

[49] Gordon Plotkin. Lambda-definability in the full type hierarchy. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays in Combinatory
Logic, Lambda Calculus and Formalism, pages 363–373. Academic Press,
1980.

188

[50] Gordon Plotkin. A structural approach to operational semantics. Technical
Report DAIMI–FN–19, Computer Science Department, Aarhus University,
1981.

[51] Gordon Plotkin. Notes for a post-graduate course in semantics. Available
from the Computer Science Department, University of Edinburgh, 1983.

[52] John C. Reynolds. Definitional interpreters for higher-order programming
languages. In Conference Record of the 25th National ACM Conference,
pages 717–740, Boston, August 1972. ACM.

[53] John C. Reynolds. Towards a theory of type structure. In Colloq. sur la
Programmation, volume 19 of Lecture Notes in Computer Science, pages
408–423. Springer-Verlag, 1974.

[54] John C. Reynolds. The discoveries of continuations. LISP and Symbolic
Computation, 6(3/4):233–248, November 1993.

[55] Scott F. Smith. Partial computations in constructive type theory. (To
appear, Information and Computation), 1991.

[56] Richard Statman. Logical relations and the typed λ-calculus. Information
and Control, 65:85–97, 1985.

[57] Glynn Winskel. The Formal Semantics of Programming Languages. Foun-
dations of Computing Series. MIT Press, 1993.

[58] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, November 1994.

189

