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ON GIRARD'S "CANDIDATS DE REDUCTIBILITE~ 

Jean H. Gallier 

Abstract: We attempt to elucidate the conditions required on Girard's candi- 
dates of reducibility (in French, "candidats de reductibilitk") in order to establish 
certain properties of various typed lambda calculi, such as strong normalization 
and Church-Rosser property. We present two generalizations of the candidates 
of reducibility, an untyped version in the line of Tait and Mitchell, and a typed 

version which is an adaptation of Girard's original method. As an applica- 

tion of this general result, we give two proofs of strong normalization for the 
second-order polymorphic lambda calculus under pq-reduction (and thus under 
P-reduction). We present two sets of conditions for the typed version of the 
candidates. The first set consists of conditions similar to those used by Stenlund 

(basically the typed version of Tait's conditions), and the second set consists of 
Girard's original conditions. We also compare these conditions, and prove that 

Girard's conditions are stronger than Tait's conditions. We give a new proof 

of the Church-Rosser theorem for both P-reduction and pq-reduction, using the 

modified version of Girard's method. We also compare various proofs that have 
appeared in the literature (see section 11). We conclude by sketching the exten- 

sion of the above results to Girard's higher-order polymorphic calculus Fw, and 

in appendix 1, to Fw with product types. 



1 Introduction 

1 Introduction 

In this article, we attempt to elucidate the conditions required on Girard's candidates of 
reducibility (in French, "candidat s de reductibilit 6") in order to establish certain properties 
of various typed lambda calculi, such as strong normalization and Church-Rosser property. 
We present two generalizations of the candidates of reducibility, an untyped version in the 
line of Tait and Mitchell [37, 241, and a typed version which is an adaptation of Girard's 
original method [9, 101. As an application of this general result, we give two proofs of 
strong normalization for the second-order polymorphic lambda calculus under ,&-reduction 
(and thus under ,B-reduction). We present two sets of conditions for the typed version 
of the candidates: a set of conditions similar to those used by Stenlund [35], (basically 
the typed version of Tait's conditions, Tait 1973 [37]), and Girard's original conditions 
(Girard [lo], [Ill). We also compare these conditions, and prove that Girard's conditions 
are stronger than Tait's conditions. We give a new proof of the Church-Rosser theorem for 

both P-reduction and pq-reduction, using the modified version of Girard's method. We also 
compare various proofs that have appeared in the literature (see section 11). We conclude by 
sketching the extension of the above results to Girard's higher-order polymorphic calculus 
F,, and in appendix 1, to F, with product types. 

It is worth noting that the generalized method of candidates plays an important role in 
Breazu-Tannen and Gallier [4], where conservation results conjectured in Breazu-Tannen [3] 
are proved about the combination of algebraic rewriting with pq-reduction in polymorphic 
A-calculi. 

Familiarity with the polymorphic typed lambda calculus is not assumed for reading 
this article. This explains why we have included some rather lengthy introductory sections. 
An expert should probably proceed directly to section 6. On the other hand, a certain 
familiarity with the simply-typed lambda calculus will help. Good references on the lambda 
calculus include Barendregt [I], Hindley and Seldin [15], Stenlund [35], Girard [Ill, and Huet 
[16, 181. An extensive discussion of the role and importance of type theory and an exposition 
of related results are given in Scedrov [32]. Another excellent introduction to type systems 
and their relevance to programming language theory appears in Mitchell [25]. 

2 Syntax of the Second-Order Polymorphic Lambda Calculus 

Our presentation of the GirardIReynolds second-order lambda calculus [9, 30, 111 is heavily 
inspired by Breazu-Tannen and Coquand [2]. Let V be a countably infinite set of type 
variables, X a countably infinite set of term variables (for short, variables), and B a set of 
base types. 



2 ON GIRARD'S "CANDIDATS DE REDUCTIBILITE" 

Definition 2.1 The set 7 of second-order polymorphic type expressions (for short, types) 

is defined inductively as follows: 

t E 7, whenever t E V,  
a E 7, whenever a E B ,  
(a + T)  E 7, whenever o, T E 7, and 

Vt. a E 7, whenever t E V and a E 7 .  

In omitting ~arentheses, we follow the usual convention that -+ associates to the right, 

that is, al -t o2 + . . . on-1 + a, abbreviates (al -t (a2 + . . . (an-l + a,). . .)). The 

subset of 7 consisting of the type expressions built up inductively from 23 using only the 

type constructor + is called the set of simple types. Obviously, simple types cannot contain 

type variables or quantifiers. 

Next, we define polymorphic raw terms. Let C be a set of constant symbols and 

Type: C + 7 a function assigning a closed polymorphic type (i.e., a type expression con- 

taining no free type variable) to every symbol in C. 

Definition 2.2 The set P A  of polymorphic lambda raw C-terms (for short, polymorphic 

raw terms) is defined inductively as follows: 

c E P A ,  whenever c E C ,  
x E P A ,  whenever x E X, 

(MN) E P A ,  whenever M, N E P A ,  
(Ax: a. M) E P A ,  whenever x E X, a E 7, and M E P A ,  
(Ma) E P A ,  whenever a E 7 and M E P A ,  
(At. M) E P A ,  whenever t E V and M E PA. 

The set of free variables in M will be denoted as FV(M), and the set of free type 

variables in M as FV(M). The set of bound variables in M will be denoted as BV(M), 

and the set of bound type variables in M as BV(M). The same notation is also used to 

denote the sets of free and bound variables in a type. 

In omitting parentheses, we follow the usual convention that application associates to 

the left, that is, MI M2 . . . Mn-1Mn is an abbreviation for ((. . . (MI M2) .  . . Mn-l)Mn). The 

subset of P A  consisting of all terms built up using only the first four clauses of definition 

2.2 and only simple types is called the set of simply typed raw terms. 

Every polymorphic raw term corresponds to an untyped lambda term obtained by 

erasing the types. This technique will be useful in proving strong normalization for the 

second-order polymorphic lambda calculus. Thus, we define untyped lambda terms and the 

Erase function as follows. 

Let C be a set of constant symbols. 
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Definition 2.3 The set A of untyped  l a m b d a  C - t e r m s  (for short, lambda terms) is defined 

inductively as follows: 

c E A, whenever c E C, 
x E A, whenever x E X, 

(MN) E A, whenever M, N E A, 
(Ax. M)  E A, whenever x E X and M E A. 

The function Erase: P A  -+ A is defined recursively as follows: 

Erase(c) = c, whenever c E C, 
Erase(x) = x, whenever x E X, 

Erase(M N) = Erase(M) Erase(N), 

Erase(Xx: a .  M) = Ax. Erase(M), 

Erase(Ma) = Erase(M), 

Erase(At. M)  = Erase(M). 

Not all polymorphic raw terms are acceptable, only those that type-check. In order 

to type-check a raw term, one needs to make assumptions about the types of the (term) 

variables free in M. This can be done by introducing type assignments. Then, type- 

checking a raw term is done using a proof system working on certain expressions called type 

judgments. However, substitution plays a crucial role in specifying the inference rules of 

this proof system, and so, we now focus our attention on substitutions. 

3 Subst it ut ion and a-equivalence 

We first define the notion of a substitution on polymorphic raw terms. 

Definition 3.1 A s u b s t i t u t i o n  is a function p: X U V -+ P A  U 7 such that, p(x) # x for 

only finitely many x E X U V, y(x) E P A  for all x E X, and p(t) E 7 for all t E V. The 

finite set {x E X U V I cp(x) # x) is called the d o m a i n  of the substitution and is denoted by 

dom(p). If dom(p) = {xl, .  . . , xn )  and p(xi) = ui for every i, 1 5 i 5 n, the substitution 

p is also denoted by [ul /xl , . .  . , un/xn]. 

Given any substitution p, any variable y E XU V, and any term u E P A  U 7, p[y := u] 

denotes the substitution such that, for all z E X U V, 

We also denote p[x := x] as 9-,. The result of applying a substitution to a raw term or a 

type is defined recursively as follows. 



Definition 3.2 Given any substitution y:  X  U V t P A  U 7, the function @ : P A  U 7 t 
P A  U 7 extending y  is defined recursively as follows: 

@ ( X I  = ~ ( 4 ,  x  E X ,  

@(t)  = ~ ( t ) ,  t E V,  

@ ( f )  = f ,  f E C7 

@(a) = a, a  E l?, 

@ ( o + T ) = ( ~ ( ~ ) + @ ( T ) ,  O , T E T ,  

@(Vt. a )  = Vt. y l ( a ) ,  a  E 7 , t  E V,  

Q = Q P? Q E PA ,  

@ ( M a )  = @(M)@(a) ,  M  E P A , a  E 7, 

@(Ax: a. M )  = Ax: Ip^(a). y T x ( M ) ,  M  E PA,  a  E 7,  x  E X ,  

@(At. M )  = At. c t ( M ) ,  M  E P A , ~  E V. 

Given a polymorphic raw term M  or a type a ,  we also denote @ ( M )  as y ( M )  
and @(a) as y (a ) .  Also, if dom(y)  = { x l ,  . . . , x,) C X  and y  = [ M l / x l , .  . . , M n / x n ] ,  
then @ ( M )  is denoted as MIMl / x l  , . . . , Mn/xn] .  If dom(y)  = { t l ,  . . . , t,) C V and 

y  = [al / t  . . . , a,/t,], then @ ( M )  is denoted as M  [al I t l ,  . . . , a,  It,] (If a  is a type, then 
@(a)  is denoted as a[al It l ,  . . . , a,/t,]). 

A substitution of untyped lambda terms is defined as a function y :  X  t A  with finite 
domain. 

Definition 3.3 The extension @: A  t A  of a substitution y:  X  t A  is defined recursively 

as follows: 

( 1  = ( 7  E X ,  

@(f) = f ,  f E C ,  

Q = Q p, Q E A, 

@(Ax. M )  = Ax. V ' ~ ' ~ ( M ) ,  M  E A,x  E X .  

The notational conventions used for substitutions on polymorphic raw terms are also 
used for substitutions on untyped terms. In particular, if M is any untyped lambda term, 
we also denote @ ( M )  as y ( M ) .  

We now have to face the painful task of dealing with a-conversion and variable capture 
in substitutions. The motivation for a-conversion is that we want terms that only differ by 
the names of their bound variables to have the same behavior (and meaning). 
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Example 3.4 For example, we would like to consider the terms Ml = Atl. Axl: t l .  xl 
and M2 = At2. Ax2 : t2 .  x2 to be equivalent. They both represent the "polymorphic identity 

function". This can be handled by defining an equivalence relation E, which relates terms 
that differ only by renaming of their bound variables. 

Definition 3.5 The relation +, of immediate a-reduction is defined by the following 

proof system: 

Axioms:  

Vt.a+,Vv.a[v/t] f o r a l l v ~ V s . t . v $ F V ( a ) U B V ( a )  

Ax: a. M 4, Ay: a. M [ y / x ]  for all y E X s.t. y $ F V ( M )  U B V ( M )  

At. M 4, Av. M [ v / t ]  for all v  E V s.t. v  $ F V ( M )  U BV(M)  

Inference Rules: 

Vt. a  +, Vt. T 

M d , N  a  +, T 

Ax: a. M --i, Ax: a. N Ax: a. M 4, Ax: 7. M 

M+,N 
At. M d, At. N 

We define a-reduction as the reflexive and transitive closure L, of -,. Finally, we de- 
fine a -conversion, also called a - equivalence, as the least equivalence relation =, containing 
4, (E, = (-, U ----+-I 'I > * >. 

We have the following lemma showing that a-equivalence is "congruential" with re- 

spect to the term (and type) constructor operations. 

Warning: -, is not symmetric! 
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Lemma 3.6 The following properties hold: 

If Ml =, M2 and N1 =, N2, then MINI z, M2N2. 

If MI =, M2 and a1 =, 0 2 ,  then Mlal 5, M2a2. 

If MI =, M2 and a1 =, 0 2 ,  then Xx:al. MI E, Ax: a2. M2. 

If MI =, M2, then At. Ml E, At. M2. 

Proof. Straightforward by induction. 

Lemma 3.6 allows us to consider the term (and type) constructors as operating on 

=,-equivalence classes. Let us denote the equivalence class of a term M modulo =, as 

[MI, and the equivalence class of a type a modulo =, as [a]. We extend application, type 

application, abstraction, and type abstraction, to equivalence classes as follows: 

[MlI[M21 = [MlM2], 

[MI [a1 = [Ma], 

[Ax: [a]. [MI] = [Ax: a. MI, 

[A t .  [MI] = [At .  MI. 

From now on, we will usually identify a term or a type with its a-equivalence class 

and simply write M for [MI and a for [a]. 

In view of the above, a-equivalence should also be extended to substitutions as well. By 

this, we mean that we should expect that if MI E, M2 and N1 =, N2, then MI [Nl 1x1 =, 
M2[N2/x]. However, this may not be true due to the problem of variable capture. As an 

illustration, let MI = Xy:a. x, M2 = Xw:a. x, and N1 = N2 = w. We have MI E, M2 
and of course Nl E, N2, but M1[N1/x] = (Xy:a. x)[w/x] = Xy:a. w and M2[N2/x] = 

(Xw: a. x)[w/x] = Xw: a. w. However, Xy: a. w and Xw: a. w are not a-equivalent. What 

went wrong is that when w was substituted for x in M2 = XW: a. x, it became bound in 

the result Xw: a. w. We say that w was captured. In order to fix this problem, we need 

to only allow substitutions that do not cause variable capture. This can be achieved in 

several ways. One solution is to redefine substitution so that bound variables involved in 

variable capture are renamed. Essentially, a-conversion is incorporated into substitution. 

We find this solution rather unclean, and instead, we will define when a term is safe for a 

substitution, and use a-conversion to get around variable capture. 

Given a substitution 9: X U V + P A  U 7, we let FV(y)  = UzEdom(p) FV(v(x)), and 

WY) = U,,d,,(,) FV(v(x)). 
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Definition 3.7 Given a substitution y:  X U V  + P A  U 7, given any term M  or type a ,  

sa f e( y  , M )  and sa f e( y  , a )  are defined recursively as follows: 

sa fe (y ,  x )  = t rue ,  x  E X ,  

sa fe (y , t )  = t rue ,  t E V ,  

sa fe (y ,  f )  = t rue ,  f E C, 

sa f e ( y ,  a )  = t rue ,  a  E 13, 

safe(cp,a + 7 )  = safe(y ,a)  and sa fe (y , r ) ,  u , ~  E 7,  

s a f e ( c p , V t . a ) = s a f e ( y - t , a ) a n d t $ F V ( y ) ,  a ~ 7 , t ~ V ,  

saf e(v, PQ)  = saf e ( v ,  P )  and saf e(v, Q ) ,  P, Q E PA,  

sa f e(cp, M a )  = sa f e ( y ,  M )  and sa f e ( y ,  a ) ,  M  E PA,  a  E 7, 

sa f e (y ,  Ax: a. M )  = sa f e(y- ,  , a )  and sa f e (y- ,  , M )  and x  6 F V ( y ) ,  

M  E P A , u E ~ , x  E X ,  

sa fe(y ,At .  M )  = s a f e ( ~ - ~ , M )  and t 6 F V ( y ) ,  M  E PA, t  E V .  

When sa f e (y ,  M )  holds we say that M  is safe for y ,  and when sa f e (y ,  a )  holds we 

say that a  is safe for y .  

Given any substitution y  and any term M  (or type a ) ,  it is immediately seen that 

there is some term M' (or type a ' )  such that M  =, M' ( a  =, a')  and M' is safe for y  (a' 

is safe for c p ) .  From now on, it is assumed that terms and types are a-renamed before a 

substitution is applied, so that the substitution is safe. It is natural to extend a-equivalence 

to substitutions as follows. 

Definition 3.8 Given any two substitutions cp and y' such dom(y)  = dom(yl) ,  we write 

y  =, y  iff y ( x )  3, (pl(x) for every x  E dom(y).  

We have the following lemma. 

L e m m a  3.9 For any two substitutions 9 and y', terms M ,  M',  and types a  and a',  if M, 
MI, a ,  a' are safe for y  and y' ,  y  =, y' ,  M  =, MI, and a  =, a', then y ( M )  =, cp1(M'), 

and y ( a )  =, y1(a'). 

Proof .  A very tedious induction on terms with many cases corresponding to the definition 
of a-equivalence. 

Corollary 3.10 (i) If (Ax: a1 . Ml)N1 =, ( A y :  a:!. M:!)N2, MI is safe for [ N l / x ] ,  and M2 
is safe for [ N 2 / y ] ,  then MI [ N l / x ]  G ,  M2 [N2/y] .  (ii) If (At .  M1)rl =, (Av.  M:!)r:!, MI is 
safe for [rl I t ] ,  and M2 is safe for [T:! / v ]  , then Ml [r1 It] =, M2 [r2 l v ] .  
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We are now ready to present the proof system for type-checking raw terms. 

4 Type Assignments and Type-Checking 

First, we need the notion of a type assignment. 

Definition 4.1 A type assignment is a partial function A: X 4 7 with a finite domain 

denoted as dom(A).  Thus, a type assignment A is a finite set of pairs { x l :  0 1 , .  . . , x,: a,} 

where the variables are pairwise distinct. Given a type assignment A and a pair ( x ,  a )  

where x E X and a E 7, provided that x $ dom(A),  we write A, x: a for A U { ( x ,  a )  ). 

In order to determine whether a raw term type-checks, we attempt to construct a 

proof of a typing judgment using the proof system described below. 

Definition 4.2 A typing judgment of type a is an expression of the form A D  M :  a ,  where 

A is a type assignment, M is a polymorphic raw term, and a is a type. 

The proof system for deriving typing judgments is the following: 

Axioms: 

A D c: Type(c), c E C 

Inference Rules: 

A D (Ax: a. M ) :  a + T 

A D M :  vt. a 

A D M T :  a [ r / t ]  

where a is safe for the substitution [ ~ / t ]  

A D M : ~  

A D (At .  M ) :  vt. a 

where in this last rule, t $ . W ( A ( x ) )  for every x E dom(A) f l  F V ( M ) .  

(constants) 

(variables) 

(application) 

(abstraction) 

(type application) 

(type abstraction) 

If A D M :  a is provable using the above proof system, we say that M type-checks with 

type a under A and we write I- A D M :  a. We say that the raw term M type-checks under 
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A iff there exists some type a such that A D M :  a is derivable. Finally, we say that the raw 

term M type-checks (or is typable) iff there is some A and some a such that A D M :  a is 
derivable. 

Note that the terms MI and M2 of example 3.4 both type-check, since it is easily 

shown that t D Atl .  Axl: t l .  x l :Vt l .  ( t l  + t l )  and k D At2. Ax2: t2.  x2:Vt2.  ( t 2  + t 2 ) .  

This example suggests that a-equivalence should be extended to typing judgments as 

well. Indeed, D Atl .  Ax l : t l .  x l :Vt l .  ( t l  -, t l )  and D At2. Ax2: t 2 .  x2:Vt3. ( t3  -+ t 3 )  should be 
considered equivalent. We extend =, to typing judgments as follows. 

Definition 4.3 First, we define a-equivalence of type assignments. Given two type as- 

signments A = { x l :  0 1 , .  . . , x,: a,) and A' = { x l :  a:, . . . ,x,: a ; ) ,  we write A 2, A' iff 
ai E ,  a: for all i, 1 5 i 5 n. Two type judgments A D M :  a and A' D MI: a' are a-equivalent 

I iff A E ,  A', M =, MI, and a E, a .  

Following Hindley and Seldin, we also add the following inference rules to the proof 
system of definition 4.2. 

A D :  A=,A1 
where A D M :  a is an axiom 

A1 D M : a  

A D M : ~  a = , a  I 

where A D M :  a is an axiom 
A D M : a l  

It is obvious that a-equivalence of type-judgments is an equivalence relation. The 
following lemma shows that it is legitimate to work with equivalence classes of terms and 

types modulo a-equivalence. 

Lemma 4.4 If two type judgments A D M :  a and A' D M': a' are a-equivalent and there is 
a proof t A D M :  a ,  then there is a proof t A' D MI: a' (in the extended system of definition 

4.3). 

Proof. A tedious induction on the depth of proof trees with many cases corresponding to 
the definition of a-equivalence. 

In view of lemma 3.6, lemma 3.9, and lemma 4.4, it is legitimate to identify terms 
and types that are a-equivalent, and we will do so in the future. Effectively, we will be 
working with a-equivalence classes. The same kind of treatment applies to the untyped 
lambda calculus in an obvious fashion. 
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The following lemma shows that the notion of substitution given by definition 3.2 is 
type preserving when applied to terms that type-check. 

Given a type assignment A = {xl: 01,. . . , x,: a,) and a substitution 6: V -+ 7, let 

@(A) = {xl : 6(a1 ), . . . , x, : 6(0,)}. 

Lemma 4.5 (i) For any term M and any substitution cp: X -, P A  s.t. FV(M) dom(y), 
if M type-checks with proof t rD M: r, and there is some A such that for every x E FV(M), 
y(x) type-checks with some proof t A D cp(x): r (x )  and M is safe for cp, then cp(M) type- 
checks with some proof I- A D cp(M): r. (ii) For any term M E P A  and any substitution 

6: V -+ 7, if M type-checks with proof I- A D M: a and A, M,  and a are safe for 6, then, 
6(M) type-checks with some proof I- O(A) D O(M): O(a). 

Proof. Both proofs are tedious but not difficult. They are left to the courageous readers. 

Definition 4.6 Given any contexts r, A, a type-preserving substitution is a function y : 

dom(F) t P A  such that, for every x E dom(r), I- A D cp(x) : r(x).  Such a substitution is 
denoted as y :  I? t A. 

Another useful and tedious lemma shows that substitution of raw terms is preserved 
under erasing. 

Lemma 4.7 (i) For all raw M, N E P A ,  Erase(M[N/x]) = Erase(M)[Erase(N)/x]. (ii) 

For every raw term M E P A  and type r E 7, Erase(M[r/t]) = Erase(M). 

Proof. The proof proceeds by cases and it is tedious but not difficult. 17 

We are finally ready to define the notion of reduction. 

5 Reduction and Conversion 

It is convenient to define reduction on raw terms, and verify that it is type-preserving when 
applied to a term that type-checks. Actually, we will define reduction on a-equivalence 
classes and use lemma 3.6 and corollary 3.10 to ensure that this definition makes sense. 
Thus, in what follows, terms and types are identified with their =,-equivalence class. In 
particular, if we consider an equivalence class of the form [(Ax: a. M)N], we can assume 
that M has been a-renamed so that M is safe for the substitution [N/x], and similarly for 
a class of the form [(At. M)r] .  
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Definition 5.1 The relation +AV of immediate reduction is defined in terms of the four 
relations + p ,  +,, + T p ,  and +T,, defined by the following proof system: 

Axioms: 

(Ax: a. M ) N  +p M [ N / x ] ,  provided that M is safe for [ N l x ]  ( P I  

Ax: a. ( M x )  +, M ,  provided that x $! F V ( M )  ( 7 )  

(At .  M ) T  +,p M [ r / t ] ,  provided that M is safe for [ r l t ]  (type P )  

At. ( M t )  +,, M ,  provided that t $! F V ( M )  (type 7 )  

Inference Rules: For each kind of reduction +, where r E { P ,  7 ,  rp ,  T V ) ,  

M + , N  M + , N  
for all P, Q E P A  

M Q  +, N Q  P M  +, P N  

M t , N  
for all a E 7 

M a  --+, N a  

M+,N 
x € X , a € T  

Ax: a. M +, Ax: a. N 

M 4 , N  

At. M +, At. N 
~ E V  

(congruence) 

(type congruence) 

We define + ~ v  = d p  U +, U +Tp U +T,, and reduction as the reflexive and 
transitive closure L A v  of ~ X V .  We also define immediate conversion w A v  such that 
u A v  = +,v U +;, and conversion as the reflexive and transitive closure of 

' A ' .  

The following lemma shows that reduction is type-preserving. 

Lemma 5.2 Given any two raw terms M ,  N E PA ,  if M type-checks with proof I- A D M :  a 
and M + ~ v  N ,  then N also type-checks with some proof t A D  N :  a.  

Proof. Again, the proof proceeds by cases and it is tedious but not difficult. 

It is evident that lemma 5.2 also holds for * t X v  . 

Reduction and conversion can also be defined for the untyped lambda calculus. The 
reduction relation LA is defined by only retaining the P and 7 reduction axioms of 
definition 5.1, and the inference rules not involving types. The notion of conversion t*t~ 
is defined from +A in the usual way. It is easy to see that an analog of lemma 3.9 holds 



for untyped A-terms. When we need to distinguish between a A-reduction step and a Av- 
reduction step, we add the name of the calculus as a subscript. For example, +p,x  is a 

p-conversion step in the untyped lambda calculus A, whereas +p,xv  is a ,&conversion step 
in the polymorphic lambda calculus A'. 

We have the following lemma showing how a reduction step + X V  is mapped to a 

reduction step LA by the Erase function. 

Lemma 5.3 Let M, N E PA be two raw terms. If M ---+p,xv N or M + q , x ~  N, then 
Erase(M) - p , x  Erase(N) or Erase(M) + , , ~ v  Erase(N) respectively. If M +,B,AV 

N or M + , , , ~ v  N, then Erase(M) = Erase(N). 

Proof. Another tedious but not difficult proof using lemma 4.7. 

Definition 5.4 Let + C A x A be a binary relation on a set A, and be the 
reflexive and transitive closure of +. An element a E A is strongly normalizing (with 
respect to +, for short SN) iff there are no infinite sequences (ao, a l ,  . . . , a,, . . .) such that 
a. = a and a, + a , + ~  for all n 2 0. We say that --, is Noetherian iff every a E A is 
strongly normalizing (with respect to +). We say that + is locally confluent iff for all 

a, a l ,  a2 E A, if a + a1 and a + az, then there is some a3 E A such that a1 & a3 and 
a2 --f, a3. We say that - is confluent iff for a11 a,  a l ,  a2 E A, if a a1 and a A a2, 
then there is some a3 E A such that al 5 a3 and a2 t a3. Let * = -+ U +-I. 
We say that + is Church-Ross er iff for all a1 , a;! E A, if a1 A a2, then there is some 
a3 E A such that a1 f-t a3 and a2 --f, a3. 

It is well known (Huet [17]) that a Noetherian relation is confluent iff it is locally 
confluent and that a relation is confluent iff it is Church-Rosser. We say that a lambda 
calculus X (X E {A, A')) is Noetherian, locally confluent, or confluent iff the relation ---+x 
associated with X has the corresponding property. We say that it is canonical iff it is 
Noetherian and confluent. 

Lemma 5.3 will be used to show that a polymorphic raw term is strongly normalizing 
iff its type erasure Erase(M) is strongly normalizing. 

Lemma 5.5 Let M, N E PA be two raw terms. If M - - - + , p , x ~  N or M +,,,xv N, then 
N has one less type abstraction than M. 

Proof. Immediate by the definitions. 

We now have the important "erasing trick" lemma. 
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Lemma 5.6 Let M E F A  be any raw term. If there is an infinite sequence of +XV 

reductions from M ,  then there is an infinite sequence of reductions from Erase(M). 

Proof. First, observe that any infinite sequence of t ~ v  reductions from M must contain 
a subsequence consisting of infinitely many +p,xv or +,,xv reductions, since otherwise 
some term in this sequence would be the head of an infinite sequence of --+,p,~v or +,v,xv 

reductions, contradicting lemma 5.5. But then, by lemma 5.3, the infinite sequence of 
+AV reductions from M maps by Erase to an infinite sequence of d x  reductions from 
Erase(M). 

Thus, lemma 5.6 implies that a polymorphic raw term is strongly normalizing iff its 
type erasure Erase(M) is strongly normalizing. In the next section, it will be shown that 
if M is a raw term that type-checks, then Erase(M) is strongly normalizing, thus showing 
that M itself is strongly n ~ r m a l i z i n ~ . ~  The following lemma will also be needed. 

Lemma 5.7 Let MI ,  M2,  N1, N2 E A be untyped lambda terms. If Ml M2 and 
Nl Ax N2, then Ml[Nl/z] A x  M2[N2/x]. 

Proof. We use two inductions, one on the structure of MI, and the other on the length of 
reduction sequences. The details are quite tedious. 

6 An Untyped Version of The Candidates of Reducibility 

Originally, the "candidats de reductibilitk" were defined by Girard as sets of typed (poly- 

morphic) lambda terms with certain closure properties (Girard 1970 [9], Girard 1972 [lo]). 
Soon after Girard, Tait observed that Girard's brilliant device could be simplified if the 
candidates are defined as certain sets of untyped lambda terms, and if a certain "erasing 
trick" is used (Tait 1973 [37]).3 Roughly thirteen years after Tait , Mitchell independently 
noticed that an untyped version of the candidates is more flexible to work with, and he gave 
his own version generalizing Tait 's version (Mitchell 1986 [24]). 

Before we proceed with the technical details, we will attempt to reveal some of the 
intuitions underlying the proof. We believe that this is best accomplished by first restricting 
our attention to the simply typed lambda calculus. The problem is to show that every simply 
typed term that type-checks is strongly normalizing. 

It is interesting to note that Tait [37] used an erasing trick in his proof, but the definition of his 
erasing function is different from the one given here. 

Interestingly, the erasing trick was known to Girard himself, since it appears in his thesis, Girard 
1972 [lo]. However, he did not make use of it in his proof of strong normalization. 
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A natural way of attacking the problem is to attempt a proof by induction on the 
size of terms. The base case of a (typed) variable or a (typed) constant works out nicely, 
since no reduction applies. The case of a lambda abstraction M = Ax: a .  N also works fine, 
because if any reduction applies to M ,  then it must in fact apply to N ,  and N has strictly 
smaller size than M ,  so the induction hypothesis applies. Difficulties arise in case of an 
application of the form (Ax: a .  M)N.  The induction hypothesis applies to both Ax: a. M 
and N ,  but there is another possibility of reduction, namely (Ax: a .  M ) N  + p  M[N/x],  and 
unfortunately, M[N/x] is not necessarily strictly smaller than (Ax: a .  M)N.  Tait's clever 
solution for overcoming this problem (Tait [36]) is essentially to strengthen the induction 
hypothesis. He does so by defining by induction on types the class of "computable" (or 
"reducible") terms. Let us denote the set of simply typed terms of type a (that type-check) 
as ST,, and the subset of all SN terms in ST, as SN,. For every simple type a, the set [a] 

is a subset of ST, defined as follows: 

(1) [a] = SN,, for every base type a; 

(2) [(a -+ r ) ]  = { M  E ST(,,,) 1 VN E [a], M N  E [TI}. 

One can then prove by induction on types that 

that is, all terms in [a] are SN. In order to finish the proof, it is sufficient to show that 

since (a) and (b) together prove that ST, = SN,. 

The way to prove (b) is to proceed by induction on the size of terms. Note that 
the problematic case of an application M N  (where M E ST,,,) is now easy: by the 
induction hypothesis, M E [(a + r ) ]  and N E [a], and by the definition of [(a t r)], we 
have M N  E [r]. This time, the difficult case is to prove that for every term of the form 
Ax: a. M ,  where M E ST,, Ax: a .  M E [(a -+ r ) ] .  We need to show that for every N E [a], 

(Ax: a .  M ) N  E [TI. Since (Ax: a. M)N --+p M[N/x], if we could show that M[N/x] E [[TI 
and that whenever M[N/x] E [r], then (Ax: a. M)N E [[r], we would be able to conclude. 

This can be done, but it is necessary to strengthen the induction hypothesis. Roughly, 
the idea is show that for every term M E ST,, for every substitution y assigning to each 
variable of type r in M some term in [r], then y(M) E [a]]. Then, we have our result by 
choosing y to be the identity substitution. 

Now, it turns out that the sets of the form [[a] have certain closure properties (proper- 
ties (Sl), (S2) of definition 6.9) that make the various induction steps go through. Girard's 
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achievement was to generalize Tait's method (sketched above) to the polymorphic lambda 

calculus. This generalization requires a major leap forward, because in trying to extend the 

definition of the sets [a] to the polymorphic types, one faces two (related) problems: 

(1) What to assign to the type variables; 

(2) What to assign to a type of the form Vt.  a 

Girard's solution is the invention of the candidates of reducibility. Girard defines a 

family C of sets of typed terms satisfying certain closure conditions akin to conditions (Sl) ,  
(S2) mentioned above. One of these conditions is that each set in C is a set of strongly 

nornializing terms. The other conditions amount to inductive conditions. The sets in C are 

called c a n d i d a t e s  o f  reduc ib i l i t y .  Then, the solution is to assign arbitrary candidates to the 

type variables. More specifically, the sets [a] are parameterized by an assignment q of sets 
from C to the type variable (actually, things are a bit more complicated, because in Girard, 

the candidates are typed). Thus, these sets are of the form [[ajq, where q is an assignment 

of candidates to the typed variables. The set assigned to a type of the form Vt. a is 

where q[t := C ]  is like the assignment q, except that t is now assigned the candidate C  
(again, in Girard's setting, things are more complicated due to the types, and what we are 

describing holds for the untyped version of the candidates). 

Now comes Girard's trick: Because the sets in the family C (the candidates) satisfy 

some well chosen conditions, for every assignment q, each set [a]q also belongs to C! This is 

remarkable, because [Vt. a]q is defined in terms of all the candidates in C, and consequently 

it is defined in terms of itself. This is a splendid instance of impredicativity. Another 
important fact is that for every type a, the set of (polymorphic) strongly normalizing terms 

of type a that type-check is a candidate of reducibility (i.e., belongs to C). 

The main lines of Girard's proof of strong normalization are as follows. 

(1) Define the family C of candidates of reducibility so that they consist of sets of strongly 

normalizing terms; 

(2) Define the sets [[a]q; 

(3) Prove "Girard's trick", that is, prove that [a]q E C for every type a and assignment 

rl; 

(4) Prove that the set of (polymorphic) strongly normalizing terms of type a is a candidate 
of reducibility (for every type a); 



(5) Prove that for every (polymorphic) term M of type a that type-checks, M E [crl]q, for 
every assignment 7.  

By choosing the assignment 7 so that it assigns to the type variables the sets of terms 

that are strongly normalizing, we obtain the desired result: every term that type-checks is 

strongly normalizing. 

It should be noted that in order to prove (5), one needs a substantially strengthened 

induction hypothesis (see lemma 6.8). 

We will now prove strong normalization using an untyped version of the candidates 

of reducibility, following Mitchell and Tait. We go one step further and define a kind of 

abstract version of the candidates of reducibility. This way, it is easier to pinpoint the 
ingredients that are crucial to proofs using this concept. We first describe what we referred 

to as "Girard's trick". 

Definition 6.1 Given two sets S and T of (untyped) lambda terms, we let [S + TI be 

the set of (untyped) lambda terms defined as follows: 

We refer to the operation + on sets of lambda terms defined above as the function space 

constructor. 

Definition 6.2 Let C be a nonempty family of sets of (untyped) lambda terms having the 

following properties: 

(1) Every C E C is nonempty. 

(2) C is closed under the function space constructor. 

(3) Given any C-indexed family (Ac)cEc of sets in C, then n,,, Ac E C. 

A family satisfying the above conditions is called a 7-closed family.4 

We shall prove shortly that such families exist. 

Let C be a 7-closed family. Given any assignment q: B U V  -+ C of sets in C to the type 
variables and the base types, we can associate certain sets of lambda terms to the types 

inductively as explained below. In the following definition, given any set C E C and any 
type variable t, q[t := C] denotes the assignment such that, for all v E V, 

In all rigor, we also have to assume that every C E C is closed under a-equivalence. 

Draft/July 17, 1992 



6 An Untyped Vers ion  of T h e  Candida tes  of Reducibility 17 

Definition 6.3 Given any assignment q:B U V + C, for every type a, the set [a]q is 

defined as follows: 

[t]q = q(t), whenever t E 23 U V, 

[(a + ~ ) ] q  = [ [ a ] ~  + [ ~ ] q ]  (where + is the function space contructor defined earlier); 

[Vt. C T ] ~  = ncEc[[alq[t := C]. 

The following technical lemma will be useful later. 

Lemma 6.4 Given any two assignments ql : B U V -+ C and 72: B U V -+ C, for every type 

a, if ql and 72 agree on F V  (a) and B, then [a]ql = l[a]q2. 

Proof. Easy induction on the structure of types. 

The next result constitutes the essence of "Girard7s trick". 

Lemma 6.5 (Girard) If C is a 7-closed family, for every assignment q: B U V + C, for 

every type a, then [a]q E C. 

Proof. The lemma is proved by induction on the structure of types. The case of a type 

variable or a base type t is obvious since by the definition [t]q = q(t). 

For a type (a + T), by the induction hypothesis we have [a]q E C and [ ~ ] q  E C, and 

by condition (2) of 7-closed families, we also have [[a17 + [ ~ ] q ]  E C. 

For a type Vt. a, by the induction hypothesis, for every assignment p:  23 U V + C, 

[a]p E C. Thus, for every C E C we also have l[a]q[t := C] E C, since q[t := C] is an 
assignment. By condition (3) of 7-closed families, we have ncEc[a]q[t := C] E C. 

The following technical lemma will be needed later. 

Lemma 6.6 Given any two types a, T, for every assignment q: B U V + C, if a is safe for 
[ ~ / t ]  then [a [~ / t ] ]q  = [u]q[t := [~ ]q ] .  

Proof. Straightforward induction on the structure of a .  

In order to use lemma 6.5 in proving properties of polymorphic lambda calculi, we 
need to define 7-closed families satisfying some additional properties. 

Definition 6.7 We say that a family C of sets of untyped lambda terms is a family of 

candidates of reducibility iff it is 7-closed and satisfies the conditions listed below.5 For 
every set C E C: 

Again, we also have to assume that every C E C is closed under a-equivalence. 

Draj?/JuZy 17, 1992 
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R1. For every variable x E X ,  x E C. 

For every constant f E C, f E C. 

R2. For all M , N  E UC, if M[N/x] E C, then (Ax. M)N E C. 

The conditions of definition 6.7 are sufficient to prove the following crucial lemma. 

Lemma 6.8 (Girard, Tait, Mitchell) Let C be a family of candidates of reducibility. For 

every proof k A D M: a of some polymorphic raw term M E P A  that type-checks, for every 

assignment q: 23 U V + C, for every substitution p: FV(M) t A, if p(x) E [A(x)]q for every 

x E FV(M), then p(Erase(M)) E [a]q. 

Proof. It proceeds by induction on the depth of the proof tree for A D  M: a .  The base case 

where x E X is trivial since it is assumed that p(x) E [A(x)]q, and in k A D x: a ,  we have 
a = A(x). The case of a constant f E C is equally obvious since p(  f )  = f ,  by lemma 6.5, 

[Type(f)]q E C, and by (Rl),  we have f E C for every C E C. There are four cases for the 
inference rules. 

Case 1. 

(application) 

By the induction hypothesis, we have y(Erase(M)) E [a + r]q and p(Erase(N)) E 

[ a ] ~ .  By the definition of [a t r]q, we have p(Erase(M))p(Erase(N)) E [r]q. But 
p(Erase(M))p(Erase(N)) = p(Erase(MN)), and so p(Erase(MN)) E [r]q. 

Case 2. 

(abstraction) 

Let k + 1 be the depth of the proof tree F A D Ax: a. M: a t T. We have FV(Ax: a. M) = 

FV(M) - {x). Let q be any assignment, let p be any substitution with domain FV(M) - 
{x) , let N be any term in [a]q = [(A, x: a)(x)]]q, and assume that p(y) E [A( y )]q for every 

y E FV(M) - {x). Now, we can always choose a representative in the =,-class of [Ax: a. MI 

so that Ax: a. M is safe for p and FV(N) is disjoint from BV(M). Then, we form the 
substitution ~ [ x  := N] with domain FV(M), and observe that M is safe for V[X := N] and 
that p[x := N](y) E [(A, x: a)(y)]q for every y E FV(M). Since the induction hypothesis 
holds for every proof of depth 5 k and for every assignment q satisfying the conditions 

of the lemma, we have p[x := N](Erase(M)) E [r]q. By lemma 6.5, [a]q E C, and 
since x E ([a]q by (Rl),  by choosing N = x, we have p(Erase(M)) E   TI]^. But since 

Ax: a. M is safe for p,  we have x @ FV(p(y)) for every y E dom(y), and therefore p[x := 
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N](Erase(M)) = y(~rase(M))[N/x].6 Thus, y(Erase(M))[N/x] E [r]lq. Since N E [a]q 
and ~ ( E r a s e ( M ) )  E [r]lq, by lemma 6.5, we have N E UC and cp(Erase(M)) E UC. Thus, 
we can apply (R2) to cp(Erase(M))[N/x] E [r]q, and we have (Ax. y(Erase(M)))N E I[T]~. 
It is easily verified that Ax. cp(Erase(M)) = cp(Erase(Ax: a .  M)) (using the fact that Ax: a. M 
is safe for y). Since y(Erase(Ax: a. M))N E [TIT holds for every N E [a]q, by the definition 
of [a + r]q, we have y(Erase(Ax: a. M)) E [a -, ~ ] l q . ~  

Case 3. 
A D M: vt. a 

A D MT: a[r/t]  
(type application) 

By the induction hypothesis, y(Erase(M)) E [Vt. a]q. Since [Vt. a]q = ncEc[a]lq[t := C], 
we have y(Erase(M)) E [a]q[t := C] for every C E C. Since by lemma 6.5, [r]q 7 C, 
by setting C = [r]q, we have y(Erase(M)) E [a]q[t := [r]q]. However, by lemma 6.6, 
[a[r/t]]q = [a]q[t := I[T]~],  and so y(Erase(M7)) = y(Erase(M)) E [a[r/t]]q. 

Case 4. 

(type abstractzon) 

where in this rule, t $ FV(A(x)) for every x E dom(A) n FV(M). 

Let k + 1 be the depth of the proof tree for A D At. M: Vt. a .  Since t $ FV(A(x)) for 

every x E dom(A) n FV(M), by lemma 6.4, we have I[A(x)]q = [A(x)]q[t := C] for every 
C E C. Since the induction hypothesis holds for every proof tree of depth 5 k, for every q, 
and for every y satisfying the conditions of the lemma, it holds for every C E C when applied 

to the proof tree 1 A D M: a, to every q[t := C], and to every y such that ~ ( x )  E [A(x)]q 
for every x E FV(M).~ Thus, y(Erase(M)) E [a]q[t := C] for every C E C, that is, 

y(Erase(At. M)) = cp(Erase(M)) E [Vt. a]q, since [Vt. a]q = ncEc[a]q[t := C]. [7 

Remark: It should be observed that lemma 6.8 still holds if condition (R2) of definition 
6.7 is changed to: 

R2'. For all M, N E A, if M[N/x] E C,  then (Ax. M)N E C. 

This subtle point seems to have been overlooked in all proofs that we have read, including Girard's 
original proofts). The ~rob lem is that cp[x := N](Erase(M)) = cp(Erase(M))[N/z] may be false if 
x appears in cp(y) for some y E dom(cp)! 

Observe that this step of the proof is possible because we can apply the induction hypothesis to 
every substitution of the form cp[x := N] where N is any term in [ a ] ~ .  This is why we need the 
universal quantification on the substitution cp in the statement of the lemma. Without it, the proof 
would not go through. 

"bserve that this step of the proof is possible because we can apply the induction hypothesis to 
every assignment of the form ~ [ t  := C] where C is any set in C. This is why we need the universal 
quantification on the assignment in the statement of the lemma. Without it, the proof would not 
go through. 
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The difference between (R2) and (R2') is that in (R2) M and N belong to U C, whereas 
in (R2'), M and N are arbitrary terms. Our motivation for using (R2) is that one can take 
advantage of the fact that M, N E U C in establishing (R2). 

By choosing cp to be the identity, lemma 6.8 implies that Erase(M) E [allq for every 
term that type-checks. Thus, in order to prove properties of terms of the form Erase(M) 
where M type-checks, one needs to know how to generate families of candidates of reducibil- 
ity satisfying some given properties. For this, it appears that it is necessary to strengthen 
conditions (Rl )  and (R2). Girard provided sufficient conditions (Girard [9], Girard [lo]). 
Here, we give some slightly more general conditions adapted from Mitchell ([24]) and Tait 

([371). 

Definition 6.9 Let S be a nonempty set of (untyped) lambda terms. We say that S is 
closed iff whenever M x  E S where x E X,  then M E S .  A subset C S is saturated iff the 
following conditions hold:' 

S1. For every variable x E X, for all n 2 0 and all Nl, . . . , Nn E S ,  xN1 . . . N, E C.  
For every constant f E C, for all n > 0 and all Nl ,  . . . , N, E S, fN1 . . . N, E C. 

S2. For all M, N E S ,  for all n > 0 and all N1,. . . , N, E S, if MIN/x]N1 . . . N, E C ,  then 
(AX. M)NN1 . . .  Nn E C. 

The following result shows the significance of saturated subsets of a closed set of 
lambda terms. 

Lemma 6.10 (Girard, Tait, Mitchell) Let S be a nonempty closed set of (untyped) lambda 
terms, let C be the family of all saturated subsets of S, and assume that S E C (i.e. S is a 

saturated subset of itself). Then C is a family of candidates of reducibility. 

Proof.  Since S E C, C is nonempty. Clearly, by condition (Sl)  of saturated sets in the case 
n = 0, each saturated set is nonempty. Let C and D be any two saturated subsets of S .  
Recall that [C + Dl = { M  I VN E C, M N  E D).  We need to show that [C + Dl is a 
saturated subset of S.  

For every M E [C + Dl, by (Sl), since there is some variable x E C,  Mx E D, and 
since S is closed, we have M E S .  Thus [C + D] is a subset of S.  

Since D is saturated, by (Sl)  for every variable x E X and for all m 2 0 and all 
N1,. . . , N,, N E S, we have xN1 . . . N,N E D. Since this holds for every N E C ,  we have 

We also have to assume that every saturated subset of S is closed under a-equivalence. 

Draft/July 17, 1992 
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xN1 . . . Nn E [C t D].1° The second case of (Sl) for a constant in C is similar. Thus, (Sl) 
holds for [C t Dl. 

For every N E S, all m 2 0, all N1,. . . , Nm E S, assume that MIN/x]N1 . . . Nm E 

[C t Dl. This means that for every P E C ,  MIN/x]N1 . . . N,P E D. Since D is saturated, 
by (S2), (Ax. M)NN1 . . . N m P  E D, and since this is true for every P E C ,  we have 
(Ax. M)NN1 . . . Nm E [C t Dl .ll This shows that (S2) holds for [C t Dl. 

Finally, it is clear that properties (Sl)  and (S2) of saturated subsets of S are closed 
under arbitrary intersections, and so for any C-indexed family (Ac)cEc of saturated subsets 
of S, ncEc Ac is also a saturated subset of S .  

Remark. Besides implying (Rl)  and (R2) respectively, conditions (Sl)  and (S2) ensure 
that [C -+ Dl also satisfies (Sl)  and (S2) if C and D do. It should be noted that if we are 
interested in the version of the candidates in which condition (R2') is used, then lemma 
6.10 holds if the clause M ,  N, N1,. . . , Nn E S in condition (S2) of definition 6.9 is changed 
to N E S, M, N1,. . . , N, E A, obtaining the condition (S2'). Conditions (Sl)  and (S2') are 
essentially Mitchell's conditions [24]. 

It is interesting to note that the reason why lemma 6.10 holds is that (Sl) and (S2) 
have certain "right-invariant" properties. 

Definition 6.11 Define a predicate @ on A to be right-invariant iff for every M ,  N E A, if 
@(M) then @(MN).  Let S+ = { M  E A I @(M)).  A binary relation p on A is right-invariant 

iff for every MI ,  M2, N E A, if p(Ml, M2) then p(Ml N,  M2N). A set C c A is closed under 

p iff for every M ,  N E A,  if M E C and p(M, N),  then N E C .  

Lemma 6.12 If S+ C C for every set in a family C and @ is right-invariant, then S+ 
is also a subset of every set of the form [C t Dl with C, D E C, and a subset of every 
intersection ncEc Ac. 

Proof. Let M be any term in A. We have to show that if @(M) holds then M E [C t Dl. 
Since @ is right-invariant, for every N E C we have @(MN).  Since S+ c D,  we have 
M N  E D. This shows that M E [C + Dl. Obviously, S+ is also a subset of every 
intersection ncEc Ac. 

Lemma 6.13 If p is right-invariant and every set in a family C is closed under p, then 
every set of the form [C t Dl with C, D E C is closed under p and every intersection 
ncEc Ac is closed under p. 

lo  Note how we have used the fact that (Sl)  holds for all n 2 0, and applied (Sl)  with n = m + 1 for 
any arbitrary m. The  proof would not go through if (Sl) was assumed only for n = 0. 

l1 Again, note how we have used the fact that (S2) holds for all n 2 0. 
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Proof. If MI E [C + Dl, M2 E A and p(Ml, M2), by right-invariance p(MIN, M2N) for 
every N E C .  Since Ml N E D and D is closed under p, we have M 2 N  E D. But this shows 
that M2 E [C + Dl, i.e., [C + Dl is closed under p. It is obvious that every intersection 

ncEc Ac is closed under p. [7 

Lemma 6.12 can be applied to @ defined such that for every M E A, @(M) iff 3u E 

XU C, 3N1, . . . , N, E A, M = u N1 . . . N, . In this case @ corresponds to (Sl). Lemma 6.13 
can be applied to p defined such that p(Ml, M2) iff 3M, N E A, 3N1,. . . , Nm E A, MI = 

MIN/x]NI . . . N,, and M2 = (Ax. M)NN1 . . . N,. In this case p corresponds to (S2). 

Thus, it seems that the way to obtain the conditions (Si) from the conditions (Ri) is 
to make the (Ri) right-invariant. Indeed, this is the way to handle other type constructors, 
such as products and existential types. We have the following lemma generalizing lemma 
6.10. 

Lemma 6.14 Let S be a nonempty closed set of (untyped) lambda terms, let .F+ be a 

family of right-invariant predicates on A, and Fp a family of right-invariant binary relations 
on A. Let C be the family of all subsets C of S such that: 

(1) S+ 2 C, for every @ E Fa; 

(2) C is closed under p, for every p E F,,. 

Then C is closed under the function space constructor and under intersections of the 

form ncEc AC. 

Proof. Similar to lemma 6.10, using lemma 6.12 and lemma 6.13. 

After this short digression, we state the fundamental result about the method of 
candidates. 

Theorem 6.15 (Girard, Tait, Mitchell) Let S be a nonempty closed set of (untyped) 
lambda terms, let C be the family of all saturated subsets of S, and assume that S E C 
(i.e. S is a saturated subset of itself). For every polymorphic raw term M E PA, if M 
type-checks, then Erase(M) E S. 

Proof. By lemma 6.10, C is a family of candidates of reducibility. We now apply lemma 6.8 
to any assignment (for example, the constant assignment with value S )  and to the identity 
substitution, which is legitimate since by (Sl), every variable belongs to every saturated 
set .I2 

Actually, given any term M ,  we may need to perform some a-renaming on M to get an M' such that 
MI is safe for the identity substitution. Lemma 6.8 then yields the fact that Erase(M1)  E S .  But S 
is closed under E,, and so Erase(M)  E S .  

Draft/July 17, 1992 
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Thus, in order to apply theorem 6.15, one needs to have useful examples of closed sets 
S that are saturated. This is the purpose of the next lemma. 

Lemma 6.16 (Girard, Tait, Mitchell) (i) The set SNp of (untyped) lambda terms that 
are strongly normalizing under P-reduction is a closed saturated set. (ii) The set SNp, 
of (untyped) lambda terms that are strongly normalizing under pq-reduction is a closed 
saturated set. (iii) The set of lambda terms M such that confluence holds under P-reduction 
from M and all of its subterms is a closed saturated set. (iv) The set of lambda terms M 
such that confluence holds under Pq-reduction from M and all of its subterms is a closed 
saturated set. 

Proof. (i)-(ii) Verifying closure is easy: if Mx is SN, then M must be SN, since other- 
wise an infinite reduction sequence from M would yield an infinite reduction from Mx. 
Verifying (Sl) is also straightforward, since the existence of an infinite reduction sequence 
from uN1 . . . Nm implies that there is some infinite reduction sequence from some N;, con- 
tradicting the assumption that each Ni is SN. Verifying (S2) is a little harder. We prove 
that if N is SN and there is an infinite reduction sequence from (Ax. M)NNl . . . N,, then 
there is an infinite reduction sequence from MIN/x]N1 . . . Nm.13 The proof is slightly more 
complicated in the case of Pq-reduction than it is in the case of P-reduction alone, because 
of possible head q -reductions. 

Consider any infinite reduction sequence from (Ax. M)NN1 . . . Nm. There are three 
different possible patterns: 

(1) every term in this sequence is of the form (Ax. M1)N'Ni . . . Nk,  where M Ax MI, 

N LA N', and N; Ax N: for i = 1 ,..., m, or 

(2) there is a step (Ax. M1)N'N{ . . . Nk +p M1[N'/x]Ni . . . Nk in this sequence, for 
some M', N', Ni, .  . . , Nk, such that M Ax MI, N Ax N', and N; Ax N' for 
i = l , . . . , m ,  or 

(3) M Ax Mix, and there is a step 

(Ax. (Mi x))N1 Ni . . . Nk t, Mi N'Ni . . . Nk, 

for some N' , N: , . . . , N& , such that N N', and N; LA Nj , for i = 1, . . . , m. 

In case (I) ,  it is clear that the given infinite reduction sequence defines uniquely 
some independent finite or infinite reduction sequences originating from each of M,  N, 
N . . . , N .  Since N is assumed to be SN, one of the sequences originating from M, 

l3 This proof is inspired by Tait [37]. 
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N1, . . . , N, must be infinite, and by lemma 5.7, we obtain an infinite reduction sequence 

from M[N/x] Nl . . . Nm. 

In case (2), there are some terms MI, N', Ni , . . . , Nh, such that M MI, 
N N', and Ni f Ni for i = 1 ,..., m, and M'[N1/x]Nj ... Nk is the head of 
some infinite reduction sequence T .  Using lemma 5.7, we can form the reduction sequence 

which can be extended to an infinite reduction sequence using T .  

In case (3), since M Ax Mj x, using lemma 5.7, we have a reduction 

However, because in (3) we have an 7-reduction step, x $! FV(Mi), and so Mj [Nlx] = Ml.  
Thus, Mi [N/x]NINi . . . NL = Mj N'Nj . . . Nh. Since there is an infinite reduction from 
Mi N' Ni . . . Nk , we have an infinite reduction from M [NIX] Nl . . . N, . 

(iii)-(iv) The proof will be given in section 7 for the typed case. 

We can apply theorem 6.15 to the set SNp,, which, by lemma 6.16, is closed and 
saturated, and we obtain the following corollary to theorem 6.15. 

Lemma 6.17 For every polymorphic raw term M,  if M type-checks then Erase(M) is 

strongly normalizable under ,&-reduction. 

Using lemma 5.6, we have: 

Lemma 6.18 Every polymorphic raw term M that type-checks is strongly normalizable 

under /37-reduction. 

Applying theorem 6.15 to the set of terms M such that confluence holds (under P- 
reduction or pq-reduction) from M and all of its subterms, which, by lemma 6.16, is closed 
and saturated, we have: 

Lemma 6.19 (Mitchell) The reduction relation (&-reduction) is confluent on terms 
of the form Erase(M), where M type-checks. The result also holds for P-reduction. 

Unfortunately, we have not been unable to show that lemma 6.19 implies that d x v  

is confluent on polymorphic terms that type-check. However, this result can be established 
using a typed version of the candidates of reducibility. 
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7 A Typed Version of The Candidates of Reducibility 

We now describe a typed version of the "candidats de reductibilitk", as originally defined 
by Girard (Girard 1970 [9], Girard 1972 [lo]). We will present two sets of conditions for the 
typed candidates. The first set consists of conditions similar to those used by Stenlund [35], 

(basically the typed version of Tait's conditions, Tait 1973 [37]), and the second set consists 
of Girard's original conditions (Girard [lo], [Ill). We also compare these conditions, and 
prove that Girard's conditions are stronger than Tait 's conditions. 

Rather than using explicitly typed polymorphic terms as in Girard [lo],  we work with 
provable typing judgments. 

Definition 7.1 For every type a, let P7, be the set of all provable typing judgments of 
type a (the provable typing judgments of the form A D M :  a for arbitrary A and M ) .  

In order to reduce the amount of notation, if S is a set of provable typing judgments 
of type a, rather than writing A D  M :  a E S, we will write A D M  E S. 

Given any two types a, T E I and any two sets S c PI,  and T PI,, we let 

[S + TI be the subset of PI,,, defined as follows: 

[S + T] = { A D  M  E PI,,,l VA'D N, if A c A' and A ' D  N E S, then A ' D  M N  E T} 

We also refer to the operation + on sets of provable typing judgments defined above as the 
function space constructor. 

Definition 7.2 Let C = (Ca),E7 be a I-indexed family where each C, is a nonempty set 

of subsets of PI,, and the following properties hold: 

(1) For every a E I, every C E C, is a nonempty subset of PT,. 

(2) For every a, T E I, for every C E C, and every D E C,, we have [C + D] E CU+,. 

(3) For every Vt. a, T E 7, for every family (AT,C)TE7,CECT, where each set AT,c is in 

C,[,/t], we have 

A family satisfying the above conditions is called a I - c lo sed  family. 



Definition 7.3 Let C be a 7-closed family. A pair (8, q) where 8: V + 7 is a type 
substitution and q: B U V + UC is a candidate assignment iff q(t) E Ce(t) for every t E V 
and ~ ( a )  E Ca for every o E B. 

We can associate certain sets of provable typing judgments to the types inductively 
as explained below. 

Definition 7.4 Given any candidate assignment (8, q), for every type a, the set [a]8q is 
a subset of Pie(,) defined as follows: 

[t]Bq = q(t), whenever t E B U V, 

[(a -+ T>118~ = [I l~ll@rl + IITllelll, 

[[Vt. a]8q = {A D M E P7e(vt. ,) 1 VT E 7, 

A D  MT E n [.ns[t := ~ ] ~ [ t  := c]}. 
CEC, 

Strictly speaking, [a]Bq is defined for the =,-class [a] of a. Thus, it can be assumed 
that a is safe for 8. For a type Vt. a, this implies that t 4 FV(B(v)) for every v E dom(8), 
and consequently that 8[t := r](a) = 8(a)[r/t]. This shows that the sets of terms involved 
in the intersection are indeed of the right type 8(a)[r/t]. 

The following technical lemma will be useful later. 

Lemma 7.5 Given any two candidate assignments (81, ql) and (82, q2), for every type a, 

if el, O2 agree on FV(a), and 71, 72 agree on F V  (a) and B, then ([a]81 ql = [a]02q2. 

Proof. Easy induction on the structure of types. 

We now have a typed version of "Girard's trick". 

Lemma 7.6 (Girard) If C is a 7-closed family, for every candidate assignment ( 8 , ~ ) )  for 
every type a, then [a]8q E Ce(,, . 
Proof. The lemma is proved by induction on the structure of types. The proof is similar 
to the proof of lemma 6.5. The only case worth mentioning is the case of a universal 

type. Given a type Vt. a and a candidate assignment (8,q), using a-renaming, it can be 
assumed that Vt. a is safe for 8. By the induction hypothesis, [a]Jerl E Cqm). Thus, for 
every T E 7 and for every C E Ce[t,,,l(,), we also have ([a]O[t := r]q[t := C] E CB[t:=rl(u). 
However, 8[t := T](u) = B(a)[r/t] as we observed earlier since Vt. a is safe for 8. Thus, 
[a]8[t := r]q[t := C] E Ce(u)[,ltl , and we conclude by condition (3) of 7-closed families. 

The following technical lemma will be needed later. 
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Lemma 7.7 Given any two types a, T, for every candidate assignment (8,q), 

Proof. Straightforward induction on the structure of a .  

In order to use lemma 7.6 in proving properties of polymorphic lambda calculi, we 
need to define 7-closed families satisfying some additional properties. 

Definition 7.8 We say that a 7-indexed family C is a family of sets of candidates of 

reducibility iff it is 7-closed and satisfies the conditions listed below:14 

RO. Whenever A D M E C and A A', then A' D M E C. 

R1. For every a E 7, for every set C E C,, A D  x E C, for every x: a E A, 
For every a = Type(f), for every set C E C,, A D  f E C, for every f E C. 

R2. (i) For all a, T E 7, for every C E C,, for all A, A', if 

A D M  E UC,, 
AID N E UC,, and 

A' D M[N/x] E C, then 

A' D (Ax: a. M)N E C. 

(ii) For all a, T E 7, for every C E C,[,/tl, if 

A D M  E UC, and 

A D  M [ T / ~ ]  E C, then 

A b (At. M)T E C. 

As in the untyped case, (RO), (Rl), and (R2), are all we need to prove the following 
fundamental result. 

Lemma 7.9 (Girard) Let C = (Ca)aEl be a 7-indexed family of sets of candidates of 
reducibility. For every I? D M E FT,, for every candidate assignment ( e , ~ ) ,  for every 
substitution c p :  F -+ A, if O(A) D cp(x) E I[F(x)]Oq for x E FV(M), then O(A) D cp(O(M)) E 

blI8V. 

Proof. It is similar to the proof of lemma 6.8 and proceeds by induction on the depth of 
the proof tree for I? D M: a. The only cases worth considering are type abstraction and type 

l4 Again, we also have to assume that every C E C is closed under &-equivalence. 
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application, the other two being essentially unchanged, except that (RO) is needed in the 
case of A-abstraction. 

Case 3. 

(type application) 

First, by suitable o-renaming, it can be assumed that M T  is safe for y and 8, and that Vt. a 

is safe for 8. By the induction hypothesis, 8(A) D y(O(M)) E [Vt. a]8q. By the definition of 
[Vt . o] Bq, we have 

8(A) D cp(8(M))S E [a]e[t := S]q[t := C], 

for every S E 7 and C E Cs. Since Vt. a is safe for 0, as observed before, we have B(cr)[S/t] = 

8[t := S](a). Since by lemma 7.6, [ ~ ] 8 q  E Ce(r), by setting S = O(T) and C = [~]8q ,  we have 

Since Vt.a is safe for 6 and cp and 0 have disjoint domains, we have cp(O(M))B(r) = cp(8(Mr)) 
and 8(a)[8(~)/ t ]  = e(u[r/t]), and so 

However, by lemma 7.7, [o[r/t]]Oq = [o]O[t := O(r)]q[t := [~]8q] ,  and so 

Case 4. 

I'D At. M:Vt.o 
(type abstraction) 

where in this rule, t I$ FV(I'(x)) for every x E dom(I') n FV(M). 

Let k + 1 be the depth of the proof tree for I' D At. M: Vt. a .  Since t I$ FV(I'(x)) for 
every x E dom(I') n FV(M),  by lemma 7.5, we have [I'(x)]Oq = [I'(x)]e[t := r]q[t := C], 
for every T E 7 and every C E C,. By the induction hypothesis, 

$(A) D cp(O[t := T](M)) E [a]6[t := r]q[t := C], 

for every T E 7 and every C E C,. By suitable a-renaming, it can be assumed that 
At. M is safe for cp and 0, that Vt. a is safe for 0, and that t $! FV(A(x)) for every 
x E dom(A). Then, O[t := T](A) = @(A), and as observed before, 8[t := T](M) = B(M)[r/t], 
8[t := T](u) = 8(u)[r/t], and since cp and O[t := T] have disjoint domains, we have 
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for every T E 7 and every C E C,. In particular, since t E 7, by choosing T = t, we 
have 9(A) D (p(9(M)) E [[a]Oq[t := C] . Since by lemma 7.6, [a]9q[t := C] E Ce(,), we have 
(p(O(M)) E U Co(,). Thus, by (R2)(ii), we have 

O(A) D (At. (p(O(M)))r E [a]O[t := r]q[t := C], 

that is 

9(A) D (p(9(At. M))T E [a]B[t := r]q[t := C], 

for every T E 7 and every C E C,. By definition 7.4, this means that 

9(A) D cp(O(At. M)) E [[Vt. a]]Oq. 

Remark: As in the remark just after lemma 6.8, it should be observed that lemma 7.9 
st311 holds if condition (R2) of definition 7.8 is relaxed so that in (R2)(i), UC, is replaced 
by PT,, U C, by PT,, and in (R2)(ii), U C, is replaced by P7,. The relaxed conditions 
will be called (R2')(i) and and (R2')(ii). 

In order to prove that families of sets of candidates of reducibility exist, one needs 
conditions stronger that (Rl) and (R2). First, we give conditions adapted from Tait and 
Mitchell. 

8 Families of Sets of Saturated Sets 

The definition of the saturated sets given in the untyped case (definition 6.9) is adapted as 
follows. 

Definition 8.1 Let S = (So)uE7 be a 7-indexed family such that each S, is a nonempty 
subset of PT,. We say that S is closed iff for all a, T E 7, for every x E X, if ADM E PT,,, 
and A, x: a D Mx E ST, then A D M E S ,,,, and for every t E V, if A D M E PTvt., and 
A D Mt  E S,, then A D M E Svt. ,. The family Sat(S) = ( s ~ t ( S ) , ) , ~ ~  of sets of saturated 
subsets of S is defined such that for every o E 7, Sat(S), consists of those subsets C C_ S, 

such that the following conditions hold:I5 

SO. Whenever A D  M E C and A C_ A', then A' D M E C. 

l5 We also have to assume that every saturated subset of S is closed under a-equivalence. 



S1. For every type a E 7, for every C E Sat(S),, for all n 2 0, for all Nl, . . . , Nn E T U P A ,  
for every u E X U C, if 

A D  uN1.. . Nn E P7,, and 

A D Ni E Sti for some ti whenever Ni is a term (1 5 i 5 n), then 

AbuN1 ... Nn E C. 

S2. (i) For all a, T E 7, for every C E Sat(S),, for all n 2 0, for all Nl, . . . , Nn E 7 U P A ,  
for all A, A', if 

A D M E St for some t, 
A' D M[N/x]N1 . .  . Nn E C, 

A'D N E S,, and 

A' D Ni E Sti for some ti whenever Ni is a term (1 5 i 5 n), then 

A'D ( X X : ~ .  M)NNl ... Nn E C. 

(ii) For all a, T E 7, for every C E Sat(S), , for all n 2 0, for all Nl , . . . , Nn E 7 U P A ,  
if 

A D  M[7/t]N1 . . . Nn E C, 

A D M E St for some t, and 

A D N; E Sti for some ti whenever Ni is a term (1 5 i 5 n), then 

A D  (At. M)7N1 . . . Nn E C. 

We have the following typed version of lemma 6.10. 

Lemma 8.2 (Girard, Tait, Mitchell) Let S = be a closed family where each S, 
is a nonempty subset of PT,, let C be the 7-indexed family of sets of saturated subsets of 
S, and assume that S, E C, for every a E 7 (i.e. S, is a saturated subset of itself). Then 
C is a family of sets of candidates of reducibility. 

Proof. It is similar to the proof of lemma 6.10. One point worth mentioning is the necessity 
of allowing N1 . . . Nn to be terms or t y p e s ,  in order to prove closure condition (3) of definition 
7.2. 

We now consider the conditions used by Girard in [lo] and [Ill, and their relationship 
to Tait and Mitchell's conditions. 
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9 Families of Sets of Girard Sets 

Girard's conditions basically assert that complete induction holds for certain simple terms 
w.r.t. +AV. 

Definition 9.1 A simple term is a term that is not an abstraction. Thus, a term M 
is simple iff it is either a variable x, a constant f E C, an application MN,  or a type 
application Mr .  

The idea behind this definition is that for a simple term M, for every term N, if 
M N  + ~ v  Q, then either M + ~ v  M' and Q = M'N, or N -AV N' and Q = MN'. 

Definition 9.2 Let S = (Sa)oE7 be a 7-indexed family such that each S, is a nonempty 
subset of PT,. A subset C of S, is a Gzrard set of type a iff the following conditions hold:16 

CRO. Whenever A D M E C and A A', then A' D M E C. 

CR1. If A D  M E C, then M is SN w.r.t + ~ v ;  

CR3. For every simple term A D  M E PT,, if A D  N E C for every N such that M +AV N, 
then A D  M E C. 

Note that (CR3) implies that all simple irreducible terms are in C. We shall prove a 

lemma analogous to lemma 8.2 for families of sets of Girard subsets, but first, we establish 
a precise connection between Girard sets and saturated sets. We prove that conditions 

(CRl), (CR2) and (CR3) imply conditions (Sl) and (S2). 

Lemma 9.3 Let S = (Sa)aE7 be a family where each S, is a Girard subset of PT,. 
Every Girard subset of S is a saturated set, i.e., satisfies conditions (Sl), (S2). 

Proof. We first make the following observation. For every term M, it is clear that there are 
only finitely many terms N such that M + ~ v  N. Thus, for every SN term M,  by Konig's 
lemma, the tree of reduction sequences from M is finite. Thus, for every SN term M, the 
depth of the reduction tree from M is well defined, and we denote it as S(M). 

We now prove (Sl). For every u E X U C, assume that 

A D  uNl . . . N ,  E PT,, and 

A D Ni E Sti for some ti  whenever Ni is a term (1 5 i 5 n). 

l6 We also have to assume that every Girard subset of S is closed under a-equivalence. 
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We prove by complete induction on S = 6(N1)  + . . . + S(Nn) that AD uNl . . . N, E C .  Since 
uNl . . . Nn is a simple term, we can do this by using (CR3). 

The base case S = 0 holds, since then uNl . . . N, is simple and irreducible. For the 
induction step, note that uN1 . . . N, + ~ v  Q implies that Q = u  N1 . . . N,! . . . N,, where 
Ni t ~ v  N,!. Also, if Ni + ~ v  N,!, by (CR2) we have ADN,! E St i ,  and since S(Ni)  < S(N,), 
the induction hypothesis implies that A D uN1 . . . N,! . . . Nn E C .  Using (CR3), we conclude 
that A D  u N l . .  . N,  E C.  

We also prove (S2). Assume that for some A, A', 

A D M E SE for some t ,  
A' D M [ N / x ]  Nl . . . N, E C,  

A' D N  E S,, and 

A' D Ni E Sti for some ti whenever Ni is a term (1 5 i 5 n).  

We want to prove that A' D (Ax:  a. M ) N N l  . . . N, E C .  Since (Ax:  a. M ) N N l  . . . Nn is 
a simple term, we can do this by using (CR3). Since the terms M ,  N ,  N1, . . . , N, are 
SN, we prove by complete induction on S = S(M)  + S ( N )  + S(N1) + . . . + S(N,) that if 
A' D MIN/x]N1 . . . N,  E C then A' D (Ax: a. M ) N N 1  . . . N,  E C .  

The base case S = 0 holds by (CR3), since then the only possible reduction is 
(Ax: a. M ) N N l  . . . Nn + ~ v  Q where Q = MIN/x]N1 . . . N,, but A' D Q E C by hypoth- 
esis. Otherwise, we just prove that A' D Q E C whenever (Ax: a. M ) N N l  . . . N,  +AV Q. 
If Q = M [ N / x ] N 1  . . .  Nn, then we know that A' D MIN/x]N1 . . .  Nn E C ,  by the hy- 
pothesis. Otherwise, either Q = (Ax: a. M 1 ) N N 1  . . . N, where M +XV M',  or Q = 

  AX:^. M ) N I N 1 . .  . Nn where N + ~ v  N' ,  or Q =   AX:^. M ) N N l  . . . N,!. .  . Nn where 
Ni t ~ v  N,!, or Q = M 1 N N 1 . .  . Nn where M = M'x and where x  $ FV(M1) .  

In the last case, note that Q = M I N N 1  . . . Nn = ( M 1 x ) [ N / x ] N 1  . . . N,  since x $ 
F V ( M 1 ) ,  and since M = M'x,  we have A' D MIN/x]N1 . . . Nn E C ,  by the hypothesis. 

In the other cases, by (CR2), we have A D M' E St ,  A' D N' E S,, and A' D N: E Sti.  
Using (CR2) (and a simple induction on the number of reduction steps when N + ~ v  N ' ) ,  
since A' D MIN/x]Nl . . . N, E C ,  we also have A' D M1[N/x]N1  . . . N,  E C when M + ~ v  

M',  A' D MIN1/x]  Nl . . . Nn E C when N + ~ v  N' ,  and A' D M [ N I X ]  Nl . . . NI . . . Nn E C 
when N; -AV N,! (Note that this step of the proof seems to have been overlooked in other 
published proofs, as pointed out to us by Pierre Louis Curien and Roberto Di Cosmo). 

Since S(M1)  < S(M) ,  6 ( N 1 )  < S(N) ,  and S(NI) < S(Ni) ,  the induction hypothesis 
implies that A' D (Ax: a. M1)NN1 . . . N,  E C ,  A' D (Ax: a. M ) N 1  Nl . . . Nn E C ,  and A' D 
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(Ax: a. M)NNl . . . Nil . . . Nn E C.  Using (CR3), it follows that A' D (Ax: a .  M )  N N1 . . . Nn E 

C. 

The case where 

A D M[7/t]N1 . . . Nn E C, 

A D M E SE for some (, and 

A D  N; E Sti for some t i  whenever Ni is a term (1 5 i 5 n )  

is handled similarly. We show that if A D M [ T / ~ ]  N1 . . . Nn E C, then A D Q E C whenever 
A D (At. M).rN1 . . Nn +AV Q. 

We now prove the analogous to lemma 8.2 for Girard sets. 

Lemma 9.4 Let S = (Su)aET be a closed family where each S, is a nonempty subset of 
PT,, let C be the 7-indexed family of sets of Girard subsets of S, and assume that S, E C, 
for every a E 7 (i.e. S, is a Girard subset of itself). Then C is a family of candidates of 
reducibility. 

Proof. We need to check that C satisfies the conditions of definition 7.8. By lemma 9.3, the 
sets in each C, satisfy conditions (Sl) and (S2), which obviously imply (Rl)  and (R2). It 
remains to show that C is 7-closed. We need to prove properties ( I ) ,  (2), (3), of definition 
7.2. This is done by induction on types. 

Property (1) is an immediate consequence of (Sl). We will verify condition (2), leaving 

(3) as an exercise. 

Let C and D be any two Girard sets. We need to show that [C + D] is a Girard set. 
Assume that the type of the terms in [C t Dl is a t T .  

For every A D M  E [C t Dl, since A, x: O D X  E C by (Sl), by the definition of [C t Dl, 
we have A, x: a D Mx E Dl and since S is closed, we have A D M E S,,,. Thus, [C -, D] 
is a subset of S,,,. Since x is obviously SN, A, x: a D Mx E D l  and (CR1) holds for D 
because it is a Girard set, it follows that M is SN. Thus, [C + Dl satisfies (CR1). 

Assume that M - ~ v  M', where A D M E [C t Dl. For every A' such that A C A' 
and A' D N E C,  we have A' D MN E D and M N  --+~v M'N. By (CR2) applied to D l  we 
have A' D M 'N E D. Thus, by the definition of [C t Dl, we have A D M' E [C t Dl. 

It remains to verify (CR3). Let A D M be any simple term of type a, and assume that 
A D Q E [C + D] whenever M - ~ v  Q. We want to prove that A D M E [C t Dl. By 
the definition of [C t Dl, this will be the case if we can show that for every A' such that 
A A' and A' D N E C ,  then A' D M N  E D. 



We prove by complete induction on 6(N) that A' D M N  E D. Since M N  is simple, 
we can do this by using (CR3). Because M is simple, observe that M N  + ~ v  U implies 
that either 

(a) U = M'N and M + ~ v  M', or 

(b) U = MN' and N + ~ v  N'. 

In case (a), since we have assumed that A D Q E [C + Dl whenever M +XV Q, we 
have A D M' E [C + Dl, and thus A' D M'N E D since A' D N E C. 

In case (b), since A' D N E C and N +AV N', by (CR2) applied to C we have 
A' D N' E C, we also have S(N1) < S(N), and by the induction hypothesis, this yields 
A' D MN' E D. We can conclude that A' D M N  E D by application of (CR3) to D. Hence, 
we have shown that [C -, Dl also satisfies (CR3), and consequently it is a Girard set. 

Having shown that both closed families of saturated sets and closed families of Girard 
sets yield families of sets of candidates of reducibility, we can prove the typed version of 
Girard's fundament a1 theorem. 

10 Girardss Fundamental Theorem 

The fundamental theorem holds for both saturated and Girard sets. 

Theorem 10.1 (Girard) Let S = (Sa)uE7 be a closed family where each S, is a nonempty 
subset of PT,. Let C be either the 7-indexed family of sets of saturated subsets of S, or 
the family of Girard subsets of S, and assume that S,  E C, for every a E 7 .  For every 

A D M E P ~ , , w ~ ~ ~ v ~ A D M E S , .  

Proof. By lemma 8.2 or lemma 9.4, C is a family of sets of candidates of reducibility. We 
now apply lemma 7.9 to any assignment (for example, the assignment with value q ( t )  = St), 
the identity type substitution, and the identity term substitution, which is legitimate since 
by (Sl), every variable belongs to every saturated set.17 

Remark: As in the untyped case, if we are interested in the version of the candi- 
dates using conditions (R2')(i) and (R2')(ii), then lemma 8.2 holds if conditions (S2)(i) 
and (S2)(ii) of definition 8.1 are relaxed in the obvious way (for example, St is replaced by 

P l O .  

The next lemma is a typed version of lemma 6.16 and gives interesting examples of 
closed families of Girard sets and saturated sets. 

l7 Actually, some a-renaming may have to be performed on M and a so that they are both safe for the 
type and term identity substitution. 

Draft/January 4 ,  1993 
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Lemma 10.2 (Girard, Tait, Mitchell) (i) The 7-indexed family SNp such that for every 
a E 7, SNp,, is the set of provable typing judgments A D M: a such that M  is strongly 
normalizing under @-reduction, is a closed family of Girard and saturated sets. (ii) The 
I-indexed family SNp, such that for every a E 7, SNB,,, is the set of provable typing 
judgments A D M :  a such that M  is strongly normalizing under @q-reduction, is a closed 
family of Girard and saturated sets. (iii) The 7-indexed family consisting for every a E 7 
of the set of provable typing judgments A D M: a such that confluence under @-reduction 
holds from M  and all of its subterms, is a closed family of Girard and saturated sets. (iv) 
The 7-indexed family consisting for every a E 7 of the set of provable typing judgments 
A D M: a such that confluence under @q-reduction holds from M  and all of its subterms, is 
a closed family of Girard and saturated sets. 

Proof. (i)-(ii) The verification that SNp and SNp, are closed families of Girard sets is 
obvious. The verification that they are closed families of saturated sets is essentially identical 
to the proof of lemma 6.16. Verifying (S2)(ii) in the case of type abstraction is similar to 
the other case (S2)(i) but a bit simpler, since types cannot be &-reduced. 

(iii)-(iv) The verification that these sets are Girard sets is similar to the verification 
that they are saturated sets and is omitted. The verification that they are saturated sets is 
done in appendix 2. 

One should note that because the conditions for being a Girard set are stronger than 
the conditions for being a saturated set, it is trivial to show that SNp, is a closed family of 
Girard sets, whereas, showing that it is a closed family of saturated sets requires more work 
(namely, part of lemma 6.16). Applying theorem 10.1 to the set SNp,, which, by lemma 
9.4 is a closed family of Girard sets (or by lemma 8.2, a closed family of saturated sets), we 
obtain the following corollary to theorem 10.1. 

Lemma 10.3 Every term M  that type-checks is strongly normalizing under @q-reduction. 

Interestingly, using parts (iii)-(iv) of lemma 10.2, we obtain a new proof of the fact 
that - -+~v  is confluent on terms that type-check. Girard (Girard [lo]) proved this result 
(for @-reduction) using an adaptation of Tait and Matin Lof's proof of confluence for the 
untyped lambda calculus. 

Lemma 10.4 Confluence holds under /?q-reduction for terms M  that type-check. Con- 
fluence also holds under /?-reduction for terms that type-check. 

It is interesting to note that Lemma 10.4 fails for raw terms. The following example 
shows what goes wrong. 
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Consider the term M = Ax: a.(Xy: T.  y)x where a # T .  Clearly, M does not type-check, 
and we have two reductions 

Ax: a. (Xy: T.  y)x +p Ax: a. x and Ax: a. (Xy: T.  y)x +t, Xy: T.  y,  

and there is no way to achieve confluence since a # T .  Thus, is not confluent on all 
raw terms, only those that type-check. 

However, the polymorphic lambda calculus Xv is Church-Rosser and strongly normaliz- 
ing on terms that type-check. What is interesting about this new proof of the Church-Rosser 
property is that it makes an essential use of the type structure. This observation was made 
by Statman in th.e context of logical relations [34] (for the simply typed lambda calculus). 

11 A Comparison of Proofs 

The purpose of this section is to compare various proofs that have appeared in the literature. 
These proofs are considered in chronological order. 

1. Girard's proof(s) (1970, 1972). 

The method of candidates of reducibility was invented by Girard in order to settle 
entirely proof theoretically a famous open problem in proof theory known as Takeuti's 

conjecture. Girard's "tour de force", settling positively Takeuti's conjecture for higher- 
order intuitionistic logic by purely proof theoretic means, is first accomplished in Girard [9]. 

Takeuti's conjecture is the generalization of Gentzen's cut elimination theorem to (classical) 

higher-order logic (for details on Takeuti's conjecture, the reader should consult Girard [I 21). 
Girard's proof of Takeuti's conjecture (in [9]) consists in exploiting the "formulae as types" 
analogy, first observed by Curry and Howard. Roughly speaking, a proof (in a Prawitz-style 

deduction system) is coded as a certain kind of lambda term, and the formula occurring as 

the conclusion of the proof is considered to be the type of the term. What is remarkable 

about this correspondence proof - lambda term, formula - type, is that the process of 
normalizing a proof (eliminating certain redundancies having to do with an introduction 
rule followed by an elimination rule for the same logical connective) corresponds to P- 
reduction applied to the term representing the proof. Thus, if one succeeds in defining a 
typed lambda calculus in which terms represent proofs in a natural deduction system, and 
p-conversion corresponds to proof normalization, if in addition one is able to prove strong 
normalization for this typed lambda calculus, then one has shown strong normalization for 
proofs in the natural deduction system. 

Girard's achievement was to define a typed lambda calculus, system F, which corre- 

sponds to second-order propositional intuitionistic logic, and to prove strong normalization 
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for system F. In order to prove strong normalization, Girard invented the method of can- 
didates of reducibility. Girard also used the method of candidates of reducibility to prove 
Takeuti's conjecture for higher-order intuitionistic logic. 

System F is actually more general than the calculus that we have presented, since it 
includes product types and existentially quantified types. In [9], candidates of reducibility 
are sets of typed terms satisfying certain conditions technically rather different from con- 
ditions (Rl) and (R2) given in definition 7.8. We will not list these conditions here, but 
instead present the conditions given in Girard's thesis [lo] and his class notes [ll] later in 
this section. 

Reading [9] is quite challenging, because a lot of extremely original material is pre- 
sented in a short space, and also because the notations used are not the most illuminating. 
Nevertheless, the method of the candidates emerges very clearly and with great power. 

In his thesis [lo], Girard extends system F to a typed lambda calculus named F,. 
The system F, encodes proofs in higher-order intuitionistic logic, whereas system F only 
encodes the second-order fragment of this logic. The system F, also includes product types, 
existential types, and even disjunctive types. The method of candidates of reducibility is 
extended to F,, and strong normalization is shown, as well as the Church-Rosser theorem 
(by the method of Tait and Martin Lof). Much more is done in the thesis, but we are pri- 
marily focusing on the method of candidates of reducibility. A simpler (and more readable) 
version of this proof for system F is given in Girard [Ill. 

Both in [lo] and [Ill ,  Girard uses a typed version of the candidates satisfying some 
interesting conditions. Girard defines a simple term as a term that is not an abstraction. 
Thus, a term M is simple iff it is either a variable x, an application MN, or a type 
application M r .  A candidate of reducibility of type a is a set C of terms of type a such 
that: 

CR1. If M E C,  then M is SN; 

CR2. If M E C and M + ~ v  N, then N E C;  

CR3. If M is a simple term and if N E C for every N such that M + ~ v  N, then M E C. 

Note that (CR3) implies that all variables of type a are in C (what we call (Rl) 
in definition 7.8). Girard defines what he calls reducibility with parameters, as we do in 
definition 7.4, except that he uses a notation that we find a little confusing. Given a type a, 

if FV(a) = I t l , .  . . , t,) is the set of free type variables in a, instead of our type substitution 
6:  V -+ 7 he uses a sequence U = (U1,. . . , U,) of types, and instead of our assignment 
7 :  V + UC, he uses a sequence C = (C1,. . . , C,) of candidates, each Ci being of type 
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U;. Then, what we denote as I[alOq is denoted by Girard as RED(a[Cl I t l ,  . . . , Cn/tn]). 
RED(a[Cl/tl, . . . , Cn/t,]) is a certain set of terms of type @(a), in Girard's notation of 

type a [Ul / t l ,  - 9  Un /in]. 

One of the problems that we have with this notation is that it is difficult to distinguish 
between actual substitution, as in a[Ul/tl,. . . , Un/tn], and assigning candidates to the type 
variables, as in RED(a[Cl I t l ,  . . . , Cn/tn]). The notation RED(a[Cl I t l ,  . . . , Cn/tn]) is also 
slightly ambiguous since it does not refer to the type substitution [Ul I t l ,  . . . , Un/tn], which 
is nevertheless indispensable to know where to pick the C;'s from. We prefer the notation 

6 4  07. 

It is interesting to note that the intriguing condition (CR2) is needed to show that 
(CR3) holds for sets of the form [C + Dl, and to show that Girard's conditions are stronger 
than conditions (Sl) and (S2). Also, Girard does not need (S2) (from definition 8.1) in his 
proof of lemma 7.9, because he uses (CRl), (CR2), (CR3) and the fact that if a term 
M is SN, then there is an upper bound on the length of reduction sequences from M, as 
discussed in section 9. In effect, Girard uses (CRl), (CR2), (CR3) as a substitute for what 
we call (R2) in definition 7.8, in his proof of lemma 7.9. As we showed in section 9, Girard's 
conditions are stronger than conditions (Sl) and (S2). We also remark that formulating 
lemma 7.9 in Girard's notation is rather cumbersome. 

2. Stenlund's version (1972). 

In [35], Stenlund presents a version of the proof of strong normalization for second- 
order intuitionistic logic using the method of candidates of reducibility (the theory of 
species). His proof is basically a typed version of Tait's proof discussed next. Stenlund 
eliminates condition (i) on page 247 of Tait [37] because it is redundant, and uses essen- 
tially our (Sl) and (S2) of definition 7.8. The sets [a]Oq are defined basically as we do in 
definition 7.4. Stenlund's notation is easier to follow that Tait (and Girard), but lemma 7.7 
is also not mentioned. The fact that in conditions (Sl) and (S2), the expressions Nl, . . . , Nn 
must be allowed to be types as well as terms seems to have been overlooked. Nevertheless, 
this proof is fairly readable. 

3. Tait's version (1973). 

In [37], Tait proves a realizability result analogous to our lemma 6.8 for second-order 
intuitionistic logic (what he calls the theory of species) using the method of candidates of 
reducibility. As a consequence, Tait obtains a version of the proof of strong normalization 
for second-order intui tionistic logic (this is slightly more general than strong normalization 
for second-order propositional intuitionistic logic, which corresponds to system F). Tait 
takes advantage of the erasing trick, and he defines the candidates as sets of untyped 
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lambda terms. Actually, Tait's erasing function is not quite the one we use, because Tait 

uses conditions slightly different from our (Sl), (S2) of definition 6.7. Tait assume that 
the untyped lambda calculus has a special constant K. Let SN denote the set of untyped 
lambda terms that are strongly normalizable. Then, a candidate of reducibility C is defined 
as a subset of SN satisfying the following properties: 

(i) If M E C and M +A N, then N E C; 

(ii) For all n 2 0 and all M,  Nl, . . . , N, E A, for every N E S N ,  if M[N/x] Nl . . . N, E C, 

then (AX. M)NN1 ... Nn E C. 

(iii) For all n 2 0 and all Nl ,..., N, E S N ,  KNl  ... N, E C. 

Condition (i) is Girard's (CR2), (ii) is basically our (S2), and (iii) is basically our 
(Sl). Tait then proves Girard's trick (lemma 6.5) and lemma 6.8. He concludes by using 
the erasing trick that if M type-checks, then it is SN. As we see it, condition (i) is never 
used anywhere and appears to be redundant. 

There are other technical differences with Girard's proof. First, Tait expands the 

language of types by adding a base type for every candidate of reducibility C in C. Then, 
Tait defines [a] for all closed types over this extended language. There is no need for 
an explicit assignment q ,  since the new base types correspond to candidates in C. The 
definition of p t .  a] is worth noting: 

[Vt. a] = { M  E A 1 VC E C, M K  E [ ap / t ] ] ) ,  

where K is the special constant added to the untyped lambda calculus. Tait uses the 
following erasing function: 

Erasel(c) = c, whenever c E C, 
Erasel(x) = x, whenever x E X, 
Erasel(MN) = Erasel(M)Erasel(N), 

Eraset(Ax: CT. M )  = Ax. Eraset(M), 

Erasel(Ma) = Erasel(M)K, 

Erase1(At. M )  = At. Erasel(M). 

The difference between this erase function and ours is that we have Erase(At. M) = 

Erase(M), that is, the type abstraction is deleted, and we have Erase(Ma) = Erase(M), 
whereas Tait uses the special constant K .  Finally, in order to formulate and prove lemma 
6.8, even though Tait was able to get away from using an explicit type assignment r l ,  he 
is now forced to consider such assignments in the form of substitutions, which, in our 
opinion, is rather confusing. Given a raw term M that type-checks with proof A D M: a,  if 
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FV(M) = {tl, . . . , t,), Tait considers substitutions [Tl/tl,. . . , Tn/tn] of closed types for the 
free type variables in M,  and forms Mo = M [TI /t 1, . . . , Tn /t ,] and a o  = a [TI / t  1, . . . , Tn /t ,I. 
In effect, the substitution [TI I t l ,  . . . , Tn/tn] plays the role of our assignment Tait then 
proceeds basically as we do. 

It should be noted that Tait does not actually justify the validity of the use of his 
erasing trick, and our lemma 6.6 is hidden in (2) on page 248 (however, Girard does prove 
explicitly a lemma analogous to our lemma 7.7). We also believe that case (3) in the proof 
of 4.2 on page 250 is erroneous, but it can be fixed easily (along the line of our proof). 

4. Fortune, Leivant, 07Donnell's version (1983). 

This version of the proof [8] can be considered as a typed version of Tait's proof for 
system F. Although it is not stated explicitly that the candidates are typed, this is the 
case since the conditions (GI), (G2), (G2'), (G3) on page 174 of [8] involve types and type 
abstraction. These conditions are basically our conditions (Sl), (S2) of definition 8.1. As 
in Tait [37], the language of types is expanded by adding a base type c for every candidate 
of reducibility C in C. The sets [a] are only defined for closed types over this extended 
language (As far as we can see, definition 6.3.2 has no provision for assigning anything to 
the type variables). The definition of [Vt. a] is almost as in Tait: 

[Vt. a] = {M E PA I VC E C, ME E [a[c/t]]}. 

However, we believe that there is a subtle problem with this clause of definition 6.3.2 
(page 174) which invalidates the subsequent results. The problem is that in clause (S4) of 
definition 6.3.2, the sets {M E PA I VC E C, ME E [ap/t]]} are always empty, since 
the constants do not belong to the original language, but yet the grounds (definition 
6.3.1, page 173-174) are defined over the original language. Tait's argument does not suffer 
from this problem because [Vt. a] is a set of (untyped) terms over the original language 

({M E A I VC E C, M K  E I[a[c/t]]}). Unfortunately, in Fortune, Leivant, O'Donnell, 
since [Vt. a] = 0, the subsequent lemmas are invalidated. Another minor problem arises 
from definition 6.4.1. Given a term M that type-checks, a type instance of M is a term 
M' obtained by substituting in M base types for the free type variables. This substitution 
essentially plays the role of our 7. An instance of M is a substitution instance cp(M1) 
of MI, where c p  is a substitution of terms for the free variables (similar to our cp). But 
then, according to these definitions, it is not true that every term M is an instance of 
itself, because M' cannot contain any type variables. In particular, if M contains free type 
variables, since MI does not, cp(M1) will never be equal to M for any term substitution c p .  

l8 It would be sufficient to consider substitutions of constants corresponding to the candidates. 
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Thus, as is, theorem 6.4.2 only holds for terms with no free type variables (but it is also 
false, due to the problem with definition 6.3.2). It seems difficult to fix the problem with 
definition 6.3.2 other than by using Girard's original definition of pt. a]. Indeed, "easy" 
attempts to fix definition 6.3.2 seem to spoil the proof of lemma 6.3.1. 

The next three versions are actually sketches of proofs, and they do not go through 
the various induction steps (and there are quite a few!). 

5. Mitchell's version (1986). 

In [24], Mitchell sketches a proof of strong normalization for system F, in which he 
introduces the erasing function Erase of definition 2.3, and an untyped version of the 
candidates of reducibility. Mitchell also introduces conditions (Sl), (S2') (essentially our 
definition 6.9) and makes the clever observation that the range of applicability of the method 
can be broadened by relativizing the definition of saturated sets to a closed set S which is 
not necessarily SN (the set of lambda terms that are strongly normalizing). The definition 
of [an7 given in definition 6.3 comes from lemma 4 of [24], and definition 6.9 is basically 
a reformulation of Mitchell's conditions. Mitchell states theorem 6.15, but does not state 
explicitly lemma 6.8, nor lemma 6.6." Although lacking proofs, this paper is quite readable. 

6. Huet's version (1987). 

In [18], Huet sketches a proof of strong normalization for system F, using an untyped 
version of the candidates and the erasing trick, but using a special constant in condition (Sl), 
as in Tait [37]. This proof was found by Coquand and Huet independently of Mit~hell .~ '  
In our opinion, the role of the assignment 7 should be made more explicit in the definition 
of [ a ] ~ ,  and lemma 6.8 should be stated. Lemma 6.6 is not mentioned. 

7. Scedrov's versions (1987, 1988). 

In Scedrov [31], a very elegant and simple proof of normalization for Xv is presented. 
This proof is obtained by noticing two interesting facts. The first fact is that if one is 
simply interested in normalization (as opposed to strong normalization), then one can drop 
condition (S2) in the definition of the saturated sets, and instead require closure under 
,&conversion. Then, one can prove a version of lemma 6.8 stating that for every term M 
that type-checks, Erase(M) is normalizable. The second fact already noted by Girard in 
his thesis ([lo]), is that if Erase(M) LA Q, then there is some term P E PA such that 
Erase(P) = Q and M A X v  P. These two facts together yield normalization for all terms 
that type-check. 

l9 However, Val Breazu-Tannen is in possession of some notes by Mitchell in which such a lemma is 
stated. 

20 Private communication from Thierry Coquand. 



In [32], Scedrov gives an informal exposition of the proof of strong normalization for 
A'. His version is basically an expanded version of Mitchell's sketch, using the erasing trick. 
In our opinion, the role of the assignment q should be made more explicit in the definition 
of [a]q, and lemma 3.1 from [32] (our lemma 6.8) should be stated more clearly. 

8. Related Proofs. 

Other proofs of normalization or strong normalization for various natural deduction 
systems based on Girard's method have been published. Since they are not specifically 
about polymorphic lambda calculi, we will simply list them without further comments. 
Prawitz [29] proves strong normalization for classical first-order logic (natural deduction), 
and intuitionistic second-order logic (natural deduction). It interesting to observe that the 
notion of strong validity introduced in section 3.2 of Appendix A, and in section B.2 of 
Appendix B of [29], is essentially equivalent to the definition of the sets ([o]q. Martin-Lof 
proves normalization results for various proof systems, including the Theory of Intuit ionis t ic 
Iterated Inductive Definitions, Second-Order Intuitionistic Logic, and Intuitionistic Simple 
Type Theory [21, 22, 231. The result in [23] is significantly strengthened in Girard [lo]. We 
should also mention that Leivant [20] has given an interesting semantic generalization of 
Girard's technique. This allows him to prove various properties of terms in Xv, including 
normalization, strong normalization, and solvability. Finally, in the case of the simply-typed 
lambda calculus, a radically different proof of strong normalization has been given by de 
Vrijer [40]. 
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12 Syntax of the Higher-Order Polymorphic Lambda Calculus F, 

In this section, we extend Xv to the system F,, by allowing type variables to have higher- 

order types. The system F, was first defined by Girard [lo]. Our presentation is inspired 

by Pfenning [27]. 

In Xv, all type variables implicitly have the same base type. By allowing type variables 
to have higher-order types, we obtain a richer class of types and terms. In order to avoid 

confusions, we will say that a type is of a certain kind, rather than saying that a type is 

of a certain type. There is a distinguished kind that we will denote by *, which, in the 
formula-as-type analogy of Curry and Howard, corresponds to the type of truth values. 
Some authors also denote this special kind as Type, which, to us, seems an unfortunate 

choice. Church and Andrews denote this kind as o. In the formula-as-type analogy, the 

types of kind * correspond to formulae, and terms have types of kind *, since in this analogy, 
terms correspond to proofs. 

Let BIC be a set of base kinds containing the special kind *. 

Definition 12.1 The set K of kinds is defined inductively as follows: 

K E IC, whenever I< E BK, and 

(K1 -+ K2) E IC, whenever K1,  K2 E IC. 

In omitting ~arentheses, we follow the usual convention that -+ associates to the right, 

that is, K1 -+ K2 -+ . . . Kn-1 -+ K, abbreviates ( K 1  + (IC2 -+ . . . (Kn-1 -+ K,). . .)). It 
should be noted that in Girard [lo], kinds are called orders. 

Let V be a countably infinite set of type variables, and let 7 C  be a set of type con- 
structors. It is assumed that every set of type constructors contains the special symbols + 
and ITK for every K E IC. The type constructors are assigned kinds by a kind signature. 

Definition 12.2 A kind signature is a function E: 7 C  IC assigning a kind to every type 
constructor in 'TC, and such that E ( 3 )  = * + (* -+ *), and E(lIK) = (K -+ *) -+ *. 

The type constructor 3 is the function type constructor, which, in the formula-as- 
type analogy, corresponds to logical implication (>), and ITK constructs types of polymor- 
phic functions. The idea behind the type constructor l I K  is due to Church who used it as a 
constant to serve as a universal quantifier (with lambda abstraction, see below). First-order 
function and predicate symbols can be handled by viewing a many-sorted function symbol 

f of rank n as a type constructor of kind K1 + . . . -+ I<, + where Ki E BIC and 
Ki # * (1 5 i 5 n + I),  and a many-sorted predicate symbol of rank n as a type constructor 
of kind K1 + . . . + I<, t *, where where K; E BIC and Ki # * (1 5 i 5 n). 
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We now define raw types. Raw types do not necessarily "kind-check", and this will 
be taken care of by "kinding rules". 

Definition 12.3 The set 7 of raw type expressions (for short, raw types) is defined in- 
ductively as follows: 

t E 7, whenever t E V, 
a E 7, whenever a E 7 C ,  
(At: K. a )  E 7, whenever t E V, a E 7, and K E K, and 

(07) E 7, whenever a , ~  E 7. 

Since =+ and IIK belong to TC, by the last clause, ((+ a ) ~ )  and ( n K a )  are raw 
types for all a, T E 7, and all K E K. For simplicity of notation, ( ( j  a ) ~ )  is denoted as 
(a + T), and (IIKa) as II a .  In omitting parentheses, we follow the usual convention that 
application associates to the left. The subset of 7 consisting of the raw types of kind + is 
the set of types that can actually be the types of terms. A raw type of the form IIK(At: K.a)  
will also be denoted as Vt : K. a .  It should be noted that in Girard [lo], types are called 
operators. 

Next, we define the polymorphic raw terms. Let X be a countably infinite set of term 
variables (for short, variables), and let C be a set of constant symbols. The constants are 
assigned types by a type signature. 

Definition 12.4 A type signature is a function O: C t 7 assigning a closed type (a type 
with no free type variables) to every symbol in C. A further restriction will be imposed 
later, namely that O( f )  is of kind * for every f E C. 

Definition 12.5 The set P A  of polymorphic lambda raw C-terms (for short, raw terms) 
is defined inductively as follows: 

c E P A ,  whenever c E C, 
x E P A ,  whenever x E X, 
(MN)  E P A ,  whenever M, N E P A ,  
(Ax: a. M )  E P A ,  whenever x E X, a E 7, and M E P A ,  
(Ma)  E P A ,  whenever a E 7 and M E PA, 
(At: K. M )  E P A ,  whenever t E V,  K E K, and M E PA. 

The set of free variables in M will be denoted as FV(M), and the set of free type 
variables in M as FV(M). The set of bound variables in M will be denoted as BV(M), 
and the set of bound type variables in M as BV(M). The same notation is also used to 
denote the sets of free and bound variables in a type. 



13 Substitution and a-equivalence 45 

In omitting parentheses, we follow the usual convention that application associates to 
the left, that is, Ml M2 . . . M,-l Mn is an abbreviation for ((. . . (MI M2) . . . Mnml)Mn). 

Not all types are acceptable, only those that kind-check. Similarly, not all polymorphic 
raw terms are acceptable, only those that type-check. In order to kind-check a raw type 
and to type-check a raw term, one needs to make assumptions about the kinds and the 
types of the free variables. This can be done by introducing contexts. Then, kind-typing 
a raw type, or type-checking a raw term is done using a proof system working on certain 
expressions called judgments. However, substitution plays a crucial role in specifying the 
inference rules of this proof system, and so, we now focus our attention on substitutions. 

13 Substitution and &-equivalence 

We first define the notion of a substitution on raw types and raw terms. 

Definition 13.1 A substitution is a function y: X U V + PA U 7 such that, y(x) # x for 

only finitely many x E X U V,  y(x) E PA for all x E X,  and ~ ( t )  E 7 for all t E V. The 
finite set {x E X U V I ~ ( x )  # x) is called the domain of the substitution and is denoted by 
dom(y). If dom(y) = {xl , .  . . , x,) and y(x,) = ui for every i ,  1 5 i 5 n, the substitution 
y is also denoted by [ul /xl ,  . . . , un/xn]. 

Given any substitution y ,  any variable y E X U V,  and any term u E PA U 7, y[y := u] 
denotes the substitution such that, for all z E X U V, 

We also denote y[x := x] as y-,. The result of applying a substitution to a raw term or a 
type is defined recursively as follows. 

Definition 13.2 Given any substitution y:  X U V + PA U 7, the function F: PA U 7 + 
PA U 7 extending y is defined recursively as follows: 

F(x) = ~ ( ~ 1 1  x E X, 

@(t) = vJ(t), t E v ,  
F ( f ) = f ,  f E X ,  

@(a) = a, a E 7C,  

@(At: K. a )  = At: K. y:(a), a E 7, K E K, t E V, 

@ = 1 0, T E 7, 
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Q = Q 7  p, Q E PA, 

@ ( M a )  = @(M)@(a) ,  M E PA,a  E 7, 

@(Ax: a. M )  = Ax: @(a).  cpTI(M), M E PA, a E 7, x E X ,  

@(At: K .  M )  = At: I-. cp-(M), M E PA,  K E K,t E V .  

Given a polymorphic raw term M or a type a ,  we also denote @ ( M )  as Y ( M )  
and @(a)  as cp(a). Also, if dom(cp) = { x l  ,... ,x,) C X and cp = [ M l / x l , . .  . , M,/x,], 
then @ ( M )  is denoted as MIMl/x l  ,..., M,/x,]. If dom(cp) = { t l  ,..., t,) C V and 

cp = [al I t l ,  . . . , g n / t n ] ,  then @ ( M )  is denoted as M [al I t l ,  . . . , a,/t,] (If a is a type, then. 
@(a)  is denoted as a [al / t  1 ,  . . . , a,/t ,I).  

As for A", we have to deal with a-conversion and variable capture in substitutions. 

Example 13.3 We would like to consider the terms Ml = Atl: *. Ax1: t l .  x1 and M2 = 

At2 : *. Ax2 : t2 .  x2 to be equivalent. They both represent. the "polymorphic identity function." 
This can be handled by defining an equivalence relation -a that relates terms that differ 
only by renaming of their bound variables. 

Definition 13.4 The relation --+, of immediate a-reduction is defined by the following 
proof system: 

Axioms : 

At:K.a- ,Av:K.a[v / t ]  f o r a l l v ~ V s . t . v $ ~ ( a ) U B V ( a )  

Ax: a. M -, Ay: a. M [ y / x ]  for all y E X s.t. y 4 F V ( M )  U B V ( M )  

At: K. M +, Av: K. M [ v / t ]  for all v E V s.t. v $ W ( M )  U B V ( M )  

Inference Rules : 

At: I - .  a +, At: I<. T 

Draft/July 17, 1992 
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Ax: a.  M -+, Ax: a. N Ax: a .  M 4, Ax: T. M 

At: K. M +, At: K. N 

We define a-reduction as the reflexive and transitive closure 5, of +, . Finally, we de- 
fine o- conversion, also called a- equivalence, as the least equivalence relation =, containing 

-1 * 21 -+, (=, = ( 4 ,  U 4, ) ). 

The following lemma shows that a-equivalence is "congruential" with respect to the 
term (and type) constructor operations. 

Lemma 13.5 The following properties hold: 

If a1 =, r1 and a 2  E, 7 2 ,  then 0 1 0 2  =, 7-17-2. 

If a1 =, 02, then At: K. a1 =, At: K. 02. 

If MI =, M2 and Nl =, N2, then MI N1 -, M2 N2. 

If Ml z, M2 and a1 =, 0 2 ,  then Mlal =, M2a2. 

If M1 7, M2 and a1 =, 02, then Ax:al. Ml -, Ax:a2. M2. 

If Ml =, M2, then At: I{. M1 =, At: K. M2. 

Proof. Straightforward by induction. 

The above lemma allows us to consider the term (and type) constructors as operating 
on =,-equivalence classes. Let us denote the equivalence class of a term M modulo =, as 
[MI, and the equivalence class of a type a modulo =, as [a]. We extend application, type 
application, abstraction, and type abstraction, to equivalence classes as follows: 

[a11 [a21 = [a1a2], 

[At: K. [a]] = [At: I<. a], 

[Ml] [M2] = [Ml M21, 

[MI [a1 = [Mall 
[Ax: [a]. [MI] = [Ax: a .  MI, 

[At: K. [MI] = [At: K. MI. 

21 Warning: -, is not symmetric! 

Draft/July 17, 1992 
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From now on, we will usually identify a term or a type with its a-equivalence class 

and simply write M  for [MI and a  for [a].  

Given a substitution y:  X  U V  + P A  U 7, we let F V ( y )  = UzEdom(p)  F V ( y ( x ) ) ,  and 

W Y )  = U,,d,m(p)  f l ( v ( x ) ) .  

Definition 13.6 Given a substitution 9 :  X  U V  -, P A  U 7 ,  given any term M or type a ,  

sa f e (y  , M )  and sa f e ( y ,  a )  are defined recursively as follows: 

sa f e ( y ,  x )  = t rue ,  x  E X ,  

sa f e ( y ,  t )  = t rue ,  t  E V ,  

saf e ( y ,  f )  = t rue ,  f E C, 

sa f e ( y ,  a )  = t rue ,  a  E 7 C ,  

sa f e ( y ,  At: K.  a )  = sa f e(y- t ,  a )  and t  $ F V ( y ) ,  a  E 7 ,  K E K, t  E V ,  

sa f e ( y ,  o r )  = sa f e ( y ,  a )  and sa f e ( y ,  r ) ,  a ,  r  E 7 ,  

saf e ( 9 ,  P Q )  = saf 4 9 ,  P )  and saf 4 9 ,  Q ) ,  P, Q E PA,  

sa f e ( y ,  M a )  = sa f e ( y ,  M )  and sa f e ( y ,  a ) ,  M  E PA, a  E 7, 

sa fe (y ,  Ax: a. M )  = safe(y-, ,a) and safe(y-, ,  M )  and x $ F V ( y ) ,  

M E  P A , ~ E T , X E X ,  

s a f e ( y , A t : K . M ) = s a f e ( y - t , M ) a n d t $ . F V ( y ) ,  M E P A , ~ E V .  

When sa f e ( y ,  M )  holds we say that M  is  sa fe  for  y ,  and when saf e ( y ,  a )  holds we 

say that a  is safe  for y.  

Given any substitution y  and any term M  (or type a ) ,  it is immediately seen that 

there is some term M' (or type a')  such that M =, M' ( a  G ,  a')  and M' is safe for y  (a' 

is safe for y ) .  From now on, it is assumed that terms and types are a-renamed before a 

substitution is applied, so that the substitution is safe. It is natural to extend a-equivalence 

to substitutions as follows. 

Definition 13.7 Given any two substitutions y  and y' such dom(y)  = dom(yl) ,  we write 

y  -a y  iff ~ ( x )  =, y l ( x )  for every x E dom(y).  

We have the following lemma. 

Lemma 13.8 For any two substitutions y  and y', terms M ,  MI, and types a and a' ,  if M ,  
M' ,  a ,  a' are safe for y  and y' ,  y  =, y', M  =, M' ,  and a  =, a', then y ( M )  =, # ( M I ) ,  
and y ( a )  =, y1(a').  

P r o o f .  A very tedious induction on terms with many cases corresponding to the definition 

of &-equivalence. 
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Corollary 13.9 (i) If (At: K. al)r l  =, (Xu: K. a2)r2, a1 is safe for [rl/t], and a 2  is safe for 
[r2/v], then al [rl/t] =, a2[r2/v]. (ii) If (Ax: al. Ml)N1 E, (Xy: 02. M2)N2, MI is safe for 
[N1/x], and M2 is safe for [N2/y], then Ml[Nl/x] =, M2[N2/y]. (iii) If (At: K. M1)7l cff 
(Av: K.  M2)72, MI is safe for [rl It], and M2 is safe for [.r2/v], then Ml [ T ~  It] =, M2 [ T ~ / v ] .  

We are now ready to present the proof system for kind-checking raw types and type- 
checking raw terms. 

14 Contexts, Kind-Checking, and Type-Checking 

First, we need the notion of a context. 

Definition 14.1 A context is a partial function A: V U X + K U 7 with a finite domain 
denoted as dom(A), and such that A(t) E AC for every type variable t E V and A(x) E 7 
for every term variable x E X. Thus, a context A is a finite set of pairs of the form ti: Ki or 
xj: aj, where the variables are pairwise distinct. Given a context A and a pair (t, K )  where 
t E V and K E AC, or a pair (x, a) where x E X and a E 7, provided that t @ dom(A) and 
x @ dom(A), we write A, t: K for A U { ( t ,  K)) ,  and A, x: a for A U {(x, a ) ) .  

In order to determine whether a raw type kind-checks, or whether a raw term type- 
checks, we attempt to construct a proof of a judgment using the proof systems described 
below. 

Definition 14.2 We define a number of judgments. A judgment is one of the following 
assertions: 

Judgments 

A kind-checks 
a kind-checks with kind K 
M type-checks with type a 

Definition 14.3 Given any context A, the proof system for proving judgments of the 
form A D or judgments of the form A D a :  K ,  called kinding judgments, is the following: 

Axiom: 
8 D 

Inference Rules : 

A D  K E K  
, where t @ dom(A) 

A, t: I< D 
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A D 
where t E dom(A) n V 

A D t: A(t) ' 

A D  - 
where =(a) = I< 

A D C : ~ "  

A D O : *  
where x f dom(A) 

A, X: 0 D '  

A D (At: K1. a): K1 + K2 

where t $ FV(A(x))  for every x E dom(A) n X 

(type variables) 

(type constructors) 

(abstraction) 

(application) 

A context A kind-checks iff A D is provable. When a judgment A D a :  K is provable, 
we say that the type a kind-checks with kind I<. It is not difficult to show that if A D a :  I< 
is provable, then A kind-checks. From now on, we assume that O: C -t 7 satisfies the 
following property: if O(f )  = a, then D a :  * (recall that a has no free variables). 

We extend G ,  to (kinding) judgments as follows. 

Definition 14.4 First, we define a-equivalence of contexts. Given two contexts A = 

r U {xl : al, . . . , x,: a,} and A' = r U {xl: a:, . . . , x,: a;}, where all pairs in I? are of the 
form t :  K ,  t E V, K E IC, we write A =, A' iff a; =, a'; for all i ,  1 5 i 5 n. Two kinding 
judgments A D a :  K and A' D a': I( are a-equivalent iff A =, A' and a =, a'.  

In order to be able to manipulate =,-equivalence classes of types, we add the following 
inference rules to the proof system of definition 14.3. 

A D a': K 

Draft/July 17, 1992 
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It it is not difficult to show that if two kinding judgments A D a :  K and A' D a': I< 
are =,-equivalent and there is a proof 1 A D a :  I<, then there is a proof I- A' D a' :  K. 
Consequently, it is legitimate to identify -,-equivalent types and contexts, and we will do 

so from now on. 

The types that kind-check form a simply-typed lambda calculus with set BlC of base 
types. Any two types that are ,&convertible will be considered equivalent. Thus, we review 

the conversion rules for this calculus. 

It is convenient to define reduction on raw types, and verify that it is kind-preserving 
when applied to a type that kind-checks. 

Definition 14.5 The relation +A- of immediate reduction is defined in terms of the 

two relations +p and -+, , defined by the following proof system: 

Axioms : 

(At: K. a ) r  +p a [r / t ] ,  provided that a is safe for [ r l t ]  

At: K. (a t )  t, a, provided that t $ FV(a)  

Inference Rules: For each kind of reduction +, where r E {P, q), 

a tr T a d r r  
for all a, r E I (congruence) 

a p  +r TP Pa +r Pr 

a tr 7- 
t E V , K E K  

At: K. a t, At: I{. T 

We define +A- = ( t p  U t,), and reduction as the reflexive and transitive closure 

LA- of +A- . We also define immediate conversion -A- such that -A- = +A- 

U +;:, and conversion as the reflexive and transitive closure &*- of -A-. 

It is easily shown that reduction is kind-preserving. The relation +A- given in 
definition 14.5 induces a notion of reduction +A- ,, on =,-equivalence classes of types 

defined as follows: 

[a] --+A-,, [r] iff a +A- T. 

It is immediately verified using lemma 13.5 and corollary 13.9 that +A- ,, is also defined 
by the proof system of definition 14.5 applied to =,-equivalence classes. 

Corollary 6.18 and corollary 6.19 imply that every type a that kind-checks is strongly 
normalizable under &-reduction, and that the Church-Rosser theorem holds under pq- 
reduction. Thus, every (=,-equivalence class of) type a that kind-checks has a unique 
Pq-normal form. We can now define the proof system used for type-checking terms. 



Definition 14.6 The proof system for proving judgments of the form A D M: a ,  called 
typing judgments, is the following: 

Axioms: For every context A that kind-checks, 

A D C : ~ ,  whereO(c)=a  (constants) 

A D x: A(x), where x E dom(A) n X (variables) 

Inference Rules : 

A D (At: K. M): nKa 

(type application) 

(type abstraction) 

(abstraction) 

where in this rule, t @ FV(o),  and t @ JV(A(x)) for every x E dom(A) n X 

(type conversion) 

If A D M:  a is provable using the above proof system, we say that M type-checks with 
type a under A and we write 1 A D M: a .  We say that the raw term M type-checks (or is 
typable) iff there is some A and some a such that A D M :  a is derivable. It is not difficult 
to show that if a typing judgment A D M: a is provable, then A kind-checks and A D a: * is 
provable. 

In order to deal with =,-equivalence, we define =,-equivalent typing judgments as 
follows. 

Definition 14.7 Two typing judgments A D M: a and A' D MI: a' are a-equivalent iff 
A F, A', M e, MI, and a =, a'. 

We also add the following inference rules to the proof system of definition 14.6. 
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Clearly, if A D M :  a  is provable, then A D a:  * and A D are also provable. It is not 
difficult to show that if two typing judgments A D M :  a  and A' D MI: a' are a-equivalent 

and there is a proof F AD M :  a ,  then there is a proof k A' D MI: a'. Thus, it is legitimate to 
work with equivalence classes of types, terms, and contexts, modulo =,-equivalence. This 
is also true for substitutions. 

Example 14.8 The following is a proof that M = At: *. Ax: t .  x type-checks with type 
vu:  *. (u  + u )  = rI*(Au: *. ( u  + u ) ) .  

t :* ,x: tD x : t  

t :  * D ( A X :  t .  x ) :  ( t  + t )  ( t  + t )  Ax- ( X U :  *. ( U  + ~ ) ) t  

t :  * D ( A X :  t .  2 ) :  ( X U :  *. ( U  + U))t 

D (At:  *. Ax: t .  2 ) :  II*(Au: *. ( U  + u ) ) .  

Remark. It is also possible to formulate the typing rules for F, by choosing V as a 

primitive instead of I I .  For instance, this is the choice adopted in Girard [lo] .  In this case, 

we have the following two rules that replace type application and type abstraction: 

A , t : K  D M : a  
A D (At:  I<. M ) :  v t :  I<. a  

(type application') 

(type abstraction') 

where in this rule, t  $ F V ( A ( x ) )  for every x E dom(A)  n X .  

Let FA be this new system. Recall that if II  is chosen as a primitive, then Vt: K. a  
is an abbreviation for IIK(At: I<. a ) .  Then, using the fact that (At: I<. a ) t  +A- a ,  that 
(At: K.  a ) r  --+A- a [ ~ / t ] ,  and the type conversion rule, it is immediately verified by induc- 
tion on the depth of proofs that every judgment A D M :  a  provable in FA is also provable 
in F, (translating Vt: I<. a  in FA to ITK(At: K.  a )  in F,). Conversely, using the fact that 
for every t  F V ( a ) ,  Vt: I<. ( a t )  = IIK(Xt: I{. ( a t ) )  4, n K a ,  ar  = ( a t ) [ r / t ] ,  and the type 
conversion rule, it is immediately verified by induction on the depth of proofs that every 
judgment A D M :  a  provable in F, is also provable in Fk. Thus, the two proof systems 
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are equivalent. In the absence of 7-conversion (on types), it is an interesting exercise to 

show that every proof in F, can be converted into a proof in Fk (it can be shown that 
IIK(Xt: K .  ( a t ) )  and IIKo are equivalent in FA). Thus, F, and FA are also equivalent in 
the absence of 7-conversion. 

We can define the concept of the order of a kind or of a type. This will enable us to 
define subsets of Fw. 

Definition 14.9 The order of a kind K E K is defined inductively as follows: 

The order of a type a that kind-checks is the order of its kind, and in particular, 
given a context A, for every t: I< E A where t is a type variable, ord(t) = ord(K). Then, 
given any m > 0, we define F, as the subset of Fw obtained by restricting the order of 
all type variables and of all type constructors to be at most m, and the order of all bound 
type variables to be at most m - 1. Thus, in Fl, only type variables of base kind (other 
than *) can be bound, and Fl corresponds to minimal first-order logic. In F2, we can also 
have bound type variables of kind * or K1 -+ . . .I<, + K ,  with K1,.  . . ,I<, E BK - {*), 
I< E BK. This corresponds to a slight extension of Xv. In F3, we can also have bound 

variables of kind * -+ . . . * -+ *, and also (K1 -+ K2) -+ (K1 -+ K2) where K1, K2 E BK, 

and generally, bound variables of order 5 2. It is also natural to identify Fo with the 
simply- typed A-calculus. 

We can now define the notion of reduction in F,. 

15 Reduction and Conversion 

As in definition 14.5, we first define reduction on raw terms, and then extend it to EE,- 
equivalence classes. 

Definition 15.1 The relation + F ~  of immediate reduction is defined in terms of the 
four relations +p, +7, +rp ,  and +,,, defined by the following proof system: 

Axioms: 

(Ax: a. M )  N + p  M [NIX], provided that M is safe for [Nlx] 
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Ax: a. ( M x )  -, M ,  provided that x $ F V ( M )  (rl) 

(At :  K.  M ) r  -,p M [ r / t ] ,  provided that M is safe for [r/t] (type P) 

At: K. ( M t )  -,, M ,  provided that t $ F V ( M )  (type rl) 

Inference Rules : For each kind of reduction +, where r E {P, 7, rp, 77,  A'), where 

-A- is from definition 14.5, 

M - , N  M -+, N 
for all P, Q E PA 

M Q  -+, N Q  P M  -+, P N  
(congruence) 

M - , N  - , r  a - , r  
a , r  E 7 

M u  -, N a  M a  -, M r  Ax: a.  M -, Ax: r. M 
(type congruence) 

M --+, N 
x € X , a € ?  

Ax: a. M -, Ax: a. N 

M - , N  

At: K.  M --+, At: K. N 
~ E V , K E K :  

We define -F, = -p U -, U -,p U -,, U -A-, and reduction as the reflexive 
and transitive closure LFY of -L. We also define immediate conversion c t ~ ,  such 
that tf~, = -F, U --I and conversion as thereflexive and transitiveclosure F" ' 

It can be shown that reduction and conversion are type-preserving. The relation -F, 

given in definition 15.1 induces a notion of reduction - F , , ~  on =,-equivalence classes of 

terms defined as follows: 

[ M ] - F , , ~ [ N ]  iff M - F , N .  

It is immediately verified using lemma 13.5 and corollary 13.9 that -F, ,, is also defined by 
the proof system of definition 15.1 applied to =,-equivalence classes. Thus, in what follows, 
contexts, types, and terms, are identified with their =,-equivalence classes. In particular, 
if we consider an equivalence class of the form [(Ax: a. M ) N ] ,  we can assume that M has 
been a-renamed so that M is safe for the substitution [ N I X ] ,  and similarly for a class of the 
form [(At:  I<. M ) r ]  (and for types). For simplicity of notation, we wil.1 write -+F, instead 

of -F, ,a. 

It should be noted that the type congruence rules are indispensable, unless one requires 
that the result of performing a substitution is pq-normalized. 



56 ON GIRARD'S "CANDIDATS DE REDUCTIBILITE" 

Example 15.2 It is easy to give a proof for the typing judgment 

t :  * D (Au: (* -+ *). Ax: ut. x ) :  ~ * - + * ( A u :  (* -+ *). (ut j u t ) ) ,  

and since the type Av: *. v kind-checks (with kind * -+ *), the typing judgment 

t :  * D ((Au:  (* -, *). Ax: ut. x)Av: *. v ) :  ((Xu: (* -+ *). (u t  j ut))Av: *. v ) ,  

is also provable. Note that all the types in the term (Au: (* -+ *). Ax: ut. x)Av:*. v are 

,877-normalized. Now, we have the reduction 

but Ax: (Xu: *. v)t .  x is not ,8q-normalized. For that, it is necessary to perform the reduction 

We also have the reduction sequence 

( X U :  (* -+ *). ( ~ t  j u ~ ) ) A v :  *. v +F, ( ( X U :  *. v)t  j ( X U :  *. v ) t )  

AFw ( t  * t ) .  

Note that the typing judgment t :  * D (Ax: t .  x):  ( t  +- t )  is provable. 

16 The Method of Candidates 

We now generalize the method of candidates to F,. The proof that we sketch is modelled 

after Girard's original proof, and only differs in the notation and in the fact that we present 
it in a slightly more general setting, using 7-closed families, and closed families of Girard 

sets. As pointed out by Thierry Coquand, it is possible to prove strong normalization for F, 
using an untyped version of the candidates and the erasing trick. However, the typed version 
seems necessary when the system F, is enriched, for example with first-order rewriting, and 

we present the typed version. The main complication is that we now have new types formed 
by A-abstraction and application. Thus, it is necessary to define candidates of reducibility 
by induction on the kind of types. As before, let C, denote the set of candidates of type a. 

For types of kind *, basically nothing changes. For a type a of kind -+ K2,  a candidate 
of type a is any function 
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such that f(r, C) E CUT for every C E C, and satisfying a technical condition listed in 
definition 16.2. 

Actually, there is a problem with this definition, namely that types may contain type 
variables, and in order for these types to kind-check, we need to assume that the type 
variables have been assigned kinds. There are two ways to overcome this problem. The first 
solution, which is the solution adopted by Coquand in his proof of normalization for the 
theory of constructions [5] ,  is to define the notion of a candidate of type A D a: 11, where 
A D a: K kind-checks. In this approach, we deal with families of sets of candidates 
indexed by provable kinding judgments. Roughly, a candidate C of type A D a: K is a set 
of provable typing judgments of the form A' D M: a where A A', and satisfying certain 
properties as in definition 7.8. If this approach is followed, it is also necessary to define 
[A D a: K]Oq, as opposed to simply [[a]Oq. The proof can be carried out, but the notation 
is quite formidable. 

However, in F,, since the fact that a type kind-checks only depends on assigning kinds 
to types variables, and kinds are independent of the types, there is a second simpler solution 
(adopted by Girard). This second solution is to relativize the definition of a family of sets 
of candidates to a global kind assignment K :  V + K. This way, we can deal with types a 
that kind-check under some context that agrees with K on V. We also assume that K is 
extended to the type constructors, so that it agrees with E on TC. The above discussion 
leads to the following definition. 

Definition 16.1 Given a kind assignment K :  V + K, we let 71, be the set of all types 
a that "kind-check under K " ,  that is, such that A D a: K is provable for some kind K E K 
and some context A whose restriction to V agrees with K. Given K :  V + K, for every type 
a E 71, of kind *, we let P7, be the set of all provable typing judgments of the form 
A D M: a, where A is any context whose restriction to V agrees with K. 

We will use the abbreviation A D M E S for A D M: a E S when S is a subset of PT,. 
We also use the notation a: K E 71, to express the fact that a kind-checks with kind 11 
under K ,  and A, K D M: a to mean that A' D M: a is provable for some (finite) context A' 
such that A C A' and the restriction of A' to V agrees with K .  

Given any two types a, T E I), of kind * and any two sets S 5 P T ,  and T PT,, 
we let [S + TI be the subset of PT,,, defined as before: 

[S + TI = { A D  M E P7u+r( VA' D N, if A A' and A' D N E S, then A' D MN E T ) .  

Given a kind assignment K :  V + K, a I(,-closed family is defined as follows. 



Definition 16.2 Let C = (Cu)uE71,  be a 71,-indexed family where for each a ,  if a is of 
kind + then C, is a nonempty set of subsets of P'T,, else if a is of kind K1 -+ K2 then C ,  is 
a nonempty set of functions from Ur:K1 (7) x C,  to U r z K I  CUT,  and the following properties 
hold: 

(1) For every a E 'TI, of kind *, every C E C, is a nonempty subset of P7,. 

(2) For every a, r  E 71, of kind *, for every C E C ,  and D E C,, we have [C + Dl E C,+,. 

(3) For every a E 71, of kind K + *, for every r  E 71, of kind K ,  for every family 

( A T , C ) ~ E I I , , C E C ,  where each set A,,c is in C,,, we have 

(4) For every a E 71, of kind Kl + I<2, 

c, = {f: U {.I x cT + U cur  

r :K1 €71, T : K I E T I ,  

such that f (7, C )  E C,, for every C E C,, and 

f (rl , C )  = f ( r2 ,  C) whenever TI  AX- r2). 

A family satisfying the above conditions is called a 71,-closed family. 

Definition 16.3 Let C be a 71,-closed family. A pair (8,q) where 8: V  -+ 'TI, is a 

substitution and q: 'TC U V -t U C  is a candidate assignment iff for every t  E V ,  ~ ( t )  = K 
implies that 8(t): I< E TI,, q(t) E C q t ) ,  and q(a) E C,  for every a E 'TC. 

We can associate certain sets of provable typing judgments to the types inductively 

as explained below. 

Definition 16.4 Given any candidate assignment ( 8 ,  q) , for every type a E 'TI,, we define 

[[al]8q as follows: 

I[t]Oq = q(t) ,  whenever t  E 'TC U V ;  

[(a * r>n@v = [[an87 * 1 [ ~ l l ~ r l l ;  

[nKa]eq = {A D M E P7@(nKu)  I V(r: K )  E I(,, 

A, D MT E n n a n w ,  
C E C ,  

[ [ a r ~ o ~  = n018~(8(7), ~ [ T I W ;  

[At: K. an8q = ArAC E CrzK. [0]8[t := ~ ] q [ t  := C].  
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In the last clause of this definition, ATAC E Cr:K .  [a]8[t := r]q[t := C] denotes the function 

f such that f (7, C)  = ([a]@[t := r]q[t := C] for every C E C, such that T E 71, is of kind 

I<. 

The following technical lemmas will be useful later. 

Lemma 16.5 Given any candidate assignments (81, ql) and (62, q2), for every a E 'TI,, if 

dl, B2 agree on FV(a) ,  and 71, q2 agree on n ( a )  and 'TC, then [a]Blql = [a]18zq2. 

Proof. Easy induction on the structure of types. 

Lemma 16.6 Given any two types a,  r E I(,, for every candidate assignment (8, q) , 

Proof. Straightforward induction on the structure of a .  

The following lemma is crucial and shows that [[a])Oq actually has a constant value on 

the equivalence class of a modulo A'-convertibility. 

Lemma 16.7 For every candidate assignment (8, q), for every two types a, a' E TI,, if 
a Ax- a', then = [al]Orl. 

Proof. It is sufficient to prove that if a Ax- a', then [[a]l@q = [a1]6q. The proof proceeds 

by induction on the proof that a A x -  a'. The only nontrivial cases are P and q-conversion, 

and those are handled using lemma 16.6 and lemma 16.5. 

We now have a version of "Girard's trick" for F,. 

Lemma 16.8 (Girard) If C is a 71,-closed family, for every candidate assignment (0, q), 

for every type a ,  then [a]Oq E Ce(,). 

Proof. The lemma is proved by induction on the structure of types. The only case worth 
mentioning is the case of a typed A-abstraction. By a-renaming, it can be assumed that 
At :  K. a is safe for 8. In this case, we use lemma 16.7 and the fact that (At: K. O(a))r --+A- 

@(a)[r/t] ,  and that because At: Ii;. a is safe for 8, @(a)[r/t] = @[t := r](a).  

In order to use lemma 16.8 in proving properties of polymorphic lambda calculi, we 
need to define 7 1 ,-closed families satisfying some additional properties. 

Definition 16.9 We say that a 71,-indexed family C is a family of sets of candidates of 
reducibility iff it is 7 1 ,-closed and satisfies the conditions listed below.22 

22  Again, we also have to assume that every C E C is closed under a-equivalence. 

Draj?/July 17, 1992 
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RO. Whenever A D  M E C and A A', then A' D M  E C. 

R1. For every a :  * E TI,, for every set C E C,, A D x E C, for every x: a E A, 
For every a:  + E 71, where a = O(f), for every set C E C,, A D f E C, for every 

f E C. 

R2. (i) For all a: *, r :  * E TI,, for every C E C,, for all A, A', if 

A D  M E UC,, 
A' D N E UC,, and 

A' D M [NIX] E C, then 

a1 D (AX: a. M)N E C. 

(ii) For every a E 71, of kind I< t +, every r E 71, of kind I<, for every C E CUT, 
for all A, A', if 

A D M E U C , ~ ~ ~ ~  
A' D M[r/t]  E C, then 

A' D (At: K. M ) r  E C. 

Lemma 7.9 generalizes to F, as follows. 

Lemma 16.10 (Girard) Let C = (C,),ETl, be a family of sets of candidates of reducibility. 
For every I? D M E PT,, for every candidate assignment (8, q), for every substitution 

9:  t A, if 8(A), K D cp(x) E [I'(x)]Oq for x E FV(M),  then O(A), K D 9(8(M)) E [a]8q. 

Proof. It is similar to the proof of lemma 7.9 and proceeds by induction on the depth of 
the proof tree for I? D M: a. Type conversion is handled using lemma 16.7. We only sketch 
the verification for two of the other cases. 

Case 1. 
I?, t: I< D M: a t  

(type abstraction) 

where in this rule, t 4 FV(a),  and t 4 W ( r ( x ) )  for every x E dom(r) n X. 

Given any r E 7 I , ,  the induction hypothesis applies to I?, t: K D M: a t  and to any 
candidate assignment (O[t := r], q [t := C]) where C E C, and r :  K E 71, (and by suit able a- 

renaming, t $! FV(A(x)) for every x E dom(A), and the safeness conditions for substitution 
hold). Thus, 8[t := r](A) = 8(A), and due to the proviso on the inference rule, 8[t := 

r](I?) = O(I?), and 8[t := r](M) = 8(M)[r/t]. Thus, we have 
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In particular, this holds for r = t, and so O(A), K D cp(O(M)) E U C e c m t , .  Then, by (R2)(ii), 

that is, O(A), K D cp(O(At: K. M)) r  E [at]O[t := r]q[t := C]. 

Again, due to the the proviso on the rule, I[a]lO[t := r]q[t := C] = [a]Oq, and since 

and [[t]$[t := r]q[t := C] = C, O[t := r](t)  = r, we have 

Thus, 8(A), K D cp(O(At: K. M)) r  E [o]l$q(r, C) for all C E C, such that r: K E 'TI,, which 
proves that 

$ ( a )  D v(o(A~:  K. MI) E [nKajeq. 

Case 2. 
r D M : n K a  ~ D T : ~  

r D Mr:  ar 
(type application) 

By the induction hypothesis, O(A), K D q(O(M)) E [[llKo]Oq, and so 

for every C E Cg where S: K E 'TI,. By choosing S = $(r),  C = [[ r]Oq, and using the fact 
that q(B(M))B(r) = cp(O(Mr)) and [ar]Oq = I[a]Oq(O(r), I[r]$q), we have 

as desired. 

As for Xv, in order to show the existence of families of candidates of reducibility, we 
need stronger conditions. One can define saturated sets as in section 8, or Girard sets as in 
section 9. We shall present the version of the Girard sets, leaving the other version as an 
exercise to the reader. 

A simple term is defined as in definition 9.1, that is, a term M is simple iff it is either 
a variable x, a constant f E C, an application M N ,  or a type application M r .  
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Definition 16.11 Let S = (So)o:*E71, be a family such that each S, is a nonempty 
subset of PT,.23 For every type a :  * E TI,, a subset C of S, is a Girard set  of type a iff 
the following conditions hold:24 

CRO. Whenever A D M E C and A A', then A' D M E C. 

CR1. If A D  M E C, then M is SN w.r.t. - F ~ ;  

CR3. For every simple term A D M E PT, , if A D N E C for every N such that M - F~ N ,  
then A D M E C. 

Note that (CR3) implies that all simple irreducible terms are in C. Also, (CRl), 
(CR2), and (CR3) are defined w.r.t. -F,, which means that ,&reduction on types is 
taken into account. This is crucial for proving strong normalization. 

Definition 16.12 Let S = be a family such that each S, is a nonempty 
subset of PT,. We say that S is closed iff for all a :  *, T: * E TI,, for every x E X, if 
A D  M E PTuJT and A, x: a D Mx E ST, then A D  M E S,*,, and for every t: K E TI, and 
a : K  E TI,, if A D  M E PTITK, and A , t : K t > M t  E SUt then A D M  E SIT,,. 

We have the following generalization of lemma 9.4. 

Lemma 16.13 (Girard) Let S = (S,),:,E71, be a closed family where each S, is a 

nonempty subset of PT,,  and let C be the 7 1 ,-indexed family such that for each a :  * E TI,, 
C, is the set of Girard subsets of S,, and for a :  I<l + I<2 E TI,, C, is defined as in clause 
(4) of definition 16.2. If S, E C, for every a :  * E TI, (i.e. S, is a Girard subset of itself), 

then C is a family of sets of candidates of reducibility. 

Proo f .  It is similar to the proof of lemmas 9.3 and 9.4. A subtlety arises in proving that 
(R2) holds. We proceed as in the proof that (S2) holds (given in lemma 9.3), that is, we 

show that A D Q E C whenever (Ax: a. M ) N  - F ~  Q, and that A D Q E C whenever 
(At:  I<. M)T - - - t ~ ~  Q, assuming that M and N are SN. However, a or T can be pq-reduced, 

and we also need to prove that pq-reduction on types ( t x - )  is strongly normalizing. 
Fortunately, this is a special case of corollary 6.18, as observed earlier. 

It is also necessary to verify conditions ( I ) ,  (2), (3), (4) of definition 16.2. This is 
done by induction on kinds, and for the kind * by induction on types. Verifying (I), ( 2 ) ,  

(3) is done as in lemma 9.4. We still need to check (4), that for a type a :  I<1 + K2 E TI,, 
C, is nonempty. This is done by induction on I<l + Ic2. The base case holds since 

23 Note that S = (S,),:,ETl is not a 71,-indexed family. It is indexed by the set of types of kind *. 
24 We also have to assume that every Girard subset of S is closed under a-equivalence. 
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can, = So E C,, for every a: * E TI,. For a :  K1 + K2 E TI,, for every r :  K1 E I(,, since 

a r :  K2 E 'TI,, by the induction hypothesis there is some function can,, E C,,, and so the 

function can, such that can,(r, C) = can,, for every C E C, ( r :  Kl  E 'TI,) is in C,. 

We now have a version of Girard's fundamental theorem for Fw . 

Theorem 16.14 (Girard) Let S = (S,),:*ETl, be a closed family where each S, is a 
nonempty subset of PT,, let C be the 71,-indexed family of sets defined in lemma 16.13, 

and assume that S, E C, for every a :  * E 7 I,. For every A D  M E P7, , we have A D  M E S, . 

Proof. By lemma 16.13, C is a family of sets of candidates of reducibility. We now apply 
lemma 16.10 to any assignment (for example, the assignment with value q(t) = cant), the 

identity type substitution, and the identity term substitution, which is legitimate since by 

(CR3), every variable belongs to every Girard set.25 

Remark: Thierry Coquand pointed out to us that because pq-reduction on types 

(dx-) is strongly normalizing, an untyped version of the candidates using the erasing 
trick works for Fw. The function Erase: P A  + A for F, is defined recursively as follows: 

Erase(c) = c, whenever c E C, 

Erase(x) = x, whenever x E X, 
Erase(MN) = Erase(M)Erase(N), 

Erase(Xx: a .  M )  = Ax. Erase(M), 
Erase(Ma) = Erase(M), 

Erase(Xt: I<. M )  = Erase(M). 

However, obtaining the confluence property using the erasing trick is an open problem. 

The next lemma is a generalization of lemma 10.2 and gives interesting examples of closed 

families of Girard sets. 

Lemma 16.15 (i) The family SNp such that for every a :  * E 'TI,, SNp,, is the set 

of typing judgments A D M:  a provable in Fw such that M is strongly normalizing under 

P-reduction, is a closed family of Girard sets. (ii) The family SNp,, such that for every 

a :  * E 'TI,, SNp,,,, is the set of typing judgments A D M: a provable in Fw such that M is 
strongly normalizing under ,&-reduction, is a closed family of Girard sets. (iii) The family 

consisting for every a: * E 71, of the set of typing judgments A D M: a provable in Fw such 
that confluence under P-reduction holds from M and all of its subterms, is a closed family 
of Girard sets. (iv) The family consisting for every a :  * E 'TI, of the set of typing judgments 
A D M:  CJ provable in Fw such that confluence under pq-reduction holds from M and all of 

its subterms, is a closed family of Girard sets. 

2 5  Actually, some a-renaming may have to be performed on M and a so that they are both safe for the 
type and term identity substitution. 

Draft/July 17, 1992 
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Proof .  (i)-(ii) It is trivial to verify that closure and (CR0)-(CR3) hold. (iii)-(iv) The proof 
is similar to the one given in appendix 2. 

It should be noted that the fact that the above results are relativized to a type assign- 
ment rc is really not a restriction. Indeed, we could assume that the set of type variables 
is partitioned into a family of countable sets, one for each kind. Thus, we can assume that 
we are dealing with a single rc. 

The system F, can be extended in several ways. For example, product types and 
existential types can be added. In fact, such an extension is studied in Girard's thesis [lo], 
including disjunctive types. Strong normalization still holds. Another way of extending 
F, is to allow a richer class of kinds and types. This can be achieved by allowing term 
variables in types and the formation of new types by A-abstraction over these variables. At 

the same time, richer kinds are allowed, namely dependent products. Such a system, the 
theory of constructions, was invented by Coquand [5, 71. The theory of constructions is 
also investigated in Huet and Coquand [6]. A related system, LF, has been investigated by 
Harper, Honsell, and Plotkin [13, 141. Strong normalization holds for these systems. For 

the theory of construction, the proof uses Girard's method of candidates of reducibility and 
follows the general scheme used in the proof of strong normalization for F,, but it is more 

complex because types may contain terms. The problem is that it is no longer possible to 
prove first that pq-reduction is strongly normalizing on types. Roughly, one needs to define 
[A D a: K]Bv and [A D I{: KindBq. For details, the interested (and perseverant) reader is 
referred to Coquand [5]. A proof of strong normalization for the theory of constructions is 
also given in Seldin [33], which also contains an extensive study of type systems including 

Xv and the theory of constructions. For LF, a proof of strong normalization consists in 
mapping LF into the simply-typed lambda calculus. For details, the reader should consult 

[14]. Other interesting work on the theory of constructions and F, appears in Paulin- 
Morhing [26], where it is shown how programs and their proofs can be extracted. Related 
work is done in Pfenning [28]. 
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17 Appendix 1: Product Types in F, 

In this section, we extend the system Fu by allowing product types. An even more general 

system with disjunctive and existential types was investigated by Girard [lo]. 

In the formula-as-type analogy, product types correspond to conjunctions, and the 

typing rules correspond to the introduction and elimination rules for conjunction. We will 

be dealing with product types with surjective pairing. 

The definition of the kinds given in definition 12.1 remains unchanged. However, it 

is assumed that every set 7 C  of type constructors contains the special symbols x ,  + and 

l lK for every I< E IC. The type constructor x is the product type constructor. The type 

constructors are assigned kinds by a kind signature. 

Definition 17.1 A kind signature is a function Z: T C  -+ IC assigning a kind to every - 
type constructor in 7 C ,  and such that =(+) = * + (* + *), C ( X )  = * + (* + *), and 

Z(IIK) = (I< + *) + *. 

The definition of raw types remains unchanged, but since x belongs to every set 7 C  
of type constructors, more raw types are allowed. The definition is repeated for the reader's 

convenience. 

Definition 17.2 The set 7 of raw type expressions (for short, raw types) is defined in- 

ductively as follows: 

t E 7, whenever t E Y ,  
a E 7, whenever a E 7 C ,  
(At: K. a) E 7, whenever t E V ,  a E 7, and K E IC, and 

(o r )  E 7, whenever a, T E 7. 

Since x belong to 7 C ,  by the last clause, ( ( x a ) ~ )  is a raw type for all a , ~  E 7, For 

simplicity of notation, ( ( x a ) ~ )  is denoted as (a x T). The subset of 7 consisting of the raw 

types of kind * is the set of types that can actually be the types of terms. 

Next, we define the polymorphic raw terms. There is no change in the definition of a 

type signature. 

Definition 17.3 The set P A  of polymorphic lambda raw C-terms (for short, raw terms) 

is defined inductively as follows: 

c E 'PA, whenever c E C, 

x E P A ,  whenever x E X, 



(MN)  E P A ,  whenever M, N E P A ,  
(M, N )  E P A ,  whenever M, N E P A ,  
.rrl(M), .rr2(M) E P A ,  whenever M E PA, 

(Ax: a.  M )  E P A ,  whenever x E X, a E 7, and M E P A ,  
(Ma)  E P A ,  whenever a E 7 and M E P A ,  
(At: K. M )  E PA, whenever t E V ,  K E AC, and M E PA. 

The notions of substitution and a-equivalence are extended in the obvious way. In 
order to deal with product types, it is necessary to add the following kind-checking rule: 

The definition of the relation t x -  does not have to be changed, since the congruence 
rule takes care of +, x , and K t K .  

It is easy to see that corollary 6.18 and corollary 6.19 hold for the new class of types. 
Thus, every (=,-equivalence class of) type a that kind-checks has a unique pq-normal form. 

The following inference rules need to be added to the proof system used for type- 
checking terms. 

A ~ M : a x r  A ~ M : a x r  

A I> .rrl (M): a A D .rr2(M): T 

(product) 

(projection) 

The notion of reduction in F, is defined by adding the following axioms and rules to 
definition 15.1. 

Axioms : 

Inference Rules: For each kind of reduction 4, where r E {P, q, T, (), TP,  rq ,  A'), 

M h r N  M h r N  
for all P, Q E P A  

(M7 Q) +r (N7 Q) (P, M) +r (P7N) 
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M + , N  M + , N  
for all P, Q E P A  

1 ( 1 ( )  r2(M) +, r2(N) 

We now generalize the method of candidates to F, with product types (with surjective 
pairing). As the proof given in section 16, the proof presented next is modelled after Girard's 
original proof, and only differs in the notation and in the fact that we present it in a slightly 
more general setting, using 7-closed families, and families of closed Girard sets. It should 
be noted that in the case of the simply-typed lambda calculus, a very similar method (but 
simpler, since only simple types need to be handled) has been used to give proofs of strong 
normalization, by Lambek and Scott [19], and de Vrijer [38,39]. 

Given any two types a, T E 71, of kind * and any two sets S C P7, and T P7,, 
we let S x T be the subset of PT,, , defined as before: 

S X T = { A D M E P T , ~ , ~ A D T ~ ( M ) E S  and A r > r 2 ( M ) € T ) .  

Given a kind assignment 6: V -+ K, a 71,-closed family is defined as follows. 

Definition 17.4 Let C = (C,),E71K be a 71,-indexed family where for each a, if a is of 
kind * then C, is a nonempty set of subsets of PT,, else if a is of kind K1 + K2 then C, is 
a nonempty set of functions from Us: KI {T) x C, to U,: K, CUT, and the following properties 
hold: 

(1) For every a E I), of kind *, every C E C, is a nonempty subset of P7, .  

(2) For every a, T E 71, of kind *, for every C E C, and D E C,, we have [C + Dl E C,=,,. 

(3) For every a E 71, of kind K + *, for every T E 71, of kind K ,  for every family 

( A r , C ) T E 7 1 K , ~ E ~ T ,  where each set Arlc is in C,,, we have 

(4) For every a E 71, of kind K1 + K2, 

C,={f: U {T)xcT-  IJ cur 
T:KI ~:KIE'TI, 

such that f (T, C) E CUT for every C E C,, and 

f ( T ~ ,  C)  = f ( ~ 2 ,  C) whenever TI A x -  ~ 2 ) .  

( 5 )  For every a , ~  E 71, of kind *, for every C E C, and D E C,, we have C x D E CUx,. 

A family satisfying the above conditions is called a 71,-closed family. 

We associate certain sets of provable typing judgments to the types inductively as 
explained below. 



Definition 17.5 Given any candidate assignment (8,q) , for every type a E TI,, we define 
[a])Oq as follows: 

[t]Oq = q(t), whenever t E I C  u V; 

[(a 3 T)Ilerl = [I[all@rl * iIT118771i 
[a x ~ ] 8 q  = [a]Oq x [~]8q;  

[nKa]Je~ = {AD M E pT@(,,,) 1 V(T: K )  E I(,, 

A, D ~7 E cne~(~, ,)I; 
CEC, 

Ib~ller, = [aIl6v(e(~), II~leq); 

[At: K. a ] 8 ~  = ATAC E C r : ~ .  [a]e[t := r]q[t := C]. 

In the last clause of this definition, ATXC E CrCK. [a]8[t := r]q[t := C] denotes the function 
f such that f (T, C) = [a] 8 [t : = T] q [t := C] for every C E C, such that T E I 1, is of kind 
K. 

Lemma 16.5, 16.6, and 16.7 are unchanged. It is also easy to prove the following 
version of "Girard's trick" for F, with product types. 

Lemma 17.6 (Girard) If C is a I(,-closed family, for every candidate assignment (8, q), 
for every type a, then [a]Bq E Ce(,). 

One more condition needs to be added to the conditions of definition 16.9 

Definition 17.7 We say that a 71,-indexed family C is a family of sets of candidates of 
reducibility iff it is 71,-closed and satisfies the conditions listed below.26 

RO. Whenever A D  M E C and A A', then A' D M E C. 

R1. For every a:* E 'TI,, for every set C E C,, A D  x E C, for every x: a E A, 
For every a: * E I), where a = O( f ), for every set C E C,, A D f E C, for every 
f E C. 

R2. (i) For all a:*,r:* E TI,, for every C E C,, for all A,At,  if 

A D M  E UC,, 
A' D N E UC,, and 

A' D M [NIX] E C, then 

A' D (Ax: a. M)N E C. 

26 Again, we also have to assume that every C E C is closed under a-equivalence. 

Draft/July 17, 1992 



17 Appendix 1: Product Types in F, 69 

(ii) For every a E 71, of kind K -, *, every T E 71, of kind K ,  for every C E C,,, 
for all A, A', if 

A D M  E UC,~ and 

A' D M [ T / ~ ]  E C, then 

A' D (At: K. M)T E C. 

R3. For all a:*,r:* E TI,, for every C E C, and D E C,, if A D  M E C and A D  N E D, 
t h e n A ~ ( M , N )  E C x  D. 

We now have a version of lemma 16.10 for F, with product types. 

Lemma 17.8 (Girard) Let C = (Co)oET1, be a 71,-indexed family of sets of candidates of 
reducibility. For every r D M E PT,, every candidate assignment (8, q), every substitution 
9 :  r -, A, if O(A), K D P(X) E [[r(x)]Oq for x E FV(M), then 8(A), K D 9(O(M)) E [[a]Oq. 

Proof. We only sketch the verification for the new cases. 

Case 1. 

By the induction hypothesis, 

O(A), K D v(O(M)) E UaIOrl, 

By (R3) and the definition of [a x r]@q, we have 

However, this is equivalent to 

@(A>, K D 9(6((M, N)))  E %a x .lev. 

Case 2. 

(product) 

(projection) 



By the induction hypothesis, 

Since [c x rl)Orl = I [ o ] ~ v  x [r]eq, this implies that B(A), K D p(e(rl(M))) E [c]erl and 

e(A), K D 9 (9 (~2(M)) )  E [71)eV. 

Remarkably, because Girard7s conditions take the reduction relation + F ~  into ac- 
count, there is no need to add extra conditions besides (CRO), (CRl), (CR2), and (CR3). 
We simply need to modify the definition of a simple term, so that lemma 16.13 holds for 
Fw with product types. For this, it is enough to preclude a pair (M, N) from being simple. 
Thus, a term M is simple iff it is either a variable x, a constant f E C, an application M N ,  
a projection r l ( M )  or 7r2(M), or a type application Mr .  

Definition 17.9 Let S = (Sa),:*E71n be a family such that each S, is a nonempty subset 
of P7,.27 For every type a: * E I(,, a subset C of S, is a Girard set of type a iff the 
following conditions hold:28 

CRO. Whenever A D  M E C and A A', then A' D M  E C. 

CR1. If A D  M E C, then M is SN w.r.t + F ~ ;  

CR2. If A D M  E C and M + F ~  N,  then A D N  E C; 

CR3. For every simple term A D  M E P7,, if A D  N E C for every N such that M +F, N,  
then A D  M E C. 

Note that in the above definition, + F ~  is the reduction relation for Fw with product 
types, and consequently, covers the case of reductions when M is of the form rl((P, Q)) or 

~ 2 ( ( ~ 1  Q ) ) .  

We need to add one more clause to definition 16.12 (defining a closed family): for 
all a: +,T:* E TI,, if A D M E PTUxT, A D r l ( M )  E S,, and A D r2(M) E ST, then 

A D M E SUxr. 

We have the following generalization of lemma 16.13. 

Lemma 17.10 (Girard) Let S = (Su),:+E71n be a closed family where each S, is a 
nonempty subset of PI,, and let C be the I(,-indexed family such that for each a: * E TI,, 
C, is the set of Girard subsets of S,, and for a: K1 + K2 E I(,, C, is defined as in clause 

27 Note that S = (Sa)u:*ETln is not a 71,-indexed family. It is indexed by the set of types of kind *. 
2s We also have to assume that every Girard subset of S is closed under a-equivalence. 
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(4) of definition 17.4. If S, E C, for every a: * E 'TI, (i.e. S, is a Girard subset of itself), 
then C is a family of sets of candidates of reducibility. 

Proof. It is similar to the proof of lemmas 9.3 and 9.4. Property (R3) is shown as follows. 
Assume that A D M E C and A D N E D. We show by induction on S(M) + S(N) that 
A D  Q E C whenever 7r1((M, N))  +F, Q, and that A D Q  E D whenever 7r2((M, N))  +F, 

Q. Then, by (CR3), we have A D 7rl((M, N)) E C and A D 7r2((M, N) )  E D,  which, by the 
definition of C x Dl  shows that A D (M, N) E C x D. 

We prove that A D Q E C whenever 7r1 ((M, N))  +F, Q, the other case being sim- 
ilar. The point is that either Q = M, or Q = 7rl((M1, N))  where M +F,  MI, or 
Q = 7rl ((M, N1)) where N +F,  N'. Note that the case where M = 7rl (U) and N = 7r2 (U) 
must be considered, since in this case (7r1 (U), 7r2(U)) + F ~  U. But then, 

In the first case, the hypothesis yields A D M E C. In the other two cases, by (CR2) we 
have A D M' E C and A D N' E D , and since S(Mf) < S(M) and S(N1) < S(N), we use 
the induction hypothesis and (CR3). The base case where M and N are irreducible follows 
from (CR3). 

It is also necessary to verify conditions ( I ) ,  (2), (3), (4), ( 5 )  of definition 17.4. This is 
done by induction on kinds, and for the kind * by induction on types. The only new case is 
case ( 5 ) .  Given that C S, and D c ST, the fact that C x D C_ S,, , follows from the new 
closure condition (on x ). We need to prove that (CRl), (CR2), and (CR3) hold for C x D, 
given that they hold for C and D. Let A D  M: a x T be a term in C x D l  where C E C, and 
D E C,. By the definition of C x Dl  A D  r l ( M )  E C (and A D  7r2(M) E D). Since all terms 
in C are SN, 7rl(M) is SN. But then, M itself is necessary SN since any infinite reduction 
from M yields an infinite reduction from 7r1 (M). 

Assume that M +F,  M'. Then, 7r1(M) +F, 7rl(M1) and 7r2(M) + F ,  7r2(M1). 
Since 7rl(M) E C and 7r2(M) E D, by (CR2) applied to C and Dl  we have 7rl(M1) E C and 
7r2(M1) E D. By the definition of C x D, we have A D M' E C x D, and (CR2) holds. 

Now, assume that M is simple, and that whenever M +F, Q, then A D  Q E C x D. 
We want to prove that A D M E C x D. Note that 7rl(M) and 7r2(M) are also simple, and 
that because M is simple, 

(*) 7r1 (M) +F,  R implies that R = 7r1 (Q) where M d ~ ,  Q, and similarly for 7r2(M). 

Since we assumed that A D Q E C x D, we have A D 7r1(Q) E C and A D 7r2(Q) E 

D. By (CR3) applied to C and D and (*), since 7r1(M) and 7r2(M) are simple, we have 



A D xl(M) E C and A D  x2(M) E D. By the definition of C x D, we have A D  M E C x D, 
and (CR3) holds. 

We now have a version of Girard7s fundamental theorem for F, with product types. 

Theorem 17.11 (Girard) Let S = be a closed family where each S, is a 
nonempty subset of PT,, let C be the ?(,-indexed family of sets defined in lemma 17.10, 

and assume that S, E C, for every a:  + E 7 1,. For every AD M E PI,, we have AD M E S, . 

Proof. By lemma 17.10, C is a family of sets of candidates of reducibility. We now apply 

lemma 17.8 to any assignment (for example, the assignment with value q(t) = cant) ,  the 
identity type substitution, and the identity term substitution, which is legitimate since by 
(CR3), every variable belongs to every Girard set.2g 

The next lemma shows that F, with product types is strongly normalizing and con- 
fluent under both P-reduction and ,@-reduction. 

Lemma 17.12 (i) The family SNp such that for every a:* E I ) , ,  SNp,, is the set 
of typing judgments A D M: a provable in F, such that M is strongly normalizing under 
P-reduction, is a closed family of Girard sets. (ii) The family SNp, such that for every 

a :  * E 'TI,, SNP1),, is the set of typing judgments A D M: a provable in F, such that M is 
strongly normalizing under pq-reduction, is a closed family of Girard sets. (iii) The family 
consisting for every a :  + E 7 1, of the set of typing judgments A D M: a provable in F, such 
that confluence under P-reduction holds from M and all of its subterms, is a closed family 
of Girard sets. (iv) The family consisting for every a :  * E 71, of the set of typing judgments 
A D M: a provable in F, such that confluence under pq-reduction holds from M and all of 

its subterms, is a closed family of Girard sets. 

Proof. (i)-(ii) It is trivial to verify that closure and (CR0)-(CR3) hold. (iii)-(iv) The 
proof is similar to the one given in appendix 2, with a few more cases involving pairs and 
projections. 

18 Appendix 2 

This appendix contains the details that were omitted in the proof of lemma 10.2. 

Proof of lemma 10.2. We need to prove that the family of sets in (iii) and (iv) is a closed 
family of saturated sets. 

29 Actually, some a-renaming may have to be performed on M and a so that they are both safe for the 
type and term identity substitution. 

Draft/July 17, 1992 
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Closure is obvious since if confluence holds from Mx and all of its subterms, then it 
holds from M.  

Verifying (Sl) is easy and uses the fact that if confluence holds from N1,. . . , N, and 
all of their subterms, then confluence holds from each uNl . . . Nk and all of its subterms, 
where u E X U C and 1 5 k 5 n. This is because reductions must apply withing the Ni's. 
Since confluence from u is trivial, confluence from each subterm of uN1 . . . N, follows from 
the assumption on Nl , . . . , N, . 

Proving (S2) is very tedious. Assume that confluence holds from M [N/x]Nl . . . N, 
and all of its subterms (and that confluence holds from N,  which is implied by (S2)). 
Thus, confluence holds from M, N, N1,. . . , N,. We need to show that confluence holds 

from (Ax: a. M)NNl . . . N ,  and all of its subterms. 

First, we show confluence from every subterm of Ax: a. M .  Since confluence holds from 

every subterm of M ,  the only nontrivial case is the case where M A A v  (Mix), for some 
term Mi such that x I$ FV(Mi).  In this case, we can have reductions of the form 

 AX:^. M L x v   AX:^. (Mix) --+, Mi PI, 

where M L A v  Mix. There are four cases to consider. 

Case 1. 

Ax: a. M LA, Ax: a. (Mlx) -, Mi L A v  PI 

and 

Ax: a. M L x v  Ax: 0. (Mi'x) --+, Mi' L A v  P2, 

where M 5 Av Mi x and M A Av Mi'x. Since confluence holds from M ,  there are reduc- 
tions PI x A A v  Q and P2x --*-tXv Q for some Q. 

If both reductions are of the form PI x L A v  P3x and P2x P3x, for some P3 
such that Q = P3x, PI -*-tXv P3, and P2 L A v  P3, then confluence holds. 

If P2 L A v  P3 and PI x L x v  P3x is of the form 

since x I$ FV(Mil) due to the 7-step, and since Xy: a. Q1 G, Ax: a. Ql [xly], we have 
x $ FV(P3) and 

PI L A v  Ay: a. Q1 L x v  Ax: a. ( P ~ x )  -, P3. 

Confluence holds, since P2 --*tAv P3. 
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The subcase where Pl P3 and 

is symmetric. 

If both 

P I X  ( A Y :  0. Qi)x  3 p  Ql [ x / Y ]  &A* &, 

and 

P2x ~ X V  ( A Y :  a. Q2)x +p Q ~ [ x / Y ]  -f-'xv Q,  

since Ay: a. Q1 =, Ax: a. Ql [x ly]  and Ay: a. Q2 =, Ax: a. Q2[x /y] ,  we have 

PI --*-tAv Ay: a. Q1 ---LAv Ax: a. Q 

and 
P2 L A v  Ay: a. Q2 A A v  Ax: a. Q. 

Case 2. 

Ax:a. M A A v  Ax:a. ( M i x )  dv Mi A A v  Pl 

and 
Ax: a. M L X v  Ax: a. Mi', 

where M A A v  Mix and M A A v  Mi'. This is quite similar to case 1. If Plx P3x 
and Mi' L x v  P3x, since x @ F V ( M i )  due to the q-step, we have x @ FV(P3) ,  Pl - L A v  P3, 

and 
Ax: a. Mi' L A v  Ax: a. (P3x)  +17 P3. 

Confluence holds since PI A X v  P3. 

and 
MI' A A V  Q, 

since Ax: a. Ql [x ly]  =, Ay: a. Q1,  we have 

PI --*-tAv Ay: a. Q1 L A v  Ax: a. Q 

and 
Ax: a. Mi' - L A v  Ax: a. Q. 



18 Appendix 2 

Case 3. Symmetric to case 2. 

Case 4. 

Ax: o. M L A v  Ax: o. Mi 

and 

Ax: o. M L A v  Ax: 0. Mi', 

where M L A v  Mi and M Mi'. Since confluence holds from M ,  we conclude 

immediately. 

We now prove that confluence holds from every term (Ax: a. M ) N N l  . . . Ni ,  where 

1 5 i  5 n, and from (Ax: a. M ) N .  Without loss of generality, we can assume that i  = n. 
The proof of lemma 6.16 showed that every reduction sequence from (Ax: a. M ) N N l  . . . Nn 
is of the form 

(Ax: a. M ) N N 1  . . . Nn (Ax: 0. M ' ) N I N ; .  . . NA, 

(Ax: a. M ) N N ,  . . . Nn Z A v  (Ax: o. M ' ) N I N i  . . . N:, d p  M ' [ N ' / x ] N ;  . . . N:, L A v  Q, 

where in (1)-(2) M L A v  MI, in ( 3 )  M L A v  Mix ,  and in all cases N N' ,  and 

N; A A v  N,! , for every i ,  1  5 i 5 n. We have seven main cases. 

Case 1. 

(Ax: o. M ) N N l  . . . Nn L A v  (Ax: a. M1)N'N;  . . . N:, 

and 

(Ax: a. M ) N N l  . . . Nn A A v  (Ax: o. M")N"N;' .  . . N:. 

Since confluence holds from M ,  N ,  Nl . . . Nn (for N ,  this is implied by (S2)) ,  we have re- 

duction sequences M' A A v  Mu', M" - L A v  Mu', N' L A v  N"', N" N"', and 

N,! A A v  N,!", N,!' A X v  N,!", for every i ,  1 5 i  5 n ,  and thus reductions 

and 

(Ax: o. M1')N"N;' . . . N: L A v  (Ax: o. M1")N"'N;" . . . N:'. 
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Case 2.  
  AX:^. M ) N N l  . . . Nn A A v    AX:^. M 1 ) N ' N ; .  . . NL 

and 

(Ax: o. M ) N N 1  . . . Nn L A v  (Ax: 0. M1')N' 'N~' . . . N: 

+p M " [ N 1 ' / x ] N ~ ' .  . . N: f A v  P2. 

This time, we also have reduction sequences 

(Ax: a. M ) N N l  . . . Nn 4 p  M [ N / x ]  Nl . . . Nn A x v  M'[N1/x]Ni  . . . NA 

and 

Using the confluence from MIN/x]Nl  . . . Nn, we have M1[N' /x ]N:  . . . NL A A v  P3 and 

P2 f AV P3 for some P3. Thus, we have reductions 

(Ax: o. M1)N'N:  . . . Nk -p  M'[N1/x]Ni  . . . NA A A v  P3 

and 

Pz L A V  P3. 

Case 3 .  

(Ax: o. M ) N N l  . . . Nn LA* (Ax: o. M' )N1N;  . . . NL +p M 1 [ N ' / x ]  Ni . . . NA L A v  PI 

and 

( A X :  0. M ) N N 1  . . . Nn - L A v  ( A X :  0. M")N1'Ni' . . . N:. 

Symmetric to case 2. 

Case 4. 

and 
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As in case 2, we have reductions 

( A X :  a. M ) N N l . .  . Nn M [ N / x ] N 1 . .  . Nn L*v M 1 [ N 1 / x ] N ; .  . . NA L*v PI 

and 

  AX:^. M ) N N l  . . . Nn - p  M [ N / x ] N 1 . .  . Nn L A v  M I 1 [ N 1 I / ~ ] N ; ) .  N: LA* P2, 

and we conclude using the confluence from M [ N / x ]  N1 . . . Nn. 

Case 5.  

  AX:^. M ) N N l  . . . Nn L A v    AX:^. ( M ; x ) ) N I N ; .  . . NA +, M ; N I N ; .  . . NA A A v  P I ,  

and 

(Ax: a. M ) N N l  . . . N,  A A v  (Ax: a. (M;'x))NUN;' . . . N: 

4, M;'NUN;'. . . N: A A v  P2, 

where M  t A v  M i x ,  M  A A v  Mi'x. Because of the 7-steps, x  $! F V ( M i )  and x  $! 
F V ( M i l ) ,  and thus M j [ N 1 / x ]  = Mi and Mi'[N"/x] = Mi1, and we have reductions 

  AX:^. M ) N N l  .. .Nn +p  M [ N / x ] N 1  .. . Nn L*v MiN'N; ... N: L A v  P I ,  

and 

( A X :  a. M ) N N l . .  . Nn d / j  M I N / x ] N 1 . .  . Nn L A V  M;'N1'N;' .. . N: LAV P2, 

and we conclude using the confluence from M [ N / x ]  Nl . . . Nn. 

Case 6.  

  AX:^. M ) N N l  . . . Nn L*V   AX:^. ( M ; x ) ) N I N ; .  . . NA +, M ; N I N ; .  . . NA t A v  P I ,  

and 

(Ax: a. M ) N N 1  . . . N,  A A v  (Ax: a. Mi'N") Ni' . . . N: 

+a M;'[N"/x]N:. . . NL L A v  P2, 

where M  L A v  Mix ,  M  L A v  Mi'. Since we have an 7-reduction step, x $! F V ( M i ) ,  
which implies that Mi [ N 1 / x ]  = M i ,  and we have 

( A X :  0. M ) N N l  . . . Nn + p  M [ N / x ] N 1  . . . Nn L A v  M; N'N; . . . NA LA* Pl 

and 

  AX:^. M ) N N l  . . . N,  MIN/x]Nl  . . . N,  L A v  M;'[N"/x]N; ' .  . . N: A A v  P2. 

We conclude using the confluence from MIN/x]N1 . . . N,. 

Case 7. Symmetric to case 6. 

Proving that confluence holds from (At .  M ) r N 1  . . . N,  and all its subterms assuming 
that confluence holds from M [ r / t ]  N1 . . . N ,  and all its subterms is similar to the previous 
proof, except that there are no reductions from T .  IJ 
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