Logics in Security Winter 2014

Homework for Module 2

Instructor: Deepak Garg TA: Tulia Bologteanu
dg@mpi-sws.org iulia mb@mpi-sws.org
Release date: 01.12.2014 Due date: 08.12.2014

General instructions: Attempt all questions. Submit your homework via email to both
the instructor and the TA before midnight on the due date. This homework requires you
to turn in a written component that must be typeset and two ProVerif source files. The
ETEX source for this homework will be provided to help you typeset. You can also typeset
using any other means, including simple ASCII.

Problem 2-1 (4 points)

Meta-logical proofs. Let uppercase letters A...Z denote logical variables and let s and z
denote the successor function on natural numbers and zero respectively. Recall the following
definition of the predicate add(a, b, c), which intuitively means that a + b = c.

add(N, M, P)
————————addz adds
add(z, N, N) add(s(N), M,s(P))

Prove the following by induction on a suitable parameter (either one of the terms, or proofs):
If add(n,s(m), p) has a proof, then there exists a p’ such that add(n, m,p’) has a proof and

p=s(p').
Problem 2-2 (6 points)

This problem has two questions. Solve any one of them. You may also solve both. In that
case, we will score both and consider the maximum of the two scores.

Option 1: More proofs. Recall the following definition of the predicate even(a), which
means that a is even.

even(N)
evenz ——— — _____€evens

even(z) even(s(s(V)))

Prove that if add(n,n,p) has a proof, then even(p) has a proof. [Hint: You will have to
use the metatheorem of Problem 2-1 as a Lemma here. You can do that even if you were
unable to solve 2-1.]

Option 2: Backwards search. Consider backwards (backchaining) search as discussed
in class, without any explicit checking for loops (as in ProVerif). For each of the following
goals, state whether or not backward search will terminate and, irrespective of whether or
not it terminates, what satisfying substitutions for the variables it will find. Assume that
the search always tries the rule addz before adds. Justify your answers.

2-1



2-2

a. add(n, M, p) for a variable M and constants n and p.
b. add(N,m, P) for variables N, P and a constant m.

c. add(N, M, p) for variables N, M and a constant p.

Problem 2-3 (5 points)

ProVerif. In the following protocol, Bob (B) wants to send a secret message m to Alice
(A). For this, he initiates a session by sending to Alice his public key pkp. Alice replies
with her identity and a noncer'_-] na encrypted with the key from Bob. Bob generates a nonce
npg and encrypts it together with the nonce from Alice under Alice’s public key. Alice
verifies that the first nonce in the ciphertext is her nonce and sends back to Bob his nonce
encrypted under pkp.

Bob verifies that the ciphertext from Alice contains the nonce he generated and creates
the shared session key nq ® np. Here, ® is a one-way function. (Think of ny ® np as a
hash function applied to the pair (n4,npg). It is impossible to extract either ny or ng from
na ®np.) Next, Bob sends to Alice a secret message m symmetrically encrypted under the
newly constructed key. Note that Alice can decrypt the ciphertext and recover the message,
as she also knows both n 4 and ng and is able to construct the key n4 ® np.

pk
A b B

{A,na}pry

{na,nB ok,

{nB}pkp

{m}nAQTLB

Your goal is to model this protocol in ProVerif and discover /fix attacks on it. An attack here
means that the attacker learns the secret message m. To help you start, we have provided
a ProVerif file secrecy.horn that contains most of the protocol already. Beginning with
this file, solve the following problems:

1. Complete the model of the protocol in secrecy.horn. Comments in the file will tell
you exactly what you need to fill in and will also explain the rest of the encoding.
Turn in the updated secrecy.horn file.

2. Run the protocol through ProVerif. If your model is correct, ProVerif will find an
attack. Describe this attack in simple words in your solution.

3. Propose (on paper) a fix to the protocol.

4. Encode the fix in ProVerif in a new file secrecy-fixed.horn and turn in that file.
(Run this file through ProVerif to ensure that there is really no further attack.)

'Here, a nonce is a random number that the adversary cannot guess.



2-3

Instructions on ProVerif: Please use the following link to download and install ProVerif
on your machine:

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

Depending on your operating system, you will have to download either a binary package
(Windows) or the source code package (Linux, Mac OS). Unzip the package of your choice,
go to the unzipped directory and execute the build script. Please check the README file
for more detailed information on this.

In the downloaded and compiled directory you will find examples (the ones with extension
.horn should be more relevant for you) and a user manual (/docs/manual-untyped.pdf).
You can work in this directory or you can add the path where proverif lies to your PATH
environment variable. For verifying the protocols use the following command:

./proverif -in horn <file name.horn>

The homework release includes the file denning-sacco.horn as an example. This file con-
tains the full Denning-Sacco protocol described in the ProVerif paper. If you encounter any
difficulties in installing or using ProVerif, please send an email at iulia mb@mpi-sws.org.


http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

