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Compiler correctness, in its simplest form, is defined as the inclusion of the set of traces of the compiled

program in the set of traces of the original program. This is equivalent to the preservation of all trace properties.

Here, traces collect, for instance, the externally observable events of each execution. However, this definition

requires the set of traces of the source and target languages to be the same, which is not the case when the

languages are far apart or when observations are fine-grained. To overcome this issue, we study a generalized

compiler correctness definition, which uses source and target traces drawn from potentially different sets

and connected by an arbitrary relation. We set out to understand what guarantees this generalized compiler

correctness definition gives us when instantiated with a non-trivial relation on traces. When this trace relation

is not equality, it is no longer possible to preserve the trace properties of the source program unchanged.

Instead, we provide a generic characterization of the target trace property ensured by correctly compiling

a program that satisfies a given source property, and dually, of the source trace property one is required to

show in order to obtain a certain target property for the compiled code. We show that this view on compiler

correctness can naturally account for undefined behavior, resource exhaustion, different source and target

values, side channels, and various abstraction mismatches. Finally, we show that the same generalization also
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applies to many definitions of secure compilation, which characterize the protection of a compiled program

linked against adversarial code.
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1 INTRODUCTION
Compiler correctness is an old idea [46, 49, 50] that has seen a significant revival in recent times.

This new wave was started by the creation of the CompCert verified C compiler [41] and continued

by the proposal of many significant extensions and variants of CompCert [10, 11, 15, 29, 36, 37, 51,

67, 73, 76, 80] and the success of many other milestone compiler verification projects, including

Vellvm [83], Pilsner [56], CakeML [77], and CertiCoq [5]. Verification through proof assistants

allows the user of a compiler to trust the proofs without diving into all of the details. Still, in order

to clearly understand the benefits and limitations of using a verified compiler, she has to deeply

understand the statement of correctness. This is true not just for correct compilation, but also for

secure compilation, which is the more recent idea that a compilation chain should not just provide

correctness but also security against co-linked adversarial components [4, 32].

Basic Compiler Correctness. The gold standard for compiler correctness is semantic preservation,
which intuitively says that the semantics of a compiled program (in the target language) is com-

patible with the semantics of the original program (in the source language). For practical verified

compilers, such as CompCert [41] and CakeML [77], semantic preservation is stated extrinsically,

by referring to traces. In these two settings, a trace is an ordered sequence of events—such as inputs

from and outputs to an external environment—that are produced by the execution of a program.

A basic definition of compiler correctness can be given by the inclusion of the set of traces of the

compiled program in the set of traces of the original program. Formally [41]:

Definition 1.1 (Basic Compiler Correctness (CC)). A compiler ↓ is correct (CC) iff

∀W 𝑡 . W↓⇝𝑡 ⇒ W⇝𝑡

This definition says that for any whole
1
source program W, if we compile it (denoted W↓),

execute it in the semantics of the target language, and observe a trace 𝑡 , then the original W can

produce the same trace 𝑡 in the semantics of the source language.
2
This definition is simple and

easy to understand, since it only references a few familiar concepts: a compiler between a source

and a target language, each equipped with a trace-producing semantics (usually nondeterministic).

Beyond Basic Compiler Correctness. Definition 1.1 implicitly assumes that the source and

target traces are drawn from the very same set, and requires that any target trace produced by a

compiled program can be faithfully reproduced by the source program. In practice, existing verified

compiler adopt a less restrictive formulation of compiler correctness:

1
For simplicity, for now we ignore separate compilation and linking, returning to it in §6.

2
Typesetting convention [60]: we use a blue, sans-serif font for source elements, an orange, bold font for target ones and a

black, italic font for elements common to both languages.
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CompCert [41] The original compiler correctness theorem of CompCert [41] can be seen as an

instance of basic compiler correctness, but it does not provide any guarantees for programs

that can exhibit undefined behavior [68]. As allowed by the C standard, such unsafe programs

are not even considered to be in the source language, so are not quantified over. This has

important practical implications, since undefined behavior often leads to exploitable secu-

rity vulnerabilities [16, 30, 31] and serious confusion even among experienced C and C++

developers [40, 68, 78, 79]. As such, since 2010, CompCert provides an additional top-level

correctness theorem
3
that better accounts for the presence of unsafe programs by providing

guarantees for them up to the point when they encounter undefined behavior [68]. This

new theorem goes beyond the basic correctness definition above, as a target trace need only

correspond to a source trace up to the occurrence of undefined behavior in the source trace.

CakeML [77] Compiler correctness for CakeML accounts for memory exhaustion in target exe-

cutions. Crucially, memory exhaustion events cannot occur in source traces, only in target

traces. Hence, dually to CompCert, compiler correctness only requires source and target

traces to coincide up to the occurrence of a memory exhaustion event in the target trace.

Trace-Relating Compiler Correctness. Generalized formalizations of compiler correctness like

the ones above can be naturally expressed as instances of a uniform definition, which we call

trace-relating compiler correctness. This generalizes basic compiler correctness by (a) considering

that source and target traces belong to possibly distinct sets TraceS and TraceT, and (b) being

parameterized by an arbitrary trace relation ∼.

Definition 1.2 (Trace-Relating Compiler Correctness (CC∼
)). A compiler ↓ is correct with respect

to a trace relation ∼ ⊆ TraceS × TraceT iff

∀W.∀t. W↓⇝t ⇒∃s ∼ t.W⇝s

This definition requires that, for any target trace t produced by the compiled program W↓, there
exist a source trace s that can be produced by the original program W and is related to t according
to ∼ (i.e., s ∼ t). By choosing the trace relation appropriately, one can recover the different notions

of compiler correctness presented above:

Basic CC Take s ∼ t to be s = t. Trivially, the basic CC of Definition 1.1 is CC=
.

CompCert Undefined behavior is modeled in CompCert as a trace-terminating event Wrong that

can occur in any of its languages (source, target, and all intermediate languages), so for a

given phase (or composition thereof), we have TraceS = TraceT. Nevertheless, the relation

between source and target traces with which to instantiate CC∼
to obtain CompCert’s current

theorem is the following (note that we denote finite traces–or prefixes– as m)

s ∼ t ≡ s = t ∨ (∃𝑚 ≤ t. s =𝑚·Wrong)

A compiler satisfying CC∼
for this trace relation can turn a source prefix ending in undefined

behavior𝑚·Wrong (where “·” is concatenation) either into the same prefix in the target (first

disjunct), or into a target trace that starts with the prefix𝑚 but then continues arbitrarily
(second disjunct, “≤” is the prefix relation).

CakeML Here, target traces are sequences of symbols from an alphabet ΣT that has a specific

trace-terminating event, Resource_limit_hit, which is not available in the source alphabet

ΣS (i.e., ΣT = ΣS ∪ {Resource_limit_hit}. Then, the compiler correctness theorem of CakeML

can be obtained by instantiating CC∼
with the following ∼ relation:

s ∼ t ≡ s = t ∨ (∃𝑚. 𝑚 ≤ s. t =𝑚·Resource_limit_hit)
3
Stated at the top of the CompCert file driver/Complements.v and discussed by Regehr [68].
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The resultingCC∼
instance relates a target trace ending inResource_limit_hit after executing

prefix𝑚 to a source trace that first produces𝑚 and then continues in a way given by the

semantics of the source program.

Beyond undefined behavior and resource exhaustion, there are many other practical uses for

CC∼
: in this paper we show that it also accounts for differences between source and target values,

for a single source output being turned into a series of target outputs, and for side-channels.

On the flip side, the compiler correctness statement and its implications can be more difficult

to understand for CC∼
than for CC=

. The full implications of choosing a particular ∼ relation

can be subtle. In fact, using a bad relation can make the compiler correctness statement trivial or

unexpected. For instance, it should be easy to see that if one uses the total relation, which relates

all source traces to all target ones, the CC∼
property holds for every compiler, yet it might take

one a bit more effort to understand that the same is true even for the following relation:

s ∼ t ≡ ∃W.W⇝s ∧ W↓⇝t

Reasoning About Trace Properties. To understand more about a particular CC∼
instance, we

propose to also look at how it preserves trace properties—defined as sets of allowed traces [39]—from
the source to the target. For instance, it is well known that CC=

is equivalent to the preservation of

all trace properties (where𝑊 |= 𝜋 reads “𝑊 satisfies property 𝜋” and stands for ∀𝑡 .𝑊⇝𝑡 ⇒ 𝑡 ∈ 𝜋 ):

CC= ≡ ∀𝜋 ∈ 2
Trace. ∀W. W|=𝜋 ⇒ W↓|=𝜋

However, to the best of our knowledge, similar results have not been formulated for trace relations

beyond equality, when it is no longer possible to preserve the trace properties of the source program

unchanged. For trace-relating compiler correctness, where source and target traces can be drawn

from different sets and related by an arbitrary trace relation, there are two crucial questions to ask:

(1) For a source trace property 𝜋S of a program—established for instance by formal verification—

what is the strongest target property that any CC∼
compiler is guaranteed to ensure for the

produced target program?

(2) For a target trace property 𝝅T, what is the weakest source property we need to show of the

original source program to obtain 𝝅T for the result of any CC∼
compiler?

Far from being mere hypothetical questions, they can help the developer of a verified compiler

better understand the compiler correctness theorem they are proving, and we expect that any user

of such a compiler will need to ask either one or the other if they are to make use of that theorem.

In this work we provide a simple and natural answer to these questions, for any instance of CC∼
.

Building upon a bijection between relations and Galois connections [6, 26, 54], we observe that

any trace relation ∼ corresponds to two property mappings 𝜏 and �̃� , which are functions mapping

source properties to target ones (𝜏 standing for “to target”) and target properties to source ones (�̃�

standing for “to source”):

𝜏 (𝜋S) = {t | ∃s. s ∼ t ∧ s ∈ 𝜋S}
�̃� (𝝅T) = {s | ∀t. s ∼ t ⇒ t ∈ 𝝅T}

The existential image of ∼, 𝜏 , answers the first question above by mapping a given source property

𝜋S to the target property that contains all target traces for which there exists a related source trace
that satisfies 𝜋S. Dually, the universal image of ∼, �̃� , answers the second question by mapping a

given target property 𝝅T to the source property that contains all source traces for which all related
target traces satisfy 𝝅T. We introduce two new correct compilation definitions in terms of trace
property preservation (TP):

• TP𝜏
quantifies over all source trace properties and uses 𝜏 to obtain the corresponding target

properties;
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• TP�̃�
quantifies over all target trace properties and uses �̃� to obtain the corresponding source

properties.

We prove that these two definitions are equivalent to CC∼
, yielding a novel trinitarian view of

compiler correctness (Figure 1).

CC∼

TP𝜏TP�̃�

∀W. ∀t. W↓⇝t ⇒∃s ∼ t.W⇝s

∀𝝅T . ∀W. W |= �̃� (𝝅T)
⇒ W↓ |= 𝝅T ≡ ≡

∀𝜋S. ∀W. W |= 𝜋S

⇒ W↓ |= 𝜏 (𝜋S)

≡
Fig. 1. The equivalent compiler correctness definitions forming our trinitarian view.

Contributions.
• We propose a new trinitarian view of compiler correctness that accounts for non-trivial

relations between source and target traces. While, as discussed above, specific instances of

the CC∼
definition have already been used in practice, we seem to be the first to propose

assessing the meaningfulness of CC∼
instances in terms of how properties are preserved

between the source and the target, and in particular by looking at the property mappings

�̃� and 𝜏 induced by the trace relation ∼. We prove that CC∼
, TP�̃�

, and TP𝜏
are equivalent

for any trace relation (§2.2), as illustrated in Figure 1. In the opposite direction, we show

that for every trace relation corresponding to a given Galois connection [26], an analogous

equivalence holds.

• We extend these results from the preservation of trace properties to the larger class of subset-

closed hyperproperties, e.g., noninterference (§3.1)
4
, and to the classes of safety properties

(§3.2) and all hyperproperties (§3.3).

• We use CC∼
compilers of various complexities to illustrate that our view on compiler correct-

ness naturally accounts for undefined behavior (§4.1), resource exhaustion (§4.2), different

source and target values (§4.3), and differences in the granularity of data and observable

events (§4.4). We expect these ideas to extend to other discrepancies between source and

target traces. For each compiler we show how to choose the relation between source and

target traces and how the induced property mappings preserve interesting trace properties

and subset-closed hyperproperties. We look at the way particular �̃� and 𝜏 work on different

kinds of properties and how the produced properties can be expressed for different kinds of

traces.

• We analyze the impact of correct compilation on noninterference [28], showing what can

still be preserved (and thus also what is lost) when target observations are finer than source

ones, e.g., side-channel observations (§5). We formalize the guarantee obtained by correct

compilation of a noninterfering program as abstract noninterference [27], a weakening of target
noninterference. Dually, we identify a family of declassifications of target noninterference

for which source reasoning is possible.

4
Given the deterministic nature of our programs, we consider notions of noninterference that are often used in deterministic

languages. We leave notions of noninterference in nondeterministic languages for future work.
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• We show that the trinitarian view also extends to a large class of secure compilation definitions
[3], formally characterizing the protection of the compiled program against linked adversarial

code (§6). For each secure compilation definition we again propose both a property-free

characterization in the style of CC∼
, and two characterizations in terms of preserving a class

of source or target properties satisfied against arbitrary adversarial contexts. The additional

quantification over contexts allows for finer distinctions when considering different property

classes, so we study mapping classes not only of trace properties and hyperproperties, but

also of relational hyperproperties [3].

• We provide instances of secure compilers that preserve three different classes of hyperprop-

erties (trace, safety and hypersafety properties) when targeting a language with additional

trace events that are not possible in the source (§7).

The results and insights that we provide often follow one’s expected intuition andmay be considered

unsurprising. However our framework is the first to capture such expectations formally and

precisely, and as such it provides a uniform way to discuss these and to formalise future (possibly

surprising) ones. The paper closes with discussions of related (§8) and future work (§9). Some

technical proofs can be found in the appendix (§A).

The traces considered in our examples are structured, usually as sequences of events. We notice

however that unless explicitly mentioned, all our definitions and results are more general and

make no assumption whatsoever about the structure of traces. Most of the theorems formally or

informally mentioned in the paper were mechanized in the Coq proof assistant and are marked

with . This development has around 10k lines of code and is available at the following address:

https://github.com/secure-compilation/different_traces.

2 TRACE-RELATING COMPILER CORRECTNESS
In this section, we start by generalizing the trace property preservation definitions at the end of the

introduction to TP𝜎
and TP𝜏

, which depend on two arbitrary mappings 𝜎 and 𝜏 (§2.1). We prove

that, whenever 𝜎 and 𝜏 form a Galois connection, TP𝜎
and TP𝜏

are equivalent (Theorem 2.4). We

then exploit a bijective correspondence between trace relations and Galois connections to close the

trinitarian view (§2.2), with two main benefits: first, it helps us assess the meaningfulness of a given

trace relation by looking at the property mappings it induces; second, it allows us to construct

new compiler correctness definitions starting from a desired mapping of properties. Finally, we

generalize the classic result that compiler correctness (i.e., CC=
) is enough to preserve not just

trace properties but also all subset-closed hyperproperties [18]. For this, we show that CC∼
is also

equivalent to subset-closed hyperproperty preservation, for which we also define both a version in

terms of �̃� and a version in terms of 𝜏 (§3.1).

2.1 Property Mappings
As explained in §1, trace-relating compiler correctness CC∼

, by itself, lacks a crisp description of

which trace properties are preserved by compilation. Since even the syntax of traces can differ

between source and target, one can either focus on trace properties of the source (and then interpret

them in the target), or on trace properties of the target (and then interpret them in the source).

Formally we need two property mappings, 𝜏 : 2
TraceS → 2

TraceT
and 𝜎 : 2

TraceT → 2
TraceS

, which

lead us to the following generalization of trace property preservation (TP).

Definition 2.1 (TP𝜎
and TP𝜏

). Given two propertymappings, 𝜏 : 2
TraceS → 2

TraceT
and𝜎 : 2

TraceT →
2

TraceS
, for a compilation chain ·↓ we define TP𝜏

and TP𝜎
as follows:

TP𝜏 ≡ ∀𝜋S. ∀W. W |= 𝜋S ⇒ W↓ |= 𝜏 (𝜋S)
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TP𝜎 ≡ ∀𝝅T . ∀W. W |= 𝜎 (𝝅T) ⇒ W↓ |= 𝝅T

For an arbitrary source program W, 𝜏 interprets a source property 𝜋S as the target guarantee for
W↓. Dually, 𝜎 defines a source obligation sufficient for the satisfaction of a target property 𝝅T after

compilation. Ideally:

i) Given 𝝅T, the target interpretation of the source obligation 𝜎 (𝝅T) should actually guarantee

that 𝝅T holds, i.e., 𝜏 (𝜎 (𝝅T)) ⊆ 𝝅T;

ii) Dually for 𝜋S, we would not want the source obligation for 𝜏 (𝜋S) to be harder than 𝜋S itself,

i.e., 𝜎 (𝜏 (𝜋S)) ⊇ 𝜋S.

These requirements are satisfied when the two maps form a Galois connection between the posets

of source and target properties ordered by inclusion. We briefly recall the definition and the

characteristic property of Galois connections [20, 47].

Definition 2.2 (Galois connection). Let (𝑋, ⪯) and (𝑌, ⊑) be two posets. A pair of maps, 𝛼 : 𝑋 → 𝑌 ,

𝛾 : 𝑌 → 𝑋 is a Galois connection iff it satisfies the adjunction law: ∀𝑥 ∈ 𝑋 . ∀𝑦 ∈ 𝑌 . 𝛼 (𝑥) ⊑ 𝑦 ⇐⇒
𝑥 ⪯ 𝛾 (𝑦). 𝛼 (resp. 𝛾 ) is the lower (upper) adjoint or abstraction (concretization) function and 𝑌 (𝑋 )

the abstract (concrete) domain.

Wewill oftenwrite𝛼 : (𝑋, ⪯) ⇆ (𝑌, ⊑) : 𝛾 to denote a Galois connection, or simply𝛼 : 𝑋 ⇆ 𝑌 : 𝛾 ,

or even 𝛼 ⇆ 𝛾 when the involved posets are clear from context.

Lemma 2.3 (Characteristic property of Galois connections). If 𝛼 :(𝑋, ⪯) ⇆ (𝑌, ⊑):𝛾 is a Galois

connection, then 𝛼,𝛾 are monotone and 𝑖𝑑 ⪯ 𝛾 ◦ 𝛼 and 𝛼 ◦ 𝛾 ⊑ 𝑖𝑑 , i.e.,

∀𝑥 ∈ 𝑋 . 𝑥 ⪯ 𝛾 (𝛼 (𝑥))
∀𝑦 ∈ 𝑌 . 𝛼 (𝛾 (𝑦)) ⊑ 𝑦

If 𝑋,𝑌 are complete lattices, then 𝛼 is continuous, i.e., ∀𝐹 ⊆ 𝑋 . 𝛼 (⊔ 𝐹 ) = ⊔
𝛼 (𝐹 ).

If two property mappings, 𝜏 and 𝜎 , form a Galois connection on trace properties ordered by set

inclusion, Lemma 2.3 (with 𝛼 = 𝜏 and 𝛾 = 𝜎) tells us that they satisfy conditions 𝑖), 𝑖𝑖) above, i.e.,
𝜏 (𝜎 (𝝅T)) ⊆ 𝝅T and 𝜎 (𝜏 (𝜋S)) ⊇ 𝜋S.

5
These conditions on 𝜏 and 𝜎 are sufficient to show the

equivalence of the criteria they define, respectively TP𝜏
and TP𝜎

.

Theorem 2.4 (TP𝜏
and TP𝜎

coincide ). Let 𝜏 : 2
TraceS ⇄ 2

TraceT
: 𝜎 be a Galois connection, with

𝜏 and 𝜎 the lower and upper adjoints (resp.). Then TP𝜏 ⇐⇒ TP𝜎
.

Proof. Notice that if a program satisfies a property 𝜋 , then it satisfies every less restrictive

i.e., bigger property 𝜋 ′ ⊇ 𝜋 . Building on this:

(⇒) Assume TP𝜏
and that W satisfies 𝜎 (𝝅T). Apply TP𝜏

to W and 𝜎 (𝝅T) and deduce that W↓
satisfies 𝜏 (𝜎 (𝝅T)) ⊆ 𝝅T.

(⇐) Assume TP𝜎
and that W satisfies 𝜋S ⊆ 𝜎 (𝜏 (𝜋S)). Apply TP𝜎

to W and 𝜎 (𝜏 (𝜋S)) deducing
W↓ satisfies 𝜏 (𝜋S).

□

2.2 Trace Relations and Property Mappings
We now investigate the relation between CC∼

, TP𝜏
and TP𝜎

. We show that for a trace relation and

its corresponding Galois connection (Lemma 2.7), the three criteria are equivalent (Theorem 2.8).

This equivalence offers interesting insights for both verification and the design of a correct compiler.

For a CC∼
compiler, the equivalence makes explicit both the guarantees one has after compilation

5
While target traces are often “more concrete” than source ones, trace properties 2

Trace
(which in Coq we represent as the

function type Trace→Prop) are contravariant in Trace and thus target properties correspond to the abstract domain.
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(𝜏) and source proof obligations to ensure the satisfaction of a given target property (�̃�). On the

other hand, a compiler designer might first determine the target guarantees the compiler itself

must provide, i.e., 𝜏 , and then prove an equivalent statement, CC∼
, for which more convenient

proof techniques exist in the literature [9, 77].

Definition 2.5 (Existential and Universal Image [26]). Given any two sets 𝑋 and 𝑌 and a relation

∼ ⊆ 𝐴 × 𝐵, define the relation’s existential or direct image, 𝜏 : 2
𝑋 → 2

𝑌
and its universal image,

�̃� : 2
𝑌 → 2

𝑋
as follows:

𝜏 = 𝜆 𝜋 ∈ 2
𝑋 . {𝑦 | ∃𝑥 . 𝑥 ∼ 𝑦 ∧ 𝑥 ∈ 𝜋}

�̃� = 𝜆 𝜋 ∈ 2
𝑌 . {𝑥 | ∀𝑦. 𝑥 ∼ 𝑦 ⇒ 𝑦 ∈ 𝜋}

When trace relations are considered, the corresponding existential and universal images can be

used to instantiate Definition 2.1 leading to the trinitarian view already mentioned in §1.

Theorem 2.6 (Trinitarian View ). For any trace relation ∼ and its

existential and universal images 𝜏 and �̃� , we have:

CC∼

TP�̃� TP𝜏

This result relies both on Theorem 2.4 and on the fact that the existential and universal images of a

trace relation form a Galois connection ( ). The theorem can be stated in a slightly more general

form (Theorem 2.8), exploiting an isomorphism between the category of sets and relations and a

sub category of monotonic predicate transformers [26]. We specialize this isomorphism to what is

of interest for our purposes and deduce a bijective correspondence between trace relations and

Galois connections on properties.

Lemma 2.7 (Trace relations � Galois connections on trace properties). The function ∼ ↦→ 𝜏 ⇆ �̃�

that maps a trace relation to its existential and universal images is a bijection between trace relations

2
TraceS×TraceT

and Galois connections on trace properties 2
TraceS ⇆ 2

TraceT
. Its inverse is 𝜏 ⇆ 𝜎 ↦→ ∼̂,

where s ∼̂ t ≡ t ∈ 𝜏 ({s}).
The bijection just introduced allows us to generalize Theorem 2.6 and switch anytime between the

three views of compiler correctness described earlier.

Theorem 2.8 (Correspondence of Criteria). For any trace relation ∼ and corresponding Galois

connection 𝜏 ⇆ 𝜎 , we have: TP𝜏 ⇐⇒ CC∼ ⇐⇒ TP𝜎
.

Note that sometimes the lifted properties may be trivial: the target guarantee can be the true

property (the set of all traces), or the source obligation the false property (the empty set of traces).

This might be the case when source observations abstract away too much information (§4.2 presents

an example).

3 PRESERVING OTHER (HYPER)PROPERTY CLASSES
In this section we investigate how to preserve other classes of (hyper)properties beyond trace prop-

erties: subset-closed hyperproperties (§3.1) safety properties (§3.2) and arbitrary hyperproperties

that are not just subset-closed (§3.3). For each of these classes, we start by giving an intuition of

what it means to preserve such a class in the equal-trace setting, then we study preservation of that

class in the trace-relating setting. For subset-closed hyperproperties we have to refine the Galois

connection to ensure the information “HS is subset-closed” is not lost with the application of 𝜏 .

Similarly, when looking at safety properties, we have to preserve the information that a propery is

a safety property. For arbitrary hyperproperties one might instead require that no information at

all is lost during the (pre or post) composition of 𝜏 and �̃� . The section concludes with a comparison

of the criteria in terms of relative strengths (§3.4).
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3.1 Preservation of Subset-Closed Hyperproperties
Hyperproperty preservation is a strong requirement in general. Fortunately, many interesting

hyperproperties are subset-closed (SCH for short) (e.g., noninterference), and these are known to be

preserved by refinement [18]. When the trace semantics is common to source and target languages,

a subset-closed hyperproperty is preserved if the behaviors of the compiled program refine the

behaviors of the source program, which coincides with the statement of CC=
. We generalize this

result to the trace-relating setting, introducing two other equivalent characterizations of CC∼
in

terms of preservation of subset-closed hyperproperties (Theorem 3.3). In order to do so we close

under subsets the images of both 𝜏 and �̃� so that source subset-closed hyperproperties are mapped

to target subset-closed ones and viceversa.

First, a hyperproperty 𝐻 is defined as a set of sets of traces, 𝐻 ∈ 2
2
Trace

(recall that Traces is the set
of all traces) [18]. A program satisfies a hyperproperty when its complete set of traces, which from

now on we will call its behavior, is a member of the hyperproperty.

Definition 3.1 (Hyperproperty Satisfaction [18]). A program 𝑊 satisfies a hyperproperty 𝐻 ,

written𝑊 |= 𝐻 ,
6
iff beh(𝑊 ) ∈ 𝐻 , where beh(𝑊 ) = {𝑡 | 𝑊⇝𝑡}.

To talk about hyperproperty preservation in the trace-relating setting, we need an interpretation of

source hyperproperties into the target and vice versa. The one we consider builds on top of the

two trace property mappings 𝜏 and 𝜎 , which are naturally lifted to hyperproperty mappings. This

way we are able to extract two hyperproperty mappings from a trace relation similarly to §2.2:

Definition 3.2 (Lifting property mappings to hyperproperty mappings). Let 𝜏 : 2
TraceS → 2

TraceT

and 𝜎 : 2
TraceT → 2

TraceS
be arbitrary property mappings. The images of HS ∈ 2

2
TraceS

,HT ∈ 2
2

TraceT

under 𝜏 and 𝜎 are, respectively:

𝜏 (HS) = {𝜏 (𝜋S) | 𝜋S ∈ HS} �̃� (HT) = {𝜎 (𝝅T) | 𝝅T ∈ HT}

Formally, we are defining two new mappings, this time on hyperproperties, but with a small abuse

of notation we still denote them 𝜏 and �̃� .

Interestingly, it is not possible to apply the argument used for CC=
to show that a CC∼

compiler

guarantees W↓ |= 𝜏 (HS) whenever W |= HS. This is because direct images do not necessarily

preserve subset-closure [44, 55]. We therefore close the image of 𝜏 and �̃� under subsets (denoted as

Cl⊆) and obtain the following result:

Theorem 3.3 (Preservation of Subset-Closed Hyperproperties ). For any trace relation ∼ and its

existential and universal images lifted to hyperproperties, 𝜏 and �̃� , and for Cl⊆ (𝐻 ) = {𝜋 | ∃𝜋 ′ ∈
𝐻. 𝜋 ⊆ 𝜋 ′}, we have the following:

SCHPCl⊆◦𝜏 ≡ ∀W∀HS ∈ SCHS .W |= HS ⇒ W↓ |= Cl⊆ (𝜏 (HS));
SCHPCl⊆◦�̃� ≡ ∀W∀HT ∈ SCHT.W |= Cl⊆ (�̃� (HT)) ⇒ W↓ |= HT .

CC∼

SCHPCl⊆◦𝜏 SCHPCl⊆◦�̃�

The use ofCl⊆ in Theorem 3.3 implies a loss of precision in preserving subset-closed hyperproperties

through compilation. In §5, we focus on a specific security-relevant subset-closed hyperproperty,

noninterference, and show that such a loss of precision can be seen as a declassification. Instead,

now we define the trinity and the related formal machinery for safety properties preservation.

6
In case of ambiguity with property satisfaction the class of 𝐻 will be made explicit.
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3.2 Preserving Safety Properties
The class of Safety properties collects all trace properties prescribing that “something bad never
happens” or equivalently, all trace properties whose violation can be monitored and, once observed,

no longer restored [18]. More abstractly safety properties can be defined as the closed sets of a

topology [18, 58], with no need to consider any particular structure on the traces. To ease the

presentation, we consider the trace model adopted by Abate et al. [3] where traces resemble lists

and streams of events. This model naturally comes with a notion of prefixes and a relation between

a prefix𝑚 and a trace 𝑡 , written𝑚 ≤ 𝑡 . Intuitively, 𝜋 is a safety property if any trace 𝑡 violating
the property extends a “bad prefix”𝑚 that witnesses such a violation. Every safety property is

therefore uniquely defined by the set of its “bad prefixes”. We recall below the definition and the

characterization of safety properties in terms of sets of finite prefixes𝑚.

Definition 3.4 (Safety Properties [18]). Let 𝜋 be a trace property. Then,

𝜋 ∈ Safety iff ∀𝑡 ∉ 𝜋. ∃𝑚 ≤ 𝑡 . ∀𝑡 ′. 𝑚 ≤ 𝑡 ′ ⇒ 𝑡 ′ ∉ 𝜋.

Equivalently, 𝜋 ∈ Safety iff there exists a set of finite prefixes𝑀 , such that

∀𝑡 . 𝑡 ∉ 𝜋 ⇐⇒ (∃𝑚 ∈ 𝑀. 𝑚 ≤ 𝑡)
Due to this characterization of safety properties through finite prefixes (Definition 3.4), the preser-

vation of all and only the safety properties is equivalent to CC=
restricted to finite prefixes.

Theorem 3.5. The following are equivalent:

SC= ≡ ∀W,𝑚. W↓⇝∗𝑚 ⇒ W⇝∗𝑚

SP ≡ ∀𝜋 ∈ Safety. W |= 𝜋 ⇒ W↓ |= 𝜋

where𝑊⇝∗𝑚 stands for ∃𝑡 .𝑚 ≤ 𝑡 ∧𝑊⇝𝑡 .

Unfolding⇝∗
we can interpret SC=

as follows. Whenever W↓ produces a trace 𝑡 ≥ 𝑚 that violates

a specific safety property, namely, the one defined by the singleton prefix set {𝑚}, then W violates

the same safety property, producing a trace 𝑡 ′ ≥ 𝑚 but possibly distinct from 𝑡 .

The generalization we propose of SC=
to the trace-relating setting, states that whenever W↓

produces a trace t that violates a target safety property, then W violates the source interpretation of

the property, i.e., its image through �̃� .7 The following theorem defines SC∼
and its two equivalent

formulations.

Theorem 3.6 (Trinitarian view for Safety). For a trace relation ∼ ⊆ TraceS × TraceT and its

corresponding property mappings �̃� and 𝜏 , the following are equivalent:

SC∼ ≡ ∀W∀t∀m ≤ t. W↓⇝t ⇒ ∃t′ ≥ m∃s ∼ t′. W⇝s

SP�̃� ≡ ∀W ∀𝝅T ∈ SafetyT. W |= �̃� (𝝅T) ⇒ W↓ |= 𝝅T

TPSafe◦𝜏 ≡ ∀W ∀𝜋S ∈ 2
TraceS . W |= 𝜋S ⇒ W↓ |= (Safe ◦ 𝜏) (𝜋S)

SC∼

SP�̃� TPSafe◦𝜏

Coherent with the informal meaning we aimed to give to SC∼
, SP�̃�

quantifies over target safety

properties, while TPSafe◦𝜏
quantifies over arbitrary source properties, but imposes the composition

of 𝜏 with Safe, which maps an arbitrary target property 𝝅T to the target safety property that

best over-approximates 𝝅T.
8
More precisely, Safe is a closure operator on target properties, with

SafetyT =
{
Safe(𝝅T)

�� 𝝅T ∈ 2
TraceT

}
being the class of target safety properties.

7
At least one other symmetric generalization is possible: For 𝜋S ∈ SafetyS defined by𝑀 = {𝑚}, if W↓ produces a trace t
that violates the target interpretation of 𝜋S, i.e., 𝜏 (𝜋S) , then W produces s ≥𝑚 thus violating 𝜋S.
8Safe (𝝅T) = ∩ {ST | 𝝅T ⊆ ST ∧ ST ∈ SafetyT } is the topological closure in the topology where safety properties coincide

with the closed sets (see, e.g., Clarkson and Schneider [18] and Pasqua and Mastroeni [58]).
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In Figure 2 the blue and red ellipses represent source and target properties properties respectively

and are connected by 𝜏 ⇆ �̃� . The red ellipse is the class of all target safety properties. Safe ⇆ id is

a Galois connection between target properties and the target safety properties, as Safe is a closure
operator [21]. Finally, the composition of Galois connections is still a Galois connection [21]. Hence,

Safe ◦ 𝜏 : 2
TraceS ⇆ SafetyT : �̃�

is a Galois connection between source properties and target safety properties, that we used to prove

the equivalence TPSafe◦𝜏 ⇐⇒ SP�̃�
( ). We notice that this argument generalizes to arbitrary

2
TraceS

2
TraceT SafetyT

𝜏�̃�

Safe

id

Safe ◦ 𝜏
�̃�

Fig. 2. Composition of 𝜏 ⇆ �̃� and Safe ⇆ id.

closure operators on target properties ( ). We come back to this in §6, where more such results

will be needed when considering other classes of properties being preserved by secure compilers.

Now, we define the trinity for arbitrary hyperproperties, not just the subset-closed ones.

3.3 Preserving Non-Subset Closed Hyperproperties
Subset-closed hyperproperties are not expressive enough to all capture interesting properties,

e.g., possibilistic notions of information-flow [18], so we aim to briefly discuss the preservation of

arbitrary hyperproperties. In general, one cannot lift a Galois connection over trace properties to a

Galois connection over arbitrary hyperproperties.

While two out of three of the criteria we introduce in this section are equivalent under no assump-

tions (HC∼ ⇐⇒ HP𝜏
), for a comparison with the third one we require that no information is lost

in the pre or post composition of 𝜏 and 𝜎 . For this, we label the trinity in Theorem 3.8 as weak.

To start, we note that the following strengthening of CC=
, denoted HC=

, is equivalent to the

preservation of arbitrary hyperproperties. Here, beh(W) is the set of all traces of W.

Theorem 3.7 (HC=
, HP). The followings are equivalent

HC= ≡ ∀W. beh(W↓) = beh(W)

HP ≡ ∀W ∀𝐻 ∈ 2
2
Trace

. W |= 𝐻 ⇐⇒ W↓ |= 𝐻

HC=
requires that the behavior of W↓ is exactly the same as the behavior of W. We generalize

this to the trace-relating setting, by requiring that the behavior of W↓ coincide with the target

interpretation of the source properties describing the behavior of W.
9

Theorem 3.8 (Weak Trinity for Hyperproperties ). For a trace relation ∼ ⊆ TraceS ×TraceT and

induced property mappings �̃� and 𝜏 , we have:

HC∼ ⇐⇒ HP𝜏
;

9
At least one generalization is possible: �̃� (beh( W↓)) = beh(W) . In this case, HC∼ ⇐⇒ HP�̃� holds unconditionally while

the other two implications hold under the same, but swapped, hypotheses from Theorem 3.8.
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if 𝜏 ⇆ �̃� is a Galois insertion (i.e., 𝜏 ◦ �̃� = 𝑖𝑑), then HC∼ ⇒ HP�̃�
,

if �̃� ⇆ 𝜏 is a Galois reflection (i.e., �̃� ◦ 𝜏 = 𝑖𝑑), then HP�̃� ⇒ HP𝜏
,

HC∼ ≡ ∀W. beh(W↓) = 𝜏 (beh(W))
HP𝜏 ≡ ∀W ∀HS . W |= HS ⇒ W↓ |= 𝜏 (HS)
HP�̃� ≡ ∀W ∀HT. W |= �̃� (HT) ⇒ W↓ |= HT

HC∼

HP𝜏HP�̃�

In
s
e
r
t
io
n

Reflection

In other words, it is still possible (and sound) to deduce a source obligation for a given target

hyperproperty HT (HC∼ ⇒ HP�̃�
) when no information is lost in the composition 𝜏 ◦ �̃� . Dually,

HP𝜏
(and hence HC∼

) is a consequence of HP�̃�
when no information is lost in composing in the

other direction, �̃� ◦ 𝜏 .

3.4 Comparing the Presented Criteria
At this point we have presented four trinities of criteria that preserve trace properties, subset-closed

hyperproperties, safety properties and arbitrary hyperproperties. Figure 3 sums up our trinities

and orders them according their relative strength.

CC∼

TP𝜏TP�̃�

SCHPCl⊆◦𝜏SCHPCl⊆◦�̃�

HC∼

HP𝜏HP�̃�

In
s
e
r
t
io
n

Reflection
SC∼

SP�̃� TPSafe◦𝜏

Fig. 3. Generalization of Compiler Correctness and its trace-relating variations.

In §6 we will also consider, in the setting of secure compilation, the class of safety hyperproperties

or hypersafety, and relational hyperproperties. In the setting of correct compilation – that focuses

only on whole programs – it is straightforward to show that the trinity for hypersafety coincides

with the one for safety properties in the same way the trinity of trace properties and subset-closed

hyperproperties coincide. Similarly the trinity for relational hyperproperties coincides with the

one for hyperproperties.

4 INSTANCES OF TRACE-RELATING COMPILER CORRECTNESS
The trace-relating view of compiler correctness above can serve as a unifying framework for

studying a range of interesting compilers. This section provides several representative instantiations

of the framework: source languages with undefined behavior that compilation can turn into arbitrary

target behavior (§4.1), target languages with resource exhaustion that cannot happen in the source

(§4.2), changes in the representation of values (§4.3), and differences in the granularity of data and

observable events (§4.4).

4.1 Undefined Behavior
We start by expanding upon the discussion of undefined behavior in §1. We first study the model

of CompCert, where source and target alphabets are the same, including the event for undefined

behavior. The trace relation weakens equality by allowing undefined behavior to be replaced with

an arbitrary sequence of events.
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Example 4.1 (CompCert-like Undefined Behavior Relation). Source and target traces are sequences
of events drawn from Σ, whereWrong ∈ Σ is a terminal event that represents an undefined behavior.

We then use the trace relation defined in the introduction:

s ∼ t ≡ s = t ∨ ∃𝑚 ≤ t. s =𝑚 ·Wrong

Each trace of a target program produced by a CC∼
compiler either also is a trace of the original

source program or has a finite prefix that the source program also produces, immediately before

encountering undefined behavior. As explained in §1, one of the correctness theorems in CompCert

can be rephrased as this variant of CC∼
.

We proved that the property mappings induced by the relation can be written as ( ):

�̃� (𝝅T) = {s | s∈𝝅T ∧ s ≠𝑚·Wrong} ∪ {𝑚·Wrong | ∀t. 𝑚≤t ⇒ t∈𝝅T}
𝜏 (𝜋S) = {t | t∈𝜋S} ∪ {t | ∃𝑚 ≤ t. 𝑚·Wrong ∈ 𝜋S}

These two mappings explain what a CC∼
compiler ensures for the ∼ relation above. The target-to-

source mapping �̃� states that to prove that a compiled program has a property 𝝅𝑻 using source-level

reasoning, one has to prove that any trace produced by the source program must either be a target

trace satisfying 𝝅𝑻 or have undefined behavior, but only provided that any continuation of the trace

substituted for the undefined behavior satisfies 𝝅𝑻 . The source-to-target mapping 𝜏 states that by

compiling a program satisfying a property 𝜋S we obtain a program that produces traces that satisfy

the same property or that extend a source trace that ends in undefined behavior.

These definitions can help us reason about programs. For instance, �̃� specifies that, to prove

that an event does not happen in the target, it is not enough to prove that it does not happen in

the source: it is also necessary to prove that the source program does not have any undefined

behavior (second disjunct). Indeed, if it had an undefined behavior, its continuations could exhibit

the unwanted event. �

This relation can be easily generalized to other settings. For instance, consider the setting in

which we compile down to a low-level language like machine code. Target traces can now contain

new events that cannot occur in the source: indeed, in modern architectures like x86 a compiler

typically uses only a fraction of the available instruction set. Some instructions might even perform

dangerous operations, such as writing to the hard drive, or controlling a device that is hidden from

the source language. Formally, the source and target do not have the same events any more. Thus,

we consider a source alphabet ΣS = Σ ∪ {Wrong}, and a target alphabet ΣT = Σ ∪ Σ′
. The trace

relation is defined in the same way and we obtain the same property mappings as above, except that

target traces now have more events (some of which may be dangerous), the arbitrary continuations

of target traces get more interesting. For instance, consider a new event that represents writing

data on the hard drive, and suppose we want to prove that this event cannot happen for a compiled

program. Then, proving this property requires exactly proving that the source program exhibits no

undefined behavior [14]. More generally, what one can prove about target-only events can only be

either that they cannot appear (because there is no undefined behavior) or that any of them can

appear (in the case of undefined behavior).

In §7.1 we study a similar example, showing that even in a safe language linked adversarial

contexts can cause dangerous target events that have no source correspondent.

4.2 Resource Exhaustion
Let us return to the discussion about resource exhaustion in §1.

Example 4.2 (Resource Exhaustion). We consider traces made of events drawn from ΣS in the

source, and ΣT = ΣS ∪ {Resource_Limit_Hit} in the target. Recall the trace relation for resource
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exhaustion:

s ∼ t ≡ s = t ∨ ∃𝑚 ≤ s. t =𝑚 · Resource_Limit_Hit

Formally, this relation is similar to the one for undefined behavior, except this time it is the target

trace that is allowed to end early instead of the source trace.

The induced trace property mappings �̃� and 𝜏 are the following ( ):

�̃� (𝝅𝑻 ) = {s | s ∈ 𝝅𝑻 } ∩ {s | ∀𝑚 ≤ s. 𝑚 · Resource_Limit_Hit ∈ 𝝅𝑻 }
𝜏 (𝜋S) = 𝜋S ∪ {𝑚 · Resource_Limit_Hit | ∃s ∈ 𝜋S. 𝑚 ≤ s}

These capture the following intuitions. The target-to-source mapping �̃� states that to prove a

property of the compiled program one has to show that the traces of the source program satisfy two

conditions: (1) they must also satisfy the target property; and (2) the termination of every one of

their prefixes by a resource exhaustion error must be allowed by the target property. This is rather

restrictive: any property that prevents resource exhaustion cannot be proved using source-level

reasoning. Indeed, if 𝝅T does not allow resource exhaustion, then �̃� (𝝅T) = ∅. This is to be expected
since resource exhaustion is simply not accounted for at the source level. The source-to-target

mapping 𝜏 states that a compiled program produces traces that either belong to the same properties

as the traces of the source program or end early due to resource exhaustion.

In this example, safety properties [39] are mapped (in both directions) to other safety properties

( ). This can be desirable for a relation: since safety properties are usually easier to reason about,

one interested only in safety properties at the target can reason about them using source-level

reasoning tools for safety properties. To reason about safety, one would use the criteria presented

in §3.2

Since it focuses on traces and not just safety, the compiler correctness theorem in CakeML is an

instance of CC∼
for the ∼ relation above. We have also implemented two small compilers that are

correct for this relation. The full details can be found in the Coq development.The first compiler ( )

goes from a simple expression language (similar to the one in §4.3 but without inputs) to the same

language except that execution is bounded by some amount of fuel: each execution step consumes

some amount of fuel and execution immediately halts when it runs out of fuel. The compiler is the

identity.

The second compiler ( ) is more interesting: we proved this CC∼
instance for a variant of a

compiler from a while language to a simple stack machine by Xavier Leroy [43]. We enriched

the two languages with outputs and modified the semantics of the stack machine so that it falls

into an error state if the stack reaches a certain size. The proof uses a standard forward simulation

modified to account for failure: if the source execution takes a step from a configuration to another

configuration emitting some event (which can be a silent event), then there are two possibilities for

a related target configuration: either (i) it can take some steps to another configuration related to

the second source configuration and emit the same event (as in a standard simulation); or (ii) it can

take some steps to an error state without emitting any events. The latter corresponds to the case of

a resource exhaustion error: the target execution can terminate early, producing only a prefix of

the source execution trace, as allowed by the relation. �

We conclude this subsection by noting that the resource exhaustion relation and the undefined

behavior relation from the previous subsection can easily be combined. Indeed, given a relation

∼UB and a relation ∼RE defined as above on the same sets of traces, we can build a new relation ∼
that allows both refinement of undefined behavior and resource exhaustion by taking their union:

s ∼ t ≡ s ∼UB t ∨ s ∼RE t. A compiler that is CC∼UB
or CC∼RE

is trivially CC∼
, though the converse

is not true.
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4.3 Different Source and Target Values
This section first presents the common language formalisation (§4.3.1) that the following (§4.3.2)

and later instances (§4.4 and §7.1) build upon. This shared language formalisation does not contain a

key language feature, namely the expressions that generate actions and thus labels. This is because

each instance deals with specific ways to generate actions, so each instance will define its own

extension to each of the languages defined below. Additionally, each instance will define its own

compiler and the trace relation used to attain CC∼
.

4.3.1 Shared Source and Target Language Formalisation. The source language is a pure, statically
typed expression language whose expressions e include naturals, booleans, a boolean conditional

and a conditional for expressions that reduce to 0, arithmetic and relational operations and se-

quencing.

e ::= n | b | if e then e else e | ifz e then e else e | e op e | e; e′

op ::= + | × | ≤ | == ty ::= B | N

Types ty are either N (naturals) or B (booleans) and typing is standard.

(Type-nat)

⊢ n : N

(Type-bool)

⊢ b : B

(Type-plus-times)
⊢ e1 : N ⊢ e2 : N · = + or ×

⊢ e1 · e2 : N

(Type-le)
⊢ e1 : N ⊢ e2 : N

⊢ e1 ≤ e2 : B
(Type-ite)

⊢ e1 : B ⊢ e2 : ty ⊢ e3 : ty

⊢ if e1 then e2 else e3 : ty

(Type-izte)
⊢ e1 : N ⊢ e2 : ty ⊢ e3 : ty

⊢ ifz e1 then e2 else e3 : ty
The language semantics deal with actions i, lists of actions is and expression results r. A list of

actions is is a list of individual actions i, which are instance-dependant and thus presented later;

the same holds for source traces s.

r ::= n | b i, s ::= instance-specific is ::= i · is | ∅

The source language has a standard big-step operational semantics (e⇝ ⟨is, r⟩) which tells how an

expression e generates a list of actions and a result ⟨is, r⟩.

(Sem-nat)

n⇝ ⟨∅, n⟩

(Sem-bool)

b⇝ ⟨∅, b⟩

(Sem-op-nat)

e1 ⇝ ⟨is1, n1⟩ e2 ⇝ ⟨is2, n2⟩ op ∈ {+,×}
e1 op e2 ⇝ ⟨is1 · is2, (n1 op n2)⟩

(Sem-le)

e1 ⇝ ⟨is1, n1⟩ e2 ⇝ ⟨is2, n2⟩
e1 ≤ e2 ⇝ ⟨is1 · is2, (n1 ≤ n2)⟩

(Sem-ite)

e⇝ ⟨is, b⟩ b?𝑖 = 1 : 𝑖 = 2 ei ⇝ ⟨isi, ri⟩
if e then e1 else e2 ⇝ ⟨is · isi, ri⟩

(Sem-izte)

e⇝ ⟨is, n⟩ n == 0?𝑖 = 1 : 𝑖 = 2 ei ⇝ ⟨isi, ri⟩
ifz e then e1 else e2 ⇝ ⟨is · isi, ri⟩

(Sem-seq)

e⇝ ⟨is, r⟩ e′⇝ ⟨is′, r′⟩
e; e′⇝ ⟨is · is′, r′⟩

The target language is analogous to the source one, except that it is untyped, it only has naturals

n and its only conditional is ifz e then e else e.

e ::= n | e op e | ifz e then e else e | e; e′ op ::= + | × r ::= n
i, t ::= instance-specific is ::= i · is | ∅

The semantics of the target language is also given in big-step style; since its rules are a subset of

the source rules, they are omitted. Since we only have naturals and all expressions operate on them,

no error result is possible in the target.
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4.3.2 Different Source and Target Values. In this instance, we extend the source language with

expressions to perform booleans and natural inputs, while the target only has expressions to input

naturals. To compile the ≤, the target is also extended with a conditional that checks if an expression
is less than another.

e ::= · · · | in-b | in-n i ::= n | b s ::= ⟨is, r⟩
e ::= · · · | in-n | if e ≤ e then e else e i ::= n t ::= ⟨is, r⟩

Source actions are boolean b and natural inputs n and source traces s are lists of actions is together
with a final result r. Target actions are just natural inputs n.

The source extensions respect typing and thus well-typed programs never produce error ( ).

The semantics of the extensions adds elements to the traces.

(Type-in-b)

⊢ in-b : B

(Type-in-n)

⊢ in-n : N

(Sem-in-nat)

in-n⇝ ⟨n · ∅, n⟩

(Sem-in-bool)

in-b⇝ ⟨b · ∅, b⟩
(Sem-itele)

e1 ⇝ ⟨is1, n1⟩ e2 ⇝ ⟨is2, n2⟩ 𝑛1 ≤ 𝑛2?𝑖 = 3 : 𝑖 = 4 ei ⇝ ⟨isi, ni⟩
if e1 ≤ e2 then e3 else e4 ⇝ ⟨is1 · is2 · isi, ni⟩

The compiler is homomorphic, translating a source expression to the same target expression; the

only differences are natural numbers (and conditionals).

n↓ = n true↓ = 1 e1 + e2↓ = e1↓+e2↓
in-n↓ = in-n false↓ = 0 e1 ≤ e2↓ = if e1↓ ≤ e2↓ then 1 else 0
in-b↓ = in-n e1 × e2↓ = e1↓×e2↓ if e1 then e2 else e3↓ = ifz e1↓ then e3↓ else e2↓
e; e′↓ = e↓; e′↓ ifz e1 then e2 else e3↓ = ifz e1↓ then e2↓ else e3↓

When compiling an if-then-else the then and else branches of the source are swapped in the target

because of the compilation of booleans.

Relating Traces.We relate basic values (naturals and booleans) in a non-injective fashion as noted

below. Then, we extend the relation to lists of inputs pointwise (Rules Empty and Cons) and lift

that relation to traces (Rules Nat and Bool).

n ∼ n true ∼ n if n > 0 false ∼ 0

(Empty)

∅ ∼ ∅

(Cons)
i ∼ i is ∼ is

i · is ∼ i · is

(Nat)
is ∼ is n ∼ n
⟨is, n⟩ ∼ ⟨is, n⟩

(Bool)

is ∼ is b ∼ n
⟨is, b⟩ ∼ ⟨is, n⟩

Property mappings. The property mappings �̃� and 𝜏 induced by the trace relation ∼ defined

above capture the intuition behind encoding booleans as naturals:

• the source-to-target mapping allows true to be encoded by any non-zero number;

• the target-to-source mapping requires that 0 be replaceable by both 0 and false.
Compiler correctness. With the relation above, the compiler is proven to satisfy CC∼

.

Theorem 4.3 ( ·↓ is correct ). ·↓ is CC∼
.

Simulations with different traces. In the settings where TraceS = 𝑻𝒓𝒂𝒄𝒆T, it is customary

to prove compiler correctness showing a forward simulation (i.e., a simulation between source

and target transition system); then, using determinacy [24, 48] of the target language and input

totality [25, 82] (receptiveness) of the source, this forward simulation is flipped into a backward

simulation (a simulation between target and source transition system), as described by Beringer
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et al. [9], Leroy [42]. This “flipping” is useful because forward simulations are often much easier

to prove (by induction on the transitions of the source) than backward ones. For the proof of

Theorem 4.3 we had to show a backward simulation as it was not possible to define a forward one

and then flip it. Hereafter we show the reason lies in the shape of trace relation itself and disccus

when is possible to generalize the flipping to the trace-relating setting.

We first give the main idea of the flipping proof, when the inputs are the same in the source and the

target [9, 42]. We only consider inputs, as it is the most interesting case, since with determinacy,

nondeterminism only occurs on inputs. Given a forward simulation R, and a target program WT
that simulates a source program WS, WT is able to perform an input iff so is WS: otherwise, say for

instance that WS performs an output, by forward simulation WT would also perform an output,

which is impossible because of determinacy. By input totality of the source, WS must be able to

perform the exact same input as WT; using forward simulation and determinacy, the resulting

programs must be related.

WS

i1

��

= WS

i2

��

R WT

i1

��

By input totality

ks

+3
By contradiction,

using forward simulation

and determinacy

ks

∃WS1
R

By forward simulation and determinacy

· WT1

The trace relation from §4.3.2 is not injective (both 0 and false are mapped to 0), therefore these
arguments do not apply: not all possible inputs of target programs are accounted for in the forward

simulation. In order to flip a forward simulation into a backward one it’s necessary that, for any

source program WS and target program WT related by the forward simulation R, the following
diagram is satisfied

WS

iS1

��

∃iS2

{{

R WT

iT1

��

iT2

""
∃WS2

R

WS1 R WT1 WT2

where iS1 ∼ iT1

iS1 ∼ iT2

iS2 ∼ iT2

We say that a forward simulation for which this property holds is flippable. For our example

compiler, a flippable forward simulation works as follows: whenever a boolean input occurs in the

source, the target program must perform every strictly positive input n (and not just 1, as suggested
by the compiler). Using this property, determinacy of the target, input totality of the source, as well

as the fact that any target input has an inverse image through the relation, we can indeed show

that the forward simulation can be turned into a backward one: starting from WS R WT and an

input iT2, we show that there is iS1 and iT2 as in the diagram above, using the same arguments as

when the inputs are the same; because the simulation is flippable, we can close the diagram, and

obtain the existence of an adequate iS2. From this we obtain CC∼
.

In fact we showed that the flippable hypothesis is also sufficient to flip a forward simulation

into a backward one, even in the trace-relating setting, and proved it in a general (i.e., language

independent) ‘flipping theorem’ ( ). We have also shown that if the relation ∼ defines a bijection

between the inputs of the source and the target, then any forward simulation is flippable, hence

reobtaining the usual proof technique [9, 42] as a special case.
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4.4 Abstraction Mismatches
We now consider how to relate traces where a single source action is compiled to multiple target

ones. To illustrate this, we extend our source language to output (nested) pairs of arbitrary size,

and our target language to send values that have a fixed size. Concretely, the source is analogous

to the language of §4.3, except that it does not have inputs (nor booleans for simplicity) but it

has pairs. Additionally, it has an expression send e which can emit a (nested) pair e of values in a

single action. Given that e reduces to a pair, e.g., ⟨v1, ⟨v2, v3⟩⟩, expression send ⟨v1, ⟨v2, v3⟩⟩ emits

action ⟨v1, ⟨v2, v3⟩⟩. That expression is eventually compiled into a sequence of individual sends in

the target language send v1 ; send v2 ; send v3, since in the target, send e sends the value that e
reduces to, but the language cannot send pairs (although it has pair constructs).

The source and target languages are formally extended (resp. in the first and second lines below)

with pairs and sending constructs as follows. For reasons that we explain when the compiler is

presented, we extend the target language with a let-in construct and variables. Finally, source traces

are sequences of sent values i (which include nested pairs) and target traces are only sequences of

natural numbers.

e ::= · · · | ⟨e, e⟩ | e.1 | e.2 | send e ty ::= N | ty × ty i ::= n | ⟨i, i⟩ s ::= is

e ::= · · · | ⟨e, e⟩ | e.1 | e.2 | let x = e in e | x | send e i ::= n t ::= is

The source additions are well-typed and their semantics is unsurprising; the semantics relies on

the usual capture-avoiding substitution [r/x] of a result r for a variable x
(Type-send)

⊢ e : 𝜏 × 𝜏 ′

⊢ send e

(Type-pair)

⊢ e : 𝜏 ⊢ e′ : 𝜏 ′

⊢ ⟨e, e′⟩ : 𝜏 × 𝜏 ′

(Type-p1)

⊢ e : 𝜏 × 𝜏 ′

⊢ e.1 : 𝜏

(Type-p2)

⊢ e : 𝜏 × 𝜏 ′

⊢ e.2 : 𝜏 ′

(Type-send)
⊢ e : N
⊢ send e

(Eval-P1)

e⇝ ⟨is, ⟨r1, r2⟩⟩
e.1⇝ ⟨is, r1⟩

(Eval-P2)

e⇝ ⟨is, ⟨r1, r2⟩⟩
e.1⇝ ⟨is, r2⟩

(Eval-Pair)

e⇝ ⟨is, r⟩ e′⇝ ⟨is′, r′⟩
⟨e, e′⟩⇝ ⟨is · is′, ⟨r, r′⟩⟩

(Eval-Send)

e⇝ ⟨is, r⟩
send e⇝ ⟨is · r, r⟩

(Sem)

e⇝ ⟨is, r⟩
e⇝ is

(Eval-letin)

e⇝ ⟨is, r⟩ e′[r/x] ⇝ ⟨is′, r′⟩
let x = e in e′⇝ ⟨is · is′, r′⟩

The compiler is defined inductively on the type derivation of a source expression ( ·↓ : ⊢ e : 𝜏 → e).
The only interesting case is when compiling a send e, where we use the source type information

concerning the message (i.e., a pair) being sent to deconstruct that pair into a sequence of natural

numbers, which is what is sent in the target. This is the reason we need the let-in construct in

the target, since we run the pair once (as the argument of the let-in) and then we send all of its

projection, to avoid duplicating side effects. Technically, since it is defined on the type derivations

of terms, the compiler is defined inductively on type derivations (and not simply on terms). Thus,

compiling e; e′ would look like the following (using D as a metavariable to range over derivations).(
D
⊢ e

D′

⊢ e′

⊢ e; e′

)y =

(
D
⊢ e

)y ; (
D′

⊢ e′
)y

However, note that each judgment uniquely identifies which typing rule is being applied and the

underlying derivation. Thus, for compactness, we only write the judgment in the compilation and

implicitly apply the related typing rule to obtain the underlying judgments for recursive calls. To

differentiate this from the compiler of Section 4.3.2, this compiler has parentheses over its input.

(⊢ n : N)↓ = n (⊢ e.1 : 𝜏)↓ = (⊢ e : 𝜏 × 𝜏 ′)↓.1
(⊢ e ⊕ e′ : N)↓ = (⊢ e : N)↓ ⊕ (e′ : N)↓ (⊢ e.2 : 𝜏 ′)↓ = (⊢ e : 𝜏 × 𝜏 ′)↓.2
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(⊢ ⟨e, e′⟩ : 𝜏 × 𝜏 ′)↓ =
〈
(⊢ e : 𝜏)↓, (⊢ e′ : 𝜏 ′)↓

〉(
⊢

if e

then e else e′

)y =
if (⊢ e : N)↓
then (⊢ e)↓ else (⊢ e′)↓ (⊢ send e)↓ =

let x= (⊢ e : 𝜏 × 𝜏 ′)↓
in gensend (x, 𝜏 × 𝜏 ′)(

⊢
ifz e

then e else e′

)y =
ifz (⊢ e : N)↓
then (⊢ e)↓ else (⊢ e′)↓ (⊢ e; e′)↓ = (⊢ e)↓; (⊢ e′)↓

gensend (x, 𝜏) =
{

send x if 𝜏 = N
gensend (x, 𝜏 ′).1; gensend (x, 𝜏 ′′).2 if 𝜏 = 𝜏 ′ × 𝜏 ′′

Relating Traces. We start with the trivial relation between numbers: n∼0 n, i.e., numbers are

related when they are the same. We cannot build a relation between single actions since a single

source action is related to multiple target ones. Therefore, we define a relation between a source

action i and a target trace t (a list of numbers), inductively on the structure of i.

(Trace-Rel-N-N)

n∼0 n n′ ∼0 n′

⟨n, n′⟩ ∼n · n′

(Trace-Rel-N-M)

n∼0 n i∼ t
⟨n, i⟩ ∼n · t

(Trace-Rel-M-N)

i∼ t n∼0 n
⟨i, n⟩ ∼ t · n

(Trace-Rel-M-M)

i∼ t i′ ∼ t′

⟨i, i′⟩ ∼ t · t′

A pair of naturals is related to the two actions that send each element of the pair (Rule Trace-Rel-

N-N). If a pair is made of sub-pairs, we require all such sub-pairs to be related (Rules Trace-Rel-N-M

to Trace-Rel-M-M).

(Trace-Rel-Single)

s∼ t i∼ t′

s · i∼ t · t′

We build on these rules to define the s ∼ t relation between source and
target traces for which the compiler is correct (Theorem 4.5). Trivially,

traces are related when they are both empty. Alternatively, given related

traces, we can concatenate a source action and a second target trace

provided that they are related (Rule Trace-Rel-Single). Before proving

that the compiler is correct we need Lemma 4.4. Intuitively, that lemma

tells us that the way we break down a source sent value r into multiple target sends is correct.

Lemma 4.4 (gensend (·, ·) works). if gensend (x, 𝜏 × 𝜏 ′) [ (⊢ r : 𝜏 × 𝜏 ′)↓/x] ⇝ t then r∼ t (since
r is necessarily a sent value i, that can be related to t).

Theorem 4.5 ( (·)↓ is correct). (·)↓ is CC∼
.

With our trace relation, the trace property mappings capture the following intuitions:

• The target-to-source mapping states that a source property can reconstruct target action as

it sees fit. For example, trace 4 · 6 · 5 · 7 is related to ⟨4, 6⟩ · ⟨5, 7⟩ and ⟨⟨4, ⟨6, ⟨5, 7⟩⟩⟩⟩ (and
many more variations). This gives freedom to the source implementation of a target behavior,

which follows from the non-injectivity of ∼.10
• The source-to-target mapping “forgets” about the way pairs are nested, but is faithful w.r.t. the

values vi contained in a message. Notice that source safety properties are always mapped to

target safety properties. For instance, if 𝜋S ∈ SafetyS prescribes that some bad number is never

sent, then 𝜏 (𝜋S) prescribes the same number is never sent in the target and 𝜏 (𝜋S) ∈ SafetyT.

Of course if 𝜋S ∈ SafetyS prescribes that a particular nested pairing like ⟨4, ⟨6, ⟨5, 7⟩⟩⟩ never
happens, then 𝜏 (𝜋S) is still a target safety property, but the trivial one, since 𝜏 (𝜋S) = ⊤ ∈
SafetyT.

10
Making ∼ injective is a matter of adding open and close parenthesis actions in target traces.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:20 C. Abate et al.

5 TRACE-RELATING COMPILATION AND NONINTERFERENCE PRESERVATION
We now study the relation between trace-relating compilation and noninterference preservation.

As mentioned earlier (§3.1), in the particular case where source and target observations are drawn

from the same set, a correct compiler (CC=
) is enough to ensure the preservation of all subset-

closed hyperproperties, in particular of noninterference (NI) [28]. But in the scenario where target

observations are strictlymore informative than source observations, this is not the case. In fact, as we

will show, the best guarantee one may expect from a correct trace-relating compiler (CC∼
) in such a

setting is aweakening (or declassification) of target noninterference that matches the noninterference

property satisfied in the source. In certain scenarios, it turns out that the noninterference property

of interest in the target comes “for free”, while in others, it does not, and therefore establishing

noninterference requires an additional proof effort beyond CC∼
. To formalize this reasoning, this

section applies the trinitarian view of trace-relating compilation to the general framework of

abstract noninterference (ANI) [27], clarifying the kind of noninterference preservation that follows

from a given trace relation and correct compilation.

We first define NI and explain the issue of preserving source NI via a CC∼
compiler (§5.1). We then

introduce ANI, which allows characterizing various forms of noninterference (§5.2), and formulate a

theory of ANI preservation via CC∼
, both with respect to a timing insensitive declassification (§5.3)

and in general (§5.4). We also study how to deal with cases such as undefined behavior in the target

(§5.5). We then answer the dual question, i.e., which source NI should be satisfied to guarantee that

compiled programs are noninterfering with respect to target observers (§5.6). Finally, we use this

formal development to analyze recent work on correct compilers with interesting noninterference

guarantees [7, 74], clarifying whether these guarantees follow from correctness alone or not (§5.7).

5.1 Noninterference and Trace-Relating Compilation
Intuitively, noninterference (NI) requires that publicly observable outputs do not reveal information

about private inputs. To define this formally, we need a few additions to our setup. We indicate the

(disjoint) input and output projections of a trace 𝑡 as 𝑡 ◦ and 𝑡 • respectively.11 Denote with [𝑡] low the

equivalence class of a trace 𝑡 , obtained using a standard low-equivalence relation that relates low

(public) events only if they are equal, and ignores any difference between private events. Then, NI

for source traces can be defined as:

NIS =
{
𝜋S

�� ∀s1s2 ∈ 𝜋S. [s◦
1] low = [s◦

2] low ⇒ [s•
1] low = [s•

2] low
}

That is, source NI comprises the sets of traces that have equivalent low output projections as long

as their low input projections are equivalent.

When additional observations are possible in the target, it is unclear whether a noninterfering

source program is compiled to a noninterfering target program or not, and if so, whether the

notion of NI in the target is the expected (or desired) one. We illustrate this issue by considering a

scenario where target traces extend source traces by exposing the execution time. While source

noninterference NIS requires that private inputs do not affect public outputs, NIT additionally

requires that the execution time is not affected by varying private inputs.

To model the scenario described, we represent target traces as pairs of a source trace and a

natural number that denotes the time spent to produce the trace (using 𝝎 for infinite time units).

Formally, if TraceS denotes the set of source traces, then TraceT = TraceS × N𝝎
is the set of target

traces, where N𝝎 ≜ N ∪ {𝝎}.
11
The exact shape of inputs and outputs depends on the scenario. For instance, inputs can be initial memories and outputs

trace semantics of programs as in [27, Section 7], while for interactive programs one may want to consider streams like

Clark and Hunt [17]. We only require the sets of input and output projections to be disjoint. Further information, such as

the ordering of events, is part of the attacker/observer model or the declassification of noninterference itself.
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Notice that if two source traces s1, s2 are low-equivalent then {s1, s2} ∈ NIS and {(s1, 42), (s1, 42)} ∈
NIT, but {(s1, 42), (s2, 43)} ∉ NIT and {(s1, 42), (s2, 42), (s1, 43), (s2, 43)} ∉ NIT.

Consider the following straightforward trace relation, which relates a source trace to any target

trace whose first component is equal to it, irrespective of execution time:

s ∼ t ≡ ∃n. t = (s, n)

A compiler is CC∼
for this trace relation if any trace that can be exhibited in the target can be

simulated in the source in some amount of time. For such a compiler Theorem 3.3 says that if W
satisfies NIS, then W↓ satisfies Cl⊆ ◦ 𝜏 (NIS). This hyperproperty is however strictly weaker than

NIT, as it contains for example {(s1, 42), (s2, 42), (s1, 43), (s2, 43)}, and one cannot conclude that

W↓ is noninterfering in the target. It is easy to check that

Cl⊆ ◦ 𝜏 (NIS) = Cl⊆ ({ 𝜋S × N𝝎 | 𝜋S ∈ NIS}) = { 𝜋S × I | 𝜋S ∈ NIS ∧ I ⊆ N𝝎} ,

the first equality coming from 𝜏 (𝜋S) = 𝜋S × N𝝎
, and the second from NIS being subset-closed. As

we will see, this hyperproperty can be characterized as a form of NI, which one might call timing-
insensitive noninterference, i.e., ensured only against attackers that cannot measure execution time.

For this characterization, and to describe different forms of noninterference as well as formally

analyze their preservation by a CC∼
compiler, we rely on the general framework of abstract

noninterference [27].

5.2 Abstract Noninterference
Abstract noninterference (ANI) [27] is a generalization of NI whose formulation relies on abstractions
(in the sense of Abstract Interpretation [20]) in order to encompass arbitrary variants of NI. ANI is

parameterized by an observer abstraction 𝜌 , which denotes the distinguishing power of the attacker,

and a selection abstraction 𝜙 , which specifies when to check NI, and therefore captures a form of

declassification [69].
12
Formally:

ANI𝜌
𝜙
=

{
𝜋

�� ∀𝑡1𝑡2 ∈ 𝜋. 𝜙 (𝑡 ◦
1
) = 𝜙 (𝑡 ◦

2
) ⇒ 𝜌 (𝑡 •

1
) = 𝜌 (𝑡 •

2
)
}

By picking 𝜙 = 𝜌 = [·] low , we recover the standard noninterference defined above, where NI must

hold for all low inputs (i.e., no declassification of private inputs), and the observational power of

the attacker is limited to distinguishing low outputs. The observational power of the attacker can

be weakened by choosing a more liberal relation for 𝜌 . For instance, one may limit the attacker to

observe the parity of output integer values. Another way to weaken ANI is to use 𝜙 to specify that

noninterference is only required to hold for a subset of low inputs.

The operators 𝜙 and 𝜌 are defined over sets of (input and output projections of) traces, explicitly

𝜙 : 2
Trace◦ → 2

Trace◦
and 𝜌 : 2

Trace• → 2
Trace•

. When we write 𝜙 (𝑡) like above, this should be

understood as a convenience notation for 𝜙 ({𝑡}). Likewise, 𝜙 = [·] low should be understood as

𝜙 = 𝜆𝜋 .
⋃

𝑡 ∈𝜋 [𝑡] low , i.e., the powerset lifting of [·] low . Additionally, 𝜙 and 𝜌 are required to be

upper-closed operators (uco)—i.e., monotonic, idempotent and extensive (i.e., ∀𝜋 • . 𝜋 • ⊆ 𝜌 (𝜋 •)) —on
the poset that is the powerset of (input and output projections of) traces ordered by inclusion [27].

12
To be precise, the original formulation of ANI by Giacobazzi and Mastroeni [27] includes a third parameter 𝜂, which

describes the maximal input variation that the attacker may control. Here we omit 𝜂 (i.e., take it to be the identity) in order

to simplify the presentation.
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5.3 Trace-Relating Compilation and ANI for Timing
We can now reformulate our example with observable execution times in target traces in terms

of ANI. We have NIS = ANI𝜙𝜌 with 𝜙 = 𝜌 = [·] low . In this case, the hyperproperty that a compiled

program W↓ satisfies whenever W satisfies NIS can be described as an instance of ANI:

Cl⊆ ◦ 𝜏 (NIS) = ANI𝝆𝝓
for 𝝓 = 𝜙 and 𝝆 (𝝅) =

{
(s, n)

�� ∃(s1, n1) ∈ 𝝅 . [s•] low = [s•
1] low

}
The definition of 𝝓 tells us that the trace relation does not affect the selection abstraction, i.e., de-

classification is unaffected. The definition of 𝝆 characterizes an observer that cannot distinguish

execution times for noninterfering traces (notice that n1 in the definition of 𝝆 is discarded). For

instance, 𝝆 ({(s, n1)}) = 𝝆 ({(s, n2)}), for any s, n1, n2. Therefore, in this setting, we know explic-

itly through 𝝆 that a CC∼
compiler degrades source noninterference to target timing-insensitive

noninterference.

5.4 Trace-Relating Compilation and ANI in General
While the particular 𝝓 and 𝝆 above can be discovered by intuition, we want to know whether there

is a systematic way of obtaining them in general. In other words, for any trace relation ∼ and any
notion of source NI, what property is guaranteed on noninterfering source programs by any CC∼

compiler?

We can now answer this question generally (Theorem 5.1): any source notion of noninterference

expressible as an instance of ANI is mapped to a corresponding instance of ANI in the target,

whenever source traces are an abstraction of target ones (i.e., when ∼ is a total and surjective map).

For this result we consider trace relations that can be split into input and output trace relations

(denoted as ∼ ≜ ⟨ ◦∼, •∼⟩) such that s ∼ t ⇐⇒ s◦ ◦∼ t◦ ∧ s• •∼ t•. The trace relation ∼ corresponds to

a Galois connection between the sets of trace properties 𝜏 ⇆ �̃� as described in §2.2. Similarly, the

pair
◦∼ and

•∼ corresponds to a pair of Galois connections, 𝜏 ◦ ⇆ �̃� ◦
and 𝜏 • ⇆ �̃� •

, between the sets of

input and output properties. In the timing example, time is an output so we have ∼ ≜ ⟨=, •∼⟩ and •∼
is defined as s• •∼ t• ≡ ∃n. t• = (s•, n).

Theorem 5.1 (Compiling ANI). Assume traces of source and target languages are related via

∼ ⊆ TraceS ×TraceT, ∼ ≜ ⟨ ◦∼, •∼⟩ such that
◦∼ and

•∼ are both total maps from target to source traces,

and
◦∼ is surjective. Assume ↓ is a CC∼

compiler, and 𝜙 ∈ uco(2Trace◦
S ), 𝜌 ∈ uco(2Trace•

S ).
If W satisfies ANI𝜌

𝜙
, then W↓ satisfies ANI𝝆

#

𝝓# , where 𝝓
#
and 𝝆#

are defined as:

𝝓# = 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ 𝝆# = 𝑔• ◦ 𝜌 ◦ 𝑓 •

𝑓 ◦ (𝝅 ◦) = {s◦ | ∃t◦ ∈ 𝝅 ◦. s◦ ◦∼ t◦} 𝑔◦ (𝜋 ◦
S) =

{
t◦

�� ∀s◦ . s◦ ◦∼ t◦ ⇒ s◦ ∈ 𝜋 ◦
S

}
(and both 𝑓 •

and 𝑔•
are defined analogously).

Moreover, we can prove that if
•∼ is surjective, then ANI𝝆

#

𝝓# ⊆ Cl⊆ ◦ 𝜏 (ANI𝜌
𝜙
). Therefore, the

derived guarantee ANI𝝆
#

𝝓# is at least as strong as the hyperproperty (a priori different from some

noninterference) that follows by just knowing that the compiler ↓ is CC∼
.

The target abstract noninterference has to be intended as the best correct approximation of

the source one. The mappings 𝑓 ◦ ⇆ 𝑔◦
are the existential and universal images of the relation

◦∼swap⊆ TraceT × TraceS, defined by t◦ ◦∼swap s◦
if and only if s◦ ◦∼ t◦. Therefore 𝑓 ◦

and 𝑔◦
are lower

and upper adjoints, respectively (§2). The operator 𝝓#
is the best correct approximation of 𝜙 w.r.t

to 𝑓 ◦ ⇆ 𝑔◦
[20] (hence the choice of the (_)# notation). A similar result holds for 𝝆#

.
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Coming back to our example above, we can formally recover the intuitively-justified definitions,

i.e., 𝝓# = 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ = 𝝓 and 𝝆# = 𝑔• ◦ 𝜌 ◦ 𝑓 • = 𝝆.

5.5 Noninterference and Undefined Behavior
As stated above, Theorem 5.1 does not apply to several scenarios from §4 such as undefined behavior

(§4.1). Indeed, in these cases, the relation
•∼ is not a total map. Nevertheless, we can still exploit our

framework to reason about the impact of compilation on noninterference.

Let us consider ∼ ≜ ⟨ ◦∼, •∼⟩ where ◦∼ is any total and surjective map from target to source inputs

(e.g., equality) and
•∼ is defined as s• •∼ t• ≡ s• = t• ∨ ∃𝑚• ≤ t• . s• =𝑚• ·Wrong. Intuitively, a CC∼

compiler guarantees noninterference for the compiled program, provided that the target attacker

cannot exploit undefined behavior to learn private information. This intuition can be made formal

by the following theorem.

Theorem 5.2 (Relaxed Compiling ANI). Relax the assumptions of Theorem 5.1 by allowing
•∼ to

be any output trace relation. If W satisfies ANI𝜌
𝜙
, then W↓ satisfies ANI𝝆

#

𝝓# where 𝝓
#
is defined as in

Theorem 5.1, and 𝝆#
is such that:

∀s t. s• •∼ t• ⇒ 𝝆# (t•) = 𝝆# (𝜏 • (𝜌 (s•))) (1)

Technically, instead of giving us a definition of 𝝆#
, the theorem gives a property of it. The property

states that, given a target output trace t•, the attacker cannot distinguish it from any other target

output traces produced by other possible compilations (𝜏 •
) of the source trace s it relates to, up

to the observational power of the source level attacker 𝜌 . Therefore, given a source attacker

𝜌 , the theorem characterizes a family of attackers that cannot observe any interference for a

correctly compiled noninterfering program. Notice that the target attacker 𝝆⊤ ≜ 𝜆_. ⊤ satisfies the

premise of the theorem, but defines a trivial hyperproperty, so that we cannot prove in general

that ANI𝝆
#

𝝓# ⊆ Cl⊆ ◦ 𝜏 (ANI𝜌
𝜙
). Also, this degenerate attacker 𝝆⊤

shows that the family of attackers

described in Theorem 5.2 is nonempty, which ensures the existence of a most powerful attacker

among them [27].

5.6 From Target NI to Source NI
We now explore the dual question: under what hypotheses does trace-relating compiler correctness

alone allow target noninterference to be reduced to source noninterference? This is of practical

interest, as one would be able to protect from target attackers by ensuring noninterference in

the source. This task can be made easier if the source language has some static enforcement

mechanism [1, 44].

Let us consider the languages from §4.4 extended with the ability to accept inputs as (pairs of)

values. It is easy to show that the compiler described in §4.4 (extended to treat the new input

expressions homomorphically) is still CC∼
: given a target trace 𝒕 with the same inputs of the

source one (i.e., s◦ = 𝒕 ◦), the compiler of §4.4 ensures that 𝒕 simulates the same outputs of s (i.e.,
s• •∼ 𝒕 •). Assume that we want to satisfy a given notion of target noninterference after compilation,

i.e., W↓|=ANI𝝆𝝓 . Recall that the observational power of the target attacker, 𝝆, is expressed as a

property of sequences of values. To express the same property (or attacker) in the source, we have to

abstract the way pairs of values are nested. For instance, the source attacker should not distinguish

⟨v1, ⟨v2, v3⟩⟩ and ⟨⟨v1, v2⟩, v3⟩. In general (i.e., when
◦∼ is not the identity), this argument is valid

only when 𝝓 can be represented in the source. More precisely, 𝝓 must consider as equivalent all

target inputs that are related to the same source input, because in the source it is not possible to

have a finer distinction of inputs. This intuitive correspondence can be formalized as follows.
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Theorem 5.3 (Target ANI by source ANI). Let 𝝓 ∈ uco(2Trace◦
T ), 𝝆 ∈ uco(2Trace•

T ) and •∼ a total and

surjective map from source outputs to target ones and assume that

∀s t. s◦ ◦∼ t◦ ⇒ 𝝓 (t◦) = 𝝓 (𝜏 ◦ (s◦))

If ·↓ is a CC∼
compiler and W satisfies ANI𝜌

#

𝜙#
, then W↓ satisfies ANI𝝆𝝓 for

𝜙# = �̃� ◦ ◦ 𝝓 ◦ 𝜏 ◦ 𝜌# = �̃� • ◦ 𝝆 ◦ 𝜏 •

5.7 Analyzing Noninterference Preserving Compilers
The results presented in this section formalize and generalize some intuitive facts about compiler

correctness and noninterference, clarifying which noninterference property follows “for free” from

trace-relating compiler correctness. Of course, in the general case, compiler correctness alone is not

a strong enough criterion for dealing with many security properties [8, 23]. This section exploits

our ANI-based framework and results to analyze two compilers from the recent literature [7, 74]

that are both proven to be correct and to preserve two interesting notions of noninterference:

cryptographic constant time (§5.7.1) and value-dependent noninterference (§5.7.2). For each, we

explain how to express compiler correctness as an instance of CC∼
, describe the noninterference

property that is implied by the trace relation and the correctness result, and compare it with the

noninterference properties of interest as established by their authors.

5.7.1 A Correct Compiler Preserving Cryptographic Constant Time. Barthe et al. [7] provide a
correct compiler (as an extension of CompCert) that also preserves cryptographic constant time

(CT). CT is a security property stating that the runtime of a program does not depend on its secret,

and thus an attacker cannot extrude secrets of a program by observing its execution time. A CT-

preserving compiler takes code that is CT and generates code that also is CT. Thus, a CT-preserving

compiler must translate runtime-equivalent source programs into runtime-equivalent target ones.

Notice that it is not necessary for the leakage of target programs to be the same of their source

counterparts, rather: source programs with the same leakage must be compiled to target programs

with the same leakage.

Barthe et al. [7] prove CT preservation for seventeen passes of CompCert. The authors partition

the seventeen steps in four categories depending on the proof technique they use to show CT

preservation. Every category proves an instance of CC∼
by improving on the existing CompCert

simulation. In three out of the four cases this is sufficient to also prove CT preservation, while for

the last category a further proof is necessary. In what follows, we first encode CT as an instance of

abstract noninterference, i.e., show for which operators CT = ANI𝜌𝐶𝑇

𝜙𝐶𝑇
and then use our framework

to understand why modifying CompCert simulation is sufficient in the first three categories but

not in the last one. For each category Theorem 5.2 applies, so that no 𝜌 that respects Equation 1

can notice any interference on compiled programs that were source constant-time. In the first three

categories the attacker that defines CT – 𝜌𝐶𝑇 – respects the equation
13
i.e.,

∀s•t• . s• •∼ t• ⇒ 𝜌𝐶𝑇 (t•) = 𝜌𝐶𝑇 (𝜏 • (𝜌𝐶𝑇 (s•))) (2)

and CT preservation is therefore a consequence of CC∼
. In the last category 𝜌𝐶𝑇 does not respect

Equation 2 and the authors have to prove an additional theorem, the CT-diagram.

Trace Model and CT as an instance of ANI. The formal definition of CT is given by extending

the semantics of the languages in CompCert and enriching the traces of input and output events

with leakages. Leakages are results of execution steps that involve conditional branching or memory

13
In each compilation step source and target traces are drawn from the same set so that 𝜌𝐶𝑇 can be applied to both source

and target traces.
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access. A program is CT w.r.t. a certain relation over program states 𝜑 [7, Definition 3.2] iff for

every two initial states 𝑖, 𝑖 ′ such that 𝜑 (𝑖, 𝑖 ′), the leakages that can be observed are the same. Notice

that in [7, Definition 3.2] the secret is stored in the program states and defined by 𝜑 , therefore in

order to regard CT as an instance of abstract noninterference program states will be regarded as

inputs and events together with their leakages as outputs. More precisely a trace 𝑡 is a sequence of

of triples (𝑖, 𝑒, 𝑗) where 𝑖 and 𝑗 are program states and 𝑒 an event in the instrumented semantics, i.e.,

input/output event and associated leakage.

We consider:

• 𝜙𝐶𝑇 to be (the uco corresponding to) the relation defined by 𝑡 ◦
1
𝜙𝐶𝑇 𝑡 ◦

2
iff 𝑡 ◦

1
, 𝑡 ◦
2
have the same

length with 𝑡 ◦
1
= (𝑖0, 𝑖1), (𝑖1, 𝑖2), . . ., 𝑡 ◦2 = ( 𝑗0, 𝑗1), ( 𝑗1, 𝑗2), . . . and ∀𝑛. 𝜑 (𝑖𝑛, 𝑗𝑛).

• 𝜌𝐶𝑇 to be (the uco corresponding to) the relation defined by 𝑡 •
1
𝜌𝐶𝑇 𝑡 •

2
iff 𝑡 •

1
, 𝑡 •
2
have the same

length with 𝑡 •
1
= 𝑒0, 𝑒1, . . ., 𝑡

•
2
= 𝑓0, 𝑓1, . . . and ∀𝑛. leak(𝑒𝑛) = leak(𝑓𝑛), where leak(𝑒) denotes

the leakage in the event 𝑒 ( projection of 𝑒 on the leak-only semantics [7]).

It is easy to check that 𝐶𝑇 = ANI𝜌𝐶𝑇

𝜙𝐶𝑇
for the 𝜙𝐶𝑇 and 𝜌𝐶𝑇 given above.

We now present more details for each of the four proof techniques adopted by Barthe et al. [7].

Since CT is defined only for safe programs [7, Definition 3.1] we can assume no undefined behavior

is ever encountered and have a simpler presentation. We also omit 𝝓#
coming from the application

of Theorem 5.2, as it always coincides with 𝜙𝐶𝑇 .

Constant-time security preservation by leakage preservation (Barthe et al. [7, Section
5.2]). For compilation passes that belong to this category, the authors prove that the source leakage

is preserved exactly in the target. Thus in this simple case, the theorem proved is CC∼
where

•∼ is

point-wise equality of events together with leakages, 𝜏 •
the identity and 𝜌𝐶𝑇 satisfies Equation 2

by idempotency of 𝜌𝐶𝑇 ,

𝜌𝐶𝑇 (𝜏 • (𝜌𝐶𝑇 (s•)) = [s• •∼ t• ⇒ s• = t•]
𝜌𝐶𝑇 (𝜏 • (𝜌𝐶𝑇 (t•)) = [𝜏 • = 𝜆 𝑥 .𝑥]
𝜌𝐶𝑇 (𝜌𝐶𝑇 (t•)) = [𝜌𝐶𝑇 idempotent]
𝜌𝐶𝑇 (t•)

CT preservation from leakage-erasing simulation (Barthe et al. [7, Section 5.3]). In this

case, CC∼
is proved for a relation that erases source leakage-only events, i.e., those events that do

not contain inputs or outputs, but only the amount of leakage revealed. More precisely (see also [7,

Fig. 8]) for s• = e0, e1, . . . and t• = e0, e1, . . . of the same length, s• •∼ t• iff

∀𝑘, ek = ek ∨ (ek = 𝜖 ∧ ek is leak only)

The property mapping associated to the above relation, 𝜏 •
, erases all leak-only events from the

traces of a source property. If an attacker cannot notice at any point any difference in the leakages

of two traces and we erase the leak-only events from them, the attacker will still not notice any

difference on leakages, therefore it is easy to check that Equation 2 holds also in this case.

CT preservation via memory injection (Barthe et al. [7, Section 5.4]). This case is analogous
to the one above, save that it rests on a more complex relation

•∼ involving a memory injection
relation (see Barthe et al. [7, Definition 5.8]). Intuitively

•∼ relates source and target traces that

differ at most in leakages due to memory accesses. While in the previous case, leakages where

simply erased, here they are modified and crucially with some uniformity. Reasoning as in the

previous case, if an attacker cannot notice a difference in the leakages of two traces and we modify
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equal leakages of the same factor, the attacker will still not notice any difference on leakages, thus

Equation 2 holds.

CT preservation from CT-diagram (Barthe et al. [7, Section 5.5]). In this case 𝜌𝐶𝑇 does not

satisfy Equation 2 because the counting simulation ([7, Definition 5.10]) does not necessarily relate

source and target leakages but only the inputs and outputs
14
. CC∼

alone does not ensure that an

attacker cannot observe any interference in the target leakages, in order to show preservation of

CT the authors need to prove an extra condition, the so-called CT diagram [8].

5.7.2 Value-dependent noninterference. Sison andMurray [74] introduce a compiler that provably

preserves value-dependent noninterference (VDNI) for a concurrent language with shared variables.

Value-dependent means that the secrecy level of a variable – low or high – may depend on the

value of some other variable, called the control variable of the first, and therefore could change

throughout its lifetime.

Preservation of VDNI for concurrent programs enjoys compositionality, meaning that it follows

from the preservation of VDNI for each single thread [52] under certain conditions. As the compo-

sitionality result is orthogonal to our framework, we can study either (1) the preservation of VDNI

for one local thread or for (2) the whole-program,

In the remainder of this section we focus on the preservation of VDNI for a single thread, that is

proven by showing a secure refinement relation between source and compiled threads. Similarly to

the previous section, the secure refinement is expressed via a cube diagram ([74], Figure 1), and

can be proven directly [52] or split into more obligations [74].

As Sison and Murray [74] use a state transition based semantics, we first show how to encode this

semantics into a trace model by defining the ∼ relation based on the secure refinement relation. We

then show how to encode VDNI as an instance of abstract noninterference( i.e., both VDNIS = ANI𝜌
𝜙

and VDNIT = ANI𝜌
𝜙
). Finally we apply Theorem 5.2 and conclude that if W satisfies VDNIS then

W↓ satisfies VDNIT given that the trace relation ∼ has properties defined in [52, Theorem 5.1].

Source (WHILE) and target (RISC-like assembly) languages are equipped with a determined evalu-

ation step semantics (i.e., a semantics where the only source of nondeterminism are external inputs,

[74], Section 2) between thread-local configurations, which are triples of the form ⟨tps,mds,mem⟩.
In such a configuration, mds is the access mode state for program variables and mem is a map relat-

ing global program variables to their values. Both of these components are common to the source

and target language. The tps component denotes the thread-private state. In the source language, it

is the program to be executed. In the target language, tps consists of the target program (labelled

assembly-language instructions), of a program counter and of the set of thread-local registers. We

denote WHILE configurations by tuples of the form: ⟨tps,mds,mem⟩ and RISC configurations by

tuples of the form: ⟨tps,mds,mem⟩.
Trace Model and Trace relation. We consider traces that are (possibly infinite) sequences of

configurations. The traces produced by a program are the sequences of local configurations that

the program may encounter during execution, according to the evaluation semantics. Let s =

⟨tps
1
,mds1,mem1⟩, ⟨tps

2
,mds2,mem2⟩ . . . be a source trace. The input projection is defined by

s◦ = ⟨mds1,mem1⟩ (the tuple consisting of the access modes and the memory in the first state) and

the output projection is defined by s• = s (the trace itself). Input/output projections are defined
similarly for target traces.

We take the trace relation ∼ ⊆ TraceS ×𝑻𝒓𝒂𝒄𝒆T to be the point-wise lifting of a secure refinement

relation R ([74], Definition 6). Source and target configurations ⟨tps,mds,mem⟩ R ⟨tps,mds’,mem’⟩
14
The interested reader will notice the difference from the previous category by comparing condition (1) of Definition 5.10

and condition (1) of Definition 5.8 by Barthe et al. [7].
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that are related coincide on the access mode and memory part (i.e., mds = mds’ and mem = mem’,
([74], Definition 4), so that

◦∼ is simply the identity and
•∼ coincides with ∼.

VDNI as abstract noninterference. A program satisfies VDNI ([74], Definition 2) if any two of

its executions starting in low equivalent memories are related via a strong low bisimulation modulo
modes (strong low bisimulation mm). Intuitively, a strong low bisimulation mm is a bisimulation

that preserves low-equivalence. Preservation of VDNI is proved by Murray et al. [52] by showing

that for every strong low-bisimulation mm B for source threads, there exists a target strong low

bisimulation mm B such that if two source threads are related by B, then the compiled threads are

related by B ([52], Theorem 5.1).

The intuition for the encoding of VDNI as an instance of abstract noninterference is to model low

equivalence through the operator 𝜙 , and bisimilarity through 𝜌 . More rigorously, VDNIS = ANI𝜌
𝜙
,

where 𝜙 and 𝜌 are defined as following.

For s◦ = ⟨mds1,mem1⟩,

𝜙 (s◦) =
{
⟨mds1,mem′

1
⟩

��� mem1 =
Low
mds1 mem′

1

}
,

where =Low
mds is the low-equivalence modulo mds ([74], Definition 1).

For s• = ⟨tps1,mds1,mem1⟩, ⟨tps2,mds2,mem2⟩, . . . ,

𝜌 (s•) = {⟨tps′1,mds′
1
,mem′

1
⟩, ⟨tps′2,mds′

2
,mem′

2
⟩, . . . |

∀𝑖 .∃Bi . (⟨tpsi,mds𝑖 ,mem𝑖⟩, ⟨tps′i ,mds′𝑖 ,mem′
𝑖 ⟩) ∈ Bi}

where B𝑖 denotes a strong low bisimulation modulo modes. Similarly VDNIT = ANI𝜌
𝜙
where

𝜙 (t◦) =
{
⟨mds1,mem′

1
⟩

��� mem1 =
Low
mds1 mem′

1

}
,

𝜌 (t•) = {⟨tps′1,mds′
1
,mem′

1
⟩, ⟨tps′2,mds′

2
,mem′

2
⟩, . . . |

∀𝑖 .∃Bi . (⟨tpsi,mds𝑖 ,mem𝑖⟩, ⟨tps′i ,mds′𝑖 ,mem′
𝑖 ⟩) ∈ Bi}

The relation R is a simulation, and therefore CC∼
holds. In order to apply Theorem 5.2 and conclude

that whenever a source program W satisfies VDNIS = ANI𝜌
𝜙
, then W↓ satisfies VDNIT = ANI𝜌

𝜙
, it

is sufficient for 𝜌 to satisfy Equation 1, that is

𝝆 (t•) = 𝝆 (𝜏 • (𝜌 (s•)))

for s• •∼ t•. If one is willing to unfold all definitions, this amounts to show the set of traces “bismilar”

to t• coincides with the set of traces that are bisimilar to some t′• and s′• •∼ t′• for some s′• bisimilar

to s•
. The “⊆” is immediate, while for the other one has to prove some properties of R, the ones

in the definition of secure − refinement (Murray et al. [52, inlined above Theorem 5.1]) which

entails preservation of low-equivalence as shown in Murray et al. [52, Theorem 5.1].

In summary, our framework makes it possible to precisely characterize the target noninterference

properties that are implied by (trace-relating) correct compilation of source noninterfering programs.

As we have shown, such properties are not necessarily as strong as desired. Crucially, the target

noninterference property one gets for free for a given trace-relating correct compiler is a function

of the trace relation under consideration. By considering more sophisticated trace relations, one

could be able to get more interesting noninterference properties in the target for free —but this
would likely come at the expense of a more challenging trace-relating compiler correctness proof.
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6 TRACE-RELATING SECURE COMPILATION
So far we have studied compiler correctness criteria for whole, standalone programs. However,

in practice, programs do not exist in isolation, but in a context where they interact with other

programs, libraries, etc. In many cases, this context cannot be assumed to be benign and could

instead behave maliciously to try to disrupt a compiled program.

Hence, in this section we consider the following secure compilation scenario: a source program is

compiled and linked with an arbitrary target-level context, i.e., one that may not be expressible as

the compilation of a source context. Compiler correctness does not address this case, as it does not

consider arbitrary target contexts, looking instead at whole programs (empty context [41]) or well-

behaved target contexts that behave like source ones (as in compositional compiler correctness [33,

37, 56, 76]).

Summary of the work of Abate et al. [3]. To account for this scenario, Abate et al. [3] describe

several secure compilation criteria based on the preservation of classes of (hyper)properties (e.g.,

trace properties, safety, hypersafety, hyperproperties, etc.) against arbitrary target contexts. For

each of these criteria, they give an equivalent “property-free” criterion, analogous to the equivalence

between TP and CC=
. For instance, their robust trace property preservation criterion (RTP) states

that, for any trace property 𝜋 , if a source partial program P plugged into any context CS satisfies

𝜋 , then the compiled program P↓ plugged into any target context CT satisfies 𝜋 . Their equivalent

criterion to RTP is RTC, which states that for any trace produced by the compiled program, when

linked with any target context, there is a source context that produces the same trace. Formally

(writing𝐶 [𝑃] to mean the whole program that results from linking partial program 𝑃 with context

𝐶) they define:

RTP ≡ ∀P. ∀𝜋. (∀CS. ∀𝑡 .CS [P]⇝𝑡 ⇒ 𝑡 ∈ 𝜋) ⇒ (∀CT . ∀t. CT [P↓]⇝𝑡 ⇒ 𝑡 ∈ 𝜋)
RTC ≡ ∀P. ∀CT.∀𝑡 .CT [P↓]⇝𝑡 ⇒ ∃CS . CS [P]⇝𝑡

In the following we adopt the notation 𝑃 |=𝑅 𝜋 to mean “𝑃 robustly satisfies 𝜋 ,” i.e., 𝑃 satisfies 𝜋

irrespective of the contexts (𝐶) it is linked with. Formally, 𝑃 |=𝑅 𝜋
def
= ∀𝐶,𝐶 [𝑃] |= 𝜋 , where |= is the

same as before. Thus, we write more compactly:

RTP ≡ ∀𝜋. ∀P. P |=R𝜋 ⇒ P↓ |=R𝜋

All the criteria of Abate et al. [3] share this flavor of stating the existence of some source context

that simulates the behavior of any given target context, with some variations depending on the

class of (hyper)properties under consideration. For trace properties, they also have criteria that

preserve safety properties plus their version of liveness properties. For hyperproperties, they

have criteria that preserve hypersafety properties, subset-closed hyperproperties, and arbitrary

hyperproperties. Finally, they define relational hyperproperties, which are relations between the

behaviors of multiple programs for expressing, e.g., that a program always runs faster than another.

For relational hyperproperties, they have criteria that preserve arbitrary relational properties,

relational safety properties, relational hyperproperties and relational subset-closed hyperproperties.

Each category of criteria provides different kinds of security guarantees (confidentiality or

integrity) for the code and data segments of programs. Roughly speaking, the security guarantees

due to robust preservation of trace properties regard only protecting the integrity of the program

from the context, the guarantees of hyperproperties also regard data confidentiality, and the

guarantees of relational hyperproperties may even regard code confidentiality. Naturally, these

stronger guarantees are increasingly harder to enforce and prove.

All the criteria of Abate et al. [3] are stated in a setting where source and target traces are the

same. In this section, we extend their results to the trace-relating setting, obtaining trintarian
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views for secure compilation. There are many similarities with §2 which show up in the secure

compilation setting too, but also some crucial differences. As in §2, the application of �̃� or 𝜏 ,

may lose the information that a property belongs to the class Safety, or that a hyperproperty is

subset-closed, which are both crucial for the equivalence with the property-free criterion of Abate

et al. [3]. As in §2, we solve this problem by interpreting classes of properties as an abstraction
of another class of properties induced by a closure operator. Differently from §2, the presence

of adversarial contexts makes the criteria for subset-closed hyperproperties and trace properties

distinct. Abate et al. [3] show that the criterion for robust preservation of hypersafety is distinct

from robust safety preservation and all criteria about classes of trace properties are distinct from

their relational counterparts e.g., robust preservation of relational safety and robust preservation

of safety properties are different. We therefore further generalize the argument from §3.2 to safety

hyperproperties as well as to relational hyperproperties.

Specifically, we provide a trinity for the preservation of trace properties and subset-closed hyper-

properties (§6.1), of safety properties and hypersafety hyperproperties (§6.2), of hyperproperties

(§6.3), and for 2-relational (hyper)properties (§6.4). We conclude the section by studying the relative

expressiveness of these criteria (§6.5).

Robustness and Compositional Compilation. Before diving into the criteria for robust compilation,

it is worth noting the relationship between these and compositional compiler correctness. Compo-

sitional compiler correctness (CCC) is a statement of compiler correctness for programs that are

linked against some contexts. Unlike robustness, which imposes no constraints on the contexts,

CCC imposes conditions on the target contexts that compiled programs can be linked against:

they need to be related (in ways that vary from work to work [38, 56]) to the source contexts [65].

As Patrignani and Garg [64] also point out, the notions of CCC and of robust compilation are

incomparable: neither can be proven stronger than the other. This is not surprising since robust

compilation criteria are used to prove compiler security while CCC is used to prove correctness.
15

The criteria we adopt could be generalised further by adding an extra parameter that qualifies

the relation between source and target contexts. Such a general statement would let us express

both CCC and robust compilation by picking the correct extra parameter. However, we refrain

from presenting such general statements, as the implications in terms of preservation of classes of

(hyper)properties has not been studied for them.

6.1 Trace-Relating Secure Compilation: Trace Properties and Subset-closed
Hyperproperties

This section shows the simple generalization of RTC to the trace-relating setting (RTC∼
) and its

corresponding trinitarian view (Theorem 6.1). Then, it presents the trinitarian view for criteria that

preserve subset-closed hyperproperties (Theorem 6.2).

Theorem 6.1 (Trinity for Robust Trace Properties ). For any trace relation ∼ and induced

property mappings 𝜏 and �̃� , we have: RTP𝜏 ⇐⇒ RTC∼ ⇐⇒ RTP�̃�
, where

RTC∼ ≡ ∀P ∀CT ∀t. CT [P↓]⇝t ⇒ ∃CS ∃s ∼ t. CS [P]⇝s

RTP𝜏 ≡ ∀P ∀𝜋S ∈ 2
TraceS . P |=R 𝜋S ⇒ P↓ |=R 𝜏 (𝜋S)

RTP�̃� ≡ ∀P ∀𝝅T ∈ 2
TraceT . P |=R �̃� (𝝅T) ⇒ P↓ |=R 𝝅T

15
We remark CCC has been used to conclude security of compilation in the previously discussed work of Sison and Murray

[74] (and in its predecessor [52]). However, there is a key difference in the ‘role’ of contexts: in robust compilation criteria,

contexts model attackers while in Sison and Murray [74] contexts are other bits of compiled code. This treatment lets Sison

and Murray [74] reason compositionally about the concurrently-executing compiled code.
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The trinity for robust trace property preservation is the straightforward adaptation of the concepts

of §2 to the definitions of Abate et al. [3]. Intuitively, these criteria simply deal with partial programs

P instead of whole programs W. Necessarily, these criteria then consider arbitrary program contexts

linked with P; the universal quantification over CS and CT are tacit in the expression |=𝑅 .
We can also generalize §2 to robust subset-closed hyperproperties (Theorem 6.2). However,

unlike the correct compilation case of §2, the equivalent property-free criterion (RSCHC∼
) does

not coincide with RSC∼
, but states the existence of a single source context for all the target traces

produced by a program in a given context.

Theorem 6.2 (Trinity for Robust Subset-closed Hyperproperties ). Let SCHS and SCHT denote

the sets of all subset-closed hyperproperties in the source and target languages, respectively. For any

trace relation ∼ and its existential and universal images lifted to hyperproperties (that is, the lifting

of the respective functions from Definition 2.5), 𝜏 and �̃� , and for Cl⊆ (𝐻 ) = {𝜋 | ∃𝜋 ′ ∈ 𝐻. 𝜋 ⊆ 𝜋 ′},
we have: RSCHPCl⊆◦𝜏 ⇐⇒ RSCHC∼ ⇐⇒ RSCHPCl⊆◦�̃�

, where

RSCHC∼ ≡ ∀P ∀CT ∃CS ∀t CT [P↓]⇝t ⇒ ∃s ∼ t′. CS [P]⇝s

RSCHPCl⊆◦𝜏 ≡ ∀P ∀HS ∈ SCHS. P |=R HS ⇒ P↓ |=R Cl⊆ (𝜏 (HS))
RSCHPCl⊆◦�̃� ≡ ∀P ∀HT ∈ SCHT . P |=R Cl⊆ (�̃� (HT)) ⇒ P↓ |=R HT

6.2 Trace-Relating Secure Compilation: Safety and Hypersafety
In this section we elaborate the robust preservation of safety (Theorem 6.3) and hypersafety

properties (Theorem 6.4). Similar to §3.2, we consider the trace model adopted by Abate et al. [3] to

ease the presentation. Our starting point is the two equivalent criteria for preservation of robust

satisfaction of all and only the safety properties [3],

RSP ≡ ∀P. ∀𝜋 ∈ Safety. P|=R𝜋 ⇒ P↓|=R𝜋

RSC ≡ ∀P. ∀CT .∀𝑚.CT [P↓]⇝∗𝑚 ⇒ ∃CS . CS [P]⇝∗𝑚

where CT [P↓]⇝∗𝑚 is a shorthand for ∃𝑡 ≥ 𝑚.CT [P↓]⇝𝑡 .

RSP differs from RTP as it only quantifies over safety properties, and RSC differs from RTC as it

quantifies over finite prefixes𝑚, rather than complete traces 𝑡 . This comes from the fact that safety

properties can be characterized in terms of sets of bad prefixes (as in Definition 3.4). Unfolding⇝∗

we can interpret RSC as follows. If CT [P↓] produces a trace 𝑡 ≥ 𝑚 that violates a specific safety

property, namely, the one defined by𝑀 = {𝑚}, then there exists CS in which P violates the same
safety property, producing a trace 𝑡 ′ ≥ 𝑚 but possibly distinct from 𝑡 .

Our generalization of RSC to the trace-relating setting states that whenever CT [P↓] produces a
trace t that violates a target safety property, there exists a source context CS in which P violates

the source interpretation of the property, i.e., its image through �̃� . The following theorem defines

RSC∼
and its two equivalent formulations.

Theorem 6.3 (Trinity for Robust Safety Properties ). For any trace relation ∼ and for the

corresponding property mappings 𝜏 and �̃� , we have: RTPSafe◦𝜏 ⇐⇒ RSC∼ ⇐⇒ RSP�̃�
, where

RSC∼ ≡ ∀P ∀CT ∀t ∀m ≤ t.CT [P↓]⇝t ⇒ ∃CS ∃t′ ≥ m ∃s ∼ t′. CS [P]⇝s

RTPSafe◦𝜏 ≡ ∀P∀𝜋S ∈ 2
TraceS .P |=R 𝜋S ⇒ P↓ |=R (Safe ◦ 𝜏) (𝜋S)

RSP�̃� ≡ ∀P∀𝝅T ∈ SafetyT .P |=R �̃� (𝝅T) ⇒ P↓ |=R 𝝅T

where the closure operator Safe is the one introduced in §3.2.
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Exactly like §3.2, Theorem 6.3 exploits the fact that

Safe ◦ 𝜏 : 2
TraceS ⇆ SafetyT : �̃�

is a Galois connection between source properties and target safety properties and the argument

generalizes to arbitrary closure operators on target properties ( ). More interestingly, we can

further generalize this idea to hypersafety. Hypersafety lifts the idea of safety with another level of

sets (just like hyperproperties do w.r.t. trace properties) in order to talk about multiple runs of the

same program. Just like for safety, hypersafety is concerned with a set of bad prefixes (called𝑀)

that no program upholding the hypersafety property should extend. Formally, a hyperproperty 𝐻

is hypersafety if: ∀𝜋. 𝜋 ∉ 𝐻 ⇒ (∃𝑀.𝑀 ≺ 𝜋 ∧ (∀𝜋 ′𝑀 ≺ 𝜋 ′ ⇒ 𝜋 ′ ∉ 𝐻 )). In Theorem 6.4, we indeed

exploit the following Galois connection between source subset-closed hyperproperties and target

HSafe ◦ 𝜏 : SCHS ⇆ HSafetyT : Cl⊆ ◦ �̃�

where HSafetyT =

{
HSafe(HT)

��� HT ∈ 2
2

TraceT
}
and HSafe is the closure operator that maps an

arbitrary target hyperproperty HT to the target hypersafety that best over-approximates HT.
16

Theorem 6.4 (Trinity for Robust Hypersafety ). For any trace relation ∼ and for the induced

property mappings 𝜏 and �̃� , we have: RSCHPHSafe◦𝜏 ⇐⇒ RHSC∼ ⇐⇒ RHSPCl⊆◦�̃�
, where

RHSC∼ ≡ ∀P ∀CT ∀M ∈ Mfin . M ≤ beh(CT [P↓]) ⇒
∃CS ∀m ∈ M ∃t ≥ m. ∃s ∼ t. CS [P]⇝s

RSCHPHSafe◦𝜏 ≡ ∀P ∀HS ∈ SCHS . P |=R HS ⇒ P↓ |=R HSafe(𝜏 (HS))
RHSPCl⊆◦�̃� ≡ ∀P ∀HT ∈ HSafetyT.P |=R Cl⊆ (�̃� (HT)) ⇒ P↓ |=R HT

andMfin
is the set of finite sets of prefixes.

We conclude this section with the following remark. The reader might wonder about extracting

a “new” trace relation from the Galois connection Safe ◦ 𝜏 : 2
TraceS ⇆ SafetyT : �̃� and get

another formulation of RSC∼
. We note that this is not possible in general, as the class of safety

properties, i.e., closed sets, is not necessarily a powerset and hence Lemma 2.7 cannot be applied.

6.3 Trace-Relating Secure Compilation: Arbitrary Hyperproperties
We already mentioned that some properties of interest for security e.g., possibilistic information-

flow are not subset closed [18]. In this section we lift the results from §3.3 to the secure compilation

setting. Once again, the trinity is weak as the equivalence to RHP�̃�
requires an extra assumption.

Theorem 6.5 (Weak Trinity for Robust Hyperproperties ). For a trace relation ∼ ⊆ TraceS ×
TraceT and induced property mappings �̃� and 𝜏 , we have:

RHC∼ ⇐⇒ RHP𝜏
;

if 𝜏 ⇆ �̃� is a Galois insertion (i.e., 𝜏 ◦ �̃� = 𝑖𝑑), then RHC∼ ⇒ RHP�̃�
,

if �̃� ⇆ 𝜏 is a Galois reflection (i.e., �̃� ◦ 𝜏 = 𝑖𝑑), then RHP�̃� ⇒ RHP𝜏
,

where RHC∼ ≡ ∀P ∀CT ∃CS ∀t. CT [P↓]⇝t ⇐⇒ (∃s ∼ t. CS [P]⇝s)
RHP𝜏 ≡ ∀P ∀HS . P |=R HS ⇒ P↓ |=R 𝜏 (HS)
RHP�̃� ≡ ∀P ∀HT. P |=R �̃� (HT) ⇒ P↓ |=R HT

16HSafe (HT) = ∩
{
H′

T

�� HT ⊆ H′
T ∧ H′

T ∈ HSafetyT
}
. See, e.g., Clarkson and Schneider [18] and Pasqua and Mastroeni

[58].
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It is therefore possible and correct to deduce a source obligation for a given target hyperproperty

HT (RHC∼ ⇒ RHP�̃�
) when no information is lost in the composition 𝜏 ◦ �̃� . On the other hand,

RHP𝜏
is a consequence of RHP�̃�

when no information is lost in composing in the other direction,

�̃� ◦ 𝜏 .

6.4 Trace-Relating Secure Compilation: 2-Relational Hyperproperties
Finally, we turn to relational properties and hyperproperties. Relational hyperproperties, as defined
by Abate et al. [3], are predicates on a sequence of behaviors; a sequence of programs has the

relational hyperproperty if their behaviors collectively satisfy the predicate. Depending on the

arity of the sequence, there exist different subclasses of relational hyperproperties, though for

simplicity here we only study relational hyperproperties of arity 2. A key example of a relational

hyperproperty is trace equivalence, which holds if two programs have identical behaviors.

All the trinities in this section follow the pattern of their non-relational counterparts. We first

explain how one can get a Galois connection between source and target relational properties from

a trace relation.

Given a trace relation ∼⊆ TraceS × TraceT, we can relate pairs of source traces with pairs of

target traces point-wise,

(s1, s2) ∼ (t1, t2) ⇐⇒ s1 ∼ t1 ∧ s2 ∼ t2

Formally this is ∼2⊆ TraceS
2 × TraceT

2
, the product of the relation ∼ with itself. Therefore by

Lemma 2.7 it corresponds to a Galois connection between source and target relational properties

( ), that with a little abuse of notation
17
we still denote by

𝜏 : 2
TraceS×TraceS ⇆ 2

TraceT×TraceT
: �̃�

Explicitly, for rS ∈ 2
TraceS×TraceS

and rT ∈ 2
TraceT×TraceT

,

𝜏 (rS) = {(t1, t2) | ∃(s1, s2). s1 ∼ t1 ∧ s2 ∼ t2 ∧ (s1, s2) ∈ rS}
�̃� (rT) = {(s1, s2) | ∀(t1, t2). s1 ∼ t1 ∧ s2 ∼ t2 ⇒ (t1, t2) ∈ rT}

𝜏 and �̃� are then lifted to relational hyperproperties similarly to Definition 3.2. Explicitly, for

RS ∈ 2
2

TraceS×TraceS
and RT ∈ 2

2
TraceT×TraceT

,

𝜏 (RS) = {𝜏 (rS) | rS ∈ RS}
�̃� (RT) = {�̃� (𝒓T) | 𝒓T ∈ RT}

Given a relational property 𝑟 ∈ 2
Trace×Trace

and two programs 𝑃1, 𝑃2, we write 𝑃1, 𝑃2 |=𝑅 𝑟 for

∀𝐶. ∀𝑡1𝑡2. 𝐶 [𝑃1] ⇝ 𝑡1 ∧ 𝐶 [𝑃2] ⇝ 𝑡2 ⇒ (𝑡1, 𝑡2) ∈ 𝑟

Given a relational hyperproperty 𝑅 ∈ 2
2
Trace×Trace

, by 𝑃1, 𝑃2 |=𝑅 𝑅 we mean

∀𝐶.(beh(𝐶 [𝑃1]), beh(𝐶 [𝑃2])) ∈ 𝑅

Theorem 6.6 (Trinity for Robust 2-Relational Trace Properties ). For any trace relation ∼ and

for the corresponding property mappings 𝜏 and �̃� , we have: R2rTP𝜏 ⇐⇒ R2rTC∼ ⇐⇒ R2rTP�̃�
,

where

R2rTC∼ ≡ ∀CT ∀P1 ∀P2 ∀t1 ∀t2. (CT [P1↓]⇝t1 ∧ CT [P2↓]⇝t2) ⇒
∃CS ∃s1 ∼ t1 ∃s2 ∼ t2. CS [P1]⇝s1 ∧ CS [P2]⇝s2

R2rTP𝜏 ≡ ∀P1P2 ∀rS ∈ 2
TraceS×TraceS . P1, P2 |=R rS ⇒ P1↓, P2↓ |=R 𝜏 (rS)

17
Technically, we should write: 𝜏2 ⇆ �̃�2
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R2rTP�̃� ≡ ∀P1P2 . ∀rT ∈ 2
TraceT×TraceT . P1, P2 |=R �̃� (rT) ⇒ P1↓, P2↓ |=R rT

Next, we propose the trinity for 2-relational subset-closed hyperproperties, i.e., elements of

2
2
Trace×Trace

that are closed under subsets. Exactly as in the case of subset-closed hyperproperties, the

application of 𝜏 and �̃� may lose the information of being subset-closed. In order to guarantee the

equivalence of the three criteria, we compose the two mappings with a closure operator that we

still denote by Cl⊆ .

Theorem 6.7 (Trinity for 2-Relational Robust Subset-Closed Hyperproperties ). For any trace

relation ∼ and for the corresponding property mappings 𝜏 and �̃� , we have R2rSCHPCl⊆◦𝜏 ⇐⇒
R2rSCHC∼ ⇐⇒ R2rSCHPCl⊆◦�̃�

, where

R2rSCHC∼ ≡ ∀CT ∀P1 ∀P2 ∃CS ∀t1 ∀t2. (CT [P1↓]⇝t1 ∧ CT [P2↓]⇝t2) ⇒
∃s1 ∼ t1 ∃s2 ∼ t2. CS [P1]⇝s1 ∧ CS [P2]⇝s2

R2rSCHPCl⊆◦𝜏 ≡ ∀P1 ∀P2 ∀RS ∈ 2RelSCHS . P1, P2 |=R RS ⇒ P1↓, P2↓ |=R 𝜏 (RS)
R2rSCHPCl⊆◦�̃� ≡ ∀P1 ∀P2 ∀RT ∈ 2RelSCHT.P1, P2 |=R �̃� (RT) ⇒ P1↓, P2↓ |=R RT

Wemove now to the class of relational safety properties, a notion that generalizes safety properties

to relations on programs. Similarly to Theorem 6.3, R2rSP�̃�
quantifies over target relational safety

properties, while R2rTP2rSafe◦𝜏
quantifies over all source relational property and compose 𝜏 with

2rSafe a closure operator that best approximates a relational property with a relational safety

property.

Theorem 6.8 (Trinity for Robust 2-Relational Safety Properties ). For any trace relation ∼ and for

the corresponding property mappings 𝜏 and �̃� , we have: R2rTP2rSafe◦𝜏 ⇐⇒ R2rSC∼ ⇐⇒ R2rSP�̃�
,

where

R2rSC∼ ≡ ∀CT ∀P1P2 ∀t1t2 ∀m1 ≤ t1 ∀m2 ≤ t2. CT [P1↓]⇝t1 ⇒ CT [P2↓]⇝t2 ⇒
∃CS ∃t′1 ≥ m1 ∃s1 ∼ t′1 ∃t′2 ≥ m2 ∃s2 ∼ t′2. CS [P1]⇝s1 ∧ CS [P2]⇝s2

R2rTP2rSafe◦𝜏 ≡ ∀P1P2 ∀rS ∈ 2
TraceS×TraceS . P1, P2 |=R rS ⇒ P1↓, P2↓ |=R (2rSafe ◦ 𝜏) (rS)))

R2rSP�̃� ≡ ∀P1P2 ∀rT ∈ 2rel-SafetyT . P1, P2 |=R �̃� (rT) ⇒ P1↓, P2↓ |=R rT

Finally, we present the most general criterion: preservation of arbitrary 2-relational hyperprop-

erties. As for the preservation of arbitrary hyperproperties, this (weak) trinity requires additional

assumptions to hold, namely that the Galois connection is an insertion or a reflection.

Theorem 6.9 (Weak trinity for Robust 2-Relational Hyperproperties ). For a trace relation

∼ ⊆ TraceS × TraceT and the corresponding property mappings �̃� and 𝜏 , we have:

R2rHC∼ ⇐⇒ R2rHP𝜏
;

if 𝜏 ⇆ �̃� is a Galois insertion (i.e., 𝜏 ◦ �̃� = 𝑖𝑑), then R2rHC∼ ⇒ R2rHP�̃�
,

if �̃� ⇆ 𝜏 is a Galois reflection (i.e., �̃� ◦ 𝜏 = 𝑖𝑑), then R2rHP�̃� ⇒ R2rHP𝜏
,

where R2rHC∼ ≡ ∀P1P2 ∀CT ∃CS .

(∀t. CT [P1↓]⇝t ⇐⇒ (∃s ∼ t. CS [P1]⇝s)) ∧
(∀t. CT [P2↓]⇝t ⇐⇒ (∃s ∼ t. CS [P2]⇝s))

R2rHP𝜏 ≡ ∀P1 ∀P2 ∀RS . P1, P2 |=R RS ⇒ P1↓, P2↓ |=R 𝜏 (RS)
R2rHP�̃� ≡ ∀P1 ∀P2 ∀RT.P1, P2 |=R �̃� (RT) ⇒ P1↓, P2↓ |=R RT
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RTC∼

RTP𝜏RTP�̃�

RSC∼

RTPSafe◦𝜏RSP�̃�

RSCHC∼

RSCHPCl⊆◦𝜏RSCHPCl⊆◦�̃�

RHC∼

RHP𝜏RHP�̃�

In
s.

Refl.

RHSC∼

RSCHPHSafe◦𝜏RHSPCl⊆◦�̃�

R2rTC∼

R2rTP𝜏R2rTP�̃�

R2rSCHC∼

R2rSCHPCl⊆◦𝜏R2rSCHPCl⊆◦�̃�

R2rSC∼

R2rTP2rSafe◦𝜏R2rSP�̃�

R2rHC∼

R2rHP𝜏R2rHP�̃�
In
s.

Refl.

R robust 2r 2-relational
H hyperproperties SCH subset-closed hyperproperties HS hypersafety

T trace properties S safety properties

C property-full criterion P property-free criterion based on 𝜎 and 𝜏

Fig. 4. Hierarchy of trinitarian views of secure compilation criteria preserving classes of hyperproperties and
the key to read each acronym. Shorthands ‘Ins.’ and ‘Refl.’ stand for Galois Insertion and Reflection. The
symbol denotes trinities proven in Coq.

6.5 Relating the Secure Compilation Trinities
Figure 4 orders criteria referring to the same trace relation ∼ according to their relative strength. If a

trinity entails another (denoted by⇒), then the former provides stronger security for a compilation

chain than the latter.

The hypotheses of insertion and reflection mentioned in Theorem 6.9 and Theorem 6.5 are

highlighted with the labels ‘Ins’ and ‘Refl’. Recall that when composing 𝜏 with Safe we quantify over
the whole class of source trace properties rather than only safety properties. This is represented

by the blue background in RTPSafe◦𝜏
. The trinity for the robust preservation of arbitrary trace

properties is on the same blue background. Red and green backgrounds are reserved for subset-

closed hyperproperties and arbitrary relational properties and serve the same purpose.

We now describe how to interpret the acronyms in Figure 4. All criteria start with R meaning they

refer to robust preservation (secure compilation criteria). Criteria for relational hyperproperties—

here only arity 2 is shown for simplicity—contain 2r. Next, criteria names spell the class of hy-

perproperties they preserve: H for hyperproperties, SCH for subset-closed hyperproperties, HS
for hypersafety, T for trace properties, and S for safety properties. Finally, property-free criteria

end with a C while property-full ones involving �̃� and 𝜏 end with P. Thus, robust (R) subset-
closed hyperproperty-preserving (SCH) compilation (C) is RSCHC∼

, robust (R) two-relational (2r)
safety-preserving (S) compilation (C) is R2rSC∼

, etc.
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7 INSTANCES OF TRACE-RELATING SECURE COMPILATION
This section presents instances of compilers that adopt our framework for secure compilation

purposes. We provide three illustrative cases, for compilers that respectively robustly-preserve

trace properties (§7.1), safety properties (§7.2) and hypersafety properties (§7.3). The last two

examples are not novel instances we devise but rather existing work whose results we recount as

instantiations of our framework.

7.1 An Instance of Trace-Relating Robust Preservation of Trace Properties
This subsection illustrates trace-relating secure compilation when the target events are strictly

more events than the source ones

The source and target languages used here extend the syntax of the source language of §4.3.1.

Both languages have outputs of naturals, and the expressions that generate them: outS n and outS e.
Additionally, the target has a different output action and its related expression outT n; this is the
only difference between the languages. The extra events in the target model the ability of target

language to perform potentially-dangerous operations (e.g., writing to the hard drive), which cannot

be performed by the source language, and against which source-level reasoning can therefore offer

no protection.

Both languages and compilation chains now deal with partial programs P , contexts C and

linking of those two to produce whole programs C [P]. In this setting, a whole program W is the

combination of a main expression to be evaluated and a set of function definitions fs (with distinct

names) that can refer to their argument (arg) symbolically and can be called by the main expression

and by other functions (f (e). The set of functions of a whole program is the union of the functions

of a partial program and a context; the latter also contains the main expression.

e ::= · · · | f (e) | outS n | arg e ::= · · · | f (e) | outS n | arg | outT n
i ::= · · · | outS n i ::= · · · | outS n | outT n
fs ::= ⟨f1, e1⟩ , . . . , ⟨fn, en⟩ P ::= ⟨fs, e⟩ C ::= fs W ::= C [P]

The extensions of the typing rules and the operational semantics for whole programs are

unsurprising and therefore elided. The trace model also follows closely that of §4.3: it consists of a

list of regular events (including the new outputs) terminated by a result event18. A partial program

and a context can be linked into a whole program when their functions satisfy the requirements

mentioned above.

We define the homomorphic compiler ( ·↓) that translates each source construct into its target

correspondent. Thus, the compiler never introduces the additional target instruction outT n. Since
it is straightforward, the formalisation of the compiler is elided.

Relating Traces. In the present model, source and target traces differ only in the fact that the

target draws (regular) events from a strictly larger set than the source, i.e., ΣT ⊃ ΣS. A natural

relation between source and target traces essentially maps a given target trace t the source trace
that erases from t those events that exist only at the target level. This is reasonable because only

target contexts C (not compiled programs P↓) can perform the extra target actions as the compiler

does not introduce them. Let t|ΣS indicate trace t filtered to retain only those elements included in

alphabet ΣS. We define the trace relation as:

s ∼ t ≡ s = t|ΣS

18
Notice that the languages are strictly terminating.
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In the opposite direction, a source trace s is related to many target ones, as any target-only events

can be inserted at any point in s. The induced mappings for this relation are:

𝜏 (𝜋S) =
{
t

�� ∃s. s = t|ΣS ∧ s ∈ 𝜋S
}

�̃� (𝝅T) =
{
s

�� ∀t. s = t|ΣS ⇒ t ∈ 𝝅T
}

That is, the target guarantee of a source property is that the target has the same source-level

behavior, sprinkled with arbitrary target-level behavior. Conversely, the source-level obligation of

a target property is the aggregate of those source traces all of whose target-level enrichments are

in the target property.

Since the languages are very similar, it is simple to prove that our compiler is secure according

to the trace relation ∼ defined above.

Theorem 7.1 ( ·↓ is Secure ). ·↓ is RTC∼
.

7.2 An Instance of Trace-Relating Robust Preservation of Safety Properties
I/O events are not the only instance of events that compilers consider. Especially in the setting of

secure compilation, where a compartmentalized partial program interacts with a context, interaction
traces are often used [3, 35, 59, 64]. Consider a language analogous to that of the previous section,

where the context C defines a set of functions Fc and the program defines a different set Fp.
Interaction traces (generally) record the control flow of calls between these two sets via actions

that are call f v and ret v [34]. These actions indicate a call to function f with parameter v and a

return with return value v. In case the context calls a function in Fp (or returns to a function in Fp),
the action is decorated with a ? (i.e., those actions are call f v? and ret v?). Dually, the program
calling a function in Fc (or returning to it) generates an action decorated with a ! (i.e., those actions

are call f v! and ret v!).
Patrignani and Garg [64] consider precisely such a setting. Their languages are simple like those

presented here but impure; their source has an ML-like heap and the target has a memory that is

indexed by natural numbers and capabilities to protect addresses. Moreover, they define a compiler

that preserves safety properties of source programs (i.e., it is RSC∼
in the sense of Theorem 6.3) by

relying on the target capabilities. The interesting point, however, is that they also consider source

and target traces to be distinct since the two languages have different values. Concretely, the source

has bools and nats and the target only has nats, plus in the source, heap addresses are abstract

locations ℓ while in the target they are nats. Thus, to prove RSC∼
, they rely on a cross-language

relation on values, which is lifted to trace actions, and then lifted point-wise to traces (analogously

to what we have done in Sections 4.3, 4.4 and 7.1). In order to relate addresses, their cross-language

relation is equipped with a partial bijection between source and target addresses, this bijection

grows monotonically with every reduction step.

Besides defining a relation on traces (which is an instance of ∼), they also define a relation

between source and target safety properties that supports concurrent programs.
19
Thus, they really

provide an instantiation of 𝜏 that maps all safe source traces to the related target ones. This ensures

that no additional target trace is introduced in the target property, and source safety property are

mapped to target safety ones by 𝜏 . Thus, their compiler is proven to generate code that respects 𝜏 ,

so they really achieve a variation of RTPSafe◦𝜏
from Theorem 6.3. Their proofs are based on standard

techniques either for secure compilation (i.e., trace-based backtranslation [61]) and for correct

compilation (i.e., forward/backward simulation [42]).

19
They call those safety properties monitors since they focus on safety [72] and indicate s with M and t with M.
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7.3 An Instance of Trace-Relating Robust Preservation of Hypersafety Properties
Patrignani and Garg [63] study the preservation of hypersafety from the perspective of secure

compilation. Again, their result can be interpreted in our setting. They consider reactive systems,

where trace alphabets are partitioned in input actions 𝛼? and output actions 𝛼!, whose concatenation

generate traces 𝛼?𝛼!. We use the same notation as before and indicate such sequences as s and t
respectively. The set of target output actions 𝜶 ! includes an action

√
that has no source counterpart

(i.e., �𝛼? ∼ √
), and whose output does not depend on internal state (thus it cannot leak secrets).

20

By emitting

√
whenever undesired inputs are fed to a compiled program (e.g., passing a nat when

a bool is expected), hypersafety is preserved (as

√
does not leak secrets) [63].

More formally, they assume a relation on actions ∼ that is total on the source actions and injective.

From there, they define TPC—which here corresponds to an instance of 𝜏—that maps the set of

valid source traces to the set of valid target traces (that now mention

√
) as follows:

TPC (𝜋S) =
{

t

����� t ∈
⋃
𝑛∈N

intn (𝜋S)
}

where int0 (𝜋S) = {t | ∃s ∈ 𝜋S ∧ s ∼ t}

intn+1 (𝜋S) = {t | t ≡ t1𝜶 ?
√

t2 ∧ t1t2 ∈ intn (𝜋S) ∧ undesired (𝜶 ?)}

where undesired (𝜶 ?) indicates that 𝜶 ? is an undesired input (intuitively, this is an information

that can be derived from the set of source traces [63]).

Informally, given a set of source traces 𝜋S, TPC generates all target traces that are related (point-

wise) to a source trace (case int0). Then (case intn+1), it adds all traces (t) with interleavings of

undesired input 𝜶 ? (third conjunct) followed by

√
(first conjunct) as long as the interleavings split

a trace t1t2 that has already been mapped (second conjunct).

TPC is an instance of 𝜏 that maps source hypersafety to target hypersafety (and therefore, safety

to safety), thus our theory can be instantiated for the preservation of these classes of hyperproperties

as well.

8 RELATEDWORK
We already discussed how our results relate to some existing work in correct compilation [41, 77]

and secure compilation [3, 63, 64]. We also already mentioned that most of our definitions and

results make no assumptions about the structure of traces. One result that partially relies on the

structure of traces is Theorem 6.3, that refers to finite prefix𝑚, suggesting traces should be some sort

of sequences of events (or states), as customary when one wants to refer to safety properties [18].

Without a notion of finite prefix only RSC∼
may look different but both RTPSafe◦𝜏

and RSP�̃�
are

trace agnostic as in general safety properties can be defined as the closed sets of any topology on

traces [58].

Even for reasoning about safety, hypersafety, or arbitrary hyperproperties, traces can therefore

be values, sequences of program states, or of input output events, or even the recently proposed

interaction trees [81]. In the latter case we believe that the compilation from IMP to ASM proposed

by Xia et al. [81] can be seen as an instance of HC∼
, for the relation they call “trace equivalence.”

Compilers Where Our Work Could Be Useful. Our work should be broadly applicable to

understanding the guarantees provided by many verified compilers. For instance, Wang et al. [80]

recently proposed a CompCert variant that compiles all the way down to machine code, and it

would be interesting to see if the model at the end of §4.1 applies there too. This and many other

verified compilers [15, 36, 51, 73] beyond CakeML [77] deal with resource exhaustion and it would

be interesting to also apply the ideas of §4.2 to them.

20
Technically, they assume a set of

√
actions, but for this analogy a single action suffices.
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source language

target language target meanings

source meanings

compile

target semantics

decode

source semantics

W

W↓ Z

Z#

T

S

Fig. 5. Morris’s [50] (left) and Melton et al.’s [47] and Sabry and Wadler’s [70] (right) compiler correctness
diagrams

Hur and Dreyer [33] devised a correct compiler from an ML language to assembly using a

cross-language logical relation to state their CC theorem. They do not have traces, though were

one to add them, the logical relation on values would serve as the basis for the trace relation and

therefore their result would attain CC∼
.

Switching to more informative traces capturing the interaction between the program and the

context is often used as a proof technique for secure compilation [3, 34, 62]. Most of these results

consider a cross-language relation, so they probably could be proved to attain one of the criteria

from Figure 4.

Generalizations of Compiler Correctness. The compiler correctness definition of Morris [50]

was already general enough to account for trace relations, since it considered a translation between

the semantics of the source program and that of the compiled program, which he called “decode” in

his diagram, reproduced in Figure 5 (left). And even some of the more recent compiler correctness

definitions preserve this kind of flexibility [65]. While CC∼
can be seen as an instance of a definition

by Morris [50], we are not aware of any prior work that investigated the preservation of properties

when the “decode translation” is neither the identity nor a bijection, and source properties need to

be re-interpreted as target ones and vice versa.

Correct Compilation and Galois Connections. Melton et al. [47] and Sabry and Wadler [70]

expressed a strong variant of compiler correctness using the diagram of Figure 5 (right). They

require that compiled programs parallel the computation steps (↠) of the original source programs,

which can be proven showing the existence of a decompilation map # that makes the diagram

commute, or equivalently, the existence of an adjoint for ↓ (𝑊 ≤ 𝑊 ′ ⇐⇒ 𝑊 ↠ 𝑊 ′
for both

source and target). The “parallel” intuition can be formalized as an instance of CC∼
. Take source

and target traces to be finite or infinite sequences of program states (maximal trace semantics [19]),

and relate them exactly like Melton et al. [47] and Sabry and Wadler [70].

Translation Validation. Translation validation is an important alternative to proving that all

runs of a compiler are correct as it can be more easily applied to realistic compilers. An interesting

work about translation validation of security properties has been recently proposed by Namjoshi

and Tabajara [53]. They can handle many security properties expressible in terms of automata as

long as source and target attackers and the observable traces are the same.

Instantiating the definition of any of the presented criteria with a particular program, one has

translation validation criteria with the map 𝜏 describing the target property that is (robustly)

satisfied once the translation is validated. For example one can consider

(tsv∼) CC∼ (W↓) = ∀t. W↓⇝ t ⇒ ∃s ∼ t. W⇝ s

(rtsv∼) RTC∼ (CT [P↓]) = ∀t. CT [P↓]⇝ t ⇒ ∃CS. ∃s ∼ t. CS [P]⇝ s

While the proof technique proposed by Namjoshi and Tabajara [53] might be generalized for

CC∼ (W↓) – as long as beh(W↓) and beh(W) can be expressed as one of the automata they can

handle – they don’t work for RTC∼ (CT [P↓]) because of the existential in the conclusion.
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Busi et al. [13] are instead considering translation validation criteria in the spirit of (rtsv∼), their
preliminary work only allows equality as trace relation, but should be subject to a generalization to

the trace relating setting similar to the one we presented in this work.

Proof Techniques. We believe existing proof techniques (beyond the simulations discussed in

Section 4.3.2) that have been devised to prove compiler correctness can also be employed to

prove that a compiler attains any of the presented criteria. For example, cross-language binary

logical relations can be used to relate two terms of two different languages when they ‘behave the

same’ [12, 33, 71]. Additionally, they can also be usedwhenmultiple programs ‘behave the same’ [66]

in a multilanguage semantics setting [45]. Secure compilation results (which rely on the criteria

of Section 6) can be proven using variations of the backtranslation proof technique [22, 57, 64].

Presenting this proof techniques is beyond the scope of this paper, so we refer the interested reader

to the work of Patrignani et al. [61].

9 CONCLUSION AND FUTUREWORK
We have extended the property preservation view on compiler correctness to arbitrary trace

relations, and believe that this will be useful for understanding the guarantees various compilers

provide. An open question is whether, given a compiler, there exists a most precise ∼ relation for

which this compiler is correct. As mentioned in §1, every compiler is CC∼
for some ∼, but under

which conditions is there a most precise relation? In practice, more precision may not always be

better though, as it may be at odds with compiler efficiency and may not align with more subjective

notions of usefulness, leading to tradeoffs in the selection of suitable relations. Finally, another

interesting direction for future work is studying whether using the relation to Galois connections

allows to more easily compose trace relations for different purposes, say, for a compiler whose

target language has undefined behavior, resource exhaustion, and side-channels. In particular, are

there ways to obtain complex relations by combining simpler ones in a way that eases the compiler

verification burden?

Composition for Multipass Compilers. For now, we can already informally argue about the correct-

ness of a multipass compiler, where each step is proved correct for a possibly different trace relation.

Concretely, assume ↓S
I is a compilation chain from a source language S to an intermediate language

I and ↓IT from the intermediate language I to a target language T.21 Assume given two relations

between traces of these languages: ∼S,I⊆ TraceS × TraceI and ∼I,T⊆ TraceI × TraceT, such that

each compiler is proven to be CC w.r.t. the expected trace relation: ↓S
I∈ CC∼S,I

and ↓IT∈ CC∼I,T
.

Let us consider the source-to-target compiler ↓S
T that is derived of the composition of the two

aforementioned compilers, so ↓S
T=↓

I
T ◦ ↓S

I. In this case, we obtain the expected result: the correctness

of the whole compiler ↓S
T is derived from the individual compiler correctness proofs for each step.

CC(∼I,T◦∼S,I) ≡ ∀W∀t. W ↓S
T ⇝ t ⇒ ∃s ∼I,T ◦ ∼S,I t. W⇝s

where s ∼i,t ◦ ∼s,i t ⇐⇒ ∃i ∈ TraceI. s ∼S,I i ∧ i ∼I,T t.
Generalising this kind of composition to compilers that attain different criteria is unclear. For

example, if ↓S
I preserves arbitrary hyperproperties, but ↓IT preserves 2-relational safety properties,

what can we conclude for ↓S
T? We leave investigating these interesting matters for future work.
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A PROOFS
Proof of Theorem 2.6 ( ). See Theorems rel_TC_𝜏TP and rel_TC_𝜎TP in TraceCriterion.v,

where the TP𝜏 ⇐⇒ TP�̃�
part follows directly from Theorem 2.4. □

Proof of Lemma 2.7 (Trace relations � Galois connections on trace properties).

Gardiner et al. [26] show that the existential image is a functor from the category of sets

and relations to the category of predicate transformers, mapping a set 𝑋 ↦→ 2
𝑋
and a relation

∼ ⊆ 𝑋 ×𝑌 ↦→ 𝜏 : 2
𝑋 → 2

𝑌
. They also show that such a functor is an isomorphism – hence bijective

– when one considers only monotonic predicate transformers that have a – unique – upper adjoint.

The universal image of ∼, �̃� , is the unique adjoint of 𝜏 ( ), hence ∼ ↦→ 𝜏 ⇆ �̃� is itself bijective. □

Proof of Theorem 2.8 (Correspondence of Criteria). For a trace relation ∼ and the Galois

connection 𝜏 ⇆ �̃� , the result follows from Theorem 2.6. For a Galois connection 𝜏 ⇆ 𝜎 and ∼̂,
use Lemma 2.7 to conclude that the existential and universal images of ∼̂ coincide with 𝜏 and 𝜎 ,

respectively; the goal then follows from Theorem 2.6. □

Lemma A.1 (Special relations and consequences on the adjoints). Let 𝑋,𝑌 be two arbitrary sets

and ∼⊆ 𝑋 × 𝑌 . Assume ∼ is a total and surjective map from 𝑌 to 𝑋 . Let 𝛼 ⇆ 𝛾 be its existential

and universal image, i.e.

𝛼 = 𝜆 𝜋𝑋 . {𝑦 | ∃𝑥 ∈ 𝜋𝑋 . 𝑥 ∼ 𝑦}
𝛾 = 𝜆 𝜋𝑌 . {𝑥 | ∀𝑦. 𝑥 ∼ 𝑦 ⇒ 𝑦 ∈ 𝜋𝑌 }

Then 𝛾 = 𝜆 𝜋𝑌 . {𝑥 | ∃𝑦 ∈ 𝜋𝑌 . 𝑥 ∼ 𝑦}, and 𝛾 is injective.

Proof of Lemma A.1. See Lemma rel_total_surjective and rel_total_surjective_up_inj in Galois.v

□

Proof of Theorem 4.3 ( ). See Theorem correctness in TypeRelationExampleInput.v. □

Proof for Lemma 4.4 (gensend (·, ·) works). We proceed by induction on 𝜏 and then by induc-

tion on 𝜏 ′:

𝜏 = N and 𝜏 ′ = N By canonicity we have that r = ⟨n, n′⟩.
gensend (·, ·) translates that into send n; send n′

.

By Rule Sem-seq, that produces t = n;n′
.

We need to prove that ⟨n, n′⟩ ∼ n;n′
, which holds by Rule Trace-Rel-N-N.

𝜏 = N and 𝜏 ′ = 𝜏1 × 𝜏2 Analogous to the other cases, by IH and Rule Trace-Rel-N-M.

𝜏 = 𝜏1 × 𝜏2 and 𝜏 ′ = N Analogous to the other cases, by IH and Rule Trace-Rel-M-N.

𝜏 = 𝜏1 × 𝜏 ′1 and 𝜏 ′ = 𝜏2 × 𝜏 ′2 So by canonicity r =
〈〈

r1, r′1
〉
,
〈
r2, r′2

〉〉
.

By definition of gensend (·, ·):
gensend (x, 𝜏 × 𝜏 ′)

= gensend (x, 𝜏).1; gensend (x, 𝜏 ′).2
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By the target reductions we know (gensend (x, 𝜏).1; gensend (x, 𝜏 ′).2) [r/x] ⇝ is1; is2, so

by IH we have

〈
r1, r′1

〉
∼ is1 and

〈
r2, r′2

〉
∼ is2.

We need to prove that

〈〈
r1, r′1

〉
,
〈
r2, r′2

〉〉
∼ is1; is2, which holds by Rule Trace-Rel-M-M, for

i =
〈
r1, r′1

〉
and i′ =

〈
r2, r′2

〉
. □

Proof of Theorem 4.5. Trivial induction on the typing derivation of e, the only interesting case
is the compilation of send e in the inductive cases.

Inductive. e = send e By IH we have that if (⊢ e : 𝜏 × 𝜏 ′)↓⇝ t then ∃s ∼ t and e⇝ t.
By definition of (·)↓ and of⇝ we need to prove that if

let x= (⊢ e : 𝜏 × 𝜏 ′)↓ in gensend (x, 𝜏 × 𝜏 ′)⇝ t

Then send e⇝ s and s ∼ t.
The reductions proceed as follows in the target:

(⊢ e : 𝜏 × 𝜏 ′)↓⇝
〈
is, (⊢ r : 𝜏 × 𝜏 ′)↓

〉
gensend (x, 𝜏 × 𝜏 ′) [ (⊢ r : 𝜏 × 𝜏 ′)↓/x] ⇝ ⟨is′, r′⟩

let x= (⊢ e : 𝜏 × 𝜏 ′)↓ in gensend (x, 𝜏 × 𝜏 ′)⇝ ⟨is · is′, r′⟩

In the source we have

e⇝ ⟨is, r⟩
send e⇝ ⟨is · r, r⟩

By IH we have that is ∼ is.
By Rule Trace-Rel-Single, to prove that is; r ∼ is; is′ we need to prove that is ∼ is′.
By Lemma 4.4 (gensend (·, ·) works) we have that r ∼ is′, so this case holds. □

Proof of Theorem 5.1. First of all we show that 𝝓#
is an uco, the proof for 𝝆#

is the same.

Monotonicity. 𝝓#
is composition of monotonic functions, hence it is itself monotonic.

Idempotence.We have to show that for 𝝅T, 𝝓# (𝝓# (𝝅T)) = 𝝓# (𝝅T), that unfolding the definition
means

𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ ◦ 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (𝝅T) = 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (𝝅T)
For the inclusion “⊆”,

𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ ◦ 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (𝝅T) ⊆ 𝑔◦ ◦ 𝜙 ◦ 𝜙 ◦ 𝑓 ◦ (𝝅T) = 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (𝝅T)
the inclusion holds because 𝑓 ◦ ◦ 𝑔◦ (𝑥) ⊆ 𝑥 and the equality comes from idempotency of 𝜙 .

For the inclusion “⊇",

𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ ◦ 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (𝝅T) ⊇ 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ ◦ 𝑔◦ ◦ 𝑓 ◦ (𝝅T) = 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (𝝅T)
the inclusion comes from 𝜙 (𝑓 ◦ (𝝅T)) ⊇ 𝑓 ◦ (𝝅T) by extensiveness of 𝜙 , and the equality from

𝑓 ◦ ◦ 𝑔◦ ◦ 𝑓 ◦ = 𝑓 ◦
.

Extensiveness.We have to show that 𝝅# (𝝅T) ⊇ 𝝅T.

𝝅# (𝝅T) = 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (𝝅T) ⊇ 𝑔◦ ◦ 𝑓 ◦ (𝝅T) ⊇ 𝝅T

The first inclusion is due to extensiveness of 𝜙 , the second by 𝑔◦
being the upper adjoint of 𝑓 ◦

.

For the statement of the theorem to hold, assume W|=ANI𝜌
𝜙
and W↓⇝t1, t2 with 𝝓# (t◦1) = 𝝓# (t◦2),

we have to show that 𝝆# (t•1) = 𝝆# (t•1).
By CC∼

there exists s1 ∼ t1 and s2 ∼ t2 such that W⇝s1, s2. As a preliminary, apply Lemma A.1

to the relations
◦∼ ◦ swap and deduce 𝑔◦

is injective. Notice also that by functionality and totality,

of
◦∼ and of

•∼, 𝑓 ◦ (t◦1) = {s◦
1} and 𝑓 • (t•1) = {s•

1} and a similar fact holds for s2 and t2.

𝝓# (t◦1) = 𝝓# (t◦2) ⇒ [ definition of 𝝓#]
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𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (t◦1) = 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (t◦2) ⇒ [𝑔◦
injective]

𝜙 ◦ 𝑓 ◦ (t◦1) = 𝜙 ◦ 𝑓 ◦ (t◦2) ⇒ [𝑓 ◦ (t◦i) = s◦
i 𝑖 = 1, 2]

𝜙 (s◦
1) = 𝜙 (s◦

2) ⇒ [W|=ANI𝜌
𝜙
]

𝜌 (s•
1) = 𝜌 (s•

2) ⇒ [s•
i = 𝑓 • (t•i) 𝑖 = 1, 2]

𝜌 ◦ 𝑓 • (t•1) = 𝜌 ◦ 𝑓 • (t•2) ⇒ [ functionality of 𝑔•]
𝑔• ◦ 𝜌 ◦ 𝑓 • (t•1) = 𝑔•𝜌 ◦ 𝑓 • (t•2) ⇒ [ definition of 𝝆#]
𝝆# (t•1) = 𝝆# (t•2),

so that W↓|=ANI𝝆
#

𝝓# .

We now show that if
•∼ is surjective, i.e., 𝑔•

injective, ANI𝝆
#

𝝓# ⊆ Cl⊆ ◦ 𝜏 (ANI𝜌
𝜙
).

Let 𝝅T ∈ ANI𝝆
#

𝝓# , we show that 𝝅T ⊆ 𝜏 (𝜋S) for some 𝜋S ∈ ANI𝜌
𝜙
.

The source property 𝜋S = {s | ∃t ∈ 𝝅T. s ∼ t} = 𝑓 (𝝅T) is such that 𝝅T ⊆ 𝜏 (𝜋S). We only need to

show 𝜋S ∈ ANI𝜌
𝜙
. Let s1, s2 ∈ 𝜋S,

𝜙 (s1
◦) = 𝜙 (s2

◦) ⇒ [by 𝑓 ◦ (t◦) = s◦
for some t ∈ 𝝅T]

𝜙 (𝑓 ◦ (t◦1)) = 𝜙 (𝑓 ◦ (t◦2)) ⇒ [𝑔◦
is a function]

𝑔◦ (𝜙 (𝑓 ◦ (t◦1))) = 𝑔◦ (𝜙 (𝑓 ◦ (t◦2))) ⇒ [by definition of 𝜙#]

𝜙# (t◦1) = 𝜙# (t◦2) ⇒ [𝝅T ∈ ANI𝝆
#

𝝓# ]

𝜌# (t•1) = 𝜌# (t•2) ⇒ [definition of 𝜌#]
𝑔• (𝜌 (𝑓 • (t•1))) = 𝑔• (𝜌 (𝑓 • (t•2))) ⇒ [by injectivity of 𝑔•]
𝜌 (𝑓 • (t•1)) = 𝜌 (𝑓 • (t•2)) ⇒ [𝑓 • (ti) = s•

i , 𝑖 = 1, 2]
𝜌 (s•

1) = 𝜌 (s•
2),

that shows 𝜋S ∈ ANI𝜌
𝜙
and concludes the proof.

□

Proof of Theorem 5.2. Assume W|=ANI𝜌
𝜙
and W↓⇝t1, t2 with 𝝓# (t◦1) = 𝝓# (t◦2). We have to

show that 𝝆# (t•1) = 𝝆# (t•1), for an arbitrary 𝝆#
that satisfies the condition

𝐻 ≡ ∀s t. s• •∼ t• ⇒ 𝝆# (𝜏 • (𝜌 (s•))) = 𝝆# (t•).
By CC∼

there exists s1 ∼ t1 and s2 ∼ t2 such that W⇝s1, s2. As a preliminary, recall that Lemma A.1

ensures 𝑔◦
is injective. Morevoer notice that by functionality and totality, of

◦∼, 𝑓 ◦ (t◦1) = {s◦
1} and

𝑓 ◦ (t◦2) = {s◦
2}.

𝝓# (t◦1) = 𝝓# (t◦2) ⇒ [ definition of 𝝓#]
𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (t◦1) = 𝑔◦ ◦ 𝜙 ◦ 𝑓 ◦ (t◦2) ⇒ [𝑔◦

injective]
𝜙 ◦ 𝑓 ◦ (t◦1) = 𝜙 ◦ 𝑓 ◦ (t◦2) ⇒ [𝑓 ◦ (t◦i) = s◦

i 𝑖 = 1, 2]
𝜙 (s◦

1) = 𝜙 (s◦
2) ⇒ [W|=ANI𝜌

𝜙
]

𝜌 (s•
1) = 𝜌 (s•

2) ⇒ [ functionality of 𝜏 •]
𝜏 • (𝜌 (s•

1)) = 𝜏 • (𝜌 (s•
2)) ⇒ [ by functionality of 𝝆#]

𝝆# (𝜏 • (𝜌 (s•
1))) = 𝝆# (𝜏 • (𝜌 (s•

2))) ⇒ [ by condition 𝐻 ]
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𝝆# (t•1) = 𝝆# (t•2)

so that W↓|=ANI𝝆
#

𝝓# .

□

Proof of Theorem 5.3. Assume W|=ANI𝜌
#

𝜙#
and W↓⇝t1, t2 with 𝝓 (t◦1) = 𝝓 (t◦2) and 𝝓 satisfying

the condition 𝐻 ≡ ∀s t. s◦ ◦∼ t◦ ⇒ 𝝓 (t◦) = 𝝓 (𝜏 ◦ (s◦)). We have to show that 𝝆 (t•1) = 𝝆 (t•2). By
CC∼

there exists s1 ∼ t1 and s2 ∼ t2 such that W⇝s1, s2. As a preliminary, recall that Lemma A.1

ensures �̃� •
is injective. Morevoer notice that by functionality and totality, of

•∼, 𝜏 • (s•
1) = {t•1} and

𝜏 • (s•
2) = {t•2}.

𝝓 (t◦1) = 𝝓 (t◦2) ⇒ [ by 𝐻 ]
𝝓 (𝜏 ◦ (s◦

1)) = 𝝓 (𝜏 ◦ (s◦
2)) ⇒ [ functionality of �̃� ◦]

�̃� ◦ (𝝓 (𝜏 ◦ (s◦
1))) = �̃� ◦ (𝝓 (𝜏 ◦ (s◦

1))) ⇒ [ definition of 𝜙#]

𝜙# (s◦
1) = 𝜙# (s◦

2) ⇒ [W |=ANI𝜙
#

𝜙#
]

𝜌# (s•
1) = 𝜌# (s•

2) ⇒ [ by definition of 𝜌#]
�̃� • (𝝆 (𝜏 • (s•

1))) = �̃� • (𝝆 (𝜏 • (s•
2))) ⇒ [ injectivity of �̃� •]

𝝆 (𝜏 • (s•
1)) = 𝝆 (𝜏 • (s•

2)) ⇒ [𝜏 • (s•
i ) = {t•i} 𝑖 = 1, 2]

𝝆 (t•1) = 𝝆 (t•2)

so that W↓|=ANI𝝆𝝓 .
□

Proof of Theorem 6.1 ( ). Theorems rel_RTC_𝜏RTP and rel_RTC_𝜎RTP in

RobustTraceCriterion.v. □

Proof of Theorem 6.3 ( ). Theorems tilde_RSC_𝜎RSP and tilde_RSC_Cl_𝜏RTP in

RobustSafetyCriterion.v. □

Proof of Theorem 6.5 ( ). Lemmas 𝜎RHP_rel_RHC and rel_RHC_𝜎RHP and Theorem

rel_RHC_𝜏RHP in RobustHyperCriterion.v. □

Proof of Theorem 7.1 ( ). (See theorem extra_target_RTCt in MoreTargetEventsExample.v,
mechanizing a slightly simplified model.) By definition of RTC∼

we need to find a source context

and source trace given a source program, target context and target trace related by compilation and

program semantics: This instantiation is simple since the trace relation is a function from target

traces to source traces, and it is easy to clean target contexts to produce equivalent source context

without target-only events. The proof is a trivial instance of precise, context-based backtranslation
[3, 57, 61, 75], aided by a few straightforward lemmas and where the case of function calls is

guaranteed to terminate by the language. □

Proof of Theorem 3.6 ( ). Theorems tilde_SC_𝜎SP and tilde_SC_Cl_𝜏TP in

SafetyCriterion.v. □
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Proof of Theorem 3.7. For the implication from left to right, assume W |= 𝐻 . By CC=
have

beh(W↓) = beh(W), so that W↓ |= 𝐻 as well.

For the implication from right to left, instantiate HP with the hyperproperty {beh(W)}, for a given
W, and deduce that W↓ |= {beh(W)} i.e., beh(W↓) = beh(W). □

Proof of Theorem 3.8 ( ). Theorems rel_HC_𝜏HP, rel_HC_𝜎HP and 𝜎HP_rel_HC in

HyperCriterion.v. □
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