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Abstract. We present a new modal access control logic, ACL+, to specify, reason
about and enforce access control policies. The logic includes new modalities for
permission, control, and ratification to overcome some limits of current access
control logics. We present a Hilbert-style proof system for ACL+ and a sound and
complete Kripke semantics for it. We exploit the Kripke semantics to define Seq-
ACL+: a sound, complete, cut-free and terminating sequent calculus for ACL+,
proving that ACL+ is decidable. We point at a Prolog implementation of Seq-
ACL+ and discuss possible extensions of ACL+ with axioms for subordination
between principals.

1 Introduction

Logic plays a prominent role in the specification, reasoning and enforcement of ac-
cess control policies in distributed systems. In the last two decades, several logic-based
models have been proposed for access control policies, each with its own primitives,
semantics and, in some cases, specific application domains (see [1,3] and [7] for sur-
veys). The great variety (and complexity) of such systems makes it difficult to integrate,
compare and objectively evaluate them. As is evident from recent research in access
control [2,8,11,14,17], modal logic is a powerful framework to study expressiveness,
decidability, complexity and semantics of access control logics. Although modal logic
has proved useful for theoretical study of access control, it is not widely used in practice
to enforce authorization policies (some notable exceptions are [5,6,13,21,22]).

The main reason for this gap is that although several epistemic modalities (e.g.,
says [18], said and knows [17]) have been studied in the context of access control, key
access control concepts like permission, control or trust are not first-class citizens of
modal access control languages and must be defined using epistemic modalities. This
creates implicit relationships between the concepts and possibly leads to security risks
(see [2] for some examples).

In this paper, we take a step towards addressing this shortcoming by proposing a
constructive modal logic, ACL+, which extends a standard access control logic with
new connectives for permission, control and trust on principals’ statements, and admits
a decidable calculus. We start by presenting a brief outline of the methodology of access
control through logics in Section 2, and a specific connective says [18] that is central
to almost all access control logics. In Section 3 we point at three shortcomings of says-
based access control logics that, in our opinion, limit their applicability in practical



scenarios, thus motivating the need for the new modalities. In Section 4 we present the
new modalities, their axioms and inference rules in a Hilbert-style calculus for ACL+.
Moreover, we show through examples how ACL+ avoids the shortcomings reported in
Section 3.

Section 5 presents sound and complete Kripke semantics for ACL+. Kripke seman-
tics, although useful for establishing several metatheorems of access control logics, are
not operational and cannot be used directly in algorithms to reason about authorization.
Accordingly, in Section 6 we present Seq-ACL+, a sound, complete, cut-free and ter-
minating sequent calculus for ACL+ and point the reader to a working implementation
of the calculus in Prolog. In Section 7 we present extensions of ACL+ with axioms that
force subordination between principals. Section 8 discusses briefly some related work
and Section 9 concludes the paper. An implementation of the decision procedure for
ACL+ is available from the authors’ homepages.

2 Distributed Access Control Model

We consider a decentralized model of access control, where policy information is dis-
tributed among several principals. Principals support policy statements and credentials
by writing them in certificates signed with their respective private keys. Since policy
statements and credentials may be complex, and may assert facts conditional upon
statements of other principals, formal logic is a natural choice to model policies. If
principal A supports policy (or credential) ϕ, this is represented in the logic as the
formula A says ϕ [18]. Technically, A says • is a family of principal-indexed modali-
ties that has been included in several access control logics, albeit with slightly varying
semantic interpretations.

An access is authorized (justified) if and only if it is entailed by available policy
statements and credentials. The question of authorizing an access ϕ for principal A
from a policy Γ can be cast formally as follows: Is it the case that Γ and A says ϕ
entail ϕ? Or, in symbolic notation, is there a formal proof that Γ,A says ϕ ` ϕ?

Example 1. Consider the following policy:

1. If the Admin says that file1 can be read, then this must be the case1.
2. Admin trusts Bob to decide whether or not file1 can be read.

In a propositional logic enriched with the says modality, we can express the above policy
as follows [2]:

1. (Admin says read file1)→ read file1
2. Admin says ((Bob says read file1)→ read file1)

Further, Bob asking to read file1 can be represented as Bob says read file1. The
reference monitor may authorize Bob on this request if and only if

(1), (2), Bob says read file1 ` read file1
1 In other words, Admin has direct permission to read file1.



In most access control logics, the above entailment has a proof, so Bob will be able
to read file1. We re-emphasize that the notion of authorization w.r.t. to a submitted
request corresponds to the formal notion of derivability of the requested access from
the available policy.

3 Limits of Access Control Logics: Permissions, Control and
Information Flow

In this Section we point out three issues that, in our opinion, create a gap between
existing work on logic-based approaches to access control as outlined above, and their
deployment in practice. We call the first issue the problem of implicit permissions: If an
action ϕ is entailed by a policy Γ , then any principal is authorized to perform it. The
second issue concerns a logical separation of permission to perform an action from the
ability to control the action, which also includes the permission to delegate the control
further. The third issue is concerned with a fine-grained distinction between the flow of
information (policy statements) from one principal to another, and its acceptance by the
receiving principal or, in other words, the issue of separating (in the logic) hearsay from
trust in the hearsay. We explain these issues one by one, and then present our proposal
to address the issues by introducing new modalities into the logic.

Issue 1: Implicit permissions

The standard definition of permission through entailment presented in Section 2 says
that a principal A can perform action ϕ if from the prevailing policy Γ and A says ϕ, ϕ
can be established. However, this creates a problem in practice: Once enough creden-
tials exist to authorize an access for some principal, any principal is permitted the same
access by the standard definition. For instance, in our earlier example, after Bob has
created the credential Bob says read file1, any principal A will be authorized to read
file1. This is because the existence of a proof of Γ,Bob says read file1 ` read file1
implies, by the law of weakening in the logic, that Γ,Bob says read file1, A says
read file1 ` read file1 is also provable for any principal A.

The problem here is that the formula asserting the authorization — read file1 —
does not include the identity of the principal who is authorized access. We propose to
resolve this problem by introducing an explicit, principal-indexed modality for permis-
sions, which we write PAϕ (Section 4). With this modality, policy Γ authorizes prin-
cipal A to perform action ϕ iff Γ ` PAϕ. By explicitly listing the principal authorized
in the conclusion, we eliminate the problem of implicit permissions.

An alternate, related solution, not considered here, but often used in first-order log-
ics for access control, is to treat the permission (e.g., read file1) as a relation over
principals. Instead of writing read file1 we could write read file1(A) to mean that
principal A is authorized to read file1. However, since we are interested in proving
decidability for the logic, we avoid first-order logic.



Issue 2: Control or Delegatable Permissions

Often in access control, it is desirable to give an individual a permission and also the
power to further delegate the permission. To this end we propose a new modality CAϕ,
read “A controls ϕ”. The key axioms governing CAϕ are:

` CAϕ→ PAϕ (C2P)
` (CAϕ ∧ (A says CBϕ))→ CBϕ (del-C)

The first axiom means that if principal A controls ϕ, then it is also permitted ϕ. This
axiom relates control to permission and makes CAϕ strictly stronger than PAϕ. The
second axiom allows principal A, who controls ϕ, to delegate this control to a principal
B simply by asserting this fact. This ability to delegate further distinguishes CAϕ from
PAϕ.

It is desirable that (CAϕ1 ∧ CAϕ2) → CA(ϕ1 ∧ ϕ2). For instance, if A has
control over the deletion of files 1 and 2 individually, it should also have control over
the deletion of the two files together, thus allowing it to delegate control over deletion
of both files at once. A similar property for permissions may be harmful. For instance,
if file 2 is the backup of file 1, we may not want to permit their simultaneous deletion
(PA(ϕ1 ∧ ϕ2)), even if we allow their deletion individually (PAϕ1 ∧ PAϕ2). For-
mally, this difference is manifest in different logical treatments of the two modalities:
while CA is a normal necessitation modality, PA is a possibility modality (see Section 4
for details).

Issue 3: Information Flow vs Acceptance

Besides the use of the modality CA, authority can also be delegated from one principal
to another by nesting the says modality, as in the following statement from Example 1,
which delegates the formula read file1 from principal Admin to principal Bob:

2. Admin says ((Bob says read file1)→ read file1)

Intuitively, we expect (as in Example 1) that this formula together with Bob says
read file1 should imply that Admin says read file1. However, performing this in-
ference requires us to infer from Bob says read file1 that Admin says Bob says
read file1. To allow for this inference, most authorization logics include the following
axiom, or a stronger axiom that implies it (this axiom was proposed by Abadi [1]):

A says ϕ→ B says (A says ϕ) (I-SS)

However, this axiom also allows unwanted statements to flow from one principal to an-
other. Here is an example. SupposeAdmin delegates toBob the authority to read file1
through statement (2), under the conception that Bob will only allow read file1 un-
der reasonable conditions. However, Bob, either mistakenly or maliciously, adds the
following rule:

Bob says (bad condition→ read file1)

where bad condition means that a certain bad condition (for reading file1) holds.
Now, using the statements above and (I-SS), Bob says bad condition implies that
Admin says read file1, which is undesirable.



The problem here is that the logic, so far, does not provide a construct to allow
Admin to represent in statement (2) that it actually trusts the assumption (Bob says
read file1). We propose to rectify this situation by including the construct A ratified
ϕ, which means that A says ϕ and that this statement is trusted by the principal in the
enclosing scope. With this construct, Admin can revise its statement to say that:

2a. Admin says ((Bob ratified read file1)→ read file1)

If Bob merely says read file1, it will imply Admin says Bob says read file1,
but not Admin says Bob ratified read file1, and not allow for the deduction of
Admin says read file1. To allow for the latter, Admin must make explicit rules to
convertBob’s statements to ratified statements, e.g., it may add the following two rules:

3. Admin says ((Bob says good condition)→ (Bob ratified good condition))
4. Admin says ((Bob says (good condition → read file1)) → (Bob ratified

(good condition→ read file1)))

thus allowing deduction of Admin says read file1 from the statements Bob says
(good condition→ read file1) andBob says good condition, but not fromBob says
(bad condition → read file1) and Bob says bad condition. The formal rules that
allow these deductions and a more detailed example of the use of ratification are pre-
sented in Section 4.

4 The New Modalities

In this section we formally describe ACL+, our access control logic with the modalities
PA, CA and A ratified •. To summarize,

1. Permission and control can be represented directly in ACL+ using the modalities
PAϕ (principal A is authorized (permitted) ϕ) and CAϕ (principal A controls ϕ).

2. ACL+ contains the operator A ratified ϕ, which means that principal A states ϕ
and this statement has been ratified (or, is trusted) by the principal in whose context
the formula is interpreted.

We introduce ACL+ piecewise, starting with a simple access control logic containing
the modality says defined by the following rules and axioms (ϕ and ψ denote logical
formulas):

All axioms of intuitionistic propositional logic (IPC)
` ϕ ` ϕ→ ψ

` ψ (MP)

` ϕ
` A says ϕ

(nec-S)

` (A says (ϕ→ ψ))→ (A says ϕ)→ (A says ψ) (K-S)
` A says ϕ→ B says (A says ϕ) (I-SS)

We note that our logic is intuitionistic (constructive). The use of intuitionistic logic for
access control has been motivated in prior work [12]; briefly, constructivism disallows
proofs by contradiction, thus eliminating authorization if it is merely not denied. Ax-
ioms (nec-S) and (K-S) express that says is a normal necessitation modality and are
standard in access control literature.



4.1 Permission and Control

To this basic logic we add the modalities PA and CA, characterized by the following
rules and axioms:

` ϕ
` CAϕ

(nec-C)

` CA(ϕ→ ψ)→ (CAϕ→ CAψ) (C-Deduce)
` CAϕ→ PAϕ (C2P)
` PA(ϕ ∨ ψ)→ PAϕ ∨PAψ (or-P)
` (CAϕ ∧ (A says CBϕ))→ CBϕ (del-C)

Axiom (C-Deduce) expresses that control is closed under logical deduction while rule
(nec-C) means that all valid formulas of the logic are controlled by every principal A.
Together, (nec-C) and (C-Deduce) make CA a normal necessitation modality (similar
to 2 in standard modal logics). As motivated in Section 3, we model permission with
a possibility modality, i.e., it is not closed under logical consequence, but we require it
to distribute over disjunction (or-P). Axiom (C2P) relates the notion of control to that
of permission and reads: “If principal A controls ϕ, then it is authorized (permitted) on
ϕ”. This implies that control of a formula is stronger than permission on the formula.
Axiom (del-C) allows a principal A in control of ϕ to delegate that control to another
principal B (see Example 2).

Definition 1 (Authorization). Given a policy Γ , we say that A is authorized on access
ϕ if and only if Γ ` PAϕ.

Example 2. The policy of Example 1 can be re-represented with the new modalities as
follows

(1) CAdmin(read file1)

(2) Admin says (CBob(read file1))

From (del-C), (MP) and (C2P) we can prove that Bob is authorized to read file1, i.e.,
(1), (2) ` PBob(read file1).

Example 3. A principal can selectively delegate privileges it controls to other princi-
pals. Consider a policy in which A controls the deletion of files 1 and 2. A can delegate
to B the authority to delete file 1 only by asserting that B controls it. Formally,

CA(delete file1 ∧ delete file2), A says (CB(delete file1)) ` CB(delete file1)

Proof. From the assumption CA(delete file1∧ delete file2) infer using (nec-C) and
(C-deduce) that CA(delete file1). CB(delete file1) follows using (del-C) and the
assumption A says (CB(delete file1)).



4.2 The Modality (A ratified ϕ)

Next, we add to our logic the modality A ratified ϕ, which means not only that A says
ϕ, but also that the latter has been checked, ratified, or is trusted by the principal in
whose scope it occurs (Section 3). For instance, the formula B says (A ratified ϕ)
means that: “A says ϕ and B ratified (trusts) this statement”.

Like CA and A says •, we model A ratified • as a normal modality:

` ϕ
` A ratified ϕ

(nec-R)

` (A ratified (ϕ→ ψ))→ (A ratified ϕ)→ (A ratified ψ) (K-R)

Further, the modality A ratified ϕ implies A says ϕ, but the converse is not true in
general:

` (A ratified ϕ)→ (A says ϕ) (RS)

The axiom (RS) makes A ratified ϕ stronger than A says ϕ. Statement ϕ directly
signed by a principal can be taken as an evidence of A says ϕ, not A ratified ϕ. (I-SS)
and (RS) together imply that:

` (A ratified ϕ)→ B says A says ϕ

but it is not possible to derive in general that

` (A says ϕ)→ B says A ratified ϕ

which would be unjustified because if A says ϕ, then B has not necessarily ratified it.

Example 4. The purpose of introducing the modalityA ratified • is to allow a principal
control over what statements and proofs of another principal it will admit as trusted.
Assume that a hospital administrator PA controls access to sensitive patient records.
The main policy is that “a doctor has access to all patient records” and the determination
of who constitutes a doctor comes from the principal HR, representing the human
resources database. Let CA(access records) mean that principal A has control over
the access to patient records and isDoctor A mean that A is a doctor. Let P be the set
of all relevant principals. The main policy can be encoded as the formula2:

PA says
∧

A∈P [(HR ratified isDoctor A)→ (CA(access records))] (P1)

Observe that we are using (HR ratified . . .) inside the policy instead of (HR says . . .)
to ensure that consequences of the policy depend only on statements of HR that have
been ratified by PA.

Now, PA can choose to trust the policies of HR selectively. For instance, if PA
trusts all deductions of the form isDoctor A thatHRmay make, it can have the policy:

PA says
∧

A∈P((HR says isDoctor A)→ (HR ratified isDoctor A)) (P2)

2 Because we are using a propositional language, we assume principals to range over a finite
set P . Accordingly,

∧
A∈P ϕ reads “For all principals A in P , ϕ holds”.



Then, for any principal A, we have that

(P1), (P2), HR says (isDoctor A) ` PA says CA(access records)

If, on the other hand, PA only trusts HR’s statements about two principals Alice and
Bob, it can selectively assert (in place of (P2)) that:

PA says ((HR says isDoctor Alice)→ (HR ratified isDoctor Alice))
PA says ((HR says isDoctor Bob)→ (HR ratified isDoctor Bob))

As a last illustration, suppose that the HR has two policies, one of which states that
every administrator is a doctor and the other of which (mistakenly) states that every
hospital employee is a doctor:

HR says
∧

A∈P(isAdmin A→ isDoctor A) (P3)
HR says

∧
A∈P(isEmployee A→ isDoctor A) (P4)

PA can choose to ratify the first of these, but not the second, by asserting in place of
(P2) that:

PA says ((HR says
∧

A∈P(isAdmin A → isDoctor A)) → (HR ratified∧
A∈P(isAdmin A)→ isDoctor A))) (P5)

PA says
∧

A∈P((HR says isAdmin A)→ (HR ratified isAdmin A)) (P6)

Suppose that HR says isAdmin Alice. Then, we can deduce PA says
CAlice(access records) from (P1), (P3), (P5) and (P6) as follows:

1. From (P3) and (I-SS), deduce that

PA says (HR says (
∧
A∈P

(isAdmin A→ isDoctor A)))

2. From (1), (K-S) and (P5) deduce that

PA says (HR ratified (
∧
A∈P

(isAdmin A→ isDoctor A)))

3. From (HR says isAdmin Alice) and (I-SS) deduce that (PA says HR says
isAdmin Alice)

4. From (3), (K-S) and (P6) deduce that (PA says HR ratified isAdmin Alice)
5. From (2), (4), (K-S), and (K-R) deduce that (PA says HR ratified isDoctor Alice)
6. From (5), (P1), and (K-S) deduce that (PA says CAlice(access records))

If we replace the assumption (HR says isAdmin Alice) with the assumption (HR says
isEmployee Alice), then we cannot deduce (PA says (CAlice(access records)))
because we cannot deduce (5) above. In place of (5), we can deduce only the weaker
statement (PA says (HR says isDoctor Alice)), which does not imply (PA says
CAlice(access records)) in our theory.



5 Semantics

In this section, we define sound and complete semantics for ACL+. Our semantics uses
graph-based structures called Kripke models, that are standard in modal logic. The tech-
nical challenge here, as for every modal logic, lies in identifying a suitable class of
Kripke structures that correspond exactly to the calculus of Section 4. Although Kripke
semantics are not necessarily intuitive, they lead directly to a proof theory for the logic,
a decidability result for it, and an implementation of its decision procedure (Section 6).

Definition 2. An intuitionistic model,M, of ACL+ is a tuple

(W,≤, {SA}A∈P , {CA}A∈P , {RA}A∈P , {PA}A∈P , h)

where

– P is a set of principals.
– (W,≤) is a preorder, where elements of W are called states or worlds, and ≤ is a

binary relation over W which satisfies the following conditions
∀x.(x ≤ x) (refl)
∀x, y, z.((x ≤ y) ∧ (y ≤ z)→ (x ≤ z)) (trans)

– SA, CA, RA and PA are binary relations on W that satisfy the following condi-
tions:
∀x, y, z, w.(((x ≤ y) ∧ (ySAz) ∧ (z ≤ w))→ (xSAw)) (mon-S)
∀x, y, z, w.(((x ≤ y) ∧ (yCAz) ∧ (z ≤ w))→ (xCAw)) (mon-C)
∀x, y, z, w.(((x ≤ y) ∧ (yRAz) ∧ (z ≤ w))→ (xRAw)) (mon-R)
∀x, y, z, w.(((x ≤ y) ∧ (zPAy) ∧ (z ≤ w))→ (wPAx)) (mon-P)

– h is an assignment which, for each atom q, assigns the subset of worlds h(q) ⊆W
where q holds. Moreover, we require h to be monotone w.r.t.≤, i.e., if x ∈ h(q) and
x ≤ y then y ∈ h(q).

Conditions above ensure monotonicity of the logic (Lemma 1), which is a standard
property of Kripke semantics for constructive logics. Moreover, to force ACL+ models
to admit the axioms (I-SS), (C2P), (del-C) and (RS) we require the following to hold for
any two principals A and B.

∀x, y, z.(((xSBy) ∧ (ySAz))→ (xSAz)) (s-I-SS)
∀x∃y.(xCAy ∧ xPAy) (s-C2P)
∀x, y.((xCBy)→ ((xCAy) ∨ ∃z((xSAz) ∧ (zCBy))) (s-del-C)
∀x, y.((xSAy)→ (xRAy)) (s-RS)

An interpretation for the logic is a pairM, t whereM is a model and t is a world in
M.

Definition 3 (Satisfaction Relation). The satisfaction relation “|=” between interpre-
tations and formulae of the logic is defined below. (The letter q denotes an atomic
formula.)

– M, t |= q iff t ∈ h(q)



– M, t 6|= ⊥
– M, t |= ϕ ∨ ψ iffM, t |= ϕ orM, t |= ψ
– M, t |= ϕ ∧ ψ iffM, t |= ϕ andM, t |= ψ
– M, t |= ϕ→ ψ iff for all s, t ≤ s andM, s |= ϕ implyM, s |= ψ
– M, t |= ¬ϕ iff for all s, t ≤ s impliesM, t 6|= ϕ
– M, t |= A says ϕ iff for all s such that tSAs we haveM, s |= ϕ
– M, t |= CAϕ iff for all s such that tCAs we haveM, s |= ϕ
– M, t |= A ratified ϕ iff for all s such that tRAs we haveM, s |= ϕ
– M, t |= PAϕ iff there exists an s such that tPAs andM, s |= ϕ

Lemma 1 (Monotonicity). For any formula ϕ and any interpretationM, t, ifM, t |=
ϕ and t ≤ s thenM, s |= ϕ.

We say thatM |= ϕ if for all t ∈ M, it is the case thatM, t |= ϕ. Further, Γ |= ϕ
if for every intuitionistic modelM,M |= Γ impliesM |= ϕ.

Theorem 1 (Soundness). If ` ϕ then |= ϕ

Theorem 2 (Completeness). If Γ |= ϕ then Γ ` ϕ

We note that the conditions (s-I-SS), (s-C2P), (s-del-C) and (s-RS) are canonical for
the axioms (I-SS), (C2P), (del-C) and (RS), respectively, i.e., a logic with any subset of
these axioms is sound and complete with respect to models that satisfy the conditions
corresponding to the chosen axioms.

6 A Semantics-Based Calculus for ACL+

In this section we briefly present Seq-ACL+, a sound, complete and cut-free sequent
calculus for ACL+. The calculus is inspired by the work of Negri [19]3 and follows the
so-called labeled approach [4,20], which directly uses the Kripke semantics. The use of
labeled sequent calculi for access control is relatively new and has been introduced in
[15,16] to define proof theory of a specific says-based access control logic. Our sequent
calculus directly leads to a decision procedure for the logic ACL+.

Seq-ACL+ manipulates two types of labeled formulas:

1. World formulas, denoted by x : ϕ, where x is a world and ϕ is a formula of ACL+,
intuitively meaning that ϕ holds in world x.

2. Transition formulas representing semantic accessibility relationships. These formu-
las have one of the forms xSAy, xCAy, xRAy, xPAy and x ≤ y.

A sequent is a tuple 〈Σ,M, Γ,∆〉, usually written Σ;M;Γ ⇒ ∆ where M, Γ and ∆
are multisets of labeled formulas andΣ is the set of labels (worlds) appearing in the rest
of the sequent. Intuitively, the sequent Σ;M;Γ ⇒ ∆ means that “every model which
satisfies all labeled formulas of Γ ∪M satisfies at least one labeled formula in ∆”. This
is made precise by the notion of validity in the following definition.

3 In particular, proofs of metatheorems about Seq-ACL+ use methods developed in [19].



Definition 4 (Sequent validity). Given a model

M = (W,≤, {SA}A∈P , {CA}A∈P , {RA}A∈P , {PA}A∈P , h)

and a label alphabet A, consider a mapping I : A → W . Let F denote a labeled
formula, whose labels are contained in A. DefineM |=I F as follows:

– M |=I x : α iffM, I(x) |= α
– M |=I xCAy iff I(x)CAI(y) (Similarly for SA, RA, PA and ≤).

We say thatΣ;M;Γ ⇒ ∆ is valid inM if, for every mapping I : Σ →W , ifM |=I F
for every F ∈ M ∪ Γ , thenM |=I G for some G ∈ ∆. We say that Σ;M;Γ ⇒ ∆ is
valid in Seq-ACL+ if it is valid in everyM.

Figure 1 lists the rules of the calculus Seq-ACL+, divided into four groups.

– Axiom rules do not have premises and describe valid sequents.
– Logical rules operate on connectives of the logic.
– Semantic rules define the properties that hold for relationships ≤, SA, RA, CA and
PA in all ACL+ models.

– Access control rules codify axioms that differentiate ACL+ from other constructive
normal modal logics, i.e., (I-SS), (C2P), (del-C) and (RS).

Note that semantic and access control rules are in one-to-one correspondence with
semantic conditions of Definition 2.

We say that a sequent Σ;M;Γ ⇒ ∆ is derivable in Seq-ACL+ if it admits a
derivation. A derivation is a tree whose nodes are sequents. A branch is a sequence of
nodes Σ1;M1;Γ1 ⇒ ∆1, Σ2;M2;Γ2 ⇒ ∆2, . . . , Σn;Mn;Γn ⇒ ∆n, . . . Each node
Σi;Mi;Γi ⇒ ∆i is obtained from its immediate successorΣi−1;Mi−1;Γi−1 ⇒ ∆i−1
by applying backward a rule of Seq-ACL+, having Σi−1;Mi−1;Γi−1 ⇒ ∆i−1 as the
conclusion and Σi;Mi;Γi ⇒ ∆i as one of its premises. A branch is closed if one of its
nodes is an instance of axiom rules, otherwise it is open. We say that a tree is closed if
all of its branches are closed. A sequent Σ;M;Γ ⇒ ∆ has a derivation in Seq-ACL+
if there is a closed tree having Σ;M;Γ ⇒ ∆ as the root. As an example we show a
derivation of the axiom (C2P) in Seq-ACL+.

init
x, y, z;x ≤ y, z ≤ z, yCAz, yPAz; y : CAp, z : p⇒ y : PAp, z : p

refl
x, y, z;x ≤ y, yCAz, yPAz; y : CAp, z : p⇒ y : PAp, z : p

PR
x, y, z;x ≤ y, yCAz, yPAz; y : CAp, z : p⇒ y : PAp

CL
x, y, z;x ≤ y, yCAz, yPAz; y : CAp⇒ y : PAp

s-C2P
x, y;x ≤ y; y : CAp⇒ y : PAp

→ R
x; ; ⇒ x : CAp→ PAp

Theorem 3 (Admissibility of cut). Σ;M;Γ ⇒ x : α,∆ and Σ;M;Γ, x : α⇒ ∆ im-
ply Σ;M;Γ ⇒ ∆.



Σ; M, xCAy;Γ, x : CAα, y : α⇒ ∆

Σ; M, xCAy;Γ, x : CAα⇒ ∆
CL

Σ; M, x ≤ y;Γ, x : α→ β ⇒T y : α,∆ Σ; M, x ≤ y;Γ, x : α→ β, y : β ⇒T ∆

Σ; M, x ≤ y;Γ, x : α→ β ⇒ ∆
→L

Σ; M, x ≤ y, ySAz, z ≤ w, xSAw;Γ ⇒ ∆

Σ; M, x ≤ y, ySAz, z ≤ w;Γ ⇒ ∆
mon-S

Σ; M, x ≤ y, yCAz, z ≤ w, xCAw;Γ ⇒ ∆

Σ; M, x ≤ y, yCAz, z ≤ w;Γ ⇒ ∆
mon-C

Σ; M, x ≤ y, yRAz, z ≤ w, xRAw;Γ ⇒ ∆

Σ; M, x ≤ y, yRAz, z ≤ w;Γ ⇒ ∆
mon-R

Σ; M, x ≤ y, zPAy, z ≤ w, wPAx;Γ ⇒ ∆

Σ; M, x ≤ y, zPAy, z ≤ w;Γ ⇒ ∆
mon-P

Σ; M, x ≤ y, y ≤ z, x ≤ z;Γ ⇒ ∆

Σ; M, x ≤ y, y ≤ z;Γ ⇒ ∆
trans

Σ; M, x ≤ x;Γ ⇒ ∆

Σ; M;Γ ⇒ ∆
refl
x ∈ Σ

Σ, y; M, xCAy;Γ ⇒ y : α,∆

Σ; M;Γ ⇒ x : CAα,∆
CR
y new

Σ, y; M, x ≤ y;Γ, y : α⇒ y : β,∆

Σ; M;Γ ⇒ x : α→ β,∆
→R
y new

Σ; M, xSBy, ySAz, xSAz;Γ ⇒ ∆

Σ; M, xSBy, ySAz;Γ ⇒ ∆
s-I-SS

Σ; M, xSAy, xRAy;Γ ⇒ ∆

Σ; M, xSAy;Γ ⇒ ∆
s-RS

Logical Rules

Semantical Rules

Access Control Rules

Σ, y; M, xCAy, xPAy;Γ ⇒ ∆

Σ; M;Γ ⇒ ∆
s-C2P

y new

Σ; M, xCBy, xCAy;Γ ⇒ ∆ Σ, z; M, xCBy, xSAz, zCBy;Γ ⇒ ∆

Σ; M, xCBy;Γ ⇒ ∆
s-del-C
z new

Σ; M, xPAy;Γ ⇒ x : PAα, y : α,∆

Σ; M, xPAy;Γ ⇒ x : PAα,∆
PR

Σ, y; M, xPAy;Γ, y : α⇒ ∆

Σ; M;Γ, x : PAα⇒ ∆
PL

Σ; M;Γ, x : ⊥ ⇒ ∆
⊥L

Σ; M;Γ ⇒ x : �,∆
�R

Σ; M, x ≤ y;Γ, x : p ⇒ y : p,∆
init

Axiom Rules

Σ; M;Γ ⇒T x : α,∆ Σ; M;Γ ⇒T x : β,∆

Σ; M;Γ ⇒T x : α ∧ β,∆
∧R

Σ; M;Γ, x : α, x : β ⇒T ∆

Σ; M;Γ, x : α ∧ β ⇒T ∆
∧L

Σ; M;Γ ⇒T x : α, x : β,∆

Σ; M;Γ ⇒T x : α ∨ β,∆
∨R

Σ; M;Γ, x : α⇒T ∆ Σ; M;Γ, x : β ⇒T ∆

Σ; M;Γ, x : α ∨ β ⇒T ∆
∨L

Σ, y; M, xSAy;Γ ⇒T y : α,∆

Σ; M;Γ ⇒T x : A says α,∆
says R

Σ; M, xSAy;Γ, x : A says α, y : α⇒ ∆

Σ; M, xSAy;Γ, x : A says α⇒ ∆
says L

Σ; M, xRAy;Γ, x : A ratified α, y : α⇒ ∆

Σ; M, xRAy;Γ, x : A ratified α⇒ ∆
ratified L

Σ, y; M, xRAy;Γ ⇒ y : α,∆

Σ; M;Γ ⇒ x : A ratified α,∆
ratified R

y new

y new

y new

Fig. 1. Seq-ACL+ Rules



Theorem 4 (Soundness of Seq-ACL+). If a sequent Σ;M;Γ ⇒ ∆ is derivable then
it is valid in the sense of Definition 4.

Theorem 5 (Completeness of Seq-ACL+). If a formula α is valid in ACL+ (i.e., |= α),
then x; ;⇒ x : α is derivable in Seq-ACL+.

6.1 Termination

Next, we use the sequent calculus Seq-ACL+ to prove that the logic ACL+ is decidable.
Note that cut-freeness (Theorem 3) alone does not ensure the termination of backward
proof search Seq-ACL+ because access control rules and the rules saysL, ratifiedL,
CL, and PR may increase the complexity of sequents in a backward proof search.
Accordingly, we prove that these “critical” rules can be applied in a controlled way. For
instance, the following Lemma states that the use of CL, PR, and access control rules
can be limited. (Without loss of generality we assume that the root of each proof has
the form x; ;⇒ x : ϕ).

Lemma 2 (Controlled use of rules). In each branch of a backward proof search, it is
useless to: (1) apply CL on the same transition relation xCAy ∈ M more than once,
(2) apply PR on the same transition relation xPAy ∈M more than once, (3) apply rule
χ for χ ∈ {mon-S,mon-R,mon-C,mon-P,sym,trans,s-I-SS,s-del-C,s-C2P,s-RS} on the
same transition formula (or label as in s-RS) more than once.

However, even the above Lemma is not sufficient to ensure termination of backward
proof search. In particular, there are two issues:

1. Interaction of the rule (trans) with →L adds new accessible worlds, and we can
build chains of accessible worlds on which→L can be applied ad infinitum.

2. Application of rules s-del-C and s-C2P generates transition relations with new la-
bels that can be used for repeated application of the same rules.

We bound the number of such interactions using a counting argument. Let depth(F ) be
the height of the parse tree of formula F .

Definition 5 (Label distance). Given a sequent Σ,M, Γ ⇒ ∆ and two labels x and
y such that x ≤ y ∈ M, we define the distance d(x, y) between two labels as 0 when
x = y and n when x 6= y, where n is the length of the longest sequence of tran-

sitions in M “connecting” the two labels, i.e., x
∼
© x1, x1

∼
© x2, . . . , xn−1

∼
© y

where
∼
© ∈ {SA, CA, RA, PA,≤} (for any principal A). As an example, if {x ≤

y, yCAz, zPAk, xSAk} ∈M, then d(x, k) = 3.

Lemma 3 (Bounded application of rules). Consider a backwards proof search start-
ing with the root x; ;⇒ x : F . Let x1 be a label occurring in the search such that
d(x, x1) > depth(F ). Then, it is useless to: (1) apply →L on a transition formula
x1 ≤ x2, (2) apply s-C2P on the label x1, (3) apply s-del-C on a transition formula
x1CBx2.

Using this lemma, we obtain decidability for ACL+.



Σ; M, xSAy, xSBy;Γ ⇒ ∆

Σ; M, xSBy;Γ ⇒ ∆
s-sub-SA

B

Σ; M, xRAy, xRBy;Γ ⇒ ∆

Σ; M, xRBy;Γ ⇒ ∆
s-sub-RA

B

Σ; M, xCBy, xCAy;Γ ⇒ ∆

Σ; M, xCBy;Γ ⇒ ∆
s-sub-CA

B
Σ; M, xPAy, xPBy;Γ ⇒ ∆

Σ; M, xPAy;Γ ⇒ ∆
s-sub-PA

B

Fig. 2. Access Control Rules for Subordination

Theorem 6 (Decidability). The logic ACL+ is decidable.

Our proof of decidability directly leads to a decision procedure for ACL+. A Prolog
implementation of the procedure is available from our homepages.

7 Extending Seq-ACL+ with Constructs for Subordination

The correspondence between semantic conditions and axioms allows us to modularly
extend ACL+ with new axioms, and new (corresponding) sequent calculus rules. The
difficult aspect in any such extension is to prove decidability. As a specific case, we
show here how we may extend the logic with new subordination axioms of any of the
following forms, and obtain decidability again. (In these axioms A and B are specific
principals, not metavariables, but ϕ is a metavariable standing for all formulas.)

` A says ϕ→ B says ϕ (sub-S)AB
` A ratified ϕ→ B ratified ϕ (sub-R)AB
` PAϕ→ PBϕ (sub-P)AB
` CAϕ→ CBϕ (sub-C)AB

We call these axioms subordination axioms because each axiom suggests that one of
the two principals A and B is subordinate to the other. The first (second) axiom means
that statements (ratifications) of A are echoed by B, so B is, in a sense, subordinate to
A. The third (fourth) axiom means that if A has a permission (ability to control), then
so does B, so B is more powerful than A.

Definition 6. The semantic conditions on models corresponding to the axioms above
are, respectively:

∀x, y.(xSBy → xSAy) (s-sub-S)AB
∀x, y.(xRBy → xRAy) (s-sub-R)AB
∀x, y.(xPAy → xPBy) (s-sub-P)AB
∀x, y.(xCBy → xCAy) (s-sub-C)AB

Corresponding access control rules for the sequent calculus are shown in Figure 2.

Lemma 4. Extension of Seq-ACL+ with any subset of the rules in Figure 2 preserves
cut-elimination and decidability. Further, the calculus is sound and complete with re-
spect to intuitionistic models that satisfy the corresponding conditions from Definition 6.



8 Related Work

The study of formal properties of says and other constructs in modal logic is a relatively
new research trend. Prior work by the second author [10] adopts a modified version of
constructive modal logic S4 called DTL0 and shows how existing access control logics
can be embedded (via translation) into DTL0. Other work [11] translates existing access
control logics into S4 by relying on a slight simplification of Gödel’s translation from
intuitionistic logic to S4, and extending it to formulas of the form A says ϕ. The first
author has developed conditional logics as a general framework for modular sequent
calculi for standard access control logics with the says connective [15,16]. Dinesh et
al. [9] present an access control logic based on says and extended with obligation and
permissions, but their treatment of permissions is different from ours and is closely tied
to says. The use of canonical properties for access control axioms was first considered
in [8] where standard access control axioms (e.g. (unit) and (hand-off)) are character-
ized in terms of first-order conditions on Kripke models.

The says modality also appears in several languages for writing access control poli-
cies, notably SecPAL [7] and DKAL [17]. But there are several differences in these
languages and ACL+. For example, ACL+ is propositional, whereas both SecPAL and
DKAL have first-order quantification over principals and other objects, which is often
useful to compact policy representation. However, these languages remove other fea-
tures to maintain decidability: In both SecPAL and DKAL, the says modality can only
be applied over atoms. In particular, the use of says over a disjunction is prohibited
by both SecPAL and DKAL, although it may be useful in distributed scenarios where
communication is not guaranteed. For instance, if the reference monitor knows that
A says (a ∨ b), but principal A is not available to verify which of a or b it supports, it
might still be possible to infer a useful fact from A says (a ∨ b) alone. In both SecPAL
and DKAL such a fact cannot be expressed and hence this situation cannot be modeled.

9 Conclusion

We have presented ACL+, a constructive multi-modal logic for access control that intro-
duces three new modalities PA (permission), CA (control), and ratified (trusted state-
ment) to fix practical problems in reasoning with policies using logic. The connectives
of the logic are defined by a sound and complete Kripke semantics for ACL+ together
with a correspondence between conditions on models and the logic’s axioms. The se-
mantics lead to Seq-ACL+, a sound, complete, cut-free and terminating calculus for
ACL+. Finally, ACL+ can be extended with new axioms, as illustrated by examples of
axioms for specific kinds of subordination among principals.
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A ACL+ Soundness and Completeness Proof

To prove completeness, we construct a canonical model. We use Γ to denote a finite or
infinite set of formulas. Such a set is also called a theory.

Definition 7 (Maximal theory). A theory Γ is called maximal if:

- (Closure) Γ ` ϕ implies ϕ ∈ Γ
- (Primality1) ϕ ∨ ψ ∈ Γ implies ϕ ∈ Γ of ψ ∈ Γ
- (Primality2) ⊥ 6∈ Γ

Lemma 5 (Saturated Extensions). Suppose Γ 6` ϕ, there is a saturated extension Γ ∗

such that Γ ∗ 6` ϕ.

Proof. This is proved by standard Lindenbaum construction.

Definition 8 (Canonical model). We define the canonical model M c as follows:

- Worlds of the canonical model are maximal theories Γ
- Γ ≤ Γ ′ iff Γ ⊆ Γ ′
- ΓSAΓ

′ iff {ϕ | A says ϕ ∈ Γ} ⊆ Γ ′
- ΓRAΓ

′ iff {ϕ | A ratified ϕ ∈ Γ} ⊆ Γ ′
- ΓCAΓ

′ iff {ϕ | A controls ϕ ∈ Γ} ⊆ Γ ′
- ΓPAΓ

′ iff {PAϕ | ϕ ∈ Γ ′} ⊆ Γ
- P ∈ ρ(Γ ) iff P ∈ Γ

Lemma 6 (Existence Lemma). For any state Γ1 ∈ Sc, if PAϕ ∈ Γ1, then there is a
state Γ2 ∈ Sc such that Γ1PAΓ2 and ϕ ∈ Γ2.

Proof. Suppose PAϕ ∈ Γ1. We will construct a state Γ2 such that Γ1PAΓ2 and ϕ ∈ Γ2.
Take {ϕ}, this set is consistent due to (Primality2) and 6` PA⊥. Now, thanks to Lemma
5 let Γ2 be the saturated extension of {ϕ} such that {PAψ | ψ ∈ Γ2} ⊆ Γ1

4. But then
we get Γ1PAΓ2.

Lemma 7. Let Γ be a set of formulas and let ∆ = {ϕ : A says ϕ ∈ Γ}. If ∆ ` ϕ, then
Γ ` A says ϕ.

Proof. Suppose that there is a derivation of ψ from∆. Then, there must be a finite set of
formulas {ϕ1, . . . , ϕn} ⊆ ∆ such that {ϕ1, . . . , ϕn} ` ψ. Hence, ` ϕ1∧. . .∧ϕn → ψ.
By (nec-S) and (K-S), ` A says ϕ1 ∧ . . . ∧ A says ϕn → A says ψ. As A says ϕi ∈ Γ
for all i = 1, . . . , n, by modus ponens, Γ ` A says β.

Lemma 8 (Canonical Model). The canonical model M c of Definition 7 is indeed a
model of the logic.

4 Notice that it is always possible to construct Γ2 such that {PAψ | ψ ∈ Γ2} ⊆ Γ1, the proof is
by induction of ψ.



Proof. First we notice that ≤ is a preorder because ⊆ is. Then, we directly verify that
M c satisfies the semantic conditions reported in Definition 5.

(mon-S) Suppose Γ1 ≤ Γ2, Γ2SAΓ3 and Γ3 ≤ Γ4. We need to show that Γ1SAΓ4.
Expanding definitions of SA and ≤ in Γ1 ≤ Γ2 and Γ2SAΓ3 we get {ϕ | A says ϕ ∈
Γ1 ⊆ Γ3. Then, from to Γ3 ≤ Γ4 we infer Γ1SAΓ4.

(mon-C) and (mon-R) cases are similar to (mon-S)

(s-I-SS) Suppose Γ1SBΓ2 and Γ2SAΓ3. We need to show Γ1SAΓ3, i.e., {ϕ | A says
ϕ ∈ Γ1} ⊆ Γ3. Now, pick any A says ϕ ∈ Γ1, we prove that ϕ ∈ Γ3. Since
A says ϕ ∈ Γ1, by axiom (I-SS) and condition (Closure) on Γ1, we must also have
B says A says ϕ ∈ Γ1. Now, due that Γ1SBΓ2, we must have A says ϕ ∈ Γ2 and
thanks to Γ2SAΓ3 we finally get ϕ ∈ Γ3.

(s-C2P) Take any Γ1 ∈ Sc, we show that there exists a Γ2 such that Γ1CAΓ2 and
Γ1PAΓ2. Due that Γ1 is maximal we have that it contains all substitutional instances
of axiom (C2P) CAϕ → PAϕ, in particular CA> → PA> ∈ Γ1. Moreover, as >
belongs to all maximal states, by generalization 2> does too, so CA> ∈ Γ1, but then
PA> ∈ Γ1. Hence, by the Existence Lemma, Γ1 has a successor Γ2.

(s-del-C) Suppose Γ1CBΓ2 we need to show that, for any principal A then either (1)
Γ1CAΓ2 or (2) there exists a Γ3 s.t. Γ1CAΓ2 and Γ3CBΓ2. The proof goes by contra-
diction, suppose that ¬Γ1CAΓ2, i.e., there exists a ψ1 s.t. CAψ1 ∈ Γ1 but ψ1 6∈ Γ2.
We now show that there exists a Γ3 such that Γ1SAΓ3 and Γ3CBΓ2. Take the following
consistent set Θ = {ϕ | A says ϕ ∈ Γ1}, and let Θ∗ be it’s saturated extension. By
definition, we have that Γ1SAΘ

∗, we claim that also Θ∗CBΓ2. Suppose, by contradic-
tion that {ϕ | CBϕ ∈ Θ∗} 6⊆ Γ2 then, by Lemma 7, we have that there exists a ψ2

s.t. A says CBψ2 ∈ Γ1, CBψ2 ∈ Θ∗ and ψ2 6∈ Γ2. Now, by Definition 7, we get
CA(ψ1 ∨ ψ2) ∈ Γ1 and A says CB(ψ2 ∨ ψ1) ∈ Γ1, but then, via axiom (del-C) we get
CB(ψ2∨ψ1), which by hypothesis implies that ψ2∨ψ1 ∈ Γ2, which is a contradiction.
Therefore, Θ∗ = Γ3.

(s-RS) Suppose Γ1SAΓ2, we need to show that Γ1RAΓ2. From the hypothesis we get
that {ϕ | A says ϕ ∈ Γ1} ⊆ Γ2. Thanks to axiom (RS) and (Closure) condition we
have that {ϕ | B ratified ϕ ∈ Γ1} ⊆ Γ2, i.e., Γ1RAΓ2.

Theorem 7 (Strong Completeness for ACL+). If Γ |= ϕ then Γ ` ϕ
Proof. Suppose 6` ϕ, and let Γ0 be a saturated extension of Γ , ϕ 6∈ Γ0; construct a
canonical modelM∗ as in Definition , thenM∗, Γ0 6|= ϕ. This yields completeness.

B Proofs of Seq-ACL+

In order to prove that Seq-ACL+ is sound and complete w.r.t. the semantics, we intro-
duce some structural properties.



Definition 9 (Complexity of a labelled formula). We define the complexity of a la-
belled formula F as follows:

– cp(x : ϕ) = 2× |ϕ|
– cp(xSAy) = cp(xCAy) = cp(xRAy) = cp(xPAy) = 3
– cp(x ≤ y) = 2

where |ϕ| is the number of symbols occurring in the string representing the formula ϕ.

Lemma 9. Σ;M;Γ, F ⇒ ∆,F is derivable in the calculus.

Proof. By induction on the complexity of the formula F .

Lemma 10 (Height-preserving label substitution). If a sequent Σ;M;Γ ⇒ ∆ has
a derivation of height h, then (Σ;M;Γ )[x/z] ⇒ (∆)[x/z] has a derivation of height
≤ h, where (Σ;M;Γ )[x/z] ⇒ (∆)[x/z] is the sequent obtained from Σ;M;Γ ⇒ ∆
by replacing a label x by a label z wherever it occurs.

Proof. By induction of the height of a derivation of Σ;M;Γ ⇒ ∆. We show only some
cases,

– Suppose that init is applied to Σ;M;Γ ⇒ ∆ with a derivation of height 1:

Σ;M′, x ≤ y;Γ, x : p⇒ y : p,∆
init

Our goal is to find a proof of height ≤ 1 of

(Σ;M′, x ≤ y;Γ ′, x : p)[x/z]⇒ y : p,∆[x/z]

for every z. The case of z 6= y is trivial, in case of z = y we have

Σ;M′, y ≤ y;Γ ′, y : p⇒ y : p,∆[x/y]

which is and axiom and therefore has a proof of height 1.
– Suppose that >R is applied to Σ;M;Γ ⇒ ∆ with a derivation of height 1:

Σ;M;Γ ⇒ x : >, ∆′>R

Then also (Σ;M;Γ )[x/z]⇒ (x : >, ∆′)[x/z] has a proof of height 1, for every z.
– Suppose that ⊥L is applied to Σ;M;Γ ⇒ ∆ with a derivation of height 1:

Σ;M;Γ ′, x : ⊥ ⇒ ∆
⊥L

Then also (Σ;M;Γ ′, x : ⊥)[x/z]⇒ ∆[x/z] has a proof of height 1, for every z.
– Suppose that ∧R is applied to Σ;M;Γ ⇒ ∆ with a derivation of height h:

(1)Σ;M;Γ ⇒ x : α,∆′ (2)Σ;M;Γ ⇒ x : β,∆′

Σ;M;Γ ⇒ x : α ∧ β,∆′ ∧R

Our goal is to find a proof of height ≤ h of (Σ;M;Γ )[x/z]⇒ z : α ∧ β,∆′[x/z].
Applying the inductive hypothesis to (1) and (2) we have proofs of height ≤ h− 1
of the sequents:



(3) (Σ;M;Γ )[x/z]⇒ z : α,∆′[x/z] and
(4) (Σ;M;Γ )[x/z]⇒ z : β,∆′[x/z]
But from (3) and (4), applying∧R, we get (5)(Σ;M;Γ )[x/z]⇒ z : α ∧ β,∆′[x/z]

– Suppose that→R is applied to Σ;M;Γ ⇒ ∆ with a derivation of height h:

(1)Σ, y;M, x ≤ y;Γ, y : α⇒ y : β,∆′

Σ;M;Γ ⇒ x : α→ β,∆′
→R

Our goal is to find a proof of height≤ h of (Σ;M;Γ )[x/z]⇒ z : α→ β,∆′[x/z].
Without loss of generality we can suppose z 6= y due that the label y in the above
derivation is a new label, not occurring in the conclusion of → R. Applying the
inductive hypothesis on the premise of→ R, we obtain a proof of

(Σ, y;M, z ≤ y;Γ, y : α)[x/z]⇒ y : β,∆′[x/z]

of height no greater than h− 1. We conclude by an application of→ R, obtaining
a proof (height ≤ h) of (Σ;M;Γ )[x/z]⇒ z : α→ β,∆′[x/z].

Theorem 8 (Height-preserving admissibility of weakening). If a sequentΣ;M;Γ ⇒
∆ has a derivation of height h, then Σ;M;Γ ⇒ ∆,F , and (Σ;M;Γ ), F ⇒ ∆ have a
derivation of height ≤ h. Where F can be either a world or a transition formula 5.

Proof. By induction on the height of a derivation of Σ;M;Γ ⇒ ∆.

Theorem 9 (Height-preserving invertibility of rules). Let Σ;M;Γ ⇒ ∆ be the con-
clusion of an application of one of the rules of the calculus, say R. If Σ;M;Γ ⇒ ∆ is
derivable, then the premise(s) of R is (are) derivable with a derivation of (at most) the
same height, i.e., rules of the calculus are height-preserving invertible.

Proof. We consider each of the rules.
saysL, CL, ratified L, PR and all semantic and access control rules of Figure 1: these
rules are height-preserving invertible, since their premise(s) is (are) obtained by weak-
ening from the conclusion, and weakening is height-preserving admissible (Theorem 8).
Take (→R), we proceed by an inductive argument on the height of a proof of its conclu-
sions: for any y, ifΣ;M;Γ, x : α→ β ⇒ ∆ is an axiom, thenΣ, y;M, x ≤ y;Γ, y : α⇒ y : β,∆
is an axiom too, since axioms are restricted to atomic formulas. If h > 0 and the proof of
Σ;M;Γ, x : α→ β ⇒ ∆ is concluded (looking forward) by any rule other than→R,
we apply the inductive hypothesis to the premie(s), then we conclude by applying the
same rule. If the derivation of Σ;M;Γ, x : α→ β ⇒ ∆ is ended by→R we have the
following subcases:

– x : α→ β is the principal formula of→R, the proof is ended as follows:

Σ, y;M, x ≤ y;Γ, y : α⇒ y : β,∆

Σ;M;Γ ⇒ x : α→ β,∆
→R

We have a proof of Σ, y;M, x ≤ y;Γ, y : α⇒ y : β,∆ of height h − 1 and the
proof is over;

5 If F is a world formula then (Σ;M;Γ ), F = Σ;M;Γ, F . Otherwise, if F is a transition
formula then (Σ;M;Γ ), F = Σ;M, F ;Γ .



– x : α→ β is not the principal formula of→R; the proof is ended as follows:

Σ, z;M, w ≤ z;Γ, z : α⇒ z : β, x : α→ β,∆

Σ;M;Γ ⇒ x : α→ β,w : α′ → β′, ∆
→R

where z is a “new” label and then, without loss of generality, we can assume that
z is not y, since we can apply the height-preserving label substitution. By inductive
hypothesis on the premise we obtain a derivation of

Σ, y, z;M, w ≤ z, x ≤ y;Γ, z : α′, y : α⇒ z : β′, y : β,∆

from which we can conclude as follows:

Σ, z, y;M, w ≤ z, x ≤ y;Γ, z : α′, y : α⇒ z : β′, y : β,∆

Σ, y;M, x ≤ y;Γ, y : α⇒ y : β,w : α′ → β′
→R

Take CR we proceed by an inductive argument on the height of a proof of their conclu-
sions: In case of Σ;M;Γ ⇒ x : CAα,∆ being an axiom the proof is trivial. If h > 0
and the proof of Σ;M;Γ ⇒ x : CAα,∆ is concluded (looking forward) by any rule
other than (CR), we apply the inductive hypothesis to the premise(s), then we conclude
by applying the same rule. If the derivation is ended by (CR) we have the following
subcases:

– x : CAα is the principal formula of (CR): the proof is ended as follows

Σ, y;M, xCAy;Γ ⇒ y : α,∆

Σ;M;Γ ⇒ x : CAα,∆
CR

We have a proof of Σ, y;M, xCAy;Γ ⇒ y : α,∆ of height h − 1 and the proof is
over;

– x : CAα is not the principal formula of CR: the proof is ended as follows

Σ, z;M, wCAz;Γ ⇒ z : α′, ∆

Σ;M;Γ ⇒ x : CAα,w : CAα
′∆

CR

where z is “new” label and therefore, without loss of generality, we can assume that
z is not y, since we can apply the hight-preserving label substitution. By inductive
hypothesis on the premise we obtain a derivation of

Σ, z, y;M, wCAz, xCAy;Γ ⇒ z : α′, y : α,∆

from which we conclude as follows:

Σ, z, y;M, wCAz, xCAy;Γ ⇒ z : α′, y : α,∆

Σ, y;M, xCAy;Γ ⇒ y : α,w : CAα
′∆

The cases for remaining rules proceed similarly.



It is worth noticing that the height-preserving invertibility also preserves the number
of applications of the rules in a proof, that is to say: if Σ1;M1;Γ1 ⇒ ∆1 is derivable
by Theorem 9 since it is the premise of a backward application of an invertible rule R
to Σ2;M2;Γ2 ⇒ ∆2, then it has a derivation containing the same rule applications of
the proof of Σ2;M2;Γ2 ⇒ ∆2. This fact will be used systematically in the remaining
section, in the sense that we will assume that every proof transformation due to the
invertibility preserves the number of rules applications in the initial proof.

Theorem 10 (Height-preserving admissibility of contraction). The rules of contrac-
tion are height-preserving admissible in our calculus, i.e., if a sequentΣ;M;Γ ⇒ ∆,F, F
is derivable in the calculus, then there is a derivation of a no greater height ofΣ;M;Γ ⇒ F,∆,
and if a sequent (Σ;M;Γ ), F, F ⇒ ∆ is derivable in the calculus, then there is a
derivation of no greater height of (Σ;M;Γ ), F ⇒ ∆. Moreover, the proof of the con-
tracted sequent does not add any rule application to the initial proof. In this case we
say that the contractions are rule-preserving admissible.

Proof. By simultaneous induction on the height of derivation fro left and right con-
traction. If h = 0, i.e., Σ;M;Γ ⇒ ∆,F, F is an axiom, then we have to consider the
following subcases:

– w : ⊥ ∈ Γ : in this case, obviously Σ;M;Γ ⇒ ∆,F is an axiom too;
– an atom x : p ∈ Γ ∩∆: the proof is over, since Σ;M;Γ ⇒ ∆,F is an axiom too;
– F is an atom and x : p ∈ Γ : the proof is over, observing that Σ;M;Γ ⇒ ∆,F is

an axiom too.

The proof of the case where (Σ;M;Γ ), F, F ⇒ ∆ is an axiom is symmetric.
If h > 0, consider the last rule applied (looking forward) to derive the premise of

contraction. We distinguish two cases:

– the contracted formula F is not principal in it: in this case, both occurrences of
F are in the premise(s) of the rule, which have a smaller derivation height. By
the inductive hypothesis, they can be contracted and the conclusion is obtained by
applying the rule to the contracted premise(s).

– the contracted formula F is principal in it, we consider all the rules:
• ∧R: the proof is ended as follows,

(1)Σ;M;Γ ⇒ x : α, x : α ∧ β,∆ (2)Σ;M;Γ ⇒ x : β, x : α ∧ β∆
Σ;M;Γ ⇒ x : α ∧ β, x : α ∧ β∆ ∧R

Since ∧R is height-preserving invertible (see Theorem 9), there is a deriva-
tion of no greater height than (1) of (1a)Σ;M;Γ ⇒ x : α, x : α,∆ and a
derivation of no greater height than (2) of (2a)Σ;M;Γ ⇒ x : β, x : β,∆.
Applying the inductive hypothesis on (1a) and (2a) and applying (∧R) to the
contracted sequents, we obtain a derivation of no greater height ending with
(be (1a′) (2a′) the contracted sequents):

(1a′)Σ;M;Γ ⇒ x : α,∆ (2a′)Σ;M;Γ ⇒ x : β∆

Σ;M;Γ ⇒ x : α ∧ β∆ ∧R



• For (∧L), (∨R), (∨L), (→ R), (→ L) we proceed as in the previous case,
since all the rules are height preserving.

• CR: the proof is ended by:

Σ, y;M, xCAy;Γ ⇒ y : α, x : CAα,∆

Σ;M;Γ ⇒ x : CAα, x : CAα,∆
CR

Applying the height-preserving invertibility of CR, we have a proof of

(1)Σ, y, z;M, xCAy, x
∼
N i z;Γ ⇒ y : α, z : α,∆

Applying the height-preserving label substitution (Lemma 10), replacing z with
y, we obtain a derivation of sequent

(2)Σ, y;M, xCAy, xCAy;Γ ⇒ y : α, y : α,∆

since y and z are new labels not occurring in Γ,∆. We can then apply the in-
ductive hypothesis on (2), obtaining a proof of (3)Σ, y;M, xCAy;Γ ⇒ y : α,∆,
from which we conclude by an application of CR:

(3)Σ, y;M, xCAy;Γ ⇒ y : α,∆

Σ;M;Γ ⇒ x : CAα,∆
CR

• CL we have a proof ending with:

Σ;M, xCAy;Γ, x : CAα, x : CAα, y : α⇒ ∆

Σ;M;Γ, x : CAα⇒ ∆
CL

The cases for the remaining rules proceed similarly.

We now prove the admissibility of cut:

Theorem 11 (Admissibility of cut).Σ;M;Γ ⇒ x : α,∆ andΣ;M;Γ, x : α⇒ ∆ im-
ply Σ;M;Γ ⇒ ∆.

Proof. As usual, the proof proceeds by a double induction over the complexity of the cut
formula and the sum of the heights of the derivations of the two premises of cut, in the
sense that we replace one cut by one or several cuts on formulas of smaller complexity,
or on sequents derived by shorter derivations. We have several cases: (i) one of the two
premises is an axiom, (ii) the last step of one of the two premises is obtained by a rule
in which F is not the principal formula, (iii) F is the principal formula in the last step
of both derivations.

(i) If one of the two premises is an axiom then either Σ;M;Γ ⇒ ∆ is an axiom, or
the premise which is not an axiom contains two copies of x : α and Σ;M;Γ ⇒ ∆
can be obtained by contraction, which is admissible.

(ii) If the last step of one of the two premises is obtained by a rule, say (R), in which
x : α is not the principal formula we proceed as follows: we cut the premise(s) of
(R) and then we apply (R) to the result of the cut.



(iii) If x : α is the principal formula in both the inferences steps leading to the two cut
premises there are . . . subcases: x : α is introduced by (a) ∧L, ∧R; (b) by ∨L, ∨R;
(c) by→L,→R; (d)CL, CR, says L, says R, ratified L, ratified R and (e) PL, PR

(a), (b) The proof is easy and left to the reader
(c) We have to prove that (1)Σ;M, x ≤ y;Γ, x : α → β ⇒ ∆ and (2)Σ;M, x ≤

y;Γ ⇒ x : α→ β,∆ imply (3)Σ;M, x ≤ y;Γ ⇒ ∆ 6.
∗ The premises of rule→L applied over (1) are

(4)Σ;M, x ≤ y;Γ, x : α→ β;⇒ y : α,∆

(5)Σ;M, x ≤ y;Γ, x : α→ β, y : β;⇒ ∆

∗ The premise of rule→R applied over (2) is

(6)Σ, z;M, x ≤ y, x ≤ z;Γ, z : α⇒ z : β,∆

Now, by inductive hypothesis, we apply the cut rule as follows:
∗ We cut (2) and (4) on the height of the proof to obtain

(7)Σ;M, x ≤ y;Γ ⇒ y : α,∆

∗ We cut (2) and (5) on the height of the proof to obtain

(8)Σ;M, x ≤ y;Γ, y : β ⇒ ∆

∗ By height-preserving label substitution and contraction, we obtain a proof
of no greater height than (6) of

(9)Σ;M, x ≤ y;Γ, y : α⇒ y : β,∆

∗ We cut (9) and (7) on the complexity of the formula (i.e. y : α) to obtain

(10)Σ;M, x ≤ y;Γ ⇒ y : β,∆

∗ Finally, we cut (10) and (8) on the complexity of the formula (i.e., y : β)
to obtain

(11)Σ;M, x ≤ y;Γ ⇒ ∆

(d) We have to prove that (1)Σ;M, xCAy;Γ, x : CAα⇒ ∆ and (2)Σ;M, xCAy;Γ ⇒
x : CAα,∆ imply (3)Σ;M, xCAy;Γ ⇒ ∆
∗ The premise of the rule CL applied over (1) is

(4)Σ;M, xCAy;Γ, x : CAα, y : α⇒ ∆

∗ The premise of the rule CR applied over (2) is

(5)Σ, z;M, xCAy, xCAz;Γ ⇒ z : α,∆

6 Notice that both meta contexts M in (1) and (2) have x ≤ y ∈ M because it is a condition for
the applicability of rule→L.



Now, by inductive hypothesis, we apply the cut rule as follows:
∗ We cut (2) and (4) on the height of the proof to obtain

(6)Σ;M, xCAy;Γ, y : α⇒ ∆

∗ By height-preserving label substitution and contraction, we obtain a proof
of no greater height than (5) of

(7)Σ;M, xCAy;Γ ⇒ y : α,∆

∗ Finally, we cut (7) and (6) on the complexity of the formula (i.e., y : α) to
obtain

(8)Σ;M, xCAy, Γ ⇒ ∆

The cases for says and ratified proceed similarly.
(e) We have to show that (1)Σ;M, xPAy;Γ, x : PAα⇒ ∆ and (2)Σ;M, xPAy;Γ ⇒ PAα,∆

imply (3)Σ;M, xPAy;Γ ⇒ ∆ Now, by inductive hypothesis, we apply the cut
rule as follows:
∗ The premise of the rule PL applied over (1) is

(4)Σ, z;M, xPAy, xPAz;Γ, z : α⇒ ∆

∗ The premise of the rule PR applied over (2) is

(5)Σ;M, xPAy;Γ ⇒ x : PAα, y : α,∆

Now, by inductive hypothesis, we apply the cut rule as follows:
∗ First, by height-preserving label substitution and contraction, we obtain a

proof of no greater height than (4) of

(6)Σ;M, xPAy;Γ, y : α⇒ ∆

∗ We then cut (1) and (5) on the height of the proof to obtain

(7)Σ;M, xPAz;Γ ⇒ y : α,∆

∗ Finally, we cut (7) and (6) on the complexity of the formula (i.e., y : α) to
obtain

(8)Σ;M, xPAy;Γ ⇒ ∆

Theorem 12 (Soundness of Seq-ACL+). If a sequentΣ;M;Γ ⇒ ∆ is derivable then,
Σ;M;Γ ⇒ ∆ it is valid in the sense of Definition 4

Proof. By induction on the height of the derivation of Σ;M;Γ ⇒ ∆. We only present
the inductive step for some of the rules:

(s-I-SS) Suppose that the derivation of Σ;M′, xSBy, ySAz;Γ ⇒ ∆ ends by an appli-
cation of s-I-SS: by inductive hypothesis, the premise Σ;M′, xSBy, ySAz, xSAz;Γ ⇒
∆ is a valid sequent. By contradiction, suppose that the conclusion is not, i.e., there is a
modelM and a function I such thatM |=I F for every F ∈M′∪Γ ,M |=I xSBy and



M |=I ySAz, whereasM 6|=I G for any G ∈ ∆. By (s-I-SS) of Definition 5, we have
that, since I(x)SBI(y) and I(y)SAI(z), then also I(x)SAI(z), then M |=I xSAz
and therefore it the premise Σ;M′, xSBy, ySAz, xSAz;Γ ⇒ ∆ is valid, then also the
conclusion has to be valid, which is a contradiction. The proof is similar for all seman-
tic and access control rules in Figure 1.

(saysR) Suppose that the derivation ofΣ;M;Γ ⇒ A says α,∆′ ends by an application
of saysR. By inductive hypothesis, the premise Σ, y;M, xSAy;Γ ⇒ y : α,∆′ is a valid
sequent. By contradiction, suppose that the conclusion is not, i.e., there is a modelM
and a function I such thatM |=I F for every F ∈ M ∪ Γ , whereasM 6|=I G for any
G ∈ ∆ and M 6|=I x : A says α, which means that there exists a label z such that
I(x)SAI(z) andM, I(z) 6|= α. We can define an interpretation I ′(k) = I(k) for k 6= y
and I ′(y) = z. Since y in the premiss does not occur inΣ∪M∪Γ∪∆′ and it is different
from x, we have that M |=I′ F for every F ∈ M ∪ Γ , M 6|=I′ G for any G ∈ ∆,
M 6|=I′ y : α butM |=I′ xSAy, against the validity ofΣ, y;M, xSAy;Γ ⇒ y : α,∆′.

Theorem 13 (Completeness of Seq-ACL+). If a formula α is valid in ACL+, then
x; ∅; ∅ ⇒ x : α is derivable in Seq-ACL+.

Proof. If α is valid in ACL+ then, thanks to Theorem 7, α is a theorem in the corre-
sponding axiomatization (i.e., ` α). We show that if ` α, then x; ∅; ∅ ⇒ x : α is
derivable. In order to do this, we must show that the axioms are derivable and that the
set of derivable formulas is closed under rules (MP), (nec-S), (nec-C) and (nec-R). We
left derivation of axioms to the reader and we focus on showing the admissibility of
rules (MP) and (nec-R)

(MP) Suppose that x; ∅; ∅ ⇒ x : α → β and x; ∅; ∅ ⇒ x : α are derivable. We easily
have that x; ∅;x : α→ β, x : αx⇒ x : β is derivable too. Since cut is admissible (see
Theorem 11), by two cuts we obtain x; ∅; ∅ ` x : β, as follows

x; ∅;x : α→ β, x : α⇒ x : β x; ∅; ∅ ⇒ x : α→ β
(cut)

x; ∅;x : α⇒ x : β x; ∅; ∅ ⇒ x : α
(cut)

x; ∅; ∅ ⇒ x : β

(nec-R) Suppose that x; ∅; ∅ ⇒ x : α is derivable, we need to show that x; ∅; ∅ ⇒
x : A ratified α is. First we notice that, by height preserving label substitution,
y; ∅; ∅ ⇒ y : α is derivable and, by height preserving admissibility of weakening,
x, y;xRAy; ∅ ⇒ y : α is derivable too. But then, we can prove x; ∅; ∅ ⇒ x : A ratified
α as follows

x, y;xRy; ∅ ⇒ y : α
ratified R

x; ∅; ∅ ⇒ x : A ratified α

B.1 Termination

In general, cut-freeness alone does not ensure termination of proof search in a sequent
calculus; the presence of labels and of rules saysL, ratifiedL, CL, PR, and semantic



and access control rules in Figure 1 which increase the complexity of the sequent in a
backward proof search, are potential causes of a nonterminating proof search.

First we give some definitions that will be useful in the rest of the Section.

Definition 10 (Formula Depth). Given a formula ϕ we define dept(ϕ) inductively on
the structure of ϕ as follows:

– dept(p) = 0, with p propositional variable.
– dept(α ◦ β) = max{dept(α), dept(β)}, with ◦ ∈ {∧,∨,→}.
– dept(©α) = dept(α) + 1, with© ∈ {A says,CA, A ratified,PA}

Definition 11 (Label distance). Given a sequent Σ,M, Γ ⇒ ∆ and two labels x and
y such that x ≤ y ∈ Γ , we define the distance d(x, y) between two labels as:
(case y = x) d(x, y) = 0

(case y 6= x) d(x, y) = n where n is the length of the longest sequence of transitions

in M “connecting” the two labels, i.e., x
∼
© x1, x1

∼
© x2, . . . , xn−1

∼
© y where

∼
©∈

{A says,CA, A ratified,PA,≤}7. As an example if {x ≤ y, yCAz, zPAk, xSAk} ∈M
we have d(x, k) = 3.

We first show that both CL, A says, A ratified •, PiR and all rules in Figure 1 can
be applied in a controlled way.

Lemma 11 (Controlled use of CL). It is useless to apply CL on the same transition
xCAy ∈M more than once in a backward proof search in each branch of a derivation

Proof. Consider a proof where CL is applied more than once on the same transition in
a derivation and consider the two highest applications: since CL is invertible, we can
consider, without loss of generality, that the two applications of CAL are consecutive,
as follows:

(1)Σ;M, xCAy;Γ, x : CAα, x : CAα, y : α, y : α⇒ ∆
(CL)

Σ;M, xCAy;Γ, x : CAα, x : CAα, y : α⇒ ∆
(CL)

Σ;M;Γ, x : CAα⇒ ∆

From (1) we can find a derivation of (1′)Σ;M;Γ, x : CAα, x : CAα, y : α ⇒ ∆ by
contraction and this derivation does not have any application of C L having xCAy as a
principal formula (remember that contraction is rule-preserving admissible). Thus, we
can remove one application of C L as follows:

(1′)Σ;M, xCAy;Γ, x : CAα, x : CAα, y : α⇒ ∆

Σ;M, xCAy;Γ, x : CAα⇒ ∆
CL

Lemma 12 (Controlled use of P R). It is useless to apply PR on the same transition
xPAy ∈M more than once in a backward proof search in each branch of a derivation

7 For any principal A.



Proof. Consider a proof where PR is applied more than once on the same transition in
a derivation and consider the two highest applications: since PR is invertible, we can
consider, without loss of generality, that the two applications of PR are consecutive, as
follows:

(1)Σ;M, xPAy;Γ ⇒ x : PAα, y : α, y : α,∆
(P R)

Σ;M, xPAy;Γ ⇒ x : PAα, y : α,∆
(P R)

Σ;M, xPAy;Γ ⇒ x : PAα,∆

From (1) we can find a derivation of (1′)Σ;M, xPAy;Γ ⇒ x : PAα, y : α,∆ by
contraction and this derivation does not have any application of P R having xPAy as a
principal formula (remember that contraction is rule-preserving admissible). Thus, we
can remove one application of P R as follows:

(1′)Σ;M, xPAy;Γ ⇒ x : PAα, y : α,∆
(P R)

Σ;M, xPAy;Γ ⇒ x : PAα,∆

Lemma 13 (Controlled use of χ). It is useless to apply χ (with χ ∈ {mon-S,mon-
R,mon-C,mon-P,sym,trans,s-I-SS,s-del-C,s-C2P,s-RS}) on the same transition formula
(or label as in s-RS) more than once in a backward proof search in each branch of a
derivation.

Proof. The proof proceeds similarly to those of previous lemmas.

However, the above lemmas are not sufficient to ensure termination of the proof search.
In particular, there are two issues:

1. The interaction of rule (trans) with→ L brings in new accessible worlds, we can
build chains of accessible worlds on which→ L ca be applied ad infinitum.

2. The application of rules (s-del-C) and (s-C2P) generates transition formulas that
contains new labels that can be used for new applications of the same rules.

Concerning point (1), suppose we attempt to find a proof for the sequent

{x}, ∅, ∅ ⇒ x : ((p→ q)→ r)→ ⊥
we can build an infinite proof tree as follows8

...
(→ L)

{x, y, z, k}, x ≤ y, y ≤ z, z ≤ k, y ≤ k, k : p, z : p, y : (p→ q)→ r ⇒ k : q, z : q, y : ⊥
trans

{x, y, z, k}, x ≤ y, y ≤ z, z ≤ k, k : p, z : p, y : (p→ q)→ r ⇒ k : q, z : q, y : ⊥
(→ R)

{x, y, z}, x ≤ y, y ≤ z, z : p, y : (p→ q)→ r ⇒ z : p→ q, z : q, y : ⊥
(→ L)

{x, y, z}, x ≤ y, y ≤ z, z : p, y : (p→ q)→ r ⇒ z : q, y : ⊥
(→ R)

{x, y}, x ≤ y, y : (p→ q)→ r ⇒ y : (p→ q), y : ⊥
(→ L)

{x, y}, x ≤ y, y : (p→ q)→ r ⇒ y : ⊥
(→ R)

{x}, ∅, ∅ ⇒ x : ((p→ q)→ r)→ ⊥
8 For compactness we only consider left branches generated by applications of→ L.



This behavior can be avoided by putting a bound on the applications of→R, in partic-
ular the following Lemma holds

Lemma 14 (Bounded application of →L). Given a derivation starting with ⇒ x :
F , it is useless to apply →L on a transition formula x1 ≤ x2 such that d(x, x1) >
depth(F ).

Proof. (sketch) Suppose, in the proof search of⇒ x : F , to have a sequentΣ1,M1, Γ1 ⇒
∆1 and to apply →L on (y1 : ϕ1 → ϕ2) ∈ Γ1 and y1 ≤ y2 ∈ M1 with d(x, y1) >
depth(F ). Suppose that the resulting sequent of such application is Σ2,M2, Γ2 ⇒ ∆2,
for any y1 : ϕ introduced by the last application of→L we have that,

(a) ϕ is a subformula of F and,
(b) For all labels k, s.t., d(x, k) ≤ depth(F ), it must be possible to introduce k : ϕ
by applying→L on it.

Point (a) follows from the fact that we are proving a regular sequent ⇒ x : F and
from the definition of Logical Rules. Point (b) says that after such application of→L all
the formulas ϕ that can be associated to label y1, can also be associated to labels that
have a depth smaller or equal to depth(F ). Therefore, if a branch in the proof tree is
closed with an axiom rule in which y1 is the label of the principal formula, then there
must be an equivalent branch closed by an axiom rule in which some other label k with
d(x, k) ≤ depth(F ) is principal.

Take label y such that d(x, y) > mdepth(F ), for every formula ϕ such that y : ϕ,
it is
Concerning point (2), due to the fact that rules (s-C2P) and (s-del-C) generate new
labels they can be, in principle, applied infinitely often. For instance, (s-C2P) could be
applied ad infinitum as follows

...
(s-C2P)

Σ, y, z, w;M, xCAy, xPAy, yCAz, yPAz, zCAw, zPAw;Γ ⇒ ∆
(s-C2P)

Σ, y, z;M, xCAy, xPAy, yCAz, yPAz;Γ ⇒ ∆
(s-C2P)

Σ, y;M, xCAy, xPAy;Γ ⇒ ∆
(s-C2P)

Σ;M;Γ ⇒ ∆

A similar case can be shown for s-del-C. This behavior can be avoided by putting a
bound on the application of rules s-C2P, s-del-C, as the following Lemmas show.

Lemma 15 (Bounded application of s-C2P). Given a derivation starting with⇒ x :
F , it is useless to apply s-C2P on a label x1 such that d(x, x1) > depth(F ).

Proof. The argument proceeds similarly to proof of Lemma 14. Intuitively, if a sequent
is provable, then there must be a proof in which s-C2P is never applied to a label k such
that d(x, k) > depth(F ).

Lemma 16 (Bounded application of s-del-C). Given a derivation starting with⇒ x :
F , it is useless to apply s-del-C on a transition formula x1CBx2 such that d(x, x1) >
depth(F ).

Proof. The argument proceeds similarly to proof of Lemma 14.
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