
Stateful Authorization Logic

– Proof Theory and a Case Study

Deepak Garg and Frank Pfenning

Carnegie Mellon University
{dg,fp}@cs.cmu.edu

Abstract. Authorization policies can be conveniently represented and
reasoned about in logic. Proof theory is important for many such appli-
cations of logic. However, so far, there has been no systematic study of
proof theory that incorporates system state, upon which access policies
often rely. The present paper fills this gap by presenting the design and
proof theory of an authorization logic BL that, among other features,
includes direct support for external procedures to verify predicates on
system state. We discuss design choices in the interaction between state
and other features of the logic and validate the logic both foundationally,
by proving relevant metatheoretic properties of the logic’s proof system,
and empirically, through a case study of policies that control access to
sensitive intelligence information in the U.S.

Keywords: Authorization logic, proof theory, stateful policies, case study

1 Introduction

Many authorization policies rely on conditions that are controlled by the envi-
ronment and whose changes are not stipulated by the policies themselves. For
example, a sensitive file may be accessible to the public if the file is marked
unclassified; an employee may enter her office if it is between 9 AM and 5
PM on a weekday; a doctor may read any patient’s health records if there is
a medical emergency. Conditions such as “if the file is marked unclassified”,
written in boldface in the previous sentence, have the following characteristics:
(a) They influence consequences of the authorization policy of interest, and (b)
The authorization policy itself does not stipulate when or how such conditions
change, although, in conjunction with other enforcement mechanisms in the sys-
tem, it may constrain who may change them (e.g., the list of individuals who may
mark a file unclassified may be stipulated by the authorization policy itself). We
informally call conditions satisfying these two criteria conditions of state, and
any authorization policy relying on them a stateful authorization policy.

Many formal proposals for representing, enforcing and reasoning about state-
ful authorization policies use logic to represent the policies. Central to such use
of logic is proof theory, which is used both to enforce the authorization poli-
cies through proof-carrying authorization or PCA [3,4,5], and to facilitate log-
ical inference to analyze their consequences [11,10]. Yet, despite several papers

on proof theory of authorization logics without state [15,1,12], to the best of
our knowledge, there has been no systematic work on proof theory for logics
that can represent stateful authorization policies. The main objective of this
paper is to fill this gap: we examine in detail the proof theory of a new logic
BL in which stateful authorization policies can be represented. We validate the
logic’s foundations by proving several metatheoretic properties of its proof sys-
tem including cut-elimination, which is a proof-theoretic statement of the logic’s
soundness [28,22]. Empirically, we illustrate BL and justify its expressiveness
through a case study of policies for access to sensitive U.S. intelligence informa-
tion. (Owing to its length, we defer the entire case study to a separate technical
report [17] and present here only illustrative examples from it.) Further, we dis-
cuss subtle design choices in the interaction between state and other components
of the logic. Orthogonal to our main objective, we provide a new interpretation
for the common access control connective k says s [2], which increases the logic’s
expressiveness.

At its core, BL is a first-order intuitionistic logic. To that we add the con-
nective k says s, which means that principal k supports statement s, and state
predicates, a subclass of predicates that can be established through decision pro-
cedures external to the logic that may refer to the system state. Finally, in order
to represent real time, we include the connective s @ [u1, u2] from our prior
work with DeYoung [12]. s @ [u1, u2] means that formula s holds in the time
interval [u1, u2], but possibly not outside of it. Through its combination of state
predicates, explicit time (the @ connective), and the says connective, BL is a
very expressive authorization logic.

There are two main challenges in incorporating state in an authorization
logic like BL. The first is to decide the interaction between state predicates and
other features of the logic, especially explicit time. For example, if s is a state
predicate then depending on the values of u1 and u2, s @ [u1, u2] may refer to a
property of state in the past (or future) of the authorized access, which may be
difficult (resp. impossible) for a reference monitor to enforce. In BL, we make
a deliberate decision to eliminate such policies by interpreting s @ [u1, u2] as
“s at the time of access” irrespective of [u1, u2] whenever s is a state predicate.
Another central decision is whether or not to treat time as a part of the state
(e.g., via a constant localtime that evaluates to the time of access), as in some
prior work [4,7]. We argue in Section 3.3 that this choice results in a loss of
expressiveness — any policy that refers to more than one point of time cannot
be expressed if time is treated as a part of state. Thus, a treatment of time
through the @ connective is useful even in the presence of state predicates.

The second challenge in incorporating state is the integration of external
procedures for checking state predicates with the inference rules of the logic
without breaking metatheoretic properties like cut-elimination. In this regard,
our proof theory is guided by, and similar to, prior work on integrating decision
procedures for constraint domains into a logic [29,20]. The key idea is to formally
represent the external procedure for checking state predicates by an abstract
judgment E |= i (any environment which satisfies all state predicates in E, also

Default
Working
Paper

DeclassifiedClassified
Created

Fig. 1. Stages of a sensitive intelligence file in the U.S.

satisfies state predicate i), and stipulating only a few, reasonable conditions on
the judgment. We list these conditions in Section 3.2 and show that they are
enough to obtain metatheoretic properties of interest, including cut-elimination.

The rest of this paper is organized as follows. In Section 2, we present our
case study, thus motivating the need for stateful authorization policies and also
illustrating, by way of example, the syntax and features of BL. In Section 3,
we introduce the logic and its proof theory stepwise. We start with a first-order
intuitionistic logic with the connective k says s, then add state predicates, and
finally add explicit time. Section 4 presents metatheoretic properties of the proof
system. Related work is discussed in Section 5 and Section 6 concludes the paper.
A related paper [16] presents a file system, PCFS, capable of enforcing policies
represented in BL, including those presented in this paper.

2 Case Study: Stateful Authorization by Example

As a canonical example of stateful authorization policies, we introduce our case
study: U.S. policies for access to sensitive intelligence information.1 We assume
that the unit of sensitive information is a digital file that is already classified
or will potentially be classified. It is often necessary to share such files (among
intelligence agencies, for example) and, as a result, there are federal policies that
mandate who may access such files. For the purpose of this section, there are
two interesting points about these policies. First, any sensitive file goes through
a life cycle consisting of up to four stages that are shown in Figure 1. Rules to
access a file depend on the stage the file is in, as shown in Figure 2. Second,
transitions between stages are dictated by non-mechanizable factors such as
human intent and beliefs and are, therefore, not prescribed by the authorization
policy itself. As far as the authorization policy is concerned, the stages can change
unpredictably. Hence, for the purposes of formalization and enforcement, it is
easiest to represent the stage of a file as an element of system state. In the
specific encoding of policies described here, the stage of a file is represented as

1 The primary sources of policies in this paper are interviews of intelligence personnel
conducted by Brian Witten and Denis Serenyi of Symantec Corporation. Some parts
of the policies are based on Executive Orders of the White House [26,25] or Director
of Central Intelligence Directives (DCIDs) [24,23]. The policies presented here are
themselves unclassified, and may not represent official practices.

Value of extended at-
tribute status on file F

Meaning Who has access

default F is in default stage Owner
working T F is a working paper, put into

that stage at time T
Anyone, at the discretion
of owner

classified T T ′ F is classified from time T to
time T ′

Complex rules to decide
access

declassified F is declassified Everyone

Fig. 2. Formalization of stages and permissions allowed in them

an extended attribute (file meta-data) called status, which is stored in the file
system. The policy relies on this extended attribute to determine who may read
the file but does not stipulate the conditions under which the attribute may
change. Hence, the authorization policy is stateful in the sense mentioned in the
introduction.

Formalizing state in BL. System state can be represented in BL through
a special class of predicates called state predicates, denoted i. State predicates
can be established in a proof through an external procedure, which may vary by
application. For formalizing the policy at hand, we need two state predicates: (a)
(has xattr f a v), which means that file f has extended attribute a set to value
v; in particular, a special attribute status determines the stage of a sensitive file,
and (b) (owner f k), which means that file f is owned by principal k. We do not
stipulate what principals are — they may be individuals, agencies, or groups.
We assume that a procedure to check both predicates in the file system being
used for implementation is available. A brief word on notation before we proceed
further: we write state predicates in boldface to distinguish them from others
and use Curried notation for applying arguments to predicates, e.g., we write
(owner f k) instead of the more conventional owner(f, k).

The attribute status in our formalization can take four possible values cor-
responding to the four stages in Figure 1. These are listed in Figure 2, together
with a description of principals who have access to the file in each stage. Tech-
nically, the words default, working, classified, and declassified are uninterpreted
function symbols in BL having arities 0, 1, 2, and 0, respectively. The arguments
T , T ′ represent time points (discussed later).

Formalizing policy rules in BL. Authorization is formalized in the logic as
a predicate (may k f p), which means that principal k has permission p on file f .
may k f p is not a state predicate because it must be established by logical
deduction starting from the policy rules and valid credentials. Representative
examples of formulas from our formalization of the policy are shown below:

admin claims ((may K F read) : -
has xattr F status default,
owner F K).

admin claims (((may K F read) : -
has xattr F status (classified T T ′),
indi/has-clearances/file K F,
owner F K′,
K′ says (may K F read)) @ [T, T ′]).

admin claims (((may K F read) : -
has xattr F status (classified T T ′)) @ [T ′,+∞]).

admin claims (((may K F read) : -
has xattr F status (working T),
owner F K′,
K′ says (may K F read),
T ′ = (T + 90d)) @ [T, T ′]).

The notation s : - s1, . . . , sn means “formula s holds if formulas s1, . . . , sn hold”,
and is equal to (s1 ∧ . . . ∧ sn) ⊃ s. Uppercase variables like K and F occurring
in s, s1, . . . , sn are implicitly assumed to be universally quantified outside this
formula. The prefix admin claims . . . before each rule means that the rule is
created by the principal admin, who is assumed to be the ultimate authority
on access decisions. The prefix is formally discussed in Section 3. Accordingly,
the first rule above states that (it is the admin’s policy that) principal K may
read file F if F is in stage default and K owns F . The latter two facts are
determined by looking at the file’s meta-data through the external procedure
for state predicates.

The second rule illustrates two central, but possibly unfamiliar connectives of
authorization logics including BL: k says s and s @ [u1, u2]. The former has been
studied extensively in the context of authorization logics [2,15,1,3] and means
that principal k supports formula s or declares that the formula is true. k says s
can be established a priori in a proof through a digital certificate that contains
formula s and is signed by principal k’s private key. In fact, this is the only
way to establish a priori any formula other than a state predicate, constraint
(constraints are discussed below), or tautology. s @ [u1, u2] captures real time
in the logic; it means that formula s holds during the time interval [u1, u2],
but does not say anything about s outside this interval. The second rule above
states that principal K may read file F if F is classified from time T to time T ′

(has xattr F status (classified T T ′)), K has the right clearances to read file F
(indi/has-clearances/file K F), and the owner K ′ of file F allows K to read
the file (K ′ says (may K F read)). The suffix @ [T, T ′] after the formula means
that the entire formula and, hence, its consequence (may K F read) apply only
in the interval [T, T ′]. Beyond T ′, the file is effectively declassified and accessible
to everyone as captured in the third rule above, which means that during the
interval [T ′,+∞], any principal K may read a file F that was classified from
time T to time T ′.

Our fourth rule highlights the need for another integral feature of BL —
constraints, such as the atom T ′ = (T + 90d) in the fourth formula. Constraints
are similar to state predicates in that they are decided by an external procedure
but different in that they are independent of state. Constraints are useful for
reasoning about time. For instance, the fourth rule means that principal K may

read file F if F is a working paper, the owner K ′ of F allows the access, and
less than 90 days have elapsed since the file became a working paper. The last
condition enforces a policy mandate that a file can remain a working paper for
at most 90 days.

The second, third, and fourth rules above also exemplify an interesting in-
teraction between state and time: they apply over time intervals that depend
on time values T obtained through state predicates. There are other, more in-
teresting interactions between state and time that do not show up in our case
study but are described in Section 3.3. The remaining case study is devoted to
formalizing the predicate (indi/has-clearances/file K F) from the second
rule above. This predicate relates credentials of an individual K with attributes
of a classified file F to determine whether or not K should have access to F .
Besides the encoding of state and time, which we have described above, this is
the most challenging part of the case study and involves 38 rules. However, these
rules do not refer to state, so we defer their details to a technical report [17].

3 The Logic BL: Syntax and Proof Theory

We present the logic BL stepwise. The core of BL is sorted (typed) first-order
intuitionistic logic. In the first stage of presentation (Section 3.1), we consider
the core with one additional connective, k says s, calling the resulting logic BL0.
Then we add state predicates, calling the logic BL1 (Section 3.2). Finally, we
add explicit time through the connective s @ [u1, u2] to obtain the full logic
BL (Section 3.3). For brevity, we omit a description of sorts, disjunction, and
existential quantification as well as proofs of theorems from this paper. These
details may be found in the first author’s thesis [14, Chapters 3&4].

3.1 BL0: The says Connective

The first fragment of BL we consider, BL0, has the following syntax:

Terms t, u, k ::= Alice | Bob | admin | . . .
Predicates P ::= may | . . .
Atoms p ::= P t1 . . . tn
Formulas r, s ::= p | s1 ∧ s2 | s1 ⊃ s2 | > | ⊥ | ∀x.s | k says s

Although we do not stipulate the domain of terms, it must include at least prin-
cipals who are authorized access and who create policies (Alice, Bob, admin, etc.).
Formulas are either atomic p, or built from the usual connectives of first-order
logic — ∧ (conjunction), ⊃ (implication), > (truth), ⊥ (falsity), ∀ (universal
quantification), and the access control specific connective k says s. As explained
and illustrated in Section 2, k says s means that principal k supports or states
formula s, without necessarily implying that s is true. Negation, ¬s, may be
defined as s ⊃ ⊥ if needed to represent a policy.

Proof theory. When using authorization logics in practice, access is granted
only if there is a proof which justifies the access. Therefore, to understand the
meaning of a proposition in authorization logic, we must understand how it can
be proved. This naturally leads us to the proof theory of BL0, i.e., a systematic
study of its formal proofs. We adopt Gentzen’s sequent calculus style [18] in
describing the proof theory and follow Martin-Löf’s judgmental approach [22],
which has been used previously to describe other modal logics [28,15]. Briefly,
a judgment J is an assertion that can be established through proofs. For BL0

we need two kinds of judgments: s true, meaning that formula s is true, and
k claims s, meaning that principal k claims or supports formula s (but s may
or may not be true). The latter is needed to define the meaning of the says
connective. A sequent has the following form, where Γ abbreviates a multi-set
J1, . . . , Jn of judgments and Σ is a set containing all first-order variables free in
Γ , s, and k.

Σ;Γ
k−→ s true

The informal meaning of the sequent is: “Parametrically in the variables in Σ,
assuming that everything that principal k claims is true, the judgment s true fol-
lows logically from the judgments in Γ .” The principal k is called the view of the
sequent, and can be roughly thought of as the principal relative to whose claims
we wish to prove the sequent (hence the hypothesis “assuming that everything
that principal k claims is true . . . ” in the meaning of the sequent).

Sequents are established through proofs that are trees of inference rules with
axioms at leaves. The following two rules relate the judgments themselves. The
first rule, (init), is standard and states that if atom p is assumed as a hypothesis,
then it can be concluded. We restrict the rule to atoms, but it can be proved that
a generalization to arbitrary formulas holds (we prove a similar theorem for the
entire logic BL in Section 4). The second rule, (claims), captures the meaning
of the view of a sequent: if k claims s is assumed and the view is k, then s true
can also be assumed.

Σ;Γ, p true
k−→ p true

init
Σ;Γ, k claims s, s true

k−→ r true

Σ;Γ, k claims s
k−→ r true

claims

Other inference rules of the sequent calculus are directed by connectives. We
list below rules for the says connective. The notation Γ | in the first rule denotes
the subset of Γ containing only judgments of the form k′ claims s′, i.e., Γ | =
{(k′ claims s′) | k′ claims s′ ∈ Γ}. The first rule, (saysR), can be interpreted as
follows: we can establish that k says s is true in hypotheses Γ in any view k0
(conclusion of the rule) if we can prove only from Γ | in view k that s is true
(premise). Hypotheses of the form s′ true are removed in the premise because
they may have been introduced in Γ in the view k0, but may not be claimed or
trusted by k. The second rule (saysL) states that the judgment (k says s) true
entails the judgment k claims s. In fact, the two judgments are equivalent in
BL0. (Technically, we say that the connective says internalizes the judgment
claims into the syntax of formulas.)

Σ;Γ | k−→ s true

Σ;Γ
k0−→ k says s true

saysR
Σ;Γ, k says s true, k claims s

k0−→ r true

Σ;Γ, k says s true
k0−→ r true

saysL

Rules for connectives of first-order logic (∧, ⊃, >, ⊥, ∀) are standard so we refer
the reader to existing work for details [28]. In all these rules, the view passes
unchanged from the premises to the conclusion. Several standard metatheoretic
properties including admissibility of cut and consistency hold of BL0’s proof
theory but we refrain from presenting them here because we present similar
properties for the larger logic BL in Section 4.

BL0’s says connective. The says connective in BL0 has a different interpre-
tation from that than in prior authorization logics containing says [15,1,2]. For
the benefit of readers, we list below a rule and three axioms that completely
characterize the says connective of BL0 (in terms of the sequent calculus, ` s
means that Σ; · k−→ s true for any k and appropriate Σ):

From ` s infer ` k says s
` (k says (s1 ⊃ s2)) ⊃ ((k says s1) ⊃ (k says s2))
` (k says s) ⊃ k′ says k says s
` k says ((k says s) ⊃ s)

The reader may ask why we are considering a new interpretation for says, when
there exist others that also have simpler proof theories, e.g., [15,1,2]. The answer
lies in striking a delicate balance between having a good proof theory and having
a usable meaning for the says connective, which we believe BL0 achieves. As a
case in the point for other interpretations of says with simpler proof theories,
consider recent work that treats k says · as a family of lax modalities [15,1].
Even though these logics have a simpler proof theory, their ability to express
delegation is limited. Consider the formula k says ((k′ says s′) ⊃ s), which may
intuitively mean that k supports s if k′ supports s′. Interpreting k says s as a
lax modality, it (counterintuitively) suffices for k, not k′, to state s′ in order
to derive k says s from this rule. Technically, this happens because with a lax
interpretation of k says s, the axiom s ⊃ (k says s) is admissible, which is not
the case in BL0. Such delegations arise in practical examples, as in the following
rule from our case study.

admin claims (((indi/has-background K topsecret) : -
BA says (indi/has-ssbi K T),
T ′ = (T + 5y)) @ [T, T ′]).

In words, the principal admin agrees that principal K has topsecret clearance if a
person certified to check others’ background, BA, says that K has passed a SSBI
(single scope background investigation). Although the predicate (indi/has-ssbi
K T) has been delegated to BA by admin, the latter has no authority over this
predicate. Comparison to the lax interpretation of says is merely an example,
but the general point here is that obtaining an authorization logic that has a
sound proof theory and high expressiveness is difficult. We justify BL0 on both
these counts — on its proof theory through metatheorems of Section 4 and on

practical usability through our case study. Of course, this does not preclude the
possibility of other logics that are also good on both counts.

Using BL0 in practice. Like other authorization logics with a says connective,
BL0 can be used to authorize access in practice in a standard way. A fixed
predicate such as may from Section 2 is used to represent permissions, and a fixed
principal, e.g., admin, is assumed to be the ultimate authority in making access
decisions. Access is allowed if the prevailing policy, represented as hypotheses Γ ,
entails admin says (may t) true for appropriate arguments t, i.e., if there is a proof

of ·;Γ k−→ (admin says (may t)) true (the view k is irrelevant at the top-level; it
can be a fresh constant). Evidence for the assumed policy Γ comes in the form
of signed certificates: a digital certificate (e.g., in X.509 format [19]) containing
s signed by k is taken as a priori evidence of the judgment k claims s. Of course,
not all parts of a policy can be established by certificates. For example, state
predicates must be checked directly on system state. Reconciling such predicates
with proof theory is the main objective of this paper, to which we turn next.

3.2 BL1: State Predicates

To represent stateful policies, examples of which were shown in Section 2, we
extend BL0 with a special class of atomic formulas called stateful atoms, denoted
i, and add a new form of hypotheses — a set of stateful atoms, E — to sequents.

The resulting logic, BL1, has sequents of the form Σ;E;Γ
k−→ s true, which

informally mean that: “Parametrically in the variables in Σ, assuming that ev-
erything that principal k claims is true, the judgment s true follows logically
from the judgments in Γ in any environment that validates all stateful atoms in
E.” In practice, a proof of authorization can be constructed as explained at the
end of Section 3.1, except that now the stateful atoms E are also available in
the proof. Assumptions in E may be discharged by an external procedure that
has access to the environment or system state.

Syntax. The syntax of BL1 formulas is shown below. The meta-variables p and
t inherit their syntax from BL0. State predicates I are assumed to be distinct
from regular predicates P .

State predicates I ::= has xattr | owner | . . .
Stateful atoms i ::= I t1 . . . tn
Formulas r, s ::= p | i | s1 ∧ s2 | s1 ⊃ s2 | > | ⊥ | ∀x.s | k says s

Proof theory. We incorporate relations between stateful atoms into the proof
theory through an abstract judgment Σ;E |= i, which means that “for all
ground instances of variables in Σ, any environment that satisfies all state-
ful atoms in E also satisfies atom i”. We do not stipulate any rules to estab-
lish this judgment since they may vary from environment to environment. For
instance, in an environment where some constraint forces that files a.txt and

b.txt always have the same value for attribute status, it may be the case that
Σ; has xattr a.txt status v |= has xattr b.txt status v, but this may not be case
in other environments. In the simplest instance, the judgment may hold if and
only if i ∈ E. Our metatheoretic results (Section 4) assume only the following
properties of this judgment, all of which follow from its intuitive explanation.

Σ;E, i |= i (Identity)
Σ;E |= i implies both Σ, x;E |= i and Σ;E,E′ |= i (Weakening)
Σ;E |= i and Σ;E, i |= i′ imply Σ;E |= i′ (Cut)
Σ, x;E |= i implies Σ;E[t/x] |= i[t/x] if fv(t) ⊆ Σ (Substitution)

As explained earlier, BL1 sequents have the form Σ;E;Γ
k−→ s true. BL1 inherits

all inference rules of BL0 with the proviso that the new context E passes un-
changed from the conclusion to premises in all rules. We do not reiterate these
rules. Two new rules for reasoning about stateful atoms are added. The first
rule states that the judgment i true holds if E |= i for the assumed state E.
The second rule means that a hypothesis i true implies that the stateful atom i
holds. Together, the two rules imply that the judgment i true is equivalent to the
atom i holding in the prevailing environment, which closely couples the stateful
formula i to its intended interpretation.

Σ;E |= i

Σ;E;Γ
k−→ i true

stateR
Σ;E, i;Γ, i true

k−→ s true

Σ;E;Γ, i true
k−→ s true

stateL

We list below admissible and inadmissible statements relating to stateful atoms
and the says connective. The second and third statements mean that a false
stateful atom signed by a principal does not contaminate the entire logic.

` i ⊃ k says i
6` (k says i) ⊃ i
6` (k says i) ⊃ (k′ says i) if k 6= k′

3.3 BL: Explicit Time and The @ Connective

In our final increment to the logic, we add explicit time by including the con-
nective s @ [u1, u2]. This treatment of time is very similar to that in our prior
work with DeYoung for a different logic η [12] and, as a result, we describe the
proof theory of the final extension only briefly. The reason for considering this
extension is two-fold. First, explicit time is needed to correctly represent policy
rules that have a pre-determined expiration, as well as other rules that limit the
temporal validity of formulas (e.g., the second, third, and fourth rules of Sec-
tion 2). Second, there are important design decisions in the interaction between
state and time that we wish to highlight.

Since s @ [u1, u2] means that s holds throughout the interval [u1, u2], it also
seems reasonable that s @ [u1, u2] imply s @ [u′1, u

′
2] if u1 ≤ u′1 and u′2 ≤ u2. To

make such properties admissible in the logic, we need a theory of the total order
u1 ≤ u2 on time points and, for expressing certain policies (e.g., the fourth rule
in Section 2), we also need a theory of arithmetic over time points. We include

both by adding a single constraint domain of time points to the logic. From
the perspective of proof theory, constraints are similar to state. However, the
external procedure for solving constraints does not depend on state.

Syntax. Time points are integers or the elements {−∞,+∞}. The numbers
represent time elapsed in seconds from a fixed point of reference. In the concrete
syntax we often write time points in the format YYYY:MM:DD:hh:mm:ss. We
also include the function symbol + of arity 2. A new syntactic class of constraints,
c, is also added. Constraints are predicates of one of two forms: u1 ≤ u2 or
u1 = u2.

Terms t, u, k ::= Alice | Bob | YYYY:MM:DD:hh:mm:ss | −∞ | +∞ |
u1 + u2 | . . .

Constraints c ::= u1 ≤ u2 | u1 = u2
Formulas r, s ::= p | i | c | s1 ∧ s2 | s1 ⊃ s2 | > | ⊥ | ∀x.s | k says s |

s @ [u1, u2]

Proof theory. The addition of time requires a significant change to the logic’s
judgments [12]. Instead of the judgments s true and k claims s, we use refined
judgments s ◦ [u1, u2] (s is true throughout the interval [u1, u2]) and k claims s ◦
[u1, u2] (k claims that s is true throughout the interval [u1, u2]). Sequents in BL

have the form Σ;Ψ ;E;Γ
k,u1,u2−−−−−→ s ◦ [u′1, u

′
2]. Here, Ψ is a set of constraints, much

like E is a set of stateful atoms. The meaning of the sequent is: “Parametrically
in the variables in Σ, assuming that everything that principal k claims about
intervals containing [u1, u2] is true, the judgment s ◦ [u′1, u

′
2] follows logically

from the judgments in Γ in any environment that validates all stateful atoms in
E, if all constraints in Ψ hold.” Besides the addition of constraints as hypotheses,
another change is the addition of an interval of time to the view. This is not
particularly important here since we could also have constructed a logic without
time intervals in views (for details of the trade-offs involved in making this choice,
see [14, Section 4.4]).

Relations between constraints are incorporated into the logic through an
abstract judgment Σ;Ψ |= c, which is similar to Σ;E |= i. As for the latter
judgment, our metatheoretic properties rely only on basic properties of Σ;Ψ |= c,
which we borrow from prior work [12]. In particular, we require that u1 ≤ u2 be
reflexive and transitive. Inference rules of the sequent calculus for BL are derived
from those of BL1, taking into account carefully the interaction between time and
the different connectives. Although this interaction is non-trivial in most cases, it
is similar to that in prior work. Accordingly, we describe here rules for only the @
connective and state predicates (the latter reflect a key design choice), describe
the interaction between @ and the remaining connectives through properties,
and refer the reader to the first author’s thesis for remaining details of the proof
theory [14, Chapter 4].

The @ connective. In BL, s @ [u1, u2] internalizes the judgment s ◦ [u1, u2]
into the syntax of formulas. Because s @ [u1, u2] means that s holds through-
out [u1, u2], a further qualification by adding ◦ [u′1, u

′
2] as in s @ [u1, u2] ◦ [u′1, u

′
2]

does not add anything to the meaning, so the judgments s ◦ [u1, u2] and
s @ [u1, u2] ◦ [u′1, u

′
2] are equivalent. This results in the following two rules for

the @ connective. (ν denotes an arbitrary view k, u1, u2.)

Σ;Ψ ;E;Γ
ν−→ s ◦ [u1, u2]

Σ;Ψ ;E;Γ
ν−→ s @ [u1, u2] ◦ [u′

1, u
′
2]

@R

Σ;Ψ ;E;Γ, s @ [u1, u2] ◦ [u′
1, u

′
2], s ◦ [u1, u2]

ν−→ r ◦ [u′′
1 , u

′′
2]

Σ;Ψ ;E;Γ, s @ [u1, u2] ◦ [u′
1, u

′
2]

ν−→ r ◦ [u′′
1 , u

′′
2]

@L

State predicates and time. If i is a stateful atom, what should i ◦ [u1, u2]
mean? One possibility (which we don’t use in BL) is to apply the usual meaning
of s ◦ [u1, u2], implying that i ◦ [u1, u2] mean that the stateful atom i holds
throughout the time interval [u1, u2]. Although intuitive, this interpretation can
result in policies that are impossible to enforce. Consider, for example, the policy
((T ′ = (T + 5)) ∧ (i @ [T, T ′])) ⊃ ((may K F read) @ [T, T]). Intuitively, the
policy says that a principal K may read file F at time T if i holds in the interval
[T, T + 5]. Thus, permission to access file F at time T refers to state at later
points of time, which is, of course, impossible to enforce in a reference monitor.

To avoid such non-enforceable policies, we make a substantial design decision
in BL: we assume that all stateful atoms are interpreted at exactly one point of
time and i ◦ [u1, u2] simply means that i holds in the environment at this point
of time (independent of u1 and u2). The logic does not stipulate what that point
of time is, but it seems practical to use the time at which the access happens. In
that interpretation, i ◦ [u1, u2] means that i holds at the time of access. Following
this decision, the following rules for stateful atoms are self-explanatory:

Σ;E |= i

Σ;Ψ ;E;Γ
ν−→ i ◦ [u1, u2]

stateR
Σ;Ψ ;E, i;Γ, i ◦ [u1, u2]

ν−→ r ◦ [u′
1, u

′
2]

Σ;Ψ ;E;Γ, i ◦ [u1, u2]
ν−→ r ◦ [u′

1, u
′
2]

stateL

Seemingly, we are limiting the logic’s expressiveness because we are eliminating
(enforceable) policies that refer to stateful atoms in intervals prior to access.
However, this is not a significant limitation because such policies can still be
encoded by requiring evidence of the stateful atom(s) having been true in the
past (e.g., a trusted observer’s certificate) to exist at the time of access. As a
result, we consider this design decision reasonable.

Time as a special case of state? A different possibility for including time is to
treat it as a part of state without explicitly including the connective s @ [u1, u2],
as in some prior work [7,4]. The idea is to have an interpreted constant, e.g.,
localtime, that evaluates to the time of access. Although this choice avoids the
need for the @ connective, it also results in a loss of expressiveness: since there is

no way to state that a formula holds at a time other than the time of access, we
can only represent policies all of whose subformulas need to hold at the time of
access. In particular, a policy like ((u′ = (u+ 5)) ∧ (p @ [u, u])) ⊃ (p′ @ [u′, u′])
(if predicate p holds at time u, then p′ holds at u+ 5) is impossible to represent
in such a setup. Thus, a representation of explicit time through the @ connective
is useful even when state is included in the logic.

Other connectives and time. The following list of admissible and inadmis-
sible properties highlights salient points of the interaction between @ and other
connectives of BL. Notably, (s1 ⊃ s2) @ [u1, u2] is equivalent to having a single
proof of (s1 @ [x1, x2]) ⊃ (s2 @ [x1, x2]) for every subinterval [x1, x2] of [u1, u2]
(property 8 below). In the following, s ≡ r denotes (s ⊃ r) ∧ (r ⊃ s), ` s means

that Σ; ·; ·; · ν−→ s ◦ [u1, u2] for all u1, u2, ν and appropriate Σ, and 6` s means
that the latter is not true for s in the stated generality.

1. ` ((u1 ≤ u′1) ∧ (u′2 ≤ u2)) ⊃ ((s @ [u1, u2]) ⊃ (s @ [u′1, u
′
2]))

2. ` ((s @ [u1, u2]) @ [u′1, u
′
2]) ≡ (s @ [u1, u2])

3. ` ((s1 ∧ s2) @ [u1, u2]) ≡ ((s1 @ [u1, u2]) ∧ (s2 @ [u1, u2]))
4. ` ((∀x.s) @ [u1, u2]) ≡ (∀x.(s @ [u1, u2])) (x 6∈ u1, u2)
5. ` > @ [u1, u2]
6. ` (⊥ @ [u1, u2]) ⊃ (s @ [u′1, u

′
2])

7. There is no interval [u1, u2] such that ` ⊥ @ [u1, u2]
8. ` ((s1 ⊃ s2) @ [u1, u2]) ≡ (∀x1.∀x2.(((u1 ≤ x1) ∧ (x2 ≤ u2) ∧ (s1 @ [x1, x2]))

⊃ (s2 @ [x1, x2])))
9. ` ((k says s) @ [u1, u2]) ⊃ (k says (s @ [u1, u2]))

10. 6` (k says (s @ [u1, u2])) ⊃ ((k says s) @ [u1, u2])

4 Metatheory of BL

We prove several important metatheoretic properties of BL. The first lemma
below states that proofs respect substitution of stateful atoms, which, in a sense,
means that the proof theory preserves the meaning of the judgment Σ;E |= i.
A similar property holds for constraints, but we do not state it explicitly.

Lemma 1. Σ;E |= i and Σ;Ψ ;E, i;Γ
ν−→ r ◦ [u1, u2] imply Σ;Ψ ;E;Γ

ν−→
r ◦ [u1, u2].

Our main metatheoretic results are admissibility of cut — the proof of a judg-
ment can be used to discharge the same judgment used as a hypothesis in another
proof — and identity — any judgment assumed as hypothesis can be concluded.
Admissibility of cut is a proof-theoretic statement of soundness of a logic. Dually,
identity is a proof-theoretic statement of completeness of the logic’s inference
rules. Together, the proofs of the two theorems show that the rules of the logic
fit well with each other [28].

Theorem 1 (Admissibility of cut). Σ;Ψ ;E;Γ
ν−→ s ◦ [u1, u2] and Σ;Ψ ;E;Γ,

s ◦ [u1, u2]
ν−→ s′ ◦ [u′1, u

′
2] imply Σ;Ψ ;E;Γ

ν−→ s′ ◦ [u′1, u
′
2].

Proof. By simultaneous induction, first on the structure of s, and then on the
depths of the two given derivations, as in prior work [27].

Theorem 2 (Identity). Σ;Ψ ;E;Γ, s ◦ [u1, u2]
ν−→ s ◦ [u1, u2].

Proof. By induction on s.

By an analysis of inference rules, it also follows that the logic is proof-theoretically
consistent, i.e., ⊥ cannot be proved a priori. Similarly, k says ⊥ cannot be proved
a priori.

Theorem 3 (Consistency). (1) Σ; ·; ·; · 6 ν−→ ⊥ ◦ [u1, u2], and (2) Σ; ·; ·; · 6 ν−→
(k says ⊥) ◦ [u1, u2].

5 Related Work

Several formal frameworks for authorization policies allow for representation of
state, but no prior proposal has considered an integration of state and logic from
a proof-theoretic perspective. Perhaps closest to BL’s treatment of stateful atoms
is the Nexus Authorization Logic (NAL) [30] that is used for authorizing access
in several components of the Nexus operating system. NAL includes support for
state predicates in a manner similar to that stipulated in Section 3.2, i.e., the
reference monitor verifies certain predicates using trusted decision procedures
that may refer to the system state. Several other logic-based frameworks for
representing authorization policies [7,4,9,21] do not make a distinction between
constraints and state predicates, and consequently support system state implic-
itly as part of their support for constraints. However, we believe that maintaining
this distinction is important from the perspective of both implementation and
reasoning about policies expressed in logic.

There has also been some work on declarative languages and logics in which
authorization policies and state transitions can be represented and reasoned
about simultaneously [6,8,13]. In contrast, BL’s state predicates are meant to
model situations where rules for state transitions are not specified. Some re-
cent programming languages, e.g., [11,10], use type systems to enforce state-
dependent authorization policies that are represented in first-order logic. State-
ful atoms are not distinguished from others in the proof theory used in these
languages.

The connective k says s has been included in several past proposals for writing
access policies, starting with the work of Abadi et al [2]. The BL connective
s @ [u1, u2] is based on our prior work with DeYoung [12], and our treatment
of constraints goes further back to work on reconciling constraint domains and
proof theory of linear logic [29,20]. Study of proof theory for authorization logics
was initiated in our prior work [15]. The present paper incorporates many ideas
from that work, especially the use of intuitionistic first-order logic as a foundation
for authorization policies.

6 Conclusion

A proof-theoretic treatment of state in an authorization logic requires careful
design. Part of the complication arises due to the well-understood difficulty of
reconciling decision procedures with proof theory, but most of the design choices
arise in the interaction between state predicates and other features of autho-
rization logic, in particular, explicit time. The logic BL strikes a good balance
in this design space, as evident from its strong metatheoretic foundations and
validation through a realistic case study.

Acknowledgments. This research was supported in part by the AFRL under
grant no. FA87500720028, and the iCAST project sponsored by the National Sci-
ence Council, Taiwan under grant no. NSC97-2745-P-001-001. The first author
was also supported by the AFOSR MURI “Collaborative Policies and Assured
Information Sharing.” We thank Denis Serenyi and Brian Witten for providing
textual descriptions of policies for the case study and for subsequent discussions
on them, and anonymous referees for their helpful comments on this paper.

References

1. Abadi, M.: Access control in a core calculus of dependency. Electronic Notes in
Theoretical Computer Science 172, 5–31 (2007), Computation, Meaning, and Logic:
Articles dedicated to Gordon Plotkin

2. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in
distributed systems. ACM Transactions on Programming Languages and Systems
15(4), 706–734 (1993)

3. Appel, A.W., Felten, E.W.: Proof-carrying authentication. In: 6th ACM Confer-
ence on Computer and Communications Security (CCS). pp. 52–62 (1999)

4. Bauer, L.: Access Control for the Web via Proof-Carrying Authorization. Ph.D.
thesis, Princeton University (2003)

5. Bauer, L., Garriss, S., McCune, J.M., Reiter, M.K., Rouse, J., Rutenbar, P.: Device-
enabled authorization in the Grey system. In: 8th Information Security Conference
(ISC). pp. 431–445 (2005)

6. Becker, M.Y.: Specification and analysis of dynamic authorisation policies. In: 22nd
IEEE Computer Security Foundations Symposium (CSF). pp. 203–217 (2009)

7. Becker, M.Y., Fournet, C., Gordon, A.D.: Design and semantics of a decentralized
authorization language. In: 20th IEEE Computer Security Foundations Sympo-
sium. pp. 3–15 (2007)

8. Becker, M.Y., Nanz, S.: A logic for state-modifying authorization policies. In: 12th
European Symposium on Research in Computer Security (ESORICS). pp. 203–218
(2008)

9. Becker, M.Y., Sewell, P.: Cassandra: Flexible trust management applied to health
records. In: 17th IEEE Computer Security Foundations Workshop (CSFW). pp.
139–154 (2004)

10. Borgstrm, J., Gordon, A.D., Pucella, R.: Roles, stacks, histories: A triple for Hoare.
Tech. Rep. MSR-TR-2009-97, Microsoft Research (2009)

11. Broberg, N., Sands, D.: Paralocks: Role-based information flow control and beyond.
SIGPLAN Notices 45(1), 431–444 (2010)

12. DeYoung, H., Garg, D., Pfenning, F.: An authorization logic with explicit time.
In: 21st IEEE Computer Security Foundations Symposium (CSF). pp. 133–145
(2008), extended version available as Carnegie Mellon University Technical Report
CMU-CS-07-166.

13. DeYoung, H., Pfenning, F.: Reasoning about the consequences of authorization
policies in a linear epistemic logic (2009), Workshop on Foundations of Computer
Security (FCS), http://www.cs.cmu.edu/~hdeyoung/papers/fcs09.pdf

14. Garg, D.: Proof Theory for Authorization Logic and Its Application to a Prac-
tical File System. Ph.D. thesis, Carnegie Mellon University (2009), available as
Technical Report CMU-CS-09-168

15. Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. In:
19th Computer Security Foundations Workshop (CSFW). pp. 283–293 (2006)

16. Garg, D., Pfenning, F.: A proof-carrying file system. In: Proceedings of the 31st
IEEE Symposium on Security and Privacy (Oakland). pp. 349–364 (2010)

17. Garg, D., Pfenning, F., Serenyi, D., Witten, B.: A logical representation of common
rules for controlling access to classified information. Tech. Rep. CMU-CS-09-139,
Carnegie Mellon University (2009)

18. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift 39, 176–210, 405–431 (1935), English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969

19. Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 public key infrastructure
(1999), http://www.ietf.org/rfc/rfc2459.txt

20. Jia, L.: Linear Logic and Imperative Programming. Ph.D. thesis, Department of
Computer Science, Princeton University (2008)

21. Li, N., Mitchell, J.C., Winsborough, W.: Design of a role-based trust-management
framework. In: 23rd IEEE Symposium on Security and Privacy (Oakland). pp.
114–130 (2002)

22. Martin-Löf, P.: On the meanings of the logical constants and the justifications of
the logical laws. Nordic Journal of Philosophical Logic 1(1), 11–60 (1996)

23. Office of the Director of Central Intelligence: DCID 1/19: Security policy for
sensitive compartmented information and security policy manual (1995), http:

//www.fas.org/irp/offdocs/dcid1-19.html
24. Office of the Director of Central Intelligence: DCID 1/7: Security controls on

the dissemination of intelligence information (1998), http://www.fas.org/irp/

offdocs/dcid1-7.html
25. Office of the Press Secretary of the White House: Executive order 12958: Clas-

sified national security information (1995), http://www.fas.org/sgp/clinton/

eo12958.html
26. Office of the Press Secretary of the White House: Executive order 13292: Further

amendment to executive order 12958, as amended, classified national security in-
formation (2003), http://nodis3.gsfc.nasa.gov/displayEO.cfm?id=EO_13292_

27. Pfenning, F.: Structural cut elimination I. Intuitionistic and classical logic. Infor-
mation and Computation 157(1/2), 84–141 (2000)

28. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathemat-
ical Structures in Computer Science 11, 511–540 (2001)

29. Saranli, U., Pfenning, F.: Using constrained intuitionistic linear logic for hybrid
robotic planning problems. In: International Conference on Robotics and Automa-
tion (ICRA). pp. 3705–3710 (2007)

30. Schneider, F.B., Walsh, K., Sirer, E.G.: Nexus Authorization Logic (NAL): De-
sign rationale and applications. Tech. rep., Cornell University (2009), http:

//ecommons.library.cornell.edu/handle/1813/13679

http://www.cs.cmu.edu/~hdeyoung/papers/fcs09.pdf
http://www.ietf.org/rfc/rfc2459.txt
http://www.fas.org/irp/offdocs/dcid1-19.html
http://www.fas.org/irp/offdocs/dcid1-19.html
http://www.fas.org/irp/offdocs/dcid1-7.html
http://www.fas.org/irp/offdocs/dcid1-7.html
http://www.fas.org/sgp/clinton/eo12958.html
http://www.fas.org/sgp/clinton/eo12958.html
http://nodis3.gsfc.nasa.gov/displayEO.cfm?id=EO_13292_
http://ecommons.library.cornell.edu/handle/1813/13679
http://ecommons.library.cornell.edu/handle/1813/13679

	Stateful Authorization Logic

