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Abstract

We present a representative development in the science of security that includes a
generic model of computer systems, their security properties and adversaries who ac-
tively interfere with such systems. We describe logic-based methods to reason about
security properties of a system as a composition of properties of its components, and
several successful applications of the method in explaining and predicting attacks in a
wide-variety of systems.
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1 Introduction

This article reports on a representative result in the science of security. In order to explain
what we mean by a “science”, we draw an analogy with physics. A physical theory consists
of a model of the physical universe. The model should be general, i.e., it should encompass
a large class of physical phenomena. The model should also support analyses that identify
relationships among physical concepts, which can then be used to explain observed behavior
in the physical universe, and predict behavior that has not yet been observed. For example,
Einstein’s general theory of relativity presents a model of gravitation—a set of equations
that describe how spacetime is curved by matter and energy (a relationship among physical
concepts). It explains observed phenomena, such as the bending of light near the sun, and
predicts the existence of black holes—regions of spacetime where the gravitational attraction
is so strong that even light cannot escape. The theory is general in that its predictions apply
to a very large class of phenomena ranging from motion of bodies (apples, stars, planets)
in free fall to the propagation of light.

A science of security should include theories for the security universe that have similar
characteristics. The security universe includes a large class of computer systems (e.g.,
web browsers, hypervisors, virtual machine monitors, operating systems, trusted computing
systems, and network protocols) that are intended to provide subtle security properties (e.g.,
confidentiality and integrity of data) in the presence of adversaries who actively interfere
with the execution of the system. A theory of security should therefore include a model
for systems, adversaries, and properties. The model should support analyses that identify
relationships among classes of systems, adversaries and properties. These relationships
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should in turn be used to explain observed phenomena (e.g., why specific attacks work
against specific systems), and predict phenomena (e.g., how well a system will hold up as
adversaries come up with new attacks). A theory is general if it applies to large classes of
systems, adversaries and properties.

We now present the outline of a theory of compositional security1, addressing a recog-
nized scientific challenge (see, for example, Wing [15]). Contemporary systems are built
up from smaller components. However, even if each component is secure in isolation, the
composed system may not achieve the desired security property: an adversary may exploit
complex interactions between components to compromise security. The goal of a theory of
compositional security is to identify relationships among systems, adversaries and properties
such that precisely defined composition operations over systems and adversaries preserve
security properties. Such a theory would thus enable scalable analysis of large, complex
systems by constructing their security proofs from separately constructed proofs of prop-
erties of the simpler components from which they are built. In addition, if a component
is used to build multiple systems, the proof of its security property could be reused in the
proofs for all the systems.

While there has been progress on understanding secure composition in specific settings,
such as information flow control for non-interference-style properties [10] and cryptographic
protocols [2, 4, 12], a systematic understanding of the general problem of secure compo-
sition has not emerged yet. In presenting our theory, we describe our model for general
classes of systems, adversaries and security properties. We then present composition results
(relationships) in this model. We also discuss how our theory explains a number of specific
attacks found in the wild and how it can serve as the basis for predicting whether security
properties of systems will be preserved as adversaries come up with new attacks.

Our theory builds on and generalizes prior work on a compositional theory for the domain
of cryptographic protocols [4] and is influenced by compositional reasoning principles for
functional correctness of programs [9, 11]. Several alternative approaches to compositional
security have been considered in the literature. In particular, in recent work, the universal
composability approach [2, 12], originally developed for cryptographic protocols, has also
been applied to systems [3]. We refer the interested reader to our technical paper [8] for
comparison with additional related work.

2 Modeling Systems and Adversaries

We model a system as a set of concurrently running, and possibly interacting, threads
of programs that access a set of resources only through stipulated interfaces. Figure 1
illustrates the key components of our model. In the figure labels Ri and Ii represent the
resources and interfaces respectively. Trusted components, labeled Ti, combine interface
calls in known ways. Adversarial (untrusted) components, labeled Ai, on the other hand,
can combine calls to interfaces they can access in arbitrary ways. In general, the set of

1The interested reader is referred to the associated technical paper [8] for additional details.
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Figure 1: Interface view of a system
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Figure 2: Interface view of a mashup
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Figure 3: Interface view of a file system

interfaces IAi available to adversaries is a subset of the set of interfaces IT i available to the
trusted system components.

This model is general : it captures a wide range of real systems and associated adversary
models. For example, a model of web mashups, obtained by instantiating the elements of
Figure 1, is shown in Figure 2. Resources include the Document Object Model (DOM)
of the mashup, communication channels between frames, and the network. Each frame in
the mashup corresponds to one thread of the system and an adversary is a set of malicious
frames. Interfaces for accessing the DOM ID include functions for reading and writing
elements in the DOM; interfaces for inter-frame communication include the postmessage
method; interfaces for the network include methods for obtaining data and code over the
network. Note that adversarial frames are limited in their behavior by these interfaces,
e.g., if all network interfaces restrict communication to servers in the same domain as the
originating frame (the so-called same-origin policy), then regardless of its actual program,
an adversarial frame cannot contact a server from a different domain.

Another example, also obtained by instantiating Figure 1, is that of a file system (Fig-
ure 3). Here, the resources are files, the data structure holding the access permission matrix,
and possibly the network. As usual, the model assumes that the administrator (such as the
superuser in Unix-based systems) is trusted and that other users may be adversarial. Again,
adversaries cannot break the abstraction of interfaces; if no interface allows Mallory to read
secret.txt, Mallory’s program cannot read secret.txt regardless of the instructions it
executes.

Yet another instance of our abstract model of systems is a network security protocol
where we view the network as the sole shared resource of interest and interfaces include
message send and receive functions, encryption, decryption, and nonce generation. Trusted
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threads follow their parts of the protocol whereas adversarial threads combine interface calls
in any way of their choosing. Yet again, adversaries are confined by the interfaces available
to them — they can intercept and send messages, but cannot decrypt messages that are
encrypted using keys that they do not know.

At a technical level, interfaces are modeled as recursive functions in an expressive pro-
gramming language. Trusted components and adversaries are also represented using pro-
grams in the same programming language. Typically, we assume that the programs for
the trusted components (or their properties) are known. However, an adversary is modeled
by considering all possible programs that can be constructed by combining calls to the
interfaces to which the adversary is confined.

3 Modeling Security Properties

In defining models for security properties, a useful abstraction is that of a trace — the
possible sequence of events that is obtained by executing a system. Our model focuses on
properties of traces, specifically, safety properties. Informally, safety properties are negative
properties that state “nothing bad ever happens on the trace”. Formally, a trace violates a
safety property if and only if the trace has a finite prefix on which the property is violated.
In contrast, liveness properties state that “something good eventually happens on a trace”.

We focus on safety properties for the following reasons. First, it is well-known that
safety properties are general enough to either express or approximate most security proper-
ties of interest including authorization, integrity, secrecy, and information flow properties.
Second, interfaces can reliably guarantee only safety properties. For instance, although a
file system interface may guarantee that Mallory never reads secret.txt (a safety prop-
erty), no file system interface can guarantee that secret.txt will eventually be read (a
liveness property). (For a more detailed argument on this point, we refer the reader to the
work of Rusbhy [14].) Third, it has been established formally in the work of Abadi and
Lamport [1] that safety properties are possibly amenable to compositional reasoning, but
common compositional reasoning principles such as rely-guarantee reasoning, which have
been used successfully for functional verification, do not apply to liveness properties.

At a technical level, we represent security properties as formulas in a first-order temporal
logic, following prior work on modeling functional correctness properties of systems.

4 Compositional Security

We present below two compositional reasoning principles that capture relationships among
systems, adversaries and properties in our model. We explain intuitively what these prin-
ciples mean and how to apply them. We emphasize that these relationships are general :
they apply to the general class of systems, adversaries and properties described in the pre-
vious sections. They also explain why certain specific attacks work against specific systems
and predict when specific systems will preserve their security properties even as adversaries
come up with new attacks.
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4.1 Composition Principle 1

If two system components T1 and T2 satisfy properties ϕ1 and ϕ2 respectively in isolation,
does their simultaneous execution T1||T2 satisfy ϕ1 ∧ ϕ2?

2 Equivalently, assuming we have
proven that a trusted component T1 satisfies property ϕ1, can we prove that the simulta-
neous execution of T1 and another component T2 still satisfies ϕ1? It is easy to see that
the latter is not true for all properties ϕ1. For instance, let component T1 contain two
concurrent threads, A1 and B1, executing the simple protocol in which A1 sends a message
to B1 and B1 sends back an acknowledgement and let ϕAB1 be the property: if A1 receives
an acknowledgment from B1 then B1 received a message earlier. Clearly, T1 in isolation
satisfies ϕAB1. However, in a system where message senders can spoof their own identities,
simultaneous execution of T1 with an adversarial thread T2 that simply sends an acknowl-
edgment to A1, spoofing its origin to be B1, no longer satisfies the property ϕAB1 because
A1 may receive an acknowledgment from T2, without B1 having received a payload.

Thus, not all security properties are compositional in the sense mentioned above. How-
ever, a certain useful class of properties, namely, those that mention only the actions (or
activities) of a single thread, are compositional. We use the term local for such properties.
For instance, the property ϕB1, which says that if B1 sends an acknowledgement, then it
must have received a payload earlier is local. The fact that local properties compose is
captured in the following rule for local properties ϕ1 and ϕ2, where ` T : ϕ means that
thread T satisfies property ϕ.

` T1 : ϕ1 ` T2 : ϕ2

` T1||T2 : ϕ1 ∧ ϕ2

Although local properties compose, most security properties of interest e.g., ϕAB1 are not
local. How, then, might we develop compositional proofs for security properties in general?
The critical observation that allows us to proceed is that because a security property is a
consequence of actions of individual threads, the proof of a security property can be factored
into proofs of local properties, followed by reasoning that combines these local properties.
The combination step, called global reasoning in the sequel, often relies on domain-specific
assumptions about the system, i.e., assumptions that apply to all components of the system.
For instance, in analysis of network protocols, the assumption that a message cannot be de-
crypted without proper keys is domain-specific. Such assumptions can either be axiomatic,
or they can be established by an analysis of interfaces, as described later. Continuing our
earlier example, suppose we make the domain-specific assumption that sender identities
may not be spoofed. A proof that ` T1 : ϕAB1 holds may be completed as follows. First, we
establish that the local property ϕB1 holds. The proof can then be completed by global rea-
soning: if A1 receives a message purportedly from B1, then because of the domain-specific
assumption, the message must have been sent by B1; then, because of ϕB1, we conclude
that B1 must have received a payload earlier. Interestingly, this proof remains virtually un-
changed when we add the malicious thread T2: ` T1||T2 : ϕB1 follows from the composition

2For ease of explanation, we only consider composition of two components, but the reasoning principles
presented here extend easily to any number of components.
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rule presented earlier and the fact ` T1 : ϕB1 (choose ϕ1 = ϕB1 and ϕ2 = true in the rule),
whereas the global reasoning step is unchanged. Thus, by factoring proofs into proofs of
local properties followed by reasoning from domain-specific assumptions about the system,
we obtain fully compositional proofs of security.

Reasoning from Interfaces Our interface-based model is useful in justifying domain-
specific assumptions made in the global reasoning step described earlier. Because we assume
that all threads in a system are confined to a stipulated set of interfaces, any invariant 3 that
every interface in the set preserves can be treated as a domain-specific assumption. Formally,
if we can prove that a component T (possibly composed of several other components)
satisfies property ϕ under the domain-specific assumption ϕA, written ϕA ` T : ϕ, and we
can prove that all allowed interfaces IA preserve ϕA, written `IA ϕA, then T satisfies ϕ.
This is captured in the following rule:

`IA ϕA ϕA ` T : ϕ

` T : ϕ

In summary, from the perspective of composition, the following style of proofs is beneficial:
(1) Local reasoning: prove local properties of known threads by analysis of their programs,
(2) Analysis of interfaces: prove invariants about the system by analysis of the interfaces
available to threads (3) Global reasoning: combine the two by logical deduction to complete
the proof. Any such proof is compositional — it is correct irrespective of what other
components (possibly adversarial) exist, provided that the other components are confined
to the interfaces considered in step (2).

We briefly discuss a published analysis of the widely deployed Trusted Computing tech-
nology using this method [5], and the consequent discovery of a real incompatibility between
an existing standard protocol for attesting the integrity of the software stack to a remote
party and a newly added hardware instruction. Machines with trusted computing abili-
ties include a special, tamper-proof hardware called the Trusted Platform Module or TPM,
which contains protected append-only registers to store measurements (hashes) of programs
loaded into memory and a dedicated co-processor to sign the contents of the registers with a
unique hardware-protected key. The protocol in question, called Static Root of Trust Mea-
surement (SRTM), uses this hardware to establish the integrity of the software stack on a
machine to a trusted remote third-party. The protocol works by requiring each program
to store, in the protected registers, the hash of any program it loads. The hash of the first
program loaded into memory, usually the boot loader, is stored in the protected registers
by the booting firmware, usually the BIOS. The integrity of the software stack of a machine
following this protocol can be proved to a third party by asking the co-processor to sign the
contents of the protected registers with the hardware-protected key, and sending the signed
hashes of loaded programs to the third party. The third-party can compare the hashes to
known ones, thus validating the integrity of the software stack.

3Intuitively, an invariant is a property that holds throughout the execution of a system.
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Note that the SRTM protocol is correct only if software that has not already been
measured cannot append to the protected registers. Indeed, this invariant was true in the
hardware prescribed by the initial Trusted Computing standard and, hence, this protocol
was secure then. However, a new instruction, called latelaunch, added to the standard in
a later extension allows an unmeasured program to be started with full access to the TPM.
This violates the necessary invariant, and results in an actual attack on the SRTM protocol:
A program invoked with latelaunch may add hashes of arbitrary programs to the protected
registers without actually loading them. Since the program is not measured the remote-
third party obtaining the signed measurements will never detect its presence. An analysis of
the protocol using the method outlined here easily discovered this incompatibility between
the SRTM protocol and the latelaunch instruction. In the analysis, the TPM instruction-
set, including latelaunch, were modeled as interfaces available to programs. The invariant
can be established for all interfaces except latelaunch, thus leading to failure of a proof of
correctness of SRTM with latelaunch, and to discovery of the actual attack.

4.2 Composition Principle 2

Although the structure of proofs presented above is very general, it does not suffice for
proving inductive security properties, i.e., properties which hold at a point of time if and
only if they have held at all prior points of time. Consider the following two examples:

- A file system whose access control mechanism includes a special permission admin

which allows a user to modify permissions for other users. Suppose that, initially,
only Alice and Bob have admin permission, and that the programs run by Alice and
Bob never provide the admin permission to anyone. The property of interest is: no
principal besides Alice or Bob ever has the admin permission.

- An operating system kernel mechanism that stores page tables in a protected area
of memory. Initially, the page tables map all virtual addresses to physical addresses
outside the protected area. The property of interest is: the page tables never map
any virtual address into the protected area.

In both cases, there are data structures (access control list in the first case, and page tables
in the second) that protect themselves from modification. In both cases, the proof that
the respective property holds at a particular point of time relies on the property having
been true at all points in the past. We may prove the first example as follows: if its
property does not hold at time t, then someone other than Alice or Bob must have added
the admin permission for someone other than Alice or Bob before time t. So the former
principal also had admin permission at that earlier time, hence the property did not hold
then either. A similar argument applies to the second example. Formally, these proofs
proceed by induction over traces. The question is: can we structure these inductive proofs
so that they are compositional, i.e. they are valid regardless of what other components
execute simultaneously?

Fortunately, such inductive proofs can be made compositional by combining ideas from
the previous section with a well-understood style of proofs called rely-guarantee reasoning [9,
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11]. Suppose we wish to prove that property ϕ holds at all times. First, we identify
a set S = {T1, . . . , Tn} of trusted threads relevant to the property and local properties
ψT1, . . . , ψTn of these threads, satisfying the following conditions:

1. If ϕ holds at all time points strictly before any given time point, then each of
ψT1, . . . , ψTn holds at the given time point

2. If ϕ does not hold at any time, then at least one of ψT1, . . . , ψTn must have been
violated strictly before that time.

The rely-guarantee principle states that under these conditions, if ϕ holds initially, then
ϕ holds forever. We illustrate the technique by using it to prove the property ϕ of the
first example above. We choose S to be the set of all threads in the system and ψT (for
a thread T ) to be the property that the thread T does not add the admin permission for
anyone. Then, (1) follows for Alice and Bob’s threads because they do not give the admin

permission to anyone and for other threads because in order to change the permissions,
they must have the admin permission i.e., ϕ must be previously violated, which is ruled
out by the assumption in (1). (2) is the statement that if someone other than Alice or
Bob has an admin permission, then some thread must have added that permission. This
follows from an (obvious) domain-specific assumption that permissions cannot change on
their own. Thus, the rely-guarantee principle implies that ϕ holds forever, as required. The
important observation here is that this proof is completely compositional. (1) proves local
properties, which are compositional as discussed previously. (2) is trivially compositional
because all components must adhere to it. Consequently, the proof is valid irrespective of
what threads execute in the system besides Alice and Bob’s.

In general, any proof produced using this technique is compositional. Further, this
reasoning method is compatible with reasoning about interfaces described earlier; in proving
either (1) or (2) we may assume invariants that are satisfied by all interfaces available to
programs in the system.

Another application of the rely-guarantee technique, different from verification of self-
protecting data structures, is in proofs of secrecy of keys generated in network protocols. We
explain one instance here — proving that the so called authentication key (AKey) generated
during the Kerberos V protocol becomes known only to three protocol participants [8]: the
client authenticated by the key; the Kerberos Authentication Server (KAS) that generates
the key; and the Ticket Granting Server (TGS) to whom the key authenticates the client. At
the center of this proof is the property that whenever any of these three participants send out
the AKey onto the (unprotected) network, it is encrypted with other secure keys. Proving
this property requires induction because, as part of the protocol, the client blindly forwards
an incoming message to the TGS. Consequently, the fact that the client’s outgoing message
does not contain the unencrypted AKey relies on the fact that the incoming message does
not contain the unencrypted AKey in it. The latter follows from the inductive hypothesis
that any network adversary could not have had the unencrypted AKey to send it to the
client.
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Formally, the rely-guarantee framework is instantiated by choosing ϕ to be the property
that any message sent out on the network does not contain the unencrypted AKey. ψT ,
for threads T of the client, KAS, and the TGS, is the property that the respective threads
do not send out the AKey unencrypted. Then, the proof of property (2) is trivial, and
property (1) follows from an analysis of the programs of the client, the KAS, and the TGS.
The first of these, as mentioned earlier, uses the assumption that ϕ holds at all points in
the past. Note that the three programs are analyzed individually, even though the secrecy
property relies on the interactions between them.

4.3 Summary

Generality Both composition principles described above are quite general. Generality
of the first principle has been demonstrated by successfully proving authentication prop-
erties of network protocols [4] and integrity properties of trusted computing platforms [5].
The second principle has been applied to compositionally prove integrity properties of self-
protecting data structures [8] and secrecy properties of network protocols [8, 13].

Predicting Attack Resistance Our model of interfaces can be used to predict whether
or not a system has a security property, given that it exposes certain interfaces to adver-
saries: If we assume only the invariant ϕA in proving a security property ϕ, then the system
is secure provided that all interfaces it exposes maintain this invariant. This interface invari-
ant thus abstractly characterizes a class of attacks that are ineffective against the system:
any specific attack that does not break the invariant will not break the security property.
Dually, if even one interface does not maintain this invariant, then there is a potential attack
on the system. Of course, the attack may not be real because the assumption ϕA may not
be essential to the proof (there may be another proof without the assumption), but such a
failure may be used as a red-flag during system design.

Explaining System Vulnerabilities A failure to complete an expected proof step may
help explain why a specific system does not satisfy a security property. For example, missing
checks in interfaces could result in failure to prove invariants that are necessary for proving
the security property. There are many examples of such interface-level vulnerabilities. One
concrete example of such a vulnerability in a security hypervisor is reported in a recent
paper [7]. Another common source of attacks observed in practice arises from failure to
consider certain interfaces that are available to the adversary. In this case, by omitting
analysis of some interfaces, one can prove stronger invariants than ones that actually hold
in the system and (incorrectly) use these invariants in proving security properties. One such
example, in the context of trusted computing platforms, was mentioned earlier. Similarly,
vulnerabilities have resulted from a failure to consider the direct memory access (DMA)
write procedure as part of the interface available to the adversary [6].
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5 Conclusion

We have presented an outline of a theory of compositional security. There are several direc-
tions for further work on this topic. First, automating the compositional reasoning principles
we presented is an open problem. Rely-guarantee reasoning principles have already been
automated for functional verification of realistic systems. We expect that progress can be
made on this problem by building on these prior results. Second, there is a strong need
to develop and standardize domain-specific adversary models for system security. While
there is existing work on such models in some domains, e.g., network protocols and trusted
computing platforms, we have not yet arrived at a similar level of understanding in other
important domains, such as the web platform. Finally, it is important to extend the com-
positional reasoning principles presented here to support analysis of more refined models
that consider, for example, features of implementation languages such as C.
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