
Pacer: Comprehensive Network Side-Channel Mitigation in the Cloud

Aastha Mehta1,2, Mohamed Alzayat1, Roberta De Viti1, Björn B. Brandenburg1, Peter Druschel1, and
Deepak Garg1

1Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus
2University of British Columbia (UBC)

Abstract
Network side channels (NSCs) leak secrets through packet
timing and packet sizes. They are of particular concern in
public IaaS Clouds, where any tenant may be able to colocate
and indirectly observe a victim’s traffic shape. We present
Pacer, the first system that eliminates NSC leaks in public
IaaS Clouds end-to-end. It builds on the principled technique
of shaping guest traffic outside the guest to make the traf-
fic shape independent of secrets by design. However, Pacer
also addresses important concerns that have not been consid-
ered in prior work—it prevents internal side-channel leaks
from affecting reshaped traffic, and it respects network flow
control, congestion control and loss recovery signals. Pacer
is implemented as a paravirtualizing extension to the host
hypervisor, requiring modest changes to the hypervisor and
the guest kernel, and only optional, minimal changes to ap-
plications. We present Pacer’s key abstraction of a cloaked
tunnel, describe its design and implementation, prove the secu-
rity of important design aspects through a formal model, and
show through an experimental evaluation that Pacer imposes
moderate overheads on bandwidth, client latency, and server
throughput, while thwarting attacks based on state-of-the-art
CNN classifiers.

1 Introduction

Sharing resources is in the very nature of public Clouds. How-
ever, many side-channel leaks arise when mutually distrust-
ing parties share hardware resources. Shared CPUs, cores,
caches, and memory buses have all been exploited as side
channels [25, 32, 43, 53, 59, 77–79]. As a result, side-channel
leaks in Cloud environments are a growing concern for com-
puter security research.

In this paper, we revisit a specific class of side-channel
leaks—those arising from shared network elements—in the
specific setting of public IaaS Clouds. These channels, called
network side channels (NSCs), leak information via traffic
shape (packet timing and packet size) even when packet pay-
loads are encrypted. We argue below that such leaks ought

to be a serious concern in public Clouds. We then describe
key requirements for a practical, comprehensive defense that
mitigates NSCs in public Clouds. Despite decades of work on
mitigating NSCs, these requirements have not received much
attention. We present Pacer, a new system that satisfies all the
requirements and effectively mitigates NSCs in IaaS Clouds.

NSCs are a serious concern in Clouds. Prior work has
shown that traffic shape is strongly correlated with secrets
in many applications – traffic shape can reveal sensitive in-
formation about webpages [15, 17, 21, 26, 28, 29, 42, 63, 70],
video streams [58], VoIP chats [73], users’ keystrokes [62],
and even private keys [11, 12]. Chen et al. [16] demonstrate
that users’ medical conditions, family income, and invest-
ments can be gleaned from the encrypted traffic of healthcare,
taxation, investment, and web search services provided as
software-as-a-service (SaaS) offerings.

While many of these attacks relied on direct access to the
victim’s traffic, more recent work has shown that an unpriv-
ileged adversary can also indirectly infer the victim’s traf-
fic shape by inducing contention with the victim’s traffic
at a shared network element and measuring resulting varia-
tions in the adversary’s own traffic shape [6, 56, 58]. In fact,
we were able to create such an indirect attack to recognize
streamed videos with 96% accuracy using a CNN classifier
(§A). Such indirect attacks are of particular concern in public
(IaaS) Clouds as adversaries can rent virtual machines (VMs)
and even colocate with a victim’s VM at low cost [30, 31, 56].
Hence, NSCs should be a significant concern for security
researchers, Cloud tenants and Cloud providers alike.

Requirements for mitigating NSCs. Any comprehensive
mitigation of NSC attacks in an IaaS Cloud must satisfy the
following requirements. R1. The mitigation must prevent
leaks through all aspects of the shape of transmitted traf-
fic, with provable guarantees. R2. In line with basic Cloud
philosophy, the mitigation must allow for elastic (dynami-
cally adaptive) sharing of network resources. R3. Although
some overhead for mitigating a threat as strong as NSCs is
unavoidable, the mitigation should still permit responsive,

client-facing services and not require excessive resources.
R4. The mitigation should work with any guest VM and ac-
commodate bursty network traffic, with minimal application
changes. In other words, the mitigation should be general.

These requirements rule out many NSC mitigation tech-
niques, specifically those that prevent leaks via either packet
timing or packet size but not both (violates R1) [60,74,76], do
not handle bursty traffic (violates R4) [21, 74], rely on multi-
path routing [20] or adding “best-effort” noise without strong
guarantees (violates R1) [36,47], hard, static bandwidth reser-
vation for tenants including TDMA (violates R2) [68], or
application code rewriting (violates R4) [47].

A general approach that can meet these requirements is to
change the shape the traffic in a dedicated system component
outside the application to make it independent of secrets. The
final shape can be learnt by the shaping component adap-
tively [7, 46], or the application can provide it to the shaping
component [13, 71]. Although this approach has been consid-
ered in prior work, the Cloud setting and the public Internet
have additional practical requirements that have not been con-
sidered in prior work: R5. The traffic-shaping logic must
take flow control and loss recovery of the network protocol
into account (else information may leak via the presence of
ACKs in the reverse direction), and it must respect network
congestion signals (else it could destabilize the network). R6.
The traffic-shaping component must be integrated with Cloud
servers—as opposed to routers or middleboxes—to prevent
colocated attacker from exploiting contention on servers’ net-
work interface (NIC). Consequently, the shaping component
must be performance-isolated from secret-carrying Cloud ten-
ants to prevent internal side-channel leaks within the server
from affecting the reshaped traffic. To the best of our knowl-
edge, no prior work on NSC mitigation satisfies all of R1–R6.

Our contribution: Pacer. The requirements R1–R6 pose
significant design and engineering challenges for a secure and
practical NSC mitigation solution. To our knowledge, Pacer
is the first end-to-end system that mitigates NSCs compre-
hensively addressing all requirements. Pacer’s contribution is
twofold: a novel cloaked tunnel abstraction that shapes traf-
fic between two guests on different hosts end-to-end, and a
realization of this abstraction for IaaS Clouds.

Briefly, a cloaked tunnel shapes application traffic to prov-
ably make it independent of secrets at the traffic’s origin (R1).
This eliminates NSC’s by design. The tunnel multiplexes mul-
tiple flows at fine granularity (R2). The tunnel works with all
IaaS VMs and unmodified applications, although, to improve
efficiency, applications may optionally interact with the tun-
nel to specify which traffic shapes should be used on their
flows to improve efficiency (R3); this requires only small
changes to applications (R4). (The tunnel is secure as long as
applications pick shapes independent of secrets.) Finally, by
design, the tunnel is isolated from guest applications (R6) and
it takes network congestion, flow control, and loss recovery
into account when shaping traffic (R5). The cloaked tunnel

described above is a general abstraction that mitigates NSC
leaks in any setting, not just Clouds.

In addition, Pacer implements a paravirtualized instance of
the cloaked tunnel integrated with IaaS Cloud servers. Pacer
relies on a hypervisor component, called HyPace, and a guest
kernel module, called GPace, which interacts with HyPace
to facilitate congestion management, loss recovery, and flow
control during shaping (R5). HyPace and GPace implement
a novel masking mechanism to ensure timely packet trans-
mission independent of guest delays, thus achieving perfor-
mance isolation from the guests (R6). Furthermore, HyPace
implements a secure batching mechanism to amortize the
high costs of masking and sustain ~7.6 Gbps line rate (R3).
An experimental evaluation of our prototype on two IaaS
applications—a medical information site and a video stream-
ing service—shows that Pacer defeats powerful NSCs with
moderate overhead.

Organization. We present the threat model, design chal-
lenges, and key ideas behind Pacer in §2. We describe the
general cloaked tunnel abstraction, define its requirements and
properties, and argue its security in §3. We describe Pacer’s
implementation of a paravirtualized instance of the tunnel in
IaaS Cloud servers in §4. We discuss generation of efficient
transmit schedules for traffic shaping in §5. We present our
implementation and empirical evaluation of Pacer’s perfor-
mance overheads and security in §6. We discuss related work
in §7 and conclude in §8. Additionally, we present NSC at-
tacks under various setups in §A and a detailed evaluation of
the security of Pacer’s masking mechanism in §B. Finally, we
build an abstract formal model capturing relevant aspects of
Pacer’s design and prove its security in §C.

2 Overview

As a running example, we use the scenario of a patient who
consults a trusted, Cloud-hosted medical website MedWeb
for diagnostic and therapy options, medical procedures, and
care providers in their area. The patient wishes to keep their
condition from employers, health insurers, and other parties
for fear of discrimination. We show how Pacer can ensure
the patient’s privacy by hiding the content they retrieve from
colocated tenants and other network observers, with mini-
mal modifications to MedWeb, and with modest overhead in
network bandwidth and response time.

2.1 Threat model

The victim in the public IaaS Cloud is a tenant executing ar-
bitrary computations in one or more guest VMs, and serving
a set of trusted clients that connect to its VMs using IPSec
or a VPN (virtual private network) with pre-shared key au-

2

Figure 1: The adversary can (a) colocate with victim’s VM or
backend services in the Cloud, (b) control clients of its own
VMs, and (c) use cross-traffic between any pair of these to
infer the shape of the victim’s traffic at shared network links.

thentication1. The MedWeb site, for instance, authenticates its
registered clients using IPSec-PSK2. To serve a client request,
the victim may invoke other Cloud backend services hosted
on separate physical servers. The victim’s goal is to protect its
secrets; these secrets can be reflected in parameters of client
requests (e.g., the name of a requested file), in the victim’s
internal state (e.g., which request handlers are cache-hot be-
cause they were recently accessed), or in the backend traffic.

Pacer’s goal includes preventing NSC leaks of the victim’s
secrets to anyone able to rent other VMs in the Cloud. Prior
work has shown that deliberate colocation with a victim VM
is feasible [30, 31, 56]. Accordingly, we assume a strong ad-
versary that may colocate its VMs with the victim’s VM and
indirectly infer the shape of the victim’s outbound traffic by
observing contention with its own cross-traffic. The adversary
may use this method to infer the traffic shape of the victim
at shared network elements in the common server, rack or
datacenter3. The adversary has access to all services available
to IaaS guests, including the ability to time the transmission
and reception of its own network packets with high precision.
The adversary controls network clients, which communicate
with its VMs via the network. However, the adversary cannot
break standard cryptography, break into the victim’s VPN,
impersonate/compromise the victim’s clients, or connect to
the instances of backend services used by the victim. While
not the primary goal of our work, Pacer’s design also protects
against powerful adversaries who can directly observe the vic-
tim’s traffic as well as delay, drop, and inject network packets
(e.g., ISPs). Figure 1 summarizes Pacer’s threat model.

Non-goals. Pacer addresses NSCs; we assume that micro-
architectural side-channel leaks are mitigated by renting an
entire server socket and the associated NUMA domain to the

1Guests may require a second level of authentication to separate clients’
privileges, but this is not relevant for Pacer’s security.

2Pacer requires IPSec-PSK as the timing of the tenant’s response to
an unauthenticated client’s connection attempt may be affected by tenant’s
concurrent processing of other clients’ secrets, thus revealing these secrets.

3Prior work has shown that traffic shape can be inferred through such
methods by an adversary colocated on the same physical machine as well as
an adversary contending on a downstream network link [58]. Thus, renting
dedicated physical machines is insufficient to mitigate NSCs.

victim for exclusive use. Alternatively, Pacer can be com-
bined with complementary work to mitigate side-channel
leaks through other shared resources [10, 66]. The Cloud
platform and provider are trusted.

Our focus is on protecting secrets within the content pro-
vided by a server. Hiding the identity of the service re-
quested [21,28,29], the communication protocol used [22,75],
or the IP address [64] of the client are non-goals. Pacer can
be combined with other techniques to address them. In our
running example of MedWeb, the patient wishes to hide what
specific disease, procedures and care facilities (s)he is inter-
ested in, not that (s)he is accessing a medical site and video
service—most people do occasionally. Note also that hiding
the patient’s IP address alone (e.g., using Tor or a VPN) would
be insufficient, because aspects of the content retrieved, e.g.,
the geographic location of care facilities the client retrieves,
can reveal the patient’s identity.
Prototype assumptions. Pacer’s prototype additionally as-
sumes that clients’ request traffic reveals no secrets through
its shape (its length, number of packets, or timing). In partic-
ular, the time of requests does not depend on any secrets or
the actual completion times of previous responses. However,
Pacer’s design can support bidirectional traffic shaping, triv-
ially by running the Pacer-enabled hypervisor and kernel, or
a kernel with all of Pacer’s functionalities on the client side.

2.2 Key ideas
Pacer avoids NSCs by ensuring the shape of the vic-
tim’s network traffic is secret-independent. Ensuring secret-
independence requires that: (i) The choice of traffic shape
must not reveal secrets. For instance, if a constant rate of
one 1.5kB packet per millisecond for 10 seconds is chosen to
transmit a particular video, then this choice must not be spe-
cific to the video. (ii) If the actual packet transmission times
deviate from the chosen shape, the deviations must not reflect
application secrets. In our example, if the actual transmission
time of a packet deviates from its precise expected time based
on the rate, then this deviation must not reflect the CPU and
memory consumption of the concurrent video processing in a
way that may identify the video.
Secret-independent traffic shapes. A strawman secure
shaping strategy is to continuously transmit fixed-size packets
at fixed intervals independent of the application’s actual work-
load; in the absence of application payload, dummy packets
are transmitted. However, this strategy is highly inefficient
when the application workload is bursty. Pacer instead allows
the shape to vary as long as the variations do not depend on
secrets. Specifically, if a guest can partition its workload into
classes based on public information, Pacer permits the use of
a different, efficient traffic shape in each class. Returning to
our example, suppose MedWeb streams videos about medical
procedures in different resolutions. Then, the shape used to
stream a video can vary by resolution, which only reveals

3

the patient’s available bandwidth but not the specific medical
procedure being watched.

Gray-box profiling. Secret-independent traffic shaping re-
quires understanding how a guest’s secrets affect its network
traffic. This information can be obtained by black-box profil-
ing of guests, but this approach cannot reliably discover all
dependencies and therefore is not secure. Program analysis,
which could discover all dependencies in principle, does not
scale well. Pacer instead relies on gray-box profiling, which
requires no knowledge of a guest’s internals beyond a traffic
indicator provided by the guest. This indicator partitions the
guest’s possible network interactions independent of secrets,
and can be used to profile the guest’s network interactions
and generate a transmit schedule for each partition (§5).

Paravirtualized cloaked tunnel support. To enforce traffic
shapes, Pacer provides paravirtualized hypervisor support that
enables guests to implement a cloaked network tunnel, while
adding only a modest amount of code to the hypervisor. A
performance-isolated shaping component in the hypervisor,
called HyPace, initiates transmissions based on a schedule.
A guest kernel module, GPace, shares state with HyPace for
schedule installation and adaptation based on network conges-
tion, loss recovery, and flow control. HyPace’s and GPace’s
execution can experience interference from the guest due to
side channels, so Pacer uses a novel idea—it masks any execu-
tion delays in HyPace and GPace that could influence actual
packet transmission times (R6).

3 Cloaked tunnel

In this section, we describe an idealized realization of the
cloaked tunnel abstraction and security properties, indepen-
dent of a specific application setting, implementation, or place-
ment of tunnel entry and exits.

We begin with a discussion of three high-level properties re-
quired in a practical, secure cloaked tunnel. These properties
mirror the requirements R1, R5, and R6 from §1. P1. Secret-
independent traffic shape: Requires that transmissions follow
a schedule that does not depend on secrets (R1), and that
actual transmissions within a schedule are not delayed by
potentially secret-dependent computations (R6). P2. Unob-
servable payload traffic: The traffic shape must not reveal,
directly or indirectly, an application’s actual time and rate of
payload generation and consumption. This implies that flow
control must not affect the traffic shape (R5); that padded con-
tent must elicit the same response (e.g., ACKs) from receivers
as payload data; and that packet encryption must encompass
the padding. This in turn requires that padding be added at or
above the transport layer, while encryption be done below the
transport layer. P3. Congestion control: The tunnel must react
to network congestion (R5). Congestion control is needed for
network stability and fairness, but does not reveal secrets since
it reacts to network conditions, which themselves depend only

Figure 2: Cloaked tunnel (one endpoint)

on shaped and third-party traffic.

3.1 Idealized tunnel design
Figure 2 shows the cloaked tunnel’s architecture. The tunnel
protocol stack runs on both tunnel endpoints. (Only one of
two symmetric endpoints is shown in the figure.) The stack
consists of a shaping layer on top of a modified transport layer
(e.g., TCP) on top of the encryption layer, e.g. IPSec. These
layers rest on conventional IP and link layers. Each tunnel is
associated with a flow identified by a 5-tuple of source and
destination IP addresses and ports, and the transport protocol.4

The shaping layer initiates transmissions according to a
schedule and pads packets to a uniform size. It interacts with
applications via a set of shared, lock-free queues. The layer
takes application data from a per-flow outbound queue and
transmits it in the tunnel. It places incoming data from the
tunnel into a per-flow inbound queue. Finally, it receives traf-
fic indicators and per-flow cryptographic keys (to be used by
the encryption layer) via a per-application command queue.

Overall, the shaping layer shapes each flow separately, and
then multiplexes the shaped traffic of all flows onto the same
physical links at the granularity of packets (R2 of §1).

A user-level gray-box profiler, ProfPace, analyzes time-
stamps and traffic indicators collected by the tunnel, and gener-
ates and stores transmit schedules in a schedule database (§5).

Assumptions. The tunnel design presented here relies on
some idealized assumptions, which are relaxed in the practi-
cal design of §4. To ensure that packet transmissions are not
delayed by secret-dependent contributions (property P1), the
design assumes that processing delays in the tunnel network
stack are not influenced by secrets, even indirectly. This re-
quires that: (i) the tunnel’s layers—especially the shaping,
transport, and encryption layers, which operate on cleartext
data—execute in constant time, i.e., they avoid data-dependent
control flow and memory access patterns; and (ii) the execu-
tion of the tunnel network stack is performance-isolated from
the application and any other computation.

Outbound data processing. A timestamp is taken whenever
data is queued by the application; these timestamps and the

4We describe the tunnel in terms of TCP; however, another stack like
QUIC [37] can also be used.

4

recorded traffic indicators are shared with the gray-box pro-
filer. The shaping layer retrieves a chunk of available data
from the flow’s outbound queue whenever a transmission is
due on a flow according to the active schedule (if any) and
TCP’s congestion window is open (see transport layer below).
The layer removes a number of bytes that is the minimum
of (i) the available bytes in the queue, (ii) the receiver’s flow
control window (see transport layer below), and (iii) M, the
network’s maximal transfer unit (MTU) minus the size of all
headers in the stack. If fewer than M bytes (possibly zero)
were retrieved from the queue due to payload unavailability
or flow control, the shaping layer pads the chunk to M bytes.
It adds a header to indicate the amount of padding added.

Transport layer. The transport layer operates as normal, ex-
cept for two tunnel-related modifications to satisfy R5: (i)
When the congestion window closes, the transport layer sig-
nals the shaping layer to suspend the flow’s transmit sched-
ule until the window reopens. Schedule suspension ensures
network stability and TCP-friendliness, and does not leak in-
formation because it depends only on network conditions,
which are visible to the adversary anyway. (ii) Flow control
is modified to make it unobservable to the adversary. The
transport layer signals to the shaping layer the size of the flow
control window advertised by the receiver. This window con-
trols how much payload data is included in packets generated
by the shaping layer (see outbound data processing above).
The transport layer transmits packets irrespective of the flow
control window, sending dummy packets while the window
is closed, which are discarded at the tunnel’s other end.

The transport layer passes outbound packets to the encryp-
tion layer, which adds a message authentication code (MAC)
keyed with the flow’s key to a header and encrypts the packet
with the flow’s key. Finally, encrypted packets are passed to
the IP layer, where they are processed as normal down the
remaining stack and transmitted by the NIC.

Inbound packet processing. Packets arriving from the tun-
nel are timestamped; the stamps are shared with the profiler.
Packets pass through the layers in reverse order, causing TCP
to potentially send ACKs. The encryption layer decrypts and
discards packets with an incorrect MAC. The shaping layer
strips padding and places the remaining payload bytes (if any)
into the inbound queue shared with the application.

Schedule installation. A transmit schedule must be installed
on a flow before data can be sent via the tunnel. A schedule
is associated with each flow’s 5-tuple f and a traffic id sid,
and can be of two types: default and custom. A default sid
maps to a default schedule that is installed when the flow is
created. This schedule acts as a template, which is instantiated
automatically by the shaping layer whenever a packet arrives
that indicates the start of a new network exchange (e.g., a
GET request on a persistent HTTP connection), identified by
the TCP PSH flag. The schedule starts at the arrival time of
the packet that causes the schedule’s instantiation.

A default schedule active on a flow can be optionally ex-
tended by a custom schedule in response to an application’s
sid. For instance, a default schedule that allows a TLS hand-
shake might be extended with one that is appropriate for the
response to the first incoming network request. The shaping
layer looks up the schedule associated with sid in the schedule
database and associates it with flow f . Every custom schedule
has a sufficiently large initial delay to allow the schedule to
reach the tunnel endpoint before the first scheduled transmis-
sion, despite any queueing delays. Thus, the precise time of
schedule extension remains unobservable to the adversary.

3.2 Tunnel security

The cloaked tunnel provides the following security property:
The shape of the traffic in the tunnel does not depend on se-
crets. This property holds because our design ensures that
each of the following is either independent of secrets or un-
observable to a network adversary: S1. the chosen transmit
schedules, S2. activations, pauses and resumes of transmit
schedules, S3. timing of updates to active transmit schedules,
S4. deviations from transmit schedules, and S5. transport-
layer responses to transmitted packets.

S1 is secret-independent by assumption on how schedules
are picked. S2 and S5 depend only on public network events
(like congestion signals) by design. S3 cannot be observed
by a network adversary due to the delay at the beginning
of custom schedules. S4 is secret-independent because the
network stack is performance-isolated from the application
so there are no side-channel leaks of secrets into the network
stack, and all processing on cleartext data in the network stack
is constant-time so there are no internal secret-dependent
delays within the network stack.

4 Pacer design

We now describe Pacer, a practical cloaked tunnel design in
the context of a public IaaS Cloud. We first discuss constraints
on the design space in the context of an IaaS Cloud. First, the
tunnel entry must be integrated with the IaaS server. In an
IaaS Cloud, colocated tenants typically share the network link
attached to the server and can therefore indirectly observe
each others’ traffic. Therefore, the tunnel entry must be in the
IaaS server to ensure the attached link lies inside the tunnel.
Second, shaping requires padding, which must be done at
the transport layer to ensure it is unobservable. Third, the
conceptual tunnel design of §3 requires that the network stack
is performance-isolated from secret-dependent computations
and layers that deal with cleartext are constant-time. All guest
computation must be assumed to be secret-dependent in an
IaaS server, suggesting that shaping should be implemented in
the IaaS hypervisor, where it can be executed with dedicated
resources and tightly controlled.

5

Figure 3: Pacer architecture and workflow.

One way to meet these requirements is to place the en-
tire network stack in the hypervisor, performance-isolate it
from guests, and implement it as constant time. However, this
approach has many limitations. First, ensuring performance
isolation for an entire network stack is technically challeng-
ing even in the hypervisor. Second, implementing the tunnel
layers as constant time is not trivial. Third, it defeats NIC
virtualization, such as SR-IOV, and requires guests and their
network peers to use the network stack provided by the IaaS
platform. Lastly, it complicates the hypervisor significantly.

Pacer architecture. Pacer addresses the tension outlined
above using a paravirtualization approach. The responsibili-
ties are divided between the hypervisor and the guest OS such
that (i) the hypervisor can ensure tunnel security with only
weak assumptions about a guest’s rate of progress; (ii) the
performance-isolated hypervisor component is small; (iii) the
guest OS changes are modest. We extend the hypervisor to
provide a small set of functions that allows guests to imple-
ment a cloaked tunnel, while guests retain the flexibility to
use custom network stacks on top of a virtualized NIC.

Figure 3 shows Pacer’s architecture and workflow. Unlike
the strictly layered tunnel stack from §3, Pacer factors out
a small set of functions that inherently require performance-
isolation into the lowest layer, implemented in the IaaS hyper-
visor. The HyPace component plugs into Xen and provides
these functions. The GPace component, a Linux kernel mod-
ule, plugs into the guest OS and the OS of network clients
that interact with the guest. It implements the cloaked tunnel
in cooperation with HyPace.

The guest has direct access to a SR-IOV virtual NIC (vNIC)
configured by the hypervisor, which it uses to receive but not
to transmit packets. When the guest application receives a
request, it sends a traffic indicator to GPace, which shares the
indicator along with the flow’s 5-tuple, TCP sequence number,
congestion window, and crypto key in a per-flow datastruc-
ture to HyPace. HyPace instantiates a transmit schedule based
on the indicator 1 . When the application forwards response
bytes to GPace 2 , GPace splits the payload into MTU-sized
packets with necessary padding, placing them in the per-flow
structure, and timestamps the outgoing packets, sharing the
flow’s traffic profile with ProfPace 3 . GPace also generates
retransmission packets for both payload and dummy packets.

At a scheduled transmit time, HyPace picks a payload packet
or generates a dummy packet, encrypts and adds MACs to
the packet, and places it in the NIC transmission queue 4 .
HyPace initiates NIC transmission after masking potentially
secret-dependent delays in its execution 5 . Additionally, it
adapts the schedules in response to network events (e.g., con-
gestion and retransmission) based on GPace’s signals 6 .

By generating dummy packets subject to congestion con-
trol and independently from the guest network stack, Pacer
requires performance-isolation only for HyPace but not the
guest. Overall, Pacer’s security properties remain equivalent
to those of the conceptual cloaked tunnel design (§3.2), as we
discuss in §4.3.

4.1 HyPace
Similar to the shaping layer in the conceptual tunnel de-
sign, HyPace receives traffic indicators from applications (via
GPace), instantiates template schedules in response to incom-
ing packets (signaled by GPace), and initiates transmissions.
To ensure tunnel security despite potentially secret-dependent
delays in the guest, however, HyPace performs additional
functions and there are differences, which we discuss next.

HyPace implements padding, encryption, congestion con-
trol, and retransmissions in cooperation with the guest. Hy-
Pace pauses a transmit schedule when a flow’s congestion
window closes and resumes the schedule when it reopens.
When a transmission is due on a flow and the congestion win-
dow is open, HyPace checks whether the guest has queued
a payload packet. If not, it generates a dummy packet with
proper padding, transport header, and encryption, using the
next available TCP sequence number and the flow key shared
with the guest. Next, it initiates the transmission of the pay-
load or dummy packet, reduces the congestion window ac-
cordingly, and initiates a retransmission timeout for the packet.
Finally, in case of retransmissions (either due to a timeout on
expected ACKs or due to receiving duplicate ACKs), HyPace
extends the transmit schedule with a slot for every packet
retransmitted by GPace. Unlike the generic tunnel, where
the shaping occurs above the transport layer, this schedule
extension is necessary to enable retransmissions. Note that
extending schedules in response to retransmission events is
secure because retransmissions occur only when there are
packet losses in the network, which are publicly observable.

Interface with guests. HyPace shares a memory region pair-
wise with each guest. This region contains a data structure for
each active flow. The flow structure contains the following
information: the connection 5-tuple associated with the flow;
a sequence of transmit schedule objects; the current TCP se-
quence number and the right edge of the congestion window;
the flow’s encryption key; and, a queue of packets prepared
for transmission by the guest. Each transmit schedule object
contains the sid and a starting timestamp. HyPace and the
guest use lock-free synchronization on data they share.

6

Packet transmission. HyPace transmits packets according
to the active schedule in the packet’s flow. From a security
standpoint, packets need not be transmitted at the exact sched-
uled times; however, any deviation between scheduled and
actual time must not reveal secrets.

On general-purpose server hardware, it is challenging to
initiate packet transmissions such that their timing cannot
be influenced by concurrent, secret-dependent computations.
Using hardware timers, events can be scheduled with cycle
accuracy. However, the activation time and execution time of
a software event handler is influenced by a myriad of factors.
These may include (i) disabled interrupts at the time of the
scheduled event; (ii) the CPU’s microarchitectural, cache, and
write buffer state at the time of the event; (iii) concurrent
bus traffic; (iv) frequency and voltage scaling; and (v) non-
maskable interrupts during the handler execution. Many of
these factors are influenced by the state of concurrent exe-
cutions on the IaaS server and may therefore carry a timing
signal about secrets in those executions.

Masking event handler execution time. HyPace masks
hardware state-dependent delays to make sure they do not
affect the actual time of transmissions. A general approach
is as follows. First, we determine empirically the distribution
of delays between the scheduled time of a transmission and
the time when HyPace’s event handler writes to the NIC’s
doorbell register, which initiates the transmission. We mea-
sure this distribution under diverse concurrent workloads to
get a good estimate of its true maximum and update the es-
timate whenever a new maximum is observed at any time
during a system’s execution. We relax this estimate further
to account for the possibility that we may not have observed
the true maximum and call this resulting delay δxmit . Second,
for a transmission scheduled at time tn, we schedule a timer
event at tn− δxmit . Third, when the event handler is ready
to write to the NIC doorbell register, it spins in a tight loop
reading the CPU’s clock cycle register until tn is reached and
then performs the write. By spinning until tn, HyPace masks
the event handler’s actual execution time, which could be
affected by secrets.

Unfortunately, the measured distribution of event handler
delays has a long tail. We observed that the median and maxi-
mum delay can differ by three orders of magnitude (tens of
nanoseconds to tens of microseconds). This presents a prob-
lem: With the simple masking approach, a single core could
at most initiate one transmission every δxmit seconds, making
it infeasible to achieve the line rate of even a 10Gbps link.
Instead, we rely on batched transmissions.

Batched transmissions. The solution is based on two in-
sights. (i) Our extensive empirical observations indicate that
the instances in the tail of the event handler delay distributions
tend to occur very infrequently and never in short succession5.

5Without the knowledge of Intel CPU internals, it is difficult to determine
the exact cause of the tail latencies, but their frequency suggests that they

As a result, the maximal delay for transmitting n packets in a
single event handler activation does not increase much with
n. Hence, we can amortize the overhead of masking handler
delays over n packets. (ii) Actual transmission times can be de-
layed as long as the delay does not depend on secrets. Hence,
it is safe to batch transmissions.

We divide time into epochs, such that all packet transmis-
sions from an IaaS server scheduled in the same epoch, across
all guests and flows, are transmitted at the end of that epoch.
An event handler is scheduled once per epoch. It prepares all
packets scheduled in the epoch, spins until the batch trans-
mission time, and then initiates the transmission with a single
write to the NIC’s doorbell register.

Let us consider factors that could delay the actual packet
transmission time once the spinning core issues the door-
bell write. Reads were executed before the spin, so the state
of caches plays no role. The write buffer should be empty
after the spin. Interference from concurrent NIC DMA trans-
fers reflects shaped traffic and is therefore secret-independent.
Similarly, any delays in the NIC itself due to concurrent out-
bound or inbound traffic cannot depend on secrets. However,
the doorbell write itself could be delayed by traffic on the
memory bus, PCIe bus, or bus controller/switch.

Hardware interference and NIC support. A remaining
source of delays are concurrent bus transactions caused by
potentially secret-dependent computations. We tried to detect
such delays empirically and have not been able to find clear
evidence of them. Nonetheless, such delays cannot be ruled
out on general-purpose hardware. A principled way to rule
out such interference would require hardware support.

For instance, a scheduled packet transmission function pro-
vided by the NIC would be sufficient. Software would queue
packets for transmission with a future transmission time t.
At time t− δbus, the NIC DMAs packets into onboard stag-
ing buffers in the NIC. Here, δbus would be chosen to be
larger than the maximal possible delay due to bus contention.
At time t, the NIC would initiate the transmission automati-
cally. With such NIC support, HyPace would prepare packets
for transmission as usual, but instead of spinning until tn it
would immediately queue packets with t = tn. Incidentally,
NIC support for timed transmissions is also relevant for traffic
management, and a similar “transmit on time stamp” feature
is already available on modern smart NICs [3]. We plan to
investigate NIC support in future work.

HyPace summary. HyPace is a minimal component im-
plemented in the hypervisor, which is performance-isolated
from the guest and enables guests to implement a cloaked
tunnel. HyPace’s careful design masks any potentially secret-
dependent delays in the (re-)transmission of packets, obviat-
ing the need for a constant-time implementation of any part
of the tunnel’s network stack or a performance-isolated guest
network stack. At the same time, the batched transmission

may be caused by system management interrupts.

7

design amortizes the high cost of masking and helps to sustain
packet transmission throughput close to the NIC’s line rate.

4.2 GPace
GPace is a kernel module that implements a cloaked tunnel
jointly with HyPace6. GPace pads outgoing TCP segments
to MTU size and removes the padding on the receive path. It
modifies Linux’s TCP implementation to share its per-flow
congestion window and sequence number with HyPace, and to
notify HyPace of retransmissions so that HyPace can extend
the active schedule. Furthermore, in case of a retransmis-
sion, GPace starts with retransmitting the first unacknowl-
edged TCP sequence number. If this sequence number is for
a dummy, GPace generates a dummy packet and sends it to
HyPace, which eventually transmits it at a scheduled time.

Note that TCP’s flow control window is not advertised to
HyPace, causing HyPace to send dummies if the receiver’s
flow control window is closed, as required. GPace timestamps
outbound data arriving from applications and inbound packets
from the tunnel in the vNIC interrupt handler. All timestamps
and recorded traffic indicators are used by the profiler (§5).

GPace allows applications to install session keys and pro-
vide traffic indicators on flows via IOCTL calls on network
sockets. Recall that applications specify a flow, a traffic id sid
and a type as arguments when indicating traffic. GPace passes
this information into the per-flow queue shared with HyPace,
which uses the sid as an index to look up the corresponding
transmit schedule in the database.
Packet processing. With GPace, the guest OS generates
TCP segments as usual, but pads them to the MTU size before
passing them to the IP layer7. Instead of queuing packets in
the vNIC’s transmit queue, GPace queues them in per-flow
transmit queues shared with HyPace. The guest OS processes
incoming packets as usual by accepting interrupts and retriev-
ing packets directly from its vNIC.
Schedule (re-)activation delays. Unlike the conceptual tun-
nel design, Pacer processes inbound network packets and TCP
timeouts in the guest, which is not performance-isolated. Thus,
the delay between two causally related network events e1 and
e2 must be made independent of actual processing delays in
the guest, which may otherwise reveal secrets.

There are three relevant causally related pairs of events: 1)
The arrival of the first packet of a request (e1), which triggers
the instantiation of a default schedule with start time equal to
e1’s timestamp, and the subsequent transmission of a packet
(e2) according to the schedule, 2) An incoming ACK (e1)
that either causes a retransmission or opens the congestion
window and triggers the next packet transmission (e2), and 3)
a network event (e1) that sets a timer and subsequently causes
a retransmission when the timer expires (e2).

6On the client-side, GPace terminates the tunnel in the kernel.
7ACKs are not padded as Pacer does not need to hide client traffic shape.

However, ACKs are paced to hide guest’s interference with their transmission.

In each case, GPace uses masking to hide variability in
the processing time between e1 and e2. Let ε be HyPace’s
epoch length, δdelay be the guest OS’s empirical maximum
inbound packet- and timer-processing time, and δ = ε+δdelay.
Then, for (1): GPace requires that the initial response time of
any default schedule be larger than δ; for (2): GPace ensures
that e2 is scheduled no earlier than δ after e1; for (3): GPace
ensures that e2 is scheduled no earlier than δ after the timeout.
These rules make the guest’s actual processing time between
causally related network events unobservable to the adversary.

GPace summary. GPace is a Linux kernel module that imple-
ments both ends of a cloaked tunnel, using the paravirtualized
support from HyPace. It handles padding in payload packets,
shares outgoing packets with HyPace along with per-flow
sequence numbers and congestion window state, signals Hy-
Pace on installation of a new transmit schedule or update of
a transmit schedule, and masks processing delays between
pairs of causally related network events.

4.3 Pacer security
We built an abstract formal model of HyPace, the guest and
the network, covering essential details such as delays due to
internal side channels and HyPace’s schedule replacement.
We formally proved that our design provides the standard,
strong security property of noninterference [61]—adversaries
learn nothing about guest secrets (in an information-theoretic
sense) despite observing traffic shape. The formal model and
the proof are presented in §C.

Here, we provide some intuitive justification of Pacer’s
security. First, Pacer’s threat model rules out side-channel
leaks to other co-located tenants through shared CPU state,
caches, memory bandwidth and shared Cloud back-end ser-
vices. Second, it is impossible to connect to the victim tenant
as a (fake) client and elicit even one response packet because
Pacer requires packet authentication with pre-shared keys and
GPace silently ignores all unauthenticated packets. Third, the
adversary cannot learn secrets by measuring the shape of the
victim’s traffic because, like the cloaked tunnel of §3, Pacer
ensures that the shape of outgoing traffic does not depend
on secrets. This holds because S1–S5 from §3.2 are either
unobservable or independent of secrets for Pacer as well. The
only nontrivial difference is in the secret-independence of S4:
while the cloaked tunnel relies on performance-isolation and
a constant-time implementation of the network stack, Pacer
relies on the empirical delay-masking mechanisms as above.

Among the empirical Pacer parameters, only δxmit and
δdelay are relevant for security; all others like the epoch length
and batch size merely affect performance. If actual delays
exceed these two parameters, the actual runtime of the trans-
mit handler or the inbound packet/timer handlers could be
exposed, which may be correlated with victim secrets.

However, to exploit this vector, a colocated adversary
would have to first find a way to cause a delay in the exe-

8

cution of these handlers beyond what was observed during
Pacer’s systematic training phase for computing the masking
delays. This is difficult because the adversary is unprivileged
relative to handler executions in both the guest kernel and
the hypervisor and, hence, limited in its ability to cause these
handlers to preempt. Second, the adversary would have to
extract the secret from the observed run time. This is difficult
because the adversary does not generally know the nature of
the correlation between the secret and the observed run time.
The adversary cannot rely on statistical inference since it can
observe only a single instance of a parameter violation (Pacer
updates the parameter whenever a new maximum delay is
observed). We discuss the security of Pacer’s masking in §B.

5 Efficient transmission schedules

By default, Pacer can use the same transmit schedule for all of
a guest’s network traffic. This approach does not require any
support from tenant applications and is perfectly secure. In
practice, however, tenants can significantly reduce bandwidth
and latency overhead by using different schedules for differ-
ent partitions of their workload. As long as those partitions
are chosen using public information, no information is leaked.
Here, we discuss how tenants can safely partition their work-
load, and use automatically generated, efficient schedules for
each workload partition.

5.1 Traffic indicators

To use custom schedules, a tenant needs to provide traffic
indicators. These indicators are used by Pacer to instantiate
schedules and, along with other logged information, can be
used by ProfPace to produce transmission schedules automat-
ically (ProfPace is explained later).

In more detail, traffic indicators are integer-valued events
that a guest generates at appropriate points in its execution.
The indicators serve two purposes: (i) They indicate the onset
of a sequence of transmissions of the class corresponding to
the integer sid argument. This information is used by Pacer
to instantiate an appropriate transmission schedule for the
sequence. (ii) They delimit semantically related packet ex-
changes within a network flow, e.g., a client request from the
guest’s corresponding response. The integer sid value of the
indicator identifies the equivalence class of the exchange, e.g.,
a TCP handshake, a TLS handshake, or the workload partition
to which the request and its response belong, such as the video
resolution in case of MedWeb.

Instrumenting guests. Instrumenting guests to provide traf-
fic indicators is straightforward. A guest that responds to
client requests on the network, for instance, simply invokes
an IOCTL call on the network socket before it sends the re-
sponse. A client, on the other hand, calls IOCTL on a new
socket to install a schedule before it sends a request. In §6,

we describe how we instrumented Apache and the PHP ap-
plications we use to provide traffic indicators. Pacer ensures
that the precise timing of the IOCTL call, which could reveal
secrets, is not reflected in the start time of a transmission
schedule. If the schedule is instantiated in response to a net-
work request, then the schedule is anchored at the request’s
arrival time (see §3.1). Otherwise, the schedule is anchored
at a fixed offset from a public event like the top of the hour.

5.2 Choosing workload partitions
The tenant provides a sid value with each indicator, which
identifies the workload partition and enables Pacer to use an
efficient schedule. For performance, the tenant’s choice of sid
values should partition the guest’s network traffic into classes
of similar shape. The lower the variance of shapes in each
class, the less the padding required when a specific network
response is generated, minimizing bandwidth overhead. Re-
turning to video streaming in our running MedWeb example,
there should be a different sid value for every resolution, and
the application should provide this sid for all videos of this
resolution.

For security, it is sufficient that the choice of sid does not
depend on secrets. First, certain network interaction patterns
are well-known and don’t reveal secrets. For instance, a net-
work server’s traffic typically consists of a TCP handshake,
a TLS handshake, and a variable number of requests and
responses on the established connected, followed by a connec-
tion show-down. Using a different sid for each is safe. Second,
the tenant may partition its request-response workload into
equivalence classes, such that the chosen traffic shape reveals
the class but not the specific object requested within a class.
Returning to the MedWeb example, all videos with a given
resolution may be considered a class, for which the same sid
is used and therefore an efficient traffic shape (rate) for that
class. If all videos are available in the same set of resolutions,
then the resolution reveals no information about the content
requested.

A tenant may choose to further partition its workload into
clusters such that the cluster of a requested object is public,
but not the specific object. We discuss clustering heuristics
next.

5.3 Clustering
Consider a guest that serves a corpus of objects with a skewed
size distribution. Using a single schedule for the entire corpus
requires padding every object to the largest one in the corpus,
incurring a large overhead. Suppose now the guest can par-
tition the corpus such that each partition contains objects of
similar size, but revealing the partition of a requested object is
not a secret as would be the case when each partition contains
a sufficient large number of objects. Now, each object can be
padded to the largest object in its cluster, which may reduce

9

overhead significantly without revealing which object within
a partition is being requested.

Determining what clustering is sufficiently private for a
specific content service given its corpus’s size and popularity
distribution is beyond the scope of this paper. We merely high-
light here the large efficiency gains possible when clustering
content with skewed size distributions.

We describe heuristic clustering algorithms for videos and
static HTML documents that minimize overhead subject to a
given privacy need, which is defined in terms of the minimum
number of objects in any cluster.

Video clustering. We cluster videos according to the se-
quence and sizes of their 5s segments using the following
algorithm. Note that dynamically compressed segments dif-
fer in size. Initially, we over-approximate the shape of each
video vi by its maximal segment size smaxi and its number of
segments li. For each distinct video length l and each distinct
maximal segment size s in the entire dataset, we compute
the set of videos that are dominated by 〈l,s〉. A video vi is
dominated by 〈l,s〉 if li ≤ l and smaxi ≤ s.

Let c be a desired minimum cluster size. Our algorithm
works in rounds. In each round, we select every 〈l,s〉 dom-
inating at least c videos, and we choose as a cluster the set
of videos minimizing the average relative padding overhead
per video, i.e., 1

ci
∑

ci
j=1 ∑

li
k=1

(
(sk−sk j)

sk j

)
, where ci is the cardi-

nality of the set of videos, li is the maximal length across all
videos in the set and sk is the maximal size of the kth seg-
ment across all videos in the set (i.e., max1≤ j≤ci(sk j)). The
sequence of segment sizes 〈s1,s2, ...,sli〉 is the ceiling of the
cluster ci. Once a cluster is formed, its videos are ignored for
later rounds. The algorithm stops when all videos are clus-
tered. If the last cluster has less than c videos, it is merged
with the one before it.

Document clustering. Unlike videos, HTML documents
contain a single data object. Therefore the algorithm clusters
based on the single size parameter of documents, and the
largest document in a cluster constitutes the cluster’s ceiling.

More sophisticated clustering algorithms that account for
distinct per-object privacy requirements (popularity) and over-
all privacy requirements are left to future work. We present
overheads of clustering real videos and documents in §6.2.

5.4 ProfPace
The ProfPace gray-box profiler automatically generates a
transmit schedule for each traffic class as follows. GPace
(§4.2) logs the application-provided traffic indicators (§5)
along with the arrival times of incoming packets and the times
at which the guest OS queues packets for transmission, and
shares the logs with ProfPace. ProfPace, a userspace process
in the guest, analyzes these logs to compute transmit sched-
ules. Specifically, ProfPace segregates the logs into network
interaction segments and bins them by different values of

Library Traffic indicator Traffic class
Apache Before listen() TCP handshake
Apache Before accept() SSL handshake
Apache Before last SSL handshake msg HTTP requests
MediaWiki After parsing requested page title Page cluster
Video After parsing video title/segment Video cluster, segment
Video Before connect() to memcache TCP handshake
Video Before get request to memcache request (1 MTU)
Memcache Before listen() TCP handshake
Memcache After parsing video title/segment Video cluster, segment

Table 1: Locations of traffic indicator instrumentation

traffic indicators, sids. The set of observed segments in a bin
are considered samples of the associated equivalence class of
network interactions.

ProfPace characterizes the traffic shape for each class with
a set of random variables: (i) the delay between the first in-
coming packet and the first response packet di, (ii) the delay
between subsequent response packets ds, and (iii) the number
of response packets p. For each equivalence class of network
interactions, the profiler samples the distribution of these ran-
dom variables from the segments in the associated bin.

Finally, ProfPace generates a transmit schedule for sid
based on the sampled distributions of the random variables.
Specifically, it generates a schedule with the 99th percentile
of the initial delay di and the 90th percentile of the spacing
among subsequent packets ds. For the number of packets p,
ProfPace generates the 100th percentile of the number of pack-
ets and further increments this value by a 10%. The choice
of percentiles is determined empirically; the schedules thus
generated incur minimal overheads on the peak throughput of
web services and moderate overheads on the client response
latencies at the cost of a small increase in bandwidth over-
heads.

Note that the choice of transmit schedules is relevant only
for performance, not security. An inadequate schedule could
increase delays and waste network bandwidth due to extra
padding, but cannot leak secrets. For good performance, dur-
ing profiling runs, the guests should sample the space of work-
loads with different values of public and private information,
as well as different guest load levels, so that the resulting
profiles capture the full space of network traffic shapes.

Summary. Pacer enables tenants to optionally partition their
network traffic into public classes, where each class is shaped
differently using custom transmission schedules for efficiency.
To use custom schedules, a tenant merely has to provide
integer-valued traffic indicators at appropriate points in its
execution. The indicators enable Pacer to instantiate efficient
transmission schedules, and enable ProfPace to automatically
generate efficient transmission schedules.

10

Figure 4: Traffic shaping in video service. si
k: kth segment

of ith video. Cl: cluster id of the video with segment si
k. |X |:

length of payload X. πL: padding bytes of length L. tV , tB:
arrival time of incoming request. dCl(k)

V B ,dCl(k)
BV ,dCl(k)

VC : initial
delay for kth segment in cluster Cl. In a local setup, shaping
is done only on the paths shown by solid arrows.

6 Evaluation

We implemented HyPace for Xen and GPace’s Linux kernel
module in 8,100 and ~15K lines of C, respectively. We im-
ported 4,458 lines of AESNI assembly code from OpenSSL
to encrypt packets in HyPace. We implemented ProfPace in
1,800 lines of Python and 1,200 lines of C.

All experiments were performed on Dell PowerEdge R730
servers with Intel Xeon E5-2667, 3.2 GHz, 16 core CPU (two
sockets, 8 cores per socket), 512 GB RAM, and a Broadcom
BCM 57800 10Gbps Ethernet card, which were connected to a
single 10Gbps switch. The NIC was configured to export SR-
IOV vNICs. We disabled hyperthreading, dynamic voltage
and frequency scaling, and power management in the hosts,
which helps to reduce variance in execution time and ensures
consistent, repeatable results across different runs.

We run Xen 4.10.0 hypervisor on each host, which is as-
signed one of the CPU sockets and 40GB RAM. Up to two
cores are configured to execute the HyPace transmit event
handler in parallel; flows are partitioned statically among the
HyPace cores. The guest runs an Ubuntu 16.04 LTS kernel
(version 4.9.5, x86-64) in a VM with 8 cores and 64 GB RAM,
and has access to a vNIC. The VCPUs of the guest VM were
pinned 1-to-1 to cores on the second socket of the host CPU,
and we used Xen’s ‘Null’ scheduler [5] for VM scheduling.
This is in line with our threat model, which assumes that
guests rent dedicated CPU sockets. Network clients run a
modified Ubuntu 16.04 LTS with GPace but no hypervisor.

We used Pacer to demonstrate NSC mitigation in the con-
text of a video streaming service and a medical service. We
use Pacer’s traffic shaping to hide from an adversary the spe-
cific video or medical webpage requested from the respective
service, and we evaluate the overhead incurred on client laten-
cies and server throughput in the process. Both the services
are hosted using Apache HTTP Server 2.4.33. Below, we first
describe the services and then the modifications introduced
in various applications to generate traffic indicators.

Video service. We wrote a custom video streaming server

in PHP, which returns video segments in response to client
requests. We evaluated two setups of the service: (i) local:
with the videos hosted on the local VM disk, and (ii) 2-tier:
with the videos hosted in a memcached (v1.6.9) KVS backend.
In the 2-tier setup, we used one frontend and two replicated
KVSes, each hosted in a VM on a separate server. The fron-
tend randomly selects either KVS replica for serving each
video segment. For each segment request and response, shap-
ing is done only between the client and the video server in
the local setup, while it is done along the entire network path
between the client, the frontend and the KVS selected for the
segment in the 2-tier setup (Figure 4).

Medical service. The medical service is a single-tier appli-
cation based on Mediawiki (v1.27.1) [1]. It stores the content
of the medical pages in a database hosted locally on MySQL
5.7.16 and caches a copy of HTML pages generated from the
content in a local file cache. In our experiment, all HTML
pages are cached. When a client requests a page, Mediawiki
queries the database for the page-specific metadata, retrieves
the HTML page from the cache and returns it to the client.

Table 1 shows the code locations in the guest applications
where we inserted 15 LoC each to generate traffic indicators.
We identified and modified these sites manually; automating
the instrumentation is possible but remains future work. No
other changes were required to guest applications.

Evaluation overview. In the following subsections, we con-
sider (i) microbenchmarks to determine HyPace and GPace
configuration parameters; (ii) the tradeoff between spatial
padding overhead and privacy possible due to Pacer’s cluster-
ing, (iii) Pacer’s impact on client latencies and server through-
put in the context of two guest applications; and (iv) an em-
pirical security evaluation of Pacer’s implementation.

6.1 Microbenchmarks

We empirically select the maximum batch size B (number of
packets to be prepared by a HyPace handler) in a suitable
HyPace epoch length ε, and the parameters δxmit and δdelay
from §4. To this end, we ran multiple, 12-hour experiments
with varying network workloads. We requested 100KB-sized
documents from the document server using concurrent clients.
In background, we ran large matrix multiplications on Xen’s
dom0 VM, which used ~12GB RAM and saturated the CPUs.

To determine δxmit , ε and B, we measured the cost of prepar-
ing batches of packets for transmission in HyPace. Over many
observations in the presence of the background load described
above, we first determined the number of packets that can be
safely prepared with different epoch lengths with a single Hy-
Pace handler. Epochs of length 30µs, 50µs, 100µs and 120µs
could prepare 5, 14, 33 and 42 packets respectively, allowing
HyPace to achieve 22%, 28%, 41% and 42% of the NIC line
rate with one core. We set ε to 120µs for all HyPace handlers.

Based on these results, we run two parallel HyPace handlers

11

(a) YouTube videos (b) Medical dataset

Number of clusters, Min cluster size

R
e
la

ti
v
e
 o

v
e
rh

e
a
d

1,
 a

ll

2,
 2

9

4,
 2

8

9,
 2

7

19
,
26

38
,
25

76
,
24

15
2,

 2
3

30
4,

 2
2

60
9,

 2
1

12
18

,
20

10−4

10−2

100

102

104

1,
 a

ll

3,
 2

11

5,
 2

10

9,
 2

9

18
,
28

31
,
27

45
,
26

53
,
25

64
,
24

73
,
23

88
,
22

10
5,

 2
1

12
7,

 2
0

Max overhead

Avg overhead

Figure 5: Relative padding overhead vs number of clusters
and minimum cluster size for two corpuses representing real-
world file size distributions (log-log scale).

(a) English Wiktionary (b) English Wikipedia

Number of clusters, Min cluster size

R
e
la

ti
v
e
 o

v
e
rh

e
a
d

1,
 a

ll

2,
 2

19

2,
 2

18

3,
 2

17

3,
 2

16

4,
 2

15

5,
 2

14

6,
 2

13

8,
 2

12

11
,
211

13
,
210

10−4

10−2

100

102

104
105

Max overhead

Avg overhead

1,
 a

ll

2,
 2

22

4,
 2

21

8,
 2

20

12
,
219

16
,
218

21
,
217

27
,
216

37
,
215

47
,
214

65
,
213

82
,
212

10
8,

 2
11

14
3,

 2
10

Figure 6: Relative padding overhead vs number of clusters
and minimum cluster size (log-log scale) for (a) English Wik-
tionary and (b) English Wikipedia.

on two separate cores. In this configuration, we repeated our
measurements and chose B = 38 packets and δxmit = 35µs for
each handler. Thus, with two HyPace handlers, Pacer sustains
a line rate of 7.67 Gbps, which is 76.7% of the NIC’s line rate.

δdelay is independent of the number of HyPace threads, and
its average and maximum values observed across all experi-
ment configurations were 3.9ms and 15.8ms, respectively. We
conservatively set δdelay to 20ms.

Note that only δxmit and δdelay are security-relevant param-
eters, which we discuss in detail in §B. Epoch and batch size
only affect performance.

6.2 Spatial padding overhead
We measure the tradeoff between spatial padding overhead
and privacy guarantees when clustering content. The spatial
padding overhead corresponds to the network bandwidth over-
head for Pacer’s traffic shaping.

We clustered two different datasets using algorithms de-
scribed in §5.3: (i) a set of 1218 videos downloaded from
YouTube (240p and 720p bitrate, max duration 4.2hr, median
duration 7min, max size 468.7MB, median size 6.2MB), and
(ii) a set of 6879 MedicineNet [2] medical web pages com-
prising diseases, procedures, medications, and supplements
pages (max size 521.9KB, median size 75.2KB). Figure 5
shows the reduction in the average and maximum padding
overhead with increasing number of clusters and decreasing

Technique cmin n1 avg OH max OH
Power of 2 [13] 1 1 0.512 0.999
Multiple of 100 [14] 1 219 0.001 0.002
Pacer (cmin = 1) 1 37 0.009 0.027
Pacer (cmin = 8) 8 0 0.002 0.989
Pacer (cmin = 2206) 2206 0 1.41 5.17

Table 2: Comparison of privacy and overheads in prior work
and Pacer. cmin: size of the smallest cluster; n1: number of
clusters with a single element generated by each technique.
Pacer’s cmin = 1 is similar to [14] with rounding up to MTU.

minimum cluster size (i.e, the minimum number of objects
in each cluster). Compared to the medical dataset, the over-
head reduction is less for videos due to the multi-dimensional
clustering needed for videos. Nonetheless, even clustering the
corpuses into just two clusters leads to at least two orders of
magnitude reduction in the average padding overhead.

We also compare Pacer’s clustering with other shap-
ing approaches described in the literature. Specifically, CS-
BuFLO [13] and Tamaraw [14] round up each response to
the nearest power of 2 and a multiple of some integer value
(e.g., L = 100 in their paper), respectively. As can be seen
from Table 2, rounding methods may still leave files with
unique sizes in clusters of size 1, rendering the files immedi-
ately identifiable. With Pacer’s clustering, the overheads are
comparable even when generating clusters with more than
2200 files each. We observe similar results with videos. In
fact, the rounding methods of prior work lead to nearly all
the videos in the corpus being in clusters of size 1. Thus,
rounding methods cannot guarantee privacy for all objects in
the corpus, while Pacer’s clustering can be configured based
on desired privacy requirements and bandwidth constraints.

Clustering on larger corpuses. To understand the impact of
padding on larger corpuses, we additionally ran our cluster-
ing algorithm on two wiki corpuses: (i) a 2016 snapshot of
the English Wiktionary corpus (5,027,344 documents, max
521.9KB, median 4.7KB), and (ii) a 2008 snapshot of the En-
glish Wikipedia corpus (14,257,494 documents, max 14.3MB,
median 83.5KB). Note that though Wiktionary pages and
Wikipedia pages are not sensitive and may not need protec-
tion with a system like Pacer in practice, all that matters for
our evaluation are the file sizes and size distributions. The
content is irrelevant as it is encrypted during transmission
anyway. We present the clustering results in Figure 6.

6.3 Macro experiments

Next, we measure the impact of Pacer’s traffic shaping on the
client response latencies and server throughput in the video
service and medical document service. The client request
payload is only a few bytes and, hence, is padded to one MTU
by the GPace in the client’s kernel. Furthermore, the client
is open loop, i.e., it transmits requests to the server at fixed

12

0 20 40 60 80 100 120 140
Segment size [KB]

100

101

102

103

104

M
ax

im
um

 la
te

nc
y

[m
s]

Baseline
Pacer

Figure 7: Download latency for a 10Mbps client

intervals independent of the server’s prior responses. With
Pacer support on clients (see §2.1), the shaping of client traffic
will similarly ensure that request timing does not depend on
the completion time of prior requests.

Video service. We wrote a Python streaming client that simu-
lates a MPEG-DASH player: when a user requests a video, the
client initially fetches six segments (covering 5s of video each)
in succession to fill a local buffer. After reaching 50% of the
initial buffer (rebuffering goal), the player starts consuming
the segments from the buffer. The client fetches subsequent
segments whenever space is available in the buffer. We mea-
sure the impact of traffic shaping on (i) the download latency
for individual video segments, (ii) the initial delay until the
video starts playing, and (iii) the frequency and duration of
any pauses (video skipping) experienced by the player. We use
a corpus of videos 1218 videos downloaded from YouTube
in March 2018, which were clustered into 19 clusters with at
least 64 elements each, yielding an average padding overhead
of 4x. The client sequentially plays four randomly chosen
videos for up to 5 min each.

We ran experiments for a client with high bandwidth
(10Gbps) and with low bandwidth (10Mbps). The baseline
segment download latency is <1ms on average, while the
exact latency depends on the segment size. With Pacer, the
download latency is dominated by the initial response latency
in each segment’s traffic shape at the video server, which is
30ms and 400ms in local and 2-tier setup, respectively. De-
spite these overheads, there is no noticeable impact on the
user experience for using Pacer for either client in either setup.
Initial startup delays, i.e., the delay until a video starts playing,
don’t increase significantly, and there is no video skipping in
any of the experiments. When serving 128 high bandwidth
clients in 2-tier setup, the maximum CPU utilization on the
video server and the KVS increases respectively from 11.76%
to 13.39% and 1.96% to 12.62% with Pacer.

Impact on 10Mbps clients. We also evaluated the effect of
Pacer’s shaping on bandwidth-constrained clients streaming
videos. Here, Pacer’s shaping also provides an opportunity
to use domain knowledge to optimize schedules for better
performance. Downloading the largest segment in our collec-
tion of 240p videos within its 5s deadline requires packets to
be sent at an interval of max 20ms. Conservatively increas-

(a) Trace workload (b) Largest file

Throughput (requests/s)

La
te

n
cy

 (
m

s)

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

101

102

103

9 144 576

1152

1368

1440
10 140 575 1200

1000

Base Static Pacer Pacer-lowlat

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

3

48

192

384 750

900

1152

3

48 192 384 750

3

48 192

300 480

Figure 8: Medical service throughput vs latency

ing the inter-packet spacing in the schedules to even 6ms
allows downloading segments within 5s. However, for the
10Mbps clients, the paced schedule avoids losses and reduces
the segment download latency significantly. Figure 7 shows
the download latency for a 10Mbps client for different seg-
ment sizes in the baseline, and after applying Pacer’s shaping
with 6ms inter-packet spacing. These results are based on the
local setup (§6). This schedule optimization does not affect
security; it only utilizes Pacer to reduce network contention,
a known benefit of traffic shaping.

Medical service. Next, we measured Pacer’s impact on
the throughput and response latency of the medical server.
We use a corpus of static HTML pages downloaded from
MedicineNet, a medical website [2], in August 2020. We
used 3 clusters with at least 2048 elements each, which yields
an average padding overhead of 142.8%. Modified wrk2 [4]
based clients issue HTTPS GET requests for different pages
concurrently and synchronously for 120s. Prior to the mea-
surement, we ran the workload for 10s to warm up caches.

We selected 1,000 files from the 3 clusters in proportion
65%, 30%, and 5%, and used this as a workload trace. Each
client requests files from the trace in a random order. For
comparison, we also stressed the server with requests only to
the largest file in the corpus (521.9KB). Figure 8 shows the
throughput vs average latency for two insecure baselines and
two schedule configurations of Pacer with varying number of
concurrent client requests (denoted by the data point labels).
The error bars show the standard deviations of the average la-
tencies. Base corresponds to the baseline without any shaping,
Static corresponds to a baseline where the HTML pages are
statically padded but the response traffic is not paced, Pacer
and Pacer-lowlat correspond to Pacer with schedules using
the 99th and 80th %ile initial response latency, respectively.

The performance of Static is nearly the same as Base be-
cause the padding added is low for the trace workload and
zero for the largest file, implying that there is not much dif-
ference in the two workloads. Unlike the baseline, Pacer’s
latency remains constant until the maximal throughput, be-
cause latency is determined only by the transmission schedule.
Once the server is at capacity, it fails to serve additional re-
quests and clients time out. With Pacer-lowlat a few requests
(e.g., less than 50 out of 85K) timeout even at lower loads.

13

This is because Pacer-lowlat uses an aggressive schedule that
does not account for the server’s response latencies beyond
the 80th %ile. We ignore these timeouts in the average latency
and throughput measurements.

In the trace workload, Pacer incurs a 14.4% overhead on
peak throughput with response latencies 10x-18x of the base-
line. The figures reflect Pacer’s total overhead, because they
compare to a saturated baseline server. By comparison, Pacer-
lowlat incurs a ~30% overhead on peak throughput with laten-
cies 3x-5x of the baseline. Here, the throughput drops as the
requests that are delayed beyond the 80th percentile latency
timeout. Similar trends are also observed with the large file.
This shows that latencies could be optimized with moderate
additional overheads on response throughput.

The overheads on peak throughput are higher with the large
file. Here, the baseline operates at over 40% of the line rate,
and we believe that Pacer’s performance in this challenging
experiment is limited by the accuracy of transmit schedules,
which can be improved substantially.

Pacer’s costs are in bandwidth, CPUs, and memory. The
bandwidth overhead (§6.2) depends on the application’s data,
workloads and the public inputs chosen for workload parti-
tioning. The bandwidth overhead due to Pacer’s clustering
is comparable to that of prior work while offering stronger
privacy. The CPU cost is in the two cores dedicated to HyPace
(§6.1), and the increase in the guest CPU utilization due to
shaping (§6.3). Pacer requires less than 20MB of additional
main memory in the Xen hypervisor and less than 30MB of
additional memory per HyPace core in each guest that uses
Pacer. Cloud providers would likely charge their tenants for
the added cost of NSC mitigation. In the case of a service
like MedWeb, the tenants (health insurer or provider) would
likely cover the cost from their own customers’ premiums or
subscriptions.

6.4 Security evaluation
Pacer is secure by design, as supported by a formal model and
proof in §C. Nevertheless, as a sanity check and to validate
our prototype implementation, we also empirically evaluated
the security of Pacer’s implementation using a powerful NSC
attack. We streamed 4 videos from a single video cluster 40
times each, and collected the precise timestamps and sizes
of packets transmitted in both directions using tcpdump at
the video client. Thus, we grant the attacker direct access
to the victim’s traffic shape, which makes the attack more
powerful than one launched by a colocated tenant. (However,
as described in §A, the attack is effective even when launched
by a colocated tenant when Pacer is not used.)

For Pacer, we trained a multi-feature CNN classifier us-
ing timeseries labeled with the video id and comprising of
inter-packet intervals and sizes of packets in both directions
between client and the server as the features. For the baseline,
we trained the same classifier with just a single feature—the

timeseries of inter-packet intervals in server’s response pack-
ets. The classifier architecture is similar to that used by Schus-
ter et al. [58, §7.2], except we used a dropout of 0.1 between
the model’s hidden layers and 64 epochs for training.

During classification, the classifier generates the probability
of each label value for a given sample. In the baseline, the
classification probability is more than 99% for each label. In
Pacer, it is close to 25%, i.e., the classifier’s prediction of a
video’s label is no better than a random guess. We repeated
the experiment with other video clusters and obtained similar
results. Thus, we confirm empirically that, as expected, Pacer
eliminates leaks through timing, sizes, and count of packets.

7 Related work

We compare to existing mitigation techniques and discuss
related work with different threat models or goals.

(a) Mitigating NSCs in Clouds. Contention on individual
shared links in a Cloud can be mitigated by time-division
multiple access (TDMA) in a hypervisor [8, 34] as this elimi-
nates the adversary VM’s (and, in fact, every VM’s) ability to
observe a colocated victim’s traffic at that link. However, an
end-to-end mitigation against all network adversaries would
require synchronous TDMA scheduling along the entire path
of a tenant’s traffic, which is inefficient especially when the
payload traffic is bursty [68]. Statistical multiplexing, which
only caps the total amount of data transmitted by a VM in an
epoch, is insecure because the resources available to a flow
depend on the bandwidth utilization of other flows [27].

Another approach restricts the adversary VM’s ability to ob-
serve time [44,48,67]. StopWatch [41] replaces a VM’s clock
with virtual time based only on that VM’s execution. To miti-
gate NSCs, each VM is replicated 3×, the replicas are colo-
cated with different guests, and each interrupt is delivered at
a virtual time that is the median of the 3 times. This prevents
a guest from consistently observing I/O interference with any
colocated tenant. However, it requires a 3× increase in de-
ployed Cloud resources. Deterland [76] also replaces VMs’
real time with virtual time, but it does not address leaks due
to NSCs as it delivers I/O events to VMs without delay. In
contrast, Pacer shapes traffic by padding and pacing packets,
which mitigates all NSCs with far less resource overhead.

Bilal et al. [9] generate multicast traffic to shape the pattern
of queries to different backend nodes in multi-tier stream-
processing applications in a Cloud, but they do not consider
leaks due to packet size and timing.

(b) Traffic shaping to mitigate NSCs. Pacer uses a stan-
dard technique [29, 73] to remove the dependence of packet
size on secrets: it pads all packets to a fixed length. To make
packet timing independent of secrets, a strawman is to send
packets continuously at a fixed rate independent of the actual
workload, inserting dummy packets when no actual packets
exist [57, 62]. This either wastes bandwidth or incurs high

14

latencies when the workload is bursty. BuFLO [21] reduces
this overhead by shaping response traffic to evenly-spaced
bursts of a fixed number of packets for a certain minimum
amount of time after a request starts. However, it leaks the
size of responses that take longer than the minimum time.
Tamaraw [14], CS-BuFLO [13], and DynaFlow [46] pad each
response to some factor of the original size, such as the near-
est power of 2. They offer no control over how many objects
end up with the same traffic shape. In contrast, Pacer supports
flexible traffic shape adaptation without leaking secrets. More-
over, as shown in §6.2, the bandwidth overhead of Pacer’s
clustering is comparable to CS-BuFLO’s and Tamaraw’s.

Walkie-Talkie [71], Supersequence [70], and Glove [50]
cluster responses, and generate a traffic shape for the cluster
that envelopes each response in the cluster. They cluster by
simultaneously considering both packet sizes and timing from
runtime network traces, and compute the shape based on the
traces used in the clusters. Pacer instead first clusters based
on static object sizes, and then computes traffic shapes for
each cluster based on network traces of cluster objects. Pacer
can also support clustering and shaping algorithms proposed
by these systems. Traffic morphing [74] makes sensitive re-
sponses look like non-sensitive responses, but only shapes
packet sizes and ignores packet timing. Pacer shapes all packet
size and timing, and allows precise control over cluster sizes,
thus eliminating all leaks by design.
(c) Predictive mitigation. Predictive mitigation [7, 80] miti-
gates network timing side-channel and covert channel leaks
to an adversary who has compromised or authenticated as a
legitimate client of the victim. Here, the adversary can dis-
tinguish real packets from dummies, so predictive mitigation
cannot avoid a leak when the application fails to produce a
packet in time for a scheduled transmission. In Pacer, the
threat is from an adversary that only observes network traffic
but does not communicate with the victim. Hence, Pacer can
hide application delays by sending dummy packets. Both pre-
dictive mitigation and Pacer partition application workloads
based on public inputs and precompute a traffic shape for
each partition. However, a bad shape leaks information in
predictive mitigation, but only affects performance in Pacer.
(d) Related work with other security goals. Herd [40], Vu-
vuzela [65], Karaoke [38], and Yodel [39] provide metadata
privacy: they prevent information about who is communi-
cating with whom from leaking via NSCs. Pacer’s goal is
different: it prevents sensitive data from leaking via NSC. To
address its goal, in addition to shaping individual packet sizes
and timing, Pacer shapes the lengths of application messages.
Herd [40] and Yodel [39] focus on VoIP calls. Pacer can also
be used to shape VoIP traffic. For instance, uniform pacing
can be used for a maximum duration, which is picked before
the call from a set of allowed durations. Only this maximum
duration, but not the actual duration, will be leaked.

Format-Transforming Encryption (FTE) [22] and Scram-
bleSuit [72] use a tunnel abstraction to modify payload traffic

to bypass a traffic censor’s filters. However, unlike Pacer, they
do not decorrelate the observable traffic shape from secrets.
SkypeMorph [49] circumvents censors that inspect packet
sizes and timing. It samples the inter-packet gap and the
packet size from a fixed distribution, which mimics the distri-
bution of some target protocol that the censor allows. Skype-
Morph shapes traffic, but unlike Pacer it is not designed to en-
sure that the resulting shape does not reveal secret-dependent
variations. Moreover, SkypeMorph transmits traffic continu-
ously at the average transmission rate of the target protocol,
which is inefficient for bursty traffic.

Oblivious computing systems [19, 23, 45] prevent accessed
memory addresses or accessed database keys from depending
on secrets, for which they rely on ORAM techniques. Pacer
addresses the orthogonal problem of making packet size and
timing independent of secrets, and relies on traffic shaping.
Fletcher et al. [24] address timing leaks in ORAM accesses by
pacing ORAM accesses. However, their pacing rate changes
periodically based on the past actual request rate of the pro-
gram, which may be secret-dependent and leak information.

(e) Other work. Some prior work [18, 51, 54] use
performance-isolation techniques for performance predictabil-
ity; Silo [33] implements traffic pacing to improve remote
access latency; and MITTS [81] “shapes” memory traffic
on CPU cores for performance and fairness. The goals and
approaches are different from Pacer’s. Richter et al. [55] pro-
pose to performance-isolate colocated tenants by modifying
the NIC firmware. Pacer’s traffic shaping can be implemented
in NIC to provide strong isolation from the rest of the system
in the face of microarchitectural side channels (§4.1).

8 Conclusions

Pacer is a comprehensive, provably-secure mitigation for NSC
leaks in IaaS Clouds. It reshapes network traffic outside guest
VMs to make packet timing and packet sizes independent
of guest secrets. Pacer integrates with the host hypervisor to
thwart attacks from colocated tenants, relies on paravirtualiza-
tion to respect network flow control, congestion control, and
loss recovery, and uses performance isolation and masking to
nullify the effects of internal timing channels within the host.
Pacer’s end-to-end overheads are moderate.

Acknowledgments

We thank Lorenzo Alvisi, Bobby Bhattacharjee, Keon Jang,
Antoine Kaufmann, Jonathan Mace, and the anonymous re-
viewers for their helpful feedback on earlier versions of this
paper. This work was supported in by part by the European
Research Council (ERC Synergy imPACT 610150) and the
German Science Foundation (DFG CRC 1223).

15

References

[1] MediaWiki. https://www.mediawiki.org/wiki/
MediaWiki_1.27. Accessed 31 Aug 2020.

[2] MedicineNet. https://www.medicinenet.com/
script/main/hp.asp. Last accessed on 16 Sep 2020.

[3] NapaTech SmartNIC, Feature Overview
Data Sheet. https://www.napatech.
com/support/resources/data-sheets/
napatech-smartnic-feature-overview/.

[4] wrk2: A constant throughput, correct latency recording
variant of wrk. https://github.com/giltene/wrk2.

[5] Xen Null scheduler. https://patchwork.kernel.
org/patch/9669405/.

[6] Yatharth Agarwal, Vishnu Murale, Jason Hennessey,
Kyle Hogan, and Mayank Varia. Moving in next door:
Network flooding as a side channel in cloud environ-
ments. In Intl. Conf. on Cryptology and Network Secu-
rity (CANS), 2016.

[7] Aslan Askarov, Danfeng Zhang, and Andrew C Myers.
Predictive black-box mitigation of timing channels. In
ACM Conf. on Computer and Communications Security
(CCS), 2010.

[8] Andrew Beams, Sampath Kannan, and Sebastian Angel.
Packet scheduling with optional client privacy. 2021.

[9] Muhammad Bilal, Hassan Alsibyani, and Marco Canini.
Mitigating Network Side Channel Leakage for Stream
Processing Systems in Trusted Execution Environments.
In ACM Intl. Conf. on Distributed and Event-based Sys-
tems (DEBS), 2018.

[10] Benjamin A Braun, Suman Jana, and Dan Boneh. Ro-
bust and efficient elimination of cache and timing side
channels. arXiv preprint arXiv:1506.00189, 2015.

[11] Billy Bob Brumley and Nicola Tuveri. Remote timing
attacks are still practical. In European Symposium on
Research in Computer Security (ESORICS), 2011.

[12] David Brumley and Dan Boneh. Remote timing attacks
are practical. Computer Networks, 48(5), 2005.

[13] Xiang Cai, Rishab Nithyanand, and Rob Johnson. CS-
BuFLO: A Congestion Sensitive Website Fingerprinting
Defense. In Workshop on Privacy in the Electronic
Society (WPES), 2014.

[14] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson,
and Ian Goldberg. A systematic approach to developing
and evaluating website fingerprinting defenses. In ACM
SIGSAC Conference on Computer and Communications
Security (CCS), 2014.

[15] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob
Johnson. Touching from a distance: Website fingerprint-
ing attacks and defenses. In ACM Conf. on Computer
and Communications Security (CCS), 2012.

[16] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan
Zhang. Side-Channel Leaks in Web Applications: A Re-
ality Today, a Challenge Tomorrow. In IEEE Symposium
on Security and Privacy (SP), 2010.

[17] Heyning Cheng and Ron Avnur. Traffic Analysis of SSL
Encrypted Web Browsing, 1998.

[18] Ron Chi-Lung Chiang, Sundaresan Rajasekaran, Nan
Zhang, and H. Howie Huang. Swiper: Exploiting virtual
machine vulnerability in third-party clouds with com-
petition for I/O resources. IEEE Trans. on Parallel and
Distributed Systems (TPDS), 26(6), 2015.

[19] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar
Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi:
Oblivious serializable transactions in the cloud. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2018.

[20] Wladimir De la Cadena, Asya Mitseva, Jens Hiller, Jan
Pennekamp, Sebastian Reuter, Julian Filter, Thomas En-
gel, Klaus Wehrle, and Andriy Panchenko. TrafficSliver:
Fighting Website Fingerprinting Attacks with Traffic
Splitting. In ACM Conf. on Computer and Communica-
tions Security (CCS), 2020.

[21] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, I still see you: Why
efficient traffic analysis countermeasures fail. In IEEE
Symposium on Security and Privacy (SP), 2012.

[22] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and
Thomas Shrimpton. Protocol misidentification made
easy with format-transforming encryption. In ACM Conf.
on Computer and Communications Security (CCS),
2013.

[23] Saba Eskandarian and Matei Zaharia. An oblivious
general-purpose SQL database for the cloud. CoRR,
abs/1710.00458, 2017.

[24] Christopher W Fletchery, Ling Ren, Xiangyao Yu,
Marten Van Dijk, Omer Khan, and Srinivas Devadas.
Suppressing the oblivious ram timing channel while
making information leakage and program efficiency
trade-offs. In IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2014.

[25] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. Journal of
Cryptographic Engineering, 2016.

16

https://www.mediawiki.org/wiki/MediaWiki_1.27
https://www.mediawiki.org/wiki/MediaWiki_1.27
https://www.medicinenet.com/script/main/hp.asp
https://www.medicinenet.com/script/main/hp.asp
https://www.napatech.com/support/resources/data-sheets/napatech-smartnic-feature-overview/
https://www.napatech.com/support/resources/data-sheets/napatech-smartnic-feature-overview/
https://www.napatech.com/support/resources/data-sheets/napatech-smartnic-feature-overview/
https://github.com/giltene/wrk2
https://patchwork.kernel.org/patch/9669405/
https://patchwork.kernel.org/patch/9669405/

[26] Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil
Schear. Website Detection Using Remote Traffic Anal-
ysis. In Privacy Enhancing Technologies Symposium
(PETS), 2012.

[27] Xun Gong and Negar Kiyavash. Quantifying the Infor-
mation Leakage in Timing Side Channels in Determinis-
tic Work-conserving Schedulers. IEEE/ACM Trans. on
Networking (TON), 24(3), 2016.

[28] Jamie Hayes and George Danezis. k-fingerprinting: A
robust scalable website fingerprinting technique. In
USENIX Security Symposium, 2016.

[29] Andrew Hintz. Fingerprinting websites using traffic
analysis. In Conf. on Privacy Enhancing Technologies
(PETS), 2002.

[30] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui
Apecechea, Thomas Eisenbarth, and Berk Sunar. Seri-
ously, get off my cloud! Cross-VM RSA Key Recovery
in a Public Cloud. IACR Cryptology ePrint Archive,
2015(1-15), 2015.

[31] Mehmet Sinan İnci, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Efficient, adversarial neighbor discov-
ery using logical channels on Microsoft Azure. In An-
nual Conf. on Computer Security Applications (ACSAC),
2016.

[32] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A Shared Cache Attack That Works across Cores
and Defies VM Sandboxing–and Its Application to AES.
In IEEE Symposium on Security and Privacy (SP), 2015.

[33] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby
Moncaster. Silo: Predictable message latency in the
cloud. In ACM Conf. on Special Interest Group on Data
Communication (SIGCOMM), 2015.

[34] Sachin Kadloor, Negar Kiyavash, and Parv Venkitasub-
ramaniam. Mitigating timing side channel in shared
schedulers. IEEE/ACM Trans. on Networking (TON),
24(3), 2016.

[35] Diederik P Kingma and Jimmy Ba. Adam: A Method
for Stochastic Optimization. http://arxiv.org/abs/
1412.6980, 2014.

[36] Paul Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. In Ad-
vances in Cryptology – CRYPTO, 1996.

[37] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, et al. The
QUIC Transport Protocol: Design and Internet-Scale
Deployment. In ACM Conf. on Special Interest Group
on Data Communication (SIGCOMM), 2017.

[38] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to pas-
sive traffic analysis. In USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2018.

[39] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Yo-
del: strong metadata security for voice calls. In ACM
Symposium on Operating Systems Principles (SOSP),
2019.

[40] Stevens Le Blond, David Choffnes, William Caldwell,
Peter Druschel, and Nicholas Merritt. Herd: A scalable,
traffic analysis resistant anonymity network for VoIP
systems. In ACM Conf. on Special Interest Group on
Data Communication (SIGCOMM), 2015.

[41] Peng Li, Debin Gao, and Michael K Reiter. Stopwatch:
a cloud architecture for timing channel mitigation. ACM
Trans. on Information and System Security (TISSEC),
17(2), 2014.

[42] Shuai Li, Huajun Guo, and Nicholas Hopper. Measur-
ing information leakage in website fingerprinting attacks
and defenses. In ACM Conf. on Computer and Commu-
nications Security (CCS), 2018.

[43] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are
practical. In IEEE Symposium on Security and Privacy
(SP), 2015.

[44] Weijie Liu, Debin Gao, and Michael K Reiter. On-
demand time blurring to support side-channel defense.
In European Symposium on Research in Computer Se-
curity (ESORICS), 2017.

[45] Jacob R Lorch, Bryan Parno, James Mickens, Mariana
Raykova, and Joshua Schiffman. Shroud: Ensuring pri-
vate access to large-scale data in the data center. In
USENIX Conference on File and Storage Technologies
(FAST), 2013.

[46] David Lu, Sanjit Bhat, Albert Kwon, and Srinivas De-
vadas. DynaFlow: An Efficient Website Fingerprinting
Defense Based on Dynamically-Adjusting Flows. In
Workshop on Privacy in the Electronic Society (WPES),
2018.

[47] Xiapu Luo, Peng Zhou, Edmond WW Chan, Wenke Lee,
Rocky KC Chang, and Roberto Perdisci. HTTPOS: Seal-
ing Information Leaks with Browser-side Obfuscation
of Encrypted Flows. In Network and Distributed System
Security Symposium (NDSS), volume 11, 2011.

[48] Robert Martin, John Demme, and Simha Sethumadha-
van. TimeWarp: Rethinking Timekeeping and Per-
formance Monitoring Mechanisms to Mitigate Side-
channel Attacks. In Intl. Symposium on Computer Ar-
chitecture (ISCA), 2012.

17

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

[49] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad
Derakhshani, and Ian Goldberg. Skypemorph: Protocol
obfuscation for tor bridges. In ACM Conf. on Computer
and Communications Security (CCS), 2012.

[50] Rishab Nithyanand, Xiang Cai, and Rob Johnson. Glove:
A bespoke website fingerprinting defense. In Workshop
on Privacy in the Electronic Society (WPES), 2014.

[51] Diego Ongaro, Alan L Cox, and Scott Rixner. Schedul-
ing I/O in virtual machine monitors. In ACM SIG-
PLAN/SIGOPS Intl. Conf. on Virtual Execution Environ-
ments (VEE), 2008.

[52] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website fingerprinting in onion routing
based anonymization networks. In ACM Workshop on
Privacy in the Electronic Society (WPES), 2011.

[53] Peter Pessl, Daniel Gruss, Clementine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
DRAM Addressing for Cross-CPU Attacks. In USENIX
Security Symposium, 2016.

[54] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu,
Younggyun Koh, Calton Pu, and Yuanda Cao. Who
Is Your Neighbor: Net I/O Performance Interference in
Virtualized Clouds. IEEE Trans. on Services Computing,
6(3), 2013.

[55] Andre Richter, Christian Herber, Stefan Wallentowitz,
Thomas Wild, and Andreas Herkersdorf. A Hard-
ware/Software Approach for Mitigating Performance
Interference Effects in Virtualized Environments Us-
ing SR-IOV. In IEEE Intl. Conf. on Cloud Computing
(CLOUD), 2015.

[56] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, You, Get off of My Cloud: Ex-
ploring Information Leakage in Third-party Compute
Clouds. In ACM Conf. on Computer and Communica-
tions Security (CCS), 2009.

[57] T Scott Saponas, Jonathan Lester, Carl Hartung, Sameer
Agarwal, Tadayoshi Kohno, et al. Devices That Tell on
You: Privacy Trends in Consumer Ubiquitous Comput-
ing. In USENIX Security Symposium, 2007.

[58] Roei Schuster, Vitaly Shmatikov, and Eran Tromer.
Beauty and the Burst: Remote Identification of En-
crypted Video Streams. In USENIX Security Symposium,
2017.

[59] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and
Daniel Gruss. NetSpectre: Read Arbitrary Memory over
Network. CoRR, abs/1807.10535, 2018.

[60] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and
Ben Y Zhao. A Real-time Defense against Website Fin-
gerprinting Attacks. arXiv preprint arXiv:2102.04291,
2021.

[61] Geoffrey Smith. Principles of Secure Information Flow
Analysis. In Mihai Christodorescu, Somesh Jha, Dou-
glas Maughan, Dawn Song, and Cliff Wang, editors, Mal-
ware Detection, volume 27 of Advances in Information
Security, pages 291–307. Springer, 2007.

[62] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
Timing Analysis of Keystrokes and Timing Attacks on
SSH. In USENIX Security Symposium, 2001.

[63] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Rus-
sell, Venkata N. Padmanabhan, and Lili Qiu. Statistical
Identification of Encrypted Web Browsing Traffic. In
IEEE Symposium on Security and Privacy (SP), 2002.

[64] Paul Syverson, Roger Dingledine, and Nick Mathewson.
Tor: The Second-Generation Onion Router. In Usenix
Security, 2004.

[65] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: Scalable private mes-
saging resistant to traffic analysis. In Symposium on
Operating Systems Principles (SOSP), 2015.

[66] Venkatanathan Varadarajan, Thomas Ristenpart, and
Michael M Swift. Scheduler-based Defenses against
Cross-VM Side-channels. In USENIX Security Sympo-
sium, 2014.

[67] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham.
Eliminating fine grained timers in Xen. In ACM work-
shop on Cloud Computing Security Workshop, 2011.

[68] Bhanu Chandra Vattikonda, George Porter, Amin Vah-
dat, and Alex C Snoeren. Practical TDMA for Dat-
acenter Ethernet. In ACM European Conference on
Computer Systems (EuroSys), 2012.

[69] Pepe Vila and Boris Köpf. Loophole: Timing attacks
on shared event loops in chrome. In USENIX Security
Symposium, 2017.

[70] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob John-
son, and Ian Goldberg. Effective attacks and provable
defenses for website fingerprinting. In USENIX Security
Symposium, 2014.

[71] Tao Wang and Ian Goldberg. Walkie-Talkie: An Effi-
cient Defense Against Passive Website Fingerprinting
Attacks. In USENIX Security Symposium, 2017.

[72] Philipp Winter, Tobias Pulls, and Juergen Fuss. Scram-
bleSuit: A Polymorphic Network Protocol to Circum-
vent Censorship. In ACM Workshop on Privacy in the
Electronic Society (WPES), 2013.

18

[73] Charles V Wright, Lucas Ballard, Scott E Coull, Fabian
Monrose, and Gerald M Masson. Spot me if you can:
Uncovering spoken phrases in encrypted VoIP conver-
sations. In IEEE Symposium on Security and Privacy
(SP), 2008.

[74] Charles V. Wright, Scott E. Coull, and Fabian Monrose.
Traffic morphing: An efficient defense against statistical
traffic analysis. In Network and Distributed System
Security Symposium (NDSS), 2009.

[75] Charles V Wright, Fabian Monrose, and Gerald M Mas-
son. On Inferring Application Protocol Behaviors in
Encrypted Network Traffic. Journal of Machine Learn-
ing Research (JMLR), 7, Dec 2006.

[76] Weiyi Wu and Bryan Ford. Deterministically de-
terring timing attacks in Deterland. arXiv preprint
arXiv:1504.07070, 2015.

[77] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-Channel Attacks: Deterministic Side Chan-
nels for Untrusted Operating Systems. In IEEE Sympo-
sium on Security and Privacy (SP), 2015.

[78] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In USENIX Security Symposium, 2014.

[79] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: a timing attack on OpenSSL constant-
time RSA. Journal of Cryptographic Engineering, 7(2),
2017.

[80] Danfeng Zhang, Aslan Askarov, and Andrew C Myers.
Predictive Mitigation of Timing Channels in Interactive
Systems. In ACM Conf. on Computer and Communica-
tions Security (CCS), 2011.

[81] Yanqi Zhou and David Wentzlaff. MITTS: Memory
inter-arrival time traffic shaping. ACM SIGARCH Com-
puter Architecture News, 44(3), 2016.

A Network Side-Channel Attack

Here, we briefly describe a proof-of-concept NSC attack. To
carry out such an attack, an adversary must be able to ob-
serve a victim’s network traffic. An adversary with access to
network elements like links, switches, or routers can observe
the traffic directly. An adversary without direct access can
still observe victim traffic indirectly if they can control attack
traffic that shares bandwidth with the victim’s traffic.

Indirect observation is impossible if each network flow has
exclusively reserved bandwidth, as in time-division multiple
access (TDMA), which ensures non-interference among flows.
However, this approach prevents statistical multiplexing and
is very inefficient for bursty traffic. On the other hand, when

bandwidth is shared, then regardless of the queuing discipline,
available bandwidth and queuing delays observed by one flow
are influenced by concurrent flows. We demonstrate a simple
attack where an adversary exploits the signals in the queueing
delays for its own traffic to infer the victim’s traffic shape.

Experimental setup. We set up two VMs, a victim and an
attack VM, on two separate sockets of a Dell PowerEdge R730
server machine (S1). The VMs use Xen’s virtualized network
stack; thus all traffic is routed through the netback driver and
the TCP stack in dom0 of the hypervisor. We configure S1’s
shared NIC with a bandwidth of 1Gbps, and the hierarchical
token bucket (HTB) queueing discipline. We further create
two separate HTB traffic classes for (i) the attack traffic, and
(ii) the victim traffic and rest of the traffic through the host.
We configure the attack traffic to have a lower priority than all
other traffic. This is a reasonable assumption as an attacker
can always lower the priority for its traffic.

The victim hosts a custom video streaming service on top
of Apache, which servers video segment files in response
to client requests. A custom video client runs on a second
server (S2) and requests the video segments sequentially over
HTTPS. The attack VM runs a UDP client that sends short
payloads (56 bytes) to a UDP server on a third machine (S3),
which logs the packet arrival timestamps and echoes the pack-
ets back to the attack client. S2 and S3 have 10Gbps NICs
and all machines are connected with a 10Gbps switch; thus
the bottleneck link is the shared NIC at S1. The attack client
maintains a send window of 4500 packets (computed based
on the bandwidth-delay product for the NIC), which ensures
that some attack packets are always queued at the bottleneck
link without overflowing the queue.

We streamed 10 videos at 720p resolution from a YouTube
dataset (a detailed description of the dataset is given in §6.2)
for up to 30 segments. Segments take less than 0.02s to down-
load, and segments within a video are requested at an interval
of 5s. We streamed each video 150 times. During each video
stream, we log the series of arrival timestamps of the adver-
sarial client’s packets at the adversarial server. We label each
time series of the adversary’s packet arrival timestamps with
the id of the video streamed by the victim. Thus, we have 1500
time series of adversary’s packet arrival timestamps with 10
distinct labels.

Analysis. We aggregated each time series into windows of
50ms, and generated a time series of the adversary’s trans-
mitted packet count in each window. The packet count is the
number of packet arrival timestamps recorded in each time
window. Finally, we normalized each packet count time series
using min-max normalization.

Next, we implemented a CNN classifier to train on the time
series of normalized packet counts. Figure 9 shows the archi-
tecture of our classifier, which consists of three convolution
layers, a max pooling layer, and two dense layers. We use
a dropout of 0.2 between each pair of hidden layers of the
classifier as shown in the figure. We train the classifier with an

19

Input:
k x n

32 x k x (n-15)
ReLU

Conv
1 x 16

32 x k x (n-30)
ReLU

Conv
1 x 16 32 x k x (n-45)

ReLU
Dropout 0.2

Conv
1 x 16

32 x k x (n-45)/6
ReLU

Dropout 0.2

Max
Pooling

1 x 6

64
ReLU

Dropout 0.2

Dense Output:
classes
softmax

Dense

Figure 9: CNN architecture. k: the number of features used. n:
the number of elements of one time series, which is the total
time of the time series divided by the window size (50ms).

Adam optimizer [35], categorical cross-entropy error function,
and with input batches of 64 samples. Our CNN classifier is
similar to the one built by Schuster et al. [58, section 7.2],
with the difference that we used a dropout of 0.2 between the
model’s hidden layers and 64 epochs for training.

We implemented the classifier using Tensorflow 2 API and
with the Keras frontend. We used 70% of the time series
data for each label (video) for training and the remaining
for evaluating the classifier. The classifier achieves an overall
precision and recall of 81.8% each, and an accuracy of 96.4%.

Additional attack setups. We performed a similar, but sim-
pler attack on two additional setups: (i) with the host, S1’s
NIC configured in SR-IOV, exposing vNICs to the victim and
attacker VMs, and (ii) in a commercial IaaS Cloud provider
platform. In both cases, we were able to show that victim
transfers of large files generate a large signal on an attacker’s
cross-traffic that is visible in a timeseries plot even to the
naked eye. These attacks are not surprising, since any queue-
ing policy that allows a tenant to use network bandwidth not
currently used by other tenants that share a link permits NSCs.

Our experiment confirms prior work [6,11,12,29,52,58,62,
69,73] and shows that a network side-channel attack can iden-
tify videos in a collection with good accuracy. While an attack
in a production environment faces additional challenges like
achieving colocation with the victim, prior work has shown
that it is easy to attain colocation [30, 31, 56]. Hence, cloud
tenants that require strong confidentiality have to consider
that NSCs are a realistic threat.

B Security of masking mechanisms

Recall from §4.1 that Pacer relies on four parameters whose
values are empirically determined: the epoch length, the
packet transmission batch size, HyPace’s interrupt handler
masking delay (δxmit), and GPace’s inbound packet- and timer-
processing masking delay (δdelay). Of these, only the last
two parameters are security-relevant. In this section, we dis-
cuss experiments to demonstrate that (i) masking is necessary
(without it, the actual runtime of the handler tasks are observ-
able, which could be correlated with guest secrets), and (ii)
our empirically computed thresholds are effective at masking
these timing leaks. We do this by analyzing Pacer’s handlers

0 10000 20000 30000 40000 50000 60000

doorbell io delay (ns)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 f

re
q nobg

bg

0 10 20 30 40 50 60 70

#packets per epoch (count)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

a
liz

e
d
 f

re
q nobg

bg

Figure 10: HyPace delays and batch size without masking.

0 5000 10000 15000 20000

doorbell io delay (ns)

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
fre

q nobg
bg

Figure 11: HyPace delays after applying masking.

under two extreme configurations: no background workload
(nobg) and with heavy background load (bg).

To demonstrate that masking is necessary, we measure if
there is any difference in HyPace execution due to background
load in the absence of masking. Figure 10 top and bottom
plots respectively show the distributions of delays in HyPace’s
doorbell writes (from the time of the scheduled interrupt han-
dler) and the number of packets that can be prepared within an
120µs epoch in the two configurations. Both the distributions
are based on 24-hour experiments, with about 550 million
epochs involving some packet transmissions. First of all, in
absence of masking, the exact HyPace delay and batch size of
every single epoch is observable. Each pair of delay and batch
size may be correlated with specific secrets; thus the obser-
vations could leak the secrets. Additionally, the distributions
of delays and batch sizes are influenced by the background
workload. As the figure shows, the maximum HyPace delay
observed (top plot) is 65µs and 44µs in bg and nobg config-
urations, respectively and the maximum batch size (bottom
plot) is 66 and 65 packets, respectively. These observations
show that the adversary can potentially affect HyPace timing
in the absence of masking to induce leaks. Hence, masking
these delays is essential for security.

Next, we repeat the experiment with masking enabled. Fig-
ure 11 shows the observed delays of HyPace’s doorbell writes
when masking with δxmit set to 35µs. As can be seen, all
handler execution times were masked in these experiments.

For full disclosure, in earlier unrelated experiments, we had
observed a small number of epochs (e.g., less than 20 out of
550 million) where HyPace’s delays exceeded δxmit by up to
5µs. Such overruns, if they occurred in practice, would be
mitigated quickly by the automatic adjustment of δxmit (§4.1).

To summarize, masking is necessary and effective. In the
unlikely case of HyPace delays exceeding our δxmit of 35µs,
the adversary would be able to observe execution times that
may be correlated with victim secrets. However, Pacer’s auto-
matic adjustment of δxmit denies the adversary an opportunity

20

to repeat an observation. Combined with the adversary’s chal-
lenge to induce increasing delays in the execution of the
privileged handlers, it seems impossible for an adversary to
cause a sufficient number of repeated overruns necessary to
infer a victim’s secrets.

Our empirical observations and security arguments for
δdelay are similar to the above, and we omit those details.

C Formal Model and Proof of Security

We build a formal model to prove formally that HyPace is
secure. In particular, it makes packet timing independent of
any application secrets. The model assumes that the masking
delays are never exceeded.

Our model has the following actors:

[-] Guest. The guest VM using HyPace’s services. Denoted
G. G is modeled as a state machine with an internal state σG

that may contain secrets. Our goal is to keep these secrets
confidential from the other actors. G’s state machine reacts
to incoming network events and, in turn, generates events to
which HyPace reacts.

[-] HyPace. Denoted H. HyPace is modeled as a state machine
with internal state σH. H’s state machine reacts to events
generated by the guest G and produces outgoing network
events to which the environment reacts.

[-] The environment, which comprises everything outside the
server, including the network and the clients. Denoted E. E
is modeled as a state machine with internal state σE. This
state machine reacts to HyPace’s outgoing network events
and produces incoming network events to which the guest
reacts.

For simplicity of exposition, we assume that there is a fixed
set of N flow names, flow1, . . . ,flowN . Not all of these may
be active at any time, but we assume that HyPace always
has a profile for each of them. When a flow is not active,
its (default) profile causes no packets to be sent. We use f
and its decorated variants as meta-variables that range over
flow1, . . . ,flowN .

Event queues The three causal interactions E→ G, G→H,
and H→ E are mediated by three event queues (producer-
consumer queues), written QG, QH and QE, respectively. A
queue contains timestamped pending events that have been
generated by the queue’s producer (E state machine for QG),
but not yet handled by the queue’s consumer (G for QG). The
subscript on a queue indicates its consumer. We describe these
queues next.

QG: This queue is a set of tuples of the form (Tii,Eii, fi) mean-
ing that incoming network event Eii that occurred at time Tii
on flow fi is still pending for the guest. Incoming network
events represent incoming packets (including new client re-
quests), network congestion signals and indicators of packet

loss (e.g., network stack timeouts). The exact structure of
these events is irrelevant here and, hence, kept abstract.

QG ::= (Ti1,Ei1, f1), . . . ,(Tin,Ein, fn)

QH: This queue actually consists of two subqueues – the
profile update subqueue, written Qu

H, and the packet subqueue,
written Qp

H – and a time value Temax.

QH ::= (Qu
H,Temax,Q

p
H)

Qu
H contains profile updates. It is actually a key-value store,

keyed by flows. For every flow flowi (i∈ {1 . . .N}), the value
is a set Ui of pending updates on that flow.

U ::= (Tu1,Eu1,Te1), . . . ,(Tum,Eum,Tem)
-- sorted ascending by Tei

Qu
H ::= flow1 7→ U1, . . . ,flowN 7→ UN

U contains update tuples of the form (Tui,Eui,Tei) meaning
that the profile update described by Eui was queued by the
guest at time Tui, but should be effective at time Tei. Eui may
replace the existing profile at the application’s request, or up-
date/start the profile in response to an incoming network event
(e.g., starting a new profile in response to a new request, paus-
ing or resuming a profile in response to congestion signals, or
extending a profile in response to packet retransmissions).

It is assumed that the guest chooses Tei sufficiently after
Tui to allow the event to propagate to HyPace despite any
processing delays (we explicitly model this assumption later).
It is essential that Tei be independent of secrets. For an update
in response to an incoming network event,Tei can be set to the
timestamp of the incoming network event plus the maximum
(empirical) propagation delay of the network stack. For a
profile update initiated by the application, the application
can set Tei to the end time of the current profile minus the
propagation delay of the application and network stack. If
the propagation delay of the application is secret-dependent,
it can be bucketized into public buckets and the next higher
bucket boundary can be used instead.

Note that U is an ordered list, not a set. It is sorted in
increasing order of Tei. HyPace also applies updates in this
order. We often treat Qu

H as an indexed vector, writing Qu
H[f]

for the update tuples of flow f.
QH contains a timestamp Temax, which is the highest effec-

tive time of any update event that has been added to Qu
H in the

past. This means that if (Tu,Eu,Te) ∈ Ui, then Te≤ Temax.
The packet subqueue Qp

H contains network packets queued
by the guest for transmission. These packets should be en-
crypted. The details of this queue are irrelevant for our model,
so we leave it abstract.

QE: This queue is a set of tuples of the form (Toi,Eoi, fi)
meaning that the outgoing network packet Eoi is generated
on flow fi by HyPace at time Toi. The Eoi represents the
encrypted payload, so its structure is irrelevant.

QE ::= (To1,Eo1, f1), . . . ,(Ton,Eon, fn)

21

State Next, we describe the internal states of the environ-
ment, guest and HyPace:

σE: The environment’s state σE is a pair of a private compo-
nent and a remaining component, written σpriE and σpubE,
respectively. The private component σpriE is held only by the
clients of the guest VM being protected, while σpubE repre-
sents the remaining state of the clients, the network and any
other actors. We do not specify these any further, but there
are constraints on how they evolve.

σE ::= (σpriE,σpubE)

σG: The guest’s state σG is similarly a pair of a private com-
ponent and a remaining component, written σpriG and σpubG,
respectively. We do not specify these any further, but there
are constraints on how they evolve.

σG ::= (σpriG,σpubG)

σH: HyPace’s state σH consists of a map from flows to the
current active profiles on them. We use the notation Φ for
a profile. The exact structure of profiles is irrelevant for the
security argument, so we keep it abstract.

σH ::= flow1 7→Φ1, . . . ,flowN 7→ΦN

Auxiliary state There is also some auxiliary state that is
not associated to any specific component. This state is just
the current (global) time, written Tg.

Tg ::= Current global time

Overall state (Configuration) The overall state of the sys-
tem, also called a configuration and denoted C , consists of
the internal states of HyPace, the guest and the environment,
the three event queues, and the auxiliary state.

C ::= (σE,σG,σH,QG,QH,QE,Tg)

C.1 System evolution
The overall state (configuration) evolves over time through
transitions. We write C C ′ to say that the configuration C
transitions to C ′ in a single step.

A transition happens when one of the agents acts on events
pending for it. Without loss of generality, we assume that only
HyPace’s actions cause the global time Tg to jump forward,
and this jump is exactly the length of one epoch, which we
denote δe.

δe ::= Length of epoch

Also w.l.o.g., the agents act in order: HyPace, environment,
guest, and repeat. Technically,

 , E ; G ; H

QE| , {(To, f) | (To,Eo, f) ∈ QE}
QE1 ∼ QE2 , QE1| = QE2|

QG| , {(Ti, f) | (Ti,Ei, f) ∈ QG}
QG1 ∼ QG2 , QG1| = QG2|

U| , [(Eui,Tei) | (Tui,Eui,Tei) ∈ U]

Qu
H| , {(f 7→ U|) | (f 7→ U) ∈ Qu

H}
Qu

H1 ∼ Qu
H2 , Qu

H1| = Qu
H2|

σE| = σpubE for σE = (σpriE,σpubE)

σE1 ∼ σE2 , σE1| = σE2|

σG| = σpubG for σG = (σpriG,σpubG)

σG1 ∼ σG2 , σG1| = σG2|

Figure 12: Equivalence of states and queues

where E, G and H represent steps of the environment,
guest and HyPace, respectively, and the semicolon means
relation composition. In the following we describe E, G

and H one by one.

C.1.1 Environment acts

The environment acts by consuming a subset of events in the
queue QE, processing them to update its internal state and
adding new events to the queue QG. We model the environ-
ment as an abstract function FE that takes as input the current
queue QE, the environment’s internal state σE (which contains
the private component σpriE and the remaining component
σpubE) and the current global time Tg. It outputs a new inter-
nal state σE

′, an updated queue QE
′ (which should be a subset

of QE) and a set of events QG
′′ that are added to QG by .

FE(QE,σE,Tg) = (QE
′,QG

′′,σE
′)

Using FE, we define the transition rule (env) for the envi-
ronment (Figure 13). Note the index E in E, which indicates
that this is the environment’s transition.8

The function FE can be arbitrary (we don’t assume that we
know what the network and the clients do), but it is subject to
an important security assumption, which we describe here.

(Clients don’t break secrecy explicitly) Clients get to see the
payloads of incoming messages, which may depend on secrets
and also have access to their existing private state σpriE. In
our threat model, we explicitly trust clients to not leak either
of these into timing. In the formal model, this is specified
by a constraint on FE. Specifically, if we consider two input

8The way to read a rule
A
B

is that if A holds then B holds.

22

Assumptions

(1) QE1 ∼ QE2 and σE1 = σE2 and
FE(QE1,σE1,Tg) = (QE

′
1,QG

′′
1 ,σE

′
1) and

FE(QE2,σE2,Tg) = (QE
′
2,QG

′′
2 ,σE

′
2)

⇒
QE
′
1 ∼ QE

′
2 and

QG
′′
1 ∼ QG

′′
2 and

σE
′
1 ∼ σE

′
2

Transition

FE(QE,σE,Tg) = (QE
′,QG

′′,σE
′)

(σE,σG,σH,QG,QH,QE,Tg)
 E (σE

′,σG,σH,QG∪QG
′′,QH,QE

′,Tg)

env

Figure 13: Assumptions and transition of the environment

queues QE1 and QE2 that differ only in payloads (but agree
on timing), and two states σE1 and σE2 that differ only in
the private components σpriE1 and σpriE2 (but agree in the
non-private components), then the output queues QE

′
1 and

QE
′
2 should differ only in the payloads (similarly for QG

′′
1 and

QG
′′
2), and the output states σE1 and σE2 can differ only in the

private components.
Formally, we define QE1 ∼QE2 to mean that QE1 and QE2

agree on the flows and timestamps of events. Similarly, we
define QG1 ∼QG2. Finally, we define σE1 ∼ σE2 to mean that
σE1 and σE2 agree on the non-private components. These
definitions are shown in Figure 12. We then make the assump-
tion (1) in Figure 13, which captures exactly the intuition
described in the previous paragraph.

Note. A real FE would also have the following properties,
but we do not need these properties for security, so we do not
assume them. We show these properties just for completeness.

(Causality) FE should depend only on past events in QE, i.e.,
those that occurred before the current time Tg. Formally, we
assume that

FE(QE,σE,Tg) = FE(QE|≤Tg,σE,Tg)

Here, QE|≤Tg denotes the subset of QE containing events
whose timestamps are no more than Tg.

QE|≤Tg , {(To,Eo, f) | (To,Eo, f) ∈ QE and To≤ Tg}

(Non-modification of past outputs) FE should not output
events in the past, i.e., QG

′′ should not contain any events
with timestamps Tg or lower.

∀(Ti,Ei, f) ∈ QG
′′. Ti> Tg

(Non-consumption of future inputs) FE should not consume
input events from the future, i.e., QE

′ should agree with QE

on future events, i.e.,

QE|>Tg = QE
′|>Tg

Here, QE|>Tg denotes the subset of QE containing events
whose timestamps are strictly greater than Tg. It is defined
analogous to QE|≤Tg.

C.1.2 Guest acts

The guest acts by consuming events from QG to update its in-
ternal state and to produce events in the queue QH (including
both its subqueues Qu

H and Qp
H). We model the environment

as an abstract function FG.

FG(QG,Temax,Q
p
H,σG,Tg) = (QG

′,Qu
H
′′,Temax

′,Qp
H
′
,σG

′)

FG takes as input the incoming network event queue QG (re-
call that this queue is populated by the environment), the
current maximum update effective time Temax, the current
packet queue Qp

H, the guest’s current state σG and the current
time Tg. It outputs an updated input queue QG

′, a set of pro-
file update key-values Qu

H
′′ to add to the hypervisor’s update

queue, a new Temax
′, an updated packet queue Qu

H
′, and a new

guest state σG
′.

Using FG, we define the transition rule (guest) for the guest
(Figure 14). The index G in G indicates that this is the
guest’s transition.

The function FG can be arbitrary (meaning that the enforce-
ment is almost black-box), but it is subject to some causality
and security assumptions.

(Guest does not break secrecy explicitly) The guest should
distinguish private from public state, but it may have timing
leaks. Specifically, the descriptions of profile updates (de-
noted Eui) it queues for the hypervisor must not depend on
the guest’s secret state or the payloads of incoming packets,
which may also be secret-dependent. Similarly, the times at
which these updates become effective (determined by Tei)
should be secret-independent. However, the time at which
the update events are queued (denoted Tui) may depend on
secrets due to timing leaks. Also, the packets the guest queues
to send (i.e., the subqueue Qp

H) may depend on secrets. These
packets are encrypted anyhow.

To formalize this, we define notions of equivalence ∼ of
the guest state σG (the public components, but not the private
components, must coincide) and the update event queue Qu

H

(Figure 12). We then assume (2) from Figure 14, which for-
malizes the intuition of the previous paragraph. Observe that
Qu

H
′′
1 ∼ Qu

H
′′
2 in (2) correctly imposes no restrictions on Tuis

as these may depend on secrets. Additionally, (2) imposes
no restrictions at all on the packet queues (Qp

H
′
1 and Qp

H
′
2), as

these queues may also be secret-dependent.

23

Assumptions

(2) QG1 ∼ QG2 and σG1 ∼ σG2 and
FG(QG1,Temax1,Q

p
H1,σG1,Tg) =

(QG
′
1,Q

u
H
′′
1 ,Temax

′
1,Q

p
H
′
1,σG

′
1) and

FG(QG2,Temax2,Q
p
H2,σG2,Tg) =

(QG
′
2,Q

u
H
′′
2 ,Temax

′
2,Q

p
H
′
2,σG

′
2)

⇒
QG
′
1 ∼ QG

′
2 and

Qu
H
′′
1 ∼ Qu

H
′′
2 and

σG
′
1 ∼ σG

′
2

(3) FG(QG,Temax,Q
p
H,σG,Tg) =

(QG
′,Qu

H
′,Temax

′,Qp
H
′
,σG

′)
⇒ Idelay(Qu

H
′)

where
Idelay(Qu

H) , ∀(f 7→ U) ∈ Qu
H. ∀(Tui,Eui,Tei) ∈ U.

Tui ≤ Tei

(4) FG(QG,Temax,Q
p
H,σG,Tg) =

(QG
′,Qu

H
′′,Temax

′,Qp
H
′
,σG

′)
⇒ Iemax(Q

u
H
′′,Temax

′)
where
Iemax(Q

u
H,Temax) , ∀(f 7→ U) ∈ Qu

H. ∀(Tui,Eui,Tei) ∈ U.
Tei ≤ Temax

(5) FG(QG,Temax,Q
p
H,σG,Tg) =

(QG
′,Qu

H
′′,Temax

′,Qp
H
′
,σG

′)
⇒∀(f 7→ U′) ∈ Qu

H
′′. ∀(Tu′i,Eu′i,Te′i) ∈ U′.

Temax < Te′i

Transition

QH = (Qu
H,Temax,Q

p
H)

FG(QG,Q
p
H,σG,Tg) = (QG

′,Qu
H
′′,Temax

′,Qp
H
′
,σG

′)

QH
′← (Qu

H > Qu
H
′′,Temax

′,Qp
H
′
)

(σE,σG,σH,QG,QH,QE,Tg)
 G (σE,σG

′,σH,QG
′,QH

′,QE,Tg)

guest

Note: > is the merge operation on (sorted) lists, lifted
pointwise to key-value tuples pointwise on keys.

Figure 14: Assumptions and transition of the guest

function update(Φ,V)

Φout ←Φ

foreach (Eui,Tei) ∈ V :
Φout ← Fu

H(Φ,Eui,Tei)
return Φout

function update_prof(Φ,U,Tg)

i←min j{U[j] = (Tu,_,_) and Tu> Tg}
Ucurr← U[..(i−1)]
Urest ← U[i..]
Φout ← update(Φ,Ucurr|)
return (Φout ,Urest)

Figure 15: The functions update and update_prof that model
HyPace’s profile update logic

(Propagation delays are respected) Next, we formalize the
fiat assumption that the guest accounts for propagation delays
correctly. For this, we define a property Idelay(Qu

H) on profile
update subqueues, and assume that this property holds of the
output Qu

H
′′ of FG (assumption (3) in Figure 14). Idelay(Qu

H)
simply says that for any update tuple (Tui,Eui,Tei) in Qu

H,
Tui ≤ Tei, meaning that the time at which the update gets
queued (Tui) is no more than the intended effective time Tei.

(Guest queues updates in increasing order) The new updates
the guest queues (Qu

H
′′) should have effective times after

Temax, and the new Temax
′ should be an upper bound on the

effective times in Qu
H
′. We formalize these as assumptions (4)

and (5) in Figure 14.

Note. Any real guest would also have the following ad-
ditional properties. These properties are not necessary for
security, so we do not assume them. We mention them just
for completeness.

(Causality) FG should only depend on past events in QG, i.e.,
those that occurred before Tg.

(Non-modification of past outputs) FG should not output
events in the past, i.e., Qu

H
′ should only contain events with

timestamps greater than Tg.

(Non-consumption of future inputs) FG should not remove
future events from its input queue, QG. Formally, QG and QG

′

should agree on events that have timestamps greater than Tg.

C.1.3 HyPace acts

In its turn to act, HyPace’s work corresponds to its (batched)
actions in the epoch (Tg,Tg+ δe], where δe is the epoch
length. HyPace does two things.

24

Assumptions

(6) Fu
H(Φ,Eu,Te) = Φ′ and Te′ < Te
⇒ [Φ]Te′ = [Φ′]Te′

(7) s1 = s2 and
Fo
H(Q

p
H1,s1) = (Qp

H
′
1,QE

′′
1) and

Fo
H(Q

p
H2,s2) = (Qp

H
′
2,QE

′′
2)

⇒
QE
′′
1 ∼ QE

′′
2

Transition

σH = {flowi 7→Φi}N
i=1 Qu

H = {flowi 7→ Ui}N
i=1

(Φ′i,U
′
i) = update_prof(Φi,Ui,Tg)

σH
′←{flowi 7→Φ

′
i}N

i=1
[σH
′]Tg , {flowi 7→ [Φ′i]Tg}N

i=1
Fo
H(Q

p
H, [σH

′]Tg) = (Qp
H
′
,QE

′′)
Qu

H
′←{flowi 7→ U′i}N

i=1

(σE,σG,σH,QG,QH,QE,Tg)
 H (σE,σG,σH

′,QG,QH
′,QE∪QE

′′,Tg+δe)

hypace

Figure 16: Assumptions and transition of HyPace

First, HyPace applies the longest prefix of profile updates
from Qu

H whose availability timestamps Tui (not effective
timestamps Tei) are less than δe. This models applying pend-
ing updates that became available in the earlier epochs. We as-
sume an abstract profile update function Fu

H(Φ,Eu,Te) = Φ′

that updates a current profile Φ to a new profile Φ′ by applying
the update Eu effectively from Te. Importantly, we assume
that Φ and Φ′ agree in the packet timing they provide up to
time Te. In other words, the update becomes effective only at
time Te. The updated profile Φ′ is stored back in HyPace’s
internal state σH.

In detail, for each flow flowi, we iterate on the updates
in Qu

H[flowi] from the left, till the first update event whose
availability timestamp Tu j is larger than Tg. All updates to
the left of this event came to HyPace before the end of the
previous epoch and are applied immediately to Φi using the
function Fu

H and stored back in σH. The remaining updates
stay pending in Qu

H[flowi]. This iteration is formalized by
the defined function update_prof shown in Figure 15. The
function update.

Note that the meta-variable V stands for updates projected
to only the update event Eu and the effective time Te (i.e.,
removing Tu).

V ::= (Eu1,Te1), . . . ,(Eum,Tem)

Second, HyPace uses the updated profiles to generate out-
put packets for the NIC. Only profile prefixes up to Tg are
considered. This process is abstractly modeled by a function

Invariants (unary)

(I1) Idelay(Qu
H)

(I2) Iemax(Q
u
H,Temax)

where Idelay and Iemax are defined in Figure 14.

Invariants (relational)

(I3) σE1 ∼ σE2 and
σG1 ∼ σG2 and
QG1 ∼ QG2 and
Iupd(Qu

H1,σH1,Q
u
H2,σH2) and

QE1 ∼ QE2 and
Tg1 = Tg2

where
Iupd(Qu

H1,σH1,Q
u
H2,σH2) ,

∀i. (flowi 7→ U1) ∈ Qu
H1 and

(flowi 7→ U2) ∈ Qu
H2 and

(flowi 7→Φ1) ∈ σH1 and
(flowi 7→Φ2) ∈ σH2
⇒
∃V. (U1| = V ++ U2| and Φ2 = update(Φ1,V)) or

(U2| = V ++ U1| and Φ1 = update(Φ2,V))

Figure 17: Invariants of the transition system

Fo
H(Q

p
H, [σH]Tg) = (Qp

H
′
,QE

′′). This function takes as input
the current packet subqueue between the guest and HyPace,
and the current profiles on all flows, limited to the time inter-
val (0,Tg] (denoted by [σH]Tg). It returns an updated packet
subqueue Qp

H
′ (as some packets have been consumed), and a

set of events QE
′′ to output to the NIC.

The entire HyPace transition is formalized in the rule
(hypace) in Figure 16. The index H in H indicates that
this is HyPace’s transition.

We make the following assumptions about the functions
Fu
H and Fo

H.
(Profile update respects effective time) Fu

H should respect
the effective time Tei passed as its third argument. Formally,
we let [Φ]T denote the restriction of profile Φ to the interval
(0,T]. Assumption (6) of Figure 16 represents this require-
ment. (Note that [Φ]T is abstract; we don’t define it. However,
it is also used in the rule (hypace) of Figure 16 to limit profiles
before using them to generate events.)

(HyPace does not leak secrets explicitly) Fo
H should not

leak information from the packet subqueue Qp
H, which may

be secret-dependent, into the timing of outgoing packets. For-
mally, this is represented by assumption (7) of Figure 16.

C.2 Security theorem and proof
We formalize confidentiality of the guest’s private state using
the standard concept of noninterference [61]. Noninterference

25

is inherently a relational property, i.e., a property of two runs
of the system. Noninterference is usually proved by establish-
ing invariants. We state and prove the relevant invariants of
our model before stating and proving security. Our model has
two kinds of relevant invariants: unary and relational.

Unary invariants A unary invariant is a property of the
configuration that is preserved by all transitions, i.e., if the
property holds before the a transition, then it holds after the
transition as well. There are two unary invariants of relevance
to us. These are called (I1) and (I2), and shown in Figure 17.

Lemma 1. (I1) and (I2) are (unary) invariants.

Proof. (I1): We need to prove that every transition preserves
(I1), i.e., Idelay(Qu

H). This property is defined pointwise on the
individual elements of Qu

H, so it can be violated only by a tran-
sition that adds to Qu

H. The only such transition is G (E

does not change Qu
H and H removes from Qu

H). However,
 G trivially preserves the invariant due to assumption (3) of
Figure 14.

(I2): We need to prove that every transition preserves (I2),
i.e., Iemax(Q

u
H,Temax). Again, this property is defined point-

wise on the individual elements of Qu
H, so we only need to

consider the transition G. This transition trivial preserves
the invariant due to assumption (4) of Figure 14.

Relational invariants A relational property is a property of
two configurations, conventionally denoted by the subscripts
1 and 2. A relational property is called a relational invariant
if the following holds: Consider two configurations in the
property. If both configurations step with the same kind of
transition then the resulting configurations are also in the
property.9

For our model, there is only one interesting relational in-
variant – (I3) of Figure 17. This relation says two things:
(1) The two configurations agree on the public (non-private)
components of σE, σG, QG, and QE (the private components
may arbitrarily differ) and (2) For every flow flowi, HyPace’s
internal state σH and the pending updates queue Qu

H differ
across the two configurations only in that, in one of the two
sides, fewer updates have been taken out of Qu

H and applied
to the flow’s profile. In other words, the same profile updates
reach HyPace (and with the same effectiveness timestamps
Tei) in the two runs, but the two runs may differ in when
they apply the updates. The latter difference arises because
the time at which the updates reach HyPace (the timestamps
Tuis) may depend on guest secrets and may differ.

Lemma 2. (I3) is a relational invariant.

9We do not need to consider different types of transitions on the two
sides since we fix the order of the transitions. In other words, we assume a
deterministic scheduler. This can be easily relaxed to any scheduler that only
looks at the non-private components of the configurations.

Proof. We assume that the unary invariants (I1) and (I2)
hold. We then assume that (I3) holds before a step, and show
that it holds after the step as well. To prove the latter, we show
that all conjuncts of (I3) hold. We use the quote symbol ′ to
denote elements after the transition.

σE1 ∼ σE2: The only transition that modifies σE is E.
This transition trivially guarantees σE

′
1 ∼ σE

′
2 due to assump-

tion (1) of Figure 13.
σG1 ∼ σG2: The only transition that modifies σG is G.

This transition trivially guarantees σG
′
1 ∼ σG

′
2 due to assump-

tion (2) of Figure 14.
QG1 ∼ QG2: The two transitions that modify QG are E

and G. Both guarantee QG
′
1 ∼ QG

′
2 – the former due to as-

sumption (1) of Figure 13, and the latter due to assumption (2)
of Figure 14.

Iupd(Qu
H1,σH1,Q

u
H2,σH2): This invariant is affected only

by transitions that change Qu
H or σH or both. There are two

such transitions: G and H.
 G adds to Qu

H. First, note that due to the clause Qu
H
′′
1 ∼

Qu
H
′′
2 in assumption (2) of Figure 14, the updates Qu

H
′′
1 and Qu

H
′′
2

that are added to Qu
H1 and Qu

H2 agree in their content and have
the same effective times (they may differ in when they reach
HyPace, but this is irrelevant for Iupd(Qu

H1,σH1,Q
u
H2,σH2) as

it projects each U to U|). Second, due to invariant (I2), all
events Qu

H1 have effective times less than Temax1, while the
new events being added have timestamps greater than Temax1
due to assumption (5) of Figure 14. It follows that Qu

H
′′
1 is

simply appended to the end of Qu
H1 by the > operation in rule

(guest) of Figure 14. A similar observation holds for Qu
H
′′
2 and

Qu
H2. This immediately implies that Iupd(Qu

H
′
1,σH

′
1,Q

u
H
′
2,σH

′
2)

holds.
 H modifies Qu

H by taking a prefix of it and applying it to
profiles. Hence, it trivially yields Iupd(Qu

H
′
1,σH

′
1,Q

u
H
′
2,σH

′
2).

QE1 ∼ QE2: The two transitions that modify QE are E

and H. Of these, E guarantees QE
′
1 ∼QE

′
2 due to assump-

tion (1) of Figure 13.
Showing that H guarantees QE

′
1 ∼ QE

′
2 is harder. First,

note that from the rule (hypace) of Figure 16, QE
′
1 = QE1∪

QE
′′
1 and, similarly, QE

′
2 =QE2∪QE

′′
2 . QE1 ∼QE2 by assump-

tion about the invariant holding before the transition, so we
only need to prove that QE

′′
1 ∼QE

′′
2 . Now, again following the

rule, QE
′′
i (for i = 1,2) is obtained from the function Fo

H, so
by assumption (7) of Figure 16, we only need to show that
[σH
′
1]Tg1 = [σH

′
2]Tg2 . We already know from the invariant be-

fore the transition that Tg1 = Tg2 = Tg (say) and, following
the definition of [σH

′]Tg, we only need to show that for every
i∈ {1, . . . ,N}, [Φ′i1]Tg = [Φ′i2]Tg. However, from the previous
clause (Iupd(Qu

H
′
1,σH

′
1,Q

u
H
′
2,σH

′
2)) we know that Φ′i1 and Φ′i2

only differ in which of two identical sets of updates have been
applied. However, all updates with effective times less than Tg
must have been applied to both. To see this, note that the time
at which any such update comes to HyPace (the timestamp
Tui) has to be lower than the effective time due to invariant
(I1) and, hence, lower than Tg. So, update_prof(Φi,Ui,Tg)

26

in the rule (hypace) will apply all such updates (in both runs).
Φ′i1 and Φ′i2 can still differ in applied updates with effec-
tive timestamps after Tg. However, due to assumption (6) of
Figure 16, such differences are irrelevant for the projections
[Φ′i1]Tg and [Φ′i2]Tg. Hence, [Φ′i1]Tg = [Φ′i2]Tg, as required.

Tg1 = Tg2: The only transition that modifies Tg is H,
but this transition increases Tg by a fixed amount (δe), so it
trivially preserves equality of Tg1 and Tg2.

Security We formulate security as follows standard non-
interference. Consider two runs that both start from empty
queues, the same states for clients and the network, the same
non-private state for the guest, but possibly different private

guest state. Then, after n steps in each run, the non-private
state of the environment is exactly the same. Let /0 denote an
empty queue.

Theorem 3 (Security). Let (1) σG1 ∼ σG2,
(2) (σE,σG1,σH, /0, /0, /0,Tg) n (σE

′
1,_,_,_,_,_,_) and

(3) (σE,σG2,σH, /0, /0, /0,Tg) n (σE
′
2,_,_,_,_,_,_). Then

σE
′
1 ∼ σE

′
2.

Proof. It is trivial to see that (I1), (I2) and (I3) hold of the
starting states. Since these properties are invariants, they hold
of the final states. In particular, from (I3) on the final state,
we get that σE

′
1 ∼ σE

′
2.

27

	Introduction
	Overview
	Threat model
	Key ideas

	Cloaked tunnel
	Idealized tunnel design
	Tunnel security

	Pacer design
	HyPace
	GPace
	Pacer security

	Efficient transmission schedules
	Traffic indicators
	Choosing workload partitions
	Clustering
	ProfPace

	Evaluation
	Microbenchmarks
	Spatial padding overhead
	Macro experiments
	Security evaluation

	Related work
	Conclusions
	Network Side-Channel Attack
	Security of masking mechanisms
	Formal Model and Proof of Security
	System evolution
	Environment acts
	Guest acts
	HyPace acts

	Security theorem and proof

