Appendix of DimSum: A Decentralized Approach to Multi-language Semantics and Verification

MICHAEL SAMMLER, MPI-SWS, Germany
SIMON SPIES, MPI-SWS, Germany
YOUNGJU SONG, MPI-SWS, Germany
EMANUELE D'OSUALDO, MPI-SWS, Germany
ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands
DEEPAK GARG, MPI-SWS, Germany
DEREK DREYER, MPI-SWS, Germany

A COMBINATORS

Filter. The filter combinator $M \backslash_{\sigma} M^{\prime} \triangleq\left(S_{\text {filter }} \times S_{M} \times S_{M^{\prime}}, \rightarrow_{\text {filter }},\left(\sigma, \sigma_{M}^{0}, \sigma_{M^{\prime}}^{0}\right)\right)$ takes in a module $M \in \operatorname{Module}\left(E_{1}\right)$ and a filter $M^{\prime} \in \operatorname{Module}\left(F i l t e r E v e n t s\left(E_{1}, E_{2}\right)\right)$ and then produces a module with events drawn from E_{2}. The states of the filter combinator are given by $S_{\text {filter }} \triangleq\{P, F\} \cup$ $\left\{\mathrm{P}(e) \mid e \in E_{1}\right\} \cup\left\{\mathrm{F}(e) \mid e \in E_{1}\right\}$ and the transitions are depicted in Fig. 1. The events of the filter module are drawn from the following set:

$$
\begin{aligned}
\text { FilterEvents }\left(E_{1}, E_{2}\right) \triangleq & \left\{\operatorname{FromInner}\left(e_{1}\right) \mid e_{1} \in E_{1}\right\} \cup\left\{\operatorname{ToInner}\left(e_{1}\right) \mid e_{1}: \operatorname{option}\left(E_{1}\right)\right\} \cup \\
& \left\{\operatorname{ToEnv}\left(e_{2}\right) \mid e_{2}: E_{2}\right\} \cup\left\{\operatorname{FromEnv}\left(e_{2}\right) \mid e_{2}: E_{2}\right\}
\end{aligned}
$$

The event FromInner $\left(e_{1}\right)$ means that M^{\prime} is willing to accept e_{1} from M. The event Tolnner $\left(e_{1}\right)$ means that M^{\prime} wants to return control to the module M, optionally sending it the event e_{1}. Sending e_{1} to M means that M all visible transitions of the inner module M except ones emitting event e_{1} are blocked. The event $\operatorname{ToEnv}\left(e_{2}\right)$ means that M^{\prime} wants to emit e_{2} to the environment, and $\operatorname{FromEnv}\left(e_{2}\right)$ means that M^{\prime} is willing to accept e_{2} from the environment. Note that, while there is a difference between the intuition for $\operatorname{ToEnv}\left(e_{2}\right)$ and $\operatorname{FromEnv}\left(e_{2}\right)$, both events are treated the same by $M \backslash M^{\prime}$ as DimSum does not distinguish between incoming and outgoing events.

Linking. The linking operator $M_{1} \oplus_{X} M_{2}$ is defined on modules $M_{1}, M_{1} \in \operatorname{Module}\left(E_{?!}\right)$ where $E_{\text {? }}$ is (an event type that is isomorphic to) $E \times\{?,!\}$. The parameter $X=\left(S, \rightsquigarrow \leadsto, s^{0}\right)$ determines how the events are linked. It consists of a set of linking-interal states S, an initial state $s^{0} \in S$, and a relation $\leadsto \subseteq(\mathrm{D} \times S \times E) \times((\mathrm{D} \times S \times E) \cup\{\langle \})$ describing how events should be translated. Formally, linking can be defined as $M_{1} \oplus_{X} M_{2} \triangleq M_{1} \times M_{2} \backslash_{p}$ link $_{X} .{ }^{1}$ The module link ${ }_{X}$ is defined as link ${ }_{X} \triangleq\left(S_{\text {link }} \times\right.$ $S_{X}, \rightarrow_{\text {link }},\left(\right.$ Wait, $\left.\left.s_{X}^{0}\right)\right)$ where $S_{\text {link }} \triangleq\left(\{\right.$ Wait, $\operatorname{Ub}\} \cup\left\{\operatorname{ToEnv}(e, \sigma), \operatorname{FromEnv}(e, \sigma) \mid e \in E_{?!}, \sigma \in S_{\text {link }}\right\} \cup$ $\left.\left\{\operatorname{ToInner}(e) \mid e \in \operatorname{option}\left(E_{?!}\right)\right\}\right)$ and $\rightarrow_{\text {link }}$ is defined in Fig. 2.

[^0][^1]FILTER-STEP-PROG-NONE

$$
\frac{\sigma=\mathrm{P} \vee \sigma=\mathrm{P}(e) \quad \sigma_{1} \xrightarrow{\tau} \Sigma}{\left(\sigma, \sigma_{1}, \sigma_{2}\right) \stackrel{\tau}{\rightarrow}_{\text {filter }}\left\{\left(\sigma, \sigma_{1}^{\prime}, \sigma_{2}\right) \mid \sigma_{1}^{\prime} \in \Sigma\right\}}
$$

$$
\begin{aligned}
& \text { FILTER-STEP-PROG-RECV } \\
& \left(\mathrm{P}(e), \sigma_{1}, \sigma_{2}\right) \xrightarrow{\tau}{ }^{\frac{\tau}{\rightarrow}} \mathrm{filter}\left\{\left(\mathrm{P}, \sigma_{1}^{\prime}, \sigma_{2}\right) \mid \sigma_{1}^{\prime} \in \Sigma\right\}
\end{aligned}
$$

FILTER-STEP-FILTER-NONE
$\frac{\sigma=\mathrm{F} \vee \sigma=\mathrm{F}(e) \quad \sigma_{2} \xrightarrow{\tau} \Sigma}{\left(\sigma, \sigma_{1}, \sigma_{2}\right) \xrightarrow{\tau}_{\text {filter }}\left\{\left(\sigma, \sigma_{1}, \sigma_{2}^{\prime}\right) \mid \sigma_{2}^{\prime} \in \Sigma\right\}}$

FILTER-STEP-PROG

FILTER-STEP-FILTER-FROM-INNER
$\underset{\left(\mathrm{F}(e), \sigma_{1}, \sigma_{2}\right) \xrightarrow{\tau} \text { filter }\left\{\left(\mathrm{F}, \sigma_{1}, \sigma_{2}^{\prime}\right) \mid \sigma_{2}^{\prime} \in \Sigma\right\}}{\sigma_{2} \xrightarrow{\text { FromInner }(e)} \Sigma}$
FILTER-STEP-FILTER-TO-INNER

$$
\frac{\sigma_{2} \xrightarrow{\operatorname{Tolnner}(e)} \Sigma}{\left(\mathrm{F}, \sigma_{1}, \sigma_{2}\right) \xrightarrow{\tau} \text { filter }\left\{\left(\text { if } e=\operatorname{Some}\left(e^{\prime}\right) \text { then } \mathrm{P}\left(e^{\prime}\right) \text { else } \mathrm{P}, \sigma_{1}, \sigma_{2}^{\prime}\right) \mid \sigma_{2}^{\prime} \in \Sigma\right\}}
$$

$$
\begin{array}{cc}
\substack{\text { FILTER-STEP-FILTER-TO-ENV } \\
\left(\mathrm{F}, \sigma_{1}, \sigma_{2}\right) \xrightarrow{e} \text { filter }\left\{\left(\mathrm{F}, \sigma_{1}, \sigma_{2}^{\prime}\right) \mid \sigma_{2}^{\prime} \in \Sigma\right\}} & \begin{array}{c}
\sigma_{2} \xrightarrow{\text { ToEnv }(e)} \sum
\end{array} \\
\left(\mathrm{F}, \sigma_{1}, \sigma_{2}\right) \xrightarrow{e} \text { filter }\left\{\left(\mathrm{F}, \sigma_{1}, \sigma_{2}^{\prime}\right) \mid \sigma_{2}^{\prime} \in \Sigma\right\}
\end{array}
$$

Fig. 1. Definition of $\rightarrow_{\text {filter }}$.
(Kripke) wrappers. The combinator $\lceil M\rceil_{X}$ translates a module with events E_{1} to a module with events E_{2}. This combinator is parametrized by $X=\left(S, \mathcal{R}, \leftharpoondown, \rightharpoonup, s^{0}, F^{0}\right)$ where S is a set of states and s^{0} is an initial state (\mathcal{R} is explained below). These states were omitted in the main paper for simplicity. They do not give additional expressive power but make writing the wrapper $\lceil\cdot\rceil_{r} \rightleftharpoons a$ more pleasant. The relations \leftharpoondown and \rightharpoonup describe how the wrapper transforms the incoming and outgoing events. Concretely, \leftharpoondown describes how to translate an event $e_{2} \in E_{2}$ to an event $e_{1} \in E_{1}$ and \rightharpoonup describes the translation from $e_{1}^{\prime} \in E_{1}$ to $e_{2}^{\prime} \in E_{2}$.

As mentioned in the paper, these relations are separation logic relations. Which separation logic the relations are defined in is determined by the parameter X of the wrapper. In the paper, it contains an arbitrary separation logic \mathcal{L} as one of its components. However, for our instantiations of the wrapper, we are only interested in instances of the separation logic Iris [Jung et al. 2015]. Thus, instead of an arbitrary separation logic \mathcal{L}, we parameterize the wrapper by a resource algebra \mathcal{R} and use the separation logic $\mathcal{L}=\operatorname{UPred}(\mathcal{R})$ where $\operatorname{UPred}(\mathcal{R})$ is Iris's logic of uniform predicates [Jung et al. 2018]. The separation logic relations \leftharpoondown and \rightharpoonup are of type $E_{1} \times S \times E_{2} \times S \rightarrow \operatorname{UPred}(\mathcal{R})$. The proposition $F^{0}: \operatorname{UPred}(\mathcal{R})$ denotes the initial set of resources owned by the wrapper.

We define $\lceil M\rceil_{X} \triangleq M \backslash_{F} \llbracket \operatorname{wrap}\left(s^{0}, F^{0}\right) \rrbracket_{s}$ where the filter module is given by the following Spec program: ${ }^{2}$

$$
\begin{aligned}
& \operatorname{wrap}\left(s_{2}, F_{2}\right) \triangleq_{\operatorname{coind}} \\
& \quad \exists e_{2} ; \operatorname{vis}\left(\operatorname{FromEnv}\left(e_{2}\right)\right) ; \forall e_{1}, s_{1}, F_{1} ; \operatorname{assume}\left(\operatorname{sat}\left(F_{1} * F_{2} *\left(e_{1}, s_{1}\right) \leftharpoondown\left(e_{2}, s_{2}\right)\right)\right) ; \operatorname{vis}\left(\operatorname{Tolnner}\left(e_{1}\right)\right) ; \\
& \quad \exists e_{1}^{\prime} ; \operatorname{vis}\left(\operatorname{FromInner}\left(e_{1}^{\prime}\right)\right) ; \exists e_{2}^{\prime}, s_{2}^{\prime}, F_{2}^{\prime} ; \operatorname{assert}\left(\operatorname{sat}\left(F_{1} * F_{2}^{\prime} *\left(e_{1}^{\prime}, s_{1}\right) \rightharpoonup\left(e_{2}^{\prime}, s_{2}^{\prime}\right)\right)\right) ; \operatorname{vis}\left(\operatorname{ToEnv}\left(e_{2}^{\prime}\right)\right) ; \\
& \quad \operatorname{wrap}\left(s_{2}^{\prime}, F_{2}^{\prime}\right)
\end{aligned}
$$

Fig. 2. Definition of $\rightarrow_{\text {link }}$.

Intuitively, wrap $\left(s_{2}, F_{2}\right)$ works as follows: Given an initial state s_{2} and a proposition describing resource ownership of the translation F_{2}, wrap synchronizes with the environment on an event e_{2}. Then it angelically chooses an event e_{1} for the inner module, a new state s_{1}, ownership of the environment F_{1}, and a proof that the ownership of the translation together with the ownership of the environment and the precondition $\left(e_{1}, s_{1}\right) \leftharpoondown\left(e_{2}, s_{2}\right)$ is satisfiable. Then wrap sends e_{1} to the inner module M. Next, it receives an event e_{1}^{\prime} from M and (demonically) chooses an event e_{2}^{\prime} to emit to the environment, a new state s_{2}^{\prime}, new ownership of the translation F_{2}^{\prime}, and a proof that the ownership of the translation together with the ownership of the environment and the postcondition $\left(e_{1}^{\prime}, s_{1}\right) \rightharpoonup\left(e_{2}^{\prime}, s_{2}^{\prime}\right)$ is satisfiable. After emitting e_{2}^{\prime}, the process repeats with state s_{2}^{\prime} and F_{2}^{\prime}.

B MICRO-INSTRUCTIONS OF Asm

Inspired by Sammler et al. [2022], instructions c in Asm are sequences of micro instructions (i.e., simple instructions that, when composed together, form an actual instruction), depicted in Fig. 3. The instruction syscall; c does a syscall and then executes c . The instruction upd(x, r. v); c updates

[^2]$\operatorname{Instr} \ni \mathrm{c} \triangleq \operatorname{syscall} ; \mathrm{c}|\operatorname{upd}(\mathrm{x}, \mathrm{r} . \mathrm{v}) ; \mathrm{c}| \operatorname{Idr}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{v} . \mathrm{v}^{\prime}\right) ; \mathrm{c}\left|\operatorname{str}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{v} . \mathrm{v}^{\prime}\right) ; \mathrm{c}\right|$ jump

Fig. 3. Micro-Instructions of Asm
ASM-LINK-JUMP
$\frac{\left(d^{\prime}=\mathrm{L} \wedge \mathrm{r}(\mathrm{pc}) \in \mathrm{d}_{1}\right) \vee\left(d^{\prime}=\mathrm{R} \wedge \mathrm{r}(\mathrm{pc}) \in \mathrm{d}_{2}\right) \vee\left(d^{\prime}=\mathrm{E} \wedge \mathrm{r}(\mathrm{pc}) \notin \mathrm{d}_{1} \cup \mathrm{~d}_{2}\right) \quad d \neq d^{\prime}}{(d, \operatorname{None}, \operatorname{Jump}(\mathrm{r}, \mathrm{m})) \rightsquigarrow \mathrm{d}_{1}, \mathrm{~d}_{2}}\left(d^{\prime}, \operatorname{None}, \operatorname{Jump}(\mathrm{r}, \mathrm{m})\right)$,
ASM-LINK-SYSCALL

$d \neq \mathrm{E}$	
$\left(d, \operatorname{None}, \operatorname{Syscall}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{~m}\right)\right) \rightsquigarrow_{\mathrm{d}_{1}, \mathrm{~d}_{2}}\left(\mathrm{E}, \operatorname{Some}(d), \operatorname{Syscall}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{~m}\right)\right)$	
ASM-LINK-SYSCALL-RETURN $d^{\prime} \neq \mathrm{E}$	
$\left(\mathrm{E}, \operatorname{Some}\left(d^{\prime}\right), \operatorname{SyscallRet}(\mathrm{v}, \mathrm{m})\right) \leadsto \varliminf_{d_{1}, \mathrm{~d}_{2}}\left(d^{\prime}, \operatorname{None}, \operatorname{SyscallRet}(\mathrm{v}, \mathrm{m})\right)$	

Fig. 4. Definition of semantic linking relation \rightsquigarrow for Asm.
the register x according to the map $\mathrm{r} \mapsto \mathrm{v}$ applied to the current register values r and then executes c . The instruction $\operatorname{ldr}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{v} . \mathrm{v}^{\prime}\right)$; c takes the value stored in x_{2}, applies the transformation $\mathrm{v} \mapsto \mathrm{v}^{\prime}$ to it to obtain an address, loads from the memory at that address, stores the result in x_{1}, and then executes c . The instruction $\operatorname{Idr}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{v} . \mathrm{v}^{\prime}\right)$; ctakes the value stored in x_{2}, applies the transformation $\mathrm{v} \mapsto \mathrm{v}^{\prime}$ to it to obtain an address, stores in the memory at that address the value in x_{1}, and then executes c . The instruction jump reads the pc register and then jumps to the address stored there.

The reason for the micro instruction representation is that we can represent a large instruction set by chaining few primitives. For example, the instructions used in print and locle are derived as follows:
ret $\triangleq \operatorname{upd}(\mathrm{pc}, \mathrm{r} . \mathrm{r}(\mathrm{x} 30))$; jump \quad syscall \triangleq syscall; next $\quad \operatorname{mov} \mathrm{x}, \mathrm{v} \triangleq \mathrm{upd}(\mathrm{x}, \mathrm{r} . \mathrm{v}) ;$ next
sle $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \triangleq \operatorname{upd}\left(\mathrm{x}_{1}, \mathrm{r} . \operatorname{if} \mathrm{r}\left(\mathrm{x}_{2}\right) \leq \mathrm{r}\left(\mathrm{x}_{3}\right)\right.$ then 1 else 0$)$; next
where we abbreviate next $\triangleq \operatorname{upd}(\mathrm{pc}, \mathrm{r} . \mathrm{r}(\mathrm{pc})+1)$; jump.

C SEMANTIC LINKING FOR Asm

The full definition of the semantic linking relation $\rightsquigarrow>$ for Asm can be found in Fig. 4. Compared to the excerpt shown in the paper, it contains two additional cases, ASM-LINK-Syscall and ASM-LINK-syscall-return. The rule asm-link-syscall makes sure syscalls are passed on to the environment (and never come from the environment). When a syscall is triggered, we store the current turn d in the private state of the linking operator. This way, we can make sure that when we return from a syscall (Asm-LINK-syscall-return), the execution continues with the module that triggered the syscall.

D Rec
The language Rec is a simple, high-level language with arithmetic operations, let bindings, memory operations, conditionals, and (potentially recursive) function calls (depicted in Fig. 5). The libraries R of Rec are lists of function declarations. Each function declaration contains the name of the function f , the argument names \bar{x}, local variables \bar{y} which are allocated in the memory, and a

```
    Library \(\ni \mathrm{R} \triangleq(\mathrm{fn} \mathrm{f}(\bar{x}) \triangleq \overline{\text { local } y[n]} ; \mathrm{e}), \mathrm{R} \mid \emptyset\)
    Expr \(\ni \mathrm{e} \triangleq \mathrm{v}|x| \mathrm{e}_{1} \oplus \mathrm{e}_{2} \mid\) let \(x:=\mathrm{e}_{1}\) in \(\mathrm{e}_{2} \mid\) if \(\mathrm{e}_{1}\) then \(\mathrm{e}_{2}\) else \(\mathrm{e}_{3}\left|\mathrm{e}_{1}\left(\overline{\mathrm{e}_{2}}\right)\right|\) !e \(\mid \mathrm{e}_{1} \leftarrow \mathrm{e}_{2}\)
    BinOp \(\ni \oplus \triangleq|<|==| \leq\)
Runtime Expr \(\ni \mathrm{E} \triangleq \cdots \mid\) alloc_frame \(\overline{(x, n)} \mathrm{E} \mid\) free_frame \((\overline{\ell, n}) \mathrm{E}|\operatorname{Ret}(b, \mathrm{E})|\) Wait \((b)\)
```

Fig. 5. Grammar of Rec.
function body e. The set of function names $|R|$ of a library R is defined as the names of the functions in the list R.

Module semantics. The semantics of a Rec library R is the module $\llbracket R \rrbracket_{r}$. The states of the module are of the from $\sigma=(\mathrm{E}, \mathrm{m}, \mathrm{R})$ where E is the current runtime expression (explained below). We write $\left(\rightarrow_{r}\right)$ for the transition system (shown in Fig. 6) and the initial state is (Wait(false), \emptyset, R).

To define the transition relation \rightarrow_{r}, we extend the static expressions e to runtime expressions E, which have operations for allocating and deallocating stack frames as well as two distinguished expressions $\operatorname{Ret}(b, \mathrm{E})$ and Wait (b). These expressions are used to control when the module emits call and return events: Initially, the module is waiting and willing to accept any incoming call to the functions of the library (see Rec-Start). Once it starts, the function call is wrapped in the Ret (b, \cdot) expression to ensure an event is emitted after the function finishes executing (see rec-ret-return). A call to functions of the library (see rec-call-internal), will trigger the allocation of the local variables and, subsequently, the execution of the function body. A call to an external function (see rec-call-external) will emit a Call! (f, \bar{v}, m) and proceed to the waiting state. The flag for the waiting becomes true, because the module is now willing to accept a return to the function call that was just issued (see rec-ret-incoming). The language Rec is an evaluation-context based language, meaning reductions can happen inside of an arbitrary evaluation context (see rec-eval-ctx). The definition of the evaluation contexts K can be found in the Coq development [Sammler et al. 2023].

Linking. Syntactically, linking of two Rec libraries (i.e., $R_{1} \cup_{r} R_{2}$) denotes merging the function definitions in R_{1} and R_{2}. In case of overlapping function names, the function declaration of the left library is chosen. (This choice is arbitrary.) If we semantically link two Rec modules (i.e., $M_{1}{ }^{d_{1}} \oplus_{r}^{d_{2}} M_{2}$), then we have to synchronize based on the function call and return events. To define the linking $M_{1}{ }^{d_{1}} \oplus_{r}^{d_{2}} M_{2}$, we use the combinator $M_{1} \oplus_{X} M_{2}$. In the case of Rec, we pick the relation R depicted in Fig. 7. The most interesting difference to Asm is that linking in Rec has to build up and then wind down a call-stack, which is maintained as the internal state of (\rightsquigarrow).

E $\quad\left\lceil\eta_{r \rightleftharpoons a}\right.$ WRAPPER

Before we can give the definition of the wrapper $\lceil\cdot\rceil_{r \rightleftharpoons a}$, we first need to describe its full form: $\lceil M\rceil_{r \rightleftharpoons a}^{a_{-}, \mathrm{d}, \mathrm{d}, \mathrm{m}}$. In particular, the wrapper is parametrized by a mapping a_{-}from Rec function names to Asm addresses, by the instruction address of the Asm code d, by the function names of the Rec code d , and by a (fragment of) the initial memory m , which can be used for global variables.

To define the wrapper, we pick a suitable flavor of separation logic. Instead of directly presenting the technical details of the resource algebra that we choose for $\mathcal{R}_{r \rightleftharpoons a}$, we instead describe the connectives of the resulting separation logic:

- $p \leftrightarrow v$ states that the Rec block id p is mapped to Asm address v. We lift this relation to locations by $\ell \leftrightarrow \mathrm{v}_{2} \triangleq \exists \mathrm{v}_{1}$. ℓ.blockid $\leftrightarrow \mathrm{v}_{1} * \mathrm{v}_{2}=\mathrm{v}_{1}+\ell$.offset and to values (i.e., $\mathrm{v} \leftrightarrow \mathrm{v}$) by

$$
\begin{aligned}
& \text { REC-BINOP } \\
& \left(\mathrm{v}_{1} \oplus \mathrm{v}_{2}, \mathrm{~m}, \mathrm{R}\right) \xrightarrow[\rightarrow]{\tau}_{r}^{\tau}\left\{(\mathrm{v}, \mathrm{~m}, \mathrm{R}) \mid \text { eval }_{\oplus}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}\right)\right\}
\end{aligned}
$$

REC-LOAD

$$
\left(!\mathrm{v}_{1}, \mathrm{~m}, \mathrm{R}\right){\xrightarrow{\tau}{ }_{r}}_{\mathrm{c}^{2}}\left\{\left(\mathrm{v}_{2}, \mathrm{~m}, \mathrm{R}\right) \mid \exists \ell . \mathrm{v}_{1}=\ell \wedge \mathrm{m}(\ell)=\mathrm{v}_{2}\right\}
$$

REC-STORE

$$
\left(\mathrm{v}_{1} \leftarrow \mathrm{v}_{2}, \mathrm{~m}, \mathrm{R}\right) \xrightarrow[\rightarrow]{\tau}_{\mathrm{r}}\left\{\left(\mathrm{v}_{2}, \mathrm{~m}\left[\ell \mapsto \mathrm{v}_{2}\right], \mathrm{R}\right) \mid \exists \ell \cdot \mathrm{v}_{1}=\ell \wedge \text { heap_alive }(\mathrm{m}, \ell)\right\}
$$

REC-IF
(if v then e_{1} else $\left.\mathrm{e}_{2}, \mathrm{~m}, \mathrm{R}\right) \xrightarrow{\tau}{ }_{r}\left\{(\mathrm{e}, \mathrm{m}, \mathrm{R}) \mid \exists b . \mathrm{v}=b \wedge\right.$ if b then $\mathrm{e}=\mathrm{e}_{1}$ else $\left.\mathrm{e}=\mathrm{e}_{2}\right\}$

$$
\begin{array}{ll}
\text { REC-LET } \\
(\text { let } x:=\mathrm{v} \text { ine, } \mathrm{m}, \mathrm{R}) \xrightarrow{\tau} & \begin{array}{l}
\text { REC-VAR } \\
r
\end{array} \\
(x, \mathrm{~m}, \mathrm{R}) \xrightarrow{\tau}_{r} \emptyset
\end{array}
$$

REC-ALLOC

$$
\text { heap_alloc_list }\left(\bar{n}, \bar{\ell}, \mathrm{~m}_{1}, \mathrm{~m}_{2}\right)
$$

$\left.\overline{(\operatorname{alloc} \overline{(y, n)}} \mathrm{e}, \mathrm{m}_{1}, \mathrm{R}\right) \xrightarrow{\tau}_{r}\left\{\left(\right.\right.$ free_frame $\left.\left.\overline{(\ell, n)}(\mathrm{e}[\bar{\ell} / \bar{y}]), \mathrm{m}_{2}, \mathrm{R}\right) \mid \forall m \in \bar{n} . m>0\right\}$

REC-FREE

(free_frame $\left.\overline{(\ell, n)} \mathrm{v}, \mathrm{m}_{1}, \mathrm{R}\right) \xrightarrow{\tau}_{\mathrm{r}}\left\{\left(\mathrm{v}, \mathrm{m}_{2}, \mathrm{R}\right) \mid\right.$ heap_free_list $\left.\left(\overline{(\ell, n)}, \mathrm{m}_{1}, \mathrm{~m}_{2}\right)\right\}$
REC-START

REC-CALL-INTERNAL

$$
\frac{(\text { fn } f(\bar{x}) \triangleq \overline{\operatorname{local} y[n]} ; \mathrm{e}) \in \mathrm{R}}{(\mathrm{f}(\overline{\mathrm{v}}), \mathrm{m}, \mathrm{R}) \xrightarrow[\rightarrow]{\tau}_{\tau}^{\tau}\{(\operatorname{alloc} \overline{(y, n)}(\mathrm{e}[\overline{\mathrm{v}} / \bar{x}]), \mathrm{m}, \mathrm{R})| | \bar{x}|=|\overline{\mathrm{v}}|\}}
$$

REC-CALL-EXTERNAL

$$
\begin{aligned}
& \text { REC-RET-RETURN } \\
& (\operatorname{Ret}(b, \mathrm{v}), \mathrm{m}, \mathrm{R}) \xrightarrow{\text { Return! }(\mathrm{v}, \mathrm{~m})} r{ }_{r}\{(\text { Wait }(\boldsymbol{b}), \mathrm{m}, \mathrm{R})\}
\end{aligned}
$$

$\frac{(E, m, R) \xrightarrow{\alpha}_{\text {REC-EVAL-CTX }}}{\frac{\alpha}{(K[E], m, R) \xrightarrow{\alpha}_{r}\left\{\left(K\left[E^{\prime}\right], m^{\prime}, R^{\prime}\right) \mid\left(E^{\prime}, m^{\prime}, R^{\prime}\right) \in \Sigma\right\}}}$

Fig. 6. Operational semantics of Rec.
relating Rec integers with the same integer in Asm and Boolean values with 0 and 1. The definition of $\mathrm{v} \leftrightarrow \mathrm{v}$ corresponds to $\mathrm{v} \sim_{w} \mathrm{~V}$ in the main paper.

```
REC-LINK-CALL
\(\frac{\left(d^{\prime}=\mathrm{L} \wedge \mathrm{f} \in \mathrm{d}_{1}\right) \vee\left(d^{\prime}=\mathrm{R} \wedge \mathrm{f} \in \mathrm{d}_{2}\right) \vee\left(d^{\prime}=\mathrm{E} \wedge \mathrm{f} \notin \mathrm{d}_{1} \cup \mathrm{~d}_{2}\right) \quad d \neq d^{\prime}}{\left(d, \overline{d_{s}}, \operatorname{Call}(\mathrm{f}, \overline{\mathrm{v}}, \mathrm{m})\right){\rightsquigarrow \mathrm{d}_{1}, \mathrm{~d}_{2}}\left(d^{\prime}, d:: \overline{d_{s}}, \operatorname{Call}(\mathrm{f}, \overline{\mathrm{v}}, \mathrm{m})\right)}\)
```

REC-LINK-RET
$\frac{d \neq d^{\prime}}{\left(d, d^{\prime}:: \overline{d_{s}}, \operatorname{Return}(\mathrm{v}, \mathrm{m})\right) \rightsquigarrow_{\mathrm{d}_{1}, \mathrm{~d}_{2}}\left(d^{\prime}, \overline{d_{s}}, \operatorname{Return}(\mathrm{v}, \mathrm{m})\right)}$

Fig. 7. Definition of semantic linking relation $\rightsquigarrow_{d_{1}, d_{2}}$ for Rec.

$$
\begin{aligned}
& \left(\mathrm{e}_{1}, s_{1}\right) \rightharpoonup\left(\mathrm{e}_{2}, s_{2}\right) \triangleq \exists \mathrm{r} \mathrm{~m} \overline{\mathrm{v}} . \mathrm{e}_{2}=\operatorname{Jump}!(\mathrm{r}, \mathrm{~m}) * \operatorname{inv}\left(\mathrm{r}(\mathrm{sp}), \mathrm{m}, \operatorname{mem}\left(\mathrm{e}_{1}\right)\right) * \\
& \left(\exists \mathrm{f} \overline{\mathrm{v}} \mathrm{~m} . \mathrm{e}_{1}=\operatorname{Call}!(\mathrm{f}, \overline{\mathrm{v}}, \mathrm{~m}) * \mathrm{f} \notin \mathrm{~d} * \mathrm{r}(\mathrm{x} 30) \in \mathrm{d} * a_{\mathrm{f}}=\mathrm{r}(\mathrm{pc}) *\right. \\
& s_{2}=\mathrm{r}:: s_{1} * \underset{\mathrm{v}, \mathrm{v} \in \overline{\mathrm{v}}, \operatorname{take}(|\overline{\mathrm{v}}|, \mathrm{r}(\mathrm{x} 0 \ldots \mathrm{x} 8))}{\boldsymbol{*}} \mathrm{v} \leftrightarrow \mathrm{v} \\
& \vee \exists \mathrm{~m} \mathrm{r}^{\prime} . \mathrm{e}_{1}=\operatorname{Return}!(\mathrm{v}, \mathrm{~m}) * \mathrm{r}^{\prime}:: s_{2}=s_{1} * \mathrm{r}(\mathrm{pc})=\mathrm{r}^{\prime}(\mathrm{x} 30) * \\
& \left.r(x 19 \ldots x 29, s p)=r^{\prime}(x 19 \ldots x 29, s p) * v \leftrightarrow r(x 0)\right) \\
& \left(\mathrm{e}_{1}, s_{1}\right) \leftharpoondown\left(\mathrm{e}_{2}, s_{2}\right) \triangleq \exists \mathrm{rm} \overline{\mathrm{v}} . \mathrm{e}_{2}=\mathrm{Jump} ?(\mathrm{r}, \mathrm{~m}) * \operatorname{inv}\left(\mathrm{r}(\mathrm{sp}), \mathrm{m}, \operatorname{mem}\left(\mathrm{e}_{1}\right)\right) * \\
& \left(\exists \mathrm{f} \overline{\mathrm{v}} \mathrm{~m} . \mathrm{e}_{1}=\text { Call? }(\mathrm{f}, \overline{\mathrm{v}}, \mathrm{~m}) * \mathrm{f} \in \mathrm{~d} * \mathrm{r}(\mathrm{x} 30) \notin \mathrm{d} * a_{\mathrm{f}}=\mathrm{r}(\mathrm{pc}) *\right. \\
& s_{1}=\mathrm{r}:: s_{2} * \underset{\mathrm{v}, \mathrm{v} \in \overline{\mathrm{v}}, \operatorname{take}(|\overline{\mathrm{v}}|, \mathrm{r}(\mathrm{x} 0 \ldots \mathrm{x} 8))}{\boldsymbol{*}} \mathrm{v} \leftrightarrow \mathrm{~V} \\
& \vee \exists \mathrm{vm} \mathrm{r}^{\prime} . \mathrm{e}_{1}=\operatorname{Return} ?(\mathrm{v}, \mathrm{~m}) * \mathrm{r}^{\prime}:: s_{1}=s_{2} * \mathbf{r}(\mathrm{pc})=\mathrm{r}^{\prime}(\mathrm{x} 30) * \\
& \left.r(x 19 \ldots x 29, s p)=r^{\prime}(x 19 \ldots x 29, s p) * v \leftrightarrow r(x 0)\right)
\end{aligned}
$$

Fig. 8. Definition of (\leftharpoondown) and (\rightharpoonup) for $\left\rceil_{r \rightleftharpoons a}\right.$.

- $\mathrm{V}_{1} \mapsto_{\mathrm{a}} \mathrm{V}_{2}$ asserts ownership of the address v_{1} in Asm memory m and asserts that it contains the value v_{2}. The $\mathrm{v}_{1} \mapsto_{a} \mathrm{v}_{2}$ connective is useful for asserting private ownership of Asm memory in assembly libraries (e.g., it is used internally by the coroutine library to manage its global state).
- $p \mapsto_{r} V$ where V is a map from offsets to values asserts that the block with id p contains exactly \vee. The $p \mapsto_{r} \vee$ connective is useful for asserting ownership of locations in the Rec memory, e.g., for locations that are not mapped to the Asm memory.
- inv $(\mathrm{v}, \mathrm{m}, \mathrm{m})$ asserts that m and m are in an invariant such that all the aforementioned assertions (i.e., $\mathrm{p} \leftrightarrow \mathrm{v}, \mathrm{v}_{1} \mapsto_{a} \mathrm{v}_{2}$, and $\mathrm{p} \mapsto_{r} \mathrm{~V}$) have the meaning described above and v points to a valid stack.

This separation logic is used to define the relations (\leftharpoondown) and $(-)$ (depicted in Fig. 8) that are used in the definition of $\lceil\cdot\rangle_{r \rightleftharpoons a}$. Note that these definitions build on the definition of the Kripke wrapper in Appendix A as they maintain the state s for tracking the call stack in addition to the

$$
\begin{aligned}
& \text { CORO-LINK-YIELD } \\
& \frac{\left(d=\mathrm{L} \wedge d^{\prime}=\mathrm{R}\right) \vee\left(d=\mathrm{R} \wedge d^{\prime}=\mathrm{L}\right)}{(d,(d, \text { None }), \text { Call }(\text { yield, }[\mathrm{v}], \mathrm{m})) \leadsto \overbrace{\text { coro }}^{\mathrm{d}_{1}, \mathrm{~d}_{2}}\left(d^{\prime},\left(d^{\prime}, \text { None }\right), \operatorname{Return}(\mathrm{v}, \mathrm{~m})\right)} \\
& \text { CORO-LINK-YIELD-UB } \\
& \frac{d=\mathrm{L} \vee d=\mathrm{R} \quad|\overline{\mathrm{v}}| \neq 1}{(d,(d, \text { None }), \text { Call }(\text { yield }, \overline{\mathrm{v}}, \mathrm{~m})) \leadsto \overbrace{\text { coro }}^{\mathrm{d}_{1}, \mathrm{~d}_{2}} \text { \& }} \\
& \text { CORO-LINK-L-YIELD-INIT } \\
& (L,(L, \operatorname{Some}(f)), \text { Call (yield, }[v], m)) \leadsto{ }_{c}^{d_{1}, d_{2}}(R,(R, \text { None }), \text { Call }(f,[v], m)) \\
& \text { CORO-LINK-L-YIELD-INIT-UB }
\end{aligned}
$$

Fig. 9. Definition of linking relation $\rightsquigarrow \underset{\text { coro }}{d_{1}, d_{2}}$.
separation logic predicates. We define:
$\lceil M\rceil_{r \rightleftharpoons a}^{a_{-}, \mathrm{d}, \mathrm{d}, \mathrm{m}} \triangleq\lceil M\rceil_{X} \quad$ where $\quad X \triangleq\left(\operatorname{List}(\right.$ Registers $\left.), \mathcal{R}_{r \rightleftharpoons a}, \leftharpoondown, \rightharpoonup,[], \underset{\mathrm{v}_{1} \mapsto \mathrm{v}_{2} \in \mathrm{~m}}{\boldsymbol{*}} \mathrm{v}_{1} \mapsto a \mathrm{v}_{2}\right)$

F COROUTINE LINKING

Formally, $M_{1} \oplus_{\text {coro }} M_{2}$ is defined using the generic linking operator $M_{1} \oplus_{X} M_{2}$. Concretely, we define $M_{1}{ }^{d_{1}} \oplus_{\text {coro }}^{d_{2} f} M_{2} \triangleq M_{1} \oplus_{\text {coro }} M_{2}$ where

$$
X_{\text {coro }} \triangleq\left((\mathrm{D} \times \text { option }(\text { FnName })), \leadsto \rightsquigarrow_{\text {coro }}^{\mathrm{d}_{1}, \mathrm{~d}_{2}},(\mathrm{E}, \text { Some }(\mathrm{f}))\right)
$$

Note that this linking operator is parametrized by a function name f of the initial function on the right side of the linking (stream in the example). The effect of linking is described by $\rightsquigarrow \rightsquigarrow_{\text {coro }}$ shown in Fig. 9. There are many transitions, but most of them are straightforward. The rule coro-link-yield encodes the core idea of $\oplus_{\text {coro }}$: If either the left side or the right side performs a call to yield, control switches to the other side, and the event is transformed to a Return? (v, m) event. There is one special case to consider: When M_{1} calls yield the first time, there is no yield in M_{2} from which to return. Instead this first call to yield becomes the invocation of a designated start function f in M_{2} (stream in the example), as stated by coro-link-l-yield-init. coro-link-init handles the initial call from the environment to M_{1}. If the environment tries to call a function not in M_{1}, the behavior is undefined (coro-Link-init-ub). coro-Link-L-Return handles the return from M_{1} to the environment. M_{2} should never return and thus coro-hink-r-return states that doing so would lead to undefined behavior. Finally, coro-link-call and coro-link-e-return allow both M_{1} and M_{2} to call external functions (like print). However, M_{1} and M_{2} cannot directly call a function in the other module (without going through yield) (coro-link-call-ub) and the environment may not call them back recursively (coro-link-call-ub).

REFERENCES

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular foundation for higher-order concurrent separation logic. F. Funct. Program. 28 (2018), e20. https://doi.org/10.1017/S0956796818000151
Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. ACM, 637-650. https://doi.org/10. 1145/2676726.2676980
Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean Pichon-Pharabod, Derek Dreyer, Deepak Garg, and Peter Sewell. 2022. Islaris: verification of machine code against authoritative ISA semantics. In PLDI. ACM, 825-840. https://doi.org/10.1145/3519939.3523434
Michael Sammler, Simon Spies, Youngju Song, Emanuele D'Osualdo, Robbert Krebbers, Deepak Garg, and Derek Dreyer. 2023. DimSum: A Decentralized Approach to Multi-language Semantics and Verification (Coq development). https: //doi.org/10.5281/zenodo. 7306313 Project webpage: https://plv.mpi-sws.org/dimsum/.

[^0]: ${ }^{1}$ The Coq development defines linking via more low-level combinators that we omit from the presentation here. Also the Coq development allows undefined behavior via a Boolean on the right side of $\leadsto \rightarrow$ instead of a separate $\&$ result.

[^1]: Authors' addresses: Michael Sammler, MPI-SWS, Saarland Informatics Campus, Germany, msammler@mpi-sws.org; Simon Spies, MPI-SWS, Saarland Informatics Campus, Germany, spies@mpi-sws.org; Youngju Song, MPI-SWS, Saarland Informatics Campus, Germany, youngju@mpi-sws.org; Emanuele D'Osualdo, MPI-SWS, Saarland Informatics Campus, Germany, dosualdo@mpi-sws.org; Robbert Krebbers, Radboud University Nijmegen, The Netherlands, mail@robbertkrebbers.nl; Deepak Garg, MPI-SWS, Saarland Informatics Campus, Germany, dg@mpi-sws.org; Derek Dreyer, MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org.

[^2]: ${ }^{2}$ The Coq development defines an equivalent module directly using a step relation, but we give the definition here using Spec for readability.

