
38

Formal Verification of Higher-Order Probabilistic Programs

Reasoning about Approximation, Convergence, Bayesian Inference, and Optimization

TETSUYA SATO, University at Buffalo, SUNY, USA

ALEJANDRO AGUIRRE, IMDEA Software Institute, Spain

GILLES BARTHE, IMDEA Software Institute, Spain

MARCO GABOARDI, University at Buffalo, SUNY, USA

DEEPAK GARG,Max Planck Institute for Software Systems, Germany

JUSTIN HSU, University of WisconsinśMadison, USA

Probabilistic programming provides a convenient lingua franca for writing succinct and rigorous descriptions
of probabilistic models and inference tasks. Several probabilistic programming languages, including Anglican,
Church or Hakaru, derive their expressiveness from a powerful combination of continuous distributions,
conditioning, and higher-order functions. Although very important for practical applications, these features
raise fundamental challenges for program semantics and verification. Several recent works offer promising
answers to these challenges, but their primary focus is on foundational semantics issues.

In this paper, we take a step further by developing a suite of logics, collectively named PPV, for proving
properties of programs written in an expressive probabilistic higher-order language with continuous sampling
operations and primitives for conditioning distributions. Our logics mimic the comfortable reasoning style of
informal proofs using carefully selected axiomatizations of key results from probability theory. The versatility of
our logics is illustrated through the formal verification of several intricate examples from statistics, probabilistic
inference, and machine learning. We further show expressiveness by giving sound embeddings of existing
logics. In particular, we do this in a parametric way by showing how the semantics idea of (unary and relational)
⊤⊤-lifting can be internalized in our logics. The soundness of PPV follows by interpreting programs and
assertions in quasi-Borel spaces (QBS), a recently proposed variant of Borel spaces with a good structure for
interpreting higher order probabilistic programs.

CCS Concepts: ·Theory of computation→ Probabilistic computation; Logic and verification;Higher

order logic; · Computing methodologies→ Machine learning algorithms;

Additional Key Words and Phrases: probabilistic programming, formal reasoning, relational type systems

ACM Reference Format:

Tetsuya Sato, Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Justin Hsu. 2019. Formal
Verification of Higher-Order Probabilistic Programs: Reasoning about Approximation, Convergence, Bayesian
Inference, and Optimization. Proc. ACM Program. Lang. 3, POPL, Article 38 (January 2019), 30 pages. https:
//doi.org/10.1145/3290351

Authors’ addresses: Tetsuya Sato, CSE, University at Buffalo, SUNY, USA, tetsuyas@buffalo.edu; Alejandro Aguirre, IMDEA
Software Institute, Spain, alejandro.aguirre@imdea.org; Gilles Barthe, IMDEA Software Institute, Spain, gjbarthe@gmail.com;
Marco Gaboardi, CSE, University at Buffalo, SUNY, USA, gaboardi@buffalo.edu; Deepak Garg, Max Planck Institute for
Software Systems, Germany, dg@mpi-sws.org; Justin Hsu, CS, University of WisconsinśMadison, USA, email@justinh.su.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/1-ART38
https://doi.org/10.1145/3290351

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3290351
https://doi.org/10.1145/3290351
https://doi.org/10.1145/3290351

38:2 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

1 INTRODUCTION

Probabilistic programming is en vogue in statistics andmachine learning, wheremodern probabilistic
programming languages are viewed as a convenient lingua franca for writing classical statistical
estimators, and for describing probabilistic models and performing probabilistic inference. A key
strength of manymodern probabilistic programming languages is their expressiveness, which allows
programmers to give succinct descriptions for a broad range of probabilistic models, and to program
specialized inference algorithms when generic algorithms do not perform well. This expressiveness
has led to significant theoretical challenges. Specifically, many probabilistic programming languages
adopt a combination of features that goes beyond standard program semantics and program
verification. In this paper, we consider functional probabilistic programming languages and focus
on the following elements:

• sampling: the first key ingredient of a probabilistic programming language is a construct
to sample from (continuous) distributions. A popular way to expose this mechanism is the
monadic approach, where probabilities are modelled as effects. Languages feature a type
constructorM for probability measures andmonadic operations for sampling from continuous
distributions or composing probabilistic computations.

• conditioning: the second key ingredient of probabilistic programming languages is a con-
ditioning operator, which can be used to build a conditional distribution that incorporates
observations from the real world. Conditioning is often performed through specific constructs,
such as observe or query, which scale a distribution to a measure according to a likelihood
function, and then normalize the resulting measure back to a distribution.

• higher-order functions: probabilistic models and statistical tasks are often described in a
natural way by means of functional higher-order programs. The modularity that higher-order
functions provide is useful for writing likelihood functions, weighting functions, paramet-
ric models, etc. These components facilitate writing concise and expressive probabilistic
computations.

Examples of probabilistic programming languages that incorporate the features above are Anglican,
Church, and Hakaru. For example, Anglican [Wood et al. 2014] extends Clojure with constructs for
basic probability distributions and an operation observe, which is used to build conditional distribu-
tions with respect to a predicate representing an observation of random variables. Church [Goodman
et al. 2008] supports in a simply typed lambda calculus a similar conditioning operation named
query, Hakaru [Narayanan et al. 2016] supports these features as a domain-specific language
embedded in Haskell.
Despite their popularity, higher-order probabilistic programming languages pose significant

challenges for semantics and verification. In particular, a classical result [Aumann 1961] shows
that the category of measurable spaces is not Cartesian closed, and thus it cannot be used to
give denotational models for higher-order probabilistic languages. Aumann’s negative result has
triggered a long line of research, culminating in several recent proposals for semantic models of
higher-order probabilistic languages. One such proposal, relevant to our work, is the notion of the
quasi-Borel space (QBS) [Heunen et al. 2017], which has a rich categorical structure and yields an
elegant denotational model for higher-order probabilistic programs.

While a denotational model facilitates formal reasoning about probabilistic programs, the result-
ing style of reasoning is typically hard to use. As with more standard programming languages, we
would prefer to use other techniques, such as equational methods and program logics, to structure
the arguments at a higher level. Several recent papers have started to look at this. For instance,
Staton [2017] and Culpepper and Cobb [2017] have recently proposed equational methods for
proving equivalences between higher-order probabilistic programs. Culpepper and Cobb [2017]

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:3

propose an equational framework based on observational equivalence and logical relations, while
Staton [2017] proposes a semantics method for equational reasoning which can be used for program
equivalence. These two methods are important steps towards more general high-level reasoning
techniques. However, their main focus is program equivalence and they do not directly support
arbitrary program properties. Moreover, their approach is based on techniques which are difficult
to directly apply to complex examples. As a result, for more complex examples the only currently
viable approach is to resort directly to the denotational semantics; for instance, Ścibior et al. [2017]
use semantic methods to prove the correctness of higher-order Bayesian inference.

Our work: The long-term goal of our research is to build practical verification tools for higher-
order probabilistic programs, and to leverage these tools for building libraries of formally verified
algorithms from machine learning and statistics. This paper makes an initial step towards this
goal and justifies its feasibility by introducing a framework, called the Probabilistic Programming
Verification framework (PPV), for proving (unary and relational) properties of probabilistic higher-
order programs with discrete and continuous distributions. PPV is:

• expressive: it can reason about different properties of probabilistic programs, including ap-
proximation, convergence, probabilistic inference and optimization.

• practical: it supports lean derivations that abstract away from lower-level concerns, like
measurability.

• sound: it can be soundly interpreted in the category of quasi-Borel spaces.

PPV’s design is based on three different logics: PL, UPL and RPL. These logics are presented
in the style of Aguirre et al. [2017]: PL is an intuitionistic logic for reasoning about higher-order
programs using a style inspired by HOL [Jacobs and Melham 1993] based on judgments of the
form Γ | Ψ ⊢PL ϕ. UPL is a unary program logic which manipulates judgments of the form
Γ | Ψ ⊢UPL e : τ | ϕ. Finally, RPL is a relational program logic which manipulates judgments of the
form Γ | Ψ ⊢RPL e : τ ∼ e ′ : τ ′ | ϕ ′. Here Γ is a simple typing context; τ and τ ′ are the simple types of
the expressions e and e ′; Ψ is a set of assumed assertions; ϕ is a postcondition; and ϕ ′ is a relational
postcondition. The proof systems are equi-expressive, but the UPL and RPL are closer to the
syntax-directed style of reasoning generally favored in unary and relational program verification,
respectively. We define an interpretation of assertions in the category of QBS predicates and prove
that the logics are sound with respect to the interpretation. This interpretation guarantees that
every subset of a quasi-Borel space yields an object in the category. As a consequence, assertions
of the logic are interpreted set-theoretically, and extensionality is valid. This facilitates formal
reasoning and formal verification.

To further ease program verification, we define carefully crafted axiomatizations of fundamental
probabilistic definitions and results, including expectations as well as concentration bounds. Fol-
lowing Ścibior et al. [2017], we validate the soundness of these axiomatizations using synthetic
measure theory for the QBS framework. This ensures that a derivation based on our proof system
and axioms is valid in quasi-Borel spaces. A consequence of this approach is that, in order to verify
programs, a user of PPV can focus on higher-level reasoning about probabilistic programs, rather
than the specific details of QBS.
We validate our design through a series of examples from statistics, Bayesian inference and

machine learning. We also demonstrate that our systems can be used as a framework where other
program logics can be embedded. We show this in a parametrized way by using PPV to define a
family of graded ⊤⊤-liftings, a logical relation-like technique to construct predicates/relations over
probability distributions, starting from predicates/relations over values. As a concrete application,
we embed two recent probabilistic logics: a union bound logic for reasoning about accuracy [Barthe

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:4 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

et al. 2016b], and a logic for reasoning about probability distributions through couplings [Aguirre
et al. 2018].

Overall, our work provides a fresh, verification-oriented perspective on quasi-Borel spaces, and
contributes to establish their status as a sound, simple and natural theoretical framework for
practical verification of higher-order probabilistic programs.
In technical terms, our framework follows the presentation style introduced by Aguirre et al.

[2017] to reason about deterministic higher-order programs. We extend this approach to higher-
order probabilistic programs with continuous random variables. A similar approach has been
used for discrete random variables by Aguirre et al. [2018] in order to reason about unary and
relational properties ofMarkov chains. Our contribution differs significantly from the one byAguirre
et al. [2018]. Assertions in their framework are non-probabilistic and are interpreted first over
deterministic values, and then over distributions over values by probabilistic lifting. Instead, in
PPV we can reason about (monadic) probabilistic expressions directly in assertions. This is a key
component in expressing probabilistic properties such as the convergence of the expectation of
an expression directly. Moreover, Aguirre et al. [2018] support analysis of probabilistic programs
via coupling arguments only. PPV’s proof rules are more expressive: they allow reasoning about
probabilities within the logic.

2 PPV BY EXAMPLE

In this section we introduce the general ideas behind PPV through two examples.

Continuous Observations: Two Uniform Samples. This warm-up example serves as an introduction
to Bayesian conditioning and how we can reason about it in our system. Let us consider the
following program twoUs:

twoUs ≡ letu1 = Uniform(0, 1) in letu2 = Uniform(0, 1) in
lety = u1 ⊗ u2 in
query y ⇒ λx .(ifπ1(x) < .5 ∨ π2(x) > .5 then 1 else 0)

The first line defines two uniform distributions u1 and u2. The second line pairs the two distri-
butions together using the product measure of u1 and u2 which we denote u1 ⊗ u2 (this is defined
formally in Section 3). Then, the third line performs Bayesian conditioning on this product measure
using the construction query. The prior y gets conditioned by the likelihood function corresponding
to the observation π1(x) < .5 ∨ π2(x) > .5, and a posterior is computed. In this simple example, this
is morally equivalent to giving score 1 to the traces that do satisfy the assertion, and score 0 to
the ones that do not satisfy it, and rescaling the distribution. In general, we can use the condition-
ing construct with an arbitrary likelihood function to perform more general inference. After the
observation, the posterior is a uniform distribution over the set {(x1, x2) | x1 < .5 ∨ x2 > .5}.
The simple property we will show is that Pr(x1,x2)∼µ [x1 > .5] = 1/3, where µ is the posterior

after the observation and the pair (x1, x2) is distributed by µ. This is expressed in the unary logic
UPLÐsince this is a unary propertyÐthrough the following judgment:

⊢UPL twoUs : M[real × real] | Prz∼r[π1(z) > .5] = 1/3

where the distinguished variable r in the logical assertion represents the given term twoUs and the
variable z is bound by Prz∼r[. . .] and it is used to represent the value sampled from the probability
distribution r. We show informally how to derive this assertion. The system UPL allows us to
reason in a syntax-directed manner. Since the program starts with three let bindings, the first step
will be to apply the rule for let bindings three times. This rule, which we will present formally in
Section 6, moves u1,u2 and y plus the logical assertions about them into the context. The resulting

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:5

judgement is:

Prz∼u1 [z > .5] = 1/2, Prz∼u2 [z < .5] = 1/2, Prz∼u1 [⊤] = 1, Prz∼u2 [⊤] = 1,y = u1 ⊗ u2
⊢UPL queryy ⇒ λx .(ifπ1(x) < .5 ∨ π2(x) > .5 then 1 else 0) : M[real × real] |
Prz∼r[π1(z) > .5] = 1/3

where for simplicity we omitted the typing context. The logical assertions on u1 and u2 can be
easily discharged using the assumption that they are distributed uniformly as Uniform(0, 1), i.e.
uniformly between 0 and 1. To finish the proof, we want to use the fact that query corresponds to
conditioning. In UPL we can do this using the following special rule that internalizes the Bayesian
properties of query:1

Γ, x : τ ⊢ e ′ : bool Γ, x : τ ⊢ e ′′ : bool Γ ⊢ e : M[τ]
[Bayes]

Γ | Ψ ⊢UPL query e ⇒ λx .(if e ′ then 1 else 0) : M[τ] | Pry∼r[e ′′[y/x]] = Prx∼e [e ′∧e ′′]
Prx∼e [e ′]

This rule corresponds to a natural reasoning principle (derived by Bayes’ theorem) for query
when we have a boolean condition as the likelihood function: the probability of an event e ′′ under
the posterior distribution is equal to the probability of the intersection of the event e ′′ and the
observation e ′, under the prior distribution e , divided by the probability of e ′ under the prior
distribution e .

To apply this rule we need to rewrite the postcondition into the appropriate shape: a fraction that
has the probability of a conjunction of events in the numerator and the probability of the observed
event in the denominator. This can be done in UPL through subtyping which lets us reason directly
in the logic PL, where we can prove the following judgment:

Prz∼u1 [z > .5] = 1/2, Prz∼u2 [z < .5] = 1/2, Prz∼u1 [⊤] = 1, Prz∼u2 [⊤] = 1,y = u1 ⊗ u2
⊢PL

Prz∼y [(π1(z)<.5∨π2(z)>.5)∧(π1(z)>.5)]
Prz∼y [π1(z)<.5∨π2(z)>.5] =

1/4
3/4 = 1/3

Using this equivalence and subtyping we can rewrite the judgment we need to prove as follows:

Prz∼u1 [z > .5] = 1/2, Prz∼u2 [z < .5] = 1/2, Prz∼u1 [⊤] = 1, Prz∼u2 [⊤] = 1,y = u1 ⊗ u2
⊢UPL queryy ⇒ λx .(ifπ1(x) < .5 ∨ π2(x) > .5 then 1 else 0) : M[real × real] |
Prz∼r[π2(z) > .5] =

Prz∼y [(π1(z)<.5∨π2(z)>.5)∧(π1(z)>.5)]
Prz∼y [π1(z)<.5∨π2(z)>.5]

and this can be proved by applying the [Bayes] rule above, concluding the proof. We saw different
components of PPVat work here: unary rules, subtyping, and a special rule for query. All these
components can be assembled in more complex examples, as we show in Section 8.

Monte Carlo Approximation. As a second example, we show how to use PPV to reason about other
classical applications that do not use observations. We consider reasoning about expected value and
variance of distributions. Concretely, we show convergence in probability of an implementation of
the naive Monte Carlo approximation. This algorithm considers a distribution d and a real-valued
function h, and tries to approximate the expected value of h(x) where x is sampled from d by
sampling a number i of values from d and computing their mean.
Consider the following implementation of Monte Carlo approximation:

MonteCarlo ≡letrec f (i : nat) = if(i ≤ 0) then return(0)
else mletm = f (i − 1) in mletx = d in return((1/i) ∗ (h(x) +m ∗ (i − 1)))

Our goal is to prove the convergence in probability of this algorithm, that is, the result can be
made as accurate as desired by increasing the sample size (denoted by i above and n below). This is

1We introduce the rule here to give some intuition, but this is also discussed in Section 6 after introducing PPV.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:6 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

formalized in the following UPL judgment (we omit the typing context for simplicity):

(Ex∼d [1] = 1), (σ 2
= Varx∼d [h(x)]), (µ = Ex∼d [h(x)]), (ε > 0) ⊢UPL

MonteCarlo : nat → M[real] | ∀n, (n > 0) =⇒ Pry∼rn[|y − µ | ≥ ε] ≤ σ 2/nε2 (1)

Formally, we are showing that the probability that the computed mean y differs from the actual
mean µ by more than ε is upper bounded by a value that depends inversely on nÐmore samples
lead to better estimates. To derive (1) in UPL we need to perform two steps:

• Calculating the mass, mean, and variance of MonteCarlo in UPL:

(Ex∼d [1] = 1), (σ 2
= Varx∼d [h(x)]), (µ = Ex∼d [h(x)]), (ε > 0) ⊢UPL

MonteCarlo : nat → M[real] |
∀n : nat.(n > 0) =⇒ (Ey∼rn[1] = 1) ∧ (Ey∼rn[y] = µ) ∧ (Vary∼rn[y] = σ 2/n)

(2)

• Applying the Chebyshev inequality (formula 17 in Section 5.1) to (2) using subtyping.

We focus on the proof of (2), which is carried out by induction on n. In our system, the rule for
letrec lets us prove inductive properties of (terminating) recursive functions by introducing an
inductive hypothesis into the set of assertions that can only be instantiated for smaller arguments.
After applying this rule, the new goal is:

ϕIH ≡ ∀n : nat.(n < i) =⇒ (n > 0) =⇒ (Ey∼f (n)[1] = 1) ∧ (Ey∼f (n)[y] = µ) ∧ (Vary∼f (n)[y] = σ 2/n)

On this, we can apply a rule for case distinction according to the two branches of the if-then-else,
which gives us the following two premises:

Ψ, (i ≤ 0) ⊢ return(0) | ψ
Ψ, (i > 0) ⊢ mletm = f (i − 1) in (mletx = d in return(1

i
(h(x) +m ∗ (i − 1)))) | ψ

where Ψ = (Ex∼d [1] = 1), (µ = Ex∼d [h(x)]), (σ 2
= Varx∼d [h(x)]), (i > 0),ϕIH and ψ = (Ey∼ri [1] =

1) ∧ (Ey∼ri [y] = µ) ∧ (Vary∼ri [y] = σ 2/i). The first premise is obvious since the assumptions (i > 0)
and (i ≤ 0) are contradictory. The second premise follows from subtyping applied to a PL-judgment
that is proved by instantiating the induction hypothesis with i − 1 and applying axioms on expected
values. This concludes the proof.

Again, we have seen here several different components of PPV: unary rules (including the rule
for inductive reasoning), subtyping, and the use of equations and axioms. We further illustrate these
components of PPV as well as others in verifying more involved examples (including relational
examples) in Section 8.

Remark: In this work, we assume that query is always defined: we don’t consider programs
łobservingž events with zero probability. We make this simplification to focus here on program
verification without the need to reason about whether a query statement is defined or not. This
approach was used, for example, in Barthe et al. [2016a] to reason about differential privacy for
Bayesian processes. We believe that the problem of identifying ways to reason about when a query
statement is defined is an important one, but it is orthogonal to the formal reasoning we consider
here. Other work has focused on this problem [Borgström et al. 2011; Heunen et al. 2017; Ścibior
et al. 2017; Shan and Ramsey 2017]. In a similar way, we consider only programs that terminate,
without stipulating a specific method to prove termination.

3 HPPROG: A HIGHER-ORDER PROBABILISTIC PROGRAMMING LANGUAGE

We present the probabilistic language HPProg we use in this paper. The language is an extension of
the simply-typed lambda calculus with products, coproducts, natural numbers, lists, (terminating)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:7

recursion and the monadic type for probability. The types of HPProg are defined by the following
grammar.

τ̃ ::= unit | bool | nat | real | pReal | τ̃ × τ̃ | list(τ̃) (Basic Types)
τ ::= τ̃ | M[τ] | τ → τ | τ × τ | list(τ) (Types)

We distinguish two sorts of types: Basic Types and Types. The former, as the name suggests, include
standard basic types (where pReal is the type of positive real numbers), and products and lists
of them. The latter include a monadic type M[τ] for general measures on τ , as well as function
and product types. As we will see later in Section 7, Basic Types will be interpreted in standard
Borel spaces, while for general Types we will need quasi-Borel spaces. The language of HPProg
expressions is defined by the following grammar.

e ::= x | c | f | e e | λx .e | ⟨e, e⟩ | πi (e) | case e with [dixi ⇒ ei]i | letrec f x = e
| return e | bind e e | query e ⇒ e | Uniform(e, e) | Bern(e) | Gauss(e, e)

Most of the constructs are standard. We use c to range over a set of basic constants and f to range
over a set of primitive functions. We have monadic constructions return e and bind e1 e2 for
the monadic typeM[τ], a conditioning construction query e1 ⇒ e2 for computing the posterior
distribution given a prior distribution e1, and a likelihood function e2, and primitives representing
basic probability distributions.
HPProg expressions are simply typed, using rules that are mostly standard. We show only

selected rules here:

Γ ⊢ e : M[τ] Γ ⊢ e ′ : τ → pReal

Γ ⊢ query e ⇒ e ′ : M[τ]
Γ ⊢ e : M[τ] Γ ⊢ e ′ : τ → M[τ ′]

Γ ⊢ bind e e ′ : M[τ ′]
Γ, f : I → σ , x : I ⊢ e : σ I ∈ {nat, list(τ)} Terminate(f , x, e)

Γ ⊢ letrec f x = e : I → σ

Here, Terminate(f , x, e) is any termination criterion which ensures that all recursive calls are
on smaller arguments. We also consider a basic equational theory for expressions based on β-
reduction, extensionality and monadic rules. These are also standard and we omit them here. We
enrich this equational theory with axioms and equations reflecting common reasoning principles
for probabilistic programming in Section 5.
For convenience, we use some syntactic sugar: (letx = e1 in e2) ≡ (λx . e2)e1, (mletx =

e1 in e2) ≡ bind e1 (λx . e2), and e1 ⊗ e2 ≡ bind e1 (λx . bind e2 (λy. return⟨x,y⟩)). Thanks to the
commutativity of M (the Fubini-Tonelli equality; see Section 5), the semantics of e1 ⊗ e2 is exactly
the product measure of e1 and e2.

4 PL: A LOGIC FOR PROBABILISTIC PROGRAMS

In this section we introduce a logic, named PL, for reasoning about higher-order probabilistic
programs. This logic forms the basis of PPV. PL contains basic predicates over expressions of HPProg.
To support more natural verification in PPV, we enrich PL with a set of axioms encompassing a
wide variety of reasoning principles over probabilistic programs.

PL follows the style of higher-order simple predicate logic (HOL) [Jacobs and Melham 1993],
where quantified variables can be of arbitrary types, but extends HOL with assertions about
probabilistic constructions. Terms and formulas of PL are defined by the following grammar:

t ::= e | Ex∼t [t(x)] | scale(t, t) | normalize(t) (enriched expressions)
ϕ ::= (t = t) | (t < t) | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ =⇒ ϕ | ¬ϕ | ∀x : τ .ϕ | ∃x : τ .ϕ (logical formulas)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:8 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

Γ ⊢ t : τ Γ ⊢ t ′ : τ t =βιµ t
′
[CONV]

Γ | Ψ ⊢PL t = t ′
Γ | Ψ ⊢PL ϕ[t/x] Γ | Ψ ⊢PL t = u

[SUBST]
Γ | Ψ ⊢PL ϕ[u/x]

ϕ ∈ Ψ
[AX]

Γ | Ψ ⊢PL ϕ
Γ | Ψ,ψ ⊢PL ϕ

[⇒I]
Γ | Ψ ⊢PL ψ =⇒ ϕ

Γ | Ψ ⊢PL ψ =⇒ ϕ Γ | Ψ ⊢PL ψ
[⇒E]

Γ | Ψ ⊢PL ϕ

Fig. 1. Selection of rules for the PL logic.

Enriched expressions enrich HPProg expressions e with constructions for expectations Ex∼t [t(x)],
rescaling of measures scale(t, t), and normalization normalize(t). A logical formula ϕ is a formula
built over equalities and inequalities between enriched expressions.
Similar to expressions in HPProg, we consider only well-typed enriched expressions. Typing

rules for the additional constructs of PL are the following.

Γ ⊢ t1 : M[τ] Γ ⊢ t2 : τ → pReal

Γ ⊢ Ex∼t1 [t2(x)] : pReal
Γ ⊢ t1 : M[τ] Γ ⊢ t2 : τ → pReal

Γ ⊢ scale(t1, t2) : M[τ]
Γ ⊢ t : M[τ]

Γ ⊢ normalize(t) : M[τ]
Intuitively, Ex∼t1 [t2(x)] is the expected value of the function t2 over the distribution t1; scale(t1, t2)
is a distribution obtained from an underlying measure t1 by rescaling its components by means of
the density function t2; normalize(t) is the normalization of a measure t to a probability distribution
(a measure with mass 1). Expectations of real-valued functions are defined by the difference of
positive and negative parts. Precisely, for given Γ ⊢ t1 : M[τ] and Γ ⊢ t2 : τ → real, we define the
expectation as the following syntactic sugar:2

Ex∼t1 [t2(x)] ≡ Ex∼t1 [if t2(x) > 0 then |t2(x)| else 0] − Ex∼t1 [if t2(x) < 0 then |t2(x)| else 0]
We can also define variance and probability in terms of expectation:

Pr
x∼e

[e ′] ≡ Ex∼e [if e ′ then 1 else 0] Varx∼e1 [e2] ≡ Ex∼e1 [(e2)2] − (Ex∼e1 [e2])2

A PL judgment has the form Γ | Ψ ⊢PL ϕ where Γ is a context assigning types to variables, Ψ is a set
of formulas well-formed in the context Γ, and ϕ is a formula also well-formed in Γ. Rules to derive
well-formedness judgments Γ ⊢ ϕ wf are rather standard and we omit them here. We often refer to
Ψ as the precondition. The proof rules of PL are rather standard, so we show only a selection in
Figure 1.
We extend equational rules and axioms for standard expressions to enriched expressions. We

also introduce some axioms specific to enriched expressions in Section 5.

5 AXIOMS AND EQUATIONS OF ASSERTIONS FOR STATISTICS

In this section, we introduce axioms and equations for the logic PL. First, we have the standard
equational theory for (enriched) expressions covering α-conversion, β-reduction, extensionality,
and the monadic rules of the monadic type M . We omit these standard rules here. The monadic
typeM also has commutativity (the Fubini-Tonelli equality), represented by the following equation:

(bind e1 λx .(bind e2 λy.e(x,y))) = (bind e2 λy.(bind e1 λx .e(x,y)) (x,yfresh) (3)

We introduce some equalities pertaining to expectation. We have the monotonicity and linearity
of expectation (axioms 4, 5), and we also have the Cauchy-Schwarz inequality (axiom 6). Finally,

2We use absolute values | − | : real → pReal to adjust the typing. The right-hand side is undefined if both expectations
are infinity. We could avoid this kind of undefinedness by stipulating∞−∞ = −∞, but we leave it undefined since this
actually never shows up in our concrete examples.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:9

we can transform variables in expressions related to expectation by substitution (axiom 7).

(∀x : τ . e ′ ≥ 0) =⇒ Ex∼e [e ′] ≥ 0 (4)

Ex∼e [e1 ∗ e2] = e1 ∗ Ex∼e [e2] (x < FV(e1)), Ex∼e [e1 + e2] = Ex∼e [e1] + Ex∼e [e2] (5)

(Ex∼e [e1 ∗ e2])2 ≤ Ex∼e [e21] ∗ Ex∼e [e22] (6)

Ex∼bind e λy . return(e ′)[e ′′] = Ey∼e [e ′′[e ′/x]] (7)

We also introduce some basic equalities pertaining to observation, rescaling, and normalization.

Ex∼d ′[h(x) · д(x)] = Ex∼scale(d ′,д)[h(x)]. (8)

(scale(scale(e1, e2), e3) = (scale(e1, λx .(e2(x) ∗ e3(x))), e = scale(e, λ_.1) (9)

(mletx = scale(e1, e2) in e3(x)) = (mletx = e1 in scale(e3(x), λu .e2(x))) (10)

scale(e1, e2) ⊗ scale(e3, e4) = scale(e1 ⊗ e2, λw .e2(π1(w)) ∗ e4(π2(w))) (11)

Ey∼e [1] < ∞ =⇒ (bind e ′ λx .e) = scale(e,Ey∼e ′[1]) (x < FV(e)) (12)

(query e1 ⇒ e2) = normalize(scale(e1, e2)) (13)

normalize(e) = scale(e, λu .1/Ex∼e [1]) (u < FV(Ex∼e [1])) (14)

0 < α < ∞ =⇒ normalize(scale(e1, e2)) = normalize(scale(e1,α ∗ e2)) (15)

We could also introduce the axioms for particular distributions such as Ex∼Bern(e)[ifx then 1 else
0] = e (0 ≤ e ≤ 1) and Ex∼Gauss(e1,e2)[x] = e1, but we do not do this here.

5.1 Markov and Chebyshev Inequalities

The axioms we introduced above are not only very basic but also very expressive. For instance, we
can prove the Markov inequality (16) and the Chebyshev inequality (17) in PL using these axioms.

d : M[real], a : real ⊢PL (a > 0) =⇒ Pr
x∼d

[|x | ≥ a] ≤ Ex∼d [|x |]/a. (16)

d : M[real],b : real, µ : real ⊢PL Ex∼d [1] = 1 ∧ µ = Ex∼d [x] ∧ b2 > 0
=⇒ Prx∼d [|x − µ | ≥ b] ≤ Varx∼d [x]/b2.

(17)

6 UNARY/RELATIONAL LOGIC

In this section, we introduce two specializations of PL. The first one, UPL, is a unary logic to verify
unary properties of probabilistic programs. More concretely, UPL can be considered as a collection
of inference rules derivable in PL specialized in proving formulas of form ϕ(e) by following the
syntactic structure of the distinguished subterm e rather than the syntactic structure of ϕ itself.

The second one, RPL, is a relational logic to verify relational properties of probabilistic programs.
Similarly, it can be seen as a collection of inference rules derivable in PL to prove formulas of the
form ϕ(e1, e2) by following the syntactic structure of e1 and e2.

6.1 The Unary Logic UPL

Judgments in the unary logic UPL have the shape Γ | Ψ ⊢UPL e : τ | ϕ where Γ is a context, Ψ is a
set of assertions on the context variables, e is a HPProg expression, τ a type, and ϕ is an assertion
(possibly) containing a distinguished variable r of type τ which is used to refer to the expression e
in the formula ϕ.

We give in Figure 2 a selection of proof rules in UPL. We have two groups of rules, one for pure
computations and the other for probabilistic computations. The rules are mostly syntax-directed,
with the exception of the rule [u-SUB]. We present a selection of the pure rules, the rest of them
are as in UHOL [Aguirre et al. 2017]. The rule [u-ABS] turns an assertion about the bound variable

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:10 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

Rules for pure constructions.

Γ ⊢ x : τ Γ | Ψ ⊢PL ϕ[x/r]
[u-VAR]

Γ | Ψ ⊢UPL x : τ | ϕ
Γ, x : τ | Ψ,ϕ ′ ⊢UPL t : σ | ϕ

[u-ABS]
Γ | Ψ ⊢UPL λx : τ .t : τ → σ | ∀x .ϕ ′ =⇒ ϕ[rx/r]

Γ | Ψ ⊢UPL t : σ | ϕ ′ Γ | Ψ ⊢PL ϕ ′[t/r] =⇒ ϕ[t/r]
[u-SUB]

Γ | Ψ ⊢UPL t : σ | ϕ
Γ | Ψ ⊢UPL t : τ → σ | ∀x .ϕ ′ =⇒ ϕ[rx/r] Γ | Ψ ⊢UPL u : τ | ϕ ′

[u-APP]
Γ | Ψ ⊢UPL tu : σ | ϕ[u/x]

Terminate(f , x, e)
Γ, x : I , f : I → σ | Ψ,ϕ ′,∀m.|m | < |x | =⇒ ϕ ′[m/x] =⇒ ϕ[m/x][f m/r] ⊢UPL e : σ | ϕ

[u-LETREC]
Γ | Ψ ⊢UPL letrec f x = e : I → σ | ∀x .ϕ ′ =⇒ ϕ[rx/r]

Rules for probabilistic constructions.

Γ | Ψ ⊢UPL e : τ | ϕ[return(r)/r]
[u-RET]

Γ | Ψ ⊢UPL return(e) : M[τ] | ϕ
Γ | Ψ ⊢UPL e : M[τ1] | ϕ1 Γ | Ψ ⊢UPL e ′ : τ1 → M[τ2] | ∀s : M[τ1].(ϕ1[s/r] =⇒ ϕ2[bind s r/r])

[u-BIND]
Γ | Ψ ⊢UPL bind e e ′ : M[τ2] | ϕ2

Γ | Ψ ⊢UPL e : M[τ] | ϕ1 Γ | Ψ ⊢UPL e ′ : τ → pReal | ∀s : M[τ].(ϕ1[s/r] =⇒ ϕ2[query s ⇒ r/r])
Γ | Ψ ⊢UPL query e ⇒ e ′ : M[τ] | ϕ2

[u-QRY]

Fig. 2. A selection of UPL rules.

into a precondition of its lambda abstraction. The rule [u-APP] proves a postcondition of a function
application provided that the argument satisfies the precondition of the function. The rule [u-
LETREC] allows proving properties of terminating recursive functions by introducing an induction
hypothesis in the context.
In the case of monadic computations, we have rules for monadic return, bind and query. It is

worth noticing that in the second premise of both the rules [u-BIND] and [u-QRY], the assertion
quantifies over elements inM[τ1], while the input type of the function is just τ1. This follows the
spirit of the interpretation (see Section 7), where the Kleisli lifting (−)# is used to lift a function
τ1 → M[τ2] to a functionM[τ1] → M[τ2]. The quantification over distributions, rather than over
elements, is essential to establish a connection with the assertion on the first premise. This will be
useful to simplify the verification of our examples.
We can prove that, despite being syntax directed, UPL does not lose expressiveness relative to

PL: The following theorem shows that the unary logic UPL is sound and complete with respect to
the underlying logic PL.

Theorem 6.1 (Eqi-derivability of PL and UPL). The judgment Γ | Ψ ⊢PL ϕ[e/r] is derivable if
and only if the judgment Γ | Ψ ⊢UPL e : τ | ϕ is derivable.

6.2 The Relational Logic RPL

Judgments in the relational logic RPL have the shape Γ | Ψ ⊢UPL e1 : τ1 ∼ e2 : τ2 | ϕ, where Γ is a
context, Ψ is a set of assertions on the context, e1 and e2 are HPProg expressions, τ1 and τ2 are
types, and ϕ is an assertion (possibly) containing two distinguished variables r1 of type τ1 and r2 of
type τ2 which are used to refer to the expressions e1 and e2 in the formula ϕ. We give in Figure 3
a selection of proof rules in RPL. We present three groups of rules. The first group consists of
relational rules for pure computations. The second group consists of two-sided relational rules for

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:11

Relational rules for pure constructions - two-sided

Γ, x1 : τ1, x2 : τ1 | Ψ,ϕ ′ ⊢RPL t1 : σ1 ∼ t2 : σ2 | ϕ
[r-ABS]

Γ | Ψ ⊢RPL λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1.∀x2ϕ ′
=⇒ ϕ[r1x1/r1, r2x2/r2]

Γ | Ψ ⊢RPL u1 : τ1 ∼ u2 : τ2 | ϕ ′

Γ | Ψ ⊢RPL t1 : σ1 → τ1 ∼ t2 : σ2 → τ2 | ∀x1.∀x2.ϕ ′[x1/r1, x2/r2] =⇒ ϕ[r1x1/r1, r2x2/r2]
[r-APP]

Γ | Ψ ⊢RPL t1u1 : σ1 ∼ t2u2 : σ2 | ϕ
Γ | Ψ ⊢RPL t1 : σ1 ∼ t2 : σ2 | ϕ ′

Γ | Ψ ⊢PL ϕ ′[t1/r1, t2/r2] =⇒ ϕ[t1/r1, t2/r2]
[r-SUB]

Γ | Ψ ⊢RPL t1 : σ1 ∼ t2 : σ2 | ϕ

Relational rules for probabilistic constructions - two-sided

Γ | Ψ ⊢RPL e1 : τ1 ∼ e2 : τ2 | ϕ[return(r1)/r1, return(r2)/r2]
[r-RET]

Γ | Ψ ⊢RPL return(e1) : M[τ1] ∼ return(e2) : M[τ2] | ϕ
ϕ = ∀s1 : M[τ1].∀s2 : M[τ2]. (ϕ1[s1/r1, s2/r2] =⇒ ϕ2[bind s1 r1/r1, bind s2 r2/r2])

Γ | Ψ ⊢RPL e1 : M[τ1] ∼ e2 : M[τ2] | ϕ1 Γ | Ψ ⊢RPL e ′1 : τ1 → M[τ3] ∼ e ′2 : τ2 → M[τ4] | ϕ
[r-BIND]

Γ | Ψ ⊢RPL bind e1 e
′
1 : M[τ3] ∼ bind e2 e

′
2 : M[τ4] | ϕ2

ϕ = ∀s1 : M[τ1], s2 : M[τ2].ϕ1[s1/r1, s2/r2] =⇒ ϕ2[query s1 ⇒ r1/r1, query s2 ⇒ r2/r2]
Γ | Ψ ⊢RPL e1 : M[τ1] ∼ e2 : M[τ2] | ϕ1 Γ | Ψ ⊢RPL e ′1 : τ1 → pReal ∼ e ′2 : τ2 → pReal | ϕ

[r-QRY]
Γ | Ψ ⊢RPL query e1 ⇒ e ′1 : M[τ1] ∼ query e2 ⇒ e ′2 : M[τ2] | ϕ2

Relational rules for probabilistic constructions - one-sided

Γ | Ψ ⊢RPL e1 : τ1 ∼ e2 : τ2 | ϕ[return(r1)/r1]
[r-RET-L]

Γ | Ψ ⊢RPL return(e1) : M[τ1] ∼ e2 : τ2 | ϕ
Γ | Ψ ⊢UPL e1 : M[τ1] | ϕ1

Γ | Ψ ⊢RPL e ′1 : τ1 → M[τ3] ∼ e2 : M[τ2] | ∀s1 : M[τ1].ϕ1[s1/r] =⇒ ϕ2[bind s1 in r1/r1]
[r-BIND-L]

Γ | Ψ ⊢RPL bind e1 e
′
1 : M[τ3] ∼ e2 : M[τ2] | ϕ2

Γ | Ψ ⊢UPL e1 : M[τ1] | ϕ1
Γ | Ψ ⊢RPL e ′1 : τ1 → pReal ∼ e2 : M[τ2] | ∀s1 : M[τ1].ϕ1[s1/r1] =⇒ ϕ2[query s1 ⇒ r1/r1]

[r-QRY-L]
Γ | Ψ ⊢RPL query e1 ⇒ e ′1 : M[τ1] ∼ e2 | ϕ2

Fig. 3. A selection of RPL rules.

probabilistic computations, meaning that the terms on both sides of the judgment have the same
top-level constructor. Finally, the third group consists of one-sided relational rules for probabilistic
computations, meaning that one of terms has a specific top-level constructor while the other is
arbitrary (not analyzed by the rule). Here we show just the left-sided rules that have the constructor
on the left; right-sided rules are symmetrical. As in the unary case, we use an approach that is
mostly syntax-directed except for the [r-SUB] rule.
The rules for pure computations are similar to the ones from RHOL [Aguirre et al. 2017] and

we present only a selection. For the probabilistic constructions, we have relational rules for the
monadic return and bind, and for query. These rules are the natural generalization of the unary
rules to the relational case. In particular, in all the rules for bind and query we use assertions
quantifying over distributions, similarly to what we have in UPL, to establish a connection between
the different assertions.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:12 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

The equi-derivability result for UPL can be lifted to the relational setting: RPL is also sound and
complete with respect to the logic PL.

Theorem 6.2 (Eqi-derivability of PL and RPL). The judgment Γ | Ψ ⊢PL ϕ[e1/r1, e2/r2] is
derivable if and only if Γ | Ψ ⊢RPL e1 : τ1 ∼ e2 : τ2 | ϕ is derivable.

A comment on product types and RPL . One could effectively embed the whole of RPL into UPL
by replicating the set of rules of RPL as UPL rules for every possible product type, and rewriting
the distinguished r1, r2 in the refinements to π1(r), π2(r). For instance, the two-sided [r-ABS] rule
would be rewritten as a UPL rule [u-ABSxABS] for the product of two arrow types. Similarly, all
the one-sided rules would be written as unary rules directed by only one side of the product type,
while ignoring the other.

However, we believe that this style of presentation would be significantly more cumbersome,
and, moreover, it would hide the fact that we are trying to express and prove a relational property
of two programs that execute independently.

6.3 Special Rules

As already discussed in the introduction, we enrich PPV with special rules that can ease verification.
One example is the use the following Bayesian law expressing a general fact about the way we can
reason about probabilistic inference when the observation is a boolean:

Γ, x : τ ⊢ e ′ : bool Γ, x : τ ⊢ e ′′ : bool Γ ⊢ e : M[τ]
[Bayes]

Γ | Ψ ⊢UPL query e ⇒ λx .(if e ′ then 1 else 0) : M[τ] | Pry∼r[e ′′[y/x]] = Prx∼e [e ′∧e ′′]
Prx∼e [e ′]

This rule can be derived by first using [u-QRY], and then reasoning in PL through the [u-SUB]
rule, which is why the premises are just simply typed assumptions. In particular, in PL we use the
characterization of query given in Section 5.
We also introduce a [LET] rule, which can be derived by desugaring the let notation:

Γ | Ψ ⊢ e : τ1 | ϕ1 Γ, x : τ1 | Ψ,ϕ1[x/r] ⊢ e ′ : τ2 | ϕ2
[LET]

Γ | Ψ ⊢ let x = e in e ′ : τ2 | ϕ2
Notice that Theorem 6.1 can be used to convert UPL derivation trees into PL ones and vice

versa. Similarly, Theorem 6.2 is used to convert RPL proofs to PLproofs. These conversions are
useful to switch between the different levels of our system and to reason in whichever one is more
convenient. To this end, we introduce the following admissible rules:

Γ | Ψ ⊢UPL e : τ | ϕ
[conv-UPL]

Γ | Ψ ⊢PL ϕ[e/r]
Γ | Ψ ⊢RPL e1 : τ1 ∼ e2 : τ2 | ϕ

[conv-RPL]
Γ | Ψ ⊢PL ϕ[e1/r1, e2/r2]

7 SEMANTICS

7.1 Background

In this section we present the semantic foundation of PPV. We start by recalling the definition of
quasi-Borel spaces [Heunen et al. 2017] and by showing how we can use them to define monads
for probability measures [Ścibior et al. 2017]. We use these constructions in the next section to give
the semantics of programs on which we will build our logic.

Quasi-Borel Spaces. We introduce here the category QBS of quasi-Borel spaces. Intuitively, the
category QBS is a relaxation of the categoryMeas of measurable spaces. QBS has a nice categorical
structureÐit is Cartesian closed and retains important properties coming from measure theory.
Before introducing quasi-Borel spaces, we fix some notation. We use R to denote the real line

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:13

equipped with the standard Borel algebra. We use
∐

i ∈N Si to denote the coproduct of a countable
family of sets {Si }i ∈N, and [αi]i ∈N for the copairing of functions αi for i ∈ N.
Definition 7.1 (Heunen et al. [2017]). The category QBS is the category of quasi-Borel spaces

and morphisms between them, where a quasi-Borel space (X ,MX) (with respect to R) is a set X
equipped with a subset MX of functions in R → X such that (1) If α : R → X is constant then
α ∈ MX . (2) If α ∈ MX and f : R→ R is measurable then α ◦ f ∈ MX . (3) If the family {Si }i ∈N is a
countable partition of R, i.e. R =

∐

i ∈N Si , with each set Si Borel, and if αi ∈ MX (∀i ∈ N) then the
copairing [αi |Si]i ∈N of αi |Si : Si → X belongs toMX .
A morphism from a quasi-Borel space (X ,MX) to a quasi-Borel space (Y ,MY) is a function

f : X → Y such that f ◦ α ∈ MY holds for any α ∈ MX .

As shown by Heunen et al. [2017], the category QBS has a convenient structure to interpret
probabilistic programs. That is, it is well-pointed and Cartesian closed and we have the usual
structure for currying and uncurrying functions; it has products and coproducts with distributivity
between them; every standard Borel space Ω can be converted to a quasi-Borel space and every
measurable function f : Ω1 → Ω2 is a morphism f : Ω1 → Ω2 in QBS. Hence, a QBS can be used
to interpret a probabilistic functional language. See Heunen et al. [2017]; Ścibior et al. [2017] for
more details.
The category QBS has also a convenient structure to reason about probabilistic programs. In

particular, the forgetful functor |−| : QBS → Set erasing the quasi-Borel structure does not change
the underlying structure of functions. This property is fundamental for the design of the category
Pred(QBS) of predicates over quasi-Borel spaces.

Measures on quasi-Borel spaces. Quasi-Borel spaces were introduced to support measure theory
in a Cartesian closed category. In particular, given a measure on some standard Borel space Ω we
can define a measure over quasi-Borel spaces.

Definition 7.2 (Ścibior et al. [2017]). A measure on a quasi-Borel space (X ,MX) is a triple (Ω,α,ν)
where Ω is a standard Borel space, α : Ω → X is a morphism in QBS, and ν is a σ -finite measure
over Ω.

For a measure µ = (Ω,α,ν) on X and a function f : X → R in QBS, we define integration over

quasi-Borel spaces in terms of integration over Borel spaces:
∫

X
f dµ

def
=

∫

Ω
(f ◦ α) dν . Equivalence

of measures in QBS is defined in terms of equality of integrations:

(Ω,α,ν) ≈ (Ω′
,α ′
,ν ′) def

= ∀f : X → R in QBS.
∫

Ω
(f ◦ α) dν =

∫

Ω′(f ◦ α ′) dν ′.
In the following, it will be convenient to work with equivalence classes of measures which we
denote by [Ω,α,ν]. Every equivalence class for a measure (Ω,α,ν) also contains a measure over
R defined in the appropriate way [Heunen et al. 2017]. We are now ready to define a monad for
measures.

Definition 7.3 (Ścibior et al. [2017]). The monad of σ -finite measuresM is defined as follows.

• For any X in QBS,MX is the set of equivalence classes of σ -finite measures equipped with
the quasi-Borel structure given by the following definition

MMX =

{

λr .[Dr ,α(r ,−), µr]
�

�

�

�

D ⊆measurable R × Ω, µ : σ -finite measure on Ω,

α : D → X , Dr = { ω | (r ,ω) ∈ D } , µr = µ |Dr

}

• The unit ηX : X → MX is defined by ηX (x) = [1, λ ∗ . x, d∗].
• The Kleisli lifting is defined for any f : X → MY and [Ω,α,ν] ∈ MX as

f ♯[Ω,α,ν] = [D, β, (ν ⊗ ν ′)|D]

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:14 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

where D = {(r ,ω) | ω ∈ Dr } and β(−) = λr .β(r ,−) are defined for every γ : Ω → R and
γ ∗ : R→ Ω satisfying γ ∗ ◦ γ = idΩ through (f ◦ α)(γ ∗(r)) = [Dr , β(r ,−),ν ′].

Let us unpack in part this definition. The set of functionsMMX can be seen as a set of (uncountable)
families of measures, indexed by r , supporting infinite measures. The Kleisli lifting uses the fact
that each (f ◦ α)(γ ∗(−)) is a function in MMY , that D built as a product measure starting from r

and Dr is measurable, and β is a morphism from D to Y .
Thanks to the Fubini-Tonelli theorem, the monadM on QBS is commutative strong with respect

to Cartesian products. We can also use the structure of QBS to define the product measure of
[Ω,α,ν] and [Ω′

,α ′
,ν ′] as [(Ω × Ω

′), (α × α ′), (ν ⊗ ν ′)]. Using the isomorphismM1 � [0,∞], usual
integration

∫

f dµ for f : R→ [0,∞] and µ ∈ M(R) corresponds to f ♯(µ). We can define the mass

|µ | of measure µ = [Ω,α,ν] by
∫

X
1dµ which is the same as the mass |ν | of base measure ν . The

monadM captures general measures. For example, we can define a null measure as 0 = [Ω,α, 0].
In the sequel, we will also use a commutative monadP onQBS obtained by restricting the monad

M to subprobability measures. We have the canonical inclusion PX ⊆ MX .

7.2 Semantics for PPV

In order to give meaning to the logical formulas of PL, we first need to give meaning to expressions
in HPProg and to enriched expressions in PL. We do this by interpreting types as QBS objects as
shown below:

[[unit]] def
= 1, [[bool]] def

= 1 + 1, [[nat]] def
= N, [[real]] def

= R, [[pReal]] def
= [0,∞],

[[τ1 → τ2]]
def
= [[τ1]]⇒[[τ2]], [[τ1 × τ2]]

def
= [[τ1]] × [[τ2]], [[list(τ)]]

def
=

∐

n∈N[[τ]]n, [[M[τ]]] def
= M([[τ]])

where 1 is the terminal object in QBS;
∐

n∈N [[τ]]n is the coproduct of the countable family [[τ]]n =
[[τ]] × · · · × [[τ]] (n times); ([[τ1]] ⇒ [[τ2]]) is the exponential object in QBS. We interpret each term
Γ ⊢ e : τ as a morphism [[Γ]] → [[τ]] in QBS, where, as usual, the interpretation [[Γ]] of a context Γ is
the product of the interpretations of its components. Pure computations are interpreted using the
Cartesian closed structure of QBS where we can interpret recursive terms based on recursive data
types (I = list(τ), nat) by means of a fixed point operator fix iterating functions until termination.
Since the termination criterion Terminate(f , x, e) ensures that all recursive calls are on smaller
arguments, the operator fix is well-defined: for any n ∈ I with |n | < k , fix(λf .λx .e)(n) is defined
within k steps.

[[Γ ⊢ letrec f x = e : I → σ]] def
= fix([[Γ ⊢ λf : I → σ .λx : I . e : (I → σ) → (I → σ)]])

We interpret return and bind using the structure of the monadM of measures on QBS.

[[Γ ⊢ return e : M[τ]]] def
= η[[τ]] ◦ [[Γ ⊢ e : τ]]

[[Γ ⊢ bind e1 e2 : M[τ2]]]
def
= [[Γ ⊢ e2 : τ1 → M[τ2]]]♯ ◦ st[[Γ]],[[τ1]](⟨id[[Γ]], [[Γ ⊢ e1 : M[τ1]]]⟩)

where η, (−)♯ , and st are the unit, the Kleisli lifting, and the tensorial strength of the commutative
monadM. To interpret the other constructions we first introduce two semantics constructions for
scaling and normalizing:

scale(ν, f) def
= (M(π2) ◦ dst1,X ◦ ⟨f ,ηX ⟩)♯(ν). normalize(ν) def

=

{

0 |ν | = 0,∞
ν/|ν | (otherwise)

.

where dst is the double strength of the commutative monad M, and |ν | is the mass of ν . In the
definition of scale(ν, f), the constructionM(π2)◦dst1,X ◦⟨f ,ηX ⟩ corresponds to a function mapping
an element x ∈ X to a Dirac distribution centered at x and scaled by f (x), whose domain is then lifted

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:15

to measures using the Kleisli lifting. To achieve this, we use the equivalence [[pReal]] = [0,∞] � M1,
and pairing and projection constructions to manage the duplication of x . The definition of scale(ν)
is more straightforward and reflects the semantics we described before.
Using these constructions we can interpret the corresponding syntactic constructions.

[[Γ ⊢ scale(t, t ′) : M[τ]]] def
= scale([[Γ ⊢ t : M[τ]]], [[Γ ⊢ t ′ : τ → pReal]])

[[Γ ⊢ normalize(t) : M[τ]]] def
= normalize([[Γ ⊢ t : M[τ]]])

We can now interpret query as follows:

[[Γ ⊢ query e ⇒ e ′ : M[τ]]] def
= normalize(scale([[Γ ⊢ e : M[τ]]], [[Γ ⊢ e ′ : τ → pReal]]))

Using the equivalence [[pReal]] = [0,∞] � M1 again, we interpret expectation as:

[[Γ ⊢ Ex∼t [t ′(x)] : pReal]]
def
= λγ ∈ [[Γ]].

(

[[Γ ⊢ t ′ : τ → pReal]](γ)
) ♯([[Γ ⊢ t : M[τ]]](γ)).

The primitives of basic probability distributions Uniform, Bern, Gauss are interpreted by rescaling
a measure (given as a constant) with density functions (cf. Section 8.2), and the usual operations on
real numbers are given by embedding measurable real functions in QBS.

To interpret formulas in PL we use the category Pred(QBS) of predicates on quasi-Borel spaces.
This will be useful to see these formulas as assertions in the unary logic UPL and the relational
logic RPL. This is actually the main reason why we use quasi-Borel spaces: we want an assertion
logic whose predicates support both higher-order computations and continuous probability. The
structure of the category Pred(QBS) is the following:

• An object is a pair (X , P) where X ∈ QBS and P ⊆ X .
• A morphism f : (X , P) → (Y ,Q) is f : X → Y ∈ QBS such that ∀x ∈ P . f (x) ∈ Q .

An important property of this category is that every arbitrary subset P of a quasi-Borel space X
forms an object (X , P) in Pred(QBS). This allows us to interpret all logical operations, including
universal quantifiers, in a set-theoretic way.

Notice that this category can be seen as the total category of the fibration q : Pred(QBS) → QBS

given by the following change-of-base of the fibration p : Pred → Set along the forgetful functor
| − | : QBS → Set. Here Pred is the category of predicates and all predicate-preserving maps, and
the fibration p extracts underlying sets of predicates. Then, all fibrewise properties of the fibration
p are inherited by the fibration q. For detail, see [Jacobs 1999, Section 1.5ś1.8].

We are now ready to interpret formulas in PL. We interpret a typed formula Γ ⊢ ϕ wf as an object

[[Γ ⊢ ϕ wf]] def
= ([[Γ]], (|Γ ⊢ ϕ wf |)) in Pred(QBS) where the predicate part (|Γ ⊢ ϕ wf |) is interpreted

inductively. We give here a selection of the inductive rules defining the interpretation:

(|Γ ⊢ ⊤ wf |) def
= [[Γ]], (|Γ ⊢ ∀x : τϕ wf |) def

=

⋂

y∈[[τ]] { γ ∈ [[Γ]] | (γ ,y) ∈ (|Γ, x : τ ⊢ ϕ wf |) } ,
(|Γ ⊢ ⊥ wf |) def

= ∅, (|Γ ⊢ t1 = t2 wf |)
def
= { γ ∈ [[Γ]] | [[Γ ⊢ t1 : τ]](γ) = [[Γ ⊢ t2 : τ]](γ) } ,

(|Γ ⊢ ϕ1 ∧ ϕ2 wf |)
def
= (|Γ ⊢ ϕ1 wf |) ∩ (|Γ ⊢ ϕ2 wf |), (|Γ ⊢ ¬ϕ wf |) def

= [[Γ]] \ (|Γ ⊢ ϕ wf |),
This interpretation is well-behaved with respect to substitution. In particular, the substitution
ϕ[t/x] of x by an enriched expression t can be interpreted by the inverse image (|Γ ⊢ ϕ[t/x] wf |) =
⟨id[[Γ]], [[Γ ⊢ t : τ]]⟩−1(|Γ, x : τ ⊢ ϕ wf |). Using this property, we can show that the logic PL is sound
with respect to the semantics that we defined above.

Theorem 7.4 (PL Soundness). If a judgment Γ | Ψ ⊢PL ϕ is derivable then we have the in-
clusion (⋂ψ ∈Ψ (|Γ ⊢ ψ wf |)) ⊆ (|Γ ⊢ ϕ wf |) of predicates, which is equivalent to having a morphism
id[[Γ]] : [[Γ ⊢ ∧ψ ∈Ψψ wf]] → [[Γ ⊢ ϕ wf]] in the category Pred(QBS).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:16 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

Here, the soundness of PL axioms introduced in Section 5 is proved from the basic facts discussed
by Ścibior et al. [2017], in particular, the isomorphism M1 � [0,∞], the commutativity of the
monadM, the correspondence between f ♯(µ) and usual integration

∫

f d µ for any f : R→ [0,∞]
andM(R), and that measurable functions between standard Borel spaces are exactly morphisms in
QBS.
Using Theorem 6.1 and Theorem 7.4, we can prove the soundness of UPL.

Corollary 7.5 (UPL Soundness). If Γ | Ψ ⊢UPL e : τ | ϕ then
⟨id[[Γ]], [[Γ ⊢ e : τ]]⟩ : [[Γ ⊢ ∧ψ ∈Ψψ wf]] → [[Γ, r : τ ⊢ ϕ wf]] in Pred(QBS).

Similarly, using Theorem 6.2 and Theorem 7.4, we can prove the soundness of RPL.

Corollary 7.6 (RPL Soundness). If Γ | Ψ ⊢RPL e1 : τ1 ∼ e2 : τ2 | ϕ then
⟨id[[Γ]], [[Γ ⊢e1 : τ1]], [[Γ ⊢e2 : τ2]]⟩ : [[Γ ⊢∧ψ ∈Ψψ wf]] → [[Γ, r1 : τ1, r2 : τ2 ⊢ ϕ wf]] in Pred(QBS).

8 EXAMPLES

In Section 2 we showed two examples of how to use PPV to reason about probabilistic inference
and Monte Carlo approximation. In this section, we demonstrate further how PPV can be used
to verify a wide range of properties of probabilistic programs. We will start by showing how to
reason formally about probabilistic program slicing for continuous random variables as a relational
property. We will then consider an example of the use of PPV to reason about the convergence of
probabilistic inference. We will then move to some statistical applications: we will show how to
reason about mean estimation of distributions, about the approximation properties of importance
sampling. Finally, we will show how to use PPV for a proper machine learning task by showing
how one can reason about the Lipschitz continuity of a generalized iteration algorithm useful for
reinforcement learning.

8.1 Slicing of Probabilistic Programs

In this example, we show how PPV can be used to reason about relational properties of probabilistic
programs with continuous random variables. Specifically, we show that a combination of relational
reasoning in RPL, and equational reasoning in PL allow us to reason about slicing of probabilistic
programs [Amtoft and Banerjee 2016]. Slicing is a program analysis technique that can be used to
speed up probabilistic inference tasks. Previous work has shown how to slice probabilistic programs
with discrete random variables in an efficient way. Here, we consider the problem of checking the
correctness of a slice, when the program contains continuous random variables. We look at an
example adapted from Amtoft and Banerjee [2016]. Consider the following two programs left
and right:

left ≡ letx = Uniform(0, 1) in lety = Uniform(0, 1) in let z = x ⊗ y in

mletv = (query z ⇒ λw . ifπ2(w) > 0.5 then 1 else 0) in return(π1(v))
right ≡ letx = Uniform(0, 1) in x

Intuitively, even if query in left is applied to the product measure z, and not just to the measure
of y, the conditioning concerns only y and it does not affect the distribution of x . Indeed, right is
a correct slice of left. We can show this in RPL by proving the following judgment.

⊢RPL left : M[real] ∼ right : M[real] | r1 = r2

To prove this judgment, we first apply the relational [LET] rule, which allows us to introduce an
assumption about x on both sides. Then we apply a sequence of asynchronous [LET-L] rules on

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:17

the program on the left, which introduce preconditions about y and z into the context:

x = Uniform(0, 1),y = Uniform(0, 1), z = x ⊗ y ⊢RPL
mletv = (query z ⇒ λw . ifπ2(w) > 0.5 then 1 else 0)in return(π1(v)) ∼ x | r1 = r2

To prove this judgement we rely on the equalities on monadic bind, rescaling, and conditioning in
Section 5. Starting from the HPProg term on the left, by applying the equations (13), (14), and (9),
we reduce it to mletv = (x ⊗ X) in return(π1(v)) where X is a normalized distribution defined by
the term queryy⇒λw2. ifw2 > 0.5 then 1 else 0. We then conclude this is equal to x by applying
the equality (9) and the equality

mletw = e1 ⊗ e2 in returnπ1(w) = scale(e1,Ex∼e2 [1])

proved from the equalities (12), (7) and monadic laws.
Using RPL we can also reason about situations where we cannot slice a program. Adapting again

from Amtoft and Banerjee [2016], let us consider the following two programs left and right:

left ≡ letx = Uniform(0, 1) in lety = Uniform(0, 1) in let z = x ⊗ y in

mletv = (query z ⇒ λw . ifπ1(w) + π2(w) > 0.5 then 1 else 0) in return(π1(v))
right ≡ letx = Uniform(0, 1) in x

Now we prove that it is not correct to slice left into right by means of the judgment below:

⊢RPL left : M[real] ∼ right : M[real] | r1 , r2

The proof for this judgment follows the structure of the proof of the previous example. The main
difference is that now we need to see the first coordinate of the variablew in the conditioning. To
prove that left and right are different, we use the probabilistic inference in the first example to
prove ⊢UPL left | Pry∼r[y > .5] > 1/2 using the the [Bayes] rule and the following calculation:

Prw [π1(w)>.5]
Prw [π1(w)+π2(w)>.5] ≥

Prx [x>.5]
1−Prx [x>.25]∗Pry [y>.25] =

8
15 >

1
2 .

Similarly, we can look at the following two programs:

left ≡ mlet x = Uniform(0, 1) in
mlet _ =

(

ifx > .5 then
(

let y = Uniform(0, 1) in let z = return(x) ⊗ y in

query z ⇒ λw . ifπ2(w) > .5 then 1 else 0
)

else return(x ⊗ x)
)

in return(x)
right ≡ mletx = Uniform(0, 1) in return(x)

and show that we can slice left into right.
A key point in deriving the slicing property of the above examples is the equation mletw =

e1 ⊗ e2 in returnπ1(w) = scale(e1,Ex∼e2 [1]) of splitting product measure, which is obtained
by applying the axioms in Section 5. When e2 ≡ query e3 ⇒ e4, we have mletw = e1 ⊗
e2 in returnπ1(w) = e1 since our conditioning construction is normalized, and hence Ex∼e2 [1] = 1.
On the other hand, when e2 consists of unnormalized conditioning, we may have the non-slicing
mletw = e1 ⊗ e2 in returnπ1(w) , e1 because Ex∼e2 [1] < 1. This is an advantage of our
conditioning operator. Since we renormalize in conditioning construction, we can slice the algorithm
left into right in the third example.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:18 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

Putting the first and the third example together we can consider the following two programs
left and right:

left ≡ mlet x = Uniform(0, 1) in
mlet _ =

(

ifx > .5 then
(

let y = Uniform(0, 1) in let z = return(x) ⊗ y in

query z ⇒ λw . ifπ2(w) > .5 then 1 else 0
)

else return(x ⊗ x)
)

in

let u = Uniform(0, 1) in let k = return(x) ⊗ u in

mlet v = (query k ⇒ λw . ifπ2(w) > .5 then 1 else 0) in return(π1(v))
right ≡ mlet x = Uniform(0, 1) in

mlet _ =
(

ifx > .5 then
(

let y = Uniform(0, 1) in let z = return(x) ⊗ y in

query z ⇒ λw . ifπ2(w) > .5 then 1 else 0
)

else return(x ⊗ x)
)

in return(x)
Again, we want to show that right is a correct slice of left by proving that ⊢RPL left : M[real] ∼
right : M[real] | r1 = r2. The proof of this judgment can be carried out mostly in RPL, by using the
similarity between the two programs left and right. The proof starts by using relational reasoning,
and afterwards reuses the proof of the first example. This shows that reasoning relationally about
slicing can be better than reasoning directly about equivalence by computing the two distributions.

8.2 Gaussian Mean Learning: Convergence and Stability

Probabilistic programs are often used as models for probabilistic inference tasks in data analysis. We
now show how PPV can be used to reason about such processes. Taking the example of the closed-
form Bayesian update, we show how to use PPV to reason about two quite common properties,
convergence and stability under changes of priors. These two properties allow us to illustrate two
different aspects of PPV: 1) The support it offers for reasoning about iterative probabilistic tasks
and for reasoning about densities of random variables, and 2) The support it offers for relational
reasoning about measures of divergence of one distribution with respect to another. To show this,
we first prove the convergence of the iterative closed-form learning of the mean of a Gaussian
distribution (with fixed variance). We then prove this process stable for a precise notion of stability
formulated in terms of Kullback-Leibler (KL) divergence.
Let us start by considering the following implementation GaussLearn of an algorithm for

Bayesian learning of the mean of a Gaussian distribution with known variance σ 2 from a sample
list L:

GaussLearn ≡ λp. letrec f (L) = caseL with [] ⇒ p,y :: ls ⇒ query f (ls) ⇒ GPDF(y,σ 2)

where GPDF(y,σ 2) is a shorthand for the density function λr . 1√
2πσ 2

exp((r−y)
2

2σ 2) of a Gaussian dis-

tribution Gauss(y,σ 2) with mean y and variance σ 2. This algorithm starts by assuming a prior p
on the unknown mean. Then, on each iteration, a sample y is read from the list and the prior gets
updated by observing it as a Gaussian with mean y and variance σ 2.

We nowwant to show two properties of this algorithm. The first property we show is convergence:
the mean of the posterior should roughly converge to the mean of the data, but we need to take
into account that the posterior also depends on the prior. More precisely, when the prior is also a
Gaussian, we can show that:

(σ > 0), (ξ > 0) ⊢RPLGaussLearn ∼ Total | ∀L′ : list(real). ∀n : nat. (n = |L′ |)
=⇒ r1(Gauss(δ , ξ 2))(L′) = Gauss(r2(L

′)∗ξ 2+δ∗σ 2

n∗ξ 2+σ 2 ,
ξ 2∗σ 2

n∗ξ 2+σ 2)
(18)

where Total is an algorithm summing all the elements of a list L.

Total ≡ letrec f (L : list(real)) = caseL with [] ⇒ 0,y :: ls ⇒ y + f (ls).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:19

This judgement states that, if the prior on the mean is a Gaussian of mean δ and variance ξ 2, then
the posterior is a Gaussian with mean close to the mean of Total(L) and variance close to 0, but
that they are still influenced by the parameters δ , ξ 2 of the prior.
The proof of this judgment proceeds relationally by first applying the one-sided [ABS-L] rule

to introduce the prior in the context. Then the proof continues synchronously by applying the
[r-LETREC] and [r-LISTCASE] rules. To conclude the proof we need to show the following two
premises corresponding to the base case and to the inductive step:

(σ > 0), (ξ > 0),ϕind.hyp, (L = []),dprior = Gauss(δ , ξ 2), (n = |L|)
⊢RPL dprior ∼ 0 | r1 = Gauss(r2∗ξ

2
+δ∗σ 2

n∗ξ 2+σ 2 ,
ξ 2∗σ 2

n∗ξ 2+σ 2)
(σ > 0), (ξ > 0),ϕind.hyp, (L = y :: ls),dprior = Gauss(δ , ξ 2), (n = |L|)
⊢RPL query f1(ls) ⇒ Gauss(y,σ 2) ∼ y + f2(ls) | r1 = Gauss(r2∗ξ

2
+δ∗σ 2

n∗ξ 2+σ 2 ,
ξ 2∗σ 2

n∗ξ 2+σ 2)

The first premise is obvious. The second premise requires a little more work, and can be proved
by applying [r-QRY-L] and [r-SUB] rules and several equations in PL. We first show in PL that
Gaussian distributions are conjugate prior with respect to the Gaussian likelihood function by
applying the equations on rescaling, normalization, and conditioning.

⊢PL (σ > 0) ∧ (ξ > 0) =⇒ query Gauss(δ , ξ 2) ⇒ GPDF(z,σ 2) = Gauss(zξ
2
+ δσ 2

ξ 2 + σ 2
,
ξ 2σ 2

ξ 2 + σ 2
).

Then, we apply [r-QRY-L] and [r-SUB] to the premise (8.2) to introduce the observations in the
precondition, and apply the above fact and the induction hypothesis.
The second property we show is stability. If we run GaussLearn twice with different prior

Gaussian distributions, we can show that the posteriors will be close if the list of samples is
long enough and not diverging. This closeness is defined in terms of the Kullback-Leibler (KL)
divergence. The KL divergence of two distributions with known density functions, can be defined
by expectations: (d1 = scale(d2, f)) =⇒ (KL(d1 | | d2) = Ex∼d1 [log f (x)]). In particular, the KL
divergence of two Gaussian distributions can be calculated as follows:

KL(Gauss(µ1,σ 2
1) | | Gauss(µ2,σ 2

2)) = (log |σ2 | − log |σ1 |) + (σ 2
1 + (µ1 − µ2)2)/σ 2

2 − 1/2 (19)

Formally, we want to prove the following judgment.

σ : real, δ : real, ξ : real, δ2 : real, ξ2 : real | (σ > 0), (ξ > 0), (ξ2 > 0)
⊢RPL GaussLearn ∼ GaussLearn | ∀L′ : list(real).∀ε : real.∀C : real.
(ε > 0) =⇒ ∃N : nat.(|L′ | > N) ∧ |Total(L′)| < C ∗ |L′ |
=⇒ KL(r1(Gauss(δ , ξ 2))(L′) | | r1(Gauss(δ2, ξ 22))(L′)) < ε

(20)

Intuitively, this states that if the algorithm is run twice with different Gaussian priors, and the
mean of the data is bounded by some C , then the KL divergence of the posteriors can be made as
small as desired by increasing the size of the data. In other words, the effect of the prior on the
posterior can be minimized by having enough samples.

By simple calculations, we can prove in PL the following assertion in a similar way as proofs of
convergence of sequences using the epsilon-delta definition of limit.

⊢PL ∀L′ : list(real).∀ε : real.∀C : real.
(ε > 0) =⇒ ∃N : nat.(|L′ | > N) ∧ |Total(L′)| < C ∗ |L′ | =⇒
�

�

�

Total(L′)∗ξ 2+δ2∗σ 2

|L′ |∗ξ 2+σ 2 − Total(L′)∗ξ 22+δ2∗σ 2

|L′ |∗ξ 22+σ 2

�

�

� < ε ∧
�

�

�log
n∗ξ 2∗ξ 22+ξ 2∗σ 2

n∗ξ 2∗ξ 22+ξ 22 ∗σ 2

�

�

� < ε

(21)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:20 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

To prove (20), we want to combine (18) with (19) and (21). To do this, we apply the relational [r-SUB]
rule to the judgment (20), which has the following PL premise:

⊢PL ⊤ =⇒ ∀L′ : list(real).∀ε : real.∀C : real.
(ε > 0) =⇒ ∃N : nat.(|L′ | > N) ∧ |Total(L′)| < C ∗ |L′ |
=⇒ KL(GaussLearn(Gauss(δ , ξ 2))(L′) | | GaussLearn(Gauss(δ2, ξ 22))(L′)) < ε .

We prove this in PLby first applying the rule [conv-RPL] to (18) and then using (19) and (21).

8.3 Sample Size Required in Importance Sampling

As another example of a common statistical task, we use PPV to show the correctness of self-
normalizing importance sampling. Importance sampling is an efficient variant of Monte Carlo
approximation to estimate the expected value Ex∼d ′[h(x)]when sampling from d ′ is not convenient.
The idea is to sample from a different distribution d and then rescale the samples by using the
density functionд of d ′. The most interesting aspect of this example is that correctness is formulated
as a probability bound on the difference between the mean of the distribution d ′ and the empirical
mean. This shows once again that PPV supports reasoning about such probabilistic bounds, which
are quite widespread in statistical applications. However, here we want to go a step further and
show that we can reason about probability bounds that are parametric in the number of available
data samples. This quantity is often crucial for both theoretical understanding and practical reasons,
since data is an expensive resource. For our specific example, we rely on recent work by Chatterjee
and Diaconis [2018] and use their theorem as the correctness statement. This example also shows
the usefulness of the equations of Section 5 in high-level reasoning.
The following algorithm SelfNormIS is an implementation of self-normalizing importance

sampling.

SelfNormIS ≡ λn : nat.(mlet z = SumLoop(n)(д)(h) in return(π1(z)/π2(z)))
SumLoop ≡ letrec f (i : nat) = λд : τ → real.λh : τ → real.

if(i ≤ 0) then return⟨0, 0⟩ else mletx = d in mletm = f (i − 1)(д)(h)in
return⟨(1/i)(π1(m) + (i − 1) ∗ h(x) ∗ д(x)), (1/i)(π2(m) + (i − 1) ∗ д(x))⟩.

This algorithm approximates Ex∼d ′[h(x)] =
∫

h(x)д(x) dx by taking samples X1 . . .Xn ∼ d and
computing the ratio (1

n

∑n
i=1 д(Xi)h(Xi))/(1n

∑n
i=1 д(Xi)) of weighed sum instead. Note that SumLoop

is the subroutine calculating the numerator 1
n

∑n
i=1 д(Xi)h(Xi) and denominator 1

n

∑n
i=1 д(Xi) of

empirical expected value from the same samples Xi ∼ d .
We verify a recent result on the sample size required in self-normalizing importance sampling.

The goal is to prove the following PPV representation of Theorem 1.2 of Chatterjee and Diaconis
[2018]:

d : M[τ],д : τ → real,h : τ → real ⊢UPL SelfNormIS : nat → M[real] |
∀d ′ : M[τ].∀µ : real.∀σ : real.∀C : real.∀t : real.∀L : real.∀ε : real.
ϕ ∧ (ε > sqrt(exp(−t/4) + 2sqrt(Pry∼d ′[log(д(y)) > L + t/2])))
=⇒ ∀k : nat.k > exp(L + t) =⇒ Pry∼r(k)(д)(h)[|y − µ | ≥ 2εsqrt(σ 2

+µ2)
1−ε] ≤ 2ε

(22)

Here, C is supposed to be an unknown normalization factor of д. The following assertion ϕ is the
assumption that gives the required sample size.

ϕ ≡ (Ex∼d [1] = 1) ∧ (σ 2
= Varx∼d [h(x) ∗ д(x)]) ∧ (µ = Ey∼d ′[h(y)]) ∧ (t ≥ 0)

∧(d ′ = scale(d,д/C)) ∧ (C > 0) ∧ (Ey∼d ′[1] = 1) ∧ (L = Ex∼d ′[logд(y)])
The previous theorem gives a bound on the probability that the estimate differs too much from the

actual expected value µ. The proof of the judgment (22) is involved, and requires several steps. First,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:21

we prove a version of the theorem for naive (non self-normalizing) importance sampling [Chatterjee
and Diaconis 2018, Theorem 1.1]. Then, we extend this result to self-normalizing importance
sampling. Naive importance sampling is defined as:

Naive ≡ letrec f (i : nat) = λд : τ → real.λh : τ → real.

if(i ≤ 0) then (return 0) else mletx = d in mletm = f (i − 1)(д)(h)in
return 1

i
(m + (i − 1) ∗ h(x) ∗ д(x))

Here Naive computes 1
n

∑n
i=1 д(Xi)h(Xi). We want to show:

⊢UPL Naive : nat → (τ → real) → (τ → real) → M[real] |
∀d ′ : M[τ].∀µ : real.∀σ : real.∀C : real.∀t : real.∀L : real.∀ε : real.
ϕ =⇒ ∀k : nat.k > exp(L + t)

=⇒ Ew∼r(k)(д/C)(h)[|w − µ |]
≤ sqrt(σ 2

+ µ2) ∗ (exp(−t/4) + 2sqrt(Pry∼d ′[log(д(y)) > L + t/2]))

(23)

Notice that we need the normalization factor C .
The main łtricksž in the proof are the Cauchy-Schwartz inequality and introducing the function

h2 = λx : τ .(ifд(x) ≤ k ∗ exp(−t/2) then 1 else 0) ∗h(x). We first check the following in PL, where
µ ′ is defined as Ey∼d ′[h2(y)].

Ew∼Naive(k)(д/C)(h)[|w − µ |]
= Ey∼SumLoop2(k)(д/C)(h)(λx : τ .(ifд(x)≤k∗exp(−t/2)then1else0)∗h(x))[|π1(y) − µ |]
≤ E[|π2(y) − µ ′ |] + E[|π1(y) − π2(y)|] + E[|µ − µ ′ |]
≤ sqrt(σ 2

+ µ2) ∗ (exp(−t/4) + 2sqrt(Pry∼d ′[log(д(y)) > L + t/2])).
In the first step, we use the equivalence of Naive and an alternate version of SumLoop that we
denote SumLoop2. Here, we introduce the helper function h2 in the expression. The second step is
applying axioms on expectations (the triangle-inequality). In the last step, we use Cauchy-Schwartz
inequality and the inequality h2 ≤ h, which follows from the definition of h2.

Finally, we prove our goal (22) from the just-established judgment (23). Define b ≡ exp(−t/4) +
2sqrt(Pry∼d ′[log(д(y)) > L + t/2]) and δ ≡ sqrt(b) ∗ sqrt(σ 2

+ µ2), and assume ε > sqrt(b). The
main part of the proof is the following inequality in PL.

Prz∼SumLoop(k)(д)(h)[| π1(z)π2(z) − µ | ≥ 2εsqrt(σ 2
+µ2)

1−ε]
≤ Prw∼Naive(k)(д/C)(h)[|w − µ | ≤ δ] + Prw∼Naive(k)(д/C)(1)[|w − 1| ≤ sqrt(b)]
≤ Ew∼Naive(k)(д/C)(h)[|w − µ |]/δ + Ew∼Naive(k)(д/C)(1)[|w − 1|]/sqrt(b)
≤ b∗sqrt(σ 2

+µ2)
δ

+
b

sqrt(b) ≤ 2ε

The first step is proved by switching from Naive to SumLoop which requires some structural
reasoning and calculations on real numbers supported by PL. The second step follows from the
Markov inequality, and the last step follows from the definitions of b and δ .

8.4 Verifying Lipschitz GVI Algorithm

As our final example, we show that PPV can be used to reason about a reinforcement learning
task through relational reasoning about Lipschitz continuity and about statistical distances. This is
another example of the usefulness of relational reasoning (in a different domain). The example also
shows how the expressiveness of PL allows us to reason about notions like Lipschitz continuity
and statistical distances.
GVI (Generalized Value Iteration) is a reinforcement learning algorithm to optimize a value

function on a Markov Decision Process (τS , τA,R,T ,γ) where τS is a space of states, τA is a set of
actions, R : τS × τA → real is a reward function,T : τS × τA → D[τS] is a transition dynamic and γ

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:22 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

is a discount factor. Our assumption is that the optimal value function satisfies a specific condition,
called a Bellman equation: Q(s,a) = R(s,a) + Es ′∼T (s ,a)[f (Q)(s ′))], where f : (τS × τA → real) →
(τS → real) is a backup operator (usually we take maxa : τA).
Asadi et al. [2018] show that, under some constraints, the GVI algorithm returns Lipschitz-

continuous value functions, which are convenient for modeling learning algorithms over the MDP.
The following program LipGVI is an implementation of GVI algorithm:

LipGVI ≡ letrech(k : nat) = λQ ′ : τS × τA → real.(λ(s,a) : τS × τA.R(s,a) + γд(Q ′)(s))h(k − 1)

The algorithm receives an estimate Q ′ of the value function and updates it using a function д
which is assumed to be an approximation of λQ ′

. λs . Es ′∼T (s ,a)[f (Q ′)(s ′))]. We want to verify the
Lipschitz continuity of the result of the algorithm LipGVI. Before stating this, we need to add to PL
necessary operators and metrics. A function f : X → real is Lipschitz continuous if there exists
a finite K(f) such that K(f) = supx1,x2∈X (| f (x1) − f (x2)|/distX (x1, x2)). To define this concept in
PL we start by defining the sup operator:

(a = sup
x : τ s.t. ϕ(x)

e(x)) ≡ ∀x : τ .ϕ(x) =⇒ (e(x) ≤ a)∧∀b : τ .(∀x : τ . ϕ(x) =⇒ e(x) ≤ b) =⇒ a ≤ b

Next, we implement the notions of the Lipschitz constant and the Wasserstein metric (sometimes
known as the Kantorovic metric):

(a = Kd1,d2 (f)) ≡ a = sup⟨s1,s2 ⟩ : τ1×τ1 d2(f (s1), f (s2))/d1(s1, s2)
(a =Wd1 (µ1, µ2)) ≡ a = supf : τ1→real s.t. Kd1 ,dR (f)≤1

(Es∼µ1 [f (s)] − Es∼µ2 [f (s)])

where dR : real × real → pReal is the usual metric in the real line. The standard lemmas on
summation and composition for Lipschitz constants (see, e.g., [Asadi et al. 2018, Lemmas 1 and 2])
can be proved in PL by unfolding.
Now we are in a position to state the main theorem by Asadi et al. [2018] in PPV:

∀Q : τS × τA → real.KdS ,dR (f (Q)) ≤ supa : τA KdS ,dR (λs : τS .Q(s,a))
д = λQ ′

.λs . Es ′∼T (s ,a)[f (Q ′)(s ′))],∀s : τS .∀a : τA.Es ′∼T (s ,a)[1] = 1,γKdS ,W (T) < 1
⊢UPL LipGVI : nat → (τS × τA → real) → (τS × τA → real) |
∀Q : τS × τA → real.∀ε : real.∀K1 : real.(ε > 0) ∧ (K1 = supa : τA KdS ,dR (Q)(a))
=⇒ ∃k : nat.∀K2 : real.∀K3 : real.∀K4 : real.(K2 = supa : τA KdS ,dR (r(k))(a))
∧(K3 = KdS ,dR (R)) ∧ (K4 = KdS ,W (T)) =⇒ K2 ≤ K3/(1 − γ ∗ K4) + ε

(24)

Here, dS is a distance function on the state space. The logical assumptions are the losslessness of
the transition dynamics T , and the definition д = λQ ′

. λs . Es ′∼T (s ,a)[f (Q ′)(s ′))]. We also introduce
four slack variables K1, K2, K3, and K4 to use the above syntactic sugar for Lipschitz constants. The
judgment (24) itself is proved inductively as in the paper [Asadi et al. 2018]. The key part of the
proof is showing the inequality:

KdS ,dR (λs : τS . Es ′∼T (s ,a)[f (Q ′)(s ′))]) ≤ KdS ,dR (λs ′ : τS . f (Q ′)(s ′))) · KdS ,WdS
(λs : τS .T (s,a))

Suppose K1 = KdS ,dR (λs ′ : τS . f (Q ′)(s ′))) and K2 = KdS ,WdS
(λs : τS .T (s,a)). What we prove in our

framework is that z = KdS ,dR (λs : τS . Es ′∼T (s ,a)[f (Q ′)(s ′))]) implies z ≤ K1 ∗ K2. By unfolding and
applying linearity of expectation, we obtain:

z = KdS ,dR (λs : τS . Es ′∼T (s ,a)[f (Q ′)(s ′))])

⇐⇒ z = sups1,s2 : τS
K1 · (Es ′∼T (s1,a)[f (Q ′)(s ′))/K1] − Es ′∼T (s2,a)[f (Q ′)(s ′))/K1])

dS (s1, s2)
.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:23

Here 1 = KdS ,dR (λs ′ : τS . f (Q ′)(s ′))/K1) holds from the property dR(α · x,α · y) = α · dR(x,y) of dR
(0 ≤ α) and the losslessness ∀s : τS .∀a : τA. Es ′∼T (s ,a)[1] = 1 of the function T . Hence, we conclude
z ≤ K1 ∗ K2.

9 DOMAIN-SPECIFIC REASONING PRINCIPLES

Paper proofs of randomized algorithms typically use proof techniques to abstract away unimportant
details. In this section, we show how PPV can support custom proof techniques in the form of
domain-specific logics for reasoning about higher-order programs. Specifically, we show that
the ⊤⊤-lifting construction by Katsumata [2014]Ðroughly, a categorical construction useful for
building different refinements of the probability distribution monadÐcan be smoothly incorporated
in PPV. As concrete examples, we instantiate the unary ⊤⊤-lifting construction to a logic for
reasoning about the probability of failure using the so-called union bound [Barthe et al. 2016b],
and the binary ⊤⊤-lifting construction to a logic for reasoning about probabilistic coupling.

9.1 Embedding Unary Graded ⊤⊤-lifting
Roughly speaking, the ⊤⊤-lifting of a monad is given by a large intersection of inverse images of
some predicate, called lifting parameters. We can internalize this construction of ⊤⊤-lifting in PPV
using a large intersection of assertions as ∀x : τ .ϕx , and the inverse image ϕ[e/y] of an assertion
ϕ along an expression e . First, we internalize a general construction of graded ⊤⊤-lifting (along
the fibration q : Pred(QBS) → QBS) in the unary logic UPL. Then we instantiate it to construct a
unary graded ⊤⊤-lifting for reasoning about the probability of failure using a union bound.
These instantiations of ⊤⊤-liftings need subprobability measures. Accordingly, we introduce a

new monadic type D[τ] describing the set of subprobability measures over τ . We interpret D by

[[D[τ]]] def
= P[[τ]], and interpret monadic structures in the same way as the ones on the monadic

typeM . Furthermore, we assume that for every type τ , D[τ] is a subtype ofM[τ]. We introduce the
following axioms enabling syntactic conversions from distributions in D[unit] to real numbers in
[0, 1].

Γ ⊢ e : D[unit]
Γ ⊢PL e = scale(return(∗), λz : unit. Ey∼e [1])

Γ ⊢ e : D[τ]
Γ ⊢PL 0 ≤ Ey∼e [1] ≤ 1

(25)

General Construction. We define a graded ⊤⊤-lifting for the monadic type D. Consider a type
ζ equipped with a preordered monoid structure (ζ , 1ζ , ·ζ , ≤ζ), and an arbitrary type θ . A lifting
parameter is awell-typed formula S satisfying Γ, k : ζ , l : D[θ] ⊢ S wf and the followingmonotonicity
condition:

Γ, k : ζ , l : D[θ] ⊢PL ∀α : ζ .∀β : ζ .(α ≤ζ β =⇒ (S[α/k] =⇒ S[β/k]))

Roughly speaking, a lifting parameter is a family of predicates D[θ]which is monotone with respect
to the parameter in the preordered monoid ζ . The type θ can differ, depending on the application.
For example, in the embedding of the union bound logic, the type θ is set to unit.
For any assertion Γ, r′ : τ ⊢ ϕ wf and an expression Γ ⊢ α : ζ , we define the unary ⊤⊤-lifting

Γ, r : D[τ] ⊢ Uα
S
ϕ wf for the lifting parameter S by the following assertion.

UαS ϕ ≡ ∀β : ζ .∀f : τ → D[θ].((∀x : τ .ϕ[x/r′] =⇒ S[β/k, f (x)/l]) =⇒ S[α · β/k, bind r f /l])

Notice that the parameters β and f range over all elements in the types ζ and τ → D[θ] respectively.
By regarding US as a constructor of graded ⊤⊤-lifting, we obtain the following graded monadic
rules.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:24 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

Theorem 9.1 (Graded Monadic Laws of US). The following rules are derivable:

Γ | Ψ ⊢PL ∀α : ζ .∀β : ζ .(α ≤ζ β) =⇒ UαS ϕ =⇒ U
β
S
ϕ

Γ | Ψ ⊢PL ∀α : ζ .(∀x : τ .ϕ1[x/r′] =⇒ ϕ2[x/r′]) =⇒ (UαS ϕ1 =⇒ UαS ϕ2)

Γ | Ψ ⊢UPL e : τ | ϕ[r/r′]

Γ | Ψ ⊢UPL return(e) : D[τ] | U1ζ
S
ϕ

Γ | Ψ ⊢UPL e : D[τ] | UαS ϕ
Γ | Ψ ⊢UPL e ′ : τ → D[τ ′] | ∀x : τ .ϕ[x/r] =⇒ (Uβ

S
ϕ ′)[rx/r]

Γ | Ψ ⊢UPL bind e e ′ : D[τ ′] | Uα ·β
S

ϕ ′

The proofs follow by unfolding the constructor US . Furthermore, the graded monadic laws
(Theorem 9.1) are proved only using the structure of the preordered monoid for grading, the
monotonicity of the lifting parameter, α-conversions, βη-reductions, the monadic laws of D, and
proof rules of PL. Moreover, the construction of ⊤⊤-lifting can be applied to any monadic type.

Embedding the Union Bound Logic. We show that the predicate lifting given in the semantic model
of the union bound logic [Barthe et al. 2016b] can be implemented as a graded unary ⊤⊤-lifting in
PPV. Concretely, we give a lifting parameter S such that the graded ⊤⊤-lifting US corresponds to
the predicate lifting for the union bound logic.

Consider the additive monoid structure with usual ordering (pReal, 0,+, ≤). We define the lifting
parameter k : pReal, l : D[unit] ⊢ S wf by S = (Ey∼l[1] ≤ k). The monotonicity of S is obvious. As
we proved above, we have the monadic rules for the graded ⊤⊤-lifting US . Next, we prove that the
graded ⊤⊤-lifting US describes the probability of failure:

Proposition 9.2. The following reduction is derivable in PL.

Γ, r′ : τ ⊢ e : bool Γ, r′ : τ | Ψ ⊢PL ¬ϕ ⇐⇒ (e = true)
Γ, r : D[τ] | Ψ ⊢PL UαS (¬ϕ) ⇐⇒ PrX∼r[e[X/r′]] ≤ α

Intuitively, this proposition holds becauseUα
S
(¬ϕ) ⇐⇒ Pr[ϕ] ≤ α . The second premise requires

ϕ to be a measurable assertion, i.e., there is an indicator function λr′ : τ .e of ϕ.

9.2 Embedding Relational ⊤⊤-lifting
Similar to unary graded⊤⊤-lifting, we can also define relational graded⊤⊤-lifting by just switching
the type of assertions from predicates to relations. As a concrete example, we instantiate the (non-
graded) relational ⊤⊤-lifting for reasoning about probabilistic coupling. Consider a preordered
monoid (ζ , 1ζ , ·ζ , ≤ζ) and a pair of arbitrary types θ1 and θ2. A lifting parameter for relational
⊤⊤-lifting is a well-typed formula of the form Γ, k : ζ , l1 : D[θ1], l2 : D[θ2] ⊢ S wf satisfying the
following monotonicity condition:

Γ, k : ζ , l1 : D[θ1], l2 : D[θ2] ⊢PL ∀α : ζ .∀β : ζ .(α ≤ζ β =⇒ (S[α/k] =⇒ S[β/k])).

Intuitively, a lifting parameter for relational graded ⊤⊤-lifting is a monotone family of relations
between D[θ1] and D[θ2] with respect to the preordered monoid ζ .

For any assertion Γ, r′ : τ1, r′ : τ2 ⊢ ϕ wf and an expression Γ ⊢ α : ζ we define its relational lifting
Γ, r1 : D[τ1], r2 : D[τ2] ⊢ RαS ϕ wf for the lifting parameter S as the following assertion.

Rα
S
ϕ ≡ ∀β : ζ .∀f1 : τ1 → D[θ1].∀f2 : τ2 → D[θ2].

(∀x1 : τ1.∀x2 : τ2.ϕ[x1/r′1, x2/r′2] =⇒ S[β/k, f1(x1)/l1, f2(x2)/l2])
=⇒ S[α · β/k, bind r1 f1/l1, bind r2 f2/l2])).

We can prove two-sided gradedmonadic laws forRS , analogous to those for graded unary⊤⊤-lifting
US . We omit these here.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:25

Embedding the Modality for Relational Coupling of Distributions. As an example of this relational
construction, we show how to internalize in our framework the modality for relational proba-
bilistic coupling defined by Aguirre et al. [2018]. We say that two probability distributions µ1
and µ2 are coupled over a relation R ⊆ X × Y if ∀S ⊆ X . Prx∼µ1 [S] ≤ Pry∼µ2 [R(S)]. To internalize
this construction we now need to supply the appropriate lifting parameters. First, we take the
grading monoid to be the trivial one on the unit type unit. Then, we set the lifting parameter
k : unit, l1 : D[unit], l2 : D[unit] ⊢ S wf by S = (Ey∼l1 [1] ≤ Ey∼l2 [1]), which is equivalent to the
usual inequality on [0, 1]. The assertion S obviously satisfies the monotonicity of lifting parameter.
Hence we obtain the ⊤⊤-lifting Γ, r1 : D[τ1], r2 : D[τ2] ⊢ RSϕ for the lifting parameter S . What
we need to prove is that the lifting RS actually describes the above inequality of probabilistic
dominance. In other words, we need to prove the following fundamental property in PL.

Proposition 9.3 (Aguirre et al. [2018, Lemma 2]).

Γ, r1 : D[τ1], r2 : D[τ2] | Ψ ⊢PL RSϕ =⇒ ∀f1 : τ1 → bool.∀f2 : τ2 → bool.

∀y : τ2.((f2(y) = true) =⇒ ∀x : τ1.ϕ[x/r′1,y/r′2] =⇒ (f1(x) = true))
=⇒ Prx∼r1 [f1(x)] ≤ Pry∼r1 [f2(y)]

Intuitively f1 and f2 encode indicator functions χA and χB respectively, where ϕ(A) ⊆ B. The
proof follows Katsumata and Sato [2015, Theorem 12], again using the equivalence D[unit] � [0, 1]
axiomatized in (25) and axioms on scaling of measures.
Specializing the assertion ϕ can establish useful probabilistic properties. For instance, taking ϕ

to be the equality relation yields the following property.

Corollary 9.4 (Aguirre et al. [2018, Corollary 1]). If τ1 = τ2 = τ then

Γ, r : D[τ] | Ψ ⊢PL
RS (r′1 = r′2) ⇐⇒ (∀д : τ → real.(∀x : τ .0 ≤ д(x) ≤ 1) =⇒ Ex∼r1 [д(x)] ≤ Ey∼r2 [д(y)])

If we take д to be the indicator function of a (measurable) set A, the conclusion shows that the
measure of A in r1 is smaller than the measure of A in r2. Since the assertion ϕ is symmetric, we
can also conclude the inequality in the other direction, hence showing that the measure of Amust
be equal in r1 and in r2. Since equality holds for all measurable A, r1 and r2 must denote equal
probability measures.

10 RELATED WORK

Semantics of probabilistic programs. The semantics of probabilistic programs has been extensively
studied starting from the seminal work of Kozen [1981]. Imperative first-order programs with
continuous distributions have a well-understood interpretation based on the Giry monad [Giry
1982] over the category Meas of measurable spaces and measurable functions [Panangaden 1999].
However, this approach does not naturally extend to the higher-order setting since Meas is not
Cartesian closed [Aumann 1961]. In addition, although Meas has a symmetric monoidal closed
structure [Culbertson and Sturtz 2013], the Giry monad is not strong with respect to the canonical
one [Sato 2018].

The category QBS [Heunen et al. 2017] of quasi-Borel spaces was introduced as an łextensionž of
Meas that is Cartesian closed and that can be used to interpret higher-order probabilistic programs
with continuous distributions. The category of s-finite kernels [Staton 2017] gives a denotational
semantics to observe-like statements in these models, including our construct query. In particular,
it supports infinite measures and rescaling of measures. These are useful to give semantics to
programs and to devise equational rules to reason about the equivalence of programs. The monad
M of measures on quasi-Borel spaces we use in this paper was introduced by Ścibior et al. [2017]

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:26 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

based on these constructions. One reason we chose QBS is that it has an obvious forgetful functor
QBS → Set giving the identity on functions. This is a key property to allow set-theoretic reasoning
in PPV.

An alternative approach has been proposed by Ehrhard et al. [2017]. They use a domain-theoretic
approach based on the category Cstab of cones and stable functions, extending previous work on
probabilistic coherent spaces [Ehrhard et al. 2014]. For our work, QBS is a more natural choice
than Cstab for two reasons. First, the categorical structure needed for query-like statements has
already been studied in QBS. Second, we are interested in terminating programs and so we do
not need the domain-theoretic structure of Cstab. Other models related to both QBS and Cstab

that one could consider are the ones by Tix et al. [2009] and Keimel and Plotkin [2017]. Several
other papers have studied models for higher-order probabilistic programming starting from the
seminal papers on probabilistic powerdomains by Jones and Plotkin [1989] and Saheb-Djahromi
[1980]. A non-exhaustive list includes Castellan et al. [2018]; Goubault-Larrecq and Jung [2014];
Jung and Tix [1998]; Mislove [2017]; Varacca et al. [2004]. Many of these model only partially
support the features we need. There is also recent work that studies the semantics of probabilistic
programming from an operational perspective. Borgström et al. [2016] propose distribution-based
and sample-based operational semantics for an untyped lambda calculus with continuous random
variables. Their calculus also contains primitives for scaling and failing which allow them to model
different kinds of query-like constructs. Culpepper and Cobb [2017] propose an entropy-based
operational semantics for a simply typed lambda calculus with continuous random variables and
propose an operational equational theory for it based on logical relations. The focus of their work
is program equivalence, as reflected in the form of their judgments. In contrast, we start from an
expressive predicate logic for probabilistic computations which allows us to express many different
(unary and relational) properties, not just equivalence.

Verification of probabilistic programs. Starting from the seminal work on Probabilistic Propo-
sitional Dynamic Logic by Kozen [1985], several papers have proposed program logics for the
verification of imperative probabilistic programs. McIver and Morgan [2005]; Morgan et al. [1996]
propose a predicative logic to reason about an imperative language with probabilistic and non-
deterministic choice. Both these program logics allow reasoning about the expected value of a single
real-valued function on program states. Many subsequent papers build on this idea [Audebaud and
Paulin-Mohring 2009; Gretz et al. 2013; Hurd et al. 2005; Kaminski et al. 2016; Katoen et al. 2010].
Other papers focus on program logics where the pre-condition and post-condition are probabilis-
tic assertions about the input and output distributions Chadha et al. [2007]; den Hartog [2002];
Ramshaw [1979]; Rand and Zdancewic [2015]. Barthe et al. [2018] propose an assertion-based logic,
named ELLORA, using expectation for verifying properties of imperative probabilistic programs
with discrete random variables. Our assertion logic PL is similar in spirit to the one of ELLORA, but
it further supports continuous distributions and the verification of higher-order programs. On the
other hand, ELLORA has powerful rules for probabilistic while loops that PPV does not support. It
would be interesting to explore if similar rules can also be added to PPV. Formalizations of measure
and integration theory in general purpose interactive theorem provers have been considered in
many papers [Audebaud and Paulin-Mohring 2009; Coble 2010; Hölzl and Heller 2011; Hurd 2003;
Richter 2004]. Avigad et al. [2014] recently completed a proof of the Central Limit theorem, which
is the principle underlying concentration bounds. Hölzl [2016] formalized discrete-time Markov
chains and Markov decision processes. These and other existing formalizations have been used to
verify several case studies, but they are scattered and not easily accessible for our purposes.

Relational Verification. Several papers have explored relational program logics or relational
type systems for the verification of different relational properties. Aguirre et al. [2017] propose

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

Formal Verification of Higher-Order Probabilistic Programs 38:27

UHOL/RHOL for the unary and relational verification of higher-order, non-probabilistic, termi-
nating programs. UHOL and RHOL are based on a combination of logics for expressing (unary
and relational) postconditions, and syntax-directed proof rules for establishing them. Since only
terminating non-probabilistic programs are considered, the logic and the proof rules can be shown
sound in set-theory. Our broad approach to setting up PPV is directly inspired from this work,
but we work with probabilistic programs and, therefore, introduce a new monadic type for gen-
eral/continuous measures along with constructs for conditioning. As a result, we have to interpret
the logic and proof system in QBS, not set theory, and had to re-work the entire soundness proof
from scratch.

The frameworkUC /RC [Radiček et al. 2017] is an extention of Aguirre et al. [2017] for reasoning
about costs of non-probabilistic, terminating programs. This work introduces a monad, but this
monad merely pairs a computation with its cost. The entire development still has a simple model
in set theory. GUHOL and GRHOL [Aguirre et al. 2018] are extensions of Aguirre et al. [2017] to
reason about unary and relational properties of Markov chains. These systems include a monad for
distributions, but the development is limited to discrete distributions, and relational probabilistic
reasoning is limited to coupling. The framework has an interpretation in the topos of trees (which
is an extension of set theory with step counting) extended with a Giry monad. Importantly, pre-
and post-conditions are non-probabilistic and are interpreted first over deterministic values, and
then over distributions over values by lifting. Moreover, in [Aguirre et al. 2018], the proof rules only
allow analysis of properties of programs via coupling arguments. This differs considerably from
what we present here. Indeed, in PPV we can reason about (monadic) probabilistic expressions
directly in assertions. For example, we can directly express and prove convergence properties
of the expectation of an expression, which is impossible in the work of Aguirre et al. [2018]. In
addition, [Aguirre et al. 2018] support only discrete distributions while we handle continuous
distributions. As we have shown, the probabilistic coupling of GRHOL can be embedded in PPV
by ⊤⊤-lifting, but PPV does not cover all features of GRHOL. The reason is the difference in the
goals of verification: PPV verifies the static behavior of probabilistic programs such as expected
values and equality between probability measures. In contrast, GRHOL verifies behaviors of entire
Markov chains.

Barthe et al. [2016a] study a relational type system PrivInfer for Bayesian inference on a functional
programming language. Our framework PPV ismore flexible since it supports continuous probability
distributions while PrivInfer supports only discrete probabilities. In the future, we expect to
internalize the continuous variant of PrivInfer’s (f , δ)-lifting proposed in PPV, in a manner similar
to ⊤⊤-lifting.

11 CONCLUSION

In this paper we have introduced a framework PPV supporting the (unary and relational) verification
of probabilistic programs including constructions for higher-order computations, continuous
distributions and conditioning. PPV combines axiomatizations of basic probabilistic constructions
with rules of three different logics in order to ease the verification of examples from probabilistic
inference, statistics, and machine learning. The soundness of our approach relies on quasi-Borel
spaces, a recently proposed semantic framework for probabilistic programs. All these components
make PPV a useful framework for the practical verification of higher-order probabilistic programs.

ACKNOWLEDGMENTS

This material is based on work supported by the National Science Foundation under CCF Grant
No. 1637532 and under CNS Grant No. 1565365.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

38:28 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

REFERENCES

Alejandro Aguirre, Gilles Barthe, Lars Birkedal, Ales Bizjak, Marco Gaboardi, and Deepak Garg. 2018. Relational Reasoning
for Markov Chains in a Probabilistic Guarded Lambda Calculus. In Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. 214ś241. https://doi.org/10.1007/978-3-319-89884-1_8

Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. 2017. A Relational Logic for Higher-
order Programs. Proc. ACM Program. Lang. 1, ICFP, Article 21 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110265

Torben Amtoft and Anindya Banerjee. 2016. A Theory of Slicing for Probabilistic Control Flow Graphs. In Foundations of
Software Science and Computation Structures, Bart Jacobs and Christof Löding (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 180ś196.

Kavosh Asadi, Evan Cater, DipendraMisra, andMichael L. Littman. 2018. Equivalence BetweenWasserstein and Value-Aware
Model-based Reinforcement Learning. ArXiv e-prints (June 2018). arXiv:cs.LG/1806.01265

Philippe Audebaud and Christine Paulin-Mohring. 2009. Proofs of Randomized Algorithms in Coq. Sci. Comput. Program.
74, 8 (2009), 568ś589. https://doi.org/10.1016/j.scico.2007.09.002

Robert J. Aumann. 1961. Borel structures for function spaces. Illinois J. Math. 5, 4 (12 1961), 614ś630. http://projecteuclid.
org/euclid.ijm/1255631584

Jeremy Avigad, Johannes Hölzl, and Luke Serafin. 2014. A formally verified proof of the Central Limit Theorem. CoRR
abs/1405.7012 (2014). http://arxiv.org/abs/1405.7012

Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. An Assertion-
Based Program Logic for Probabilistic Programs. In Programming Languages and Systems, Amal Ahmed (Ed.). Springer
International Publishing, Cham, 117ś144.

Gilles Barthe, Gian Pietro Farina, Marco Gaboardi, Emilio Jesús Gallego Arias, Andy Gordon, Justin Hsu, and Pierre-Yves
Strub. 2016a. Differentially Private Bayesian Programming. In ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016. 68ś79. https://doi.org/10.1145/2976749.2978371

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016b. A Program Logic for Union
Bounds. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy. 107:1ś107:15. https://doi.org/10.4230/LIPIcs.ICALP.2016.107

Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Margetson, and Jurgen Van Gael. 2011. Measure Trans-
former Semantics for Bayesian Machine Learning. In Programming Languages and Systems - 20th European Symposium
on Programming, ESOP 2011, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings. 77ś96. https://doi.org/10.1007/978-3-642-19718-5_5

Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation for
universal probabilistic programming. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. 33ś46. https://doi.org/10.1145/2951913.2951942

Simon Castellan, Pierre Clairambault, Hugo Paquet, and GlynnWinskel. 2018. The concurrent game semantics of Probabilistic
PCF. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018. 215ś224. https://doi.org/10.1145/3209108.3209187

Rohit Chadha, Luís Cruz-Filipe, Paulo Mateus, and Amílcar C. Sernadas. 2007. Reasoning about probabilistic sequential
programs. Theoretical Computer Science 379, 1 (2007), 142 ś 165. https://doi.org/10.1016/j.tcs.2007.02.040

Sourav Chatterjee and Persi Diaconis. 2018. The sample size required in importance sampling. Ann. Appl. Probab. 28, 2 (04
2018), 1099ś1135. https://doi.org/10.1214/17-AAP1326

Aaron R. Coble. 2010. Anonymity, information, and machine-assisted proof. Technical Report UCAM-CL-TR-785. University
of Cambridge, Computer Laboratory.

Jared. Culbertson and Kirk. Sturtz. 2013. Bayesian machine learning via category theory. ArXiv e-prints (Dec. 2013).
arXiv:math.CT/1312.1445

Ryan Culpepper and Andrew Cobb. 2017. Contextual Equivalence for Probabilistic Programs with Continuous Random
Variables and Scoring. In Programming Languages and Systems - 26th European Symposium on Programming, ESOP 2017,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings. 368ś392. https://doi.org/10.1007/978-3-662-54434-1_14

Jeremy den Hartog. 2002. Probabilistic extensions of semantical models. Ph.D. Dissertation. Vrije Universiteit Amsterdam.
Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2017. Measurable Cones and Stable, Measurable Functions: A

Model for Probabilistic Higher-order Programming. Proc. ACM Program. Lang. 2, POPL, Article 59 (Dec. 2017), 28 pages.
https://doi.org/10.1145/3158147

Thomas Ehrhard, Christine Tasson, and Michele Pagani. 2014. Probabilistic coherence spaces are fully abstract for proba-
bilistic PCF. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014. 309ś320. https://doi.org/10.1145/2535838.2535865

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

https://doi.org/10.1007/978-3-319-89884-1_8
https://doi.org/10.1145/3110265
http://arxiv.org/abs/cs.LG/1806.01265
https://doi.org/10.1016/j.scico.2007.09.002
http://projecteuclid.org/euclid.ijm/1255631584
http://projecteuclid.org/euclid.ijm/1255631584
http://arxiv.org/abs/1405.7012
https://doi.org/10.1145/2976749.2978371
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.1007/978-3-642-19718-5_5
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/3209108.3209187
https://doi.org/10.1016/j.tcs.2007.02.040
https://doi.org/10.1214/17-AAP1326
http://arxiv.org/abs/math.CT/1312.1445
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1145/3158147
https://doi.org/10.1145/2535838.2535865

Formal Verification of Higher-Order Probabilistic Programs 38:29

Michèle Giry. 1982. A categorical approach to probability theory. In Categorical Aspects of Topology and Analysis, B. Ba-
naschewski (Ed.). Lecture Notes in Mathematics, Vol. 915. Springer Berlin Heidelberg, 68ś85. https://doi.org/10.1007/
BFb0092872

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: a
language for generative models. In UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence,
Helsinki, Finland, July 9-12, 2008. 220ś229. https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_
id=1346&proceeding_id=24

Jean Goubault-Larrecq and Achim Jung. 2014. QRB, QFS, and the Probabilistic Powerdomain. Electr. Notes Theor. Comput.
Sci. 308 (2014), 167ś182. https://doi.org/10.1016/j.entcs.2014.10.010

Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. 2013. Prinsys - On a Quest for Probabilistic Loop Invariants. In
Quantitative Evaluation of Systems - 10th International Conference, QEST 2013. 193ś208.

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order probability
theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23,
2017. 1ś12. https://doi.org/10.1109/LICS.2017.8005137

Johannes Hölzl. 2016. Markov chains and Markov decision processes in Isabelle/HOL. (2016). http://home.in.tum.de/~hoelzl/

mdptheory/hoelzl2016markov-draft.pdf

Johannes Hölzl and Armin Heller. 2011. Three Chapters of Measure Theory in Isabelle/HOL. In Interactive Theorem Proving,
ITP 2011 (Lecture Notes in Computer Science), Marko C. J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek

Wiedijk (Eds.), Vol. 6898. Springer, 135ś151.

Joe Hurd. 2003. Formal verification of probabilistic algorithms. Technical Report UCAM-CL-TR-566. University of Cambridge,

Computer Laboratory.

Joe Hurd, Annabelle McIver, and Carroll Morgan. 2005. Probabilistic guarded commands mechanized in HOL. Theor. Comput.
Sci. 346, 1 (2005), 96ś112.

Bart Jacobs. 1999. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the Foundations of Mathematics.

North Holland, Amsterdam.

Bart Jacobs and Thomas F. Melham. 1993. Translating Dependent Type Theory into Higher Order Logic. In Typed Lambda
Calculi and Applications, International Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The
Netherlands, March 16-18, 1993, Proceedings. 209ś229. https://doi.org/10.1007/BFb0037108

Claire Jones and Gordon D. Plotkin. 1989. A Probabilistic Powerdomain of Evaluations. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. 186ś195.
https://doi.org/10.1109/LICS.1989.39173

Achim Jung and Regina Tix. 1998. The troublesome probabilistic powerdomain. Electr. Notes Theor. Comput. Sci. 13 (1998),
70ś91. https://doi.org/10.1016/S1571-0661(05)80216-6

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition

Reasoning for Expected Run-Times of Probabilistic Programs. arXiv:cs.LO/1601.01001

Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan. 2010. Linear-Invariant Generation for Prob-

abilistic Programs: Automated Support for Proof-Based Methods. 390ś406. https://doi.org/10.1007/978-3-642-15769-1_24

Shin-ya Katsumata and Tetsuya Sato. 2015. Codensity Liftings of Monads. In Conference on Algebra and Coalgebra
in Computer Science (CALCO 2015) (Leibniz Intern. Proc. in Informatics (LIPIcs)), Vol. 35. Schloss Dagstuhl, 156ś170.
https://doi.org/10.4230/LIPIcs.CALCO.2015.156

Shin-ya Katsumata. 2014. Parametric Effect Monads and Semantics of Effect Systems. In ACM Symposium on Principles of
Programming Languages (POPL ’14). ACM, New York, NY, USA, 633ś645. https://doi.org/10.1145/2535838.2535846

Klaus Keimel and Gordon D. Plotkin. 2017. Mixed powerdomains for probability and nondeterminism. Logical Methods in
Computer Science 13, 1 (2017). https://doi.org/10.23638/LMCS-13(1:2)2017

Dexter Kozen. 1981. Semantics of probabilistic programs. J. Comput. System Sci. 22, 3 (1981), 328 ś 350. https://doi.org/10.

1016/0022-0000(81)90036-2

Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. Syst. Sci. 30, 2 (1985), 162ś178.
A. McIver and C. Morgan. 2005. Abstraction, Refinement, and Proof for Probabilistic Systems. Springer.
Michael W. Mislove. 2017. Discrete Random Variables Over Domains, Revisited. In Concurrency, Security, and Puzzles

- Essays Dedicated to Andrew William Roscoe on the Occasion of His 60th Birthday. 185ś202. https://doi.org/10.1007/

978-3-319-51046-0_10

Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program.
Lang. Syst. 18, 3 (1996), 325ś353.

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic Inference

by Program Transformation in Hakaru (System Description). In Functional and Logic Programming - 13th International
Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. 62ś79. https://doi.org/10.1007/978-3-319-29604-3_5

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

https://doi.org/10.1007/BFb0092872
https://doi.org/10.1007/BFb0092872
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1346&proceeding_id=24
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1346&proceeding_id=24
https://doi.org/10.1016/j.entcs.2014.10.010
https://doi.org/10.1109/LICS.2017.8005137
http://home.in.tum.de/~hoelzl/mdptheory/hoelzl2016markov-draft.pdf
http://home.in.tum.de/~hoelzl/mdptheory/hoelzl2016markov-draft.pdf
https://doi.org/10.1007/BFb0037108
https://doi.org/10.1109/LICS.1989.39173
https://doi.org/10.1016/S1571-0661(05)80216-6
http://arxiv.org/abs/cs.LO/1601.01001
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.4230/LIPIcs.CALCO.2015.156
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.23638/LMCS-13(1:2)2017
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1007/978-3-319-51046-0_10
https://doi.org/10.1007/978-3-319-51046-0_10
https://doi.org/10.1007/978-3-319-29604-3_5

38:30 T. Sato, A. Aguirre, G. Barthe, M. Gaboardi, D. Garg and J. Hsu

Prakash Panangaden. 1999. The Category of Markov Kernels. Electronic Notes in Theoretical Computer Science 22 (1999), 171
ś 187. https://doi.org/10.1016/S1571-0661(05)80602-4

Ivan Radiček, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. 2017. Monadic Refinements for Relational
Cost Analysis. Proc. ACM Program. Lang. 2, POPL, Article 36 (Dec. 2017), 32 pages. https://doi.org/10.1145/3158124

Lyle Harold Ramshaw. 1979. Formalizing the Analysis of Algorithms. Ph.D. Dissertation. Computer Science.
Robert Rand and Steve Zdancewic. 2015. VPHL: A Verified Partial-Correctness Logic for Probabilistic Programs. In

Mathematical Foundations of Program Semantics (MFPS XXXI).
Stefan Richter. 2004. Formalizing Integration Theory with an Application to Probabilistic Algorithms. In Theorem Proving

in Higher Order Logics, 17th International Conference, (TPHOL) 2004 (Lecture Notes in Computer Science), Konrad Slind,
Annette Bunker, and Ganesh Gopalakrishnan (Eds.), Vol. 3223. Springer, 271ś286.

Nasser Saheb-Djahromi. 1980. CPO’S of Measures for Nondeterminism. Theor. Comput. Sci. 12 (1980), 19ś37. https:
//doi.org/10.1016/0304-3975(80)90003-1

Tetsuya Sato. 2018. The Giry monad is not strong for the canonical symmetric monoidal closed structure on Meas. Journal
of Pure and Applied Algebra 222, 10 (2018), 2888 ś 2896. https://doi.org/10.1016/j.jpaa.2017.11.004

Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss,
Chris Heunen, and Zoubin Ghahramani. 2017. Denotational Validation of Higher-order Bayesian Inference. Proc. ACM
Program. Lang. 2, POPL, Article 60 (Dec. 2017), 29 pages. https://doi.org/10.1145/3158148

Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian inference by symbolic disintegration. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017.
130ś144.

Sam Staton. 2017. Commutative Semantics for Probabilistic Programming. In Programming Languages and Systems -
26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. 855ś879. https://doi.org/10.1007/
978-3-662-54434-1_32

Regina Tix, Klaus Keimel, and Gordon D. Plotkin. 2009. Semantic Domains for Combining Probability and Non-Determinism.
Electr. Notes Theor. Comput. Sci. 222 (2009), 3ś99. https://doi.org/10.1016/j.entcs.2009.01.002

Daniele Varacca, Hagen Völzer, and Glynn Winskel. 2004. Probabilistic Event Structures and Domains. In CONCUR 2004
- Concurrency Theory, 15th International Conference, London, UK, August 31 - September 3, 2004, Proceedings. 481ś496.
https://doi.org/10.1007/978-3-540-28644-8_31

Frank D. Wood, Jan-Willem van de Meent, and Vikash Mansinghka. 2014. A New Approach to Probabilistic Programming
Inference. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, AISTATS 2014,
Reykjavik, Iceland, April 22-25, 2014. 1024ś1032. http://jmlr.org/proceedings/papers/v33/wood14.html

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 38. Publication date: January 2019.

https://doi.org/10.1016/S1571-0661(05)80602-4
https://doi.org/10.1145/3158124
https://doi.org/10.1016/0304-3975(80)90003-1
https://doi.org/10.1016/0304-3975(80)90003-1
https://doi.org/10.1016/j.jpaa.2017.11.004
https://doi.org/10.1145/3158148
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1016/j.entcs.2009.01.002
https://doi.org/10.1007/978-3-540-28644-8_31
http://jmlr.org/proceedings/papers/v33/wood14.html

	Abstract
	1 Introduction
	2 PPV by example
	3 HPProg: a higher-order probabilistic programming language
	4 PL: A Logic for Probabilistic Programs
	5 Axioms and Equations of Assertions for Statistics
	5.1 Markov and Chebyshev Inequalities

	6 Unary/Relational Logic
	6.1 The Unary Logic UPL
	6.2 The Relational Logic RPL
	6.3 Special Rules

	7 Semantics
	7.1 Background
	7.2 Semantics for PPV

	8 Examples
	8.1 Slicing of Probabilistic Programs
	8.2 Gaussian Mean Learning: Convergence and Stability
	8.3 Sample Size Required in Importance Sampling
	8.4 Verifying Lipschitz GVI Algorithm

	9 Domain-specific reasoning principles
	9.1 Embedding Unary Graded -lifting
	9.2 Embedding Relational -lifting

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

