
Bidirectional Type Checking for Relational Properties
Ezgi Çiçek∗
Facebook, UK

Weihao Qu
University at Buffalo, SUNY, USA

Gilles Barthe
Max Planck Institute for Security and

Privacy, Germany and IMDEA
Software Institute, Spain

Marco Gaboardi
University at Buffalo, SUNY, USA

Deepak Garg
Max Planck Institute for Software

Systems, Germany

Abstract
Relational type systems have been designed for several ap-
plications including information flow, differential privacy,
and cost analysis. In order to achieve the best results, these
systems often use relational refinements and relational ef-
fects to maximally exploit the similarity in the structure of
the two programs being compared. Relational type systems
are appealing for relational properties because they deliver
simpler and more precise verification than what could be
derived from typing the two programs separately. However,
relational type systems do not yet achieve the practical ap-
peal of their non-relational counterpart, in part because of
the lack of a general foundation for implementing them.
In this paper, we take a step in this direction by develop-

ing bidirectional relational type checking for systems with
relational refinements and effects. Our approach achieves
the benefits of bidirectional type checking, in a relational
setting. In particular, it significantly reduces the need for typ-
ing annotations through the combination of type checking
and type inference. In order to highlight the foundational
nature of our approach, we develop bidirectional versions of
several relational type systems which incrementally combine
many different components needed for expressive relational
analysis.

CCSConcepts •Theory of computation→Type struc-
tures; Functional constructs.

Keywords Bidirectional type-checking, relational type sys-
tems, refinement types, type-and-effect systems

∗Work done while Ezgi Çiçek was a PhD student at the Max Planck Institute
for Software Systems

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6712-7/19/06.
https://doi.org/10.1145/3314221.3314603

ACM Reference Format:
Ezgi Çiçek, Weihao Qu, Gilles Barthe, Marco Gaboardi, and Deepak
Garg. 2019. Bidirectional Type Checking for Relational Properties.
In Proceedings of the 40th ACM SIGPLANConference on Programming
Language Design and Implementation (PLDI ’19), June 22–26, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3314221.3314603

1 Introduction
Type systems are a fundamental tool for proving program
properties. They draw their success from their ability to
enforce many desirable facts about programs. Bidirectional
type checking [37] is a very successful method of implement-
ing type systems through a combination of type inference
and type checking [3, 8, 10, 33, 35]. The appeal of bidirec-
tional type checking lies in its ability to minimize typing
annotations—in most cases, type annotations are needed
only on recursive functions, or on reducible expressions—
while supporting disciplines that are too expressive to fall
under the purview of type inference. Furthermore, bidirec-
tional type systems offer a formal framework based on rules
that resemble standard typing rules. This simplifies proofs of
soundness and completeness of the algorithmic implementa-
tion relative to the declarative type system.

Standard type systems are primarily focused on program
properties, i.e. reasoning about individual execution traces.
In contrast, relational type systems [1, 4–7, 13, 15, 27, 38]
aim to repeat the success of type systems, but for so-called re-
lational properties, which consider pairs of execution traces.
Typical examples of relational properties include noninterfer-
ence in information flow systems, continuity and robustness
analysis of programs, differential privacy, and relational cost
analysis. The key difference of relational type systems is that
they consider two expressions simultaneously, and maxi-
mally exploit structural similarities between them to achieve
simpler and more precise verification than would be possible
with unary analysis of the individual expressions. Similari-
ties are exploited through two main ingredients: relational
refinement types and relational effects.
Relational refinements types [7, 13, 15, 27, 38] relate two

executions of two expressions and are akin to standard refine-
ment types [44]. However, their interpretation is a relation

https://doi.org/10.1145/3314221.3314603
https://doi.org/10.1145/3314221.3314603
https://doi.org/10.1145/3314221.3314603

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ezgi Çiçek, WeihaoQu, Gilles Barthe, Marco Gaboardi, and Deepak Garg

between the values in the two executions. For example, in
information flow control, a relational refinement is used to
describe equivalence between the values that are observable
at a specific security level.
Relational effects [7, 13, 15, 27, 38] are often of a quan-

titative nature and measure some quantitative difference
between two executions of the two expressions. These re-
lational effects are similar in spirit to their standard unary
counterpart [12, 30, 32, 34] but their interpretation is a rela-
tion between the effects of the two executions. For example,
in differential privacy, a relational effect is used to measure
the level of indistinguishability between the observable out-
puts on two inputs differing in one data element.

While a lot of work cited above comes with implemented
type checkers, there is, so far, no common understanding of
the challenges and solutions for implementing relational type
systems. Hence, the broad goal of our work is to investigate
issues in implementing a type checker for relational type
systems with relational refinements and relational effects.
Bidirectional type checking is a natural starting point for
the reasons mentioned above, and because it has been used
for implementing refinement type systems [20, 23, 44] and
subtyping [37], which are important common features in
most of the type systems we are inspired from. However,
bidirectional type checking has not been extensively applied
to effect systems, although some examples exist [41], and it
has not been applied to relational type systems at all.

Our contribution We present a study of bidirectional type
checking for relational type and effect systems. We start with
the study of a basic relational type system, named relSTLC,
that includes judgments to only relate two expressions with
the same top-level structure, with types to represent related
and non-related boolean values, no relational refinements
and no relational effects. This can be seen as the relational
analogue of the simply typed lambda calculus over a base
type with subtyping. For this system, bidirectional type
checking works as expected and it delivers a sound and
complete algorithm implementing the declarative system.

Next, we extend relSTLC in two steps inspired by the fea-
tures of previously proposed relational type systems. Our
first step, named RelRef, adds relational refinement types
over lists (as an example of an inductive data type), and a
comonadic type that represents syntactic equality of values.
Our second step, named RelRefU, adds to RelRef the pos-
sibility to relate arbitrary programs of possibly dissimilar
syntactic structure, by switching to a complementary unary
type system. Both these extensions add intrinsic nondeter-
minism to the type system to allow a programmer flexibility
in writing programs. The source of nondeterminism in both
these systems is non-syntax-directed typing and subtyping
rules. RelRef has such rules for relational refinement types
and for subtyping, while RelRefU has such a rule for switch-
ing to unary typing and more such rules for subtyping.

To overcome the challenges introduced by nondetermin-
ism, we introduce a two-step methodology. We first show
that every well-typed program can be translated to a well-
typed program in a core language with term constructors
that resolve the nondeterminism. This translation is type
derivation-directed; it introduces annotations to resolve the
nondeterminism in applying the (non-syntax-directed) typ-
ing rules and eliminates relational subtyping by replacing
it with explicit coercions defined within the core language.
Next, we develop a bidirectional type system and prove it
sound and complete with respect to the core system. It fol-
lows that every typeable program can be annotated to re-
move nondeterminism, and then bidirectionally type checked.
Although this indirection via a core language does not di-
rectly lead to an implementation strategy, it makes a strong
theoretical point, namely that the bidirectional type check-
ing is complete modulo nondeterminism. We show that this
methodology is applicable to both RelRef and RelRefU.

Our final step is to add relational effects to RelRefU. Specif-
ically, we consider the type system RelCost [13]. This type
system extends RelRefU with a relational effect to enable re-
lational cost analysis. The objective of relational cost analysis
is to establish a static upper bound on the cost of a program
relative to another program: For two programs e1 and e2,
relational cost analysis establishes an upper bound t such
that cost(e1) − cost(e2) ≤ t . t is called the relative cost of e1
and e2. It is described as a relational effect in the type system.
Since RelCost extends RelRefU, it inherits the latter’s many
sources of nondeterminism. We resolve these using the same
two-step approach that we described above, thus showing
that the approach also extends to relational effects.
To show the effectiveness of bidirectional type checking

for relational type systems, we have implemented a pro-
totype for RelCost. (This prototype can also be used for
the other type systems we describe, since RelCost extends
them conservatively.) Our implementation handles the two
steps of our approach simultaneously. To implement the first
step, the translation of the source language to the core lan-
guage, we rely on example-guided heuristics rather than
programmer-specified annotations to eliminate nondeter-
minism. This reduces the programmer’s annotation burden
by compromising completeness to some degree. We explain
these heuristics and our evaluation shows that they are ef-
fective for a large class of examples. For the second step, we
implement the bidirectional typing rules. Both type checking
and type inference generate constraints that capture arith-
metic relationships between refinements (e.g., list sizes) of
various subterms, relational refinements and relationships
between unary and relational costs. Our constraints con-
tain existentially quantified variables over integers and reals.
Therefore, we design our own algorithm to eliminate exis-
tential variables by finding substitutions for them and use
SMT solvers to discharge the substituted constraints.

Summing up, our contributions are:

Bidirectional Type Checking for Relational Properties PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

• We present several bidirectional relational type sys-
tems that combine relational and non-relational typing,
refinements, and unary and relational effects.

• We present a type-preserving, complete embedding
of programs that are typeable in those systems into
core type systems. This embedding eliminates non-
determinism in applying typing rules and eliminates
relational subtyping. We use the embedding to theo-
retically argue that, modulo the nondeterminism, our
bidirectional type checking is complete.

• We present an implementation of the largest of the
type systems we consider (RelCost), using heuristics
to get rid of the inherent non-determinism. We use
the implementation to type-check several examples,
including all examples from the original RelCost paper.

The rest of the paper is organized as follows. We start in
Section 2 with relSTLC, our basic relational simply-typed
calculus. In Sections 3 and 4, we extend it to RelRef and Rel-
RefU. In Section 5, we add effects, finally reaching RelCost.
In each of these sections, we describe a declarative type sys-
tem, its bidirectional version and, where necessary, a core
calculus that resolves nondeterminism of the declarative
type system. In Section 6, we describe our implementation,
heuristics to eliminate nondeterminism, and experimental
results. Section 7 comments on extending the bidirectional
approach to other features of relational type systems that
are not considered explicitly in this paper. Section 8 presents
related work. A supplementary online appendix available
from the authors’ homepages contains technical details omit-
ted from this paper due to lack of space. All the code and
examples can be found in a publicly accessible repository at
https://github.com/ezgicicek/BiRelCost.

2 Relational STLC (relSTLC)
As an introduction to how relational reasoning works, we
consider relSTLC, a rehash of the simply-typed lambda cal-
culus (STLC) with relational reasoning. relSTLC has the fol-
lowing type and expression grammar:

Types τ ::= boolr | boolu | τ1 → τ2
Expr e ::= x | true | false | if e then e1 else e2 | λx .e | e1 e2

A type τ is interpreted as a set of pairs of values. For instance,
the primitive type boolr ascribes pairs of identical booleans
(the diagonal relation on booleans) whereas the type boolu
ascribes pairs of arbitrary booleans (the complete relation
on booleans). In particular, boolr ⊑ boolu . The function type
τ1 → τ2 relates pairs of functions that, given a pair of related
arguments of type τ1, return a pair of related computations
of type τ2. Even though relSTLC is quite primitive, it forms
the basis of our development and we find it instructive to
discuss challenges in its algorithmization.

Declarative typing The typing judgment Γ ⊢ e1 ∽ e2 : τ
ascribes the expressions e1 and e2 the relational type τ under

Γ ⊢ e1 ∽ e2 : τ

b ∈ {true, false}
Γ ⊢ b ∽ b : boolr

r-bool

b1, b2 ∈ {true, false}
Γ ⊢ b1 ∽ b2 : boolu

r-u-bool

Γ ⊢ e ∽ e ′ : boolr
Γ ⊢ e1 ∽ e ′1 : τ Γ ⊢ e2 ∽ e ′2 : τ

Γ ⊢ if e then e1 else e2 ∽ if e ′ then e ′1 else e
′
2 : τ

r-if

Γ,x : τ1 ⊢ e1 ∽ e2 : τ2
Γ ⊢ λx .e1 ∽ λx .e2 : τ1 → τ2

r-lam

Γ ⊢ e1 ∽ e ′1 : τ1→ τ2 Γ ⊢ e2 ∽ e ′2 : τ1
Γ ⊢ e1 e2 ∽ e ′1 e

′
2 : τ2

r-app

Γ ⊢ e1 ∽ e2 : τ |= τ ⊑ τ ′

Γ ⊢ e1 ∽ e2 : τ ′
r-⊑

|= τ ⊑ τ ′

|= boolr ⊑ boolu
bool

|= τ ′1 ⊑ τ1 |= τ2 ⊑ τ ′2

|= τ1 → τ2 ⊑ τ ′1 → τ ′2
→

|= τ ⊑ τ
refl

|= τ1 ⊑ τ2 |= τ2 ⊑ τ3

|= τ1 ⊑ τ3
trans

Figure 1. relSTLC typing and subtyping rules

the environment Γ. The typing rules and subtyping rules
are standard. A selection is shown in Figure 1. Note how
the rule r-bool relates two identical booleans at type boolr ,
while r-u-bool relates two arbitrary booleans at type boolu .
This difference manifests in the rule r-if: If the branch con-
dition of an if-then-else has type boolr , then we only need
to type the two “then” branches and the two “else” branches
separately, but do not need to type a “then” and an “else”
branch together. Finally, note that the calculus has (standard)
subtyping induced by the base relation boolr ⊑ boolu .

Algorithmic (bidirectional) typing The type system pre-
sented above is declarative, i.e. it doesn’t prescribe an algo-
rithm for building a typing derivation. In fact, two aspects
of relSTLC make it difficult to straightforwardly algorith-
mize. First, the obvious approach of inferring the type of a
term bottom-up by starting at the leaves (variables) does not
work because relSTLC does not have type annotations on
variable-bindings. The other obvious approach of checking
a term against a given type top-down also runs into a prob-
lem, this time in the r-app rule, where the argument type
τ1 must be guessed. Second, the trans subtyping rule is also
not syntax-directed (the type τ2 must be guessed). Hence,

https://github.com/ezgicicek/BiRelCost

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ezgi Çiçek, WeihaoQu, Gilles Barthe, Marco Gaboardi, and Deepak Garg

the typing and subtyping rules of relSTLC cannot be directly
interpreted as a typechecking algorithm.
A well-established way of making typing rules syntax-

directed (hence obtaining a typechecking algorithm) is to
make the rules bidirectional [37, 43, 44]. In comparison to
fully type-annotating all bound variables, which could be
tedious for a programmer, the main idea behind bidirectional
typechecking is to only annotate programs at the top-level
and at explicit β-redexes (which are usually rare) and infer all
other types by combining top-down and bottom-up analysis.
In the case of relSTLC, bidirectional typechecking splits

the usual typing judgment Γ ⊢ e1 ∽ e2 : τ into two judg-
ments: (1) the checking judgment Γ ⊢ e1 ∽ e2 ↓ τ , where the
type τ is an input (the type is checked), and (2) the inference
judgment Γ ⊢ e1 ∽ e2 ↑ τ , where the type τ is an output
(the type is inferred). As a convention, we write all outputs
in red and all inputs in black. Figure 2 shows selected algo-
rithmic typing rules. We explain below the basic principles
behind the bidirectional typing rules. These principles are
completely standard for unary type systems [43, 44]; our ob-
servation thus far is simply that they apply as-is to relational
type systems as well and, for relSTLC, they suffice to ensure
completeness of bidirectional typechecking (this will cease
to be the case for later type systems).
- Types of introduction forms are checked (e.g., rule alg-r-
lam). Types of elimination forms are, in general, inferred
(e.g., rule alg-r-app). However, types of case-like elimination
forms (e.g., rule alg-r-if) are checked. In all cases, the type of
an expression in an elimination position is inferred (e.g., the
branch condition e ∽ e ′ in rule alg-r-if). Types of variables
and constants can always be inferred. However, here, we
treat constants as constructors (introduction forms), so their
types are checked (this is an arbitrary design choice).
- In checking mode, the rule alg-r-↑↓ allows switching to
inference mode. The requirement is that the inferred type
must be a subtype of the checked type.
- In inference mode, it is permissible to switch to the check-
ing mode when an expression’s type has been explicitly
annotated by the programmer (rule alg-r-anno-↑). It can be
shown that, for completeness, it suffices to annotate only
at explicit β-redexes (although there is no prohibition on
annotating at other places).
Subtyping also has an algorithmic counterpart, |= τ1 ≤

τ2, shown in Figure 2. We introduce two additional rules
for reflexivity of base types (rules alg-bl-u and alg-bl-r).
Importantly, it can be proved that reflexivity and transitivity
of subtyping are admissible, so, in particular, there is no need
for an explicit rule of transitivity, which, as mentioned, is
difficult to use in an algorithm.

The bidirectional type system’s rules, when read bottom-
up, can be interpreted as a syntax-directed algorithm for type-
checking. This algorithm is sound relative to the declarative
type system in the following sense: If either Γ ⊢ e1 ∽ e2 ↑τ or
Γ ⊢ e1 ∽ e2 ↓ τ , then Γ ⊢ |e1 | ∽ |e2 | : τ , where |e | is obtained

Γ ⊢ e1 ∽ e2 ↑ τ , Γ ⊢ e1 ∽ e2 ↓ τ

Γ ⊢ e ∽ e ′ ↑ boolr
Γ ⊢ e1 ∽ e ′1 ↓ τ Γ ⊢ e2 ∽ e ′2 ↓ τ

Γ ⊢ if e then e1 else e2 ∽ if e ′ then e ′1 else e
′
2 ↓ τ

alg-r-if

Γ,x : τ1 ⊢ e1 ∽ e2 ↓ τ2

Γ ⊢ λx .e1 ∽ λx .e2 ↓ τ1 → τ2
alg-r-lam

Γ ⊢ e1 ∽ e ′1 ↑ τ1 → τ2 Γ ⊢ e2 ∽ e ′2 ↓ τ1

Γ ⊢ e1 e2 ∽ e ′1 e
′
2 ↑ τ2

alg-r-app

Γ ⊢ e ∽ e ′ ↑ τ ′ |= τ ′ ≤ τ

Γ ⊢ e ∽ e ′ ↓ τ
alg-↑↓

Γ ⊢ e ∽ e ′ ↓ τ

Γ ⊢ (e : τ) ∽ (e ′ : τ) ↑ τ
alg-r-anno-↑

|= τ ≤ τ ′

|= boolr ≤ boolr
alg-bl-r

|= boolu ≤ boolu
alg-bl-u

|= boolr ≤ boolu
alg-bl

|= τ ′1 ≤ τ1
|= τ2 ≤ τ ′2

|= τ1 → τ2 ≤ τ ′1 → τ ′2
alg-→

Figure 2. relSTLC algorithmic typing and subtyping rules

by erasing type annotations from e . The bidirectional type
system is also complete relative to the declarative type system:
If Γ ⊢ e1 ∽ e2 : τ , then there are type-annotated variants, e ′1,
e ′2 of e1, e2 such that Γ ⊢ e ′1 ∽ e ′2 ↑ τ . These annotations can
be limited to the top-level and any explicit β-redexes. The
proofs of these statements are in the appendix.

3 RelRef
Next, we extend bidirectional typechecking to relational re-
finements. Relational refinements [7, 13, 15, 27, 38] express
fine-grained relations between pairs of expressions. They
have been used for many different purposes ranging from
information flow control to differential privacy. We consider
here a simple setting, which still suffices to bring out key
challenges in applying bidirectional typechecking to rela-
tional refinements.
We extend relSTLC with primitive lists and a relational

refinement type list[n]α τ , which ascribes a pair of lists, both
of length n, that differ pointwise in at most α positions (n
and α are natural numbers). list[n]α τ refines the standard
list type with n and α and the refinement is relational since α
expresses a constraint on the two lists together. To construct
lists of this type when α , n, we also need a way to express
that at least (n − α) elements are pointwise equal. To this
end, we introduce the comonadic type □τ , which ascribes

Bidirectional Type Checking for Relational Properties PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

∆;Φa ; Γ ⊢ e1 ∽ e ′1 : τ
∆;Φa ; Γ ⊢ e2 ∽ e ′2 : list[n]

α τ

∆;Φa ; Γ ⊢ cons(e1, e2) ∽ cons(e ′1, e
′
2) : list[n + 1]

α+1 τ
rr-cons1

∆;Φa ; Γ ⊢ e1 ∽ e ′1 : □τ
∆;Φa ; Γ ⊢ e2 ∽ e ′2 : list[n]

α τ

∆;Φa ; Γ ⊢ cons(e1, e2) ∽ cons(e ′1, e
′
2) : list[n + 1]

α τ
rr-cons2

∆;Φa ; Γ ⊢ e ∽ e ′ : list[n]α τ ∆;Φa ∧ n = 0; Γ ⊢ e1 ∽ e ′1 : τ
′

i,∆;Φa ∧ n = i + 1;h : □τ , tl : list[i]α τ , Γ ⊢ e2 ∽ e ′2 : τ
′

i, β ,∆;Φa ∧ n = i + 1 ∧ α = β + 1;h : τ , tl : list[i]β τ , Γ ⊢ e2 ∽ e ′2 : τ
′

∆;Φa ; Γ ⊢ case e of nil → e1 | h :: tl → e2 ∽ case e ′ of nil → e ′1 | h :: tl → e ′2 : τ
′
rr-caseL

∆;Φa ∧C; Γ ⊢ e1 ∽ e2 : τ
∆;Φa ∧ ¬C; Γ ⊢ e1 ∽ e2 : τ ∆ ⊢ C wf

∆;Φa ; Γ ⊢ e1 ∽ e2 : τ
rr-split

∆;Φa ; Γ ⊢ e ∽ e : τ
∀x ∈ dom(Γ). ∆;Φa |= Γ(x) ⊑ □ Γ(x)

∆;Φa ; Γ, Γ′ ⊢ e ∽ e : □τ
rr-nochange

∆;Φa |= □(τ1 → τ2) ⊑ □τ1 → □τ2
→ □diff

∆;Φa |= n � n′ ∆;Φa |= α ≤ α ′ ∆;Φa |= τ ⊑ τ ′

∆;Φa |= list[n]α τ ⊑ list[n′]α
′

τ ′
l1

∆;Φa |= α � 0
∆;Φa |= list[n]α τ ⊑ list[n]α □τ

l2
∆;Φa |= list[n]α □τ ⊑ □ (list[n]α τ)

l□
∆;Φa |= □τ ⊑ τ

T

Figure 3. RelRef typing and subtyping

∆;Φa ;x : τ1, f : τ1 → τ2, Γ ⊢ e1 ∽ e2 :c τ2
∆;Φa ; Γ ⊢ fix f (x).e1 ∽ fix f (x).e2 :c τ1 → τ2

c-r-fix
∆;Φa ;□ Γ ⊢ e ∽ e :c τ

∆;Φa ;□ Γ, Γ′ ⊢ NC e ∽ NC e :c □τ
c-nochange

∆;Φa ∧C; Γ ⊢ e1 ∽ e2 :c τ ∆;Φa ∧ ¬C; Γ ⊢ e ′1 ∽ e ′2 :
c τ

∆;Φa ; Γ ⊢ split (e1, e
′
1) with C ∽ split (e2, e

′
2) with C :c τ

c-s

∆;Φa ; Γ ⊢ e1 ∽ e ′1 :
c τ ∆;Φa ; Γ ⊢ e2 ∽ e ′2 :

c list[n]α τ
∆;Φa ; Γ ⊢ consC (e1, e2) ∽ consC (e ′1, e

′
2) :

c list[n + 1]α+1 τ
c-cons1

∆;Φa ; Γ ⊢ e1 ∽ e ′1 :
c □τ ∆;Φa ; Γ ⊢ e2 ∽ e ′2 :

c list[n]α τ
∆;Φa ; Γ ⊢ consNC (e1, e2) ∽ consNC (e

′
1, e

′
2) :

c list[n + 1]α τ
c-r-cons2

∆;Φa ; Γ ⊢ e ∽ e ′ :c τ ∆;Φa |= τ ≡ τ ′

∆;Φa ; Γ ⊢ e ∽ e ′ :c τ ′
c-r-≡

Figure 4. RelRef Core typing rules

i, β ∈ fresh(N) ∆;ψa ;Φa ; Γ ⊢ e1 ⊖ e ′1 ↓ τ ⇒ Φ1
∆; i, β ,ψa ;Φa ; Γ ⊢ e2 ⊖ e ′2 ↓ list[i]

β τ ⇒ Φ2 Φ′
2 = n � (i + 1) ∧ ∃β :: N.Φ2 ∧ α � β + 1

∆;ψa ;Φa ; Γ ⊢ consC (e1, e2) ⊖ consC (e ′1, e
′
2) ↓ list[n]

α τ ⇒ Φ1 ∧ ∃i :: N.Φ′
2

alg-r-consC-↓

i ∈ fresh(N) ∆;ψa ;Φa ; Γ ⊢ e1 ⊖ e ′1 ↓□τ ⇒ Φ1
∆; i,ψa ;Φa ; Γ ⊢ e2 ⊖ e ′2 ↓ list[i]

α τ ⇒ Φ2 Φ′
2 = Φ2 ∧ n � (i + 1)

∆;ψa ;Φa ; Γ ⊢ consNC (e1, e2) ⊖ consNC (e
′
1, e

′
2) ↓ list[n]

α τ ⇒ Φ1 ∧ ∃i :: N.Φ′
2
alg-r-consNC-↓

∆;ψa ;C ∧ Φa ; Γ ⊢ e1 ⊖ e ′1 ↓ τ ⇒ Φ1 ∆;ψa ;¬C ∧ Φa ; Γ ⊢ e2 ⊖ e ′2 ↓ τ ⇒ Φ2 ∆ ⊢ C wf

∆;ψa ;Φa ; Γ ⊢ split (e1, e2) with C ⊖ split (e ′1, e
′
2) with C ↓ τ ⇒ C → Φ1 ∧ ¬C → Φ2

alg-r-split↓

∆;ψa ;Φa |= τ ≡ τ ′ ⇒ Φ

∆;ψa ;Φa |= list[n]α τ ≡ list[n′]α
′

τ ′ ⇒ Φ ∧ n � n′ ∧ α � α ′
alg-r-list

Figure 5. BiRelRef algorithmic typing and subtyping rules

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ezgi Çiçek, WeihaoQu, Gilles Barthe, Marco Gaboardi, and Deepak Garg

pairs of expressions of type τ that are equal (i.e. the diagonal
relation on τ). □τ generalizes the refinement r in boolr to
arbitrary types. Type-level terms liken and α are called index
terms or indices, generically denoted I . The type system also
supports quantification over such terms. To write recursive
programs on lists, we also add a fixpoint operator, which
poses no additional difficulty for bidirectional typechecking.
The resulting system, called RelRef, has the following syntax.

Types τ ::= . . . | list[n]α τ | ∀i::S . τ | ∃i::S . τ
| □τ | C & τ | C ⊃ τ

Expr e ::= . . . | fix f (x).e | nil | cons(e1, e2)
| (case e of nil → e1 | h :: tl → e2) | Λe
| e[] | let x = e1 in e2 | clet e1 as x in e2
| pack e | unpack e1 as x in e2 | celim e

Indices I ,n,α ::= i | 0 | I + 1 | I1 + I2 | I1 − I2 |
I1
I2

|

I1 · I2 | ⌈I⌉ | ⌊I⌋ | min(I1, I2) | max(I1, I2)

Types can quantify over index variables, i , as in ∀i::S . τ
and ∃i::S . τ . The constructs pack e and unpack e1 as x in e2
are the introduction and elimination forms for existentially
quantified types. The constructs Λ.e and e[] are the intro-
duction and elimination forms for universally quantified
types. To represent arithmetic relations over index variables,
constraints denoted C , sets of predicates over index terms,
appear in types as in C & τ and C ⊃ τ . The type C & τ
means the type τ and that C holds, while C ⊃ τ means that,
if the constraint C holds, then the type is τ . The construct
clet e1 as x in e2 is the elimination form for the constrained
type C & τ . By design, index terms do not appear in RelRef
expressions.

Example (map) As an example, we can write the standard
list map function, and give it the following very informative
relational type in RelRef (for any τ1,τ2).
fix map(f).Λ.Λ.λl . case l of nil → nil

| h :: tl → cons(f h, map f [] [] tl)

map : (□ (τ1 → τ2)) → ∀n,α .list[n]α τ1 → list[n]α τ2
The type means that two runs of map with equal mapping
functions and two lists that differ in at most α positions
result in two lists with the same property. Notice how α is
universally quantified in the type, and how □ represents
that the mapping function be equal in the two runs.

Declarative typing RelRef’s typing judgment has the form
∆;Φa ; Γ ⊢ e1 ∽ e2 : τ and means that e1 and e2 have the rela-
tional type τ if the constraints Φa hold. ∆ is a (universally
quantified) context of index variables and Γ, as usual, is the
typing context for program variables. Figure 3 shows selected
typing rules that use refinements and constraints in inter-
esting ways, and make bidirectional typechecking difficult.
To start, as a result of the relational refinement α in the list
type, there are two rules for typing the list cons constructor.
Rule rr-cons1 applies when the head elements of the con-
structed lists may differ. Note how the relational refinement

α changes toα+1 from the premise to the conclusion. Rule rr-
cons2 applies when the head elements are equal, witnessed
by the comonadic type □τ . α does not change in this rule.
Dually, the cons branch of list case analysis (rule rr-caseL)
is typed twice with different index constraints—once for each
of these two possible ways of constructing the cons-ed list. A
consequence of this double typing of the same branch with
different constraints is that expressions cannot contain index
terms (else such typing may be impossible). The rule rr-split
case-splits on an arbitrary constraintC in the context. This is
useful for typing recursive functions [13, 15]. Finally, the rule
for introducing the type □τ , rr-nochange, is interesting. It
says that if e relates to itself at type τ and all variables in
Γ morally have □ -ed types (checked via subtyping), then e
also relates to itself at type □τ .

Declarative subtyping RelRef subtyping τ ⊑ τ ′ is com-
plex. Some of the rules are shown in Figure 3. First, subtyping
is constraint-dependent, because it must, for instance, be able
to show that list[n]α τ ⊑ list[m]α τ when n =m. Second, in
RelRef, □ ’s comonadic properties manifest themselves via
subtyping. This results in interactions between □ and other
connectives as, for instance, in the rules → □diff, l2 and l□ .

We explain some of the subtyping rules. The rule l1 allows
α , the upper-bound on the number of elements that differ in
the two lists, to be weakened covariantly. The rule l2 allows
two related lists with zero differences to be retyped as two
related lists whose elements are in the diagonal relation. The
rule l□ allows two related lists whose elements are equal
to be retyped as two equal lists, represented by the outer □.
The rule T coerces□τ to τ by forgetting that the two related
elements are, in fact, equal.

Towards algorithmization An algorithm for typecheck-
ing RelRef faces two difficulties beyond those seen in rel-
STLC. Both difficulties arise due to RelRef’s relational refine-
ments. First, there is additional non-syntax-directedness in
the rules: Rules rr-cons1 and rr-cons2 apply to expressions
of the same shape (the rules differ only in their treatment of
index terms), and rules rr-split and rr-nochange are not
syntax-directed (their use overlaps with other rules). Second,
owing to the interaction between □ and other type con-
structs, it is infeasible to re-define subtyping in a way that
makes transitivity admissible. As a result of these two prob-
lems, bidirectional typing alone does not yield an algorithm
for typechecking.
An obvious way to address the first of these problems is

to force additional annotations in expressions to remove the
non-syntax-directness. However, this will not address the
problemwith subtyping. Importantly, it also will not allow us
to theoretically connect the algorithmic type system to the
declarative type system (with its non-syntax-directedness).
Consequently, we follow a slightly different approach.

First, we introduce a simpler core calculus RelRef Core,

Bidirectional Type Checking for Relational Properties PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

which annotates expressions to resolve the lack of syntax-
directedness in typing rules. Additionally, RelRef Core fea-
tures only type equivalence, not subtyping. We show that
every RelRef expression can be elaborated to a semantically
equivalent expression in RelRef Core by adding enough an-
notations and expressing subtyping as definable type coer-
cions. Next, we build a bidirectional, algorithmic type sys-
tem for RelRef Core and prove it relatively sound and com-
plete. Although the elaboration to RelRef Core cannot be
directly implemented without losing completeness or relying
on programmer annotations, this approach does establish
a strong theoretical point, end-to-end: There is a calculus
(RelRef Core) that is as expressive as RelRef, and that is
fully amenable to bidirectional typechecking. Our prototype
implementation (Section 6) relies on sound heuristics to im-
plement the elaboration.

RelRef Core syntax The core calculus RelRef Core is sim-
ilar to RelRef but has explicit syntactic markers to indicate
which typing rules to apply where, thus resolving the nonde-
terminism caused by the aforementioned typing rules such
as rr-split and rr-cons1/rr-cons2. The expression syntax
of RelRef Core is as follows.
Expr e ::= . . . | split (e1, e2) with C | NC e | Λi .e | e[I] |

consNC (e1, e2) | consC (e1, e2) |(
case e of nil → e1
| h ::NC tl → e2 | h ::C tl → e3

)
The list constructor cons is separated into two—consC and
consNC—to disambiguate the rules rr-cons1 and rr-cons2.
Dually, the list-case construct now has three branches, one
each for nil, consC and consNC . “split (e1, e2) with C” in-
dicates that rule rr-split must be applied and records the
constraintC to split on. To write meaningfulCs, expressions
now carry index terms. For instance, the elimination form for
universally quantified types in RelRef Core is e[I] as opposed
to RelRef’s e[] . The construct NC e indicates an application
of the rule rr-nochange.

RelRef Core typing rules Selected rules of RelRef Core’s
typing judgment ∆;Φa ; Γ ⊢ e ∽ e ′ :c τ are shown in Figure 4.
Φa and ∆ are interpreted as in RelRef. RelRef Core’s rules are
similar to RelRef’s, but there are important differences. First,
rules are now syntax-directed. Second, there is no relational
subtyping. Instead, there is type-equivalence, ≡≡≡, which is
much simpler than subtyping. It only lifts equality modulo
constraints to types (e.g., list[1+2]α τ ≡≡≡ list[3]α τ) and it can
be easily implemented algorithmically (modulo constraint
solving). We omit its straightforward details.

Simulating RelRef’s subtyping A key property of Rel-
Ref Core is that it can simulateRelRef’s subtyping via explicit
coercion functions, as formalized in the following lemma.
Such elimination of subtyping is a common technique for
simplifying typechecking in the unary setting [11, 17]; here,
we lift the idea to the relational setting and to our comonad.

Lemma 1
If ∆;Φa |= τ ⊑ τ ′ in RelRef then there exists e ∈ RelRef Core
s.t. ∆;Φa ; · ⊢ e ∽ e :c τ → τ ′.

Proof. By induction on the subtyping derivation. □

Elaboration Given Lemma 1, we define a straightforward
type derivation-directed embedding from RelRef to RelRef
Core. Briefly, we use the RelRef typing derivation to in-
sert additional syntactic annotations that RelRef Core needs
and use Lemma 1 wherever subtyping appears in the RelRef
derivation. The embedding preserves well-typedness (see the
appendix for details). This shows that RelRef Core is as ex-
pressive as RelRef. (In fact, this is expressiveness in a strong
sense, dubbed macro-expressiveness by Felleisen [25].)

Algorithmic (bidirectional) typechecking Wenowbuild
an algorithmic, bidirectional type system for RelRef Core.
We call this system BiRelRef. Selected rules of BiRelRef
are shown in Figure 5. As before, BiRelRef has two typing
judgments: one to check types and the other to infer them.
The key addition over relSTLC is that BiRelRef’s typing
judgments output constraints between index terms, which
must be verified for typing. The checking judgment has the
form ∆;ψa ;Φa ; Γ ⊢ e1 ⊖ e2 ↓ τ ⇒ Φ. Here, the type τ is
an input, but the constraints Φ are an output. The intuitive
meaning is that if constraints Φ hold (assuming Φa), then
∆;Φa ; Γ ⊢ e1 ∽ e2 :c τ holds in RelRef Core. (The reader may
ignore the index variable contextψa ; it contains variables uni-
versally quantified in Φ.) As an example, consider the rule
alg-r-consC-↓ for relating cons-ed lists at type list[n]α τ
when the heads may differ. To do this, the rule relates the
tails at type list[i]β τ for some i and β . For this to be sound,
n � i + 1 and α � β + 1 must hold, so these appear as
constraints in Φ. Note that Φ quantifies over i and β exis-
tentially. Constraint solvers cannot handle such existential
quantification easily, a point to which we return in Section 6.
In the inference judgment ∆;ψa ;Φa ; Γ ⊢ e1 ⊖ e2 ↑ τ ⇒ Φ,

both Φ and τ are outputs. The meaning of the judgment is
similar: if Φ holds (assuming Φa), then ∆;Φa ; Γ ⊢ e1 ∽ e2 :c τ .
Like typing, the algorithmic type equivalence judgment

∆;ψa ;Φa |= τ ≡ τ ′ ⇒ Φ also generates constraints.

Soundness and completeness We prove that BiRelRef is
sound and complete w.r.t. RelRef Core’s declarative type
system. Soundness says that any inference or checking judg-
ment provable in the algorithmic type system can be simu-
lated in RelRef Core if the output constraints Φ are satisfied.
Dually, completeness says that any pair of typeable RelRef
Core programs can be sufficiently annotated with types to
make their type checkable in BiRelRef, with satisfiable out-
put constraints. As before, we write |e | for the erasure of
typing annotations from a BiRelRef expression e to yield a
RelRef Core expression.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ezgi Çiçek, WeihaoQu, Gilles Barthe, Marco Gaboardi, and Deepak Garg

Theorem 2 (Soundness)

1. Assume ∆;ψa ;Φa ; Γ ⊢ e ⊖ e ′ ↓ τ ⇒ Φ, FIV(Φa , Γ,τ) ⊆
dom(∆,ψa) , and θa is a valid substitution for ψa s.t.
∆;Φa[θa] |= Φ[θa] holds.
Then, ∆;Φa[θa]; Γ[θa] ⊢ |e | ∽ |e ′ | :c τ [θa].

2. Assume ∆;ψa ;Φa ; Γ ⊢ e ⊖ e ′ ↑ τ ⇒ Φ, FIV(Φa , Γ) ⊆

dom(∆,ψa), and θa is a valid substitution for ψa s.t.
∆;Φa[θa] |= Φ[θa] holds.
Then, ∆;Φa[θa]; Γ[θa] ⊢ |e | ∽ |e ′ | :c τ [θa].

Proof. By simultaneous induction on the given BiRelRef
derivations. □

Theorem 3 (Completeness)

1. Assume that ∆;Φa ; Γ ⊢ e1 ∽ e2 :c τ . Then, there exist
e ′1, e

′
2 such that∆; ·;Φa ; Γ ⊢ e ′1⊖e

′
2 ↓τ ⇒ Φ and∆;Φa |=

Φ and |e ′1 | = e1 and |e ′2 | = e2.

Proof. By induction on the given RelRef Core typing deriva-
tion. □

4 RelRefU
In many cases, it is possible to prove a relation between two
expressions by analyzing them individually. For example,
if we can prove that e1 and e2 individually produce lists
of length n with elements of type τ , then it is immediate
that ⊢ e1 ∽ e2 : list[n]n τ . Falling back to such unary analysis
during relational analysis is not allowed in RelRef. In this
section, we extend RelRef to allow such fall back to unary
analysis. We call the new system RelRefU.

RelRefU adds a new class of unary types,A, which ascribe
individual expressions. These are the “standard” types from
existing refinement systems like DML [44]. For example,
the unary type for lists, list[n]A, carries a refinement n, the
length of the list. Unary types also include quantification over
index variables, which we elide here for brevity. Importantly,
we also add a new relational typeU (A1,A2) which ascribes
any pair e1, e2, whose unary types areA1 andA2, respectively.

Unary types A ::= bool | A1 → A2 | list[n]A | . . .
Relational types τ ::= . . . | U (A1,A2)

Declarative typing RelRefU has two typing judgments,
unary and relational. The unary judgment’s rules are ex-
actly those of standard (unary) refinement type systems like
DML [44], so we elide them here. The relational rules are
those of RelRef and the following new rule, r-switch, which
allows the use of unary typing in relational typing. Here,
|.|i is a projection function that converts a relational type
to its left (i = 1) or right (i = 2) unary type by forgetting
relational refinements. For example, |U (A1,A2)|1 = A1 and

|list[n]α τ |1 = list[n] (|τ |1).

|Γ |1 ⊢ e1 : A1 |Γ |2 ⊢ e2 : A2

Γ ⊢ e1 ∽ e2 : U (A1,A2)
r-switch

Besides this rule, the second interesting aspect of RelRefU
is subtyping forU (A1,A2), which makes unary typing useful
in relational reasoning. For instance, the example given at the
beginning of this section is typed using r-switch and the sub-
typing ruleU (list[n]A1, list[n]A2) ⊑ list[n]n (U (A1,A2)).

Algorithmization Algorithmizing RelRefU faces new hur-
dles: The new rule r-switch is also not syntax-directed and
subtyping forU (A1,A2) is complex and cannot be re-defined
to make transitivity admissible. Consequently, we follow the
approach we used for RelInf. We define a core language, Rel-
RefU Core, that has the syntactic markers of RelRef Core and
a new construct switch e (which marks the rule r-switch)
to resolve the ambiguity in typing rules. The language has
simple type equivalence, not subtyping. We then define an
elaboration of RelRefU into RelRefU Core. Finally, we define
a bidirectional, algorithmic type system called BiRelRefU
and prove it sound and complete relative to RelRefU Core.
The entire development is not particularly more challenging
than that of RelInf but is more tedious because we have to
handle both unary and relational typing. Conceptually, the
interesting aspect is that, in typing examples, we found it
convenient to apply the r-switch rule in both checking and
inference mode in the bidirectional type system, so this type
system features two versions of the rule, one in each mode.
This does not cause ambiguity in the rules since the mode is
always uniquely known.

5 RelCost
As our last step, we add a relational effect, namely, relative
cost to RelRefU. This results in the type system RelCost
of Çiçek et al. [13]. RelCost allows establishing an upper
bound on the relative cost of two expressions e1 and e2, i.e.
on cost(e1) − cost(e2). For this, RelCost extends RelRefU’s
types and judgments with cost effects. Expressions are syn-
tactically those of RelRefU, but the evaluation of elimination
forms like list-case and function application produces non-
trivial cost in the operational semantics.

We start with the types. The relational function type τ1 →

τ2 is refined to τ1
diff(t)
−−−−→ τ2, where t (an index term of sort

real) is an upper-bound on the relative cost of the bodies of
the two functions that the type ascribes. Similarly, the unary

function type A1 → A2 is refined to A1
exec(k,t)
−−−−−−→ A2, where

k and t are lower and upper bounds on the cost of the body
of the function. Other than this, the types match those of
RelRefU.

Bidirectional Type Checking for Relational Properties PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

As an example, the list map function from Section 3 can
be given the following more informative type in RelCost:

∀t .(□ (τ1
diff(t)
−−−−→ τ2)) → ∀n,α .list[n]α τ1 diff(t ·α)

−−−−−−→ list[n]α τ2

This type says that if two runs of map are given the same
mapping function whose body’s cost may vary by at most
t across inputs, and two lists that differ in no more than α
elements, then the relative cost of the two runs is no more
than t · α . Intuitively, this makes sense. The two runs differ
only in applications of the mapping function to list elements
that differ. Each such application results in a relative cost at
most t and there are at most α such applications.

Declarative typing Like RelRefU, RelCost has two typ-
ing judgments, one unary and one relational. The difference
from RelRefU is that these judgments now carry cost effects—
upper and lower bounds on the cost of the expression being
typed in the unary judgment and an upper bound on the
relative cost of the two expressions in the relational judg-
ment. The unary judgment, ∆;Φa ;Ω ⊢tk e : A, means that
e has the unary type A and its cost is upper- and lower-
bounded by t and k , respectively. The relational judgment,
∆;Φa ; Γ ⊢ e1 ⊖ e2 ≲ t : τ , means that e1, e2 have the rela-
tional type τ and their relative cost is upper-bounded by t .
Here, we describe only on the relational judgment, since the
unary judgment has simpler rules.

The rules of the relational judgment are obtained by aug-
menting the rules of RelRefU to track costs. Selected, inter-
esting rules are shown in Figure 6. The rule r-fix types two

recursive functions at type τ1
diff(t)
−−−−→ τ2 if their bodies have

the relative cost t . Rule r-app relates e1 e2 and e ′1 e
′
2 with a

relative cost obtained by adding the relative costs of (e1, e ′1),
(e2, e

′
2) and of the bodies of the applied functions (obtained

from the function type in the first premise). Rule nochange
says that if e relates to itself in a context that has only vari-
ables of □ -ed types (i.e. they will get substituted by equal
values in the two runs), then e’s cost relative to itself is 0.
Finally, rule switch allows a fallback to unary reasoning: If
e1’s unary cost is upper-bounded by t1 and e2’s unary cost is
lower-bounded by k2, then e1, e2’s relative cost is (trivially)
upper-bounded by t1 − k2.

Declarative subtyping RelCost’s subtyping is directly based
on RelRef and RelRefU, but the rules are additionally aware
of costs. For example, the RelRef rule → □diff (Figure 3)

gets refined to: □ (τ1
diff(t)
−−−−→ τ2) ⊑ □τ1

diff(0)
−−−−→ □τ2, which

intuitively means that two equal functions when given two
equal arguments reduce with exactly the same cost.

Towards algorithmization RelCost inherits all the non
syntax-directedness and subtyping complexity of RelRefU,
and additionally adds costs. To build an algorithmic type
system for RelCost, we follow the approach of (RelRef and)

RelRefU. We first define a simpler core language, RelCost-
Core, which resolves all rule ambiguity and has type equiva-
lence in place of subtyping, and elaborate RelCost into this
core language. This step is not significantly harder than for
RelRefU since RelCost does not add more rule-ambiguity.
Hence, we do not describe this step further.
The interesting step is the second one—the bidirectional

type system for RelCostCore. This bidirectional system uses
constraints to relate not just type refinements but also costs
of subexpressions, as we explain next.

Algorithmic (bidirectional) typechecking For RelCost,
the bidirectional typechecking must not only check/infer the
type but also the cost. Consequently, one might expect that,
for each of unary and relational typing, one would need not
two but four bidirectional judgments—one judgment for each
combination of checking and inferring the type and checking
and inferring the cost. However, after some experimentation
with the design, we realized that the judgments where the
type is checked and the cost is inferred or vice-versa are
actually not required. In hindsight, this is because the cost
can be viewed as an extension of the type even if the two
are written separately for convenience, so the type and the
cost always follow the same mode (checking or inference).
As a result, RelCost’s bidirectional type system, called

BiRelCost, uses two judgments – one for type checking
and one for type inference – for each of unary and rela-
tional typing. We describe here only the two relational judg-
ments as these are more complicated than the unary judg-
ments. The relational checking judgment ∆;ψa ;Φa ; Γ ⊢ e1 ⊖
e2 ↓ τ , t ⇒ Φ means that if Φ holds (assuming Φa), then
∆;Φa ; Γ ⊢ e1 ⊖ e2 ≲ t : τ is provable in RelCostCore. Like
the type τ , the relative cost t is also an input in this judg-
ment, i.e. it is also checked. The relational inference judgment
∆;ψa ;Φa ; Γ ⊢ e1 ⊖ e2 ↑ τ ⇒ [ψ], t ,Φ has a similar meaning,
but both the cost t and the type τ are outputs, i.e. both are
inferred. This judgment also has an additional outputψ . This
is a set of existentially quantified cost variables generated
by the rules. Substitutions for these variables must be found
to satisfy Φ.

To understand the need forψ , let us examine a few typing
rules (Figure 7). Consider the rule alg-r-app-↑ for function
application. In this rule, the relative cost t1 of the functions
is inferred (first premise), but the cost of the arguments must
be checked. Since this cost is not available upfront, the rule
creates a fresh existential variable t2 and “checks” the argu-
ments against that. This results in appropriate constraints
on t2 getting added to Φ2 in the second premise. t2 is in-
cluded in the total cost and, importantly, it is added toψ in
the conclusion to indicate that it is existentially quantified
(any substitution for it that satisfies the final constraints is
okay). This pattern of creating existential variables for the
costs that need to be checked but aren’t already known is

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ezgi Çiçek, WeihaoQu, Gilles Barthe, Marco Gaboardi, and Deepak Garg

∆;Φa ;x : τ1, f : τ1
diff(t)
−−−−→ τ2, Γ ⊢ e1 ⊖ e2 ≲ t : τ2

∆;Φa ; Γ ⊢ fix f (x).e1 ⊖ fix f (x).e2 ≲ 0 : τ1
diff(t)
−−−−→ τ2

r-fix

∆;Φa ; Γ ⊢ e1 ⊖ e ′1 ≲ t1 : τ1
diff(t)
−−−−→ τ2

∆;Φa ; Γ ⊢ e2 ⊖ e ′2 ≲ t2 : τ1
∆;Φa ; Γ ⊢ e1 e2 ⊖ e ′1 e

′
2 ≲ t1 + t2 + t : τ2

r-app

∆;Φa ; Γ ⊢ e ⊖ e ≲ t : τ
∀x ∈ dom(Γ). ∆;Φa |= Γ(x) ⊑ □ Γ(x)

∆;Φa ; Γ, Γ′;Ω ⊢ e ⊖ e ≲ 0 : □τ
nochange

∆;Φa ; |Γ | ⊢t1k1 e1 : A
∆;Φa ; |Γ | ⊢t2k2 e2 : A

∆;Φa ; Γ ⊢ e1 ⊖ e2 ≲ t1 − k2 : U A
switch

Figure 6. RelCost relational typing rules

t ′ ∈ fresh(R) ∆; t ′,ψa ;Φa ;□ Γ ⊢ e ⊖ e ↓ τ , t ′ ⇒ Φ

∆;ψa ;Φa ; Γ′,□ Γ ⊢ NC e ⊖ NC e ↓□τ , t ⇒ 0 � t ∧ (∃t ′ :: R.Φ) alg-r-nochange-↓

∆;ψa ;Φa ; Γ ⊢ e ⊖ e ′ ↑ τ ′ ⇒ [ψ], t ′,Φ1 ∆;ψ ,ψa ;Φa |= τ ′ ≡ τ ⇒ Φ2

∆;ψa ;Φa ; Γ ⊢ e ⊖ e ′ ↓ τ , t ⇒ ∃(ψ).Φ1 ∧ Φ2 ∧ t ′ ≤ t
alg-r-↑↓

∆;ψa ;Φa ; Γ ⊢ e1 ⊖ e ′1 ↑ τ1
diff(te)
−−−−−→ τ2 ⇒ [ψ], t1,Φ1 t2 ∈ fresh(R) ∆; t2,ψ ,ψa ;Φa ; Γ ⊢ e2 ⊖ e ′2 ↓ τ1, t2 ⇒ Φ2

∆;ψa ;Φa ; Γ ⊢ e1 e2 ⊖ e ′1 e
′
2 ↑ τ2 ⇒ [t2,ψ], t1 + t2 + te ,Φ1 ∧ Φ2

alg-r-app-↑

Figure 7. BiRelCost algorithmic typing rules

pervasive in the rules, and is the key technical increment in
BiRelCost relative to BiRelRefU.
We comment on two other interesting rules. The rule

alg-r-↑↓, which switches from inference to checking mode
when read top-down, closes the existential variablesψ in the
premise by explicitly introducing an existential quantifier
over them in the conclusion. In the rule alg-r-nochange-↓
(which implements the rule nochange from Figure 6), the
final cost must be 0. So, a constraint equating the given cost
t to 0 is generated.

BiRelCost is sound and complete relative to RelCostCore
in the sense of Theorems 2 and 3 (appropriately adapted
to the judgments of RelCost). We defer the details to the
appendix.

Summary Since bidirectional typechecking for effects has
received relatively little attention even in the context of
unary analysis, we briefly recapitulate the insights we gained
from designing BiRelCost. First, bidirectional typechecking
extends very well to type systems with effects, even when
combined with refinements and relational reasoning. Second,
the mode of the effect (cost in our case) seems to mirror the
mode of the type: The checking judgment checks both the
type and the cost, while the inference judgment infers both.
We did not find the need for a judgment that checks one but
infers the other. Finally, bidirectional typechecking gener-
ates more existential variables than it would without effects,
but effects do not complicate the meta-theory (soundness
and completeness) substantially. The creation of additional
existential variables has consequences for constraint solving,

since SMT solvers do not handle such variables well, an issue
to which we return in the next section.

6 Implementation
We have implemented a bidirectional typechecker for Rel-
Cost in OCaml. The typechecker implements the checking
and inference judgments of BiRelCost but, to avoid over-
burdening the programmer, it works on the compact terms
(expressions) of RelCost rather than the elaborate, annotated
terms of RelCostCore. Hence, the terms do not resolve all
the ambiguities of which (sub)typing rules to apply when.
For this, the typechecker uses heuristics that we designed
carefully by looking at a variety of examples. Conceptually,
these heuristics are a sound but incomplete implementation
of the elaboration (embedding) from RelCost to RelCostCore.
As an alternative to these heuristics, we could have relied on
additional programmer-provided annotations to guide the
elaboration, but the heuristic approach is obviously easier
for the programmer.

The constraints output by the bidirectional rules are solved
using a combination of a custom procedure to eliminate
existential variables and an off-the-shelf SMT solver. We
describe both the heuristics and the constraint solving below.
Note that RelCost is a conservative extension of RelRef

and RelRefU. Any derivation in RelRef or RelRefU can be
simulated in RelCost by adding the trivial cost upper-bound
of ∞. As a result, our implementation can also be used for
RelRef and RelRefU.

Bidirectional Type Checking for Relational Properties PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Heuristics We list below the main heuristics we use to
reduce the nondeterminism in picking (sub)typing rules.

1. To type a pair of cons-ed lists, we apply the bidirectional
analogues of both the rules rr-cons1 and rr-cons2 (Figure 3)
and combine the resulting constraints via disjunction.

2. When typing a function that takes an argument of type
list[n]α τ , we immediately apply the algorithmic analogue
of the rule rr-split (Figure 3) with C = (α � 0). For the
case α � 0, we first try to complete the typing by invoking
the rule alg-r-nochange-↓ (Figure 7). This is because we
found experimentally that many recursive list programs re-
quire this analysis. Moreover, the rule rr-split is invertible:
Applying the rule cannot cause backtracking during search.

3. Subtyping is only invoked in three places: (a) for switch-
ing from checking to inference mode (rule alg-r-↑↓ in Fig-
ure 7), (b) for the algorithmic version of the nochange rule
(Figure 6), which checks subtyping on all variables in the
context, and (c) as mentioned in the next point.

4. Relational subtyping rules that mention □ are applied
lazily at specific elimination points. For instance, in typing
a function application, if the applied expression’s inferred

type is □ (τ1
diff(k)
−−−−→ τ2), we try to complete the typing by

subtyping to □τ1
diff(0)
−−−−→ □τ2 and τ1

diff(k)
−−−−→ τ2, in that order.

5. We switch to the unary reasoning (algorithmic analogue
of rule switch from Figure 6) only when necessary i.e. when
(a) eliminating expressions of the type U (A1,A2), (b) check-
ing related expressions at type U (A1,A2), and (c) no other
relational rules apply.

These heuristics suffice for all the examples we have seen
so far. We list some of these examples later.

Constraint solving In principle, we could pass the con-
straints Φ output by BiRelCost’s checking and inference
judgments to an SMT solver that understands the domain
of integers (for sizes) and real numbers (for costs). However,
the constraint typically contains many existentially quan-
tified variables and current SMT solvers do not eliminate
such variables well. To solve this problem, we wrote a simple
pre-processing pass that finds candidate substitutions for
existentially quantified variables. For any such variable n,
we look for constraints of the form n = I and n ≤ I . In either
case, we consider I a candidate substitution for n. In this way,
we generate a set of candidate substitutions for all existen-
tially quantified variables. For each such substitution, we try
to check the constraint’s satisfiability using an SMT solver.
(Our implementation actually does this lazily: It generates a
candidate substitution; calls SMT; if that fails, generates the
next substitution, and so on.)
To check the satisfiability of existential-free constraints,

we invoke an SMT solver. Specifically, we use Why3 [26], a

common front-end for many SMT solvers. Empirically, we
have observed that only one SMT solver, Alt-Ergo [9], can
handle our constraints and, so, our implementation uses this
solver behind Why3. Why3 provides libraries of lemmas
for exponentiation, logarithms and iterated sums, which
we use in some of the examples. For typing programs that
use divide-and-conquer over lists (e.g., merge sort), we have
to provide as an axiom one additional lemma that solves a
general recurrence related to costs. This lemma was proved
in prior work (Lemma 2 in the appendix of [14]).

Experimental evaluation We have used our implemen-
tation to typecheck a variety of examples, including all the
examples from the RelCost paper. Some of the examples,
such as the relational analysis of merge sort (msort), have
rather complex paper proofs. However, in all cases, the to-
tal typechecking time (including existential elimination and
SMT solving) is less than 1s, suggesting that the approach
is practical. Table 1 shows the experimental results over a
subset of our example programs (our appendix lists all our
example programs, including their code and experimental
results). A “-” indicates a negligible value. Our experiments
were performed on a 3.10GHz 2-core Intel Core i5 processor
with 8 GB of RAM.

We briefly describe some of the example programs in Ta-
ble 1 to highlight their diversity. The sizes of the programs
vary from 7 to 81 LoC. The program map is the list map func-
tion of Section 3, typed with τ1 = int and τ2 = bool. The
program comp is a constant-time (0 relative cost) comparison
function that checks the equality of two passwords, repre-
sented as lists of bits. The program sam (square-and-multiply)
computes the positive powers of a number, represented as
a list of bits. The experiment find compares two functions
that find a given element by scanning a list from head to
tail and tail to head, respectively. The program 2Dcount
counts the number of rows of a matrix, represented as a
list of lists in row-major form, that satisfy a predicate p and
contain a key x . The program bsplit splits a list into two
nearly equal length lists. The program merge merges two
sorted lists and the program msort is the standard merge
sort function. The program ssort is the standard selection
sort function. We also created two slightly larger composite
programs just to understand how well type-checking scales.
The program, multi_sort, combines msort and ssort. It
first sorts a list using ssort, then reverses the list using rev
(which reverses a list), and then re-sorts the reversed list
using msort. The program ssort_list first sorts a list, then
appends the sorted list to the original unsorted list, and sorts
the resulting longer list. Both sorts are done using ssort.

In all cases except find, the goal of the analysis is to find
an upper bound on the relative cost of the function across
all pairs of inputs that satisfy the function’s input type. In
all cases, the cost bounds we check are asymptotically tight.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ezgi Çiçek, WeihaoQu, Gilles Barthe, Marco Gaboardi, and Deepak Garg

Table 1. Statistics from BiRelCost examples. All times are in seconds. A “-” indicates a negligible value.

Benchmark Total
time(s)

Type-
checking(s)

Existential
elim.(s)

Constraint
solving(s)

LoC # of Annotations

filter 0.167 0.005 - 0.162 8 1
append 0.173 0.005 - 0.167 15 1
rev 0.170 0.005 - 0.164 12 1
map 0.172 0.005 - 0.167 7 1
comp 0.171 0.005 - 0.166 16 3
sam 0.174 0.005 - 0.169 13 1
find 0.172 0.005 - 0.167 21 3
2Dcount 0.168 0.005 - 0.163 17 4
ssort 0.181 0.005 - 0.175 26 3
bsplit 0.180 0.005 - 0.175 15 1
flatten 0.173 0.005 - 0.167 16 2
appSum 0.171 0.005 - 0.166 17 3
merge 0.207 0.005 - 0.201 26 3
zip 0.187 0.005 - 0.181 11 1
msort 0.384 0.008 0.003 0.373 29 3
bfold 0.216 0.006 0.001 0.208 22 2
multi_sort 0.958 0.012 0.015 0.930 81 9
ssort_list 0.207 0.006 0.004 0.197 72 9

Annotation effort In a traditional bidirectional type sys-
tem, the programmer’s annotation effort is limited to pro-
viding the eliminated type at every explicit β-redex and the
type of every top-level function definition in the program.
In our setting, the burden is similar, except that type an-
notations on functions also include a cost (on the arrow).
In all but one of the examples we have tried, annotations
are only necessary at each top-level function. One exam-
ple has an explicit β-redex (in the form of a let-binding)
and needs one additional annotation. Table 1 also shows the
number of typing annotations we added to each example.
This number is low across all examples except multi_sort
and ssort_list. These two examples use a large number
of let-bindings, which are explicit β-redexes. Overall, this
shows that the bidirectional approach extends to the rela-
tional setting (even with refinements and effects), without
adding significant annotation burden.

Heuristics illustrated withmerge sort As an illustration
of our heuristics, we explain how our implementation types
the standard merge sort function relationally. The merge sort
function, msort, splits a list into two nearly equal-sized sub-
lists using an auxiliary function we call bsplit, recursively
sorts each sublist and then merges the two sorted sublists us-
ing another function merge. In their paper on RelCost, Çiçek
et al. [13] show that the relative cost of two runs of msort
with two input lists of length n that differ in at most α posi-

tions is upper-bounded byQ(n,α) =
H∑
i=0

h(
⌈
2i
2

⌉
)·min(α , 2H−i),

where H = ⌈log2(n)⌉ and h is a specific linear function. This

open-form expression lies in O(n · (1 + log2(α))).1 Next, we
explain at a high-level how this relative cost is typechecked
bidirectionally. We show below the code of the top-level
merge sort function msort.
fix msort(_).Λ.Λ.λl .case l of nil → nil
| h1 :: tl1 → case tl1 of nil → cons(h1, nil)
| _ :: _ → let r = bsplit ()[] [] l in

unpack r as r ′ in clet r ′ as (z1, z2)
in merge ()[] [] (msort ()[] [] z1, msort ()[] [] z2)

We do not show the code of the helper functions bsplit and
merge, but they have the following types (these types are
also checked with BiRelCost; we omit those details here):
bsplit : □ (unitr → ∀n,α ::N. list[n]α τ →

∃β ::N. β ≤ α & (list[
⌈n
2
⌉
]β τ × list[

⌊ n
2
⌋
]α−β τ))

merge : □ (U (unit → ∀n,m::N. (list[n] int × list[m] int)
exec(h(min(n,m)),h(n+m))
−−−−−−−−−−−−−−−−−−−−→ list[n +m] int))

Note the □ -es outside the types; their significance will be
clear soon. Our aim is to typecheck msort relative to itself
at the following type:

□ (unitr → ∀n,α ::N. list[n]α (U int)
diff(Q (n,α))
−−−−−−−−−→ U (list[n] int))

Here, Q(n,α) is the cost function defined above. We focus
on the most interesting part where we call merge on the
results of the two recursive calls to msort. At this point, we
1This relative cost O (n · (1 + log2(α))) is asymptotically better than the
relative cost O (n · log2(n)) that can be established non-relationally. Also,
this relative cost bound is tight.

Bidirectional Type Checking for Relational Properties PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

have z1 : list[
⌈n
2
⌉
]β (U int) and z2 : list[

⌊ n
2
⌋
]α−β (U int) in

the context (from the type of bsplit). Considering that only
the calls to merge and msort incur additional costs (all the
remaining operations occur synchronously on both sides
and the relative cost of bsplit is 0 from its type), if we were
to naively establish the bound Q(n,α), we would have to
show the following inequality:

h(
⌈n
2

⌉
) +Q(

⌈n
2

⌉
, β) +Q(

⌊n
2

⌋
,α − β) ≤ Q(n,α) (1)

where the cost h(
⌈n
2
⌉
) = h(n)−h(min(

⌈n
2
⌉
,
⌊ n
2
⌋
)) comes from

the relative cost of merge. However, as observed in the Rel-
Cost paper, this inequality holds only when α > 0. When
α = 0, the right hand side is 0 whereas the left hand side
is h(

⌈n
2
⌉
). Nevertheless, when α = 0, the two input lists do

not differ at all, so the relative cost of merge can be trivially
established as 0 using the nochange rule.
Consequently, the verification of merge’s body differs

based on whether α = 0 or not. In our implementation,
this case analysis is provided for by heuristic (2). As soon as
the list l is introduced into the context, we apply the algo-
rithmic analogue of the rule rr-split, introducing the two
cases α � 0 and α > 0. For the case α � 0, the heuristic
immediately invokes the rule alg-r-nochange-↓, where we
must show that all the free variables in the context have □-
ed types. Since we know that the functions merge, bsplit
and msort all have □-ed types, it remains to be shown that
list[n]α τ1 ⊑ □ (list[n]α τ1). At this point, heuristic (3) kicks
in and uses the subtyping rules l2, l□ (Figure 3) and the
case-constraint α � 0 to establish this property. For the
other case (α > 0), we type the function body following its
syntax. This eventually generates the satisfiable constraint
(1) that is discharged by the constraint solver. The verifica-
tion also uses heuristic (4) to typecheck the applications of
bsplit and merge despite their □ -ed types.

7 Discussion
Our observation so far is that, to a large extent, bidirectional
relational type systems follow the same broad principles as
(the well-studied) bidirectional unary type systems. However,
relational type systems usually have more nondeterminism
in both typing and subtyping rules. This nondeterminism
can be resolved by additional annotations, but an alternate
approach is to use the annotations (and an elaboration to
programs with these annotations) only as a theoretical tool
in proving completeness of the bidirectional type system
relative to a standard declarative one, and to use heuristics
to resolve the nondeterminism in an implementation. This
is the approach we follow here. Bidirectionality also extends
to type-and-effect systems, with the general principle that
the mode of the effect follows the mode of the type. In the
following, we explain the extent towhich some other features
of relational type systems that we have not considered so far
can be brought under the purview of bidirectional typing.

First, in the type systems we have considered so far, the
same variable is used for related inputs in the two typed
expressions. A more expressive alternative is to allow the
two expressions to have different free variables and type
them relative to assumptions about relations between the
variables. Bidirectionality extends to this setup fairly easily,
without any new principles. The rule for typing variables
still remains in inference mode, but the variables on the two
sides do not have to be the same.
Second, many relational type systems feature asynchro-

nous rules that allow analysis of only one expression, while
maintaining relational reasoning, e.g., [2, Section 3][5]. In
fact, RelCost also has such rules [13, Section 3.4], which we
did not show due to lack of space (our appendix shows these
rules under the headings “Asynchronous typing”). These
rules require care in a bidirectional type system. As a sim-
ple example, suppose we add to RelRefU the following rule,
which allows relating e1 e2 to e ′2 by relating e2 to e ′2.

|Γ |1 ⊢ e1 : A1 → A2 Γ ⊢ e2 ∽ e ′2 : U (A1,A
′
2)

Γ ⊢ e1 e2 ∽ e ′2 : U (A2,A
′
2)

The question is what modes – inference or checking – the
two premises and the conclusion of the rule’s bidirectional
version should follow? The usual principle for function appli-
cation says that the first premise and the conclusion should
have inferred types, and the second premise should have a
checked type. However, with this choice, the typeA′

2 must be
guessed in an implementation. Consequently, the standard
principle does not work for this (and other) asynchronous
rules. Here, one possible way is to infer the type in the first
premise and check the types in the second premise and the
conclusion. This deviation from the usual bidirectional prin-
ciple for function application arises because the types of
the two sides (A2,A

′
2) are coupled in a single type in the

conclusion, while the (asynchronous) rule analyzes the two
sides differently. This suggests possible future work on bidi-
rectional typing where the different components of a single
type can have different modes. Here, for instance, we may
say that in U (A2,A

′
2), A2 will be inferred, while A′

2 will be
checked. Then, one could stay with the usual bidirectional
principle for function application on the left side.

Finally, we note that for type systems with refinements or
dependencies, any algorithmization (bidirectional or not) is
limited by the tractability of the underlying logic of asser-
tions. There are many relational refinement type systems
that are designed for manual proofs and rely on very pow-
erful assertion logics, in some cases as expressive as HOL
or CiC [5, 31]. While bidirectional principles can be used to
direct the generation of constraints in these cases, solving
the constraints automatically is fundamentally intractable.
A particular case of the previous point is that in type

systems with even simple quantitative refinements like list

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ezgi Çiçek, WeihaoQu, Gilles Barthe, Marco Gaboardi, and Deepak Garg

lengths and costs, the verification constraints often have ex-
istential quantifiers, which SMT solvers have significant diffi-
culty handling. In our prototype implementation of BiRelCost,
we use a custom algorithm to eliminate these quantifiers,
which works well. An alternative approach, used for example
in liquid types [42] and by Dunfield and Krishnaswami for
GADTs [23], is to engineer or restrict the type system so that
generated constraints do not have existential quantifiers. In
the context of bidirectional type checking, this seems fun-
damentally difficult for quantitative effects like costs. The
problem, as explained earlier, is that in trying to check a
composite expression, the expression’s given cost must be
nondeterministically split between the subexpressions. Other
(co)effect type systems [18, 19, 21, 27] use bounded exponen-
tials !n τ (n copies of τ) from bounded linear logic to express
quantitative (co)effects. The difficulty for bidirectionality
is similar: Now, in a rule with two or more premises, one
must nondeterministically split the context. Further work
is needed to understand whether these type systems can be
re-designed to not generate existential quantifiers.

8 Related Work
There is a lot of literature on implementing various com-
binations of refinement types, effect systems, modal types,
and subtyping. A distinctive feature of our work is that it
combines all these aspects in a relational setting.

The idea of bidirectional type systems appeared in litera-
ture early on. However, the idea was popularized only more
recently by Pierce and Turner [37]. The technique has shown
great applicability—it has been used for dependent types [16],
indexed refinement types [43, 44], intersection and union
types [20, 24], higher-rank polymorphism [22, 23, 35], con-
textual modal types [36], algebraic effect handlers [29] and
gradual typing [41]. Our approach is inspired by many of
these papers, in particular DML [43, 44], but departs in the
technical design of the algorithmic type system due to new
challenges offered by relational and modal types, and costs.
In particular, in these works is unary, i.e. a single program
is checked (inferred) in isolation. Moreover, none of these
works consider effects explicitly, i.e. as a type and effect sys-
tem. One exception is the bidirectional effect system by [41],
which uses bidirectional typechecking for gradual unary ef-
fects. However, their end goal is different since they infer
minimal effects at compile time and then check dynamic
effects at runtime.

Numerous other systems use lightweight dependent types
for program verification including, for instance, F∗ [39, 40]
and LiquidHaskell [42]. However, these developments also
do not consider comonadic types and costs. The DML ap-
proach has also been used in combination with linear types
for asymptotic complexity analysis [18, 19] and for reason-
ing about differential privacy [21, 27]. Besides lightweight
dependent types, these papers also consider the comonadic

modality of linear logic. This modality’s structural proper-
ties are quite different from those of the comonadic □ we
consider here. Another way to extend dependent types with
cost information is to index a monad with the execution
cost. Gundry considers this approach in a unary setting for
a subset of Haskell with support for bidirectional typecheck-
ing [28]. None of these papers consider relational typing.
Some other type systems establish relational properties

of programs. For instance, Barthe et al. [6] consider a re-
lational variant of a fragment of F∗ for the verification of
cryptographic implementations, and similarly Barthe et al.
[7] consider a relational refinement type system for differen-
tial privacy. However, some of the key technical challenges
of our system, including those that arise from the interaction
between unary and relational typing, as well as costs, do not
show up in these settings. In the realm of incremental com-
puting, some work [14, 15] has proposed declarative type
systems for reasoning about update costs of incremental pro-
grams. These systems share similarities with the systems we
considered here and we believe that the ideas developed in
this paper can be applied to obtain algorithmic versions of
these type systems as well.
Prior work has also studied methods of eliminating sub-

typing as a way of simplifying type checking, e.g. [11, 17].
While our approach is similar in motivation, our technical
challenges are quite different. Main difficulties in simplify-
ing subtyping in our work arise from the interaction of the
modalities □ andU with other connectives.

9 Conclusion
This paper presented a theoretical study and a concrete im-
plementation of bidirectional type checking in a setting that
combines relational refinements, comonadic types and re-
lational effects. This rich setting poses unique challenges:
The typing rules are not syntax-directed due to relational
refinements; switching from relational to unary reasoning
adds to the ambiguity; subtyping for (relational) comonads
poses additional problems, as do the relational effects. We
resolve these challenges through a process of elaboration
and subtyping-elimination in the theory and using example-
guided heuristics in the implementation. We validate experi-
mentally that this approach is practical—it works for many
different kinds of programs, has little annotation burden and
typechecking is quick. Although we have focused here on
a specific line of type systems with the features mentioned
above, we believe that our work will help future designers
of other relational type (and effect) systems as well.

Acknowledgments
We thank the anonymous referees for helpful comments and
suggestions. This article is based on research that has been
supported, in part, by the NSF under grant 1718220.

Bidirectional Type Checking for Relational Properties PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

References
[1] Martín Abadi, Luca Cardelli, and Pierre-Louis Curien. 1993. Formal

Parametric Polymorphism. In Proc. POPL. 157–170.
[2] Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorith-

mic Equality in Predicative Type Theory. Logical Methods in Computer
Science 8, 1 (2012).

[3] Andreas Abel, Andrea Vezzosi, and Théo Winterhalter. 2017. Nor-
malization by evaluation for sized dependent types. PACMPL 1, ICFP
(2017), 33:1–33:30.

[4] Alejandro Aguirre, Gilles Barthe, Lars Birkedal, Ales Bizjak, Marco
Gaboardi, and Deepak Garg. 2018. Relational Reasoning for Markov
Chains in a Probabilistic Guarded Lambda Calculus. In Proc. ESOP.
214–241.

[5] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and
Pierre-Yves Strub. 2017. A relational logic for higher-order programs.
PACMPL 1, ICFP (2017), 21:1–21:29.

[6] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub,
Nikhil Swamy, and Santiago Zanella Béguelin. 2014. Probabilistic rela-
tional verification for cryptographic implementations. In Proc. POPL.
193–206.

[7] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu,
Aaron Roth, and Pierre-Yves Strub. 2015. Higher-order approximate
relational refinement types for mechanism design and differential
privacy. In Proc. POPL. 55–68.

[8] Gavin M. Bierman, Erik Meijer, and Mads Torgersen. 2007. Lost in
translation: Formalizing proposed extensions to C#. In Proc. OOPSLA.
479–498.

[9] François Bobot, Sylvain Conchon, E Contejean, Mohamed Iguernelala,
Stéphane Lescuyer, and Alain Mebsout. 2013. The Alt-Ergo automated
theorem prover. http://alt-ergo.lri.fr/

[10] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
1998. Making the Future Safe for the Past: Adding Genericity to the
Java Programming Language. In Proc. OOPSLA. 183–200.

[11] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre
Scedrov. 1991. Inheritance As Implicit Coercion. Inf. Comput. 93, 1
(July 1991), 172–221.

[12] Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic.
2014. A Core Quantitative Coeffect Calculus. In Proc. ESOP. 351–370.

[13] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan
Hoffmann. 2017. Relational Cost Analysis. In Proc. POPL. 316–329.

[14] Ezgi Çiçek, Deepak Garg, and Umut A. Acar. 2015. Refinement Types
for Incremental Computational Complexity. In Proc. ESOP. 406–431.

[15] Ezgi Çiçek, Zoe Paraskevopoulou, and Deepak Garg. 2016. A Type
Theory for Incremental Computational Complexity With Control Flow
Changes. In Proc. ICFP. 132–145.

[16] Thierry Coquand. 1996. An algorithm for type-checking dependent
types. Science of Computer Programming 26, 1 (1996), 167 – 177.

[17] Karl Crary. 2000. Typed Compilation of Inclusive Subtyping. In Proc.
ICFP. 68–81.

[18] Ugo Dal Lago and Marco Gaboardi. 2011. Linear Dependent Types and
Relative Completeness. In Proceedings of the 2011 IEEE 26th Annual
Symposium on Logic in Computer Science (LICS ’11). 133–142.

[19] Ugo Dal Lago and Barbara Petit. 2013. The Geometry of Types. In Proc.
POPL. 167–178.

[20] Rowan Davies and Frank Pfenning. 2000. Intersection Types and
Computational Effects. In Proc. ICFP. 198–208.

[21] Arthur Azevedo de Amorim, Marco Gaboardi, Emilio Jesús Gallego
Arias, and Justin Hsu. 2014. Really Natural Linear Indexed Type
Checking. In Proc. International Symposium on Implementation and
Application of Functional Languages (IFL). 5:1–5:12.

[22] Joshua Dunfield and Neelakantan R. Krishnaswami. 2013. Complete
and Easy Bidirectional Typechecking for Higher-Rank Polymorphism.
In Proc. ICFP. 429–442.

[23] Joshua Dunfield and Neelakantan R. Krishnaswami. 2019. Sound and
complete bidirectional typechecking for higher-rank polymorphism
with existentials and indexed types. PACMPL 3, POPL (2019), 9:1–9:28.

[24] Joshua Dunfield and Frank Pfenning. 2003. Type Assignment for
Intersections and Unions in Call-by-value Languages. In Proc. FOSSACS.
250–266.

[25] Matthias Felleisen. 1991. On the Expressive Power of Programming
Languages. Science of Computer Programming 17, 1-3 (1991), 35–75.

[26] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3: Where
Programs Meet Provers. In Proc. ESOP. 125–128.

[27] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and
Benjamin C. Pierce. 2013. Linear Dependent Types for Differential
Privacy. In Proc. POPL. 357–370.

[28] AdamGundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D.
Dissertation. University of Strathclyde.

[29] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do
Be Do. In Proc. POPL. 500–514.

[30] J. M. Lucassen and D. K. Gifford. 1988. Polymorphic Effect Systems. In
Proc. POPL. 47–57.

[31] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2011. Ver-
ification of Information Flow and Access Control Policies with Depen-
dent Types. In Proc. IEEE Symposium on Security and Privacy (S&P).
165–179.

[32] Flemming Nielson and HanneRiis Nielson. 1999. Type and Effect
Systems. In Correct System Design. Lecture Notes in Computer Science,
Vol. 1710. Springer-Verlag, 114–136.

[33] Martin Odersky, Matthias Zenger, and Christoph Zenger. 2001. Colored
Local Type Inference. In Proc. POPL. 41–53.

[34] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. 2013. Coef-
fects: Unified Static Analysis of Context-Dependence. In Proc. ICALP.
385–397.

[35] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. 2007. Practical type inference for arbitrary-rank types.
J. Funct. Program. 17, 1 (2007), 1–82.

[36] Brigitte Pientka. 2008. A Type-theoretic Foundation for Programming
with Higher-order Abstract Syntax and First-class Substitutions. In
Proc. POPL. 371–382.

[37] Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference.
ACM Trans. Program. Lang. Syst. 22, 1 (Jan. 2000), 1–44.

[38] François Pottier and Vincent Simonet. 2003. Information Flow Infer-
ence for ML. ACM Trans. Prog. Lang. Sys. 25, 1 (Jan. 2003), 117–158.

[39] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub,
Karthikeyan Bhargavan, and Jean Yang. 2011. Secure distributed pro-
gramming with value-dependent types. In Proc. ICFP. 266–278.

[40] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, An-
toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric
Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzin-
dohoue, and Santiago Zanella Béguelin. 2016. Dependent types and
multi-monadic effects in F∗. In Proc. POPL. 256–270.

[41] Matías Toro and Éric Tanter. 2015. Customizable Gradual Polymorphic
Effects for Scala. In Proc. OOPSLA. 935–953.

[42] Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014. LiquidHaskell: Experi-
ence with refinement types in the real world. In Proc. ACM Symposium
on Haskell. 39–51.

[43] Hongwei Xi. 1998. Dependent Types in Practical Programming. Ph.D.
Dissertation. Carnegie Mellon University.

[44] Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical
Programming. In Proc. POPL. 214–227.

http://alt-ergo.lri.fr/

	Abstract
	1 Introduction
	2 Relational STLC (relSTLC)
	3 RelRef
	4 RelRefU
	5 RelCost
	6 Implementation
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

