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Abstract—For fear of retribution, the victim or witness of a crime
may be willing to report it only if other victims of the same perpetrator
also step forward. Examples include 1) identifying oneself as the victim
of sexual harassment, especially by a person in a position of authority
or 2) accusing an influential politician, an authoritarian government,
or one’s own employer of corruption. To handle such situations, legal
literature has proposed the concept of an allegation escrow: a neutral
third-party that collects allegations, matches them against each other,
and discloses them only after reveal thresholds (in terms of number
of co-allegers), pre-specified by the allegers, are reached. Until then,
allegations and allegers’ identities are kept confidential.

An allegation escrow can be realized as a single trusted third
party; however, this party must then be trusted to keep the identity
of the alleger and content of the allegation private despite any threats
or coercion from perpetrators. To address this problem, this paper
introduces Secure Allegation Escrows (SAE, pronounced “say”). A
SAE is a group of parties with independent interests and motives,
acting jointly as an allegation escrow. By design, SAEs provide a
very strong property: No less than a majority of parties constituting
a SAE can de-anonymize or disclose the content of an allegation
without a sufficient number of matching allegations (even in collusion
with any number of other allegers). Once a sufficient number of
matching allegations exist, the joint escrow discloses the allegation
and the allegers’ identities. We describe how SAEs can be securely
constructed using a distributed authentication protocol and a novel
allegation matching and bucketing algorithm and evaluate a prototype
implementation, demonstrating feasibility in practice.

I. INTRODUCTION

In many cases, the victim or the witness of a crime may be
too afraid to accuse the perpetrator for fear of retribution by the
perpetrator. In other cases, in particular those involving sexual
harassment, the survivor may not report the crime anticipating
negative social consequences or further harassment by the
perpetrator. In such situations, the victim (or the witness) may find
it easier to act against the perpetrator if others also accuse the same
perpetrator of similar crimes. Examples of this abound, a notable
one being the recent #MeToo movement [1], which led to many

public allegations of sexual abuse in the US film industry and
elsewhere, all triggered by the courage of an initial few.

An allegation escrow aids such collective allegations by matching
allegations against a common perpetrator confidentially. Technically,
an allegation escrow allows a victim or witness of a crime to file
a confidential allegation, which is to be released to the designated
recipient(s) once a pre-defined number of matching allegations
against the same party have been filed. The identities of the accusers
and the accused, as well as the content of the allegation, remain
confidential until the release condition holds. The designated
recipient(s) can be the allegers themselves or a concerned authority.

Besides helping fearful victims to report crimes (safe in the knowl-
edge that their allegation will be revealed only as part of a larger
group), allegation escrows help improve reporting in cases where
the victim is uncertain if the perpetrator’s actions constitute a crime.
Escrowed allegations also enjoy higher credibility since, to all appear-
ances, they are filed independently of each other (as opposed to pub-
lic allegations, where the credibility of subsequent allegations may be
questioned). It has been argued that allegation escrows mitigate the
first-mover disadvantage that perpetrators typically benefit from [4].

Project Callisto [3] is an allegation escrow system that has been
deployed in 13 universities with over 100k students, to help report
sexual assault on university campuses. A victim can instruct the
system to release the allegation only when another allegation against
the same person exists. Sexual assault survivors who visit the Callisto
website of their university are 5 times more likely to report the crime
than those who do not, and Callisto has reduced the average time
taken by a student to report an assault from 11 to 4 months [2]. This
makes a very strong case for the usefulness of allegation escrows.

However, existing allegation escrows such as Project Callisto are
implemented as a single trusted third party, similar to ombuds-offices
in many organizations. Although technically simple and effective
in many cases, the use of a single party may raise concerns about
the escrow’s trustworthiness, impartiality and fallibility to influential
perpetrators, thus driving away potential users. In the case of a
university or corporate escrow (e.g. an ombuds-office), students or
employees may be unsure that an allegation against a high-ranking
official would be treated with integrity. A commercial escrow may
raise concerns about its independence from funding sources and long-
term security, just as a government-run escrow may raise concerns
about its independence from high-ups in law enforcement and the
judiciary. In all these cases, users may not trust the escrow enough to
file allegations against people they deem to have the power to coerce
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or compromise the escrow. When they do file allegations, strong per-
petrators may abuse their power to prematurely discover escrowed
allegations, suppress and alter the allegations, or even seek retribution
against the victims. Finally, even if one victim trusts an escrow, other
victims of the same perpetrator may not, making it impossible for
the escrow to match their allegations. This suggests the need for alle-
gation escrows based on several independent parties, none of which
in itself is a single point of coercion or attack by strong adversaries.
In this paper, we present a cryptographic design of such escrows.

A. Contributions
Our escrows, called SAEs (short for Secure Allegation Escrows,

prounounced says), distribute client secrets—confidential allegations
and identities of the alleger and accused—among several parties by
threshold secret-sharing [38]. These parties, called escrows, act to-
gether and perform multi-party computations (MPCs) to provide the
same functionality as a single-party allegation escrow, but compro-
mising less than half of the escrows provides no information about
escrowed allegations, accusers or the accused. The escrows can span
diverse administrative, political and geographic domains, mitigating
the chances of simultaneous attacks over a majority by the same ad-
versary. To enable SAE, we make three key technical contributions.

First, SAE needs to provide a strong accountability property:
Every filed allegation can be linked to a real-world (strong) identity,
which is revealed to the concerned authority once the allegation has
found enough matches. This discourages fake allegations and prob-
ing attacks that all allegation escrows are susceptible to (see §II-A).
Providing accountability and privacy simultaneously requires a non-
trivial authentication protocol (see §IV-C). When filing an allegation,
no minority of escrows learn the identity of the filing user. But when
the allegation is to be revealed, a majority can determine the identity.

Second, we need to efficiently match allegations to each other,
even when each escrow only has shares of the allegations, while
providing accountability. For this, we use a novel construction of
distributed (verifiable) pseudorandom functions (DVRFs) over
shared secrets. This is necessary, since traditional Oblivious PRFs
will not provide accountability (see §I-B).

Third, SAE allows each alleger to decide their reveal threshold—
how many matching allegations must be available before their alle-
gation may be revealed. A set of matching allegations,A, is revealed
if and only if all their thresholds are ≤ |A|. For instance, if three
matching allegations with thresholds {2,3,5} are filed, no allegation
should be revealed, since 5’s threshold isn’t met. But if another
allegation with threshold 3 is filed, then the ones with thresholds
{2,3,3} (but not 5) should be revealed. We design a novel bucketing
algorithm to support reveal thresholds>2 efficiently (see §IV-D2).

This flexibility is important since one size doesn’t fit all. In
many cases of sexual misconduct, a small threshold is desired to
maximize the probability of a match; indeed Project Callisto which
always uses a threshold of two—where an allegation is revealed if
another matching one is filed—has demonstrated real-world utility.
However, when the perpetrator is powerful, such as an influential
politician, allegers may need many more corroborators to get justice
while avoiding adverse consequences for themselves. Similarly,
when accusing one’s employer (or government) of misconduct or
corruption, a person risks getting fired or persecuted. Having just 1
or 2 corroborators may not be much better than being alone. A much

higher threshold could be more appropriate. SAE’s flexibility allows
each alleger to tailor the reveal threshold to the semantics of their al-
legation and their assessment of risk and comfort. The computational
complexity doesn’t increase with the reveal threshold (see §IV-E).

We formally prove the end-to-end security of our SAE crypto-
graphic design in the universal composability (UC) framework [10].
Specifically, we present an ideal functionality which, by definition,
captures the expected security and accountability properties of a
SAE, and then show that our cryptographic design realizes this
functionality. We also implement a prototype of SAE to understand
the latency and throughput of the system. We find that our design
is efficient enough for typical use-conditions of allegation escrows.

To summarize, the contributions of our work are: 1) The concept
of SAE, a distributed allegation escrow, that is robust to compromise
or coercion of minority subsets of constituting parties. 2) A
cryptographic realization of SAEs using verifiable secret sharing
(VSS) and efficient multi-party computation (MPC) protocols.
In particular, a new protocol for user authentication and a new
matching and bucketing protocol. 3) A formal security analysis of
our cryptographic realization. 4) A prototype implementation and
empirical evidence of reasonable performance in practice.

B. Related Work

Ayres and Unkovic [4] discuss the legal and social utility of
allegation escrows in encouraging reporting of sexual misconduct.
As discussed, Project Callisto [3] is a real deployment that uses a
single trusted-party escrow for allegations of sexual misconduct, and
has demonstrated the utility of such a system in university settings.

WhoToo [32] is a concurrent work that proposes a secure
allegation escrow for allegations of sexual misconduct. Like SAE,
it distributes trust among multiple parties using MPC. SAE differs
from WhoToo in a two key ways. First, WhoToo forces all
allegations to use a global pre-determined reveal threshold. As
discussed above, this inflexibility limits its scope of application.
To our knowledge, SAE is the first system to allow each allegation
to have its own reveal threshold.

Second, if there are N allegations already in the system, to
file the (N + 1)th allegation, WhoToo needs to perform O(N)
cryptographic operations, includingO(N) multi-party computations.
SAE is more scalable. Its running time is O(1), independent of
the number of pre-existing allegations. We compare the compute
complexity in detail in section IV-E. To obtain such efficiency, SAE
sometimes reveals which allegations match which others, before
their thresholds are met. Nevertheless, an adversary is unlikely to
be able to exploit this (see §IV-D2)

Project Callisto has also developed a prototype cryptographic
solution to distribute the trust assumptions [36, 37]. It uses a
(potentially distributed) Oblivious PRF (OPRF) server. Allegers
query the server to learn the (deterministic) PRF of the accused’s
identity, while the server just learns the alleger’s identity (not the
accused’s). The alleger uploads the PRF to a database server, which
compares them, in clear-text, to match allegations. Callisto’s security
analysis is informal and has a weaker threat model that admits two
attacks.

First, the OPRF server learns the alleger’s identity. If a perpetrator
compromises this server and learns that one of their victims filed an
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allegation soon after the crime, they may be able to deduce the con-
tent of the allegation. In contrast, in SAE, no minority set of escrows
learn the identity of any alleger until enough matches are found.

Second, it doesn’t hold allegers accountable, which allows the
adversary to probe how many allegations exist against a given person.
They may then guess who filed the allegation from context. To mount
the attack, they query the OPRF server to learn the PRF of that
person’s identity, and compromise the database server to learn how
many previously filed allegations match this PRF. SAE prevents this
attack by ensuring that if a PRF of an accused’s identity is computed,
the identity of the alleger is irrevocably tied to the allegation. This
enforces accountability and disincentivizes such attacks (see §II-A).

Trusted Hardware. In recent work, Harnik et al. [26] use a
hardware-backed secure enclave (built on Intel SGX) to isolate a
fully autonomous, single-party allegation escrow. The ideas can
be combined with SAE to obtain a threat model stronger than
either: SAE’s escrows can be hosted in SGX enclaves to provide
a second line of defense even when the administrators of a majority
of escrows are acting maliciously.

Generic MPC and Covert Computation. Generic black-box
MPC can also be used to solve the problem. However, like WhoToo,
it too incurs at-least O(N) cost per allegation, and doesn’t scale.
Like covert computation [11, 40], SAE hides even the participation
of a user in the protocol, revealing the result only if a pre-defined
condition is met. However, black-box covert protocols don’t scale
well to large numbers of users, and require users to be online for
matching to occur.

II. SAE DESIGN

A. Requirements for Secure Allegation Escrow
A secure allegation escrow system should provide the following

security and privacy properties:
• Allegation secrecy. The escrow should hold each allegation

secret until enough matches are found. An allegation should be
released only as part of a group of matching allegations.
• Alleger anonymity. Similarly, the escrow should hold each

alleger’s identity secret until enough matches are found.
• Scalability. The escrow should scale to many allegers and

allegations. In section §IV-F we discuss why scalability 1) helps
avoid crippling DoS attacks, 2) increases probability of a correct
match and, 3) enhances privacy by preventing timing side-channel
attacks.
• Accountability. Each allegation is bound to a strong real-world

identity. Once a match is found, the real identities of the matched
allegers are revealed to the designated authority. Accountability dis-
courages fake/bogus allegations, and acknowledges that the primary
source of authenticity of an allegation, escrowed or otherwise, is the
human backing it.

All allegation escrows (not just SAEs) are fundamentally
vulnerable to probing attacks where the adversary files fake probe
allegations in the hope of revealing other genuine allegations against
the same accused before sufficiently many genuine matching
allegations have been filed. For example, the adversary may be a
guilty perpetrator seeking vengeance or a journalist seeking a story.
While the ultimate defense against such attacks lies in preventing
this kind of abuse by non-technical means (e.g., by criminalizing

probe allegations), SAEs aid such defenses through the property
of accountability, which ensures that the real-world identities of
all allegers, including fake allegers, are revealed to the designated
authority after a match. For this to work, we assume the adversary
is afraid of law and/or public perception.

Accountability doesn’t deter an adversary who knows their
allegation (and hence identity) will never be revealed, perhaps
because their reveal threshold is too high or their allegation is
unlikely to match any others. We ensure a probe is useful for
discovering the presence of only those allegations, that would be
revealed at the same time as the probe itself (see §IV-D2). Hence,
the probe is just as likely to be revealed as the victim allegation.

Additionally, allegation escrows are most useful in asymmetric
situations, where individual allegers are at a disadvantage compared
to the accused. Allegation escrows enable the allegers to build
“strength in numbers” without fear of premature retaliation. However,
the very information held by allegation escrows motivate powerful
attacks against them, since the accused can gain by learning about
allegers before a large enough group has formed. Thus, allegation
escrows should expect to be targeted. This leads to the following
meta-property that spans the previous properties.
• Robustness. The escrow should resist coercion and compromi-

sation attacks. It should continue to provide the properties above even
if some constituent parts are compromised or willingly cooperate
with the adversary.

B. Threat model and assumptions

A SAE adversary is interested in prematurely learning the
identities of one or more allegers or discovering unrevealed
allegations. For instance, the adversary may be a guilty perpetrator
interested in determining whether there is any allegation against them.
Or, they may be journalists/trolls looking for a story against a famous
person. To this end, an adversary may actively compromise some
escrows into revealing information they hold and/or not following the
SAE protocol correctly. By design, SAEs are robust to such attacks
on up to half the escrows simultaneously: allegation secrecy, alleger
anonymity, scalability and accountability hold even if the adversary
learns all cryptographic and allegation-related material possessed by
up to half the escrows, and causes them to behave arbitrarily. Any
individual escrow can halt the protocol and affect liveness by not
cooperating. We disincentivize this by ensuring that honest escrows
can determine the identity of any escrow who is not cooperating.

We make the standard assumption that the adversary cannot
break cryptography. Technically, the adversary is a probabilistic
polynomial time (PPT) algorithm with respect to a chosen security
parameter λ. We assume, as usual, that uncompromised parties
(escrows and allegers) keep their long-term secrets safe.

For alleger anonymity, we assume that allegers do not reveal any
information beyond that explicitly mentioned in our protocols. For
example, they should hide their IP addresses using standard network
anonymity solutions like Tor [18]. To ensure the time of allegation
filing doesn’t reveal extra information, honest escrows regularly file
‘garbage’ allegations at random times. These are indistinguishable
from genuine allegations, and hence serve to hide them. SAE
scalability ensures that this doesn’t hurt performance significantly.
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Fig. 1. An overview of the SAE protocol. The figure shows a) the user registration phase and b) the allegation filing phase. Numbers indicate the order in which operations
are performed. Thick-continuous and thick-dotted lines indicate one-to-many and many-to-one communication respectively. The line in b) with the ‘Tor’ symbol denotes
an anonymous channel.

C. Protocol Overview

Figure 1 shows the high-level flow of the SAE protocol. We
describe the individual sub-protocols for each of the stages in §IV.

Registration. SAE uses real-world (strong) identities to ensure
accountability. Prior to registering with SAE, a potential alleger
(called a user in the sequel) proves their real identity to a certifying
authority (CA) and gets its signature on their public key. The
CA may be the user’s employer or university registering all its
employees and students into the system, or even an independent
entity verifying physical identities like passports.

To register with a SAE, the user authenticates to all escrows
using the CA certificate. The escrows and the user then run a
cryptographic protocol during which the user gets authentication
tokens (in particular, MACs) on a fixed number l of fresh public
keys. Each of these l keys can be used once to file an allegation (for
instance, this step be repeated annually to allow l allegations per
user per year). Importantly, the escrows only learn individual shares
of these keys, but neither the full keys, nor the MACs on them. This
prevents the escrows from learning the identity of a user when the
user files an allegation later, but allows a majority of escrows to
reconstruct the identity (by pooling their shares of the public key)
when an allegation has to be revealed.

For their own benefit, users should register ahead of time, even
when they see no need to file an allegation. This prevents timing
correlation channels. For example, if an accused is expecting an
allegation due to a recent incident, and colludes with a escrow, then

the act of registration by the potential alleger may provide a strong
hint of a pending allegation. Ahead of time registration removes
this channel of inference and could be enforced, for instance, by a
company asking its employees to register with an allegation escrow
service as soon as they join the company.

Allegation filing. When the user wants to file an allegation, they
contact the escrows, providing one of the l public keys and the MAC
on it, which the escrows can verify. The verification tells each escrow
that this user has registered before, but doesn’t reveal the identity of
the user, since no escrow has seen these in cleartext before. After this,
the user provides the allegation’s text along with some meta-data in a
specific cryptographic form, and a reveal threshold—the minimum
number of allegations that must match before this one is revealed.

Matching, thresholding and revelation. The material provided
with each allegation is fed into a novel matching and bucketing
algorithm. This algorithm matches allegations to each other. As
soon as a setA of matching allegations, each with a reveal threshold
≤ |A| (the size of A), is found, they are revealed to a designated
authority for further action. The revelation contains the real identities
of the allegers and the full texts of their allegations. The designated
authority can then take appropriate action.

III. THRESHOLD CRYPTOGRAPHIC TOOLS

In this section, we present threshold cryptographic protocols that
we use in SAE. We first describe the necessary threshold primitives,
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and then design a distributed verifiable pseudo-random function
(DVRF) protocol.

A. Multi-Party Computation and Secret Sharing
An MPC protocol enables a set of parties {P1,P2, ... ,Pn} to

jointly compute a function on their private inputs in a privacy-
preserving manner [7, 12, 25, 43]. In particular, every party Pi
holds a secret input value xi, and P1,...,Pn agree on some function
f that takes n inputs and provide y = f(x1,...,xn) to a recipient
while making sure that the following two conditions are satisfied:
(i) Correctness: the correct value of y is computed; (ii) Secrecy: the
output y is the only new information that is released to the recipient.

An (n,f) Shamir secret sharing [38] allows a dealer to distribute
shares of a secret among n parties {P1,...,Pn} such that any number
set of≤f shares reveals no information about the secret itself, while
an arbitrary subset of shares larger than f allows full reconstruction
of the shared secret. Since in some secret sharing applications the
dealer may benefit from behaving maliciously, parties also require
a mechanism to confirm that each f+1 subset of shares combine
to form the same value. To solve this problem, Chor et al. [13]
introduced verifiability in secret sharing, which led to the concept
of verifiable secret sharing (VSS) [6, 20, 24, 35].

In our construction we use the MPC protocol by Gennaro et
al. [24]. It uses VSS; Pedersen commitments [35] on the Shamir
shares are provided to all parties. It works on secrets in a prime-order
ring Zq and a multiplicative group G of order q, which is linear
in the security parameter λ. To aid secret-sharing, we use collision
resistant hash functionsH1 andH2 that map arbitrary length strings
and public keys respectively to Zq.

B. Bilinear Pairings
Let G1, G2, GT be multiplicative, cyclic groups of prime

order q. Let g1,g2 be generators of G1,G2 respectively. A map
e :G1×G2→GT is called bilinear if it has the following properties.
(1) Non-degenerate: e(g1,g2) 6=1. (2) Bilinear: For all u∈G1,v∈
G2,x,y ∈Z, e(ux,vy)= e(u,v)xy. (3) Computable: There is an
efficient algorithm to compute e(u,v) for all u∈G1,v∈G2. For ease
of exposition, we assume that the pairing employed is symmetric,
i.e., G1=G2=G [22, 29]. g∈G is a publicly known generator.

C. MPC Tools and Notation

VSS and MPC Notation. We denote the n shares of a secret value
s by the set JsK= {JsK1,...,JsKn}, where JsKj represents the VSS
share of party Pj. For SAEs, we use n=2f+1.

As the employed VSS protocol is additively homomorphic,
operations Jx1+x2Kj = Jx1Kj+Jx2Kj, and Jcx1Kj = cJx1Kj for a
known constant c∈Zq can be computed by each Pj locally using
her shares Jx1Kj, Jx2Kj. The computation of JxyKj from given
JxKj, JyKj is an interactive process and requires cooperation from
2f +1 parties [24]. This protocol has identifiable abort [28] and
can identify which the non-cooperating parties (if any) are; thus,
a malicious-but-cautious party will always cooperate. We formalize
identifiable abort as IdentifiableAbort(i), where i indicates
that Pi either offered wrong or no input.

Given threshold addition and multiplication, we can efficiently
perform some additional operations. In the following, we list

the employed VSS and MPC operations. These functions are
cooperatively called by each escrow with their share of the inputs.
When enough escrows cooperate, the functions return their values.
• VSS(x): Verifiably secret share x among all the escrows such

that f+1 of them can reconstruct x, but no fewer can [24].
• COMBINESHARES(JxKj): Broadcast JxKj, gather shares from

other≥f parties, and reconstruct the secret x∈Zq if at least f+1
honest shares (including JxKj) are available.
• RANDOMCOINTOSS(): Return a share JrKj of r∈Zq chosen

uniformly at random using distributed key generation [23, 30].
• PUBLICEXPONENTIATE(h, JxKj, recipients): Com-

putehx, wherex is secret-shared andh is a publicly known generator
of a bilinear group G or GT (see §III-B). The result is revealed as
clear-text only to recipients, which is a set of parties. In our
protocol, recipients is either a given client or the set of all
the escrows. This operation can be done efficiently with interaction
since the result is revealed in the clear, not in secret-shared form.
• DVRF(JSKKj, JxKj, flag_proof, recipients):

Return the VRF FSK(x) to recipients (see §III-D). If
flag_proof is true, also return the proof πSK(x), along with the
VRF.
• VERIFYVRF(PK,π,x): Verify that π = πSK(x), where

SK is the secret key of the VRF (see §III-D) corresponding to the
public key PK. Unlike above, this function can be executed locally
by each escrow without interaction.

D. Distributed Verifiable Pseudorandom Functions (DVRFs)

VRFs. A verifiable pseudo-random function is a pseudo-random
function FSK(x), along with a proof function πSK(x). A PPT
adversary cannot distinguish FSK(x) from a random function if
it doesn’t have access to SK or πSK(x). However, given πSK(x)
and a public key PK, a PPT can verify that FSK(x) was computed
correctly. The formal definition of VRFs is given in Appendix A.

In SAE, we need to compute VRFs in a multi-party computation
where both the key and the input values are available in a
secret-shared form. Any VRF scheme can be transformed using
general purpose MPC to work with shared key and shared input
tags. However, keeping efficiency and practicality in mind, we
choose a VRF construction by Dodis and Yampolskiy from [19].

In this construction, if a q-Decisional Bilinear Diffie Hellman
Inversion (q-DBDHI) assumption holds in a bilinear group G with
generator g, then

FSK(x)=e(g,g)
1/(x+SK) (1)

is a PRF. When coupled with a proof πSK(x) = g1/(x+SK), it is
a VRF. Here, SK is a private key chosen randomly from Zq, and
PK= gSK . To verify whether y=FSK(x), we can test whether
e(gx·PK,π)=e(g,g) and whether y=e(g,π).

Distributed Input VRF. We need a distributed protocol for
computing a VRF. However, we could not use distributed VRF
(DVRF) schemes in [8, 9, 34] as, in SAE, the VRF computing
parties (the escrows) know the input only in a secret-shared formed
(this will become clear in §IV). So, we design a DVRF with
secret-shared (or distributed) input messages. Our construction may
be of independent interest to other distributed security systems.
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Algorithm 1 Efficient MPC algorithm to compute DVRFs.
function DVRF(JSKK, JxK, flag_proof, recipients)

Jt1K←−JSKK+JxK
JblindK←− RANDOMCOINTOSS()
(Jt2K,IdentifiableAbort(i))←−Jt1K∗JblindK
t2←− COMBINESHARES(Jt2K)
JexpK←−t−12 ∗JblindK
if proof_flag = True then

PUBLICEXPONENTIATE(g,JexpK, recipients)
else

PUBLICEXPONENTIATE(e(g,g),JexpK, recipients)
end if

end function

A set of 2f + 1 escrows can efficiently compute FSK(x) or
πSK(x) if each has a share of x and SK as shown in Algorithm 1.
Here the result is sent only to recipients (either all-escrows
or the given client). If flag_proof is false, DVRF computes
FSK(x)=e(g,g)

1/(x+SK). Else, it computes πSK(x)=g1/(x+SK).
g∈G is a group generator. Given πSK(x), anybody can compute
FSK(x) = e(πSK(x), g). This is also why we omit F from
VERIFYVRF’s inputs.

Algorithm 1 first inverts JxK + JSKK which takes two
multiplications, and then exponentiates it. The only values available
in clear-text (i.e., not information-theoretically hidden by the secret
sharing) are t2 and the final output. t2 is uniformly distributed and
independent of the input since it is blinded. Hence, this algorithm
does not reveal any information about the inputs beyond what is
revealed by the output.

IV. SAE CONSTRUCTION

In this section, we present the detailed cryptographic protocols
we use to implement a secure allegation escrow. A formal summary
of the protocol is given in Figure 2.

A. Format of an Allegation
An allegation escrow must have some mechanism to determine

whether or not two allegations match. For this, along with free-form
text describing their allegation, allegers provide structured meta-data
describing the allegation. Escrows deem that two allegations match
if the allegations’ meta-data are identical. Although simple, this
mechanism is quite effective—it is also used in Callisto [3], a
deployed (non-cryptographic) escrow.1

Allegation meta-data is a formatted string containing specific
fields. For instance, it could contain: 1) the identity of the accused
and, 2) the type and intensity of a crime. The identity can be
specified either as a name or as a unique identifier, if available. In
an institutional setting for instance, the user could select from a
drop-down list of other employees/students in that institute. The
‘type and intensity’ of crime is selected from a drop-down list
containing entries like ‘sexual harassment’, ‘sexual assault’, ‘petty
theft’, ‘fraud (<$103)’, ‘fraud (≥$103,<$106)’, ‘fraud (>$106)’
and ‘racial discrimination by a person in power’.

1Note that if a different matching criterion is used, it must be unambiguous, since
false positive matches can cause allegations to be revealed prematurely.

Along with the meta-data and free-form text, the user also
submits a reveal threshold—the size of the smallest group of
matching allegations that this allegation can be revealed with. Unlike
prior work [26, 32, 37], which only supports a single matching
threshold throughout the system, we allow each user to pick a
threshold to their own satisfaction with each allegation.

B. Initialization
All escrows register with a standard PKI. They use this to form

secure, two-way authenticated TLS links with each other pairwise.
These are used for all communications among the escrows. During
both registration and filing, the user and escrows use a session ID
to ensure all escrows are talking to the same user.

The escrows use RANDOMCOINTOSS() to generate individual
shares of private DVRF keys SKI , SKR and SKi that are
later used to, respectively: 1) register and authenticate users, 2)
reveal user identities when required and 3) match allegations in
each bucket i. Since there are infinitely many buckets, SKi (for
i ∈ {0,1,...}) is generated lazily when required. How these keys
are used will be explained later. The public component of SKI ,
denoted PKI , is also generated using PUBLICEXPONENTIATE and
publicly published. All shares use a fixed recombination threshold
of f +1 = bn+1

2 c, so all the escrows must cooperate to perform
operations with these keys, and any minority can be compromised
by an adversary without violating any of SAE’s properties.

C. User Registration, Allegation Filing and Revelation

Registration. The user first obtains a certificate of real identity (e.g.,
using their passport/employee ID) from an appropriate certificate
authority (e.g., their employer). This authority is trusted to verify
the identity of the user in the real world, denoted as ID. During
registration, the user forms a two-way authenticated TLS link with
each escrow using this certificate, and non-repudiably signs all
communication during registration.

The user generates l random one-time public-private key pairs
and secret shares the public parts, pk1,...,pkl among the escrows.
Each of these can be used to file one allegation later.

Using the MPC protocol for DVRF, the escrows
compute a MAC on each of these public keys pki, as
(FSKI

(H2(pki)), πSKI
(H2(pki)) using their secret-shared

private DVRF key generated at initialization, SKI .H2 is a collision
resistant hash function from the set of public keys to Zq. Each
escrow learns only its share of the public key pki and its share of
the computed MAC. Neither the registering user nor any escrow
learns the full MAC.

The escrows also compute a PRF FSKR
(H2(pki)) using a

different private key SKR. Individual escrows learn the PRF,
but nothing else. Each escrow stores the association between the
user’s real-world identity and FSKR

(H2(pki)) in a local map. This
association is used when revealing allegations later.

At the end of the registration, every escrow knows the real user,
but knows only one share of each of the public keys pki the user
provided and one share of the MAC computed on it. Consequently,
when presented with one of these public keys and its MAC later,
no minority of escrows can link the key back to a specific registered
user.
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Allegation filing. A registered alleger files an allegation by connect-
ing to the escrows over an anonymous communication channel that
conceals the alleger’s identity. The escrows’ identities are authenti-
cated with standard PKI. This is modelled by the functionalityFanon

(e.g., see [5]). In practice, solutions such as ToR [18] can be used.
During the filing, the alleger chooses a random public key pk

from the set {pk1,...,pkl} previously registered and submits 1) pk,
2) πSKI

(pk), the escrows’ MAC on it, 3) the allegation’s full text
encrypted with a fresh symmetric key k, Enck(a) (where a is the
allegation’s full text), 4) shares of k, 5) shares of a hashH1(m) of
the allegation’s meta-datam, whereH1 :{0,1}∗→Zq is a collision
resistant hash function, 6) an arbitrary reveal threshold t, and 7) sig-
natures on all the above with the private key corresponding to pk.2

Since no escrow has seen the whole public key pk or the entire
MAC on it before, no escrow can link it back to the specific user.
However, all escrows can locally verify with VERIFYVRF that the
MAC on the public key is legitimate and, hence, that the public key
comes from a user who has previously registered. This verification
only requires local computation by each escrow and no MPC,
which improves efficiency (see §IV-F1 for why this is important).
This is why we use a VRF. No other part of the protocol requires
verifiability, so we only compute a PRF.

Note that no escrow has enough information to reconstruct the
allegation, its meta-data or the identity of the alleger. A majority
must cooperate to reconstruct any of these. This ensures the
properties of allegation secrecy and alleger anonymity (§II), even
if a minority of the escrows cooperate with the adversary.

Allegation revelation. Allegations are matched using a dedicated
algorithm by the escrows. The algorithm is described in §IV-D.
Once a majority of escrows determine that a set A of matching
allegations can be revealed, i.e., they all have thresholds≤|A|, the
escrows combine their shares to decode the symmetric keys used
to encrypt the texts of the allegations inA. These texts are provided
to the designated recipient(s) for further action.

Along with the allegation texts, the escrows also reveal the
real-world identities of the allegers who filed A. To obtain the
identity of an alleger, the escrows compute the PRF FSKR

(pk) on
the public key pk the alleger used to file the allegation (using DVRF
as described in §III-D). Recall that the escrows also computed this
PRF when the alleger registered and mapped the PRF to the victim’s
identity in a local store. Hence, to discover the user’s identity, they
merely need to look up the PRF in the store. This search is done
in clear-text locally by each individual escrow and is efficient.

Real-world identities allow the escrows to reach out to all the
allegers and provide the accountability property from §II-A.

Registered public keys must not be used twice. As just described,
after an allegation filed with public key pk has been matched and
revealed, the escrows map pk to the strong identity of the individual.
Consequently, the key pk should not be used to file a second
allegation unless the alleger wishes to de-anonymize themselves to
the escrows. To allow users to file multiple allegations anonymously,
a user registers l different keys during a single registration. As men-
tioned earlier, this registration can be repeated periodically, allowing
for l allegation filings for every user within each registration period.

2For the formal security, we demand Enck(·) to be non-committing encryption.
We define it formally in Appendix B, and refer to [14] for a simple construction.

D. Matching and Thresholding
Next, we discuss how the escrows match allegations to each other

and reveal sets of matching allegations when thresholds are met.
1) Matching protocol: We describe a simple MPC protocol that

matches two allegations when their meta-data hashes are equal.
We start by noting that, by design, our matching protocol does
not allow any minority set of escrows to match two allegations
on their own. Recall that each escrow receives only a share of
the (collision-resistant) hash of the meta-data, H1(m), of each
allegation. The shares are randomized, so a minority of escrows
cannot check the equality ofH1(m) andH1(m

′) using the shares
alone. This property is important, else, an adversary who corrupts
a minority of escrows can probe existing allegations to discover if
an allegation against a specific individual exists without any honest
parties being aware of such probing.

To compare a set of allegations for equality, all the escrows
participate in DVRF (see §III-D) to compute a pseudo-random
function FSK(H1(m)) for all allegations in the set. The resulting
PRF is revealed in the clear to all escrows, but SK and H1(m)
aren’t. SK is a shared secret specially generated for each set
of allegations being compared. The sets are determined by the
bucketing protocol described below.

Escrows can locally compare meta-data m and m′ by testing
whether FSK(H1(m)) = FSK(H1(m

′)). Since H1 is collision
resistant and FSK(·) is a PRF, the adversary cannot produce
m 6=m′ such that the test passes. Since SK is not used for any
other purpose, the PRF reveals no additional information about
m beyond equality relations between every pair of allegations for
which FSK(m) has been computed. This takes O(N) time for N
allegations (O(1) per allegation).

2) Bucketing Protocol for Reveal Thresholds > 2: The above
matching protocol is secure when the reveal thresholds equal 2.
Supporting higher thresholds securely and scalably requires more
work. A collection A of matching allegations should be revealed
when every allegation inA has a reveal threshold no more than the
size of A (written |A|). One way to find such collections would
be to run the above matching protocol on the set of all allegations
irrespective of their thresholds and then locally determine whether an
appropriate setA exists. However, this design is susceptible to a prob-
ing attack where an adversary interested in probing for the existence
of a specific allegation, files the same allegation with a very high
threshold. By corrupting just one of the escrows, the adversary could
then compare this allegation to all other allegations in the system,
without any risk that its own false allegation would ever be revealed
(since the probe allegation has a very high threshold). To deter such
attacks, we control which allegations can be compared to each other.
We ensure that if two allegations can ever be compared by a minority
of escrows, then they will be revealed at the same time, if at all. That
is, two allegations can be compared by a minority only if they are
waiting for the same number of matching allegations. Now, if the
adversary tries to probe with a fake allegation, the fake allegation
(and hence the adversary’s real-world identity) is exactly as likely to
be revealed as the alleger’s actual matching allegation. Additionally,
this allegation now requires one less match to be revealed.

To just learn the number of allegations against a person, the
adversary must risk leaving a non-repudiable paper trail. If the adver-
sary is a guilty party seeking to determine the number of escrowed
allegations against them, they also risk precipitating the revelation of
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an honest allegation, which may have otherwise remained escrowed
forever. We assume the adversary won’t take such risks.

Note that the above attack only works for threshold>2. If an hon-
est alleger’s threshold is 2, SAE doesn’t admit any attacks not present
in a single trusted-party implementation, even if the adversary is
willing to risk filing a probe allegation. Prior work on single trusted-
party based allegation escrows [3] only supports thresholds of 2, and
still demonstrates social utility in allegations of sexual misconduct.

It is possible to use generic MPC to avoid such probing attacks.
However, the time taken to process one allegation would then
increase with the number of allegations already present in the system
(i.e. O(N)). Our protocol is O(1). We discuss why efficiency is
important in §IV-F.

To keep track of how many matches each allegation needs, each
escrow independently maintains buckets numbered 0, 1, 2, 3, . . . .
An allegation is in the ith bucket only if it is waiting for≤ i more
allegations. Allegations are revealed iff they reach bucket 0. An
allegation may be present in more than one bucket. Algorithm 2
determines which allegation occupies which buckets.

Only allegations within a bucket may be compared to each other.
To ensure this, each bucket i is associated with an independently cho-
sen secret key SKi, which is shared among the escrows (SKi is gen-
erated lazily when bucket i is first used). When an allegation is added
to bucket i, the escrows compute FSKi

(H1(m)) for that allegation
using DVRF (see III-D). Any escrow can use this to locally compare
any two allegations in bucket i. Since, by design,SKi 6=SKj if i 6=j,
H(m) and H(m′) cannot be compared using FSKi

(H(m)) and
FSKj

(H(m′))when i 6=j. Allegations that are known to match each
other, either directly because they are in the same bucket or indirectly
by transitivity, are said to belong to the same ‘collection’. When
allegations from two different collections are found to match, the col-
lections coalesce into one. The resulting collection spans the union of
buckets spanned by the parent collections and contains the union of
allegations. Every allegation belongs to exactly one collection at any
given time. To copy all allegations in a collection into a new bucket,
the PRF for only one allegation’s meta-data needs to be computed,
since all allegations in a collection have identical meta-data.

This algorithm trivially satisfies the property that, once two alle-
gations are known to be equal to each other, they belong to the same
collection and are revealed together (if at all). This deters the probing
attacks described above that motivated this elaborate mechanism.
We also prove that the thresholding algorithm is ‘correct’:

Theorem 1 (Correctness). Algorithm 2 reveals a collection if and
only if the thresholds of all allegations in it are satisfied.

Proof: We begin by proving that the following three properties
hold whenever all five rules of Algorithm 2 have been applied to
saturation (meaning no further rule applies). (1) every collection
spans a contiguous range of buckets, (2) every collection A spans
|A| buckets, i.e. |A|=Max(A)−Min(A)

def
=Span(A), (3) every

allegation in a collection A has a threshold ≤ |A|+Min(A) and
hence can be revealed ifMin(A) more matches are available.

The first property can be proved as an invariant that is trivially
maintained by rules 2, 4 and 5 with rule 1 as the base case. Now,
two collections coalesce only if they share a bucket (and hence their
allegations may be compared). Since the union of contiguous, over-
lapping segments is contiguous, rule 3 also maintains the invariant.

To prove the second property, note that in any collection A,

Algorithm 2 Rules for the secure thresholding algorithm BUCKET-
ING, whose interface is described in §V. It reveals a set of allegations
if and only if all of their thresholds are satisfied by that set.
If applicable, apply rule 3 first. Else apply the other rules (in any
order) till no further rules apply. Rules 1-4 apply only to collections
that haven’t yet been revealed. Max(A) and Min(A) are the
highest and lowest buckets occupied by collectionA respectively.

1) When an allegation with threshold t is filed, it forms a singleton
collection and is added to bucket t − 1 (since t − 1 other
allegations must match the allegation before it is revealed).

2) IfMin(A) is the smallest bucket occupied by a collectionA
and every allegation inA has a threshold< |A|+Min(A),A
is copied to bucketMin(A)−1. Note thatA still occupies the
buckets it used to occupy. Copying merely adds the collection
to a new bucket.

3) When two collections overlap and occupy the same bucket,
and their allegations are found to match (see §IV-D1), they
coalesce into one collection.

4) When a collection reaches bucket 0, all of its allegations are
revealed as described in §IV-C.

5) If a collection A is revealed, we make sure it continues to
occupy buckets 1,...,|A|, even asA grows. This enables future
matching allegations to be revealed.

all allegations have a threshold ≤ Max(A) (because Max(A)
doesn’t decrease). If Span(A) < |A|, Max(A) = (Max(A)−
Min(A)) +Min(A) = Span(A) +Min(A) < |A|+Min(A).
Hence, rule 2 can be applied repeatedly until Span(A) increases to
equal |A|. So, Span(A)≥|A|. We now prove that Span(A)≤|A|
is an invariant with rule 1 as the base case. Rules 4 and 5
trivially maintain the invariant. Rule 2 would not apply if
it causes the invariant to be broken, as there is at least one
allegation with threshold Max(A) if A is not yet revealed
(which is when rule 2 applies). The threshold condition for this
allegation will not be met if Span(A) > |A|, as it implies the
threshold t=Max(A)

def
=Min(A)+Span(A)>Min(A)+ |A|.

Applying Rule 3 to create C out of A and B maintains the
invariant. |C| spans a union of the parent’s buckets, hence
Span(C)≤Span(A)+Span(B)≤|A|+|B|= |C| becauseA and
B are disjoint. Hence, the invariant is maintained.

The third property is explicitly maintained as an invariant by rule 2
and is trivially satisfied by rules 1 and 5. Rule 3 is applicable in two
ways. First, when a new allegation arrives in between an older collec-
tion, the property is not broken. Second, if two existing collections,A
andB, coalesce into C by rule 3, one is ‘above’ another (remember,
rule 3 is applied preferentially). LetMin(B)=Max(A), without
loss of generality. Then, Min(C) =Min(A), hence allegations
in A satisfy the property. The drop in Min for allegations in B is
Min(B)−Min(C)=Max(A)−Min(A)=Span(A)≤|A| (we
proved above that all rules maintain Span(A)≤|A| as an invariant).
This drop in Min is compensated by a corresponding increase in
size of the collection by |A|.

We now use these properties to prove correctness. The third
property implies that when a collectionA is revealed, the threshold
condition is satisfied for all revealed allegations, sinceMin(A)=0.
To prove the other direction, let there be n matching allegations
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such that all their thresholds are≤n. Assume for contradiction that
they are not revealed. This means that they all belong to buckets
1,...,n−1. By the pigeonhole principle, there will be one bucket with
multiple allegations which will start coalescing with rules 2 and 3.
If the process stops with a collection of size k<n, n−1−k buckets
will be left with n − k allegations, because property 2 ensures
the size of a collection equals its span. Again, by the pigeonhole
principle, the coalescing process starts. This continues till there is
only one collection with n allegations that spans buckets 0...n−1
and all n allegations get revealed. Hence, a set of n matching
allegations are revealed if and only if all their thresholds are≤n.

BUCKETING(buckets): Interface to the Algorithm The real
protocol (Figure 2) and ideal protocol (Figure 3) interface the
bucketing algorithm with the BUCKETING function. It takes as
input the set of buckets, buckets. Each bucket i, (denoted as
buckets[i]) is a set of tuples (id,M) describing the allegations
in that bucket. id is a unique allegation identifier3, and M is a
representation of the meta-data which can be compared for equality
to determine which allegation matches which others within a bucket.
The function BUCKETING returns a task T if more rules apply in
Algorithm 2. Else, it returns⊥. Task T instructs the caller to move
an allegation T.ID to a bucket T.i. For ease of exposition, when a
collection is added to a new bucket, BUCKETING produces one task
per allegation. In practice, only one is necessary, since all meta-data
are identical. Note that BUCKETING doesn’t need to implement
step 1 of Algorithm 2, since it is implemented by FSAE. It doesn’t
maintain its own state.

E. Computation Cost
The computationally expensive steps in the SAE protocol are

the VRF/PRF computations that require interaction between the
escrows, since they involve multiplication and exponentiation over
shared secrets. However, the number of such computations scales
very well and doesn’t increase with the number of users as well as
the number of allegations filed.

Registering a new user requires two computations for every public
key pk that the user provides, one to compute the MAC on the key,
and one to compute FSKR

(pk). Filing an allegation does not, of
itself, require any PRF computation. The cost to move a collection of
allegations to a new bucket can be reduced by observing that, we only
need to compute PRF for one of the allegations, since they all have
identical meta-data. We can prove that, in an amortized sense, we
need to compute the PRF at most twice for each allegation, indepen-
dent of its threshold. Revealing an allegation requires one more PRF
computation (to discover the identity of the alleger). To summarize,
on average, every filed allegation requires 2 PRF computations if it
is never revealed, and 3 PRF computations if it is revealed.

F. Why is Efficiency Important?
1) Resist DoS attacks: Like any public service, SAE can be

flooded with client requests to mount a denial-of-service (DoS)
attack. MPC systems in particular, are susceptible to such attacks

3In the real protocol, pk can be the allegation identifier, since each key is used
only once. For ease of exposition, each user can register for and file only one (not
l) allegations in our ideal protocol. Hence, we use ID as id. The full protocol can
be modeled by each user having l distinct IDs.

since the client can trigger expensive computations at little cost
to itself. SAE has two properties that prevent the adversary from
exploiting this asymmetric computation cost. 1) Bounded MPC:
Each registered real identity can trigger only a bounded number
of MPC operations. 2) Scalability: The amount of work required
to process a user request doesn’t increase with the number of
allegations or number of registered users.

Bounded MPC holds in SAE since MPC is only triggered after
authentication. Failed authentications do not cause MPC operations,
since authentication is a local computation. Further, each user (with
a real identity) is only allowed to register a fixed number l of public
keys in any registration period and each key can only be used to file
one allegation. So, a registered user can cause at most (2+3)l=5l
PRF computations in any registration period (see IV-E). For l=10
and a registration period of one year, this amounts to at most 50 PRF
computations per year per real user, which is an extremely low rate
for an effective DoS attack.

The concurrent work WhoToo [32] is not scalable in the sense
above. Filing the Nth allegation takes O(N) MPC operations,
bringing the cost of filingN allegations toO(N2). Asymptotically,
this is the same as black-box MPC. Further, it allows users to file
an arbitrary number of allegations. There is no obvious way to
prevent this with their authentication protocol without breaking
the “bounded MPC” property. Hence, an adversary could file any
number of arbitrary allegations (e.g., against random strings), and
prevent proper functioning.

2) Larger Allegation Pool: To maximize the probability that a
matching allegation will be found, the escrow must support many
users. This increases the pool of potential corroborators and the
probability of a match. Scalability is essential to enable this.

3) Avoid Timing Side-Channels: If a crime’s perpetrator learns
(through a compromized escrow) that an allegation was filed two
days after the crime was committed and filings are otherwise rare,
then the perpetrator may reasonably conclude that their victim filed
the allegation. We excluded such side channels in the threat model.
To realize this in practice, honest escrows (and other external well-
wishers) can regularly file decoy allegations. Since SAE maintains
anonymity and privacy, the adversary cannot distinguish decoys from
real allegations. Those filing decoy allegations must register their sep-
arate (real) identities for doing so, and enter a contractual obligation
to ensure no decoy ever gets matched with real ones. This can be en-
sured by filing allegations against random strings. Decoy allegations
will not slow down the system significantly since SAE is scalable.

V. SECURITY ANALYSIS

To model security and privacy we use the UC framework, which
allows SAE to compose with other cryptographic schemes while
maintaining security.

Attacker Model. Agents (allegers and escrows) in our system
are interactive Turing machines that communicate with an ideal
functionalityFSAE. The adversaryA is a PPT machine with access
to an interface corrupt(·). It takes an agent identifier and returns the
internal state of the agent to the adversary. All subsequent incoming
and outgoing communication of the agent is then routed through
A. The adversary is f-bounded, and can corrupt a minority f <n/2
of escrows and any number of allegers. For formal security, we
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Escrow Initialization: Every jth escrow executes:
1. JSKRKj← RANDOMCOINTOSS()
2. JSKIKj← RANDOMCOINTOSS()
3. PKI← PUBLICEXPONENTIATE(g, JSKIKj, all-escrows)
4. JSKiKj← RANDOMCOINTOSS() ∀i∈{0,1,2,...}

#SKi is generated lazily when required
5. Set identities←{}; allegations←{}; buckets←{}
Client Initialization and Registration: The client uses ID, a certifi-
cate previously obtained from a CA, to authenticate to the escrows. The
escrow’s identities are managed with PKI. The secure authenticated
channel is idealized usingFsmt [10]. Client signs all messages with ID.
The client executes:
1. (pk,sk)←Gen(1λ) # Signing key-pair
2. Broadcast (“Register”, ID) idealized usingFB

3. VSS(H2(pk)) among the escrows
Every jth escrow executes:
4. ⊥← DVRF(JSKIKj,JH2(pk)Kj, True, client)
5. R← DVRF(JSKRKj,JH2(pk)Kj, False, all-escrows)
6. identities[R]← ID
The client executes:
7. Receive πSKI (H2(pk)) from escrows’ DVRF call in step 4
8. Store (pk,sk) and πSKI (H2(pk)) for future use.

Allegation Filing: With allegation text a, m = H1(meta−data),
reveal threshold t, fresh symmetric encryption key k and,
(pk,sk,πSKI (H2(pk))) produced during registration, the client connects
to each escrow over an anonymous communication channel, idealized
using functionality FAnon [5]. It signs all communication with sk,
which escrows verify before accepting the input. The escrows process

allegations serially. They identify an allegation by the pk used to file it.
The client executes:
1. Broadcast (“File”, pk, t), idealized usingFB

2. Broadcast (πSKI (H2(pk)),Enck(a)), idealized usingFB

3. VSS(m), VSS(k) among the escrows

Every jth escrow executes:
# Identity Verification and Filing

4. If VERIFYVRF(PKI,πSKI (H2(pk)),H2(pk)) fails, abort
5. If allegations[pk] exists, abort
6. allegations[pk]←(t,pk,Enck(a),JmKj,JkKj)
7. M← DVRF(JSKt−1Kj,JmKj, False, all-escrows)
8. buckets[t−1]← buckets[t−1] ∪ {(pk,M)}

# Matching and Bucketing
9. T← BUCKETING(buckets)
10. While T 6=⊥
11. # Move allegation T.id to bucket T.i
12. JmKj← allegations[T.id].JmKj
13. M ′← DVRF(JSKT.iKj,JmKj, False, all-escrows)
14. buckets[T.i]← buckets[T.i] ∪{(T.id,M ′)}
15. T← BUCKETING(buckets)

# Reveal Allegations
16. For (id,M) in buckets[0]
17. buckets[0]← buckets[0]\(id,M)
18. (t,pk,Enck(a),JmKj,JkKj)← allegations[id]
19. R← DVRF(JSKRKj,H2(pk), False, all-escrows)
20. ID← identities[R]
21. k←COMBINESHARES(JkKj)
22. a←Deck(Enck(a))
23. Output the revealed allegation (t,a,ID)

Fig. 2. The SAE protocol. The client has a certificate of identity, ID, from a certificate authority. MPC, cryptographic and communication primitives used in this protocol
are defined in §III-C. PUBLICEXPONENTIATE and DVRF may return IdentifiableAbort(i) if the ith escrow behaves maliciously. This aborts the protocol, which we
omit to reduce clutter. We show the registration of only one key for clarity. In practice, the client registers l keys, and randomly picks one to use during filing. We formalize
the functionalitiesFsmt,FB andFAnon in Section V. BUCKETING is defined in §IV-D2.

consider the static corruption model, i.e., the adversary commits
to the identifiers of the agents it wishes to corrupt ahead of time.4

Communication Model. We assume the network to be bounded-
synchronous [24] such that the protocol execution occurs in discrete
rounds. The agents are aware of the current round, and if a message
is created at round i, it is delivered at the beginning of round (i+1).
Our model assumes that computation is instantaneous. In practice,
this is justified by setting a maximum publicly known time bound
on message transmission. If no message is delivered by beginning of
the next round, then the message is set to⊥. For an example of the
corresponding ideal functionalityFsyn, we refer the reader to [10, 31].
The attacker is informed whenever some communication happens
between two agents and the attacker can arbitrarily delay the delivery
of the message between honest parties within the round boundaries.

The real-world protocol assumes the existence of a functionality
Fanon (see [5] for an example), which provides user with an
anonymous communication channel. Moreover, the protocol also
assumes the existence of a broadcast channel for allegers to reliably
communicate with all escrows and we model this as a bulletin board
visible to all escrows (such as [42]) with an ideal functionality FB.

4The static adversary remains a standard assumption employed by most practically
relevant MPC systems today. [15]

Concretely, our real-world protocol uses Fanon, FB and Fsyn as
subroutines. Moreover, we idealize the secure and authenticated
channels that connect two parties in the real world using FSMT [10].
As a result, we specify in the (FB,Fanon,Fsyn,FSMT)-hybrid model.

Universal Composability. Let EXECρ,A,E be the ensemble of the
outputs of the environment E when interacting with the f-bounded
adversary A and parties running the protocol ρ (over the random
coins of all the involved machines).

Definition 1 (UC-Security). A protocol ρ UC-realizes an ideal
functionality F if for any adversary A there exists a simulator S
such that for any environment E the ensembles EXECρ,A,E and
EXECF,S,E are computationally indistinguishable.

Ideal Functionality. Figure 3 describes an ideal functionality
FSAE, which models the intended behavior of a SAE in terms of
functionality and security properties.

For a more modular treatment, our (UC) models only focus
on the cryptographic aspects and we assume that all allegers have
certificates of real identity from a trusted offline authority. Further,
we omit the handling of session IDs (SIDs) in FSAE to reduce
clutter. Messages are assumed to be implicitly associated with SIDs.

In the ideal functionality, registered is the set of registered
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Initialization
1. registered←{}, allegations←{},

buckets←{}, unique←{}
Registration Invoked by client with identity ID

1. Send (“Register”, ID) to all escrows
2. If received⊥ from escrow i, then IdentifiableAbort(i)
3. registered← registered ∪{ID}
Allegation Filing Invoked by client with identity ID, allegation
a, reveal-threshold t, and metadatam
1. If ID /∈ registered, then Abort
2. registered← registered\ID
3. Send (“File”, UNIQUE(ID), t) to all escrows.
4. If received⊥ from escrow i, then IdentifiableAbort(i)
5. allegations[ID]←(t,m,a)
6. buckets[t−1]← buckets[t−1] ∪{(ID,m)}
7. Send (t − 1, UNIQUE(ID), UNIQUE((t − 1,m))) to all

escrows
# Matching and Bucketing

8. T← BUCKETING(buckets)
9. While T 6=⊥
10. # Move allegation T.ID to bucket T.i
11. If received⊥ from escrow i, then IdentifiableAbort(i)
12. m′← allegations[T.ID].m
13. buckets[T.i]← buckets[T.i] ∪{(T.ID,m′)}
14. Send (T.i, UNIQUE(T.ID), UNIQUE((T.i,m′)))

to all escrows
15. T← BUCKETING(buckets)

# Reveal Allegations
16. For each (ID,M) in buckets[0]
17. buckets[0]← buckets[0]\(ID,M)
18. If received⊥ from escrow i, then IdentifiableAbort(i)
19. (t,m′,a)← allegations[ID]
20. Send (t,a,ID) to all escrows

function UNIQUE(x) begin
1. # Map input objects to unique numbers
2. if x is in unique
3. return unique[x]
4. end if
5. unique[x]← |unique|
6. return unique[x]
end function

Fig. 3. The ideal functionality for SAE, FSAE . BUCKETING is a local
algorithm (§IV-D2) that determines which matches are safe to reveal to the escrows.

users’ identities—only registered users may file an allegation. The
set of allegations filed so far is denoted by allegations. Each
allegation is a tuple of the reveal threshold, meta-data, allegation
text and real identity (which is known to the ideal functionality).
unique counts the number of allegations filed so far, which allows
us to assign a unique identifier to each allegation. If an escrow (say,
the ith) refuses to cooperate, FSAE aborts, reporting the ith escrow
to the other escrows. This is denoted as IdentifiableAbort(i). We

assume the adversary is malicious-but-cautious, and wouldn’t want
to get reported. If authentication fails, then FSAE calls Abort
without a parameter, since it wasn’t any escrow’s fault. In the real
protocol, clients can file l allegations for each registration. For
notational simplicity, we only show l=1 here but the l>1 case is
a straightforward extension. (The textual description in Section§IV
describes the real protocol for all l.)

Bucketing Algorithm. To scalably and efficiently implement
reveal thresholds, we propose a bucketing protocol (see §IV-D2)
that divides allegations into buckets. All escrows know which
allegations within a bucket match each other. This makes the ideal
functionality admit a somewhat surprising attack: If an adversary
files an allegation, it learns whether other matching allegations exist
in the same bucket in which the adversary’s allegation is placed.
These attacks are consistent with our threat model, which allows for
probing attacks by adversaries. As explained in §IV-D2, the buckets
in which an allegation is placed are carefully chosen to disincentivize
these attacks by relying on our accountability property (see II-A).
Note that BUCKETING is a local and non-cryptographic algorithm.
It merely determines what information can be revealed to the
adversary, and hence can be called from the ideal functionality.

Discussion.FSAE satisfies the allegation secrecy, alleger anonymity
and accountability properties described in §II, relative to our threat
model. Accountability is ensured since, if a user files an allegation,
FSAE reveals the user’s real identity (ID) as soon as the threshold is
met. We already proved the bucketing protocol correct. Allegation se-
crecy and alleger anonymity are ensured becauseFSAE reveals infor-
mation about an allegation only in the following scenarios: (1)FSAE
reveals a user’s identity when they register in the system (step 1). This
is harmless since users register irrespective of whether or not they
intend to file an allegation. (2) As the bucketing protocol progresses,
FSAE reveals which allegations match which others (step 14). We
discussed above why this information doesn’t violate our properties.
(3) The threshold of an allegation is revealed when it is filed (step 3),
but hiding the threshold is not part of our threat model. (4) Finally, the
entire allegation is revealed when its threshold is met (step 20). Note
that, we prove the bucketing protocol correct in §IV-D2, Theorem 1.

Figure 2 presents the pseudocode for our cryptographic protocol.
We prove UC-security in the (FB,Fanon,Fsyn,FSMT)-hybrid model.
Theorem 2 holds for any UC-secure realization (as defined in
Definition 1) of FB, Fanon, Fsyn, and FSMT. We provide a proof
sketch of Theorem 2 in Appendix B.

Theorem 2. Let VSS be a secure verifiable secret sharing scheme,
(RANDOMCOINTOSS,PUBLICEXPONENTIATE) be a secure DKG
protocol, (DVRF, VERIFYVRF) be a secure distributed input
DVRF protocol, H1 and H2 be collision resistant hash functions,
and (E,D) be a non-committing symmetric encryption scheme. Let
the employed signature scheme be strongly existentially unforgeable.
Then, the SAE protocol UC-realizes the ideal functionality FSAE
defined in Figure 3 in the (FB,Fanon,Fsyn,FSMT)-hybrid model.

VI. IMPLEMENTATION AND EVALUATION

Implementation. We built a prototype of our design in Java, with
our own implementation of the GRR MPC protocol [24]. We use
SCAPI [39] version 2.3 for establishing communication channels
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SAE
DVRF

WhoToo
(online)

WhoToo
(precompute)

Interactive MPC Operations
MULTIPLY 1 1 N
PUBLICEXPONENTIATE 1 3N+q+1 q
RANDOMCOINTOSS 1 q q+2
COMBINESHARES 1 1 1
Local MPC Operations
ADD 1 0 0
MULTIPLY CONSTANT 1 N 1

Fig. 4. Number of various MPC operations required per allegation
per escrow for DVRF computation in SAE, compared with
WhoToo [32]. Here N is the number of allegations filed so far,
and q is WhoToo’s global reveal threshold. Here we only show the
cost for WhoToo’s matching protocol; secure identity verification
is separate. SAE requires at-most five DVRF computations per
allegation (amortized), including for identity verification. Note that,
WhoToo’s per-allegation complexity is O(N), and hence O(N2)
complexity forN allegations.

and its bindings to OpenSSL [21] version 1.1 for hashing, symmetric
encryption and public-key encryption. We use the Java bindings to
the Pairing Based Cryptography library, jPBC [16] version 2.0 for
pairing based cryptography primitives. For operations in Zq, we use
Java BigInteger. To maintain each escrow’s persistent state, we use a
MySQL database to achieve security and scalability. To demonstrate
scalability, we pre-populate the database to simulate one million
pre-existing allegations. Since our computational complexity per
allegation/registration does not depend on the number of pre-existing
allegations/registrations, this imposes a negligible overhead on the
protocol. We evaluate our implementation to show that SAEs are
fast enough for practical use.

Comparison with WhoToo [32]. There is no implementation for
WhoToo to directly compare performance with. Instead, we count
the number of cryptographic operations required for SAE and
WhoToo, shown in figure 4. WhoToo requires O(N) work per
allegation, while SAE requiresO(1) work. To improve scalability,
WhoToo offloads some work to an offline precomputation step. But
non-trivial ‘online’ computation remains. As discussed in §IV-F,
scalability is essential for a practical allegation escrow.

Latency and throughput. We first measure the latency and
throughput of user-SAE interaction in a realistic setting. We set up
to 9 escrows on Amazon AWS cloud servers, chosen to maximize
geographical extent. In an experiment involving n escrows, the
escrows run on servers in the first n of Virginia, Frankfurt, Sydney,
N. California, Singapore, Sao Paulo, London, Seoul, and Mumbai.
Each escrow runs on a M4.large AWS instance. At the time of the
experiments, this provided 2 vCPUs, 8GB of RAM, and ‘moderate’
network performance. Each server runs up to 60 threads, the maxi-
mum supported on the machines; each thread handles one concurrent
client request. We use up to 60 client replicas, all hosted on a single
c4.4xlarge instance of AWS in Virginia. At the time of our experi-
ments, this provides 16 vCPUs, 30GB RAM and ‘High’ network per-
formance. Note that the SAE registration is embarrassingly parallel
with respect to client requests—cost is dominated by network laten-
cies and MPC computation, which require no syncing across client

requests; synchronization is only needed for storing registered identi-
ties to a database. Allegation filing must be done serially one-by-one.

Latency: Figure 5 (top) shows the average latency for registering
a new key as the number of escrows varies, in two configurations:
When the escrows are lightly loaded (no concurrent requests) and
when they are heavily loaded (60 concurrent clients). Latency is
the time between when a user sends its request, to when it gets the
SAE’s MACs on its keys. There are three notable aspects here. First,
as expected, the latency increases with the number of escrows (since
the MPC becomes more complex). Second, increasing the number
of concurrent clients does not increase the latency significantly. This
suggests that the cost is dominated by the number of escrows and
inter-escrow network latencies. Finally, even though the absolute
latency numbers might look high (of the order of 10s of seconds),
they are acceptable since user interaction with SAEs is relatively
infrequent. In particular, users register new keys once every few
months, so such latencies seem quite practical. Latency is not a
concern for filing an allegation, since the user does not expect any
immediate response from the escrows. The cost of matching and
bucketing is better captured in terms of throughput.

Throughput: Next, we measure the throughput of SAE in
terms of the number of key registrations and allegation filings
it can handle per second. For registration, we use 60 concurrent
clients. Allegations are filed serially. Figure 5 (bottom) shows the
throughput as a function of the number of escrows. As expected, the
throughput number decreases with increasing number of escrows.

For allegation filing, each client repeatedly files allegations with
thresholds varying between 2 and 20, chosen from a truncated
exponential distribution with mean 5. When a threshold of t is
chosen, t matching allegations are created with 50% probability,
and t−1 matching allegations are created the rest of the time. These,
respectively, represent the cases where the allegation is eventually
revealed and the worst-case (for performance) when the allegation
is not actually revealed.

We believe that the throughputs in Figure 5 (bottom) are
acceptable for SAE, since user operations are expected to be very
infrequent. Moreover, each escrow can be separately replicated on
several servers to get proportionally higher throughput.

Impact of network latency. Inter-escrow network latency
dominates user-perceived latency. To test this, we emulate a network
with Linux qdiscs [27, 33] on a single Amazon AWS c4.4xlarge
instance. The escrow servers and our client occupy one core each.
Every pair of escrow servers is given an emulated 100 Mbps link and
1 bandwidth×delay worth of buffer (the recommended buffer size for
TCP to obtain full link utilization and minimal delay). We vary the
latency of the emulated network links and Figure 6 plots the latencies
of a) registering a key, and b) processing one allegation completely
with no matches. These require two and one VRF computations,
respectively. (Note that the user perceived latency of allegation filing
is different from that of processing the allegation. Filing does not
require any PRF computation.) The client latency increases linearly
with the network latencies, showing that network latencies dominate.
The rate of increase also increases with the number of escrows.
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Hence throughput is different for the two (note the units: seconds vs minutes).
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VII. DISCUSSION

A. Deployment Considerations

Client Software. Users need client software to participate in the
protocol. For users, a simple web-based interface is conveient.
However, it is challenging to access anonymity services like ToR
from within a browser. Asking users to download special software
exposes them to other security risks. The very act of downloading
the software indicates an intent to file an allegation, since not all
users will use an anonymity service like ToR to do so. To prevent
this channel of inference, the client software should be bundled with

other commonly used software. Alternately, a small fraction of all
visits to a popular web-page (e.g. organization’s home page) could
automatically trigger a download, producing cover traffic.

Practical Security. Like all software, SAE will have security
vulnerabilities (there is no use in encrypting secrets if a buffer-
overflow attack leaks the secret keys!). In addition to careful
code audits, we could make multiple implementations that use
independent hardware/software stacks and compare their outputs to
see they are identical. If not, we halt the system until a security expert
can find and fix the bug. This forces an attacker to find the same
vulnerability on different hardware/software stacks, which is much
more difficult. Such a heavy-handed approach is prudent since, here,
security is much more important than performance and availability.

Non-technical considerations. Since SAE handles sensitive
information, its social design requires considerable thought. While
a full analysis is out-of-scope for this primarily technical paper, we
discuss some issues here. When thresholds for a set of allegations
are met, who are the designated recipient(s) to whom they are
revealed? To avoid centralization, we could reveal them to the
allegers themselves. They can then coordinate and report to
the relevant authorities if they so choose. On the other hand, if
allegations went to a central authority first, it could provide legal
assistance to each alleger before introducing them to each other.
It could also filter out any obivously fake/probe allegations. To
keep this authority accountable, the escrows could notify allegers
that their allegation has been matched, but not to whom. Project
Callisto [3] currently follows a similar approach.

To discourage fake/probe allegations, SAE ensures allegers create
a paper-trail when filing an allegation. This should be complemented
with effective legal mechanisms to make this a significant deterrent.
We refer the reader to prior social-science work [2, 4] for more
discussions.

B. Future Work

Withdrawing/modifying allegations. A user can readily update
an allegation’s free-form text by sharing a new value. However,
SAE cannot always let them withdraw an allegation or modify its
meta-data/reveal threshold. Since an allegation’s threshold could
be met as soon as it is filed, allegers should file one only if they are
comfortable with it being revealed. Nevertheless, allegers may want
to modify one. For example if an allegation hasn’t been revealed in
several months/years, they may want to either withdraw it or reduce
its reveal threshold. In SAE, this is hard, since for thresholds >2,
escrows may know that two allegations match even before they are
revealed. An adversary can use this to probe for allegations; if they
can withdraw their probe allegation, they can delete the paper trail
that disincentivizes such probes (see §IV-D2).

Note that if an allegation isn’t yet known match any other, we
can allow its withdrawal. To do so, we must pick a new secret key
for the bucket it is in and recompute all PRFs with this new key.
Since this is computationally expensive, we can limit the overhead
by recomputing PRFs at most once per week. Users are notified
that withdrawal can take upto one week, which is acceptable in this
context. Fully supporting allegation withdrawal and modification
is interesting future work.
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Other matching/reveal criteria. SAE matches allegations based
on exact string equality. Could we support other criteria? Could
we match on multiple fields, e.g. ‘match only if at least two of
(name/phone number/email address/employee id) match’, ‘match
against this accused person only if the crime happened within this
time-frame/physical coordinates’, or ‘match only against allegations
filed in the last year’. In applications where some ambiguity is
acceptable, it would be interesting to match based on softer criteria
provided by machine learning, e.g., based on a person’s picture, or
a textual description. Note that these more complex criteria break
transitivity. That is ‘AmatchesB’ and ‘B matchesC’ doesn’t imply
‘A matches C’. Future work would need to define what it means
for the thresholds for a group of allegations to be satisfied. Some
allegers may be victims of the crime and others may be witnesses.
Can we support different thresholds based on type of alleger?

Identity Management. To enable real-world identities, allegation
escrows require a robust public-key infrastucture (PKI), for which
users should validate their identity with a trusted authority. If a user
registers immediately before filing an allegation, then this act reveals
an intent to file an allegation. Hence the PKI must be established
beforehand. SAE requires a pre-registration step in addition to
PKI, which is acceptable in many cases since a new PKI must
be established anyway: most organizations either don’t have one for
their employees/students, or the ones they have aren’t very robust.
For instance, some administrators may have access to employee
logins/emails. Nevertheless, it is interesting future work to explore
how to effectively exploit a pre-existing PKI to avoid a separate pre-
registration for the escrow system. For instance, if each person had an
identity certificate, they could secret share their identity and prove in
zero knowledge that they own the secret-shared identity. Prior work
demonstrates how to do this while being backwards compatibile
with X.509 certificates [17] and email services [41]. Future work
must establish that this is practical and efficient. Additionally,
many organizations use multi-factor authentication. Exploiting this
additional layer of security is also interesting future work.

VIII. CONCLUSION

We have presented SAE, a robust allegation escrow system with
strong cryptographic security guarantees. SAE keeps allegations
and the identities of allegers and the accused confidential until
alleger-specified match-thresholds are reached. The system’s
security and privacy guarantees provably hold as long as a majority
of the escrow parties are uncorrupted. Our empirical evaluation
suggests that SAE is efficient enough to be used in practice, and
scales well to large numbers of users and allegations.
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APPENDIX

A. Verifiable Pseudorandom Functions (VRFs)

VRFs cannot be distinguished from a random function by a
computationally bounded adversary that does not have access to the
proof. For our purposes, we adopt the following formal definition of
a VRF from [19]. Let a1 :N→N∪{∗} and a2 :N→N be functions
computable in poly(k) time5. F(·)(·) : {0,1}a(λ) → {0,1}b(λ) is
a family of VRFs if there exists a PPT (probabilistic polynomial
time computable) algorithm GEN and deterministic algorithms
PROVE and VER such that GEN(1λ) outputs a pair of
keys (SK,PK); PROVESK(x) computes (FSK(x), πSK(x)),
where πSK(x) is a proof of correctness; and VERPK(x, y, π)
verifies that y = FSK(x). They satisfy the following properties:
1) Uniqueness: No values (PK, x, y1, y2, π1, π2) satisfy
VERPK(x,y1,π1) = 1 = VERPK(x,y2,π2) when y1 6= y2, 2)
Provability: If (y,π)=PROVESK(x), then VERPK(x,y,π)=1
and, 3) Pseudorandomness: For any PPT algorithm A=(A1,A2)

5Except when a1 takes the value ∗, which means the VRF is defined for inputs
of all length.

that does not query its oracle on x, the following holds:

Pr

b=b′
∣∣∣∣∣∣∣∣
(SK,PK)←GEN(1λ),

(x,st)←A
PROVE(·)
1 (PK),

y0←FSK(x),y1←{0,1}a2(λ),
b←{0,1},b′←A

PROVE(·)
2 (yb,st)

≤ 1

2
+η(λ)

where η(·) is a negligible function. Further, it satisfies the following
unpredictability property.

For any PPT algorithm A, who does not query its oracle on x,
the following holds:

Pr

[
y=FSK(x)

∣∣∣∣ (PK,SK)←GEN(1λ);
(x,y)←APROVE(·)(PK)

]
≤η(k)

B. Postponed Security Analysis
Definition 2. [14]. A symmetric encryption scheme (E,D) is non
committing if there exist two PPT algorithms (A1,A2) s.t. (c,k) and
(c′,k′) are computationally indistinguishable when c′←A1(1

λ),
k′←A2(c

′,M), k←K and c←E(k,M) for all M ∈M where
K,M,C denote key, message and ciphertext spaces respectively

We refer [14] for a simple construction.
Proof Sketch for Proof Theorem 2: Our proof strategy consists

of the description of a simulator S that handles users corrupted by
the attacker and simulates the real world execution protocol while
interacting with the ideal functionality FSAE.

The simulator S spawns honest users at adversarial will and
impersonates them until the environment E makes a corruption
query on one of the users: At this point S hands over to A the
internal state of the target user and routes all of the subsequent
communications to A, who can reply arbitrarily. For operations
exclusively among corrupted users, the environment does not expect
any interaction with the simulator. Similarly, interactions exclusively
among honest nodes happen through secure channels and therefore
the attacker does not gather any additional information other than
the fact that the interactions took place. For simplicity, we omit
these operations in the description of our simulator. The simulator
simulates the following honest nodes: 1) the honest escrows, 2) the
honest users, 3) the CA for users’ real identities. Next, we describe
how the simulator behaves at various points of the protocol.

At several points in the SAE protocol, DKG is required. namely,
SKI used to compute MACs on identities, SKR used for revealing
alleger identity and SKi for each ith bucket used for thresholding.
To simulate this with a minority of statically corrupted escrows,
S chooses a random key pair, performs DKG simulation [23,
Theorem 1], and sends the the public key to the corrupted escrows.
As this simulation is exactly the distribution in the real protocol [23,
Theorem 1], and hence is indistinguishable from it. Notice that
the simulator knows all the DKG secret keys here. It participates
in computing PKI from SKI . The simulator also generates the
public-private key pairs for all the honest users and generates
certificates for them from the CA.

For allegation filing and registration, we consider two cases
depending on whether or not the alleger is honest.
Case 1: Honest alleger, corrupted minority of escrows

When an honest alleger registers,FSAE sends (“Register”,ID) to
the the simulator. The simulator proves the honest alleger’s identity
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to the corrupted escrows. This is possible because it simulates the CA
and can generate arbitrary certificates. Then it generates l new public
keys pk1,...,pkl (note, figure 2 shows only l=1 for notational sim-
plicity) and secret shares them among the escrows and participates in
the distributed computation ofπSKI

(H2(pki)) andFSKR
(H2(pki))

as described in§III-D (note, the simulator knows SKI and SKR). If
the adversary refuses to participate in this computation, the simulator
sends ⊥ to FSAE from a corrupted escrow’s channel and aborts.
Else it sends OK. As in the real protocol, the adversary obtains
FSKR

(pki), but not πSKI
(pki). So far, this is exactly what happens

in the real protocol, except that DKG and the honest parties’ private
keys are chosen by the simulator, but from the same distribution.
Hence it is indistinguishable from the real execution.

When an honest alleger files an allegation, FSAE sends
(“File”,UID,t) to the simulator. The simulator chooses a random
key-pair (sk,pk)←Gen(1λ), generates a MAC πSKI

(H2(pk)) on
it and sends (“File”,pk,t) and (πSKI

(H2(pk)),C) to the corrupted
escrows signed using sk, where the C is a random non-committing
encryption ciphertext. The simulator generates a random meta-data
m = H1(meta− data) and symmetric key k, and distributes a
minority of shares among the corrupted escrows as V SS(m) and
V SS(k), signed with sk. The distribution of meta-data doesn’t
matter since it is information theoretically hidden from the adversary.
Since the adversary has not seen the honest alleger’s public key
before, the simulator can choose a random one. FSAE now moves
to matching and thresholding, returning (i, UID, UNIQUE((i,m)))
each time an allegation identified by UID is added to bucket i.
Let pk be the public key the simulator chose for UID (in the
dishonest alleger case discussed below, the adversary provides pk,
corresponding to which FSAE provides UID).

At this point, the real protocol would be computing
FSKi

(allegations[pk].m). The simulator can control the value
of this result. If UNIQUE((i,m)) matches any other allegations in
bucket i, the simulator produces the value it previously returned for
that allegation in bucket i. Else it produces a fresh random value.
This works becauseH1 is collision resistant,H1(m)=H1(m

′) iff
m =m′ for a computationally bounded adversary. Since F is a
PRF, the adversary cannot distinguish between its output and truly
random numbers. Note all matching allegations have the same (hash
of) meta-datam by definition. If at any point, the adversary refuses
to cooperate in distributed-input DPRF computation, the protocol
is aborted, and the simulator sends ⊥ to FSAE, which also halts
execution. Else it sends OK each time to move the protocol forward.

To reveal identity in the real protocol, the escrows compute

FSKR
(H2(pk)), where pk was the public key used during

allegation. To simulate this, the simulator picks pki randomly from
the set of unrevealed public keys it chose when ID was registered.
It simulates the other escrows’ behavior such that, if the adversary
cooperates, it gets FSKR

(H2(pki)). Note, the simulator knows
SKR. The simulator sends shares of the (non-committing) symmet-
ric encryption key from honest escrows such that the ciphertext C
open to a to the corrupted escrows. Allegation reveal now succeeds.
Case 2: Corrupted alleger, corrupted minority of escrows

During registration, the adversary provides a proof of ID from
a CA to the simulator. It also sends the honest escrows’ shares
of hashes of l public keys H2(pk1),...,H2(pkl) to the simulator.
If the proof of ID is invalid, or the shares are incorrect (i.e. VSS
verification fails), the simulator sends⊥ to adversary. Else, it sends
(“Register”, ID) to FSAE from the corrupted allegers’ ID. Note,
the simulator has a majority of shares of H2(pki) and can hence
reconstruct them. It also knows the secret keys SKI and SKR.
Hence it can participate in the computation of πSKI

(H2(pki)) and
FSKR

(H2(pki)) on the l public keys to produce the correct result.
If the adversary refuses to participate in the computation, it sends
⊥ to FSAE.

When filing an allegation, the alleger sends
(t,pk,πSKI

(H2(pk)),Enck(a)) to the simulator for broadcasting. It
secret shares the key k and a collision-resistant hash of the meta-data,
m. The simulator verifies that pk has not been used before and
verifies the MAC on it. If the check fails, the simulator sends⊥ from
the honest escrows to the corrupted alleger. If verification succeeds,
the simulator determines the ID with which pk was registered
(since it has all the registered keys), and connects to FSAE
from ID’s channel. It then invokes registration with FSAE with
(File,m,a,t), which responds with (File,C,t)6. Now the bucketing
algorithm takes place, the simulation process for which is identical
to the honest alleger case. FSAE returns matching allegations
for various buckets, and we simulate for the corrupted escrows, a
pseudo-random function on the meta-data. This is possible since we
know, for the relevant buckets, meta-data of which allegations match.

When an allegation filed by a corrupted party is to be revealed,
FSAE sends (“Reveal”, C, t) to the simulator. The simulator
cooperates in computing πSKR

(pk), where pk is the corresponding
key used to file the allegation identified by C. If the adversary
refuses to cooperate, the simulator sends⊥ to FSAE. Else, it sends
OK, and cooperates to reveal a, which it knows.

6The simulator knows (m,a) since it has a majority of the necessary shares. Again,
if the shares are invalid, it sends⊥ to the adversary as verifiable secret-sharing is used.
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