
A Modal Deconstruction of

Access Control Logics

Deepak Garg1 and Mart́ın Abadi2,3

1 Carnegie Mellon University
2 University of California, Santa Cruz
3 Microsoft Research, Silicon Valley

Abstract. We present a translation from a logic of access control with
a “says” operator to the classical modal logic S4. We prove that the
translation is sound and complete. We also show that it extends to logics
with boolean combinations of principals and with a “speaks for” relation.
While a straightforward definition of this relation requires second-order
quantifiers, we use our translation for obtaining alternative, quantifier-
free presentations. We also derive decidability and complexity results for
the logics of access control.

1 Introduction

In computer systems, access control checks restrict the operations that users, ma-
chines, and other principals can execute on objects such as files [27]. These checks
are governed by access control policies—often by the combination of several poli-
cies at different layers and from different entities. In practice, the principals, the
objects, the formulations of policies, and their implementations can be quite
varied. The resulting gaps, inconsistencies, and obscurity endanger security.

In response to these concerns, specialized logics have been proposed as frame-
works for describing, analyzing, and enforcing access control policies (e.g., [2, 3,
6, 10, 19, 20, 29, 30]). A number of research projects have applied these logics for
designing or explaining various languages and systems (e.g., [4, 6–10, 13, 14, 16,
18, 26, 29, 35]). On the other hand, there have been only few, limited efforts to
study the logics themselves (e.g., [2, 3, 19, 20]). Accordingly, the decidability, ex-
pressiveness, and semantics of these logics are largely unexplored.

Our objective in the present paper is to fill this gap. Specifically, we study a
class of access control logics via sound and complete translations to the classical
modal logic S4.

– Relying on the theory of S4 (e.g., [24, 25]), we obtain Kripke semantics for
the logics. In the quantifier-free case, we also establish the decidability of
the logics and their PSPACE complexity. The translations also open the
possibility of re-using existing decision procedures for S4.

– Translating several logics to S4 enables us to compare their expressiveness. In
particular, while a straightforward definition of the “speaks for” relation [26,
28] requires second-order quantifiers, we use our translations for obtaining



alternative, quantifier-free presentations. We prove that these quantifier-free
presentations yield the same consequences as the second-order definition.

– The translations also suggest a logic with a boolean structure on principals.
Although propositional, this new logic is rich and quite expressive. Previous
logics with similar constructs allowed conjunctions and disjunctions of prin-
cipals (but not negations); the present logic goes beyond them in ways that
we consider both elegant and useful.

Access control logics (those studied here and most of those in the literature)
include formulas of the form A says s, where A is a principal and s is a formula.
Intuitively, A says s means that A asserts (or supports) s. For example, the
administrator admin of a domain might certify that Alice is an authorized user;
this assertion may be represented as admin says auth user(Alice). In addition,
many logics support the use of the “speaks for” relation: A ⇒ B means that A

speaks for B, that is, A says s implies B says s for every s. For example, when
KeyAlice represents the public key of Alice, one may write KeyAlice ⇒ Alice. When
a server S acts on Alice’s behalf impersonating her, one may also write S ⇒ Alice.
Despite these similarities, logics differ in their axioms. A 2003 survey discusses
some of the options [1]. Recently, several works [2, 19, 20, 29] have basically relied
upon the rules of lax logic and the computational lambda calculus [11, 17, 33] for
the operator says. This approach has several benefits, for example validating
the “handoff axiom” [2, 26]; a detailed discussion of its features is beyond the
scope of this paper. We follow this approach in the logics that we consider.

The first of these logics, called ICL, extends propositional intuitionistic logic
with the operator says which behaves as a principal-indexed lax modality (Sec-
tion 2). ICL can be viewed as an indexed version of CL [11], hence its name,
and also as the common propositional fragment of CDD [2, Section 8] and other
systems [20, 29]. An extension of ICL, called ICL⇒, allows formulas of the form
A ⇒ B (Section 3). Another extension, called ICLB, allows compound principals
formed with boolean connectives (Section 4). Our translations and the resulting
theorems apply to each of these logics. In addition, we show that A ⇒ B can be
encoded using either compound principals or a second-order universal quantifier
(Sections 5 and 6). We conclude with a discussion of directions for further work
(Section 7).

Related Work. Our translations are partly based on a translation from intuition-
istic logic to S4 that goes back to Gödel [22]. Moreover, ICL can be seen as a
rather direct generalization of lax logic. Nevertheless, our translation from ICL
(and, as a special case, from lax logic) to S4 appears to be new.

Partly following Curry [15], Fairtlough and Mendler suggested interpreting
lax logic in intuitionistic logic by mapping © s to C ∨ s or to C ⊃ s, where
© is a lax modality and C is a fixed proposition [17]. These interpretations are
sound but not complete. Composing them with a translation from intuitionistic
logic to S4, one can map © s to � ((�C) ∨ s) or to � ((�C) ⊃ s). A similar
translation from lax logic to S4 follows from our definitions, as a special case;
however, our translation does not put a � on C, and it is sound and complete.



Other interpretations of lax logic have targeted multimodal logics or intu-
itionistic S4 [5, 11, 17, 34]. Our translations seem simpler; in particular, they tar-
get classical S4. Semantically, those interpretations lead to Kripke models with
at least two accessibility relations, while we need only one.

Fairtlough and Mendler also deduced the decidability of lax logic from a sub-
formula property [17]. Further, Howe developed a PSPACE decision procedure
for lax logic [23]. It seems possible to extend Howe’s approach to obtain an al-
ternative proof of decidability for ICL. We do not know whether it would also
apply to richer logics such as ICL⇒ and ICLB, for which we have not established
a subformula property.

Going beyond basic lax logic, not much is known about the theory of log-
ics with compound principals or with a “speaks for” relation (such as ICL⇒

and ICLB). Some of the early work on the subject started to explore seman-
tics and decidability results [3]. Although sometimes helpful, the semantics were
not sound and complete, and the decidability results applied only to fragments
needed for certain access-control decisions. More recent systems like RT and Sec-
PAL (where the “can act as” relation resembles ⇒) include decision procedures
for useful classes of formulas similar to Horn clauses [10, 31, 32].

2 ICL: A Basic Logic of Access Control

We start with a basic access control logic ICL that includes the operator says but
not ⇒. Although minimal in its constructs, the logic is reasonably expressive.
We describe a translation from ICL to classical S4. From this translation we
derive a Kripke semantics and a decidability result.

2.1 The Logic

Formulas in ICL may be atomic propositions (p, q, etc.) or constructed from
standard connectives ∧ (conjunction), ∨ (disjunction), ⊃ (implication), > (true),
and ⊥ (false), and the operator says.

s ::= p | s1 ∧ s2 | s1 ∨ s2 | s1 ⊃ s2 | > | ⊥ | A says s

The letters A, B, etc., denote principals, which are atomic and distinct from
atomic propositions. They may be simple bit-string representations of names; in
Section 4, we generalize principals to a richer algebra.

ICL inherits all the inference rules of intuitionistic propositional logic, which
we elide here. For each principal A, the formula A says s satisfies the following
axioms:

` s ⊃ (A says s) (unit)
` (A says (s ⊃ t)) ⊃ (A says s) ⊃ (A says t) (cuc)
` (A says A says s) ⊃ A says s (idem)

These mean that A says · is a lax modality [17]. We describe them briefly, refer-
ring the reader to the literature on lax logic and computational lambda calculus
for more details and applications.



- (unit) states that every true formula s is supported by every principal A.
(The converse is not true: principals may make false statements.)

- (cuc) allows us to reason with A’s statements. It says that whenever A states
s ⊃ t and s, it also states t. Thus A’s statements are closed under logical
consequence.

- (idem) collapses applications of A says ·. In the context of (unit), (idem)
implies that A says · is idempotent.

Example 1 We illustrate the use of ICL through a simple example. Consider a
file-access scenario with an administrating principal admin, a user Bob, one file
file1, and the following policy:

1. If admin says that file1 should be deleted, then this must be the case.
2. admin trusts Bob to decide whether file1 should be deleted.
3. Bob wants to delete file1.

Intuitively, from these facts we should be able to conclude that file1 should be
deleted. We describe a logical presentation of this example in ICL. Suppose that
the proposition deletefile1 means that file1 should be deleted. The three facts
above can be written:

1. (admin says deletefile1) ⊃ deletefile1

2. admin says ((Bob says deletefile1) ⊃ deletefile1)
3. Bob says deletefile1

Using (unit) and (cuc), (1)–(3) imply deletefile1.

2.2 Translation from ICL to S4

Next we describe a central technical result of our work: a sound and complete
translation from ICL to S4. Before describing the translation, we briefly sketch
S4. More details may be found in standard references (e.g., [24]); S4 has been
studied thoroughly over the years.

S4. S4 is an extension of classical logic with one modality �, and the rules:

From ` s infer ` � s.
` � (s ⊃ t) ⊃ � s ⊃ � t
` � s ⊃ s
` � s ⊃ � � s

Translation. Our translation p·q from ICL to S4 is summarized in Figure 1.
It is defined by induction on the structure of formulas. For atomic formulas
and non-modal connectives, the translation is a slight simplification of Gödel’s
translation from intuitionistic logic to S4 [22]. (In Gödel’s words, the basic idea
is to “put a box around everything”; we simplify the translation by putting



ppq = � p

ps ∧ tq = psq ∧ ptq

ps ∨ tq = psq ∨ ptq

ps ⊃ tq = � (psq ⊃ ptq)
p>q = >

p⊥q = ⊥

pA says sq = � (A ∨ psq)

Fig. 1. Translation from ICL to S4

boxes only around atomic formulas and implications.) The core of our work is
the translation of A says s.

pA says sq = � (A ∨ psq)

We interpret the principal A as an atomic formula in S4 and assume that such
atomic formulas are distinct from the usual atomic formulas p, q, etc.. Informally,
if we read � as “in all possible worlds” and the atomic formula A as “principal
A is unhappy”, then � (A ∨ psq) means that psq holds in all possible worlds in
which A is happy.

Alternatively, but equivalently, we could set: pA says sq = � (A ⊃ psq).
Since the target of the translation is a classical logic, the difference between
� (A ∨ psq) and � (A ⊃ psq) is only superficial. We prefer � (A ∨ psq) because
it leads to a more memorable interpretation of ⇒ in Section 3.

This simple translation is correct in the sense that it is both sound and
complete:

Theorem 1 (Soundness and Completeness) For every ICL formula s,
` s in ICL if and only if ` psq in S4.

Proof. See Appendix B.

2.3 Decidability and Kripke Models for ICL

Decidability is a desirable property in an access control logic: it allows the pos-
sibility of completely automated tools for analyzing policies. In the case of ICL,
Theorem 1 implies PSPACE decidability since the same complexity bound is
known for S4 [25]. This bound is the best we could expect, since PSPACE-
hardness holds for plain intuitionistic propositional logic.

Corollary 1 (Decidability) There is a polynomial space procedure that de-
cides whether a given ICL formula is provable or not.

Kripke models are attractive for access control logics from several perspec-
tives. First, they provide a semantic grounding of the logics. They are also useful
as mathematical objects, for instance for showing that certain formulas are not
derivable. We use Theorem 1 and standard models of S4 to derive Kripke models
for ICL.



Definition 1 (Kripke Models) A Kripke model for ICL is a tuple 〈W,≤, ρ, θ〉
where

- W is a set, whose elements are called worlds (denoted using the letter w and
its decorated variants).

- ≤ is a binary relation on W called the accessibility relation. When w ≤ w′,
we say that w′ is accessible from w. We assume that ≤ is reflexive and
transitive. We often write ≥ for (≤)−1.

- ρ is a mapping from atomic formulas of ICL to P(W ) (the power set of W),
called the assignment. Intuitively, ρ(p) is the set of worlds in which p holds.
We assume that ρ is hereditary with respect to ≤, that is, if w ∈ ρ(p), then
for all w′ such that w′ ≥ w, w′ ∈ ρ(p).

- θ is a mapping from principals of ICL to P(W ), called the view map. When
w ∈ θ(A), we say that w is invisible to A, else it is visible to A.

Definition 2 (Satisfaction) Given an ICL formula s and a Kripke model
K = 〈W,≤, ρ, θ〉, we define the satisfaction relation at a particular world (w |= s)
by induction on s.

- w |= p iff w ∈ ρ(p)

- w |= s ∧ t iff w |= s and w |= t

- w |= s ∨ t iff w |= s or w |= t

- w |= s ⊃ t iff for each w′ ≥ w, w′ |= s implies w′ |= t

- w |= > for every w

- not(w |= ⊥) for every w

- w |= A says s iff for every w′ ≥ w, either w′ ∈ θ(A) or w′ |= s

Thus, this definition implies that a world satisfies A says s iff every reachable
world that is visible to A satisfies s. For other constructs, the definition of sat-
isfaction mirrors that in standard Kripke models of intuitionistic logic.

We say that K = 〈W,≤, ρ, θ〉 |= s if w |= s for every w ∈ W . A formula s
is valid (written |= s) if K |= s for every Kripke model K. The following result
shows that provability in ICL coincides with validity.

Corollary 2 For every ICL formula s, ` s if and only if |= s.

Proof. See Appendix B.

3 ICL⇒: A Logic with A Primitive “Speaks For” Relation

In this section we extend the logic ICL to include a primitive “speaks for” re-
lation. We call the new logic ICL⇒. We also extend the results of Section 2 to
ICL⇒.



3.1 The Logic

ICL⇒ extends ICL with formulas of the form A ⇒ B and with the following
axioms for these formulas:

` A ⇒ A (refl)
` (A ⇒ B) ⊃ (B ⇒ C) ⊃ (A ⇒ C) (trans)
` (A ⇒ B) ⊃ (A says s) ⊃ (B says s) (speaking-for)
` (B says (A ⇒ B)) ⊃ (A ⇒ B) (handoff)

– (refl) and (trans) state that ⇒ is reflexive and transitive.
– (speaking-for) states that if A ⇒ B and A says s, then B says s.
– (handoff) states that whenever B says that A speaks for B, then A does indeed

speak for B. This axiom allows every principal to decide which principals
speak on its behalf [26].

Example 2 We modify Example 1: instead of having Bob says deletefile1 di-
rectly, Bob delegates his authority to Alice (fact 3), who wants to delete file1

(fact 4).

1. (admin says deletefile1) ⊃ deletefile1
2. admin says ((Bob says deletefile1) ⊃ deletefile1)
3. Bob says Alice ⇒ Bob
4. Alice says deletefile1

Using (handoff) and (speaking-for), we can again derive deletefile1.

3.2 Translation from ICL⇒ to S4

We extend to ICL⇒ the translation from ICL to S4 by adding the clause:

pA ⇒ Bq = � (A ⊃ B)

As above, A and B are interpreted as atomic formulas in S4, and these atomic
formulas are assumed distinct from the atomic propositions of ICL⇒. We have:

Theorem 2 (Soundness and Completeness) For every ICL⇒ formula s,
` s in ICL⇒ if and only if ` psq in S4.

Proof. See Appendix C.

3.3 Decidability and Kripke Models for ICL⇒

Much as for ICL, Theorem 2 yields a decidability result:

Corollary 3 (Decidability) There is a polynomial space procedure that de-
cides whether a given ICL⇒ formula is provable or not.

It also leads to Kripke models for ICL⇒. These are the same as those for ICL
(Definition 1), with the satisfaction relation for A ⇒ B at world w given by the
clause:

w |= A ⇒ B iff for every w′ ≥ w, w′ ∈ θ(A) implies w′ ∈ θ(B).

These models are sound and complete in the sense of Corollary 2.



4 ICLB: A Logic with Boolean Principals

Principals in ICL and ICL⇒ are atomic and cannot be composed in any logically
meaningful way. Early on it was observed that the use of compound principals
can help in expressing policies [3, 26]. For example, the conjunction of two prin-
cipals may be employed for representing joint statements, with the property

(A ∧ B) says s ≡ (A says s) ∧ (B says s)

Disjunctions also arise, though they are more complex. Going further, we de-
scribe and study a systematic extension ICLB of ICL that allows arbitrary
Boolean combinations of principals with the connectives ∧, ∨, ⊃, >, and ⊥.
(However, we do not include operators such as “quoting” and “for”.) We extend
the results of Section 2 to ICLB.

4.1 The Logic

The formulas of ICLB are the same as those of ICL, except that principals may
contain Boolean connectives. We use the letters a, b, . . . for denoting atomic prin-
cipals (distinct from atomic propositions), and A, B, . . . for denoting arbitrary
principals.

A,B ::= a | A ∧ B | A ∨ B | A ⊃ B | > | ⊥

We write ¬A for (A ⊃ ⊥). We equip the set of principals with a notion of equality
by letting A ≡ B if A and B are provably equivalent when viewed as formulas in
classical logic. With these definitions, the set of principals becomes a Boolean
algebra.

ICLB inherits all the inference rules of ICL, and also includes the following
additional rules:

` (⊥ says s) ⊃ s (trust)
If A ≡ > then ` A says ⊥. (untrust)
` ((A ⊃ B) says s) ⊃ (A says s) ⊃ (B says s) (cuc’)

– (trust) states that ⊥ is a truth teller.
– (untrust) states that any principal equivalent to > says false; it can be seen

as a variant of the necessitation rule of modal logics.
– Similarly, (cuc’) is the analogue of (cuc) for principals. It states that A says s

and (A ⊃ B) says s imply B says s.

We define ICLB as an extension of ICL, rather than ICL⇒, because we do not
need built-in formulas of the form A ⇒ B. The “speaks for” relation is definable
in ICLB. As we show in Section 5, A ⇒ B can be seen as an abbreviation for
(A ⊃ B) says ⊥.

We can explain the intuitive meaning of A says s when principal A is com-
pound, as follows:

- (A ∧ B) says s is the same as (A says s) ∧ (B says s).



- (A ∨ B) says s means that, by combining the statements of A and B, we can
conclude s. In particular, if A says (s ⊃ t) and B says s then (A ∨ B) says t.
Disjunctions can be used in modeling groups in access control.

- (A ⊃ B) says s means that A speaks for B on s and on its consequences. We
can show that if (A ⊃ B) says s and s ⊃ s′, then (A says s′) ⊃ (B says s′).
In the special case where s is ⊥, we obtain the usual ⇒ relation.

- > says s is provable for every formula s (including ⊥). In access control
terms, > may be seen as a completely untrustworthy principal.

- ⊥ says s implies that s is true. Thus, ⊥ is a completely trustworthy princi-
pal.

Example 3 The following policy is analogous to that of Example 1:

1. (admin ⊃ ⊥) says deletefile1

2. admin says (Bob ⊃ admin) says deletefile1

3. Bob says deletefile1

The first statement means that admin is trusted on deletefile1 and its conse-
quences. The second statement means that admin further delegates this authority
to Bob.

From (3) and (unit) it follows that admin says Bob says deletefile1. From
(2), (cuc), and (cuc’) we get (admin says Bob says deletefile1) ⊃ (admin says

admin says deletefile1). Hence we have admin says admin says deletefile1. Us-
ing (idem), we obtain admin says deletefile1. From (1) and (cuc’), we obtain
(admin says deletefile1) ⊃ ⊥ says deletefile1, and hence ⊥ says deletefile1. Fi-
nally, using (trust), we conclude deletefile1.

4.2 Translation from ICLB to S4

The translation from ICL to S4 works virtually unchanged for ICLB. In the clause
pA says sq = � (A ∨ psq), we interpret A as a formula in S4 in the most obvious
way: each Boolean connective in A is mapped to the corresponding connective
in S4, and each atomic principal in A is interpreted as an atomic formula in S4
(without any added boxes). For instance, the translation of

(Bob ⊃ admin) says deletefile1

is

� ((Bob ⊃ admin) ∨ � deletefile1)

Again, we have soundness and completeness results:

Theorem 3 (Soundness and Completeness) For every ICLB formula s,
` s in ICLB if and only if ` psq in S4.

Proof. See Appendix D.



4.3 Decidability and Kripke Models for ICLB

Once more we obtain a decidability result:

Corollary 4 (Decidability) There is a polynomial space procedure that de-
cides whether a given ICLB formula is provable or not.

Furthermore, Kripke models for ICLB may be obtained by generalizing those
for ICL. The view map θ is defined only for atomic principals a. It is lifted to
the function θ̂ that maps all principals to P(W ) as follows:

θ̂(a) = θ(a)

θ̂(A ∧ B) = θ̂(A) ∩ θ̂(B)

θ̂(A ∨ B) = θ̂(A) ∪ θ̂(B)

θ̂(A ⊃ B) = (W − θ̂(A)) ∪ θ̂(B)

θ̂(>) = W

θ̂(⊥) = ∅

The definition of satisfaction (w |= s) is modified to use θ̂ instead of θ:

w |= A says s iff for all w′ ≥ w, either w′ ∈ θ̂(A) or w′ |= s.

Again, these Kripke models are sound and complete in the sense of Corollary 2.
Thus, while the analysis of the translations requires special (and often dif-

ficult) arguments for each logic, the way in which decidability and semantics
follow from translations is almost identical across logics. In the remainder of the
paper, we turn to more unexpected consequences of the translations.

5 From ICL⇒ to ICLB: Expressing “Speaks For” via

Boolean Principals

We prove that A ⇒ B can be encoded as (A ⊃ B) says ⊥. More precisely,
we analyze the following translation (·) from ICL⇒ to ICLB. It maps every
connective except ⇒ to itself.

p = p
s ∧ t = s ∧ t
s ∨ t = s ∨ t
s ⊃ t = s ⊃ t

> = >
⊥ = ⊥

A says s = A says s

A ⇒ B = (A ⊃ B) says ⊥

(Alternatively, we could translate an extension of ICLB with ⇒ to ICLB.) The
encoding of ⇒ is correct, in the following sense:



Theorem 4 For every ICL⇒ formula s, ` s in ICL⇒ if and only if ` s in ICLB.

This theorem is easy to establish using the translations from ICL⇒ and ICLB to
S4. First we show that for every formula s in ICL⇒, psq and psq are provably
equivalent in S4. This argument is by a structural induction on s. The only
interesting case is for s of the form A ⇒ B, where we observe that pA ⇒ Bq =
� (A ⊃ B) ≡ � ((A ⊃ B) ∨ ⊥) = pA ⇒ Bq. It then follows from Theorems 2
and 3 that ` s iff ` psq iff ` psq iff ` s.

6 On Second-Order Quantification

In this section we consider a logic with second-order quantification. In this logic,
A ⇒ B has a well-known, compelling definition, as an abbreviation for

∀X. A says X ⊃ B says X

Our main technical goal is to relate this definition to the quantifier-free axiom-
atizations of Sections 3–5. We prove that those axiomatizations are sound and
complete with respect to the second-order definition. Thus, the full power and
complexity of second-order quantification is not required for reasoning about ⇒.
A decidable fragment of the second-order logic suffices.

(This result was far from obvious to us: a priori, it seemed entirely possible
that the axiomatizations were missing some subtle consequence of the second-
order definition. Its proof was also surprising, as it includes a non-constructive
detour through Kripke models, thus leveraging the work of Sections 3–5.)

6.1 The Logic

The second-order logic is the straightforward extension of ICL with universal
quantification over propositions, with the rules of System F [12, 21].

This logic is not entirely new. It has previously been defined [2, Section 8]
and used [18] under the name CDD (with only minor syntactic differences). Here
we call it ICL∀ for the sake of uniformity.

The addition of second-order quantification provides great expressiveness, as
illustrated by the definition of ⇒ given above. On the other hand, it immediately
leads to undecidability as well as to other difficulties. Nevertheless, this logic is
an obvious and elegant extension of ICL.

6.2 Main Results

Though we do not discuss the theory of ICL∀ in detail, we have had to develop
some of it in the course of our study of ⇒. In this section we present only our
main result on ⇒ and mention other developments to the extent that they are
relevant to this result.



There is an obvious embedding of ICL⇒ into ICL∀:

[[p]] = p
[[s ∧ t]] = [[s]] ∧ [[t]]
[[s ∨ t]] = [[s]] ∨ [[t]]
[[s ⊃ t]] = [[s]] ⊃ [[t]]

[[>]] = >
[[⊥]] = ⊥

[[A says s]] = A says [[s]]
[[A ⇒ B]] = ∀X. A says X ⊃ B says X

This embedding is correct, in the following sense:

Theorem 5 For every ICL⇒ formula s, ` s in ICL⇒ if and only if ` [[s]] in
ICL∀.

Soundness (the implication from left to right) is easy to establish. It suffices
to show that each axiom of ICL⇒ can be simulated in ICL∀ after translation. A
formal proof is described in Appendix E.

Completeness (the implication from right to left) is much harder. Complica-
tions arise because a proof of [[s]] may contain formulas which are not in the image
of [[·]]. Even if we wish to restrict attention to a fragment in which the universal
quantifier is restricted to formulas of the form ∀X. A says X ⊃ B says X ,
the proofs of theorems in this fragment may mention formulas that contain
universal quantifiers in other positions. Although it is conceivable that a con-
structive proof-theoretic argument would be viable, this difficulty leads us to a
non-constructive argument through acyclic Kripke models.

Our approach seems to be new, so we discuss it in some detail (Appendix E
contains a full proof). It is as follows.

– First we define a translation from ICL∀ to second-order S4 (called S4∀),
that is, classical S4 with a second-order universal quantifier. Let us call this
translation p·q. This translation essentially mimics the translation of ICL to
S4, and in addition maps ∀X. s to � ∀X. psq.
We show that this translation is sound, in the sense that ` s in ICL∀ implies
` psq in S4∀. It follows immediately that ` [[s]] in ICL∀ implies ` p[[s]]q in
S4∀.
(We do not need to be concerned about the completeness of this translation
for our purposes.)

– Next we may try to show that for every ICL⇒ formula s, if ` p[[s]]q in S4∀

then ` psq in S4. If this were true, Theorem 2 would yield that ` [[s]] in ICL∀

implies ` s in ICL⇒ (because ` [[s]] in ICL∀ implies ` p[[s]]q in S4∀, as noted
above).
Thus, it would suffice to establish that ` p[[s]]q in S4∀ implies ` psq in S4.
We try to prove this by induction on s. Unfortunately, the proof does not
go through. The argument fails for a formula of the form A ⇒ B, since

p[[A ⇒ B]]q = � ∀X. � (� (A ∨ �X) ⊃ � (B ∨ �X))



and
pA ⇒ Bq = � (A ⊃ B)

In S4∀, the latter implies the former, but the former does not imply the
latter.

– Two observations allow the proof to go through:
1. On all acyclic models, p[[A ⇒ B]]q implies pA ⇒ Bq.

Therefore, we can establish that all acyclic models satisfy p[[s]]q if and
only if all acyclic models satisfy psq.

2. Quantifier-free S4 is sound and complete with respect to acyclic models.
(A model can be “unrolled”, and the resulting acyclic model satisfies the
same quantifier-free formulas as the original model.)

– Using these observations we can complete our proof as follows.
• Suppose that ` [[s]] in ICL∀.
• By the soundness of the translation from ICL∀ to S4∀, we obtain ` p[[s]]q

in S4∀.
• Therefore every acyclic model of S4∀ satisfies p[[s]]q.
• By (1), every acyclic model of S4∀ satisfies psq.
• Since, for S4 formulas (without quantifiers), the models of S4∀ are the

same as the models of S4, every acyclic model of S4 satisfies psq.
• By (2), every model of S4 satisfies psq.
• By the completeness of S4 for its models, it follows that ` psq in S4.
• By Theorem 2, we conclude that ` s in ICL⇒.

7 Conclusion

Starting with a basic logic with a says operator, this paper describes simple
translations of three logics of access control to S4. The translations lead to
decidability results and semantics, and also to comparison of the logics. In par-
ticular, the translations enable us to study definitions and axiomatization of the
“speaks for” relation.

Going further, one may attempt to carry out a similar programme for some of
the diverse logics that appear in the literature. At present, there is no metric to
compare these logics against each other, nor a method for integrating more than
one logic into a single system. Translation to a standard logic such as S4 seems
a promising approach for addressing both of these issues. Of course, first-order
and second-order constructs may sometimes be necessary, and more substantial
deviations from S4 may arise too—for instance, towards S5, or by the addition of
special-purpose operators. Understanding those deviations may be instructive.

Going further, too, our results may be of practical value. They may serve
as the basis for theorem provers for logics of access control, with the help of
existing algorithms and provers for S4. More speculatively, finite models (of the
kind that we obtain from our semantics) may also play a role in a new variant of
proof-carrying authentication [6]. A model can serve as evidence that a particular
formula is not valid, thus enabling the use of such negative information as an
input to authorization decisions. These applications of our results are intriguing;
they still require considerable design and experimentation.
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∆; Γ, p =⇒ Φ, p
(init)

∆, s; Γ, s =⇒ Φ

∆, s;Γ =⇒ Φ
(copy)

∆; Γ, s =⇒ Φ, t

∆; Γ =⇒ Φ, s ⊃ t
(⊃ R)

∆; Γ =⇒ Φ, s ∆; Γ, t =⇒ Φ

∆; Γ, s ⊃ t =⇒ Φ
(⊃ L)

∆; Γ =⇒ Φ, s ∆; Γ =⇒ Φ, t

∆; Γ =⇒ Φ, s ∧ t
(∧ R)

∆; Γ, s, t =⇒ Φ

∆; Γ, s ∧ t =⇒ Φ
(∧ L)

∆; Γ =⇒ Φ, s, t

∆; Γ =⇒ Φ, s ∨ t
(∨ R)

∆; Γ, s =⇒ Φ ∆; Γ, t =⇒ Φ

∆; Γ, s ∨ t =⇒ Φ
(∨ L)

∆; Γ =⇒ Φ,>
(>R) no (>L) rule

no (⊥R) rule
∆; Γ,⊥ =⇒ Φ

(⊥L)

∆; · =⇒ s

∆; Γ =⇒ Φ, � s
(�R)

∆, s; Γ =⇒ Φ

∆; Γ, � s =⇒ Φ
(�L)

Fig. 2. Cut-free sequent calculus for S4

A Classical Modal Logic S4

This appendix summarizes modal logic S4 and describes a sequent calculus for
it. We do not take negation as a primitive; instead it may be defined as ¬A =
(A ⊃ ⊥). We omit the modality ♦ because it is not relevant to our discussion.
It may be defined as ♦s = ¬�¬s. Formulas in S4 are described by the following
grammar:

s, t ::= p | s ⊃ t | s ∧ t | s ∨ t | > | ⊥ | � s

A.1 Sequent Calculus for S4

A sequent is written ∆;Γ =⇒ Φ, where ∆, Γ and Φ are multisets of formulas.
The sequent means that if we assume that all formulas in ∆ are tautologies, and
all formulas in Γ are true, then the disjunction of all formulas in Φ is true. The
rules for this sequent calculus are shown in Figure 2. Cut is not a rule in the
calculus. It is admissible, as Theorem 6 shows.

Lemma 1

1. (Weakening) If ∆;Γ =⇒ Φ, then each of the following holds by an equal or
shorter derivation
(a) ∆, s;Γ =⇒ Φ



(b) ∆;Γ, s =⇒ Φ

(c) ∆;Γ =⇒ Φ, s

2. (Inversion) For each rule other than (init), (>R), (⊥L) and (�R), if the
conclusion of the rule holds, then the premises hold by an equal or shorter
derivation.

Proof. (Outline) In each case by induction on the height of the given derivation.
For (2) a separate induction has to be performed for each rule.

Lemma 2 (Strengthening)

1. If ∆, s, s;Γ =⇒ Φ, then ∆, s;Γ =⇒ Φ.

2. If ∆;Γ, s, s =⇒ Φ, then ∆;Γ, s =⇒ Φ.

3. If ∆;Γ =⇒ Φ, s, s, then ∆;Γ =⇒ Φ, s.

Proof. By a simultaneous induction on the given derivations. The proof makes
use of inversion from Lemma 1. Here’s one representative case. Suppose we are
proving (3) and the last rule is (∧ R). Let us assume that the formula s is
principal. Thus we have the following situation:

∆;Γ =⇒ Φ, s ∧ t, s ∆;Γ =⇒ Φ, s ∧ t, t

∆;Γ =⇒ Φ, s ∧ t, s ∧ t
(∧ R)

We want to show that ∆;Γ =⇒ Φ, s ∧ t. Here’s a proof:

1. (Inversion on first premise) ∆;Γ =⇒ Φ, s, s

2. (i.h. on (1)) ∆;Γ =⇒ Φ, s

3. (Inversion on second premise) ∆;Γ =⇒ Φ, t, t

4. (i.h. on (3)) ∆;Γ =⇒ Φ, t

5. ((∧ R) on (2),(4)) ∆;Γ =⇒ Φ, s ∧ t

Theorem 6 (Admissibility of Cut)

1. If ∆;Γ =⇒ Φ, s and ∆;Γ ′, s =⇒ Φ′, then ∆;Γ, Γ ′ =⇒ Φ,Φ′.

2. If ∆; · =⇒ s and ∆, s;Γ =⇒ Φ, then ∆;Γ =⇒ Φ.

Proof. By simultaneous lexicographic induction, first on the size of the cut for-
mula and then on the size of the derivations. We assume that a formula s in ∆
is larger than the same formula in Γ .

Theorem 7 (Identity) ∆;Γ, s =⇒ Φ, s for every formula s.

Proof. By induction on the formula s.



A.2 Hilbert System and Kripke Semantics for S4

A Hilbert-style system may be defined for S4 by taking all standard axioms of
classical logic (omitted here for brevity) and the four rules:

– From ` s infer ` � s
– ` � (s ⊃ t) ⊃ � s ⊃ � t
– ` � s ⊃ s
– ` � s ⊃ � � s

A Kripke model of S4 is a 3-tuple S = 〈W,≤, ρ〉, whereW is a set of worlds, ≤
is a reflexive and transitive binary relation on worlds, and ρ is map from atomic
formulas to the P(W ). Given w ∈W , the relation “w satisfies s” (written w |= s)
is defined by induction on s as follows:

- w |= p iff w ∈ ρ(p)
- w |= s ∧ t iff w |= s and w |= t
- w |= s ∨ t iff w |= s or w |= t
- w |= s ⊃ t iff w 6|= s or w |= t
- w |= > for every w
- w 6|= ⊥ for any w
- w |= � s iff for every w′ ≥ w, w′ |= s.

We say that a model S = 〈W,≤, ρ〉 satisfies s (written S |= s) if for every w ∈W ,
w |= s. A formula s is called valid, written |= s, if every Kripke model satisfies
it.

Theorem 8 (Equivalence) The following are equivalent for a formula s in S4:

1. ·; · =⇒ s in the sequent calculus
2. |= s in Kripke models
3. ` s in the Hilbert system

Proof. (1) ⇒ (2). We can show a more general result by induction on sequent
calculus derivations. If ∆;Γ =⇒ Φ, then for every model S and every world
w ∈ S, w |= (((�∆) ∧ Γ ) ⊃ (∨ Φ)).
(2) ⇒ (3) is standard. See for instance [?].
(3) ⇒ (1). This is easily established by showing that each rule of the Hilbert
system can be derived in the sequent calculus.

B Details from Section 2

In this appendix we present a sequent calculus for ICL and prove the theorems
of Section 2. A sequent has the form Γ =⇒ s, where Γ is a multiset of formulas.
Rules for the sequent calculus are described in Figure 3. It can be shown that this
calculus is equivalent to the Hilbert-style axiomatization described in Section 2.

Lemma 3 (Structural Properties)



Γ, p =⇒ p
(init)

Γ =⇒ >
(>R)

Γ,⊥ =⇒ s
(⊥L)

Γ, s =⇒ t

Γ =⇒ s ⊃ t
(⊃ R)

Γ, s ⊃ t =⇒ s Γ, t, s ⊃ t =⇒ s
′

Γ, s ⊃ t =⇒ s
′

(⊃ L)

Γ =⇒ s Γ =⇒ t

Γ =⇒ s ∧ t
(∧ R)

Γ, s, t, s ∧ t =⇒ s
′

Γ, s ∧ t =⇒ s
′

(∧ L)

Γ =⇒ s

Γ =⇒ s ∨ t
(∨ R1)

Γ =⇒ t

Γ =⇒ s ∨ t
(∨ R2)

Γ, s, s ∨ t =⇒ s
′

Γ, t, s ∨ t =⇒ s
′

Γ, s ∨ t =⇒ s
′

(∨ L)

Γ =⇒ s

Γ =⇒ A says s
(saysR)

Γ, s, A says s =⇒ A says s
′

Γ, A says s =⇒ A says s
′

(saysL)

Fig. 3. Cut-free sequent calculus for ICL

1. (Weakening) If Γ =⇒ s, then Γ, s′ =⇒ s.
2. (Inversion) The rules (∧ R) and (⊃ R) are invertible.
3. (Strengthening) If Γ, s, s =⇒ s′, then Γ, s =⇒ s′.

Proof. In each case by induction on the given derivation.

Theorem 9 (Admissibility of Cut)

If Γ =⇒ s and Γ, s =⇒ s′ then Γ =⇒ s′.

Proof. By a lexicographic induction, first on the size of the cut formula, and
then on the size of the given derivations.

Theorem 10 (Identity) For every formula s, Γ, s =⇒ s.

Proof. By induction on s.

B.1 Proofs from Section 2

Lemma 4 For every ICL formula s, ` psq ⊃ � psq in S4. (Or equivalently,
·; psq =⇒ � psq.)

Proof. We show that for every S4 Kripke frame S, S |= psq ⊃ � psq. Then it
follows by definition that |= psq ⊃ � psq and hence by Theorem 8 that ` psq ⊃
� psq. So let S = 〈W,≤, ρ〉 be an S4 Kripke frame. We use induction on s to
show that for any world w ∈W , w |= psq ⊃ � psq.



Case s = p. We must show that w |= � p ⊃ � � p. So assume that w |= � p.
Now pick any w′ ≥ w. It suffices to show that w′ |= � p. To show that, pick
any w′′ ≥ w′. It is enough to show that w′′ |= p. From transitivity of ≤ we
get that w′′ ≥ w and by assumption w |= � p, it follows that w′′ |= p as
required.
Cases s = A says s′ and s = t1 ⊃ t2 are similar to the previous case
because psq is boxed in these cases.
Case s = s1 ∧ s2. We must show that w |= (ps1q ∧ ps2q) ⊃ � (ps1q ∧ ps2q).
Assume w |= ps1q ∧ ps2q and pick any w′ ≥ w. It suffices to show that
w′ |= psiq for each i = 1, 2.
From the assumption w |= ps1q ∧ ps2q, it follows that w |= psiq. Hence by
i.h., w |= � psiq. By definition, w′ |= psiq, as required.
Case s = s1 ∨ s2 is similar to the previous case.
Cases s = > and s = ⊥ are trivial.

Lemma 5 (Soundness) If Γ =⇒ s in ICL, then ·; pΓq =⇒ psq in S4.4

Proof. By induction on the derivation of Γ =⇒ s. We analyze cases on the last
rule in the derivation. We often use the cut theorem (Theorem 6). We write
cut(a,b) to mean that we cut a formula in derivation b using the conclusion of
a.

Case.
Γ, p =⇒ p

(init)

To show: ·; pΓq,� p =⇒ � p. This follows from Theorem 7.
Case.

Γ =⇒ >
(>R)

To show: ·; pΓq =⇒ >. This follows by rule (>R).
Case.

Γ,⊥ =⇒ s
(⊥L)

To show: ·; pΓq,⊥ =⇒ psq. This follows by rule (⊥L).

Case.
Γ, s =⇒ t

Γ =⇒ s ⊃ t
(⊃ R)

To show: ·; pΓq =⇒ � (psq ⊃ ptq). We have the following proof:
1. (i.h.) ·; pΓq, psq =⇒ ptq.
2. (Weakening on 1) pΓq; pΓq, psq =⇒ ptq.
3. ((copy) on 2) pΓq; psq =⇒ ptq.
4. ((⊃ R) on 3) pΓq; · =⇒ psq ⊃ ptq.
5. ((�R) on 4) pΓq; · =⇒ � (psq ⊃ ptq).
6. ((�L) on 5) ·; � pΓq =⇒ � (psq ⊃ ptq).
7. (Lemma 4) ·; pΓq =⇒ � pΓq.
8. (Cut(7,6)) ·; pΓq =⇒ � (psq ⊃ ptq).

Case.
Γ, s ⊃ t =⇒ s Γ, t, s ⊃ t =⇒ s′

Γ, s ⊃ t =⇒ s′
(⊃ L)

To show: ·; pΓq,� (psq ⊃ ptq) =⇒ ps′q.
1. (i.h.) ·; pΓq,� (psq ⊃ ptq) =⇒ psq.

4 pΓq is the context obtained by translating each formula in Γ separately.



2. (i.h.) ·; pΓq,� (psq ⊃ ptq), ptq =⇒ ps′q.
3. ((⊃ L) on 1,2) ·; pΓq,� (psq ⊃ ptq), psq ⊃ ptq =⇒ ps′q.
4. (Weakening on 3) psq ⊃ ptq; pΓq,� (psq ⊃ ptq), psq ⊃ ptq =⇒ ps′q.
5. ((copy) on 4) psq ⊃ ptq; pΓq,� (psq ⊃ ptq) =⇒ ps′q.
6. ((�L) on 5) ·; pΓq,� (psq ⊃ ptq),� (psq ⊃ ptq) =⇒ ps′q.
7. (Lemma 2 on 6) ·; pΓq,� (psq ⊃ ptq) =⇒ ps′q.

Case.
Γ =⇒ s Γ =⇒ t

Γ =⇒ s ∧ t
(∧ R)

To show: ·;Γ =⇒ psq ∧ ptq.
1. (i.h.) ·; pΓq =⇒ psq.
2. (i.h.) ·; pΓq =⇒ ptq.
3. ((∧ R) on 1,2) ·; pΓq =⇒ psq ∧ ptq.

Case.
Γ, s, t, s ∧ t =⇒ s′

Γ, s ∧ t =⇒ s′
(∧ L)

To show: ·; pΓq, psq ∧ ptq =⇒ ps′q.
1. (i.h.) ·; pΓq, psq, ptq, psq ∧ ptq =⇒ ps′q.
2. ((∧ L) on 1) ·; pΓq, psq ∧ ptq, psq ∧ ptq =⇒ ps′q.
3. (Lemma 2 on 2) ·; pΓq, psq ∧ ptq =⇒ ps′q.

Case.
Γ =⇒ s

Γ =⇒ s ∨ t
(∨ R1)

To show: ·; pΓq =⇒ psq ∨ ptq.
1. (i.h.) ·; pΓq =⇒ psq.
2. (Weakening on 1) ·; pΓq =⇒ psq, ptq.
3. ((∨ R) on 2) ·; pΓq =⇒ psq ∨ ptq.

Case.
Γ =⇒ t

Γ =⇒ s ∨ t
(∨ R2)

Similar to the previous case.

Case.
Γ, s, s ∨ t =⇒ s′ Γ, t, s ∨ t =⇒ s′

Γ, s ∨ t =⇒ s′
(∨ L)

To show: ·; pΓq, psq ∨ ptq =⇒ ps′q
1. (i.h.) ·; pΓq, psq, psq ∨ ptq =⇒ ps′q.
2. (i.h.) ·; pΓq, ptq, psq ∨ ptq =⇒ ps′q.
3. ((∨ L) on 1,2) ·; pΓq, psq ∨ ptq, psq ∨ ptq =⇒ ps′q.
4. (Lemma 2 on 3) ·; pΓq, psq ∨ ptq =⇒ ps′q.

Case.
Γ =⇒ s

Γ =⇒ A says s
(saysR)

To show: ·; pΓq =⇒ � (A ∨ psq).

1. (i.h.) ·; pΓq =⇒ psq.
2. (Lemma 4) ·; psq =⇒ � psq.
3. (Cut(1,2)) ·; pΓq =⇒ � psq.
4. (Provable in S4) ·; � psq =⇒ � (A ∨ psq).
5. (Cut(3,4)) ·; pΓq =⇒ � (A ∨ psq).

Case.
Γ, s,A says s =⇒ A says s′

Γ,A says s =⇒ A says s′
(saysL)

To show: ·; pΓq,� (A ∨ psq) =⇒ � (A ∨ ps′q).



1. (i.h.) ·; pΓq, psq,� (A ∨ psq) =⇒ � (A ∨ ps′q).
2. (Inversion for (�L) on 1) A ∨ psq; pΓq, psq =⇒ � (A ∨ ps′q).
3. (Provable in S4) A ∨ psq; � (A ∨ ps′q) =⇒ A ∨ ps′q.
4. (Cut(2,3)) A ∨ psq; pΓq, psq =⇒ A ∨ ps′q.
5. (Provable in S4) A ∨ psq; pΓq,A =⇒ A ∨ ps′q.
6. ((∨ L) on 4,5) A ∨ psq; pΓq,A ∨ psq =⇒ A ∨ ps′q.
7. ((copy) on 6) A ∨ psq; pΓq =⇒ A ∨ ps′q.
8. (Weaken 7) pΓq,A ∨ psq; pΓq =⇒ A ∨ ps′q.
9. ((copy) on 8) pΓq,A ∨ psq; · =⇒ A ∨ ps′q.

10. ((�R) on 9) pΓq,A ∨ psq; · =⇒ � (A ∨ ps′q).
11. ((�L) on 10) A ∨ psq; � pΓq =⇒ � (A ∨ ps′q).
12. (Lemma 4) A ∨ psq; pΓq =⇒ � pΓq.
13. (Cut(12,11)) A ∨ psq; pΓq =⇒ � (A ∨ ps′q).
14. ((�L) on 13) ·; pΓq,� (A ∨ psq) =⇒ � (A ∨ ps′q).

In order to prove completeness, we define an inverse translation (x·y) from
S4 to ICL. Since, not every sequent in S4 corresponds to an ICL sequent, this
translation is only partial. We first define a notion of a regular S4 sequent.
Intuitively, an S4 sequent is regular if it can occur in a proof of a sequent that is
obtained by translating from ICL. Thus if we start from a translated ICL sequent
and construct its proof backwards, we will only encounter regular sequents.

Definition 3 (Regular Sequents) An S4 sequent is called regular if it has
one of the forms:

(i) ∆;Γ, γ =⇒ Φ
(ii) ∆;Γ, γ =⇒ Φ,A where A 6∈ γ

and the following hold:

1. γ is a multiset of principals.
2. ∆ contains assumptions of the form A ∨ psq, psq ⊃ ptq and p only.
3. Γ contains assumptions of the form A ∨ psq, psq ⊃ ptq, p and psq only.
4. Φ contains assumptions of the form psq and p only.

Definition 4 (x·y) The inverse translation for formulas occurring in regular
sequents is the following:

xpsqy = s
xpy = p

xpsq ⊃ ptqy = s ⊃ t
xA ∨ psqy = A says s

For multisets ∆,Γ, Φ the inverse translation is defined pointwise.

Lemma 6 (Completeness)

1. If ∆;Γ, γ =⇒ Φ is regular, then x∆y, xΓy =⇒∨ xΦy.
2. If ∆;Γ, γ =⇒ Φ,A is regular, then x∆y, xΓy =⇒ A says (∨ xΦy).



Proof. We prove both statements simultaneously by induction on the given
derivations. We analyze the last rule of the derivation by cases. We make heavy
use of regularity to restrict the cases. We also use weakening implicitly.

Case.
∆;Γ, p, γ =⇒ Φ, p

(init)

To show: x∆y, xΓy, p =⇒ (∨ xΦy) ∨ p. Clearly, this holds by rules (init)
and (∨ R2).
Case.

∆;Γ, p, γ =⇒ Φ, p,A
(init)

To show: x∆y, xΓy, p =⇒ A says ((∨ xΦy) ∨ p).
1. ((init)) x∆y, xΓy, p =⇒ p.
2. ((∨ R2) on 1) x∆y, xΓy, p =⇒ (∨ xΦy) ∨ p.
3. ((saysR) on 2) x∆y, xΓy, p =⇒ A says ((∨ xΦy) ∨ p).

Case.
∆, s;Γ, s, γ =⇒ Φ

∆, s;Γ, γ =⇒ Φ
(copy)

To show: x∆y, xsy, xΓy =⇒∨ xΦy.
1. (i.h.) x∆y, xsy, xΓy, xsy =⇒∨ xΦy.
2. (Lemma 3 on 1) x∆y, xsy, xΓy =⇒∨ xΦy.

Case.
∆, s;Γ, s, γ =⇒ Φ,A

∆, s;Γ, γ =⇒ Φ,A
(copy)

To show: x∆y, xsy, xΓy =⇒ A says (∨ xΦy).
1. (i.h.) x∆y, xsy, xΓy, xsy =⇒ A says (∨ xΦy).
2. (Lemma 3 on 1) x∆y, xsy, xΓy =⇒ A says (∨ xΦy).

Case. (⊃ R) does not arise due to regularity.

Case.
∆;Γ, γ =⇒ Φ, psq ∆;Γ, ptq, γ =⇒ Φ

∆;Γ, psq ⊃ ptq, γ =⇒ Φ
(⊃ L)

To show: x∆y, xΓy, s ⊃ t =⇒∨ xΦy.
1. (i.h.) x∆y, xΓy =⇒ (∨ xΦy) ∨ s.
2. (i.h.) x∆y, xΓy, t =⇒∨ xΦy.
3. (Theorem 10) x∆y, xΓy, s =⇒ s.
4. ((⊃ L) on 3,2) x∆y, xΓy, s ⊃ t, s =⇒∨ xΦy.
5. (Theorem 10) x∆y, xΓy, s ⊃ t,∨ xΦy =⇒∨ xΦy.
6. ((∨ L) on 5,4) x∆y, xΓy, s ⊃ t, (∨ xΦy) ∨ s =⇒∨ xΦy.
7. (Cut(1,6)) x∆y, xΓy, s ⊃ t =⇒∨ xΦy.

Case.
∆;Γ, γ =⇒ Φ, psq,A ∆;Γ, ptq, γ =⇒ Φ,A

∆;Γ, psq ⊃ ptq, γ =⇒ Φ,A
(⊃ L)

To show: x∆y, xΓy, s ⊃ t =⇒ A says (∨ xΦy).
1. (i.h.) x∆y, xΓy =⇒ A says ((∨ xΦy) ∨ s).
2. (Theorem 10) x∆y, xΓy, s ⊃ t,∨ xΦy =⇒∨ xΦy.
3. ((saysR) on 2) x∆y, xΓy, s ⊃ t,∨ xΦy =⇒ A says (∨ xΦy).
4. (i.h.) x∆y, xΓy, t =⇒ A says (∨ xΦy).
5. (Theorem 10) x∆y, xΓy, s =⇒ s.
6. ((⊃ L) on 5,4) x∆y, xΓy, s ⊃ t, s =⇒ A says (∨ xΦy).
7. ((∨ L) on 6,3) x∆y, xΓy, s ⊃ t, (∨ xΦy) ∨ s =⇒ A says (∨ xΦy).
8. ((saysL) on 7) x∆y, xΓy, s ⊃ t,A says ((∨ xΦy) ∨ s) =⇒ A says (∨

xΦy).



9. (Cut(1,8)) x∆y, xΓy, s ⊃ t =⇒ A says (∨ xΦy).

Case.
∆;Γ, γ =⇒ Φ, psq ∆;Γ, γ =⇒ Φ, ptq

∆;Γ, γ =⇒ Φ, psq ∧ ptq
(∧ R)

To show: x∆y, x∆y =⇒ (∨ xΦy) ∨ (s ∧ t).
1. (i.h.) x∆y, xΓy =⇒ (∨ xΦy) ∨ s.
2. (i.h.) x∆y, xΓy =⇒ (∨ xΦy) ∨ t.
3. (Provable in ICL) (∨ xΦy) ∨ s, (∨ xΦy) ∨ t =⇒ (∨ xΦy) ∨ (s ∧ t).
4. (Cut(1,3)) x∆y, xΓy, (∨ xΦy) ∨ t =⇒ (∨ xΦy) ∨ (s ∧ t).
5. (Cut(2,4)) x∆y, x∆y =⇒ (∨ xΦy) ∨ (s ∧ t).

Case.
∆;Γ, γ =⇒ Φ, psq,A ∆;Γ, γ =⇒ Φ, ptq,A

∆;Γ, γ =⇒ Φ, psq ∧ ptq,A
(∧ R)

To show: x∆y, x∆y =⇒ A says ((∨ xΦy) ∨ (s ∧ t)).
1. (i.h.) x∆y, xΓy =⇒ A says ((∨ xΦy) ∨ s).
2. (i.h.) x∆y, xΓy =⇒ A says ((∨ xΦy) ∨ t).
3. (Provable in ICL) A says ((∨ xΦy) ∨ s),A says ((∨ xΦy) ∨ t) =⇒

A says ((∨ xΦy) ∨ (s ∧ t)).
4. (Cut(1,3)) x∆y, xΓy,A says ((∨ xΦy) ∨ t) =⇒ A says ((∨ xΦy) ∨ (s ∧
t)).

5. (Cut(2,4)) x∆y, x∆y =⇒ A says ((∨ xΦy) ∨ (s ∧ t)).
Case. (∧ L) is straightforward. (The principal formula can only be psq ∧
ptq.)
Case. (∨ R) is straightforward. (The principal formula can only be psq ∨
ptq.)

Case.
∆;Γ, psq, γ =⇒ Φ ∆;Γ, ptq, γ =⇒ Φ

∆;Γ, psq ∨ ptq, γ =⇒ Φ
(∨ L)

To show: x∆y, xΓy, s ∨ t =⇒∨ xΦy.
1. (i.h) x∆y, xΓy, s =⇒∨ xΦy.
2. (i.h.) x∆y, xΓy, t =⇒∨ xΦy.
3. ((∨ L) on 1,2) x∆y, xΓy, s ∨ t =⇒∨ xΦy.

Case.
∆;Γ, psq, γ =⇒ Φ,A ∆;Γ, ptq, γ =⇒ Φ,A

∆;Γ, psq ∨ ptq, γ =⇒ Φ,A
(∨ L)

To show: x∆y, xΓy, s ∨ t =⇒∨ A says (xΦy).
1. (i.h) x∆y, xΓy, s =⇒∨ A says (xΦy).
2. (i.h.) x∆y, xΓy, t =⇒∨ A says (xΦy).
3. ((∨ L) on 1,2) x∆y, xΓy, s ∨ t =⇒ A says (∨ xΦy).

Case.
∆;Γ, γ,A =⇒ Φ ∆;Γ, psq, γ =⇒ Φ

∆;Γ,A ∨ psq, γ =⇒ Φ
(∨ L)

To show: x∆y, xΓy,A says s =⇒∨ xΦy.
1. (i.h. on 1st premise) x∆y, xΓy =⇒∨ xΦy.
2. (Weakening on 1) x∆y, xΓy,A says s =⇒∨ xΦy.

Case.
∆;Γ, γ,A =⇒ Φ,B ∆;Γ, psq, γ =⇒ Φ,B

∆;Γ,A ∨ psq, γ =⇒ Φ,B
(∨ L) [A 6= B]

To show: x∆y, xΓy,A says s =⇒ B says (∨ xΦy).
In this case the first premise is regular because B 6∈ A, γ if B 6∈ γ.
1. (i.h. on 1st premise) x∆y, xΓy =⇒ B says (∨ xΦy).



2. (Weakening on 1) x∆y, xΓy,A says s =⇒ B says (∨ xΦy).

Case.
∆;Γ, γ,A =⇒ Φ,A ∆;Γ, psq, γ =⇒ Φ,A

∆;Γ,A ∨ psq, γ =⇒ Φ,A
(∨ L)

To show: x∆y, xΓy,A says s =⇒ A says (∨ xΦy).

1. (i.h. on 2nd premise) x∆y, xΓy, s =⇒ A says (∨ xΦy).
2. ((saysL) on 1) x∆y, xΓy,A says s =⇒ A says (∨ xΦy).

Case.
∆;Γ, γ =⇒ Φ,>

(>R)

To show: x∆y, xΓy =⇒ (∨ xΦy) ∨ >. This follows by rules (>R) and (∨ R2).
Case.

∆;Γ, γ =⇒ Φ,>,A
(>R)

To show: x∆y, xΓy =⇒ A says ((∨ xΦy) ∨ >). This follows by rules (>R),
(∨ R2) and (saysR).
Case.

∆;Γ,⊥, γ =⇒ Φ
(⊥L)

To show: x∆y, xΓy,⊥ =⇒∨ xΦy. This is immediate from rule (⊥L).
Case.

∆;Γ,⊥, γ =⇒ Φ,A
(⊥L)

To show: x∆y, xΓy,⊥ =⇒ A says (∨ xΦy). This is immediate from rule
(⊥L).

Case.
∆; · =⇒ s

∆;Γ, γ =⇒ Φ,� s
(�R)

By regularity, s can only have the forms p, ps1q ⊃ ps2q and A ∨ ptq.

Subcase. s = p.
To show: x∆y, xΓy =⇒ (∨ xΦy) ∨ p.
By i.h. we get x∆y =⇒ p. Hence the result follows by weakening and
(∨ R2).
Subcase. s = ps1q ⊃ ps2q.
To show: x∆y, xΓy =⇒ (∨ xΦy) ∨ (s1 ⊃ s2).

(a) (Inversion on premise) ∆; ps1q =⇒ ps2q.
(b) (i.h. on a) x∆y, s1 =⇒ s2.
(c) ((⊃ R) on b) x∆y =⇒ s1 ⊃ s2.
(d) ((∨ R2) on c) x∆y =⇒ (∨ xΦy) ∨ (s1 ⊃ s2).
(e) (Weakening on d) x∆y, xΓy =⇒ (∨ xΦy) ∨ (s1 ⊃ s2).

Subcase. s = A ∨ ptq.
To show: x∆y, xΓy =⇒ (∨ xΦy) ∨ A says s.

(a) (Inversion on premise) ∆; · =⇒ ptq,A.
(b) (i.h. on a) x∆y =⇒ A says s.
(c) ((∨ R2) on b) x∆y =⇒ (∨ xΦy) ∨ A says s.
(d) (Weakening on c) x∆y, xΓy =⇒ (∨ xΦy) ∨ A says s.

Case.
∆; · =⇒ s

∆;Γ, γ =⇒ Φ,� s,B
(�R)

This case is similar to the previous case. We analyze the three possible
forms of s. However, at the end of each possible subcase, we must also use
the additional rule (saysR) to add a B says on the right.



Case.
∆, s;Γ, γ =⇒ Φ

∆;Γ,� s, γ =⇒ Φ
(�L)

To show: x∆y, xΓy, x� sy =⇒∨ xΦy.

By regularity, s must have the form p, ps1q ⊃ ps2q or A ∨ ptq. In each case
observe that xsy = x� sy.

By i.h. we get x∆y, xsy, xΓy =⇒∨ xΦy.

Therefore, x∆y, xΓy, x� sy =⇒∨ xΦy.

Case.
∆, s;Γ, γ =⇒ Φ,A

∆;Γ,� s, γ =⇒ Φ,A
(�L)

Similar to the previous case.

Proof (Proof of Theorem 1).

1. Suppose ` s in ICL. Then · =⇒ s. By Lemma 5, ·; · =⇒ psq in S4. Hence by
Theorem 8, ` psq.

2. Suppose ` psq in S4. By Theorem 8, ·; · =⇒ psq. Hence by Lemma 6, · =⇒
xpsqy in ICL. By definition, xpsqy = s. Therefore, · =⇒ s, i.e., ` s.

Proof (Proof of Corollary 2). We prove this theorem by constructing from every
ICL Kripke model of s, an equivalent S4 Kripke model of psq and vice-versa.

For an ICL Kripke model K = 〈W,≤, ρ, θ〉, define an S4 Kripke model
φ(K) = 〈W,≤, ρ′〉, where ρ′(p) = ρ(p) on atomic formulas and ρ′(A) = θ(A)
for principals. It is easy to show by induction on s that K |= s if and only if
φ(K) |= psq. Now suppose that ` s. Then by Theorem 1, ` psq. By soundness of
Kripke models with respect to S4 (Theorem 8), it follows that φ(K) |= psq for
every ICL model K. Hence, K |= s and therefore, |= s.

For an S4 Kripke model S = 〈W,≤, ρ′〉, define an ICL Kripke model ψ(S) =
〈W,≤, ρ, θ〉, by taking ρ(p) = {w ∈ W |∀w′ ≥ w,w′ ∈ ρ′(p)} and θ(A) = ρ′(A).
It is again easy to show by induction on ICL formulas s, that S |= psq if and
only if ψ(S) |= s. Now suppose |= s. Then for any frame S, ψ(S) |= s. Therefore,
S |= psq. By completeness of Kripke models for S4 (Theorem 8), we get ` psq.
Hence by Theorem 1, ` s.

C Details from Section 3

We first describe a sequent calculus for the logic ICL⇒. This extends the sequent
calculus for ICL (Figure 3) with additional rules for ⇒. The cut rule is no
longer admissible and must be added explicitly. Further, the init rule must be
generalized to account for formulas of the form A ⇒ B. This sequent calculus is
shown in Figure 4. It is easy to show that this calculus corresponds exactly to
the Hilbert style axiomatization.

Lemma 7 For every ICL⇒ formula s, ` psq ⊃ � psq in S4. (Or equivalently,
·; psq =⇒ � psq.)



(ALL RULES OF FIGURE 3 except (init) ARE INCLUDED)

Γ =⇒ A ⇒ A
(refl)

Γ =⇒ (A ⇒ B) ⊃ (B ⇒ C) ⊃ (A ⇒ C)
(trans)

Γ =⇒ (A ⇒ B) ⊃ (A says s) ⊃ (B says s)
(delegate)

Γ =⇒ (B says (A ⇒ B)) ⊃ (A ⇒ B)
(handoff)

Γ, s =⇒ s
(init)

Γ =⇒ s Γ, s =⇒ s
′

Γ =⇒ s
′

(cut)

Fig. 4. Sequent calculus for ICL⇒

Proof. As in the proof of Lemma 4, we induct on s to show that for every S4
Kripke frame S, S |= psq ⊃ � psq. By Theorem 8, it follows that ` psq ⊃ � psq.
All cases of the induction are the same as that of Lemma 4. There is just one
new case: s = A ⇒ B. In this case, psq = � (A ⊃ B). So we must show for any
world w in a Kripke model S that w |= � (A ⊃ B) ⊃ � � (A ⊃ B). This proof is
exactly like the case s = p from Lemma 4.

Lemma 8 (Soundness) If Γ =⇒ s in ICL⇒, then ·; pΓq =⇒ psq in S4.

Proof. Exactly like Lemma 5. We show here the additional cases in ICL⇒.

Case.
Γ =⇒ A ⇒ A

(refl)

To show: ·; pΓq =⇒ � (A ⊃ A).

1. ((init)) ·; A =⇒ A.
2. ((⊃ R) on 1) ·; · =⇒ A ⊃ A.
3. ((�R) on 2) ·; pΓq =⇒ � (A ⊃ A).

Case.
Γ =⇒ (A ⇒ B) ⊃ (B ⇒ C) ⊃ (A ⇒ C)

(trans)

To show: ·; pΓq =⇒ � ((� (A ⊃ B)) ⊃ � ((� (B ⊃ C)) ⊃ � (A ⊃ C))).

1. (Provable in S4) ·; A ⊃ B,B ⊃ C =⇒ A ⊃ C.
2. (Weakening, (copy) on 1) A ⊃ B,B ⊃ C; · =⇒ A ⊃ C.
3. ((�R) on 2) A ⊃ B,B ⊃ C; · =⇒ � (A ⊃ C).
4. ((�L) on 3) A ⊃ B; � (B ⊃ C) =⇒ � (A ⊃ C).
5. ((⊃ R) on 4) A ⊃ B; · =⇒ (� (B ⊃ C)) ⊃ � (A ⊃ C).
6. ((�R) on 5) A ⊃ B; · =⇒ � ((� (B ⊃ C)) ⊃ � (A ⊃ C)).
7. ((�L) on 6) ·; � (A ⊃ B) =⇒ � ((� (B ⊃ C)) ⊃ � (A ⊃ C)).
8. ((⊃ R) on 7) ·; · =⇒ (� (A ⊃ B)) ⊃ � ((� (B ⊃ C)) ⊃ � (A ⊃ C)).
9. ((�R) on 8) ·; pΓq =⇒ � ((� (A ⊃ B)) ⊃ � ((� (B ⊃ C)) ⊃ � (A ⊃ C))).

Case.
Γ =⇒ (A ⇒ B) ⊃ (A says s) ⊃ (B says s)

(delegate)

To show: ·; pΓq =⇒ � ((� (A ⊃ B)) ⊃ � ((� (A ∨ psq)) ⊃ � (B ∨ psq))).



1. (Provable in S4) ·; A ⊃ B,A ∨ psq =⇒ B ∨ psq.
We repeat steps (2)-(9) from the previous case by replacing (B ⊃ C) with
(A ∨ psq) and (A ⊃ C) with (B ∨ psq). We finally get:

9 ·; pΓq =⇒ � ((� (A ⊃ B)) ⊃ � ((� (A ∨ psq)) ⊃ � (B ∨ psq))).

Case.
Γ =⇒ (B says (A ⇒ B)) ⊃ (A ⇒ B)

(handoff)

To show: ·; pΓq =⇒ � ((� (B ∨ � (A ⊃ B))) ⊃ � (A ⊃ B)).

1. (Provable in S4) ·; B =⇒ A ⊃ B.
2. (Provable in S4) ·; � (A ⊃ B) =⇒ A ⊃ B.
3. ((∨ L) on 1,2) ·; B ∨ � (A ⊃ B) =⇒ A ⊃ B.
4. (Weakening, (copy) on 3) B ∨ � (A ⊃ B); · =⇒ A ⊃ B.
5. ((�R) on 4) B ∨ � (A ⊃ B); · =⇒ � (A ⊃ B).
6. ((�L) on 5) ·; � (B ∨ � (A ⊃ B)) =⇒ � (A ⊃ B).
7. ((⊃ R) on 6) ·; · =⇒ (� (B ∨ � (A ⊃ B))) ⊃ � (A ⊃ B).
8. ((�R) on 7) ·; pΓq =⇒ � ((� (B ∨ � (A ⊃ B))) ⊃ � (A ⊃ B)).

Case.
Γ, s =⇒ s

(init)

To show: ·; pΓq, psq =⇒ psq.
Follows immediately from Theorem 7.

Case.
Γ =⇒ s Γ, s =⇒ s′

Γ =⇒ s′
(cut)

To show: ·; pΓq =⇒ ps′q.

1. (i.h.) ·; pΓq =⇒ psq.
2. (i.h.) ·; pΓq, psq =⇒ ps′q.
3. (Cut(1,2) in S4) ·; pΓq =⇒ ps′q.

Next we prove completeness of the translation from ICL⇒ to S4. As before,
we syntactically characterize regular sequents, i.e., those sequents that may po-
tentially occur in a derivation whose conclusion is obtained by translation. In this
case there are two kinds of regular sequents: α-regular sequents and β-regular
sequents. A translated sequent is always an α-regular sequent. A β-regular se-
quent also carries a label with it. This label is the name of principal. It is written
over the sequent arrow, as in Γ =⇒A s. These labels are inferred from a given
derivation. Hence they are merely a proof tool, not a modification to the proof
system of S4. The exact manner in which labels are inferred is described after
the definition of regular sequents.

Definition 5 (Regular Sequents) An S4 sequent is called α-regular if it has
the form:

∆;Γ, γ =⇒ Φ

and the following hold:

1. γ is a multiset of principals.
2. ∆ contains assumptions of the form A ∨ psq, psq ⊃ ptq, p and A ⊃ B only.
3. Γ contains assumptions of the form A ∨ psq, psq ⊃ ptq, p, A ⊃ B and psq

only.



4. Φ contains assumptions of the form psq and p only.

An S4 sequent is called β-regular if it has the form:

∆;Γ, γ =⇒C Φ, φ

and the following hold:

1. C is an inferred label (described later).
2. γ and φ are multisets of principals.
3. ∆ contains assumptions of the form A ∨ psq, psq ⊃ ptq, p and A ⊃ B only.
4. Γ contains assumptions of the form A ∨ psq, psq ⊃ ptq, p, A ⊃ B and psq

only.
5. Φ contains assumptions of the form psq and p only.

Inferring labels on β-regular sequents. Given a derivation of a translated sequent,
we infer labels on its sequents starting from the conclusion and proceeding to
the leaves, according to the following rules.

1. The final conclusion of the entire derivation has no label since it is an α-
regular sequent.

2. If the conclusion of a rule other than �R has some label, then the premises
have the same label. If the conclusion has no label, nor do the premises.

3. For a rule �R, the label on the premise is determined by the principal
formula. The following table lists the possible principal formulas and the
corresponding labels on the premises. If “No label” is listed, it means that
the premise is an α-regular sequent.

Principal Formula Label
� p No label

� (A ⊃ B) B

� (A ∨ psq) A

� (psq ⊃ ptq) No label

Now we define an inverse translation from formulas and principals occurring in
regular sequents to formulas of ICL⇒.

Definition 6 (x·y) The inverse translation for formulas occurring in regular
sequents is the following:

xpsqy = s
xpy = p

xpsq ⊃ ptqy = s ⊃ t
xA ∨ psqy = A says s
xA ⊃ By = A ⇒ B

For principals, the inverse translation is defined relative to another principal as
follows:

xAyC = A ⇒ C

For multisets ∆,Γ, Φ, φ, γ the inverse translation is defined pointwise.



Lemma 9 (Completeness)

1. If ∆;Γ, γ =⇒ Φ is α-regular and provable in S4, then x∆y, xΓy =⇒∨ xΦy is
provable in ICL⇒.

2. If ∆;Γ, γ =⇒C Φ, φ is β-regular and provable in S4, then x∆y, xΓy, xφyC =⇒
C says (∨ xΦy ∨ xγyC) is provable in ICL⇒.

Proof. The proof is by simultaneous induction on the height of the given S4
derivation. We analyze cases of the last rule in the derivation.

Case.
∆;Γ, p, γ =⇒ Φ, p

(init)

To show: x∆y, xΓy, p =⇒∨ xΦy ∨ p.

1. (Rule (init)) x∆y, xΓy, p =⇒ p.
2. (Rule (∨ R2) on 1) x∆y, xΓy, p =⇒∨ xΦy ∨ p.

Case.
∆;Γ, p, γ =⇒C Φ, p, φ

(init)

To show: x∆y, xΓy, p, xφyC =⇒ C says (∨ xΦy ∨ p ∨ xγyC).

1. (Rule (init)) x∆y, xΓy, p, xφyC =⇒ p.
2. (Rule (∨ R2), (∨ R1) on 1) x∆y, xΓy, p, xφyC =⇒∨ xΦy ∨ p ∨ xγyC.
3. (Rule (says R) on 2) x∆y, xΓy, p, xφyC =⇒ C says (∨ xΦy ∨ p ∨ xγyC).

Case.
∆;Γ, γ,A =⇒C Φ, φ,A

(init)

To show: x∆y, xΓy, xφyC, (A ⇒ C) =⇒ C says (∨ xΦy ∨ xγyC ∨ (A ⇒ C)).

1. ((init)) x∆y, xΓy, xφyC, (A ⇒ C) =⇒ (A ⇒ C).
2. ((∨ R1) on 1) x∆y, xΓy, xφyC, (A ⇒ C) =⇒∨ xΦy ∨ xγyC ∨ (A ⇒ C).
3. ((says R) on 2) x∆y, xΓy, xφyC, (A ⇒ C) =⇒ C says (∨ xΦy ∨ xγyC ∨

(A ⇒ C)).

Case.
∆, s;Γ, s, γ =⇒ Φ

∆, s;Γ, γ =⇒ Φ
(copy)

To show: x∆y, xsy, xΓy =⇒∨ xΦy.

1. (i.h.) x∆y, xsy, xΓy, xsy =⇒∨ xΦy.
2. (Strengthening on 1) x∆y, xsy, xΓy =⇒∨ xΦy.

Case.
∆, s;Γ, s, γ =⇒C Φ, φ

∆, s;Γ, γ =⇒C Φ, φ
(copy)

To show: x∆y, xsy, xΓy, xφyC =⇒ C says (∨ xΦy ∨ xγyC).

1. (i.h.) x∆y, xsy, xΓy, xsy, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
2. (Strengthening on 1) x∆y, xsy, xΓy, xφyC =⇒ C says (∨ xΦy ∨ xγyC).

Case.
∆;Γ, s =⇒ Φ, t

∆;Γ =⇒ Φ, s ⊃ t
(⊃ R)

Does not arise since s ⊃ t cannot be in Φ in any regular sequent.

Case.
∆;Γ, γ =⇒ Φ, psq ∆;Γ, ptq, γ =⇒ Φ

∆;Γ, psq ⊃ ptq, γ =⇒ Φ
(⊃ L)

To show: x∆y, xΓy, s ⊃ t =⇒∨ xΦy.

1. ((init)) x∆y, xΓy, s ⊃ t,∨ xΦy =⇒∨ xΦy.
2. ((init)) x∆y, xΓy, s ⊃ t, s =⇒ s.



3. (i.h. 2) x∆y, xΓy, t =⇒∨ xΦy.
4. ((⊃ L) on 2,3) x∆y, xΓy, s ⊃ t, s =⇒∨ xΦy.
5. ((∨ L) on 1,4) x∆y, xΓy, s ⊃ t,∨ xΦy ∨ s =⇒∨ xΦy.
6. (i.h. 1) x∆y, xΓy =⇒∨ xΦy ∨ s.
7. (Cut (6,5)) x∆y, xΓy, s ⊃ t =⇒∨ xΦy.

Case.
∆;Γ, γ =⇒C Φ, psq, φ ∆;Γ, ptq, γ =⇒C Φ, φ

∆;Γ, psq ⊃ ptq, γ =⇒C Φ, φ
(⊃ L)

To show: x∆y, xΓy, s ⊃ t, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
Let Ψ = x∆y, xΓy, xφyC.
1. ((init)) Ψ, s ⊃ t, s =⇒ s.
2. (i.h. 2) Ψ, t =⇒ C says (∨ xΦy ∨ xγyC).
3. ((⊃ L) on 1,2) Ψ, s, s ⊃ t =⇒ C says (∨ xΦy ∨ xγyC).
4. ((init)) Ψ, (∨ xΦy ∨ xγyC) =⇒ (∨ xΦy ∨ xγyC).
5. ((says R) on 4) Ψ, (∨ xΦy ∨ xγyC) =⇒ C says (∨ xΦy ∨ xγyC).
6. ((∨ L) on 3,5) Ψ, (∨ xΦy ∨ s ∨ xγyC), s ⊃ t =⇒ C says (∨ xΦy ∨ xγyC).
7. ((says L) on 6) Ψ,C says (∨ xΦy ∨ s ∨ xγyC), s ⊃ t =⇒ C says (∨

xΦy ∨ xγyC).
8. (i.h. 1) Ψ =⇒ C says (∨ xΦy ∨ s ∨ xγyC).
9. (Cut(8,7)) Ψ, s ⊃ t =⇒ C says (∨ xΦy ∨ xγyC).

Case.
∆;Γ, γ =⇒ Φ,A ∆;Γ, γ,B =⇒ Φ

∆;Γ,A ⊃ B, γ =⇒ Φ
(⊃ L)

To show: x∆y, xΓy, (A ⇒ B) =⇒∨ xΦy.
Note that the second premise is regular (the first one is not).
1. (i.h. 2) x∆y, xΓy =⇒∨ xΦy.
2. (Weakening on 1) x∆y, xΓy, (A ⇒ B) =⇒∨ xΦy.

Case.
∆;Γ, γ =⇒C Φ, φ,A ∆;Γ, γ,B =⇒C Φ, φ

∆;Γ,A ⊃ B, γ =⇒C Φ, φ
(⊃ L)

To show: x∆y, xΓy, (A ⇒ B), xφyC =⇒ C says (∨ xΦy ∨ xγyC).
Let Ψ = x∆y, xΓy, xφyC. Then we have to show that:

Ψ, (A ⇒ B) =⇒ C says (∨ xΦy ∨ xγyC)

1. (Provable in ICL⇒) Ψ,A ⇒ B,B ⇒ C, (A ⇒ B) ⊃ (B ⇒ C) ⊃ (A ⇒
C) =⇒ (A ⇒ C).

2. ((trans)) Ψ =⇒ (A ⇒ B) ⊃ (B ⇒ C) ⊃ (A ⇒ C).
3. (Cut (2,1)) Ψ, (A ⇒ B), (B ⇒ C) =⇒ (A ⇒ C).
4. (i.h. 1) Ψ, (A ⇒ C) =⇒ C says (∨ xΦy ∨ xγyC).
5. (Cut (4,3)) Ψ, (A ⇒ B), (B ⇒ C) =⇒ C says (∨ xΦy ∨ xγyC).
6. ((init)) Ψ, (∨ xΦy ∨ xγyC) =⇒ (∨ xΦy ∨ xγyC).
7. ((saysR) on 6) Ψ, (∨ xΦy ∨ xγyC) =⇒ C says (∨ xΦy ∨ xγyC).
8. ((∨ L) on 7,5) Ψ, (∨ xΦy ∨ xγyC ∨ (B ⇒ C)), (A ⇒ B) =⇒ C says (∨

xΦy ∨ xγyC).
9. ((says L) on 8) Ψ,C says (∨ xΦy ∨ xγyC ∨ (B ⇒ C)), (A ⇒ B) =⇒

C says (∨ xΦy ∨ xγyC).
10. (i.h. 2) Ψ =⇒ C says (∨ xΦy ∨ xγyC ∨ (B ⇒ C)).
11. (Cut (10,9)) Ψ, (A ⇒ B) =⇒ C says (∨ xΦy ∨ xγyC).



Case.
∆;Γ, γ =⇒ Φ, psq ∆;Γ, γ =⇒ Φ, ptq

∆;Γ, γ =⇒ Φ, psq ∧ ptq
(∧ R)

To show: x∆y, xΓy =⇒∨ xΦy ∨ (s ∧ t).

1. (Provable in ICL⇒) ∨ xΦy ∨ s,∨ xΦy ∨ t =⇒∨ xΦy ∨ (s ∧ t).
2. (i.h. 1) x∆y, xΓy =⇒∨ xΦy ∨ s.
3. (i.h. 2) x∆y, xΓy =⇒∨ xΦy ∨ t.
4. (Cut (2,1)) x∆y, xΓy,∨ xΦy ∨ t =⇒∨ xΦy ∨ (s ∧ t).
5. (Cut (3,4)) x∆y, xΓy =⇒∨ xΦy ∨ (s ∧ t).

Case.
∆;Γ, γ =⇒C Φ, psq, φ ∆;Γ, γ =⇒C Φ, ptq, φ

∆;Γ, γ =⇒C Φ, psq ∧ ptq, φ
(∧ R)

To show: x∆y, xΓy, xφyC =⇒ C says (∨ xΦy ∨ xγyC ∨ (s ∧ t)).
Let Ψ = x∆y, xΓy, xφyC, and ψ =∨ xΦy ∨ xγyC. Then we have to show that:

Ψ =⇒ C says (ψ ∨ (s ∧ t)).

1. (Provable in ICL⇒) ψ ∨ s, ψ ∨ t =⇒ ψ ∨ (s ∧ t).
2. ((says R) on 1) ψ ∨ s, ψ ∨ t =⇒ C says (ψ ∨ (s ∧ t)).
3. ((says L) on 2, two times) C says (ψ ∨ s),C says (ψ ∨ t) =⇒ C says

(ψ ∨ (s ∧ t)).
4. (i.h. 1) Ψ =⇒ C says (ψ ∨ s).
5. (i.h. 2) Ψ =⇒ C says (ψ ∨ t).
6. (Cut(5, Cut(4,3)) Ψ =⇒ C says (ψ ∨ (s ∧ t)).

Case.
∆;Γ, psq, ptq, γ =⇒ Φ

∆;Γ, psq ∧ ptq, γ =⇒ Φ
(∧ L)

To show: x∆y, xΓy, s ∧ t =⇒∨ xΦy.

1. (i.h.) x∆y, xΓy, s, t =⇒∨ xΦy.
2. (Weakening on 1) x∆y, xΓy, s, t, s ∧ t =⇒∨ xΦy.
3. ((∧ L) on 2) x∆y, xΓy, s ∧ t =⇒∨ xΦy.

Case.
∆;Γ, psq, ptq, γ =⇒C Φ, φ

∆;Γ, psq ∧ ptq, γ =⇒C Φ, φ
(∧ L)

To show: x∆y, xΓy, s ∧ t, xφyC =⇒ C says (∨ xΦy ∨ xγyC).

1. (i.h.) x∆y, xΓy, s, t, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
2. (Weakening on 1) x∆y, xΓy, s, t, s ∧ t, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
3. ((∧ L) on 2) x∆y, xΓy, s ∧ t, xφyC =⇒ C says (∨ xΦy ∨ xγyC).

Case.
∆;Γ, γ =⇒ Φ, psq, ptq

∆;Γ, γ =⇒ Φ, psq ∨ ptq
(∨ R)

To show: x∆y, xΓy =⇒∨ xΦy ∨ (s ∨ t).
This follows immediately from the i.h.

Case.
∆;Γ, γ =⇒C Φ, psq, ptq, φ

∆;Γ, γ =⇒C Φ, psq ∨ ptq, φ
(∨ R)

To show: x∆y, xΓy, xφyC =⇒ C says (∨ xΦy ∨ (s ∨ t) ∨ xγyC).
This follows immediately from the i.h.

Case.
∆;Γ, psq, γ =⇒ Φ ∆;Γ, ptq, γ =⇒ Φ

∆;Γ, psq ∨ ptq, γ =⇒ Φ
(∨ L)

To show: x∆y, xΓy, s ∨ t =⇒∨ xΦy.



1. (i.h. 1) x∆y, xΓy, s =⇒∨ xΦy.
2. (Weakening on 1) x∆y, xΓy, s, s ∨ t =⇒∨ xΦy.
3. (i.h. 2) x∆y, xΓy, t =⇒∨ xΦy.
4. (Weakening on 3) x∆y, xΓy, t, s ∨ t =⇒∨ xΦy.
5. ((∨ L) on 2,4) x∆y, xΓy, s ∨ t =⇒∨ xΦy.

Case.
∆;Γ, psq, γ =⇒C Φ, φ ∆;Γ, ptq, γ =⇒C Φ, φ

∆;Γ, psq ∨ ptq, γ =⇒C Φ, φ
(∨ L)

To show: x∆y, xΓy, s ∨ t, xφyC =⇒ C says (∨ xΦy ∨ xγyC).

1. (i.h. 1) x∆y, xΓy, s, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
2. (Weakening on 1) x∆y, xΓy, s, s ∨ t, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
3. (i.h. 2) x∆y, xΓy, t, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
4. (Weakening on 3) x∆y, xΓy, t, s ∨ t, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
5. ((∨ L) on 2,4) x∆y, xΓy, s ∨ t, xφyC =⇒ C says (∨ xΦy ∨ xγyC).

Case.
∆;Γ, γ,A =⇒ Φ ∆;Γ, psq, γ =⇒ Φ

∆;Γ,A ∨ psq, γ =⇒ Φ
(∨ L)

To show: x∆y, xΓy,A says s =⇒∨ xΦy.

1. (i.h. 1) x∆y, xΓy =⇒∨ xΦy.
2. (Weakening on 1) x∆y, xΓy,A says s =⇒∨ xΦy.

Case.
∆;Γ, γ,A =⇒C Φ, φ ∆;Γ, psq, γ =⇒C Φ, φ

∆;Γ,A ∨ psq, γ =⇒C Φ, φ
(∨ L)

To show: x∆y, xΓy,A says s, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
Let Ψ = x∆y, xΓy, xφyC, and ψ =∨ xΦy ∨ xγyC. Then we have to show that:

Ψ,A says s =⇒ C says ψ.

1. ((init)) Ψ, ψ,A says s =⇒ ψ.
2. ((says R) on 1) Ψ, ψ,A says s =⇒ C says ψ.
3. (i.h. 2) Ψ, s =⇒ C says ψ.
4. ((says L) on 3) Ψ,C says s =⇒ C says ψ.
5. (Weakening on 4) Ψ,A ⇒ C,A says s,C says s =⇒ C says ψ.
6. ((init)) Ψ,A ⇒ C,A says s =⇒ A says s.
7. ((⊃ L) on 6,5) Ψ,A ⇒ C,A says s, (A says s) ⊃ (C says s) =⇒ C says

ψ.
8. ((init)) Ψ,A ⇒ C,A says s =⇒ A ⇒ C.
9. ((⊃ L) on 8,7) Ψ,A ⇒ C,A says s, (A ⇒ C) ⊃ (A says s) ⊃ (C says

s) =⇒ C says ψ.
10. ((delegate)) Ψ,A ⇒ C,A says s =⇒ (A ⇒ C) ⊃ (A says s) ⊃ (C says

s).
11. (Cut (10,9)) Ψ,A ⇒ C,A says s =⇒ C says ψ.
12. ((∨ L) on 2,11) Ψ, ψ ∨ (A ⇒ C),A says s =⇒ C says ψ.
13. ((says L) on 12) Ψ,C says (ψ ∨ (A ⇒ C)),A says s =⇒ C says ψ.
14. (i.h. 1) Ψ =⇒ C says (ψ ∨ (A ⇒ C)).
15. (Cut (14,13)) Ψ,A says s =⇒ C says ψ.

Case.
∆;Γ, γ =⇒ Φ,>

(>R)

To show: x∆y, xΓy =⇒∨ xΦy ∨ >.

1. ((>R)) x∆y, xΓy =⇒ >.



2. ((∨ R1) on 1) x∆y, xΓy =⇒∨ xΦy ∨ >.

Case.
∆;Γ, γ =⇒C Φ,>, φ

(>R)

To show: x∆y, xΓy, xφyC =⇒ C says (∨ xΦy ∨ > ∨ xγyC).

1. ((>R)) x∆y, xΓy, xφyC =⇒ >.
2. ((∨ R2) on 1) x∆y, xΓy, xφyC =⇒ > ∨ xγyC.
3. ((∨ R1) on 2) x∆y, xΓy, xφyC =⇒∨ xΦy ∨ > ∨ xγyC.
4. ((says R) on 3) x∆y, xΓy, xφyC =⇒ C says (∨ xΦy ∨ > ∨ xγyC).

Case.
∆;Γ,⊥, γ =⇒ Φ

(⊥L)

To show: x∆y, xΓy,⊥ =⇒∨ xΦy.
Follows immediately by rule (⊥L).
Case.

∆;Γ,⊥, γ =⇒C Φ, φ
(⊥L)

To show: x∆y, xΓy,⊥, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
Follows immediately by rule (⊥L).

Case.
∆, s;Γ, γ =⇒ Φ

∆;Γ,� s, γ =⇒ Φ
(�L)

To show: x∆y, xΓy, x� sy =⇒∨ xΦy.
By regularity conditions s can have only one of the following forms: ps1q ⊃
ps2q, A ∨ psq, p or A ⊃ B. In each case, xsy = x� sy. Thus we have:

(i.h.) x∆y, xsy, xΓy,=⇒∨ xΦy as required.

Case.
∆, s;Γ, γ =⇒C Φ, φ

∆;Γ,� s, γ =⇒C Φ, φ
(�L)

To show: x∆y, xΓy, x� sy, xφyC =⇒ C says (∨ xΦy ∨ xγyC).
By regularity conditions s can have only one of the following forms: ps1q ⊃
ps2q, A ∨ psq, p or A ⊃ B. In each case, xsy = x� sy. Thus we have:

(i.h.) x∆y, xsy, xΓy, xφyC =⇒ C says (∨ xΦy ∨ xγyC) as required.

Case.
∆; · =⇒? s

∆;Γ, γ =⇒ Φ,� s
(�R)

To show: x∆y, xΓy =⇒∨ xΦy ∨ x� sy.
We show a stronger condition
(1) x∆y =⇒ x� sy.
Then the required statement follows by weakening and rule (∨ R1).
By regularity, s = p, ps1q ⊃ ps2q, A ∨ psq or A ⊃ B. We analyze each of
these cases, proving (1) for each of these.

Subcase. s = p:
∆; · =⇒ p

∆;Γ, γ =⇒ Φ,� p
(�R)

To show: x∆y =⇒ p.
Follows by i.h.

Subcase. s = ps1q ⊃ ps2q:
∆; · =⇒ ps1q ⊃ ps2q

∆;Γ, γ =⇒ Φ,� (ps1q ⊃ ps2q)
(�R)

To show: x∆y =⇒ s1 ⊃ s2.

1. (Inversion on premise) ∆; ps1q =⇒ ps2q.
2. (i.h. on 1) x∆y, s1 =⇒ s2.



3. ((⊃ R) on 2) x∆y =⇒ s1 ⊃ s2.

Subcase. s = A ∨ psq:
∆; · =⇒A A ∨ psq

∆;Γ, γ =⇒ Φ,� (A ∨ psq)
(�R)

To show: x∆y =⇒ A says s.

1. (Inversion on premise) ∆; · =⇒A A, psq.
2. (i.h. on 1) x∆y, (A ⇒ A) =⇒ A says s.
3. ((refl)) x∆y =⇒ (A ⇒ A).
4. (Cut (3,2)) x∆y =⇒ A says s.

Subcase. s = A ⊃ B:
∆; · =⇒B A ⊃ B

∆;Γ, γ =⇒ Φ,� (A ⊃ B)
(�R)

To show: x∆y =⇒ (A ⇒ B).

1. (Inversion on premise) ∆; A =⇒B B.
2. (i.h. on 1) x∆y, (B ⇒ B) =⇒ B says (A ⇒ B).
3. ((refl)) x∆y =⇒ (B ⇒ B).
4. (Cut (3,2)) x∆y =⇒ B says (A ⇒ B).
5. ((init)) x∆y, (A ⇒ B) =⇒ (A ⇒ B).
6. ((⊃ L) on 4,5) x∆y, (B says (A ⇒ B)) ⊃ (A ⇒ B) =⇒ (A ⇒ B).
7. ((handoff)) x∆y =⇒ (B says (A ⇒ B)) ⊃ (A ⇒ B).
8. (Cut (7,6)) x∆y =⇒ (A ⇒ B).

Case.
∆; · =⇒? s

∆;Γ, γ =⇒C Φ,� s, φ
(�R)

To show: To show: x∆y, xΓy, xφyC =⇒ C says (∨ xΦy ∨ x� sy ∨ xγyC).
We show that the following stronger statement holds:
(1) x∆y =⇒ x� sy.
From this the required statement follows by weakening, (∨ R1), (∨ R2) and
(says R). That (1) holds follows exactly as in the previous case by analyzing
the forms of s.

Proof (Proof of Theorem 2).

1. Suppose ` s in ICL⇒. Then · =⇒ s. By Lemma 8, ·; · =⇒ psq in S4. Hence
by Theorem 8, ` psq.

2. Suppose ` psq in S4. By Theorem 8, ·; · =⇒ psq. Hence by Lemma 9.1,
· =⇒ xpsqy in ICL⇒. By definition, xpsqy = s. Therefore, · =⇒ s, i.e., ` s.

D Details from Section 4

We first describe a sequent calculus for ICLB. This calculus extends the one for
ICL with some additional initial sequents corresponding to the new axioms in
ICLB. One salient point is that cut is no longer admissible, hence we must add
it as an explicit rule. We use the same notation Γ =⇒ s to denote sequents in
ICLB. Figure 5 summarizes the calculus. It is easy to show that this calculus
corresponds exactly to the Hilbert style axiomatization.

Lemma 10 If A ≡ B, then ·; · =⇒ A ⊃ B in S4.



(ALL RULES OF FIGURE 3 ARE INCLUDED)

Γ =⇒ (⊥ says s) ⊃ s
(trust)

A ≡ >

Γ =⇒ A says ⊥
(untrust)

Γ =⇒ (A ⊃ B) says s ⊃ A says s ⊃ B says s
(cuc′)

Γ =⇒ s Γ, s =⇒ s
′

Γ =⇒ s
′

(cut)

Fig. 5. Sequent calculus for ICLB

Proof. This is immediate because S4 is a conservative extension of classical logic.

In order to prove Theorem 3, we first establish analogues of Lemmas 4, 5
and 6 for ICLB. It is easy to see that the proofs of Lemmas 4 and 5 do not
analyze principals at all, and hence work almost unchanged for ICLBas well. In
Lemma 5, we must additionally consider cases for each new rule in ICLB.

Lemma 11 For every ICLBformula s, ` psq ⊃ � psq in S4. (Or equivalently,
·; psq =⇒ � psq.)

Proof. Exactly like Lemma 4.

Lemma 12 (Soundness) If Γ =⇒ s in ICLB, then ·; pΓq =⇒ psq in S4.

Proof. Exactly like Lemma 5. We show here the additional cases in ICLB.

Case.
Γ =⇒ (⊥ says s) ⊃ s

(trust)

To show: ·; pΓq =⇒ � ((� (⊥ ∨ psq)) ⊃ psq)

1. (Provable in S4) ·; · =⇒ � ((� (⊥ ∨ psq)) ⊃ psq).
2. (Weakening on 1) ·; pΓq =⇒ � ((� (⊥ ∨ psq)) ⊃ psq).

Case.
A ≡ >

Γ =⇒ A says ⊥
(untrust)

To show: ·; pΓq =⇒ � (A ∨ ⊥)

1. (Lemma 10) ·; · =⇒ > ⊃ A.
2. (Inversion on 1) ·;> =⇒ A.
3. ((>R)) ·; · =⇒ >.
4. (Cut(3,2)) ·; · =⇒ A.
5. (Weakening on 4) ·; · =⇒ A, psq.
6. ((∨ R) on 5) ·; · =⇒ A ∨ psq.
7. ((�R) on 6) ·; · =⇒ � (A ∨ psq).
8. (Weakening on 7) ·; pΓq =⇒ � (A ∨ psq).



Case.
Γ =⇒ (A ⊃ B) says s ⊃ A says s ⊃ B says s

(cuc′)

To show: ·; pΓq =⇒ � ((� ((A ⊃ B) ∨ psq)) ⊃ � ((� (A ∨ psq)) ⊃ � (B ∨
psq)))

1. (Provable in S4) ·; A ∨ psq, (A ⊃ B) ∨ psq =⇒ B ∨ psq.
2. ((copy) on 1) A ∨ psq, (A ⊃ B) ∨ psq; · =⇒ B ∨ psq.
3. ((�R) on 2) A ∨ psq, (A ⊃ B) ∨ psq; · =⇒ � (B ∨ psq).
4. ((�L) on 3) (A ⊃ B) ∨ psq; � (A ∨ psq) =⇒ � (B ∨ psq).
5. ((⊃ R) on 4) (A ⊃ B) ∨ psq; · =⇒ (� (A ∨ psq)) ⊃ � (B ∨ psq).
6. ((�R) on 5) (A ⊃ B) ∨ psq; · =⇒ � ((� (A ∨ psq)) ⊃ � (B ∨ psq)).
7. ((�L) on 6) ·; � ((A ⊃ B) ∨ psq) =⇒ � ((� (A ∨ psq)) ⊃ � (B ∨ psq)).
8. ((⊃ R) on 7) ·; · =⇒ (� ((A ⊃ B) ∨ psq)) ⊃ � ((� (A ∨ psq)) ⊃ � (B ∨

psq)).
9. ((�R) on 8) ·; · =⇒ � ((� ((A ⊃ B) ∨ psq)) ⊃ � ((� (A ∨ psq)) ⊃ � (B ∨

psq))).
10. (Weakening on 9) ·; pΓq =⇒ � ((� ((A ⊃ B) ∨ psq)) ⊃ � ((� (A ∨

psq)) ⊃ � (B ∨ psq))).

Case.
Γ =⇒ s Γ, s =⇒ s′

Γ =⇒ s′
(cut)

To show: ·; pΓq =⇒ ps′q.

1. (i.h.) ·; pΓq =⇒ psq.
2. (i.h.) ·; pΓq, psq =⇒ ps′q.
3. (Cut(1,2) in S4) ·; pΓq =⇒ ps′q.

Next we prove completeness for the translation. This proof has a similar
structure to the proof of Lemma 6, but differs greatly in the details. We start
by defining regular sequents in S4, and an inverse translation for them.

Definition 7 (Regular Sequents) An S4 sequent is called regular if it has
the form:

∆;Γ, γ =⇒ Φ, φ

and the following hold:

1. γ and φ are multisets of principals.
2. ∆ contains assumptions of the form A ∨ psq, psq ⊃ ptq and p only.
3. Γ contains assumptions of the form A ∨ psq, psq ⊃ ptq, p and psq only.
4. Φ contains assumptions of the form psq and p only.

Definition 8 (x·y) The inverse translation for formulas occurring in regular
sequents is the following:

xpsqy = s
xpy = p

xpsq ⊃ ptqy = s ⊃ t
xA ∨ psqy = A says s

For multisets ∆,Γ, Φ the inverse translation is defined pointwise.



Before showing completeness, we prove some basic lemmas about ICLB.
These simplify our proof.

Lemma 13 (Basic Theorems in ICLB)

1. If A ≡ >, then Γ =⇒ A says s.
2. If A ⊃ B classically and Γ =⇒ A says s, then Γ =⇒ B says s.
3. If Γ =⇒ A says s and Γ =⇒ B says s, then Γ =⇒ (A ∧ B) says s.

Proof.

1. If A ≡ >, Γ =⇒ A says ⊥ by rule (untrust). Also it is easy to prove that
A says ⊥ =⇒ A says s. Thus by (cut), Γ =⇒ A says s.

2. If A ⊃ B, then in classical logic, (A ⊃ B) ≡ >. Thus Γ =⇒ (A ⊃ B) says s
by rule (untrust). Now it is easy to show that (A ⊃ B) says s,A says s =⇒
B says s (through rule (cuc′)). Hence by (cut), Γ,A says s =⇒ B says s.
Using the given condition Γ =⇒ A says s and (cut), we get Γ =⇒ B says s.

3. We consider the following proof:
(a) (Classical theorem) A ⊃ (B ⊃ (A ∧ B)) ≡ >.
(b) ((1) above) Γ =⇒ (A ⊃ (B ⊃ (A ∧ B))) says s.
(c) ((cuc′) and b) Γ =⇒ A says s ⊃ B says s ⊃ (A ∧ B) says s.
(d) (Given assumptions and c) Γ =⇒ (A ∧ B) says s.

Lemma 14 (Completeness) If ∆;Γ, γ =⇒ Φ, φ is regular and provable in S4,
then x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy) is provable in ICLB.
[Note: If φ = ·, we take ∨ φ = ⊥, and if γ = ·, we take ∧ γ = >.]

Proof. By induction on the size of the given S4 derivation. We analyze the last
rule of the derivation by cases. Several cases follow the the pattern of correspond-
ing cases in Lemma 6. In such situations, we write the name of the rule, the form
of the principal formula and indicate that the proof is identical by writing s.t.p.l
(similar to previous lemma).

Case.
∆;Γ, p, γ =⇒ Φ, p, φ

(init)

To show: x∆y, xΓy, p =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy) ∨ p

1. ((init)) x∆y, xΓy, p =⇒ p.
2. ((∨ R2)) x∆y, xΓy, p =⇒ (∨ xΦy) ∨ p.
3. ((saysR)) x∆y, xΓy, p =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy) ∨ p.

Case.
∆;Γ, γ, a =⇒ Φ, φ, a

(init)

To show: x∆y, xΓy =⇒ ((∧ γ ∧ a) ⊃ (∨ φ ∨ a)) says (∨ xΦy)

1. (Classical theorem) (∧ γ ∧ a) ⊃ (∨ φ ∨ a) ≡ >.
2. (Lemma 13 on 1) x∆y, xΓy =⇒ ((∧ γ ∧ a) ⊃ (∨ φ ∨ a)) says (∨ xΦy).

Case. (copy). s.t.p.l.

Case.
∆;Γ, γ,A =⇒ Φ, φ,B

∆;Γ, γ =⇒ Φ, φ,A ⊃ B
(⊃ R)

To show: x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ ∨ (A ⊃ B))) says (∨ xΦy)



1. (Classical theorem) (∧ γ ∧ A) ⊃ (∨ φ ∨ B) ≡ (∧ γ) ⊃ (∨ φ ∨ (A ⊃ B)).
2. (i.h.) x∆y, xΓy =⇒ ((∧ γ ∧ A) ⊃ (∨ φ ∨ B)) says (∨ xΦy).
3. (Lemma 13 on 1,2) x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ ∨ (A ⊃ B))) says (∨

xΦy).

Case.
∆;Γ, γ =⇒ Φ, psq, φ ∆;Γ, ptq, γ =⇒ Φ, φ

∆;Γ, psq ⊃ ptq, γ =⇒ Φ, φ
(⊃ L)

s.t.p.l.

Case.
∆;Γ, γ =⇒ Φ, φ,A ∆;Γ, γ,B =⇒ Φ, φ

∆;Γ, γ,A ⊃ B =⇒ Φ, φ
(⊃ L)

To show: x∆y, xΓy =⇒ ((∧ γ ∧ (A ⊃ B)) ⊃ (∨ φ)) says (∨ xΦy)
Define D = (∧ γ) ⊃ (∨ φ ∨ A) and E = (∧ γ ∧ B) ⊃ (∨ γ).

1. (i.h.) x∆y, xΓy =⇒ D says (∨ xΦy).
2. (i.h.) x∆y, xΓy =⇒ E says (∨ xΦy).
3. (Lemma 13) x∆y, xΓy =⇒ (D ∧ E) says (∨ xΦy).
4. (Classical theorem) (D ∧ E) ⊃ ((∧ γ ∧ (A ⊃ B)) ⊃ (∨ φ)).
5. (Lemma 13) x∆y, xΓy =⇒ ((∧ γ ∧ (A ⊃ B)) ⊃ (∨ φ)) says (∨ xΦy).

Case.
∆;Γ, γ =⇒ Φ, psq, φ ∆;Γ, γ =⇒ Φ, ptq, φ

∆;Γ, γ =⇒ Φ, psq ∧ ptq
(∧ R)

s.t.p.l.

Case.
∆;Γ, γ =⇒ Φ, φ,A ∆;Γ, γ =⇒ Φ, φ,B

∆;Γ, γ =⇒ Φ, φ,A ∧ B
(∧ R)

To show: x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ ∨ (A ∧ B))) says (∨ xΦy)
Let C = (∧ γ) ⊃ (∨ φ ∨ A) and D = (∧ γ) ⊃ (∨ φ ∨ B).
1. (i.h.) x∆y, xΓy =⇒ C says (∨ xΦy).
2. (i.h.) x∆y, xΓy =⇒ D says (∨ xΦy).
3. (Lemma 13) x∆y, xΓy =⇒ (C ∧ D) says (∨ xΦy).
4. (Classical theorem) C ∧ D ⊃ ((∧ γ) ⊃ (∨ φ ∨ (A ∧ B)))
5. (Lemma 13) x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ ∨ (A ∧ B))) says (∨ xΦy).

Case.
∆;Γ, psq, ptq, γ =⇒ Φ, φ

∆;Γ, psq ∧ ptq, γ =⇒ Φ, φ
(∧ L)

To show: x∆y, xΓy, s ∧ t =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy)

1. (i.h.) x∆y, xΓy, s, t =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy).
2. ((∧ L) on 1) x∆y, xΓy, s ∧ t =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy).

Case.
∆;Γ, γ,A,B =⇒ Φ, φ

∆;Γ, γ,A ∧ B =⇒ Φ, φ
(∧ L)

To show: x∆y, xΓy =⇒ ((∧ γ ∧ (A ∧ B)) ⊃ (∨ φ)) says (∨ xΦy)
Follows immediately by i.h.

Case.
∆;Γ, γ =⇒ Φ, psq, ptq, φ

∆;Γ, γ =⇒ Φ, psq ∨ ptq, φ
(∨ R)

To show: x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ)) says ((∨ xΦy) ∨ s ∨ t)
Follows immediately by i.h.

Case.
∆;Γ, γ =⇒ Φ, φ,A,B

∆;Γ, γ =⇒ Φ, φ,A ∨ B
(∨ R)

To show: x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ ∨ (A ∨ B))) says (∨ xΦy)
Follows immediately by i.h.



Case.
∆;Γ, psq, γ =⇒ Φ, φ ∆;Γ, ptq, γ =⇒ Φ, φ

∆;Γ, psq ∨ ptq, γ =⇒ Φ, φ
(∨ L)

To show: x∆y, xΓy, s ∨ t =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy)

1. (i.h.) x∆y, xΓy, s =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy).
2. (i.h.) x∆y, xΓy, t =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy).
3. ((∨ L) on 1,2) x∆y, xΓy, s ∨ t =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy).

Case.
∆;Γ, γ,A =⇒ Φ, φ ∆;Γ, γ,B =⇒ Φ, φ

∆;Γ, γ,A ∨ B =⇒ Φ, φ
(∨ L)

To show: x∆y, xΓy =⇒ ((∧ γ ∧ (A ∨ B)) ⊃ (∨ φ)) says (∨ xΦy)
Let C = (∧ γ ∧ A) ⊃ (∨ φ) and D = (∧ γ ∧ B) ⊃ (∨ φ).
1. (i.h.) x∆y, xΓy =⇒ C says (∨ xΦy).
2. (i.h.) x∆y, xΓy =⇒ D says (∨ xΦy).
3. (Lemma 13) x∆y, xΓy =⇒ (C ∧ D) says (∨ xΦy).
4. (Classical theorem) C ∧ D ⊃ ((∧ γ ∧ (A ∨ B)) ⊃ (∨ φ))
5. (Lemma 13) x∆y, xΓy =⇒ ((∧ γ ∧ (A ∨ B)) ⊃ (∨ φ)) says (∨ xΦy).

Case.
∆;Γ, γ,A =⇒ Φ, φ ∆;Γ, psq, γ =⇒ Φ, φ

∆;Γ,A ∨ psq, γ =⇒ Φ, φ
(∨ L)

To show: x∆y, xΓy,A says s =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy)
To make the proof easier to read, we introduce some notation. Let t =∨ xΦy

and B = (∧ γ) ⊃ (∨ φ). We have to show that x∆y, xΓy,A says s =⇒
B says t.

1. (i.h.) x∆y, xΓy =⇒ ((∧ γ ∧ A) ⊃ (∨ φ)) says t.
2. (Classical theorem) ((∧ γ ∧ A) ⊃ (∨ φ)) ≡ A ⊃ B.
3. (Lemma 13 on 1,2) x∆y, xΓy =⇒ (A ⊃ B) says t.
4. (Provable in ICLB) (A ⊃ B) says t =⇒ (A ⊃ B) says B says t.
5. (Cut(3,4)) x∆y, xΓy =⇒ (A ⊃ B) says B says t.
6. (i.h.) x∆y, xΓy, s =⇒ B says t.
7. ((saysR) on 6) x∆y, xΓy, s =⇒ A says B says t.
8. ((saysL) on 7) x∆y, xΓy,A says s =⇒ A says B says t.
9. (Weakening on 5) x∆y, xΓy,A says s =⇒ (A ⊃ B) says B says t.

10. (Lemma 13 on 8,9) x∆y, xΓy,A says s =⇒ (A ∧ (A ⊃ B)) says B says

t.
11. (Classical theorem) (A ∧ (A ⊃ B)) ⊃ B.
12. (Lemma 13 on 10,11) x∆y, xΓy,A says s =⇒ B says B says t.
13. (Provable in ICLB) B says B says t =⇒ B says t.
14. (Cut(12,13)) x∆y, xΓy,A says s =⇒ B says t.

Case.
∆;Γ, γ =⇒ (Φ,>), φ

(>R)

To show: x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy ∨ >)

1. ((>R))x∆y, xΓy =⇒ >.
2. ((∨ R2) on 1) x∆y, xΓy =⇒ (∨ xΦy ∨ >).
3. ((saysR) on 2) x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy ∨ >).

Case.
∆;Γ, γ =⇒ Φ, (φ,>)

(>R)

To show: x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ ∨ >)) says (∨ xΦy)



1. (Classical theorem) (∧ γ) ⊃ (∨ φ ∨ >) ≡ >.
2. (Lemma 13 on 1) x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ ∨ >)) says (∨ xΦy).

Case.
∆; (Γ,⊥), γ =⇒ Φ, φ

(⊥L)

To show: x∆y, xΓy,⊥ =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy)
This follows immediately by rule (⊥L).
Case.

∆;Γ, (γ,⊥) =⇒ Φ, φ
(⊥L)

To show: x∆y, xΓy =⇒ ((∧ γ ∧ ⊥) ⊃ (∨ φ)) says (∨ xΦy)

1. (Classical theorem) ((∧ γ ∧ ⊥) ⊃ (∨ φ)) ≡ >.
2. (Lemma 13 on 1) x∆y, xΓy =⇒ ((∧ γ ∧ ⊥) ⊃ (∨ φ)) says (∨ xΦy).

Case.
∆; · =⇒ s

∆;Γ, γ =⇒ Φ,� s, φ
(�R)

By regularity, s can only have the forms p, ps1q ⊃ ps2q and A ∨ ptq.
Subcase. s = p.
To show: x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy ∨ p).

(a) (i.h.) x∆y =⇒ (> ⊃ ⊥) says p.
(b) (Classical theorem) (> ⊃ ⊥) ≡ ⊥.
(c) (Lemma 13 on a,b) x∆y =⇒ ⊥ says p.
(d) ((trust) with c) x∆y =⇒ p.
(e) ((∨ R2) on d) x∆y =⇒ (∨ xΦy ∨ p).
(f) ((saysR) on e) x∆y =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy ∨ p).
(g) (Weakening on f) x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ)) says (∨ xΦy ∨ p).

Subcase. s = ps1q ⊃ ps2q.
To show: x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ)) says ((∨ xΦy) ∨ (s1 ⊃ s2)).

(a) (Inversion on premise) ∆; ps1q =⇒ ps2q.
(b) (i.h. on a) x∆y, s1 =⇒ (> ⊃ ⊥) says s2.
(c) (Classical theorem) (> ⊃ ⊥) ≡ ⊥.
(d) (Lemma 13 on b,c) x∆y, s1 =⇒ ⊥ says s2.
(e) ((trust) with d) x∆y, s1 =⇒ s2.
(f) ((⊃ R) on e) x∆y =⇒ s1 ⊃ s2.
(g) ((∨ R2) on f) x∆y =⇒ (∨ xΦy) ∨ (s1 ⊃ s2).
(h) (Weakening on g) x∆y, xΓy =⇒ (∨ xΦy) ∨ (s1 ⊃ s2).
(i) ((saysR) on h) x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ)) says ((∨ xΦy) ∨ (s1 ⊃

s2)).

Subcase. s = A ∨ ptq.
To show: x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ)) says ((∨ xΦy) ∨ A says s).

(a) (Inversion on premise) ∆; · =⇒ ptq,A.
(b) (i.h. on a) x∆y =⇒ (> ⊃ A) says s.
(c) (Classical theorem) (> ⊃ A) ≡ A.
(d) (Lemma 13 on b,c) x∆y =⇒ A says s.
(e) ((∨ R2) on d) x∆y =⇒ (∨ xΦy) ∨ A says s.
(f) (Weakening on e) x∆y, xΓy =⇒ (∨ xΦy) ∨ A says s.
(g) ((saysR) on f) x∆y, xΓy =⇒ ((∧ γ) ⊃ (∨ φ)) says ((∨ xΦy) ∨

A says s).

Case. (�L). s.t.p.l.



Proof (Proof of Theorem 3).

1. Suppose ` s in ICLB. Then · =⇒ s. By Lemma 12, ·; · =⇒ psq in S4. Hence
by Theorem 8, ` psq.

2. Suppose ` psq in S4. By Theorem 8, ·; · =⇒ psq. Hence by Lemma 14,
· =⇒ (> ⊃ ⊥) says xpsqy in ICLB. By definition, xpsqy = s. Therefore,
· =⇒ (> ⊃ ⊥) says s. Classically it is the case that > ⊃ ⊥ ≡ ⊥. Hence by
Lemma 13, · =⇒ ⊥ says s. Using rule (trust), we derive that · =⇒ s, i.e.,
` s.

E Details from Section 6

In this appendix, we prove Theorem 5 from Section 6. A proof system for ICL⇒

was presented in appendix C. A proof system for ICL∀ can be obtained by adding
the following rules for the universal quantifier to the proof system in figure 3
(Appendix B).

Γ =⇒ s

Γ =⇒ ∀X. s
(∀R)(X fresh)

Γ, ∀X. s, s[t/X ] =⇒ s′

Γ, ∀X. s =⇒ s′
(∀L)

Γ =⇒ s Γ, s =⇒ s′

Γ =⇒ s′
(cut)

Even though we expect that cut-elimination holds for ICL∀, we do not prove
it since we do not require it. The identity principle, however can be proved for
this logic as shown below:

Theorem 11 (Identity) For every formula s in ICL∀, Γ, s =⇒ s.

Proof. By induction on s.

Now we prove the soundness part of Theorem 5.

Lemma 15 (Soundness) For every ICL⇒ formula s, if ` s (i.e., · =⇒ s),
then ` [[s]] (i.e., · =⇒ [[s]]) in ICL∀.

Proof. We prove a more general result: if Γ =⇒ s in ICL⇒, then [[Γ ]] =⇒ [[s]] in
ICL∀. We induct induct on the proof of Γ =⇒ s and analyze cases on the last
rule in the proof. Most cases are straightforward (since the rules from Figure 3
are common to the two logics). We show cases of the rules that are not common
(Figure 4).

Case.
Γ =⇒ A ⇒ A

(refl)

To show: [[Γ ]] =⇒ ∀X. A says X ⊃ A says X .

1. (Provable in ICL∀) A says X =⇒ A says X .



2. ((⊃ R) on 1) · =⇒ A says X ⊃ A says X .
3. ((∀R) on 2) · =⇒ ∀X. A says X ⊃ A says X .
4. (Weakening on 3) [[Γ ]] =⇒ ∀X. A says X ⊃ A says X .

Case.
Γ =⇒ (A ⇒ B) ⊃ (B ⇒ C) ⊃ (A ⇒ C)

(trans)

To show: [[Γ ]] =⇒ (∀X. A says X ⊃ B says X) ⊃ (∀X. B says X ⊃ C says

X) ⊃ (∀X. A says X ⊃ C says X).

1. (Provable in ICL∀) A says X ⊃ B says X,B says X ⊃ C says X =⇒
A says X ⊃ C says X .

2. ((∀L) on 1) ∀X. (A says X ⊃ B says X), ∀X. (B says X ⊃ C says

X) =⇒ A says X ⊃ C says X .
3. ((∀R) on 2) ∀X. (A says X ⊃ B says X), ∀X. (B says X ⊃ C says

X) =⇒ ∀X. (A says X ⊃ C says X).
4. ((⊃ R) on 3) · =⇒ (∀X. A says X ⊃ B says X) ⊃ (∀X. B says X ⊃

C says X) ⊃ (∀X. A says X ⊃ C says X).
5. (Weakening on 4) [[Γ ]] =⇒ (∀X. A says X ⊃ B says X) ⊃ (∀X. B says

X ⊃ C says X) ⊃ (∀X. A says X ⊃ C says X).

Case.
Γ =⇒ (A ⇒ B) ⊃ (A says s) ⊃ (B says s)

(delegate)

To show: [[Γ ]] =⇒ (∀X. A says X ⊃ B says X) ⊃ A says [[s]] ⊃ B says [[s]].

1. (Provable in ICL∀) A says [[s]] ⊃ B says [[s]] =⇒ A says [[s]] ⊃ B says

[[s]].
2. ((∀L) on 1) (∀X. A says X ⊃ B says X) =⇒ A says [[s]] ⊃ B says [[s]].
3. ((⊃ R) on 2) · =⇒ (∀X. A says X ⊃ B says X) ⊃ A says [[s]] ⊃ B says

[[s]].
4. (Weakening on 3) [[Γ ]] =⇒ (∀X. A says X ⊃ B says X) ⊃ A says [[s]] ⊃

B says [[s]].

Case.
Γ =⇒ (B says (A ⇒ B)) ⊃ (A ⇒ B)

(handoff)

To show: [[Γ ]] =⇒ B says (∀X. A says X ⊃ B says X) ⊃ (∀X. A says X ⊃
B says X).

1. (Provable in ICL∀) A says X ⊃ B says X,A says X =⇒ B says X .
2. ((∀L) on 1) ∀X. (A says X ⊃ B says X),A says X =⇒ B says X .
3. ((says L) on 2) B says (∀X. A says X ⊃ B says X),A says X =⇒

B says X .
4. ((⊃ R) on 3) B says (∀X. A says X ⊃ B says X) =⇒ A says X ⊃

B says X .
5. ((∀R) on 4) B says (∀X. A says X ⊃ B says X) =⇒ ∀X. A says X ⊃

B says X .
6. ((⊃ R) on 5) · =⇒ B says (∀X. A says X ⊃ B says X) ⊃ (∀X. A says

X ⊃ B says X).
7. (Weakening on 6) [[Γ ]] =⇒ B says (∀X. A says X ⊃ B says X) ⊃

(∀X. A says X ⊃ B says X).

Case.
Γ, s =⇒ s

(init)

To show: [[Γ ]], [[s]] =⇒ [[s]].
Follows immediately by Theorem 11.



Case.
Γ =⇒ s Γ, s =⇒ s′

Γ =⇒ s′
(cut)

To show: [[Γ ]] =⇒ [[s′]].

1. (i.h. 1) [[Γ ]] =⇒ [[s]].
2. (i.h. 2) [[Γ ]], [[s]] =⇒ [[s′]].
3. ((cut) on 1,2) [[Γ ]] =⇒ [[s′]].

E.1 S4∀: Second-order S4

Proving the completeness part of Theorem 5 requires more technical machinery.
We first define a second-order extension of S4 called S4∀. Formulas in S4∀ are the
same as those in S4 with the exception that they may also contain propositional
variables (written X , Y , etc.) and universal quantifiers over formulas, written
∀X. s. A sequent calculus is obtained by adding the following rules to those of
figure 2 (Appendix A):

∆;Γ =⇒ s

∆;Γ =⇒ ∀X. s
(∀R)(X fresh)

∆;Γ, ∀X. s, s[t/X ] =⇒ s′

∆;Γ, ∀X. s =⇒ s′
(∀L)

Kripke Models. A Kripke model of S4∀ is a model of S4, where in addition, ρ
maps propositional variables to P(W ). Satisfaction for ∀X. s at a world w is
defined as follows:

- w |= ∀X. s if for every S ⊆W , w |= s with map ρ[X 7→ S] in place of ρ.

For S4∀ Kripke models (as opposed to S4 Kripke models), the mapping ρ
changes with the formula. Thus we often write it in the satisfaction relation
with the world, as in w, ρ |= s. As usual, satisfaction with respect to models |= s
is defined by lifting this relation to all worlds and all models.

Lemma 16 Let S = 〈W,≤, ρ〉 be an S4∀ model, and s(X) and t be S4∀ formulas.
Let U = {w ∈ W |w, ρ |= t}. Then w, ρ[X 7→ U ] |= s(X) if and only if w, ρ |=
s[t/X ].

Proof. We induct on s to prove the lemma, showing some representative cases.

Case. s = X . Suppose w, ρ[X 7→ U ] |= X . By definition, w ∈ U . Therefore,
by definition of U , w, ρ |= t = s[t/X ].
Conversely, suppose that w, ρ |= s[t/X ] = t. By definition, w ∈ U . Therefore
w, ρ[X 7→ U ] |= X .
Case. s = Y 6= X . Suppose w, ρ[X 7→ U ] |= Y . By definition, w ∈ ρ(Y ).
Hence, w, ρ |= Y = s[t/X ].
Conversely, suppose w, ρ |= s[t/X ] = Y . Then, w ∈ ρ(Y ). Thus w ∈ ρ[X 7→
U ]. Therefore, w, ρ[X 7→ U ] |= Y .
Case. s = p is similar to the previous case.



Case. s = � s′. Suppose w, ρ[X 7→ U ] |= � s′. We want to show that w, ρ |=
� (s′[t/X ]). Choose any w′ ≥ w. It suffices to show that w′, ρ |= s′[t/X ].
From the given assumption,w′, ρ[X 7→ U ] |= s′. Thus by i.h., w′, ρ |= s′[t/X ],
as required.
Conversely, suppose that w, ρ |= � (s′[t/X ]). We want to show that w, ρ[X 7→
U ] |= � s′. Choose any w′ ≥ w. It suffices to show that w′, ρ[X 7→ U ] |= s′.
By given assumption, w′, ρ |= s′[t/X ]. Hence by i.h., w′, ρ[X 7→ U ] |= s′ as
required.
Case. s = ∀Y.s′. Suppose w, ρ[X 7→ U ] |= ∀Y.s′. We want to show that
w, ρ |= ∀Y.(s′[t/X ]). Choose any V ⊆ W . If suffices to show that w, ρ[Y 7→
V ] |= s′[t/X ]. By given condition, w, ρ[X 7→ U ] |= ∀Y.s′. Hence, w, ρ[X 7→
U ][Y 7→ V ] |= s′, i.e., w, ρ[Y 7→ V ][X 7→ U ] |= s′. By i.h., w, ρ[Y 7→ V ] |=
s′[t/X ], as required.
Conversely, suppose w, ρ |= ∀Y.(s′[t/X ]). We want to show that w, ρ[X 7→
U ] |= ∀Y.s′. Choose any V ⊆ W . It suffices to show that w, ρ[X 7→ U ][Y 7→
V ] |= s′, i.e., w, ρ[Y 7→ V ][X 7→ U ] |= s′. By the given condition, w, ρ[Y 7→
V ] |= s′[t/X ]. Thus by the i.h., w, ρ[Y 7→ V ][X 7→ U ] |= s′, as required.
Case. s = s1 ⊃ s2. Suppose w, ρ[X 7→ U ] |= s1 ⊃ s2. We want to show
that w, ρ |= (s1[t/X ]) ⊃ (s2[t/X ]). Assume that w, ρ |= s1[t/X ]. It suffices
to show that w, ρ |= s2[t/X ]. By i.h., w, ρ[X 7→ U ] |= s1. Combining with
the assumed condition, w, ρ[X 7→ U ] |= s2. By i.h. again, we get that w, ρ |=
s2[t/X ] as required.
Conversely, suppose that w, ρ |= (s1[t/X ]) ⊃ (s2[t/X ]). We want to show
that w, ρ[X 7→ U ] |= s1 ⊃ s2. Assume that w, ρ[X 7→ U ] |= s1. It suffices
to show that w, ρ[X 7→ U ] |= s2. By i.h., w, ρ |= s1[t/X ]. Combining with
our initial assumption, w, ρ |= s2[t/X ]. Hence by i.h., w, ρ[X 7→ U ] |= s2 as
required.
The remaining cases are straightforward.

Lemma 17 In any Kripke model of S4∀, w, ρ |= (∀X.s) ⊃ s[t/X ].

Proof. Suppose w, ρ |= ∀X.s. We want to show that w, ρ |= s[t/X ]. Let U =
{w ∈ W |w, ρ |= t}. By definition, w, ρ[X 7→ U ] |= s. Hence by Lemma 16,
w, ρ |= s[t/X ], as required.

E.2 Quantifier-free Formulas in S4∀

Quantifier-free formulas in S4∀ are those that do not contain any occurrence
of the universal quantifier, or of propositional variables. By the way we have
defined S4∀, these formulas are also in the syntax of S4. The following elementary
lemma shows that on such formulas, satisfiability in Kripke models of S4∀ and
S4 coincides.

Lemma 18 The following are equivalent for any quantifier free S4∀ formula s.

1. |= s in S4∀ Kripke structures.
2. |= s in S4 Kripke structures.



Proof. For an S4∀ Kripke structure S = 〈W,≤, ρ〉, define S4 Kripke structure
S = 〈W,≤, ρ〉, where ρ is the restriction of ρ to atomic formulas only (ignoring
the map ρ on propositional variables. Now using a straightforward induction on
quantifier free s, one can establish that S |= s if and only if S |= s. From this
the result follows immediately.

Definition 9 (Acyclic Kripke Structure) A Kripke structure for S4∀ is called
acyclic if the accessibility relation ≤ has no cycles, i.e., it is a partial order (rather
than a pre-order).

Definition 10 (Structure Unrolling) Let S = 〈W,≤, ρ〉 be an S4∀ Kripke
structure. We define an acyclic S4∀ Kripke structure un(S) = 〈un(W ), un(≤), un(ρ)〉
as follows.

- un(W ) = {w0 . . . wn | wi ∈ W,n ≥ 0, wi ≤ wi+1}. Thus elements of un(W )
are accessible sequences of worlds in W .

- un(≤) = {(w,w′) | w is a prefix of w′}.
- un(ρ)(X) = {w | last(w) ∈ ρ(X)}.

Clearly, un(≤) is reflexive and transitive (because the prefix relation is). Further
it is acyclic since prefixes always get longer under the relation.

Lemma 19 Let s be a quantifier-free S4∀ formula. Let S = 〈W,≤, ρ〉 be a Kripke
structure. Then the following hold.

1. If w, ρ |= s then (w,w), un(ρ) |= s for every w such that (w,w) ∈ un(W ).
2. If (w,w) ∈ un(W ) and (w,w), un(ρ) |= s, then w, ρ |= s.

Proof. We prove both statements by a simultaneous induction on s. We case
analyze the structure of s.

Case. s = p.
1. Suppose w, ρ |= p. Then by definition, w ∈ ρ(p). By Definition 10,

(w,w) ∈ un(ρ)(p). Thus (w,w), un(ρ) |= p.
2. Suppose (w,w), un(ρ) |= p. Thus, (w,w) ∈ un(ρ)(p). By definition, w ∈
ρ(p). Hence w, ρ |= p.

Case. s = X does not arise since s is assumed quantifier free.
Case. s = >.
1. By definition of satisfaction in Kripke models, it is always the case that

(w,w), un(ρ) |= >.
2. It is always the case that w, ρ |= >.

Case. s = ⊥.
1. Statement is vacuously true since it is never the case that w, ρ |= s.
2. Statement is vacuously true since it is never the case that (w,w), un(ρ) |=
ρ.

Case. s = s1 ∧ s2.
1. Suppose w, ρ |= s1 ∧ s2. By definition of satisfaction, w, ρ |= s1 and
w, ρ |= s2. Thus by i.h.(1) we have (w,w), un(ρ) |= s1 and (w,w), un(ρ) |=
s2. Hence (w,w), un(ρ) |= s1 ∧ s2.



2. Similar to argument in (1) except that we use i.h.(2).

Case. s = s1 ∨ s2. Similar to the previous case.
Case. s = s1 ⊃ s2.

1. Suppose w, ρ |= s1 ⊃ s2. We want to show that (w,w), un(ρ) |= s1 ⊃ s2.
So assume that (w,w), un(ρ) |= s1. By i.h.(2), w, ρ |= s1. Hence from the
assumption w, ρ |= s2. By i.h.(1), (w,w), un(ρ) |= s2, as required.

2. Similar to (1).

Case. s = ∀X.s′ does not arise since s is assumed quantifier free.
Case. s = � t.

1. Suppose w, ρ |= � t. We want to show that (w,w), un(ρ) |= � t. So pick
any world w′ such that ((w,w), w′) ∈ un(≤). It suffices to show that
w′, un(ρ) |= t.
By definition of un(≤) it follows that w′ = w,w,w1 . . . wn where n ≥ 0,
w ≤ w1 and wi ≤ wi+1. By transitivity of ≤, w ≤ wn. Thus from the
given assumption it follows that wn, ρ |= t. Hence by i.h.(1), w′, un(ρ) |=
t.

2. Suppose (w,w), un(ρ) |= � t. We want to show that w, ρ |= � t. Pick any
w′ ≥ w. It suffices to show that w′, ρ |= t.
From the assumption w′ ≥ w, it follows that ((w,w), (w,w,w′)) ∈ un(≤).
Thus from our assumption, it follows that (w,w,w′), un(ρ) |= t. By
i.h.(2), w′, ρ |= t.

Lemma 20 (Completeness of Acyclic Structures) If s is a quantifier free
S4∀ formula and S is a Kripke structure, then S |= s if and only if un(S) |= s.

Proof. Suppose S = 〈W,≤, ρ〉 |= s. Let w ∈ un(W ). By assumption last(w), ρ |=
s. Thus by Lemma 19, w, un(ρ) |= s. Hence un(S) |= s.

Conversely, suppose un(S) |= s. Let w ∈ W . By assumption, w, un(ρ) |= s.
Therefore, by Lemma 19, w, ρ |= s. Hence S |= s.

E.3 From ICL∀ to S4∀

We define a translation from ICL∀ to S4∀. With a slight abuse of notation, we
refer to this translation as p·q. This should not cause any confusion, since the
source of the translation will always be clear.

ppq = � p
ps ∧ tq = psq ∧ ptq
ps ∨ tq = psq ∨ ptq
ps ⊃ tq = � (psq ⊃ ptq)

p⊥q = ⊥
p>q = >

pA says sq = � (A ∨ psq)
p∀X. sq = � ∀X. psq

pXq = �X



Lemma 21 Let s be a ICL∀ formula, and S be an S4∀ Kripke model. Then
S |= psq ⊃ � psq.

Proof. We induct on s to prove that for any model S, and any w ∈ S, w |=
psq ⊃ � psq.

Case. s = p. Then we have to show that w |= � p ⊃ � � p. So assume that
w |= � p. It suffices to show that for any w′ ≥ w, w′ |= � p. It suffices to
show that for any w′′ ≥ w′, w′′ |= p. But by transitivity of ≥, w′′ ≥ w. Hence
from the condition w |= � p, it follows that w′′ |= p.
Case. s = s1 ⊃ s2, s = A says s′, s = X and s = ∀X. t follow the same
structure as the previous case because psq has a � in front.
Case. s = ⊥. We must show that w |= ⊥ ⊃ �⊥. This is immediate because
w 6|= ⊥.
Case. s = >. We must show that w |= > ⊃ �>. Assume that w |= >. It
suffices to show that for any w′ ≥ w, w′ |= >. This is immediate because
every w′ |= > by definition.
Case. s = s1 ∧ s2. To show: w |= (ps1q ∧ ps2q) ⊃ � (ps1q ∧ ps2q). Assume
that w |= ps1q ∧ ps2q. Therefore w |= ps1q and w |= ps2q. By induction,
w |= ps1q ⊃ � ps1q. Therefore, w |= � ps1q. Hence for any w′ ≥ w, w′ |=
ps1q. Similarly, w′ |= ps2q.
Hence it follows that w′ |= ps1q ∧ ps2q. Since w′ is arbitrary, w |= � (ps1q ∧
ps2q). This is what we wanted to show.
Case. s = s1 ∨ s2. To show: w |= (ps1q ∨ ps2q) ⊃ � (ps1q ∨ ps2q). Assume
that w |= ps1q ∨ ps2q. Thus w |= ps1q or w |= ps2q. Let us take the case
w |= ps1q (the other case is symmetric).
By i.h., w |= ps1q ⊃ � ps1q. Therefore, w |= � ps1q. Hence for any w′ ≥ w,
w′ |= ps1q. By definition, w′ |= ps1q ∨ ps2q. Since w′ is arbitrary, w |=
� (ps1q ∨ ps2q), which is what we needed to show.

Lemma 22 (Substitution) In any Kripke model S of S4∀, and for any ICL∀

formulas s, t, it is the case that w, ρ |= psq[ptq/X ] if and only if w, ρ |= ps[t/X ]q.

Proof. We prove this lemma by induction on s. The cases are straightforward.
The only interesting case is where s = X . Then we have psq[ptq/X ] = �X [ptq/X ] =
� ptq. And ps[t/X ]q = pX [t/X ]q = ptq. Thus we have to show two things:

1. w, ρ |= � ptq implies w, ρ |= ptq.
2. w, ρ |= ptq implies w, ρ |= � ptq.

(1) is trivial. For (2), it follows by Lemma 21 that w, ρ |= ptq ⊃ � ptq. By
definition of satisfaction, this is the same as (2).

Lemma 23 (Soundness of p·q) Suppose Γ =⇒ s is provable in ICL∀. Then
for any Kripke model S of S4∀, it is the case that S |= (pΓq ⊃ psq).
[By pΓq we mean translation of conjunction of all formulas in Γ . If Γ is empty,
we take this translation to be >.]



Proof. We prove by induction on the given proof of Γ =⇒ s that for any world
w and any mapping ρ, it is the case that w, ρ |= pΓq ⊃ psq. We analyze cases of
the last rule, and show some representative cases here.

Case.
Γ, p =⇒ p

(init)

To show: w, ρ |= (pΓq ∧ � p) ⊃ � p.

1. [Assume] w, ρ |= pΓq ∧ � p.
2. (From 1) w, ρ |= � p.
3. (1 ⇒ 2) w, ρ |= (pΓq ∧ � p) implies w, ρ |= � p.
4. (Definition of |= and 3) w, ρ |= (pΓq ∧ � p) ⊃ � p.

Case.
Γ, s ⊃ t =⇒ s Γ, t, s ⊃ t =⇒ s′

Γ, s ⊃ t =⇒ s′
(⊃ L)

To show: w, ρ |= (pΓq ∧ � (psq ⊃ ptq)) ⊃ ps′q.

1. [Assume] w, ρ |= pΓq ∧ � (psq ⊃ ptq).
2. (From 1) w, ρ |= � (psq ⊃ ptq).
3. (From 2) w, ρ |= psq ⊃ ptq.
4. (i.h. 1) w, ρ |= (pΓq ∧ � (psq ⊃ ptq)) ⊃ psq.
5. (From 4,1) w, ρ |= psq.
6. (From 5,3) w, ρ |= ptq.
7. (From 1,6) w, ρ |= pΓq ∧ � (psq ⊃ ptq) ∧ ptq.
8. (i.h. 2) w, ρ |= (pΓq ∧ � (psq ⊃ ptq) ∧ ptq) ⊃ ps′q.
9. (From 8,7) w, ρ |= ps′q.

10. (1 ⇒ 9) w, ρ |= pΓq ∧ � (psq ⊃ ptq) implies w, ρ |= ps′q.
11. (Definition of |= and 10) w, ρ |= (pΓq ∧ � (psq ⊃ ptq)) ⊃ ps′q.

Case.
Γ =⇒ s

Γ =⇒ A says s
(saysR)

To show: w, ρ |= pΓq ⊃ � (A ∨ psq).

1. [Assume] w, ρ |= pΓq.
2. [Assume] w′ ≥ w.
3. (i.h. at w′ instead of w) w′, ρ |= pΓq ⊃ psq.
4. (Lemma 21) w, ρ |= pΓq ⊃ � pΓq.
5. (From 4,1) w, ρ |= � pΓq.
6. (From 5,2) w′, ρ |= pΓq.
7. (From 3,6) w′, ρ |= psq.
8. (From 7) w′, ρ |= A ∨ psq.
9. (2 ⇒ 8) w′ ≥ w implies w′, ρ |= A ∨ psq.

10. (From 9) w′, ρ |= � (A ∨ psq).
11. (1 ⇒ 10) w, ρ |= pΓq implies w′, ρ |= � (A ∨ psq).
12. (From 11) w, ρ |= pΓq ⊃ � (A ∨ psq).

Case.
Γ, s,A says s =⇒ A says s′

Γ,A says s =⇒ A says s′
(saysL)

To show: w, ρ |= (pΓq ∧ � (A ∨ psq)) ⊃ � (A ∨ ps′q).

1. [Assume] w, ρ |= pΓq ∧ � (A ∨ psq).
2. [Assume] w′ ≥ w.



3. (From 1) w, ρ |= pΓq.
4. (From 1) w, ρ |= � (A ∨ psq).
5. (From 4,2) w′, ρ |= A ∨ psq.
6. (From 5) w′, ρ |= A or w′, ρ |= psq.

A Case. w′, ρ |= A.
A.1 (From A) w′, ρ |= A ∨ ps′q.

B Case. w′, ρ |= psq.
B.1 (Lemma 21) w, ρ |= pΓq ⊃ � pΓq.
B.2 (From B.1,3) w, ρ |= � pΓq.
B.3 (From B.2,2) w′, ρ |= pΓq.
B.4 [Assume] w′′ ≥ w′.
B.5 (From B.4,2) w′′ ≥ w.
B.6 (From 3,B.5) w′′, ρ |= A ∨ psq.
B.7 (B.4 ⇒ B.6) w′′ ≥ w′ implies w′′, ρ |= A ∨ psq.
B.8 (From B.7) w′, ρ |= � (A ∨ psq).
B.9 (From B,B.3,B.8) w′, ρ |= pΓq ∧ � (A ∨ psq) ∧ psq.

B.10 (i.h. at w′ instead of w) w′, ρ |= (pΓq ∧ � (A ∨ psq) ∧ psq) ⊃
� (A ∨ ps′q).

B.11 (From B.10,B.9) w′, ρ |= � (A ∨ ps′q).
B.12 (From B.11) w′, ρ |= A ∨ ps′q.

7. (From A.1,B.11) w′, ρ |= A ∨ ps′q.
8. (2 ⇒ 7) w′ ≥ w implies w′, ρ |= A ∨ ps′q.
9. (From 8) w, ρ |= � (A ∨ ps′q).

10. (1 ⇒ 9) w, ρ |= pΓq ∧ � (A ∨ psq) implies w, ρ |= � (A ∨ ps′q).
11. (From 10) w, ρ |= (pΓq ∧ � (A ∨ psq)) ⊃ � (A ∨ ps′q).

Case.
Γ =⇒ s

Γ =⇒ ∀X. s
(∀R)(X fresh)

To show: w, ρ |= pΓq ⊃ � ∀X. psq.

1. [Assume] w, ρ |= pΓq.
2. [Assume] w′ ≥ w.
3. [Assume] U ⊆W .
4. (i.h. at w′ and ρ[X 7→ U ]) w′, ρ[X 7→ U ] |= pΓq ⊃ psq.
5. (Lemma 21) w, ρ |= pΓq ⊃ � pΓq.
6. (From 5,1) w, ρ |= � pΓq.
7. (From 6,2) w′, ρ |= pΓq.
8. (X 6∈ pΓq and 7) w′, ρ[X 7→ U ] |= pΓq.
9. (From 4,7) w′, ρ[X 7→ U ] |= psq.

10. (3 ⇒ 8) U ⊆W implies w′, ρ[X 7→ U ] |= psq.
11. (From 9) w′, ρ |= ∀X. psq.
12. (2 ⇒ 10) w′ ≥ w implies w′, ρ |= ∀X. psq.
13. (From 11) w, ρ |= � ∀X. psq.
14. (1 ⇒ 12) w, ρ |= pΓq implies w, ρ |= � ∀X. psq.
15. (From 13) w, ρ |= pΓq ⊃ � ∀X. psq.

Case.
Γ, ∀X. s, s[t/X ] =⇒ s′

Γ, ∀X. s =⇒ s′
(∀L)

To show: w, ρ |= (pΓq ∧ � ∀X. psq) ⊃ ps′q.



1. [Assume] w, ρ |= pΓq ∧ � ∀X. psq.
2. (From 1) w, ρ |= � ∀X. psq.
3. (From 2) w, ρ |= ∀X. psq.
4. (Lemma 17) w, ρ |= (∀X. psq) ⊃ psq[ptq/X ].
5. (From 4,3) w, ρ |= psq[ptq/X ].
6. (Lemma 22 on 5) w, ρ |= ps[t/X ]q.
7. (From 1,6) w, ρ |= pΓq ∧ � ∀X. psq ∧ ps[t/X ]q.
8. (i.h.) w, ρ |= (pΓq ∧ � ∀X. psq ∧ ps[t/X ]q) ⊃ ps′q.
9. (From 8,7) w, ρ |= ps′q.

10. (1 ⇒ 9) w, ρ |= pΓq ∧ � ∀X. psq implies w, ρ |= ps′q.
11. (From 10) w, ρ |= (pΓq ∧ � ∀X. psq) ⊃ ps′q.

E.4 Equivalence of psq and p[[s]]q in Acyclic Structures

For any ICL⇒ formula s, we know of two ways to embed it into S4∀. One is
through the translation p·q from Section 3 which maps ICL⇒ to S4 (and hence
implicitly to S4∀, since S4∀ is a superset of S4). The other is to map s to ICL∀ via
the translation [[·]] (Section 6) and then map that into S4∀ via p·q (appendix E.3).
We now show that the two formulas so obtained (psq and p[[s]]q) are equivalent
from the point of view of provability in acyclic Kripke structures.

Lemma 24 Let A and B be atomic formulas in S4∀. In any acyclic Kripke
structure S = 〈W,≤, ρ〉 of S4∀, the following two are equivalent statements

1. w, ρ |= � ∀X. � (� (A ∨ �X) ⊃ � (B ∨ �X))
2. w, ρ |= � (A ⊃ B)

Proof. (1) ⇒ (2). We reason by the method of contradiction. Suppose for the
sake of contradiction (1) holds but w, ρ 6|= � (A ⊃ B). Then in some world
w′ ≥ w, it must be the case that w′, ρ |= A and w′, ρ 6|= B. Thus w′ ∈ ρ(A) and
w′ 6∈ ρ(B).

Let U = {w′′ ∈ W | w′′ ≥ w′, w′′ 6= w′}. Consider the following two state-
ments:

(A) w′, ρ[X 7→ U ] |= � (A ∨ �X)
(B) w′, ρ[X 7→ U ] 6|= � (B ∨ �X)

We claim that (A) and (B) are both true. To show that (A) is true, it suffices
to show that for any w′′ ≥ w′, it is the case that w′′, ρ[X 7→ U ] |= A ∨ �X .
If w′′ = w′, then from the fact w′ ∈ ρ(A), it follows that w′′, ρ[X 7→ U ] |= A.
Hence the statement follows immediately. If w′′ 6= w′, then w′′ > w′ (strictly).
Then we show that w′′, ρ[X 7→ U ] |= �X . Let w′′′ ≥ w′′. We need to show that
w′′′, ρ[X 7→ U ] |= X . But since w′′′ ≥ w′′ > w′, it follows that w′′′ > w′. By
acyclicity, w′′′ 6= w′. Hence by definition of U , w′′′ ∈ U . Therefore w′′′, ρ[X 7→
U ] |= X .

To show that (B) is true, we should be able to demonstrate a world w′′ ≥ w′

such that w′′, ρ[X 7→ U ] 6|= B ∨ �X . Choose w′′ = w′. Clearly, w′, ρ[X 7→



U ] 6|= B because w′ 6∈ ρ(B). Also, since w′ 6∈ U , w′, ρ[X 7→ U ] 6|= X . Hence
w′, ρ[X 7→ U ] 6|= �X . Thus w′, ρ[X 7→ U ] 6|= B ∨ �X .

It follows from (A) and (B) that w′, ρ[X 7→ U ] 6|= � (A ∨ �X) ⊃ � (B ∨
�X). It is now easy to see that the following hold:

- w, ρ[X 7→ U ] 6|= � (� (A ∨ �X) ⊃ � (B ∨ �X))
- w, ρ 6|= ∀X. � (� (A ∨ �X) ⊃ � (B ∨ �X))
- w, ρ 6|= � ∀X. � (� (A ∨ �X) ⊃ � (B ∨ �X))

The last statement is contradictory to our initial assumption. Hence it must be
the case that w, ρ |= � (A ⊃ B).

(2) ⇒ (1). Suppose that (2) holds. In order to prove (1), it suffices to show
that for any w1 ≥ w, U ⊆ W and w′ ≥ w1, it is the case that w′, ρ[X 7→ U ] |=
� (A ∨ �X) ⊃ � (B ∨ �X). Assume that

(A) w′, ρ[X 7→ U ] |= � (A ∨ �X)

Let w′′ ≥ w′. It suffices to show that w′′, ρ[X 7→ U ] |= B ∨ �X . From (A) it
follows that w′′, ρ[X 7→ U ] |= A ∨ �X . Thus w′′, ρ[X 7→ U ] |= A or w′′, ρ[X 7→
U ] |= �X . We case analyze the two possibilities.

Case. w′′, ρ[X 7→ U ] |= A. By assumption (2), and w′′ ≥ w′ ≥ w1 ≥ w, it
follows that w′′, ρ |= A ⊃ B. Since X 6= A,B, it is implied that w′′, ρ[X 7→
U ] |= A ⊃ B. Combining with the case assumption, w′′, ρ[X 7→ U ] |= B.
Hence w′′, ρ[X 7→ U ] |= B ∨ �X .
Case. w′′, ρ[X 7→ U ] |= �X . Clearly then w′′, ρ[X 7→ U ] |= B ∨ �X .

Lemma 25 (Equivalence in Acyclic Structures) Let s be a ICL⇒ formula
and let S = 〈W,≤, ρ〉 be an acyclic S4∀ Kripke structure. Then S |= psq if and
only if S |= p[[s]]q.

Proof. We induct on the structure of s to show that for any w ∈ W , w, ρ |=
psq if and only if w, ρ |= p[[s]]q. We case analyze the form of s, showing some
representative cases only.

Case. s = p. In this case, psq = � p = p[[p]]q.
Case. s = s1 ∧ s2. Here psq = ps1q ∧ ps2q and p[[s]]q = p[[s1]]q ∧ p[[s2]]q.
Suppose w, ρ |= ps1q ∧ ps2q. We want to show that w, ρ |= p[[s1]]q ∧ p[[s2]]q. It
suffices to show that w, ρ |= p[[si]]q. By assumption it follows that w, ρ |= psiq

and hence by i.h., w, ρ |= p[[si]]q.
The converse is similar.
Case. s = A says s′. Then psq = � (A ∨ ps′q) and p[[s]]q = � (A ∨ p[[s′]]q).
Assume that w, ρ |= � (A ∨ ps′q). We want to show that w, ρ |= � (A ∨
p[[s′]]q). Pick any w′ ≥ w. It suffices to show that w′, ρ |= A ∨ p[[s′]]q. By
assumption, w′, ρ |= A ∨ ps′q. If w′, ρ |= A, we are done. If w′, ρ |= ps′q, then
by i.h., w′, ρ |= p[[s′]]q. Thus w′, ρ |= A ∨ p[[s′]]q.
Case. s = A ⇒ B. Then psq = � (A ⊃ B) and p[[s]]q = � ∀X. � (� (A ∨
�X) ⊃ � (B ∨ �X)). In this case the result follows by Lemma 24.



E.5 Proof of Completeness

We now combine the developments of the previous sections and prove complete-
ness and then Theorem 5.

Lemma 26 (Completeness) For every ICL⇒ formula s, if ` [[s]] (i.e., · =⇒
[[s]]) in ICL∀ then ` s (i.e., · =⇒ s) in ICL⇒.

Proof. Suppose · =⇒ [[s]] in ICL∀. By Lemma 23, for any S4∀ Kripke structure
S it is the case that S |= p[[s]]q. In particular, if SA is an acyclic S4∀ Kripke
structure, then SA |= p[[s]]q. By Lemma 25, SA |= psq. Hence every acyclic S4∀

Kripke structure satisfies psq.
In particular, if S is an arbitrary S4∀ Kripke structure, then un(S) |= psq,

since un(S) is acyclic. Since psq is quantifier free (by definition of p·q), from
Lemma 20, S |= psq. Since S is arbitrary, it follows that |= psq in S4∀ Kripke
structures. Thus by Lemma 18, |= psq in S4 Kripke structures.

By Theorem 8, we get ` psq in S4. Finally using Theorem 2 we conclude
that ` s in ICL⇒.

Proof (Proof of Theorem 5). The soundness part is proved in Lemma 15 and
completeness in Lemma 26.


