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1. Introduction

Many authorization policies rely on conditions that are controlled by the environment
and whose changes are not stipulated by the policies themselves. For example, a sensitive
file may be accessible to the public if the file is marked unclassified; an employee may
enter her office if it is between 9 AM and 5 PM on a weekday; a doctor may read any
patient’s health records if there is a medical emergency. Conditions such as “if the file
is marked unclassified”, written in boldface in the previous sentence, have the following
characteristics: (a) They influence consequences of the authorization policy of interest,
and (b) The authorization policy itself does not stipulate when or how such conditions
change, although, in conjunction with other enforcement mechanisms in the system, it
may constrain who may change them (e.g., the list of individuals who may mark a file
unclassified may be stipulated by the authorization policy itself). We informally call
conditions satisfying these two criteria stateful, and any authorization policy relying on
them a stateful authorization policy.

Many formal proposals for representing, enforcing and reasoning about authoriza-
tion policies use logic to represent the policies. Central to such use of logic is proof
theory, which is used both to enforce the authorization policies through proof-carrying
authorization or PCA [3, 5, 6], and to facilitate logical inference to analyze their con-
sequences [11, 12]. Yet, despite several papers on proof theory of authorization logics
without state [1, 14, 18], to the best of our knowledge, there has been no systematic
work on proof theory for logics that can represent stateful authorization policies. The
main objective of this paper is to fill this gap: We examine in detail the proof theory of
a new logic BL in which stateful authorization policies can be represented.2 We validate
the logic’s foundations by proving several metatheoretic properties of its proof system
including admissibility of cut, which is a proof-theoretic statement of the logic’s sound-
ness [26, 32]. Empirically, we illustrate BL and justify its expressiveness through a case
study of policies for sharing of sensitive U.S. intelligence information. Further, we dis-
cuss subtle design choices in the interaction between state and other components of the
logic. Orthogonal to our main objective, we provide a new interpretation for the common
access control connective k says s [2], which makes it easier to express a common form
of delegation in the logic (Section 5.4).

At its core, BL is a first-order intuitionistic logic. To that we add the connective
k says s, which means that principal k supports statement s, and state predicates, a sub-
class of predicates that can be verified through procedures external to the logic that may
refer to the system state. Finally, in order to represent real time, upon which policies of-
ten rely, we include the connective s @ [u1,u2] from our prior work with DeYoung [14].
s @ [u1,u2] means that formula s holds in the time interval [u1,u2], but possibly not out-
side of it. Through its combination of state predicates, explicit time (the @ connective),
and the says connective, BL is a very expressive authorization logic.

There are two main challenges in incorporating state in an authorization logic like
BL. The first is to decide the interaction between state predicates and other features
of the logic, especially explicit time. For example, we may choose to treat time as a
special case of the logic’s general treatment of state and thus eliminate the need for
the connective @. Some prior work follows this approach by providing in the logic a

2BL is an abbreviation for Binder Logic. This name is a tribute to the authorization policy language
Binder [13], whose design inspired the early stages of our work.
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Figure 1. Stages of a sensitive intelligence file in the U.S.

constant, say localtime, that evaluates to the time at which the policy is interpreted [5, 8].
However, as we argue in Section 5.3, this results in a loss of expressiveness as compared
to providing the connective @ in the logic explicitly, because any policy that refers to
more than one point of time cannot be expressed if time is considered a part of the
state. As a result, we include both the @ connective and stateful atoms in BL. Another
key decision is the interpretation of the formula s @ [u1,u2] when s is a stateful atom.
The obvious interpretation is that the stateful atom s hold throughout the time interval
[u1,u2]. However, as we illustrate and explain in Section 3.3.1, this interpretation allows
representation of authorization policies that cannot be enforced by any reference monitor
and, to prevent representation of such policies, we make a deliberate decision to use a
non-obvious interpretation of s @ [u1,u2] when s is a stateful atom.

The second challenge in incorporating state is the integration of external proce-
dures for checking state predicates with the inference rules of the logic without break-
ing metatheoretic properties like admissibility of cut. In this regard, our proof theory is
guided by, and similar to, prior work on integrating decision procedures for constraint
domains into a logic [22, 33]. The key idea is to formally represent the external procedure
for checking state predicates by an abstract judgment E |= i (any environment which sat-
isfies all stateful atoms in E, also satisfies the stateful atom i), and stipulating only a few,
reasonable conditions on the judgment that are enough to obtain metatheoretic properties
of interest, including admissibility of cut. We list these conditions in Section 3.2.

The rest of this paper is organized as follows. In Section 2, we present a part of our
case study to motivate the need for state in authorization policies and also to illustrate,
by way of example, the syntax and features of BL. In Section 3, we introduce the logic
BL and its proof theory incrementally. We start with a first-order intuitionistic logic with
the connective k says s, then add state predicates, and finally add explicit time. Section 4
presents metatheoretic properties of the proof system. Additional design choices, includ-
ing the separation of state from time and our new interpretation of says, are discussed in
Section 5. Section 6 revisits the case study with more details. Related work is discussed
in Section 7 and Section 8 concludes the paper. Full proofs of theorems are presented
in the first author’s thesis [17] and the entire case study appears in a concise form in a
separate technical report [20].

2. Case Study: Stateful Authorization by Example

As a canonical example of stateful authorization policies, we introduce our case study:
U.S. policies for access to sensitive intelligence information. The U.S. intelligence com-
munity, a cooperative federation of 16 U.S. government agencies, produces classified



documents, which, although inaccessible to the general population, must be accessible
to authorized individuals both within the intelligence community and outside it. Our
case study formalizes the policies mandated for such access. Our primary source of poli-
cies is a set of interviews of intelligence personnel conducted by Brian Witten and De-
nis Serenyi of Symantec Corporation. Some parts of the policies are based on Execu-
tive Orders of the White House [29, 30] or Director of Central Intelligence Directives
(DCIDs) [27, 28]. The policies presented here are themselves unclassified, and do not
necessarily represent current official practices.

For the purpose of formalization, we assume that the unit of sensitive information
is a digital file that is already classified or will potentially be classified. Two facts about
sensitive files are of interest to us. First, any sensitive file goes through a life cycle con-
sisting of up to four stages that are shown in Figure 1. Access to a file depends on the
stage of the file at the time of access. Second, transitions between stages are dictated
by non-mechanizable factors such as human intent and beliefs and are, therefore, not
prescribed by the authorization policy itself. As far as the authorization policy is con-
cerned, the stages can change unpredictably. Hence, for the purposes of formalization
and enforcement, it is natural to represent the stage of a file as an element of system state
external to the policy itself.

Overview of file stages. We briefly describe the stages of a sensitive file. Every newly
created official file in an intelligence agency starts in a default stage, in which it is ac-
cessible only to the creator (owner) of the file. A file in the default stage may eventually
either be deleted by the author, or its content may mature to something publishable, in
which case it is promoted, at the discretion of the author, to a working paper. A working
paper is more collaborative; access is provided at the discretion of the owner (a group
of individuals or an intelligence agency). A file remains a working paper for at most
90 days, after which it must be either deleted, put back in the same stage for 90 more
days, classified or declassified. The last two happen only after the content of a working
paper is stable. Classifying or declassifying a working paper involves opinion of both
the authors and a trained individual called an original classification authority (OCA). If
the file is declassified, it is accessible to anyone. Access to a classified file is subject to
complicated rules. At the time of classification, a file’s secrecy level (confidential, secret,
or topsecret) is determined, as are its compartments, which are project-specific classifi-
cations that further restrict access. Access to a classified file is based on these attributes
as well as others such as the citizenship and employment status of the individual access-
ing the file. Every classified file is automatically declassified after the lapse of a certain
interval of time that is stipulated when the file is classified.

Thus, allowed access to a file varies by stage and transitions between stages involve
human factors that are not stipulated by the policy itself, so the policy is stateful in the
sense mentioned in the introduction. For our formalization, we assume that the stage of a
file is represented as an extended attribute (file meta-data) called status, which is stored
in the file system with the file. Our formalization of the policy relies on this extended
attribute to determine who may access the file. The relation between the possible values
of status and allowed access is summarized in Figure 2.

2.1. Formalizing State in BL

System state is represented in BL formulas through a special class of predicates called
state predicates. State predicates can be established in a proof through an external pro-
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Figure 2. Formalization of file stages and permissions allowed in them

cedure, which may vary by application. For formalizing the policy at hand, we need two
state predicates: (a) (has xattr f a v), which means that file f has extended attribute a
set to value v; in particular, the value of a special attribute status determines the stage
of a sensitive file, and (b) (owner f k), which means that file f is owned by principal k.
We write state predicates in boldface to distinguish them from other predicates that are
defined by the logical theory and use juxtaposition for applying arguments to predicates,
e.g., we write (owner f k) instead of the more conventional owner( f ,k). The letters
f ,a,v,k range over terms of types file, attribute, attribute value, and principal, respec-
tively. Following standard logic programming convention, we also use the uppercase let-
ters F,A,V,K for implicitly quantified variables of the corresponding types. (This con-
vention is explained further in Section 2.2.) We do not stipulate what principals are —
they may be individuals, agencies, or groups. We assume that a procedure to check both
has xattr and owner in the file system being used for implementation is available.

The attribute status in our formalization can take four possible values corresponding
to the four stages in Figure 1. These are listed in Figure 2, together with a description
of principals who have access to the file in each stage. Technically, the words default,
working, classified, and declassified are uninterpreted function symbols in BL having
arities 0, 1, 2, and 0, respectively. The arguments T , T ′ are variables ranging over time
points (discussed later).

2.2. Formalizing Policy Rules in BL

Authorization is formalized in the logic as a predicate (may k f p), which means that
principal k has permission p on file f . (may k f p) is not a state predicate because it is
defined by logical formulas, which are part of our formalization of the policy. Represen-
tative examples of formulas defining (may k f p) are shown below:

admin claims (may K F read : -
has xattr F status default,
owner F K) ◦ [−∞,+∞].

admin claims ((may K F read : -
has xattr F status (classified T T ′),
indi/has-clearances/file K F,
owner F K′,
K′ says (may K F read)) @ [T,T ′]) ◦ [−∞,+∞].

admin claims ((may K F read : -
has xattr F status (classified T T ′)) @ [T ′,+∞]) ◦ [−∞,+∞].



admin claims ((may K F read : -
has xattr F status (working T ),
owner F K′,
K′ says (may K F read),
T ′ = (T +90d)) @ [T,T ′]) ◦ [−∞,+∞].

The notation s : - s1, . . . ,sn means “formula s holds if formulas s1, . . . ,sn hold”, and is
equal to (s1∧ . . .∧ sn)⊃ s. Uppercase variables like K, F and T occurring in s,s1, . . . ,sn
are implicitly assumed to be universally quantified outside this formula. The prefix
admin claims . . . before each rule means that the rule is created by the principal admin,
who is assumed to be the ultimate authority on access decisions. The prefix is formally
discussed in Section 3. The suffix ◦ [−∞,+∞] at the end of each rule means that each
rule is valid forever.

The first rule above states that (it is the admin’s policy that) principal K may read file
F if F is in stage default and K owns F . The latter two facts are determined by looking
at the file’s meta-data through the external procedure for verifying state predicates.

The second rule illustrates two central, but possibly unfamiliar, connectives of au-
thorization logics including BL: k says s and s @ [u1,u2]. The former connective, says,
is a principal-indexed modality and has been studied extensively in the context of autho-
rization logics [1–3, 18]. It means that principal k supports formula s or declares that the
formula is true. k says s can be established a priori (i.e., without a proof) through a digital
certificate that contains formula s and is signed by principal k’s private key. In fact, this
is the only way to establish a priori any formula other than a state predicate, constraint
(constraints are discussed below), or tautology. s @ [u1,u2] captures real time in the logic;
it means that formula s holds during the time interval [u1,u2], but does not say anything
about s outside this interval. The second rule above states that principal K may read file
F if F is classified from time T to time T ′ (has xattr F status (classified T T ′)), K has
the right clearances to read file F (indi/has-clearances/file K F), and the owner
K′ of file F allows K to read the file (K′ says (may K F read)). The suffix @ [T,T ′] after
the formula means that the entire formula and, hence, its consequence (may K F read)
apply only in the interval [T,T ′]. Beyond T ′ the file is effectively declassified and acces-
sible to everyone as captured in the third rule above, which means that during the interval
[T ′,+∞], any principal K may read a file F that was classified from time T to time T ′.

Our fourth rule highlights the need for another integral feature of BL — constraints,
such as the atom T ′ = (T +90d). Constraints are similar to state predicates in that they
are verified by an external procedure but different in that they are independent of state.
Constraints are useful for reasoning about time. For instance, the fourth rule means that
principal K may read file F if F is a working paper, the owner K′ of F allows the access,
and less than 90 days have elapsed since the file became a working paper. The last condi-
tion enforces the previously mentioned policy mandate that a file can remain a working
paper for at most 90 days.

The second, third, and fourth rules above also exemplify an interesting interaction
between state and time: They apply over time intervals that depend on time values (de-
noted T in the rules) obtained through state predicates. There are other interesting inter-
actions between state and time that do not occur in our case study but are described in
Section 3.3.

Most of the remaining rules in our case study define the predicate
(indi/has-clearances/file K F) from the second rule above. This predicate relates



credentials of an individual K and attributes of a classified file F to determine whether
or not K should have access to F . Since the rules defining this predicate do not highlight
any new features of the logic, we postpone their discussion to Section 6.

3. The Logic BL: Syntax and Proof Theory

Having discussed the features of BL briefly, we now present the logic formally. To keep
the description accessible we stage the presentation into three steps, adding more fea-
tures to the logic at each step. In the first step of presentation (Section 3.1), we consider
the core of BL, sorted first-order intuitionistic logic, with the principal-indexed modality
k says s. We call this sub-logic BL0. In Section 3.2, we add state predicates, calling the
logic BL1. Finally, we add explicit time through the connective s @ [u1,u2] to obtain
the full logic BL (Section 3.3). We omit a description of the connectives for disjunction
and existential quantification from this paper; their details may be found in the first au-
thor’s thesis [17, Chapters 3 & 4]. Neither connective presents adds any new technical
challenges for the proof theory or the metatheory of BL.

3.1. BL0: First-order Logic and says Modality

The first fragment of BL we consider, BL0, has the following syntax:

Sorts σ ::= principal | time | . . .
Terms t,u,k ::= Alice | Bob | admin | . . .
Predicates P ::= may | . . .
Atoms p ::= P t1 . . . tn
Formulas r,s ::= p | s1∧ s2 | s1 ⊃ s2 | > | ⊥ | ∀x:σ .s | k says s

Sorts are types for terms. We stipulate at least two sorts: that of principals, principal,
and that of time points, time (time points have a special significance in the full logic
BL, as discussed in Section 3.3). Although we do not stipulate the domain of terms, it
must include at least principals who are authorized access and who create policies (Alice,
Bob, admin, etc.). We also allow uninterpreted function symbols in terms. As mentioned
earlier, we use the letter k to denote terms of sort principal, f for files, and u for terms of
sort time. The letter t denotes a generic term.

Uninterpreted predicates P allowed in BL0 are to be distinguished from state pred-
icates that we have been writing in boldface so far. The latter are introduced in Sec-
tion 3.2. Formulas of BL0 are either atomic, p, or built from the usual connectives of
first-order logic — ∧ (conjunction), ⊃ (implication), > (truth), ⊥ (falsity), ∀ (universal
quantification) — or, the principal-indexed modality k says s. As explained and illus-
trated in Section 2, k says s means that principal k supports or states formula s, without
necessarily implying that s is true. We often elide the sort σ from the universal quantifier
∀x:σ .s when it is clear from the context.

As is standard in intuitionistic logic, negation, ¬s, may be defined as s ⊃ ⊥. How-
ever, because our logic is intuitionistic, s∨¬s does not hold for every s, nor is proof
by contradiction a valid method of deduction. It has been argued in prior work [18] that
absence of these features is beneficial for authorization logics because it forces that ev-
idence of authorization (proofs) be direct. Further, intuitionism forces policy authors to



explicitly specify in their policies the conditions under which access is allowed; the dual
approach of listing conditions under which access is disallowed does not work in in-
tuitionistic logic. A significant amount of recent work on enforcement of authorization
policies is based on intuitionistic logic (e.g., [1, 4, 23]). Following the same trend, we
work with an intuitionistic logic, instead of a classical one.

Proof theory of BL0. When using authorization logics in practice, access is granted
only if there is a proof which justifies the access. Therefore, to understand the meaning
of a proposition in authorization logic, we must understand how it can be proved. This
naturally leads us to the proof theory of BL0, i.e., a systematic study of its formal proofs.
We adopt Gentzen’s sequent calculus style [21] in describing the proof theory and fol-
low Martin-Löf’s judgmental approach [26], which has been used previously to describe
other modal logics [18, 32]. Briefly, a judgment J is an assertion that can be established
through proofs. For BL0 we need two kinds of judgments: s true, meaning that formula
s is true, and k claims s, meaning that principal k claims or supports formula s (but s may
or may not be true). The latter is needed to define the meaning of the says modality. A
sequent has the following form, where Γ abbreviates a multi-set J1, . . . ,Jn of judgments
and Σ is a finite map from first-order variables free in Γ, s, and k to their sorts.

Σ;Γ
k−→ s true

The informal meaning of the sequent is:

Parametrically in the variables in Σ, assuming that everything that principal k claims
is true, the judgment s true follows from the judgments in Γ.

The principal k is called the view of the sequent, and can be roughly thought of as the
principal relative to whose statements we wish to prove the sequent (hence the hypoth-
esis “assuming that everything that principal k claims is true . . . ” in the meaning of the
sequent).

Example 3.1. Recall from Section 2.2 that principal admin is the ultimate authority on
access. Hence, to allow any access, we must prove the corresponding authorization in
the view of admin. For example, to allow Alice to read file secret.txt, we must prove that
Σ;Γ

admin−−−→ (may Alice secret.txt read) true, where Γ is the set of all rules defining the
policy.

Inference Rules. The sequent calculus for BL0 consists of several inference rules for
establishing sequents. Our first rule, (init), is standard and states that if atom p is assumed
as a hypothesis, then it can be concluded. We restrict the rule to atoms, but it can be
proved that a generalization to arbitrary formulas holds (we prove a similar theorem for
the entire logic BL in Section 4). The second rule, (claims), captures the meaning of the
view of a sequent: if k claims s is assumed and the view is k, then s true can also be
assumed.

Σ;Γ, p true
k−→ p true

init
Σ;Γ,k claims s,s true

k−→ r true

Σ;Γ,k claims s k−→ r true
claims

Other inference rules of the sequent calculus are directed by connectives. We list below
rules for the says connective. The notation Γ↓ in (saysR) denotes the subset of Γ contain-



ing only judgments of the form k′ claims s′, i.e., Γ↓ = {(k′ claims s′) | k′ claims s′ ∈ Γ}.
The rule (saysR) may be read as follows: We can establish that k says s is true in hy-
potheses Γ in any view k0 (conclusion of the rule) if we can prove only from Γ↓ in view
k that s is true (premise). Hypotheses of the form s′ true are removed from the premise
because they may have been introduced in Γ in the view k0, but may not be claimed
or trusted by k, as illustrated at the end of Example 3.2. The second rule (saysL) states
that the judgment (k says s) true entails the judgment k claims s. In fact, the two judg-
ments are equivalent in BL0. (Technically, we say that the connective says internalizes
the judgment claims into the syntax of formulas.)

Σ;Γ↓ k−→ s true

Σ;Γ
k0−→ (k says s) true

saysR
Σ;Γ,k claims s

k0−→ r true

Σ;Γ,(k says s) true
k0−→ r true

saysL

This interpretation of the says connective using views is novel, and has been chosen to
allow for representation of a specific form of delegation of authority, as discussed in
Section 5.4.

Rules for connectives of first-order logic (∧, ⊃, >, ⊥, ∀) have their standard form,
with the exception that the view passes unchanged from the premises to the conclusion.
We refer the reader to existing work for details [32]. As an example, we list below the
rules for conjunction (∧).

Σ;Γ
k−→ s1 true Σ;Γ

k−→ s2 true

Σ;Γ
k−→ (s1∧ s2) true

∧R
Σ;Γ,s1 true,s2 true

k−→ r true

Σ;Γ,(s1∧ s2) true
k−→ r true

∧L

Several standard metatheoretic properties including admissibility of cut and consis-
tency hold of BL0’s proof theory but we refrain from presenting them here because we
present similar properties for the larger logic BL in Section 4.

Example 3.2 (Rules for the connective says). We illustrate the rules for the connective
says. Consider the sequent ·;(k says p) true

k−→ (k′ says p) true, where k and k′ are distinct
ground principals and p is an atom. In words, this sequent states that from the assumption
k says p we can deduce k′ says p assuming that every statement of principal k is true
(because the view here is k). Intuitively, this sequent should not have a proof in the logic
because no relation between statements of k and those of k′ has been assumed. We justify
this intuition formally by trying to construct a proof of the sequent reasoning backwards
using the rules of calculus and explaining why every such attempt fails. (We drop the
empty context Σ from every sequent to reduce clutter.)

To construct a proof of (k says p) true
k−→ (k′ says p) true, we can either try to apply

the (saysR) rule or the (saysL) rule. Trying the former, we reduce to proving that ((k says

p) true)↓ k′−→ p true, i.e., · k−→ p true, to which no other rule applies, so this attempt fails.

If we instead try the rule (saysL), we reduce to proving (k says p) true,k claims p k−→
(k′ says p) true. Now we can apply either the rule (claims) or the rule (saysR). We show
here the former case, which is more interesting (the latter case fails as well). Using the
rule (claims), it suffices to prove that (k says p) true,k claims p, p true

k−→ (k′ says p) true.
Now we are forced to use (saysR), which reduces our goal to ((k says p) true,k claims



p, p true)↓ k′−→ p true. Observe that ((k says p) true,k claims p, p true)↓ = k claims p,

so we need to show that k claims p k′−→ p true. No rule applies now, so the sequent is
unprovable, as expected.

Note that if in the rule (saysR) we were to allow all of Γ in the premise instead of
Γ↓, then this (intuitively unprovable) sequent would have a proof in BL0 because after
the last application of (saysR) in the above discussion, we would have ended up with the

sequent (k says p) true,k claims p, p true
k′−→ p true, which has a one-step proof by the

rule (init). In other words, in applying the (saysR) rule, we would have changed the view
from k in the conclusion to k′ in the premise and yet, unjustifiably, retained in the premise
the assumption p true, which was obtained from the statement k says p made by principal
k, not k′. By removing hypotheses of the form s′ true in the premise of (saysR) we avoid
this possibility and ensure that statements of distinct principals are not confused in the
logic a priori.

3.2. BL1: State Predicates

To represent stateful policies, examples of which were shown in Section 2, we extend
BL0 with a special class of atomic formulas called stateful atoms, denoted i, and add a
new form of hypotheses — a set of stateful atoms, E — to sequents. The resulting logic,
BL1, has sequents of the form Σ;E;Γ

k−→ s true, which informally mean that:

Parametrically in the variables in Σ, assuming that everything that principal k claims
is true, the judgment s true follows from the judgments in Γ in any environment that
validates all stateful atoms in E.

In practice, stateful atoms in E may be discharged by an external procedure that has
access to the environment or system state.

Syntax. The syntax of BL1 formulas is shown below. The meta-variables p and t inherit
their syntax from BL0. State predicates I are assumed to be distinct from uninterpreted
predicates P.

State predicates I ::= has xattr | owner | . . .
Stateful atoms i ::= I t1 . . . tn
Formulas r,s ::= p | i | s1∧ s2 | s1 ⊃ s2 | > | ⊥ | ∀x:σ .s | k says s

Example 3.3. In BL1, Alice is allowed to read file secret.txt iff there is a proof of
Σ;E;Γ

admin−−−→ (may Alice secret.txt read) true, where Γ is the set of all rules defining the
policy and E is a set of stateful atoms that hold in the environment prevailing at the time
of access.

Proof Theory of BL1. We incorporate relations between stateful atoms into the proof
theory through an abstract judgment Σ;E |= i, which means that “for all ground instances
of variables in Σ, any environment that satisfies all stateful atoms in E also satisfies atom
i”. We do not stipulate any rules to establish this judgment since they may vary from
environment to environment. For instance:

• If names a.txt and b.txt alias the same file, then Σ,a,v;(has xattr a.txt a v) |=
(has xattr b.txt a v).



• If files inherit owners from containing directories, then Σ,k;(owner (/usr) k) |=
(owner (/usr/a.txt) k).

In the simplest instance, the judgment Σ;E |= i may hold if and only if i∈E. Our metathe-
oretic results (Section 4) assume only the following properties of this judgment, all of
which follow from its intuitive explanation. Σ ` t : σ means that term t has sort σ given
the sorting Σ for variables.

Σ;E, i |= i (Identity)
Σ;E |= i implies both Σ,x:σ ;E |= i and Σ;E,E ′ |= i (Weakening)
Σ;E |= i and Σ;E, i |= i′ imply Σ;E |= i′ (Cut)
Σ,x:σ ;E |= i implies Σ;E[t/x] |= i[t/x] if fv(t)⊆ Σ and Σ ` t : σ

(Substitution)

As explained earlier, BL1 sequents have the form Σ;E;Γ
k−→ s true. BL1 inherits all in-

ference rules of BL0 with the proviso that the new context E passes unchanged from the
conclusion to premises in all rules. We do not reiterate these rules. Two new rules for
reasoning about stateful atoms are added. The first rule states that the judgment i true
holds if E |= i for the assumed state E. The second rule means that a hypothesis i true
implies that the stateful atom i holds. Together, the two rules imply that the judgment
i true is equivalent to the atom i holding in the prevailing environment E, which closely
couples the stateful formula i to its intended interpretation.

Σ;E |= i

Σ;E;Γ
k−→ i true

stateR
Σ;E, i;Γ

k−→ s true

Σ;E;Γ, i true
k−→ s true

stateL

We list below admissible and inadmissible statements relating to stateful atoms and
the says connective. The second and third statements mean that a false stateful atom
signed by a principal does not contaminate the entire logic.

` i⊃ k says i
6` (k says i)⊃ i
6` (k says i)⊃ (k′ says i) if k 6= k′

BL1’s proof theory satisfies several standard metatheoretic properties including ad-
missibility of cut and consistency but we refrain from presenting them here because we
present similar properties for the larger logic BL in Section 4.

3.3. BL: Explicit Time and @ Connective

Finally, we add explicit time to the logic by including the connective s @ [u1,u2]. This
connective is based on our prior work with DeYoung for a different logic η [14], which
did not include state. The reason for considering the extension with time is two-fold.
First, explicit time is needed to correctly represent policy rules that have a pre-determined
expiration, as well as other rules that limit the temporal validity of formulas (e.g., the
second, third, and fourth rules of Section 2). Second, there are important design decisions
in the interaction between state and time that we wish to highlight. In particular, due to
this interaction the obvious interpretation of stateful atoms allows expressing unenforce-
able policies in BL, so we use a somewhat non-intuitive interpretation of stateful atoms
in BL, as explained in Section 3.3.1.



Since s @ [u1,u2] means that s holds throughout the interval [u1,u2], it seems reason-
able that s @ [u1,u2] imply s @ [u′1,u

′
2] if u1 ≤ u′1 and u′2 ≤ u2. To make such properties

admissible in the logic, we need a theory of the total order u1 ≤ u2 on time points and,
for expressing certain policies (e.g., the fourth rule in Section 2), we also need a theory
of arithmetic over time points. We include both by adding a single constraint domain of
time points to the logic. From the perspective of proof theory, constraints are similar to
state. However, the external procedure for verifying constraints does not depend on state.

Syntax. Time points are either integers or one of the elements {−∞,+∞}. The numbers
represent time elapsed in seconds from a fixed point of reference. In the concrete syntax,
we often write absolute time points in the format YYYY:MM:DD:hh:mm:ss. We include
an infix function symbol + of arity 2. A new syntactic class of atomic formulas called
constraints, denoted c, is also added. Constraints are predicates of one of two forms:
u1 ≤ u2 and u1 = u2.

Terms t,u,k ::= Alice | Bob | YYYY:MM:DD:hh:mm:ss | −∞ | +∞ |
u1 +u2 | . . .

Constraints c ::= u1 ≤ u2 | u1 = u2
Formulas r,s ::= p | i | c | s1∧ s2 | s1 ⊃ s2 | > | ⊥ | ∀x:σ .s | k says s |

s @ [u1,u2]

3.3.1. Proof Theory of BL

The addition of time requires a significant change to the logic’s judgments [14]. Instead
of the judgments s true and k claims s, we use refined judgments s ◦ [u1,u2] (s is true
throughout the interval [u1,u2]) and k claims s ◦ [u1,u2] (k claims that s is true throughout

the interval [u1,u2]). Sequents in BL have the form Σ;Ψ;E;Γ
k,u1,u2−−−−→ s ◦ [u′1,u′2]. Here, Ψ

is a set of constraints. The meaning of the sequent is:

Parametrically in the variables in Σ, assuming that everything that principal k claims
about intervals containing [u1,u2] is true, the judgment s ◦ [u′1,u′2] follows from the
judgments in Γ in any environment that validates all stateful atoms in E, if all con-
straints in Ψ hold.

Besides the addition of constraints as hypotheses, another change is the addition of an
interval of time to the view. This is not particularly important since we could also have
constructed a logic without time intervals in views (for details of the trade-offs involved
in making this choice, see [17, Section 4.4]).

Relations between constraints are incorporated into the logic through an abstract
judgment Σ;Ψ |= c, which is similar to Σ;E |= i. As for the latter judgment, our metathe-
oretic properties rely only on basic properties of Σ;Ψ |= c. These properties include ana-
logues of properties (Identity) – (Substitution) of Section 3.2. In addition, we require that
≤ be reflexive and transitive.

Σ;Ψ |= u≤ u (Reflexivity)
Σ;Ψ |= u1 ≤ u2 and Σ;Ψ |= u2 ≤ u3 imply Σ;Ψ |= u1 ≤ u3 (Transitivity)

Inference rules of the sequent calculus for BL are derived from those of BL1, taking
into account carefully the interaction between time and the different connectives. This
interaction is non-trivial in most cases, as was observed in prior work [14].



Basic rules. The following two rules relate the judgments of BL. Rule (init) generalizes
its homonym from BL0: If we assume that atom p holds throughout the interval [u′1,u

′
2],

then we can conclude that p holds throughout a subinterval [u1,u2], i.e., if u′1 ≤ u1 and
u2 ≤ u′2. Rule (claims) allows us to promote the hypothesis k claims s ◦ [u1,u2] to s ◦
[u1,u2] if the principal in the view ν is k, and the interval [ub,ue] in ν is a subinterval of
[u1,u2].

Σ;Ψ |= u′1 ≤ u1 Σ;Ψ |= u2 ≤ u′2
Σ;Ψ;E;Γ, p ◦ [u′1,u′2]

ν−→ p ◦ [u1,u2]
init

Σ;Ψ;E;Γ,k claims s ◦ [u1,u2],s ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

ν = k,ub,ue Σ;Ψ |= u1 ≤ ub Σ;Ψ |= ue ≤ u2

Σ;Ψ;E;Γ,k claims s ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

claims

Connective @. As in prior work [14], s @ [u1,u2] internalizes the judgment s ◦ [u1,u2]
into the syntax of formulas. Because s @ [u1,u2] means that s holds throughout [u1,u2],
a further qualification by adding ◦ [u′1,u′2] as in (s @ [u1,u2]) ◦ [u′1,u′2] does not add any-
thing to the meaning, so the judgments s ◦ [u1,u2] and s @ [u1,u2] ◦ [u′1,u′2] are equiva-
lent. As a result, we can replace (s @ [u1,u2]) ◦ [u′1,u′2] with s ◦ [u1,u2] in the both the
hypotheses and the conclusion of a sequent, which is precisely what the following two
rules for the @ connective allow. (Here, ν denotes an arbitrary view.)

Σ;Ψ;E;Γ
ν−→ s ◦ [u1,u2]

Σ;Ψ;E;Γ
ν−→ (s @ [u1,u2]) ◦ [u′1,u′2]

@R
Σ;Ψ;E;Γ,s ◦ [u1,u2]

ν−→ r ◦ [u′′1 ,u′′2 ]
Σ;Ψ;E;Γ,(s @ [u1,u2]) ◦ [u′1,u′2]

ν−→ r ◦ [u′′1 ,u′′2 ]
@L

State predicates. If i is a stateful atom, what should i ◦ [u1,u2] mean? One possibility
(which we don’t use in BL) is to apply the usual meaning of s ◦ [u1,u2], namely that
the stateful atom i holds throughout the time interval [u1,u2]. Although intuitive, this
interpretation can result in policies that are impossible to enforce. Consider, for example,
the policy (i @ [T,T +5])⊃ ((may K F read) @ [T,T ]). Intuitively, the policy says that a
principal K may read file F at time T if i holds in the interval [T,T +5]. Thus, permission
to access file F at time T refers to state at later points of time, which is, of course,
impossible to enforce in a reference monitor.

To avoid such non-enforceable policies, we make a substantial design decision in
BL: We assume that all stateful atoms are interpreted at exactly one point of time and
i ◦ [u1,u2] simply means that i holds in the environment at this point of time (independent
of u1 and u2). The logic does not stipulate what that point of time is, but it seems practical
to use the time at which the access happens. In that interpretation, i ◦ [u1,u2] means that i
holds at the time of access. Following this decision, the following rules for stateful atoms
are self-explanatory:

Σ;E |= i

Σ;Ψ;E;Γ
ν−→ i ◦ [u1,u2]

stateR
Σ;Ψ;E, i;Γ

ν−→ r ◦ [u′1,u′2]
Σ;Ψ;E;Γ, i ◦ [u1,u2]

ν−→ r ◦ [u′1,u′2]
stateL

Seemingly, we are limiting the logic’s expressiveness because we are eliminating (en-
forceable) policy rules that refer to stateful atoms in intervals prior to access. Such policy



rules occur rarely; in particular, no such rule occurs in our entire case study. Further, even
when they occur, such policy rules can be encoded by requiring evidence of the stateful
atom(s) having been true in the past (e.g., a trusted observer’s certificate) to exist at the
time of access. As a result, we consider our design reasonable.

Constraints. Constraints and state predicates have similar treatments in the proof the-
ory. Consequently, the rules governing constraints are:

Σ;Ψ |= c

Σ;Ψ;E;Γ
ν−→ c ◦ [u1,u2]

consR
Σ;Ψ,c;E;Γ

ν−→ r ◦ [u′1,u′2]
Σ;Ψ;E;Γ,c ◦ [u1,u2]

ν−→ r ◦ [u′1,u′2]
consL

As opposed to other formal systems [22, 33], we do not allow the deduction of logical
falsity ⊥ and, hence, every formula, when constraints Ψ are contradictory. The absence
of such deduction is desirable for an authorization logic because it prevents implicit
authorizations, as explained in Section 5.2.

Connective says. The rules for says are similar to the rules for the same connective
in BL0, but also take into account time intervals. For example, rule (saysR) states that
(k says s) ◦ [u1,u2] can be established in any view ν from hypotheses Γ if from the
hypotheses Γ↓ (the subset of Γ containing assumptions of the form k′ claims s′ ◦ [u′1,u′2]),
we can prove s ◦ [u1,u2] in the view k,u1,u2. Rule (saysL) relies on the fact that (k says
s) claims [u1,u2] and k claims s ◦ [u1,u2] are equivalent judgments in BL.

Σ;Ψ;E;Γ↓ k,u1,u2−−−−→ s ◦ [u1,u2]

Σ;Ψ;E;Γ
ν−→ (k says s) ◦ [u1,u2]

saysR

Σ;Ψ;E;Γ,k claims s ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

Σ;Ψ;E;Γ,(k says s) ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

saysL

Connective ⊃. Based on prior work [14], a proof of (s1 ⊃ s2) ◦ [u1,u2] is a method of
converting a proof of s1 ◦ [u′1,u′2] to a proof of s2 ◦ [u′1,u′2] for any subinterval [u′1,u

′
2]

of [u1,u2]. Accordingly, the rule (⊃R) means that (s1 ⊃ s2) ◦ [u1,u2] is provable (con-
clusion) if for fresh variables x1 and x2, s2 ◦ [x1,x2] is provable from the assumptions
[x1,x2] ⊆ [u1,u2] and s1 ◦ [x1,x2] (premise). Dually, the rule (⊃L) allows us to assume
s2 ◦ [u′1,u′2] (second premise) if s1 ◦ [u′1,u′2] is provable (first premise), [u′1,u

′
2]⊆ [u1,u2]

(third and fourth premises), and (s1 ⊃ s2) ◦ [u1,u2] has been assumed (hypotheses of
conclusion).

Σ,x1:time,x2:time;Ψ,u1 ≤ x1,x2 ≤ u2;E;Γ,s1 ◦ [x1,x2]
ν−→ s2 ◦ [x1,x2]

Σ;Ψ;E;Γ
ν−→ (s1 ⊃ s2) ◦ [u1,u2]

⊃R

Σ;Ψ;E;Γ,(s1 ⊃ s2) ◦ [u1,u2]
ν−→ s1 ◦ [u′1,u′2]

Σ;Ψ;E;Γ,(s1 ⊃ s2) ◦ [u1,u2],s2 ◦ [u′1,u′2]
ν−→ r ◦ [u′′1 ,u′′2 ]

Σ;Ψ |= u1 ≤ u′1 Σ;Ψ |= u′2 ≤ u2

Σ;Ψ;E;Γ,(s1 ⊃ s2) ◦ [u1,u2]
ν−→ r ◦ [u′′1 ,u′′2 ]

⊃L



Other connectives. Other connectives of BL (∀, ∧, >, ⊥) do not have a significant
interaction with time because these connectives commute with the @ connective. This
results in straightforward inference rules that are shown in Appendix A.

Disjunctive reasoning about intervals of time. BL’s proof system does not, in general,
allow combining proofs of s ◦ [u1,u2] and s ◦ [u2,u3] into a single proof of s ◦ [u1,u3]

when [u1,u2] and [u2,u3] are overlapping intervals. The reason for this decision is to
keep automatic proof search tractable: If we were to allow such combinations in the
proof system, then a procedure to find a proof of s ◦ [u1,u3] would, in general, have try
the infinitely many choices of intervals [u1,u2] and [u2,u3] whose union is [u1,u3]. (A
detailed discussion of proof search for BL is beyond the scope of this paper, but we point
the reader to [17, Chapter 6] for details.) Whereas the absence of such combinations has
theoretical implications, e.g., there are judgments like s ◦ [u1,u3] in the earlier sentences
that may hold intuitively but cannot be proved in the logic, it does not necessarily limit
expressiveness in practice. For instance, the formula s @ [u1,u3] may be justified in a
reference monitor using two proofs instead of just one, where the first proof establishes
s ◦ [u1,u2] and the second proof establishes s ◦ [u2,u3] for some u2.

3.3.2. Summary

We summarize the proof system of BL by listing below some admissible and some inad-
missible properties. s ≡ r denotes (s ⊃ r)∧ (r ⊃ s), ` s means that Σ; ·; ·; · ν−→ s ◦ [u1,u2]

for all u1,u2,ν and appropriate Σ, and 6` s means that the latter is not true for s in the
stated generality.

1. ` ((u1 ≤ u′1)∧ (u′2 ≤ u2))⊃ ((s @ [u1,u2])⊃ (s @ [u′1,u
′
2]))

2. ` ((s @ [u1,u2]) @ [u′1,u
′
2])≡ (s @ [u1,u2])

3. ` ((s1∧ s2) @ [u1,u2])≡ ((s1 @ [u1,u2])∧ (s2 @ [u1,u2]))

4. ` ((∀x.s) @ [u1,u2])≡ (∀x.(s @ [u1,u2])) if (x 6∈ u1,u2)
5. ` >@ [u1,u2]

6. ` (⊥@ [u1,u2])⊃ s
7. There is no interval [u1,u2] such that ` ⊥@ [u1,u2]

8. ` ((s1 ⊃ s2) @ [u1,u2]) ≡ (∀x1.∀x2.(((u1 ≤ x1)∧ (x2 ≤ u2)∧ (s1 @ [x1,x2]))
⊃ (s2 @ [x1,x2])))

9. ` ((k says s) @ [u1,u2])⊃ (k says (s @ [u1,u2]))

10. 6` (k says (s @ [u1,u2]))⊃ ((k says s) @ [u1,u2])

Property 1 states that if a formula s is true throughout an interval [u1,u2], then it is
also true throughout any subinterval [u′1,u

′
2]. Property 2 states that the meaning of a for-

mula with a top-level @ connective, like s @ [u1,u2], is not altered by a further qualifica-
tion with @. Properties 3 and 4 mean that the connective @ commutes with the connec-
tives ∧ and ∀. Property 6 means that if ⊥ holds in any interval of time [u1,u2], then any
formula s is provable. Property 7 states that, without any assumptions, we cannot derive
⊥ in any interval of time; together with Property 6, this is a proof-theoretic statement
of the logic’s consistency. Property 8 asserts that s1 ⊃ s2 holds throughout the interval
[u1,u2] iff the truth of s1 in every subinterval [x1,x2] implies the truth of s2 in the same
subinterval. Properties 9 and 10 mean that @ commutes with says in one direction only.



4. Metatheory of BL

We prove several important metatheoretic properties of BL.3 The first lemma below
states that proofs respect substitution of stateful atoms, which, in a sense, means that the
proof theory preserves the meaning of the judgment Σ;E |= i. A similar property holds
for constraints, but we do not state it explicitly.

Lemma 4.1 (State substitution). Σ;E |= i and Σ;Ψ;E, i;Γ
ν−→ r ◦ [u1,u2] imply Σ;Ψ;E;Γ

ν−→
r ◦ [u1,u2].

Proof. By induction on the given derivation of Σ;Ψ;E, i;Γ
ν−→ r ◦ [u1,u2]. For the case of

rule (stateR), we rely on the property (Cut) from Section 3.2.

BL’s proof system also satisfies standard metatheoretic properties like closure under
weakening of hypotheses and substitution of ground terms for parameters. We do not
state these explicitly. The next significant metatheoretic property is subsumption, which
allows us to make the time intervals in views and conclusions smaller.

Theorem 4.2 (Subsumption). Suppose Σ;Ψ |= u1 ≤ u′1 and Σ;Ψ |= u′2 ≤ u2. Then, the
following hold.

1. If Σ;Ψ;E;Γ
k,u1,u2−−−−→ J, then Σ;Ψ;E;Γ

k,u′1,u
′
2−−−−→ J.

2. If Σ;Ψ;E;Γ
ν−→ s ◦ [u1,u2], then Σ;Ψ;E;Γ

ν−→ s ◦ [u′1,u′2].

Proof. (1) follows by induction on the given derivation. (2) also follows by induction on
the given derivation, using (1) for the case of rule (saysR).

Theorem 4.2(2) is relevant in practice because it formalizes the following (intuitive)
fact: To authorize an access over an interval [u′1,u

′
2], it is okay to validate the access over

a larger interval [u1,u2].
Our main metatheoretic results are the admissibility of cut — that the proof of a

judgment can be used to discharge the same judgment used as a hypothesis in another
proof — and identity — any judgment assumed as hypothesis can be concluded. Admis-
sibility of cut is a proof-theoretic statement of soundness of a logic. Dually, identity is
a proof-theoretic statement of completeness of the logic’s inference rules. Together, the
proofs of the two theorems show that the rules of the logic fit well with each other [32].

Theorem 4.3 (Admissibility of cut). Σ;Ψ;E;Γ
ν−→ s ◦ [u1,u2] and Σ;Ψ;E;Γ,s ◦

[u1,u2]
ν−→ s′ ◦ [u′1,u′2] imply Σ;Ψ;E;Γ

ν−→ s′ ◦ [u′1,u′2].

Proof. First, we strengthen the theorem by adding a second statement: Σ;Ψ;E;Γ↓ k,u1,u2−−−−→
s ◦ [u1,u2] and Σ;Ψ;E;Γ,k claims s ◦ [u1,u2]

ν−→ s′ ◦ [u′1,u′2] imply Σ;Ψ;E;Γ
ν−→ s′ ◦

[u′1,u
′
2]. Both statements are then proved simultaneously by lexicographic induction, first

on the structure of s, and then on the depths of the two given derivations, as in prior
work [31]. The proof uses Lemma 4.1 and Theorem 4.2.

3Proofs of all lemmas and theorems with key induction cases are present in the first author’s thesis [17,
Chapter 4].



Theorem 4.4 (Identity). Σ;Ψ;E;Γ,s ◦ [u1,u2]
ν−→ s ◦ [u1,u2].

Proof. By induction on s.

By an analysis of inference rules, it also follows that the logic is proof-theoretically
consistent, i.e., ⊥ cannot be established a priori (i.e., in an empty context). Similarly,
k says⊥ cannot be proved a priori.

Theorem 4.5 (Consistency). (1) Σ; ·; ·; · 6 ν−→ ⊥ ◦ [u1,u2], and (2) Σ; ·; ·; · 6 ν−→ (k says ⊥) ◦
[u1,u2].

Proof. By exhaustive backwards application of all applicable rules and failing to com-
plete a proof in each case.

5. Discussion

We end our description of the logic BL by discussing briefly how policies written in
it may be enforced, why we do not allow deduction of arbitrary formulas from contra-
dictory constraints, analyzing the possibility of treating time as a special case of state
(instead of using the connective @), and commenting on the interpretation of the says
connective that we use in BL.

5.1. Enforcement of BL Policies

Policies expressed in BL can be enforced using the standard architecture of proof-
carrying authorization (PCA) [3, 5]. PCA combines cryptography and formal proofs for
rigorous policy enforcement. A minor novelty in using it for BL is in the treatment of
system state. Although a detailed discussion of enforcement of BL policies through PCA
is the subject of a separate paper [19], we briefly discuss the main ideas here.

The central tenet of enforcing policies expressed in any logic is to allow an access ϕ

iff the prevailing policy Γ entails it, i.e., Γ ` ϕ . In an implementation, logical judgments
constituting the access policy, i.e., the context Γ, may be established by signed certifi-
cates. For example, a reference monitor may admit the BL judgment k claims s ◦ [u1,u2]
as a valid policy rule if there exists a certificate containing formula s, digitally signed by
principal k and having validity [u1,u2]. The judgment ϕ representing access depends on
the policy, but is generally straightforward. For example, if BL is used to represent file
access policies, then the judgment ϕ representing principal k’s access to read file f at
time u may be (may read k f ) ◦ [u,u].

The new aspect of enforcement for BL is the representation of state on which autho-
rization may depend. This is not difficult to incorporate because state can be represented
explicitly in BL’s sequents through the context E. In particular, a reference monitor may
authorize access ϕ iff there exist E and Γ such that for a fresh view ν :

1. There is a proof of ·;E; ·;Γ
ν−→ ϕ .

2. There are digital certificates to justify each hypothesis in Γ, as described above.
3. All stateful atoms in E can be checked on the system state using a given trusted

external procedure for their verification.



Ψ = (price(a) = 10) (Ψ,price(a)> 75) is contradictory

Σ,x1:time,x2:time;Ψ,price(a)> 75; ·; · ν−→ (approves manager a) ◦ [x1,x2]

Σ,x1:time,x2:time;Ψ; ·;(price(a)> 75) ◦ [x1,x2]
ν−→ (approves manager a) ◦ [x1,x2]

consL

Σ;Ψ; ·; · ν−→ (price(a)> 75)⊃ (approves manager a)
⊃R

Σ;Ψ; ·;((price(a)> 75)⊃ (approves manager a))⊃ (purchase a) ν−→ purchase a
⊃L

Σ;Ψ; ·; pol ν−→ purchase a
∀L

Figure 3. Proof of statement from Section 5.2 in BL’s sequent calculus extended with reasoning from contra-
dictory constraints. To simplify notation, we omit the suffix ◦ [−∞,+∞] from judgments, unnecessary hypoth-
esis, and premises that are trivially provable.

Because the logic BL is undecidable, it is unreasonable to require the reference mon-
itor to find the proof in step (1) and, instead, push the onus of providing E, Γ, the proof
of (1) and the certificates of (2) to the principal requesting access. The reference monitor
then only needs to verify that the proof provided for (1) is correct, that the certificates
provided for (2) check cryptographically and that (3) holds, all of which are relatively
straightforward. This architecture, which moves the burden of providing evidence to the
principal requesting access, is called proof-carrying authorization (PCA). We have im-
plemented a PCA-based file system, PCFS, that can enforce policies written in BL [19].
The implementation includes both a verifier for BL proofs (which is needed for step (1)
above) as well as a goal-directed automatic, but incomplete, theorem prover for BL.

5.2. Reasoning from Contradictory Constraints

Some formal systems containing both logical deduction and constraints allow the deduc-
tion of ⊥ and, hence, every formula if assumed constraints Ψ are contradictory [22, 33].
BL does not allow such deduction because it can result in unexpected, implicit conse-
quences of policies. For example, consider the following policy rule which says that if
the price of an item x is greater than $75, then it can be purchased in an office with the
manager’s approval (the function price(x) returns the price of item x):

pol = ∀x. (((price(x)> 75)⊃ (approves manager x))⊃ (purchase x))

Note that this policy rule does not explicitly list the conditions under which items priced
less than $75 may be purchased; such items may be covered by other policy rule(s). How-
ever, if we allow deduction of arbitrary formulas from contradictory constraints then,
in the resulting logic, this policy allows the purchase of any item priced less than $75.
For instance, if a is an item with price(a) = 10, then we would be able to prove in
the resulting logic that Σ;Ψ; ·; pol ◦ [−∞,+∞]

ν−→ (purchase a) ◦ [−∞,+∞] for Σ = a,
Ψ = (price(a) = 10) and arbitrary ν . A sequent calculus proof of this fact is shown
in Figure 3. The key step in the proof is the topmost rule in the figure: The contradic-
tory constraints price(a) = 10 and price(a) > 75 allow the deduction of the formula
(approves manager a) ◦ [x1,x2].

Such implicit consequences of policies are clearly undesirable and, to prevent them,
BL does not allow deduction of arbitrary formulas from contradictory constraints.



5.3. Time as a Special Case of State?

In BL, time is represented using the connective s @ [u1,u2]. However, time is inherently
an element of system state. This raises the following natural question: Is a representa-
tion of time separate from state necessary? Specifically, if we include in our logic an
interpreted constant, say localtime, which evaluates to the current time (as in some prior
work [5, 8]), and drop the connective @, will we have the same expressiveness as BL?
The answer to this question is no; BL is strictly more expressive than a logic without @
but with a constant localtime.

This difference exists because BL’s @ connective allows us to say that a formula
holds at a specific point of time (or throughout an interval of time), whereas the constant
localtime only allows us to relate the current time to other points of time. Consequently,
any policy that refers to the truth of formulas at two different points of time cannot be
expressed using localtime alone. For instance, the BL policy rule (p @ [u,u]) ⊃ (p′ @
[u+ 5,u+ 5]) (if predicate p holds at time u, then p′ holds at u+ 5) is impossible to
represent in such a setup. Similarly, policy rules that are valid on time intervals that
depend on time points written in system state can be represented using @ but cannot be
expressed using localtime alone. The second and fourth rules of Section 2.2 are examples
of such rules. Consequently, representing time through the @ connective is useful even
when state is included in the logic.

5.4. Delegation with BL’s says Connective

The connective k says s merits additional discussion because its interpretation is BL0

(and, by inheritance, in BL1 and BL) is different from that in prior work. Starting with
the work of Lampson et al. [24], the says connective has been included in several autho-
rization logics [1, 2, 18]. However, in each case, the inference rules defining says (and,
hence, the formal meaning of k says s) are different. For instance, Lampson et al. [24]
and Abadi et al. [2] treat (k says ·) as a normal necessitation modality of classical modal
logic. In more recent papers, Abadi [1] and the authors [18], treat (k says ·) as a lax
modality [16]. Each treatment has its own merits and demerits in expressing and reason-
ing about policies. In BL0, BL1, and BL we define says with a new and non-standard set
of inference rules using views (rules (saysR), (saysL) and (claims) in Section 3.1). This
new interpretation has been chosen to allow for accurate representation of a specific form
of delegation (transfer of authority) from one principal to another, which, we believe,
none of the prior definitions of says allow. In this section, we justify this new choice.
We base our discussion on BL0 instead of BL to keep the notation simple and introduce
an axiomatic characterization (Hilbert-style presentation) of BL0’s says connective to
facilitate our discussion.

Axiomatic characterization of BL0. Besides the sequent calculus defined in Section 3.1,
BL0 can be equivalently characterized by taking any axiomatization of first-order intu-
itionistic logic and adding the following rule and axioms for the connective says. (Stan-
dard notation: ` s means that s is provable without assumptions.)



` s
` k says s

(N)

` (k says (s1 ⊃ s2))⊃ ((k says s1)⊃ (k says s2)) (K)
` (k says s)⊃ k′ says k says s (I)
` k says ((k says s)⊃ s) (C)

Theorem 5.1 (Equivalence of proof systems). The above rule and axioms for says, to-
gether with any axiomatization of intuitionistic first-order logic, are equivalent to the
sequent calculus for BL0, i.e., for any s and k without free variables, ` s if and only if
·; · k−→ s true.

Proof. By simulating a proof in the sequent calculus in the axiomatic calculus and vicev-
ersa. The technique is standard. For details see [17, Chapter 3].

Delegation in BL0. Our interpretation of the says connective allows for a very intuitive
representation of the following form of delegation, which appears repeatedly in our case
study: Principal k asserts that it will support the formula s if principal k′ supports the
formula s′, but principal k has no authority over s′. This delegation can be represented
in BL0 by the formula: k says ((k′ says s′) ⊃ s). Concretely, k only needs to sign the
formula “(k′ says s′) ⊃ s” with its private key to cause this delegation. If k′ supports s′,
i.e., k′ says s′, then we can easily derive k says s using the axioms (I), (K) and the basic
rule of modus ponens (if ` r ⊃ r′ and ` r, then ` r′):

1. By (I) on k′ says s′, derive k says k′ says s′.
2. By (K) on k says ((k′ says s′)⊃ s) and modus ponens, derive (k says k′ says s′)⊃

(k says s).
3. By modus ponens on (2) and (1), derive k says s.

(A sequent calculus proof of the same fact is shown in Appendix B.)
Neither of the other two interpretations of says mentioned at the beginning of this

section allow for such an intuitive representation of this form of delegation. If k says ·
is interpreted as a normal necessitation modality as in [2, 24], then k says s cannot be
derived from k says ((k′ says s′)⊃ s) and k′ says s′ because this interpretation of says does
not admit the axiom (I). The “correct” representation of delegation in this logic is (k′ says
s′)⊃ (k says s), not k says ((k′ says s′)⊃ s). However, unlike the latter formula, the former
formula does not have a top-level says connective, so it not clear which principal’s signed
certificate will establish the delegation.

If, instead, k says · is interpreted as a lax modality as in [1, 18], then we face a
different problem: In lax logic, from the delegation formula k says ((k′ says s′)⊃ s) and
the formula k says s′ (not the formula (k′ says s′)), it is possible to derive k says s. Thus
principal k retains control over the formula s′, even as it delegates the formula to k′,
which may be undesirable, as in the following example from our case study:

admin claims (((indi/has-background K topsecret) : -
BA says (indi/has-ssbi K T ),
T ′ = (T +5y)) @ [T,T ′]) ◦ [−∞,+∞].

In words, the principal admin says that principal K has topsecret clearance if a
person certified to check others’ background, BA, says that K has passed a SSBI



(single scope background investigation). Although the predicate (indi/has-ssbi
K T ) has been delegated to BA by admin, the latter has no authority over this predicate.
Consequently, this rule cannot be represented easily if says were to be interpreted as a
lax modality. (Other, similar examples of delegation appear in Section 6.)

In summary, our interpretation of the says connective allows for a very intuitive and
accurate representation of a specific and common form of delegation, which is not the
case in earlier authorization logics.

6. Case Study Revisited

We revisit the case study of U.S. policies for access to sensitive intelligence information
that was introduced in Section 2. In that section, we listed the top-level rules for access
to a sensitive intelligence file and mentioned that authorization to read a classified file
depends on the accessing individual possessing required clearances, represented by the
predicate (indi/has-clearances/file K F) in the second rule of Section 2. In this
section, we list the rules that define this predicate.

Verification of the predicate (indi/has-clearances/file K F) requires match-
ing attributes of the file F to attributes of the individual K. Attributes of file F in-
clude its secrecy level (confidential, secret, or topsecret), citizenship requirements for
access, and compartments (projects or divisions) that F is associated with. To access
the file, K must have a secrecy clearance higher than that of the file, satisfy the file’s
citizenship requirements and be a member of all compartments the file is associated
with. In the following we describe these attributes and discuss the policy rules that as-
cribe them to files and individuals. We start with a description of file attributes (Sec-
tion 6.1), then describe attributes of principals (Section 6.2), and finally define the pred-
icate (indi/has-clearances/file K F) (Section 6.3).

Notational conventions. We omit the suffix ◦ [−∞,+∞] from BL’s judgments, ab-
breviating k claims s ◦ [−∞,+∞] to k claims s. As in Section 2, any variables in up-
percase letters (K, F , etc.) in s are implicitly universally quantified immediately in-
side the prefix (k claims ·). (s : - s1, . . . ,sn) denotes ((s1 ∧ . . . ∧ sn) ⊃ s). We fol-
low a descriptive naming convention for predicates. A predicate name has the form
entity/attribute/. . ., where entity determines the entity whose attribute the pred-
icate describes and attribute is a description of the property the predicate defines. Ex-
amples of entities are file and indi (individuals or principals). “. . .” may be any other
relevant qualifiers. Common among these qualifiers is h which denotes a helper predicate
that is used in the definition of the predicate without the h. The principal admin is the
ultimate authority on all matters related to access and delegates part of its authority to
other principals using BL rules presented later.

6.1. File Classification

When a file is classified, credentials are issued to determine its classification attributes,
namely, its secrecy level, citizenship requirements for access, and its compartments. Each
of these attributes must be established before the classified file can be accessed.



- Secrecy level: The secrecy level of a file is an indicator of the sensitivity of the
contents of the file. It is one of confidential, secret, or topsecret, in increasing
order of sensitivity.4 Read access to a classified file is restricted to individuals
who have secrecy clearance at a level equal to or greater than the secrecy level of
the file.

- Citizenship requirement: A list of countries is associated with every classified file.
Access is restricted only to citizens of those countries, and to those of the U.S.
A commonly used abbreviation is “NOFORN” (no access to foreigners), which
corresponds to an empty list of countries.

- Associated compartments: A compartment is a description of the purpose of a
file, e.g., a project name or a division within the intelligence community. Every
classified file is associated with zero or more compartments. Read access to a
classified file is restricted only to those individuals who are associated with all
compartments that the file is associated with (and possibly other compartments
also).

The authority to decide which files need to be classified, and what secrecy level, cit-
izenship requirements, and associated compartments apply to a classified file rests with
very high ranking officers of the executive branch of the government and their represen-
tatives. These individuals are called Original Classification Authorities (OCAs). In our
formal model, the predicate indi/is-oca O means that principal O is an OCA.

Compartment attributes. A compartment is created by an OCA. The OCA also fixes
several compartment attributes that determine when an individual may be cleared into
the compartment. Of these attributes, we model three prominent ones: (1) The minimum
secrecy level at the which the individual must be cleared, (2) The minimum level of
background check the individual must pass, and (3) Whether or not the individual has
to pass a polygraph test. Formally, we define the predicate compartment/is C L L′ B
to mean that C is a valid compartment (in practice, C is a unique string naming the
compartment), clearance into which requires:

- A secrecy clearance at level L or higher.
- A background check equivalent to that needed for secrecy clearance at level L′ or

higher.
- A polygraph test if the Boolean B is yes. Alternatively, if B is no, then a polygraph

test is not necessary to be cleared into C.

Secrecy clearances, background checks and polygraph tests are described in Section 6.2.
The following rule delegates the authority to create compartments from admin to every
OCA O.

admin claims ((compartment/is C L L′ B) : -
indi/is-oca O,
O says (compartment/is C L L′ B)).

When a compartment is created it is assigned a special security officer (SSO), who
manages the compartment. Written guidelines that determine what can and what can-

4There is another secrecy level called sbu (sensitive but unclassified), or “for official use only”. Files at this
level are not classified – sbu is merely a directive to officials to be more careful than usual when handling such
files. Therefore, we do not consider sbu in our formalization.



not be classified into the compartment are also associated with the compartment. These
guidelines constitute the security classification guide (SCG) of the compartment. In our
formal model we abstract away the details of a SCG, and treat it only as a symbolic con-
stant. Let the predicate compartment/has-sso C S mean that principal S is compart-
ment C’s special security officer, and let (compartment/has-scg
C SCG) mean that SCG is the security classification guide of compartment C.

In the following, we discuss BL rules for determining the secrecy level, citizenship
requirements, and compartments associated with a file. The compartments associated
with a file must be decided first since they are necessary to authorize the file’s secrecy
level and its citizenship requirements.

Determining a file’s associated compartments. Let the predicate
file/has-compartments F CL mean that file F is associated with exactly the com-
partments in the list CL. According to official guidelines, establishing this predicate re-
quires two kinds of approvals: (a) An approval from an OCA stating that this should
be the case, and (b) Approvals from the SSOs of all compartments in the list CL stat-
ing that the file may be associated with all the compartments in CL. Modeling the sec-
ond requirement in BL is slightly tricky; we use a recursively defined helper predicate
file/has-compartments/h F CL CL′ which means that the SSOs of all compartments
in CL′ agree that F should be associated with all compartments in CL. The following
rule uses this predicate with CL′ =CL to allow a file to be associated with a list of com-
partments CL.

admin claims ((file/has-compartments F CL) : -
indi/is-oca O,
O says (file/has-compartments F CL),
file/has-compartments/h F CL CL).

The following two rules define the helper predicate (file/has-compartments/h F CL
CL′) by induction on CL′. The symbol nil denotes the empty list and | is an infix binary
function that concatenates an element to a list.

admin claims (file/has-compartments/h F CL nil).

admin claims ((file/has-compartments/h F CL (C′ |CL′)) : -
compartment/has-sso C′ S,
S says (file/has-compartments F CL),
file/has-compartments/h F CL CL′).

The second rule above means that admin will trust that the SSOs of all compartments in
C′ |CL′ agree that F should be associated with the compartments in CL if (a) The SSO S
of compartment C′ agrees to this fact (first two conditions of the rule) and (b) Recursively,
the SSOs of all compartments in CL′ agree to this fact (third condition).

Determining a file’s secrecy level. According to official guidelines, a file’s se-
crecy level may be set to L if: (a) An OCA says that this should be case, and
(b) The SSOs of all compartments associated with the file agree that the SCGs of
their respective compartments allow the file to be given secrecy level L. Formally,
let the predicate file/has-level F L mean that file F has secrecy level L, and
file/has-level/h F L CL mean that the SSOs of all compartments in the list CL agree
that F may be given secrecy level L in accordance with their respective SCGs. Then, the



following rule formalizes the above conditions for assigning the secrecy level L to file F .

admin claims ((file/has-level F L) : - indi/is-oca O,
O says (file/has-level F L),
file/has-compartments F CL,
file/has-level/h F L CL).

The following two rules define the predicate file/has-level/h F L CL by induction
on the list CL. The predicate file/has-level/scg F L SCG is intended to mean that
the security classification guide SCG mandates that file F be given secrecy level L.

admin claims (file/has-level/h F L nil).

admin claims ((file/has-level/h F L (C′ |CL′)) : -
compartment/has-sso C′ S,
compartment/has-scg C′ SCG,
S says (file/has-level/scg F L SCG),
file/has-level/h F L CL′).

According to the second rule above, admin asserts that the SSOs of all compartments
in C′ | CL′ agree that F should have secrecy level L if (a) The SSO S of C′ states that
this assignment of level would be in accordance with the SCG of C′ (third condition
of the rule), and (b) Recursively, the SSOs of all compartments in CL′ agree with this
assignment (fourth condition). It follows from these rules that if no compartments are
associated with a file F , i.e., if admin says (file/has-compartments F nil), then an
OCA O’s statement O says (file/has-level F L) suffices to give a security level L to
F .

The second rule above is another example of the kind of delegation mentioned in
Section 5.4 because the rule transfers authority over the predicate file/has-level/scg
from principal admin to principal S, but admin has no jurisdiction over the predicate.

Determining a file’s citizenship requirements. Determining the citizenship require-
ments for reading a file is similar to determining the file’s secrecy level, so we
omit its details. Briefly, an OCA approves the list of countries to whose citizens ac-
cess must be restricted, and the SSOs of all compartments associated with the file
must certify that this list would be allowed by their respective SCGs. The predicate
file/has-citizenship F UL means that reading file F requires a citizenship of one
of the countries in the list UL (or of the U.S.).

Summary of file classification. In summary, classifying a file requires credentials to de-
termine associated compartments, its secrecy level and citizenship requirements for ac-
cess to it. These credentials are issued by various individuals including an OCA and the
SSO’s of all compartments the file is associated with. In practice, any issued credential
will be valid for only a stipulated duration of time. For example, if an OCA O says that
file F should have secrecy level L from 2009 to 2011, this would be represented in BL as
(O claims (file/has-level F L)) ◦ [2009:01:01:00:00:00,2011:12:31:23:59:59]. BL’s
inference rules propagate these time restrictions to other facts derived from the creden-
tials and policy rules.



6.2. Individual Clearances

Individuals require clearance both at secrecy levels and into compartments, as well as
citizenship of specific countries to read classified files. We call these three primary clear-
ances of individuals. In order to obtain primary clearances, other auxiliary clearances are
needed. These include polygraph tests and background checks. In this section we for-
malize the rules for obtaining auxiliary clearances, as well as rules for combining them
to determine primary clearances. We start with the auxiliary clearances.

6.2.1. Auxiliary Clearances

Polygraph clearance. Individuals may have to pass a polygraph test to get clearance
into certain compartments. Polygraph tests are administered and certified by trained in-
dividuals, whom we call polygraph administrators. The procedures for identifying poly-
graph administrators are beyond the scope of our formalization; we simply assume that
the predicate indi/is-polygraph-admin PA means that principal PA is a trusted poly-
graph administrator. Let indi/has-polygraph K mean that principal K has passed a
polygraph test. The following rule states that if PA is a polygraph administrator, and PA
says that K has passed a polygraph test, then admin will trust the latter.

admin claims ((indi/has-polygraph K) : -
indi/is-polygraph-admin PA,
PA says (indi/has-polygraph K)).

Background checks. A background check is necessary to get clearance both at secrecy
levels and into compartments. There are two commonly used background checks: (1)
National Agency Check with Local Agency Check and Credit Check or NACLC, and
(2) Single Scope Background Investigation or SSBI. NACLC is an investigation of an
individual’s criminal records and credit history. SSBI includes the NACLC and in ad-
dition requires interviews of colleagues and investigation of family history. We assume
that certain principals called background administrators are certified to check others’
backgrounds.

From the perspective of formalization, it is very convenient to abstract background
checks by the secrecy level for which they are mandatory. For example, a background
check at level confidential would correspond to a background check that is needed to get
clearance at secrecy level confidential. This abstraction is useful because official guide-
lines mandate that background checks expire after fixed intervals of time that depend on
the secrecy level for which the checks are conducted. The actual check corresponding to
each secrecy level and its expiration time is shown in the table below.

Abstract level of background check Actual background check needed and
expiration

confidential NACLC, expires in 15 years
secret NACLC, expires in 10 years
topsecret SSBI, expires in 5 years

Let indi/is-background-admin BA mean that principal BA is a background admin-
istrator, i.e., certified to conduct background checks. Further, let indi/has-naclc K T
mean that principal K passed an NACLC at time T , and indi/has-ssbi K T mean



that principal K passed an SSBI at time T . The following rules define the predicate
indi/has-background K L, which means that principal K has a background check that
is needed for clearance at secrecy level L. There are three rules, one for each possible
value of L. A salient point to observe is the use of the @ connective for automatically
expiring background checks in accordance with the table above. The symbol y following
a number means “years”. Hence, 15y means 15 years. As an example, the first rule below
means that if BA is a background administrator and BA states that K passed an NACLC
at time T , then admin asserts that K has a background check at level confidential in the
interval [T,T +15y].

admin claims (((indi/has-background K confidential) : -
indi/is-background-admin BA,
BA says (indi/has-naclc K T )) @ [T,T +15y]).

admin claims (((indi/has-background K secret) : -
indi/is-background-admin BA,
BA says (indi/has-naclc K T )) @ [T,T +10y]).

admin claims (((indi/has-background K topsecret) : -
indi/is-background-admin BA,
BA says (indi/has-ssbi K T )) @ [T,T +5y]).

The remaining policy rules refer only to the predicate indi/has-background K L, not
to the predicates indi/has-naclc K T and indi/has-ssbi K T .

6.2.2. Primary Clearances

An individual’s clearance at a secrecy level, clearance into compartments, as well as
citizenship directly determine what classified files she has access to. We now describe
rules that define how clearances are determined.

Clearance at secrecy levels. As mentioned earlier, an individual must pass a back-
ground check at level L in order to get clearance at secrecy level L. In addition, the
individual must have a need to get the clearance. Since the factors determining this
need are varied and are not completely specified, we simply assume that the predi-
cate indi/needs-level K L means that principal K has a need to get clearance at se-
crecy level L. Let indi/has-level K L mean that individual K has clearance at se-
crecy level L. level/below L L′ means that level L is below the level L′ in the order
confidential < secret < topsecret. It is defined later. The following rule states that K has
clearance at secrecy level L if K needs this clearance, and K has passed a background
check at some level L′ which is higher than L.

admin claims ((indi/has-level K L) : -
indi/needs-level K L,
indi/has-background K L′,
level/below L L′).

As explained earlier, the validity of indi/has-background K L′ is limited to 15, 10,
or 5 years depending on L′. The above rule and the inference rules of BL transfer the
same restrictions to indi/has-level K L. The predicate level/below is defined by
the following rules.



admin claims (level/below L L).

admin claims (level/below confidential secret).

admin claims (level/below secret topsecret).

admin claims (level/below confidential topsecret).

Clearance into compartments. To be cleared into a compartment, an individual
must satisfy all its requirements – secrecy level, background check, and a poly-
graph test if needed. These requirements are uniquely determined from the predicate
compartment/is C L L′ B, which is established when the compartment C is cre-
ated (as explained in Section 6.1). Let the predicates indi/has-comp-level K C,
indi/has-comp-background K C, and indi/has-comp-polygraph K C mean that an
individual has clearance at an appropriate secrecy level, background check, and poly-
graph check (if needed) for being cleared into compartment C. The following rules de-
fine these predicates by considering respectively the 2nd, 3rd, and 4th arguments of the
predicate compartment/is C L L′ B. An underscore represents an implicitly named
variable, whose instantiated value is irrelevant to the rule.

admin claims ((indi/has-comp-level K C) : -
compartment/is C L ,
indi/has-level K L′′,
level/below L L′′).

admin claims ((indi/has-comp-background K C) : -
compartment/is C L′ ,
indi/has-background K L′′,
level/below L′ L′′).

admin claims ((indi/has-comp-polygraph K C) : -
compartment/is C yes,
indi/has-polygraph K).

admin claims ((indi/has-comp-polygraph K C) : -
compartment/is C no).

Using the above predicates, we define the predicate indi/has-compartment K C which
means that an individual K is cleared into the compartment C. An important fact to
observe here is that in addition to satisfying the three requirements of the compart-
ment, the SSO S of the compartment must certify the clearance, and, as in the case of
clearance at secrecy levels, the principal must actually need the clearance (predicate
indi/needs-compartment K C).

admin claims ((indi/has-compartment K C) : -
indi/needs-compartment K C
compartment/has-sso C S,
S says (indi/has-compartment K C),
indi/has-comp-level K C,
indi/has-comp-background K C,
indi/has-comp-polygraph K C).

Finally, the following two rules define a related, useful predicate
indi/has-compartment/list K CL which means that K is cleared into all compart-



ments in the list CL.

admin claims (indi/has-compartment/list K nil).

admin claims ((indi/has-compartment/list K (C |CL)) : -
indi/has-compartment K C,
indi/has-compartment/list K CL).

6.3. Clearances to Classified Files

Building on predicates defined in the previous sections, we now provide rules that
define the central predicate (indi/has-clearances/file K F). First, we define
the following three auxiliary predicates using straightforward rules shown below:
(a) indi/has-level/file K F , which means that principal K has secrecy clear-
ance at a level higher than that of file F , (b) indi/has-comps/file K F , which
means that principal K is cleared into all compartments that F is associated with, and
(c) indi/has-cit/file K F , which means that principal K is a citizen of at least one
country in the citizenship requirement list of F .

admin claims ((indi/has-level/file K F) : -
file/has-level F L,
indi/has-level K L′,
level/below L L′).

admin claims ((indi/has-comps/file K F) : -
file/has-compartments F CL,
indi/has-compartment/list K CL).

admin claims ((indi/has-cit/file K F) : -
file/has-citizenship F UL,
indi/has-citizenship/list K UL).

admin claims ((indi/has-cit/file K F) : -
indi/has-citizenship K usa).

The predicate indi/has-citizenship/list K UL means that K is a citizen of
at least one of the countries in the list UL. The last rule above means that any
U.S. citizen satisfies the citizenship requirement for reading a file, irrespective of
the latter’s actual citizenship requirements. The following rule defines the predicate
indi/has-clearances/file K F .

admin claims ((indi/has-clearances/file K F) : -
indi/has-level/file K F,
indi/has-comps/file K F,
indi/has-cit/file K F).

7. Related Work

Several formal frameworks for authorization policies allow for representation of state,
but no prior proposal has considered an integration of state and logic from a proof-
theoretic perspective. Perhaps closest to BL’s treatment of stateful atoms is the Nexus
Authorization Logic (NAL) [34] that is used for authorizing access in several compo-



nents of the Nexus operating system. NAL includes support for state predicates in a man-
ner similar to that stipulated in Section 3.2, i.e., the reference monitor verifies certain
predicates using trusted decision procedures that may refer to the system state. Several
other logic-based frameworks for representing authorization policies [5, 8, 10, 25] do not
make a distinction between constraints and state predicates, and consequently support
system state implicitly as part of their support for constraints. However, we believe that
maintaining this distinction is important from the perspective of both implementation
and reasoning about policies expressed in logic.

There has also been some work on declarative languages and logics in which au-
thorization policies and state transitions can be represented and reasoned about simul-
taneously [7, 9, 15]. In contrast, BL’s state predicates are meant to model situations
where rules for state transitions are not specified. Some recent programming languages,
e.g., [11, 12], use type systems to enforce state-dependent authorization policies that are
represented in first-order logic. Stateful atoms are not distinguished from others in the
proof theory used in these languages.

The connective k says s has been included in several past proposals for writing access
policies, starting with the work of Abadi et al [2]. The BL connective s @ [u1,u2] is
based on our prior work with DeYoung [14], and our treatment of constraints goes further
back to work on reconciling constraint domains and proof theory of linear logic [22, 33].
Study of proof theory for authorization logics was initiated in our prior work [18]. The
present paper incorporates many ideas from that work, especially the use of intuitionistic
first-order logic as a foundation for authorization policies.

8. Conclusion

A proof-theoretic treatment of state in an authorization logic requires careful design. Part
of the complication arises due to the well-understood difficulty of reconciling external
verification procedures with proof theory, but most of the design choices arise in the in-
teraction between state predicates and other features of authorization logic, in particu-
lar, explicit time. The logic BL strikes a good balance in this design space, as evident
from its strong metatheoretic foundations and validation through a realistic case study
of policies for access to sensitive intelligence information in the U.S. It makes several
important design decision, e.g., it does not treat time as a special case of state to improve
expressiveness and limits the interaction between state and time to avoid representation
of unenforceable policies.

Several avenues remain for future work. We have not yet explored semantic models
of BL, e.g., standard Kripke models. We expect this to be interesting for BL because its
judgments include time intervals via the suffix ◦ [u1,u2] so it may be possible to prove
soundness and completeness over Kripke models whose possible worlds are intervals
of time. This would provide an independent justification to some of our design choices
with respect to time. The interpretation of state would likely be non-obvious to remain
consistent with our decision to treat i ◦ [u1,u2] independent of the interval [u1,u2] for any
stateful atom i.

A second, related avenue of future work is decidability problems for fragments of
BL. The entire logic BL is clearly undecidable because it is a superset of first-order logic.
However, because decision procedures could be practically useful in implementing the



logic, it would be useful to find decidable fragments of the logic that are reasonably
expressive.
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A. Inference Rules of BL

This appendix lists all the inference rules of BL’s sequent calculus (Section 3.3.1).

Σ;Ψ |= u′1 ≤ u1 Σ;Ψ |= u2 ≤ u′2
Σ;Ψ;E;Γ, p ◦ [u′1,u′2]

ν−→ p ◦ [u1,u2]
init

Σ;Ψ;E;Γ,k claims s ◦ [u1,u2],s ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

ν = k,ub,ue Σ;Ψ |= u1 ≤ ub Σ;Ψ |= ue ≤ u2

Σ;Ψ;E;Γ,k claims s ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

claims

Σ;Ψ;E;Γ
ν−→ s ◦ [u1,u2]

Σ;Ψ;E;Γ
ν−→ (s @ [u1,u2]) ◦ [u′1,u′2]

@R

Σ;Ψ;E;Γ,s ◦ [u1,u2]
ν−→ r ◦ [u′′1 ,u′′2 ]

Σ;Ψ;E;Γ,(s @ [u1,u2]) ◦ [u′1,u′2]
ν−→ r ◦ [u′′1 ,u′′2 ]

@L

Σ;E |= i

Σ;Ψ;E;Γ
ν−→ i ◦ [u1,u2]

stateR
Σ;Ψ;E, i;Γ

ν−→ r ◦ [u′1,u′2]
Σ;Ψ;E;Γ, i ◦ [u1,u2]

ν−→ r ◦ [u′1,u′2]
stateL
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Σ;Ψ |= c

Σ;Ψ;E;Γ
ν−→ c ◦ [u1,u2]

consR
Σ;Ψ,c;E;Γ

ν−→ r ◦ [u′1,u′2]
Σ;Ψ;E;Γ,c ◦ [u1,u2]

ν−→ r ◦ [u′1,u′2]
consL

Σ;Ψ;E;Γ↓ k,u1,u2−−−−→ s ◦ [u1,u2]

Σ;Ψ;E;Γ
ν−→ (k says s) ◦ [u1,u2]

saysR

Σ;Ψ;E;Γ,k claims s ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

Σ;Ψ;E;Γ,(k says s) ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

saysL

Σ,x1:time,x2:time;Ψ,u1 ≤ x1,x2 ≤ u2;E;Γ,s1 ◦ [x1,x2]
ν−→ s2 ◦ [x1,x2]

Σ;Ψ;E;Γ
ν−→ (s1 ⊃ s2) ◦ [u1,u2]

⊃R

Σ;Ψ;E;Γ,(s1 ⊃ s2) ◦ [u1,u2]
ν−→ s1 ◦ [u′1,u′2]

Σ;Ψ;E;Γ,(s1 ⊃ s2) ◦ [u1,u2],s2 ◦ [u′1,u′2]
ν−→ r ◦ [u′′1 ,u′′2 ]

Σ;Ψ |= u1 ≤ u′1 Σ;Ψ |= u′2 ≤ u2

Σ;Ψ;E;Γ,(s1 ⊃ s2) ◦ [u1,u2]
ν−→ r ◦ [u′′1 ,u′′2 ]

⊃L

Σ;Ψ;E;Γ
ν−→ s1 ◦ [u1,u2] Σ;Ψ;E;Γ

ν−→ s2 ◦ [u1,u2]

Σ;Ψ;E;Γ
ν−→ (s1∧ s2) ◦ [u1,u2]

∧R

Σ;Ψ;E;Γ,s1 ◦ [u1,u2],s2 ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

Σ;Ψ;E;Γ,(s1∧ s2) ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

∧L
Σ;Ψ;E;Γ

ν−→> ◦ [u1,u2]
>R

Σ;Ψ;E;Γ,⊥ ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

⊥L
Σ,x:σ ;Ψ;E;Γ

ν−→ s ◦ [u1,u2]

Σ;Ψ;E;Γ
ν−→ (∀x:σ .s) ◦ [u1,u2]

∀R

Σ;Ψ;E;Γ,(∀x:σ .s) ◦ [u1,u2],s[t/x] ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2] Σ ` t : σ

Σ;Ψ;E;Γ,(∀x:σ .s) ◦ [u1,u2]
ν−→ r ◦ [u′1,u′2]

∀L

B. Sequent Calculus Proof from Section 5.4

This appendix lists a BL0 sequent calculus proof of k says s from the hypotheses

k says ((k′ says s′) ⊃ s) and k′ says s′. We simplify notation slightly by abbreviating the

judgment s true to s. α is an arbitary principal. Proof branches labeled (Identity) are

applications of the identity theorem for BL0 (analogue of Theorem 4.4 of BL).



(Identity)

Σ;s′ k′−→ s′

Σ;k′ claims s′ k′−→ s′
claims

Σ;k′ claims s′ k−→ k′ says s′
saysR (Identity)

Σ;s k−→ s

Σ;(k′ says s′)⊃ s,k′ claims s′ k−→ s
⊃L

Σ;k claims ((k′ says s′)⊃ s),k′ claims s′ k−→ s
claims

Σ;k claims ((k′ says s′)⊃ s),k′ claims s′ α−→ k says s
saysR

Σ;k says ((k′ says s′)⊃ s),k′ says s′ α−→ k says s
saysL×2


