
Typed Language Support for Proof-Carrying Authorization
(Lecture Notes)

Deepak Garg

November 28, 2009

1 Introduction
Previous lectures in this class covered logic-based representation of access policies as well
as their enforcement with proof-carrying authorization (PCA). The idea behind PCA is
two-fold. First, access policies and credentials of principals are expressed as logical for-
mulas, which are published in digitally signed certificates. Second, the reference monitor
protecting sensitive resources allows an access only if the access request is accompanied by
enough certificates to authorize the access and a logical proof which shows why the access
is authorized by the formulas in those certificates.

PCA is a general architecture which may be used with any logic for representing policies
so long as the logic has a proof theory. In class we have seen a logic ICL [4, 5] and a logic-
based language SecPAL [2], both of which can represent access policies, and both of which
support inference. Either of these could be used as a basis for enforcement with PCA.

This lecture looks at the problem of designing a programming language whose resource
access interfaces (file system calls, network calls, etc.) are protected using proof-carrying
authorization. As an illustrative example, consider the interface function fsRead that allows
a program to read the contents of a file – fsRead(f) returns the contents of file f . If the
interface is proof-carrying, then the function would also take as argument a proof M that
authorizes the access; its call would take the form fsRead(f)[M]. (As a convention, we
write proofs passed as arguments in square brackets [·] to distinguish them from regular
arguments.) In this case, M may establish a formula of the form fs says Read(A, f), where
A is the user on behalf of whom the program is running, and fs denotes the administrator
of the file system. The file system would verify the proof M , and if it does indeed establish
fs says Read(A, f), it would return the contents of the file, else it would return an error.

In this lecture we will discuss a simple language, IPCA, that supports proof-carrying
interfaces such as fsRead. Relevant questions for the design of such a language are:

1. Where are certificates (policy rules and credentials) represented? For simplicity, in
this lecture we will assume that the relevant certificates, denoted Γ, are available in
a central store to the user, the type-checker, the language’s run time, and the system
interface that checks proofs. This eliminates the need to pass certificates in interface

1

Draft of November 30, 2009

calls. A language that passes such proofs is not much harder to design, but may make
the presentation unclear.

2. What is the syntax of proofs M? So far in class, we have seen proofs written as trees
of inference rules, but of course, for a language we need a textual representation. To
this end, we will look at a representation of proofs called proof-terms which are textual
and compact, and represent M in that form (see Section 2).

3. Which logic or policy language is used to express policies and inference? As should
become clear, the design of IPCA is largely independent of any particular logic or
policy language. For illustration we will use SecPAL, but the metatheory of IPCA
relies only on a few properties of the policy formalism, all of which should hold for
most authorization logics and policy languages.

4. What guarantees does IPCA provide? As part of type checking, proofs embedded in
IPCA programs are also checked. The type checker will accept a program only if it
is certain that the program will not pass an incorrect proof to an interface when it
executes. This is a type-safety property, which we prove formally as a theorem.

Note that it is also possible to provide proof-carrying interfaces through libraries in a
language like C or Java. In that case proofs would be represented as data structures, and
checked by library code implementing the interfaces. However, a standard type checker
cannot check logical correctness of data structures representing proofs. Consequently, the
type-safety (point 4 above) may not hold in such a setting.

In the next section we discuss proof-terms (point 2 above) using SecPAL as an illustra-
tion. In further sections, we discuss the syntax, semantics, type system, and type-safety of
IPCA. Like Mini-C from an earlier lecture, IPCA is a bare-bones language with minimal
constructs that are just sufficient to illustrate the relevant points and work out an example.
Other more sophisticated languages which build on this idea are PCML5 [1], Aura [6], and
PCAL [3]. Of these, IPCA is most closely related to PCAL. It should be noted that although
these languages have more constructs and features than IPCA, they are still experimental.
At present, there are no widely used languages that support proof-carrying interfaces.

2 Proof-Terms for SecPAL
Recall from class that SecPAL is a language for representing and drawing authorizations
from access control policies.1 The inference rules of SecPAL establish judgments of the
form Γ ` a, where a is an assertion (a fact stated by a principal), and Γ is a set of
assumed assertions (called the hypotheses or policy) which are obtained from certificates.
The judgment Γ ` a means that from the assumptions Γ, assertion a can be deduced.

1What we considered in class, and also what we consider in this document, is only a fragment of the full
language SecPAL. For a description of the full language, see [2]. SecPAL also contains its own representation
of proofs. Proof-terms presented here are different from that.

2

Draft of November 30, 2009

Logic Variables X,Y,O, F
Constants c ::= Alice | Bob | . . . | “a.txt” | . . .
Terms A, t ::= X | c
Predicates p ::= Read | Write | Owns | . . .
Facts f ::= p(t1, . . . , tn) | A cansay f
Statements s ::= f if f1, . . . , fn
Assertions a ::= A says s
Hypotheses/Policies Γ ::= a1, . . . , an

As a convention, terms representing principals are written A or B. All other uppercase
letters are logic variables. Constants and predicates in SecPAL are open-ended; here we
have chosen representatives based on access control in file systems, which will be our running
example. SecPAL contains two inference rules that are shown below. In the first rule, θ is
a substitution that maps all logic variables in f if f1, . . . , fn to ground terms. fθ denotes
the application of θ to f .

(A says (f if f1, . . . , fn)) ∈ Γ Γ ` A says fiθ
Γ ` A says fθ

Γ ` A says (B cansay f) Γ ` B says f
Γ ` A says f

SecPAL proofs are trees of inference rules (as in logic or type systems). A simplified,
but equivalent representation of proofs is as proof-terms. A proof-term, M , is obtained by
flattening a proof tree with a pre-order traversal. In order to do define proof-terms, we must
first associate unique names with all assumptions in Γ. Accordingly, we revise the syntax
of Γ:

Hypotheses/Policies Γ ::= α1 : a1, . . . , αn : an
α1, . . . , αn are names for assumptions. It is implicitly assumed that these names are

distinct. Proof-terms have the following syntax.

Proof-terms M ::= pf_app α θ (M1, . . . ,Mn) | pf_cansay M1 M2

Next, we revise the judgment Γ ` a to include a proof-term. We write Γ ` M : a
to mean that M is a proof-term which establishes that a follows from the assumptions Γ.
As in the syntax above, M may contain names α; those then refer to identically named
assumptions in Γ. The rules for establishing Γ `M : a are obtained by modifying SecPAL’s
inference rules as follows.

(α : A says (f if f1, . . . , fn)) ∈ Γ Γ `Mi : A says fiθ
Γ ` pf_app α θ (M1, . . . ,Mn) : A says fθ

Γ `M1 : A says (B cansay f) Γ `M2 : B says f
Γ ` pf_cansay M1 M2 : A says f

3

Draft of November 30, 2009

Proof-terms are a complete representation of proofs in the following sense.

Lemma 2.1. There is a derivation of Γ ` a in SecPAL (without proof-terms) if and only
if for every Γ′ obtained by giving unique names to assumptions in Γ, there is a proof term
M such that there is a derivation of Γ′ `M : a in SecPAL with proof-terms.

Another important property of proof-terms is that they can be verified easily. There
is an algorithm, linear in the size of M , which given Γ, M , and a, checks whether Γ `
M : a. Owing to Lemma 2.1 and this easy verifiability, proof-terms are an appropriate
representation of proofs in many settings, including languages like IPCA. It should also be
noted that proof-terms are not unique to SecPAL; similar proof-terms exist for all inference
systems including all logics. In the rest of this document, we always represent proofs through
proof-terms and often use the word “proof” to mean a “proof-term”.

Example 2.2. Consider the following policy Γ with five assertions. The predicate Read(A,F)
means that principal A can read file F , whereas Owns(A,F) means that principal A owns
file F . (Following standard SecPAL convention, all logic variables are implicitly universally
quantified.)

Γ = α1 : fs says ((O cansay Read(X,F)) if Owns(O,F)),
α2 : fs says Owns(Alice, “a.txt”),
α3 : fs says Owns(Alice, “b.txt”),
α4 : Alice says Read(Bob, “a.txt”),
α5 : Alice says Read(Bob, “b.txt”)

The assertion α1 is a statement by the file system administrator fs. It means that the
principal O who owns a file F may state that another principal X may read F . α2 and α3
mean that Alice owns files “a.txt” and “b.txt” respectively. α4 and α5 are statements made
by Alice. By way of these assertions Alice conveys her intention to allow Bob to read files
“a.txt” and “b.txt” respectively.

We may intuitively expect that α1, α2, and α4 would entail fs says Read(Bob, “a.txt”) and
similarly that α1, α3, and α5 would entail fs says Read(Bob, “b.txt”). Both these intuitions
are correct – there are proof-termsMa andMb such that Γ `Ma : fs says Read(Bob, “a.txt”)
and Γ `Mb : fs says Read(Bob, “b.txt”). These proof-terms are shown below.

Ma = pf_cansay (pf_app α1 [Alice/O,Bob/X, “a.txt”/F] (α2)) α4

Mb = pf_cansay (pf_app α1 [Alice/O,Bob/X, “b.txt”/F] (α3)) α5

In summary, it is possible to represent proofs using a compact notation called proof-
terms. In order to understand IPCA, it is not important to understand how proof-terms
represent proofs, but only that they do and that proof-terms can be checked easily.

4

Draft of November 30, 2009

Types T ::= int | bool | principal | string
Variables x, y
Values v ::= true | false | − 1 | 0 | 1 | Alice | Bob | “a.txt” | . . .
Expressions e ::= x | v | e1 + e2 | e1 ∗ e2 | e1 <= e2 | e1 == e2 | concat(e1, e2) | . . .
Restricted expressions w ::= x | v
Commands c ::= noop | x = e | c1; c2 | if e then c1 else c2 | while e do c |

x =syscall i (w1, . . . , wn) [M] | locate a (α⇒ c1 | c2)

Declarations ∆ ::= x1 : T1; . . . ;xn : Tn
Programs P ::= decl ∆ begin c end

Policies Γ ::= α1 : a1, . . . , αn : an
Stores σ ::= x1 7→ v1, . . . , xn 7→ vn

Figure 1: Syntax of IPCA

3 IPCA: Syntax
IPCA extends Mini-C with interfaces that are protected with proof-carrying authorization.
To the syntax of the language we add a new command x =syscall i (w1, . . . , wn) [M],
which calls the interface function i (such as fsRead) with arguments w1, . . . , wn and an
authorization proof M . The proof M is actually a proof-term of SecPAL, as described in
Section 2 although we could have used another policy formalism as well. In the operational
semantics of x =syscall i (w1, . . . , wn) [M], the proof M is checked before any results are
returned from the interface call. The letter w denotes a restricted class of expressions that
may either be values or variables, but not operations like e1 + e2.

Another command added to the language is locate a (α ⇒ c1 | c2). This command
directs the language run time to locate a certificate which establishes assertion a. If such
a certificate is found, its name is bound to the variable α and command c1 is executed. If
such a certificate is not found, then command c2 is executed. The scope of α includes c1
but not c2. locate a (α⇒ c1 | c2) can be used for finding certificates to construct proofs.

Besides these two new commands, we also extend Mini-C’s types to include principal
and string in order to write a meaningful example. Values (constants) of the two types are
also added. Addition of the new types and values poses no new difficulty in the type system
or semantics. The syntax of IPCA is shown in Figure 1. The syntax of assertions a and
proof-terms M is drawn from SecPAL (Section 2). An important point: we assume that
SecPAL constants coincide with IPCA values, and allow language variables x, y to appear
as terms in SecPAL. These variables have no specific meaning in SecPAL. In particular,
unlike logic variables, they cannot be instantiated or substituted in proofs. Instead they
are treated like constants (in logic jargon, such constants are called parameters).

An illustrative IPCA program is shown in Figure 2. This program concatenates the

5

Draft of November 30, 2009

1. decl
2. c: int; out: string; z: string; x: string;
3. begin
4. c = 0;
5. while (c < 2) do
6. if (c == 0) then x = "a.txt" else x = "b.txt";
7. c = c + 1;
8. locate (fs says ((O cansay Read(X,F)) if Owns(O,F)))
9. (alphaA =>

10. locate (fs says Owns(Alice, x))
11. (alphaB =>
12. locate (Alice says Read(Bob, x))
13. (alphaC =>
14. z = syscall fsRead (x) [M]; //See note below
15. out = concat(out,z)
16. | noop)
17. | noop)
18. | noop)
20. end

Note. M is an abbreviation for:

pf_cansay (pf_app alphaA [Alice/O,Bob/X,x/F] (alphaB)) alphaC

Figure 2: IPCA program to concatenate “a.txt” and “b.txt”

contents of the two files “a.txt” and “b.txt” and stores the result in the variable out. The
main body of the program is a loop that runs twice. In the first iteration it assigns “a.txt”
to the variable x (Line 6), constructs a proof that allows the program to read the file named
x (Lines 8–13), then reads the file (Line 14), and concatenates its contents to out (Line 15).
The loop then repeats in a similar way, except that “b.txt” is assigned to x.

The part of the program most relevant to our discussion is construction of the proof-term
M and the syscall to fsRead. For proof construction, the program assumes that the policy
in effect is the one from Example 2.2 and that the program will execute on behalf of Bob.
Using three locate statements in each iteration (Lines 8, 10, 12) the program expects to find
three relevant certificates to authorize the call to fsRead. The first locate statement tries to
find a certificate for the assertion (fs says ((O cansay Read(X,F)) if Owns(O,F))).
This corresponds to assumption α1 from Example 2.2. Consequently, if the policy from
Example 2.2 is in effect, alphaA will be bound to α1 at run time. If, on the other hand,
such a certificate does not exist, the program will jump to noop at the end and loop.

The second locate statement (Line 10) tries to find a certificate which contains the
assertion (fs says Owns(Alice, x)). During the first and second iterations, x will be

6

Draft of November 30, 2009

“a.txt” and “b.txt”, so this call will try to locate certificates α2 and α3 of Example 2.2
respectively in the two iterations. Accordingly, alphaB will be bound to α2 in the loop’s
first iteration and to α3 in the second iteration. In a similar manner, alphaC will be bound
to α4 in the loop’s first iteration and to α5 in the second iteration. The proof-term M is
similar toMa andMb from Example 2.2 except that it abstracts away the difference between
“a.txt” and “b.txt” using the variable x. Indeed at run time, the proof-term will be exactly
Ma in the first iteration, and Mb in the second iteration. Since we already know that those
proof-terms are correct, the proofs passed to the interface fsRead will successfully check,
and the system calls will succeed.

It is important to observe that although we have argued informally that this pro-
gram will pass correct proofs to its interface call at run time, we want to check cor-
rectness of proofs during type-checking. During type-checking, the two bindings “a.txt”
and “b.txt” for the variable x will not be available (we certainly don’t want the compiler
to execute the program to determine what x will be). Consequently, the type-checker
must check proofs parametrically in the program variables. What this means is that the
proofs constructed in the program must be correct for all values of the program vari-
ables, not just those that will be attained at run time. Indeed in this case, if program
control ever reaches the command z = syscall fsRead (x) [M], then alphaA, alphaB,
and alphaC must bind to certificates that establish (fs says ((O cansay Read(X,F))
if Owns(O,F))), (fs says Owns(Alice, x)), and (Alice says Read(Bob, x)) respec-
tively. It is easy to show that from these assumptions, M (as constructed in the program)
is a proof of (fs says Read(Bob, x)). This entire deduction is independent of the ac-
tual value(s) of the variable x, which is why the type checker can check the proof without
executing the program to determine x.

4 Type System
The type system for IPCA is similar to that for Mini-C, except that it checks proofs passed
to system interfaces. To check proofs, we must know at the least the assertions that must
be proved at each system interface. We do this using interface specifications, which we
assume are provided and fixed throughout. An interface specification has the form i :
(x1 : T1, . . . , xn : Tn)[a] → Tr, which means that interface i expects n arguments of types
T1, . . . , Tn as well as a proof of the assertion a, and returns a value of type Tr. The argument
names x1, . . . , xn can be used to refer to the arguments in the assertion a. (In type-system
jargon, a is said to be dependent on the variables x1, . . . , xn.) In addition, a may contain
the special constant µ to refer to the principal executing the program. As an example, the
specification of the interface fsRead would be.

fsRead : (x : string)[fs says Read(µ, x)]→ string

The type system of IPCA uses two judgments: ∆ ` e : T , which means that expression e
has type T , and ∆; Γ `A c, which means that command c is well-formed for execution by
principal A. The principal A must be known during type-checking to find the binding for

7

Draft of November 30, 2009

Types for commands

∆; Γ `Anoop
(x : T) ∈ ∆ ∆ ` e : T

∆; Γ `A x = e

∆; Γ `A c1 ∆; Γ\modifies(c1) `A c2
∆; Γ `A c1; c2

∆ ` e : bool ∆; Γ `A c1 ∆; Γ `A c2
∆; Γ `Aif e then c1 else c2

∆ ` e : bool ∆; Γ\modifies(c) `A c
∆; Γ `Awhile e do c

i : (x1 : T1, . . . , xn : Tn)[a]→ Tr
∆ ` wj : Tj (x : Tr) ∈ ∆ Γ `M : a{w1/x1} . . . {wn/xn}{A/µ}

∆; Γ `A x =syscall i (w1, . . . , wn) [M]

∆; Γ, α : a `A c1 ∆; Γ `A c2
∆; Γ `Alocate a (α⇒ c1 | c2)

Figure 3: Type system of IPCA (commands)

µ in interface specifications. Our type-safety theorem assumes explicitly that the principal
A used for type-checking matches the principal actually executing the program (else a
proof passed to an interface at run time may authorize an incorrect principal, causing the
program to fail).2 Γ is a list of certificates that would necessarily have been collected
when c executes. For example, when type-checking the program of Figure 2, Γ would be
empty when we start type-checking, and alphaA: (fs says ((O cansay Read(X,F)) if
Owns(O,F))) when checking the command starting at Line 10.

Rules of the judgment ∆ ` e : T are similar to those of Mini-C, except that we account
for the new types and constants. These are presented in Appendix A. The rules of the
judgment ∆; Γ `A c are shown in Figure 3. Rules for commands included in Mini-C are
similar to corresponding rules of Mini-C. A subtle difference arises in the rules for c1; c2 and
while e do c. In the case of the former, it is possible that c1 may modify some variables,
and accordingly, assertions in Γ that contain such variables must be removed from Γ when
checking c2. We write Γ\modifies(c1) to denote the subset of Γ containing only those
assertions that do not mention any x for which x = · appears in c1. Similarly, since the loop
while e do c unrolls to (c; while e do c), when type-checking c in the body of while e do c, we
must remove from Γ any assertions that contain variables potentially modified by c.

The important (and new) rules here are those for syscall and locate. In the former,
the objective is to type-check x =syscall i (w1, . . . , wn) [M]. First, the specification of the
interface i must be looked up. If it has the form i : (x1 : T1, . . . , xn : Tn)[a] → Tr, then we
must check that the inputs and outputs have the right type. So each wj must have type Tj

2In IPCA, the principal on behalf of whom the program executes cannot change during program execution.
However, a command to change this principal can be added with a moderate amount of effort.

8

Draft of November 30, 2009

(second premise), and the variable x must have the return type Tr (third premise). Finally,
we check that the proof-term M establishes the assertion a with appropriate substitutions:
wj for xj and A for µ (fourth premise). Observe that Γ and M may contain program
variables. The proof checking, which is done using SecPAL’s rules from Section 2 here,
must treat these variables as constants (parameters), so that the proof, if correct, holds no
matter what values the variables take at run time.

The rule for type-checking locate a (α ⇒ c1 | c2) is straightforward: c1 is checked with
the additional assertion assumption α : a, and c2 is checked without this assumption.

Exercise 4.1. Suppose that the program of Figure 2 parses as decl ∆ begin c end. Show that
∆; Γ `Bob c for any Γ, assuming the specification fsRead : (x : string)[fs says Read(µ, x)]→
string.

5 Operational Semantics
We formalize the operational semantics of IPCA using two judgments: (a) σ B e ↪→ e′ which
means that under the store σ, expression e simplifies to e′, and (b) σ ; c Γ0,A−−−→ σ′ ; c′, which
means that the command c in store σ reduces to c′ and updates the store to σ′. Γ0 is the set
of (named) policy certificates that are available in the system. Note that this set is not the
same as the set Γ available during type-checking. The latter is based on locate statements
in the program. Γ0, on the other hand, represents the actual certificates available when the
program executes. It is independent of any particular program, and must not contain any
program variables. A is the principal on behalf of whom the program is executing.

Rules of the judgment σ B e ↪→ e′ are similar to those of Mini-C. They are listed in
Appendix B. Rules of the judgment σ ; c Γ0,A−−−→ σ′ ; c′ are shown in Figure 4. The important
rules here are those for syscall and locate. In the former, we wish to evaluate x =syscall
i (w1, . . . , wn) [M]. First, each of w1, . . . , wn are evaluated. From the syntax, each wj is
either a value or a program variable. In the former case it is already evaluated; in the
latter case, it is evaluated by looking it up in σ. We write wjσ for the result of evaluating
wj . Next, we look up the specification of the interface i (first premise). If the specification
is i : (x1 : T1, . . . , xn : Tn)[a] → Tr, then the proof M must be checked against the
assertion a{w1σ/x1} . . . {wnσ/xn}{A/µ} in the available assertions Γ0 (second premise).
If this succeeds then the interface call is evaluated. We model this evaluation with the
judgment i(w1σ, . . . , wnσ) ⇓ v, which means that interface i when called with arguments
w1σ, . . . , wnσ returns result v (third premise). The overall effect of the command is to
update the value of x in the store to v.

There are two rules for evaluating locate a (α ⇒ c1 | c2). Since the objective of the
command is to find an assertion a in the set of available assertions, we first evaluate a fully
by substituting program variables in it using their values in σ. The result is written aσ.
Next, aσ is looked up in Γ0. If α′ : aσ exists in Γ0 for some α′, then we evaluate c1 with α′
substituted for α (first rule), else we evaluate c2 (second rule).

9

Draft of November 30, 2009

σ ; c Γ0,A−−−→ σ′ ; c′

σ B e ↪→∗ v

σ ; (x = e) Γ0,A−−−→ σ[x 7→ v] ; noop

σ ; c1
Γ0,A−−−→ σ′ ; c′1

σ ; (c1; c2)
Γ0,A−−−→ σ′ ; (c′1; c2) σ ; (noop; c2)

Γ0,A−−−→ σ ; c2

σ B e ↪→∗ true

σ ; (if e then c1 else c2)
Γ0,A−−−→ σ ; c1

σ B e ↪→∗ false

σ ; (if e then c1 else c2)
Γ0,A−−−→ σ ; c2

σ B e ↪→∗ true

σ ; (while e do c) Γ0,A−−−→ σ ; (c; (while e do c))

σ B e ↪→∗ false

σ ; (while e do c) Γ0,A−−−→ σ ; noop

i : (x1 : T1, . . . , xn : Tn)[a]→ Tr
Γ0 `Mσ : a{w1σ/x1} . . . {wnσ/xn}{A/µ} i(w1σ, . . . , wnσ) ⇓ v

σ ;x =syscall i (w1, . . . , wn) [M] Γ0,A−−−→ σ[x 7→ v] ; c′

α′ : aσ ∈ Γ0

σ ; locate a (α⇒ c1 | c2)
Γ0,A−−−→ σ; c1{α′/α}

There is no α′ such that α′ : aσ ∈ Γ0

σ ; locate a (α⇒ c1 | c2)
Γ0,A−−−→ σ; c2

Figure 4: Operational semantics of IPCA (commands)

6 Type-Safety
We state the type-safety theorem of IPCA, and list assumptions used in its proof. We say
that ∆ ` σ if for each (x : T) ∈ ∆, there is a v such that · ` v : σ and σ(x) = v. Type-safety
is formalized in the following theorem.

Theorem 6.1 (Type-safety). Suppose ∆; · `A c and ∆ ` σ. If σ ; c Γ0,A−−−→
∗
σ′ ; c′, then either

c′ =noop or there are σ′′ and c′′ such that σ′ ; c′ Γ0,A−−−→ σ′′ ; c′′.

The theorem says that if c is well-typed for execution as principal A, then when the
program is run as principal A (with any set of assertions Γ0), the program cannot get
stuck, i.e. it will either evaluate to noop or keep evaluating for ever. In particular, this
means that the program will never pass an incorrect proof to an interface proof, because if
a program did indeed try to pass an incorrect proof, the operational semantics would block
the program and cause it to not evaluate any further.

The proof of type-safety is quite involved, and we omit it. The theorem relies on the
following substitution property of the inference system of the framework used to represent
policies. This property is quite general and holds for most well-designed inference systems
including that of SecPAL (Section 2), and as a result IPCA can be used with many policy

10

Draft of November 30, 2009

formalisms without losing type-safety.

(Substitution assumption) If Γ ` M : a and ρ is a partial substitution for program
variables, then Γρ `Mρ : aρ.

Finally, the type-safety theorem assumes that interface calls return values that conform
to their specifications.

(Interface assumption) If i : (x1 : T1, . . . , xn : Tn)[a] → Tr and · ` vj : Tj , then there
is a v such that i(v1, . . . , vn) ⇓ v and · ` v : Tr.

References
[1] Kumar Avĳit, Anupam Datta, and Robert Harper. Distributed programming with dis-

tributed authorization. In Proceedings of the Fifth ACM Workshop on Types in Language
Design and Implementation (TLDI), 2009. To appear.

[2] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Design and semantics of
a decentralized authorization language. In 20th IEEE Computer Security Foundations
Symposium, pages 3–15, 2007.

[3] Avik Chaudhuri and Deepak Garg. PCAL: Language support for proof-carrying autho-
rization systems. In Proceedings of the European Symposium on Research in Computer
Security (ESORICS), pages 184–199, 2009.

[4] Deepak Garg and Martín Abadi. A modal deconstruction of access control logics. In
Proceedings of the 11th International Conference on Foundations of Software Science
and Computation Structures (FoSSaCS 2008), pages 216–230, April 2008.

[5] Deepak Garg and Frank Pfenning. Non-interference in constructive authorization logic.
In Proceedings of the 19th Computer Security Foundations Workshop (CSFW ’06), pages
283–293, July 2006.

[6] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph
Schorr, and Steve Zdancewic. Aura: A programming language for authorization and au-
dit. In Proceedings of the International Conference on Functional Programming (ICFP),
pages 27–38, 2008.

A Additional Details of the Type-System
The rules for type-checking expressions of IPCA are shown in Figure 5.

B Additional Details of the Operational Semantics
The rules for evaluating expressions of IPCA are shown in Figure 6.

11

Draft of November 30, 2009

Types for expressions

(x : T) ∈ ∆
∆ ` x : T ∆ ` true : bool ∆ ` false : bool

n ∈ {. . . ,−1, 0, 1, . . .}
∆ ` n : int

s ∈ {“a.txt”, “Alice”, . . .}
∆ ` s : string

A ∈ {Alice,Bob, . . .}
∆ ` A : principal

∆ ` e1 : int ∆ ` e2 : int
∆ ` e1 + e2 : int

∆ ` e1 : int ∆ ` e2 : int
∆ ` e1 ∗ e2 : int

∆ ` e1 : int ∆ ` e2 : int
∆ ` e1 <= e2 : bool

∆ ` e1 : int ∆ ` e2 : int
∆ ` e1 == e2 : bool

∆ ` e1 : string ∆ ` e2 : string
∆ ` concat(e1, e2) : string

Figure 5: Type system of IPCA (expressions)

σ B e ↪→ e′

(x 7→ v) ∈ σ
σ B x ↪→ v

σ B e1 ↪→ e′1
σ B e1 + e2 ↪→ e′1 + e2

σ B e2 ↪→ e′2
σ B v1 + e2 ↪→ v1 + e′2

add(n1, n2) = n

σ B n1 + n2 ↪→ n

σ B e1 ↪→ e′1
σ B e1 ∗ e2 ↪→ e′1 ∗ e2

σ B e2 ↪→ e′2
σ B v1 ∗ e2 ↪→ v1 ∗ e′2

mult(n1, n2) = n

σ B n1 ∗ n2 ↪→ n

σ B e1 ↪→ e′1
σ B e1 <= e2 ↪→ e′1 <= e2

σ B e2 ↪→ e′2
σ B v1 <= e2 ↪→ v1 <= e′2

leq(n1, n2) = b

σ B n1 <= n2 ↪→ b

σ B e1 ↪→ e′1
σ B e1 == e2 ↪→ e′1 == e2

σ B e2 ↪→ e′2
σ B v1 == e2 ↪→ v1 == e′2

eq(n1, n2) = b

σ B n1 == n2 ↪→ b

σ B e1 ↪→ e′1
σ B concat(e1, e2) ↪→ concat(e′1, e2)

σ B e2 ↪→ e′2
σ B concat(v1, e2) ↪→ concat(v1, e′2)

strcat(v1, v2) = v

σ B concat(v1, v2) ↪→ v

Figure 6: Operational semantics of IPCA (expressions)

12

	Introduction
	Proof-Terms for SecPAL
	IPCA: Syntax
	Type System
	Operational Semantics
	Type-Safety
	Bibliography
	Additional Details of the Type-System
	Additional Details of the Operational Semantics

