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Abstract

We present an authorization logic that is quite similar to constructive modal S4. The
logic assumes that principals are conceited in their beliefs. We describe the sequent cal-
culus, Hilbert-style axiomatization, and Kripke semantics of the logic. A distinguishing
characteristic of the sequent calculus is that hypothetical reasoning is relativized to
beliefs of principals. We prove several meta-theoretic results including cut-elimination,
and soundness and completeness for the Kripke semantics.

1 Introduction

Authorization refers to the act of deciding whether or not an agent making a request to
perform an operation on a resource should be allowed to do so. For example, the agent may
be a browser trying to read pages from a website. In that case, the site’s web server may
consult the browser’s credentials and a .htaccess file to determine whether to send the
pages or not. Such access control is pervasive in computer systems. As systems and their
user environments evolve, policies used for access control may become complex and error
prone. This suggests the need for formal mechanisms to represent, enforce, and analyze
policies. Logic appears to be a useful mechanism for these purposes. Policies may be
expressed as formulas in a suitably chosen logic. This has several merits. First, the logic’s
rigorous inference eliminates any ambiguity in meaning that may be inherent in a textual
description of policies. Second, policies may be enforced end-to-end using generic logic-
based mechanisms like proof-carrying authorization [8–10, 29]. Third, by writing policies
in a logic, there is hope that the policies themselves can be checked for correctness against
some given criteria.
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Whereas first-order logic and sometimes propositional logic suffice to express many au-
thorization policies, distributed systems pose a peculiar challenge: how do we express and
combine policies of different agents and systems? This is often necessary since policies
and the authorizations derived from them may vary from system to system. Policies on
different systems may also interact to allow or deny access. To model such distributed
policies, Abadi and others proposed logics with formulas of the form K says A, where K
is an agent or a system (abstractly called a principal) and A is a formula representing a
policy [6, 28]. The intended meaning of the formula is that principal K states, or believes
that policy A holds. From a logical perspective K says · is a modality and the logic is an
indexed modal logic with one modality for each principal. We call such a modal logic an
authorization logic. In the past fifteen years there have been numerous proposals describing
authorization logics that differ widely in the specific axioms (or inference rules) used for
K says · [2, 3, 8–10, 15, 18, 20, 24–26, 29, 30]. One emerging trend is the increased use of
intuitionistic logics for authorization (e.g., [3, 16, 20, 24–26, 29, 37]) as opposed to classical
logics.

This paper presents a new intuitionistic authorization logic called DTL0. This logic is
peculiar in a certain respect: it abandons the usual objectivity in reasoning from hypothesis,
relativizing hypothetical reasoning to principals. The hypothetical judgment of the logic
has the form Γ K−→ A, which means, up to a first approximation, that under the assumption
that all beliefs of K are true, the hypotheses Γ imply A. Although this choice of binding
hypothetical reasoning to principals may be unintuitive from a philosophical point of view,
it seems attractive from the perspective of access control.

Our primary interest in developing DTL0 is deployment in proof-carrying authoriza-
tion [8–10, 29, 37]. Hence our main focus is DTL0’s proof-theory, especially the sequent
calculus, which we describe in detail (Section 3). We prove several meta-theoretic prop-
erties of the sequent calculus, including cut-elimination (Section 3.1). We also present a
Hilbert-style system for DTL0 (Section 2), and sound and complete Kripke semantics (Sec-
tion 4). The principal-centric reasoning of DTL0 reflects in the Kripke semantics: worlds
are explicitly associated with principals who may view them. This suggests that principals
in DTL0 may be related to nominals from hybrid logic [13, 14, 17]. We also show that DTL0

is a generalization of constructive modal S4 [7, 33].
DTL0 is a fragment of a larger authorization logic, DTL, which we are currently de-

veloping. The latter is quite broad, incorporating first-order quantifiers, explicit time for
modeling time-bounded policies [20], and linearity for modeling consumable credentials [25].
Besides developing the logic’s theory, a secondary goal of ongoing work is to understand
how DTL0 relates to existing authorization logics, through translations between them. The
eventual objective of this line of work is more ambitious; we want to establish a common
framework in which policies written in different logics may be combined. Initial efforts in
this direction using (classical) modal S4 as foundation appeared in earlier work [24].

By itself, this paper makes two contributions. First, it presents a new authorization
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logic that explicitly relativizes hypothetical reasoning to principals, and describes the logic’s
proof theory. To the best of our understanding, such relativization is unique to our logic,
at least in the context of authorization. A second, albeit minor contribution of the paper
is sound and complete Kripke semantics, which are relatively rare for authorization logics
(as opposed to their prevalence in modal logics). The only other examples we know of are
Kripke semantics for authorization logics based on lax-like modalities [24], and those for an
earlier authorization logic based on the modal logic K [6].

To save space, proofs of theorems and many other results related to DTL0 have been
omitted from this extended abstract. These may be found in the full version of the paper
that is available on the author’s web page [23]. In addition to proofs and a description of
some of the design choices, the full version contains a natural deduction system, a construc-
tion of canonical Kripke models, and sound and complete translations between DTL0 and
other modal logics, including several authorization logics and constructive multi-modal S4.

2 The logic DTL0

DTL0 extends propositional intuitionistic logic with a principal-indexed modality, K says A.
Principals, denoted K, are abstractions for users, programs, machines, and systems, that
either create policies or request access to resources. We stipulate a fixed set of principals
Prin, pre-ordered by a relation written �. K1 � K2 is read “principal K1 is stronger than
principal K2”, and entails that K1 says A implies K2 says A for every formula A. We
assume that Prin has at least one maximum element, called the local authority (denoted
`).1 The syntax of formulas in DTL0 is shown below. P denotes atomic formulas.

A,B,C ::= P | A ∧ B | A ∨ B | > | ⊥ | A ⊃ B | K says A

Axiomatic Proof-System. A Hilbert-style proof-system for DTL0 consists of any axiom-
atization of propositional intuitionistic logic (elided here), and the following axioms and
rules for K says A. We write ` A to mean that A is valid.

` A
` K says A

(nec)

` (K says (A ⊃ B)) ⊃ ((K says A) ⊃ (K says B)) (K)
` (K says A) ⊃ K says K says A (4)
` K says ((K says A) ⊃ A) (C)
` (K1 says A) ⊃ (K2 says A) if K1 � K2. (S)

(nec) and (K) are the usual necessitation rule and closure under consequence axiom for
normal modal logics (see e.g., [12]). (4) is also standard from modal logics such as S4. (C)

1To the best of our understanding, the term local authority as used here was first introduced in the
preview implementation of the language SecPAL [1].
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is the characterizing axiom of DTL0. It is characteristic of the doxastic logic of conceited
reasoners (hence the name C) [35]. Intuitively, the axiom means that every principal says
that all its statements are true. Although the propriety of this axiom in the context of
doxastic reasoning has been questioned, it seems quite useful for authorization. The axiom
(S) means that whenever principal K1 believes a formula A, every weaker principal K2

believes it as well.
The following properties may be established in DTL0. 6` A means that A is not valid

in the stated generality (although specific instances of A may be valid). A ≡ B denotes
(A ⊃ B) ∧ (B ⊃ A).

` (` says A) ⊃ (K says A)

` (K says K says A) ≡ (K says A)

6` A ⊃ K says A

6` (K says A) ⊃ A

` (K says (A ∧ B)) ≡ ((K says A) ∧ (K says B))

6` (K says (A ∨ B)) ⊃ ((K says A) ∨ (K says B))

6` ⊥

6` (K says A) ⊃ (K ′ says (K says A))

The last property means that if a principal K states policy A, not every principal may
believe this. In some cases, this may not be desirable, since some policies may be stated
and published by K. If K publishes policy A, we may expect that K ′ says K says A. In
DTL0, published policies may be expressed using the defined connective K publ A = ` says
K says A (read “K publishes A”), which satisfies the following properties:

` (K publ A) ⊃ K says A.

6` (K says A) ⊃ K publ A.

` (K publ A) ⊃ K ′ says (K publ A).

` (K publ A) ⊃ K ′ says (K says A).

Example 2.1 (Policies in DTL0). We illustrate the use of DTL0 for expressing authoriza-
tion policies through a simple example. Suppose that the principal OAL (Online Academic
Library) represents an online repository of scientific articles. Academics institutions (such
as CMU) may buy corporate subscriptions that allow all their members to download ar-
ticles from OAL. It is up to the subscribing institutions to tell OAL who their members
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are. Alice is an individual who wishes to download an article from OAL. Let the formula
downloadAlice mean that Alice may download articles from OAL, and let memberAliceCMU
mean that Alice is a member of CMU. Further, let us assume that CMU has a subscription
at OAL. The following represent possible policies of the principals.

1. OAL says ((CMU says memberAliceCMU) ⊃ memberAliceCMU)

2. OAL says (memberAliceCMU ⊃ downloadAlice)

3. CMU publ memberAliceCMU

The first policy, stated by OAL, means that if CMU says that Alice is its member, then
this is the case. The second policy, also stated by OAL, means that if Alice is a member
of CMU, then she may download articles. The third policy, stated and published by CMU,
means that Alice is a member of CMU. It is easy to check that these three policies entail
the formula OAL says downloadAlice in DTL0, and that this would not be the case if we
changed publ to says in the last policy.

3 Sequent Calculus

Now we describe a sequent calculus for DTL0. Our presentation is inspired by earlier
work on proof-theory for modal logics [25, 33]. Broadly, we follow Martin-Löf’s judgmental
method [31], and make a strong distinction between formulas and judgments. Judgments
are the objects of knowledge, and are established through proofs. Formulas are subjects
of judgments. For DTL0, we use two basic (categorical) judgments: A true, meaning that
formula A is true, and K claims A, meaning that principal K believes or claims that formula
A is true. The two categorical judgments do not entail each other in general. K says A
internalizes the judgment K claims A as a formula, allowing it to be combined with other
connectives. In other words the judgments (K says A) true and K claims A are equivalent.

To reason from hypothesis, we introduce hypothetical judgments (sequents) Γ K−→ A true,
informally meaning that principal K may reason from the hypothesis in Γ that A is true.
Formally, the symbol Γ denotes a (possibly empty) multiset of categorical judgments, called
the hypothesis or assumptions:

Γ ::= · | Γ, A true | Γ,K ′ claims A

The principal K is called the context of the judgment. In context K, K ′ claims C entails
C true if K ′ � K. This is the only principle that distinguishes reasoning in one context
from that in another. The formula A on the right of K−→ is called the conclusion of the
sequent.

The inference rules of the sequent calculus are shown in Figure 1. For brevity, we often
elide the judgment name true, abbreviating A true to A. The notation Γ|K used in the rule
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P atomic

Γ, P K−→ P
init

Γ,K claims A,A
K′
−−→ C K � K ′

Γ,K claims A
K′
−−→ C

claims

Γ|K
K−→ A

Γ K′
−−→ K says A

saysR
Γ,K says A,K claims A

K′
−−→ C

Γ,K says A
K′
−−→ C

saysL

Γ K−→ A Γ K−→ B

Γ K−→ A ∧ B
∧R

Γ, A ∧ B,A,B K−→ C

Γ, A ∧ B K−→ C
∧L

Γ K−→ A

Γ K−→ A ∨ B
∨ R1

Γ K−→ B

Γ K−→ A ∨ B
∨ R2

Γ, A ∨ B,A K−→ C Γ, A ∨ B,B K−→ C

Γ, A ∨ B K−→ C
∨ L

Γ K−→ >
>R

Γ,⊥ K−→ C
⊥L

Γ, A K−→ B

Γ K−→ A ⊃ B
⊃R

Γ, A ⊃ B K−→ A Γ, A ⊃ B,B K−→ C

Γ, A ⊃ B K−→ C
⊃L

Figure 1: Sequent calculus for DTL0

(saysR) stands for the multiset {(K ′ claims C) ∈ Γ | K ′ � K}. If we assume that formula
A is true, we should certainly be able to conclude that A is true. For atomic formulas, this
may be established by the rule (init); for others we prove it as a theorem (see Theorem 3.2).

The rules (claims), (saysR), and (saysL) characterize DTL0. Read from the conclusion
to the premises, the rule (claims) states that whenever we assume K claims A, we are also
justified in assuming that A is true, if we are reasoning in a context K ′ such that K � K ′.
The rule (saysR) means that K says A may be established in any context if we can prove in
context K that A is true using only assumptions K ′′ claims C for K ′′ � K. Observe that
this is the only rule that changes the context of the sequent. The rule (saysL) captures the
idea that K says A internalizes K claims A: if we assume that K says A is true, then we
may also assume K claims A.

The rules for the connectives ∧, ∨, >, ⊥, and ⊃ are standard, except for a context which
is associated with each sequent. We elide a description of these standard rules, and turn to
the meta-theoretic properties of the sequent calculus.
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3.1 Meta-Theory

Meta-theoretic properties, such as cut-elimination, are important from our perspective be-
cause proof-carrying authorization (our intended application) is heavily based in proof-
checking, and proof-construction. Besides, meta-theoretic properties also imply that the
inference rules of the logic fit well with each other, increasing faith in the logic’s good foun-
dation. Cut-elimination also means that all proofs can be normalized. Normalization is
sometimes useful for auditing proofs of authorization.

Formally, the cut-elimination theorem states that adding a cut rule to a sequent calculus
does not make more judgments provable. This is an easy consequence of the following
theorem.

Theorem 3.1 (Admissibility of Cut). The following hold for the sequent calculus of Fig-
ure 1.

1. Γ K−→ A and Γ, A K−→ C imply that Γ K−→ C.

2. Γ|K
K−→ A and Γ,K claims A

K′
−−→ C imply that Γ K′

−−→ C.

Proof (Outline). Both statements can be proved simultaneously by lexicographic induction,
first on the size of the cut formula A, and then on the size of the two given derivations, as
in earlier work [32].

The logical dual of the cut-elimination theorem is identity, which states that whenever
A true is assumed as a hypothesis, we may conclude it. The following theorem captures this
generalization of the (init) rule.

Theorem 3.2 (Identity). For each formula A, Γ, A K−→ A.

Proof (Outline). By induction on A.

Another theorem of interest for DTL0 is subsumption, which states that contexts lower
in the order � allow more provable formulas.

Theorem 3.3 (Subsumption). If Γ K−→ A and K � K ′, then Γ K′
−−→ A.

Proof (Outline). By induction on the given derivation of Γ K−→ A.

Finally, we prove equivalence of the sequent calculus and the Hilbert-style system.

Theorem 3.4 (Equivalence). Γ K−→ A if and only if ` K says (Γ ⊃ A).

Proof (Outline). In each direction by induction on the given derivations. For proving the
“only-if” clause, we have to generalize the Hilbert-style system to allow hypothesis and
prove the deduction theorem. This is done in the usual way.
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Observe that there is no equivalent of ` B in the sequent calculus unless B has the
form K says A. In this sense, the above theorem actually embeds the sequent calculus into
the Hilbert-style system. While it is possible to recover the entire Hilbert-style system in
the sequent calculus by adding non-indexed hypothetical judgments Γ −→ A, this extension
seems uninteresting for authorization policies, and we omit it here.

4 Kripke Semantics for DTL0

Next we describe sound and complete Kripke semantics for DTL0. Although not directly
applicable to policies, Kripke semantics are an invaluable tool for proving properties of the
logic (e.g., [4, 24]). There is also hope that Kripke countermodels can be used as proofs of
failure, in case an authorization does not succeed. Our presentation of Kripke semantics is
inspired by work on the modal logic constructive S4 [7], and also uses some ideas from work
on Kripke semantics of lax logic [22, 24].

The distinguishing characteristic of our Kripke semantics are views [24]. With each
world w, we associate a set of principals θ(w) to whom the world is said to be visible. Our
correctness property is that · K−→ A if and only if each world visible to K satisfies A.2 In
this manner, views allow us to distinguish reasoning in one context from that in another.
If K � K ′ then we require that any world visible to K ′ also be visible to K. This ensures
that context K validates fewer formulas than context K ′, and captures the subsumption
principle (Theorem 3.3).

We model falsehood by explicitly specifying in each frame a set F of worlds where ⊥
holds. These worlds are called fallible worlds [21, 22, 36]. We say that w |= ⊥ iff w ∈ F .
To model intuitionistic implication, we use a pre-order ≤ between worlds (as usual) and say
that w |= A ⊃ B iff for all w′, w ≤ w′ and w′ |= A imply w′ |= B. Finally, to model the
modality says, we use a principal-indexed binary relation vK between worlds and define:

w |= K says A iff either w ∈ F or for all w′, w′′, w ≤ w′ vK w′′ implies w′′ |= A.

The clause w ∈ F in the above definition is required to validate ⊥ ⊃ K says A. The
remaining definition is a generalization of satisfaction for �A from Kripke semantics of
constructive S4 [7]. To validate axiom (4), we stipulate that vK ;≤ be a subset of vK .3

Both the use of a pre-order to model intuitionistic implication, and the use of different
binary relations to model each modality are standard in modal logic. The novelty here
is the interaction of these relations with views. We require that ≤ preserve views, i.e., if
w ≤ w′ and w be visible to K, then w′ also be visible to K. We also require that whenever

2Throughout this section we use the sequent calculus of DTL0 to state correctness properties. Use of the
sequent calculus as opposed to the axiomatic system is partly a matter of personal taste and partly a matter
of technical convenience.

3We believe that this condition can be weakened to (vK ;≤) ⊆ (≤;vK) without affecting the correctness
of the Kripke semantics, but have not verified that this is the case.
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w vK w′, w′ be visible to K. For example, in the definition of w |= K says A above, w′′

would be visible to K. By forcing these restrictions, we ensure that the semantics of all
connectives except K says · can be defined without changing views. On the other hand,
the semantics of K says · shift the reasoning to worlds that are visible to K. This subtle
interaction between views and binary relations captures the exact meaning of formulas in
DTL0.

Definition 4.1 (Kripke Models). A Kripke model M for DTL0 is a tuple
(W, θ,≤, (vK)K∈Prin, ρ, F ), where

- W is a non-empty set of worlds (worlds are denoted w).

- θ : W 7→ 2Prin is a view function that maps each world w to a set of principals. If
K ∈ θ(w), we say that w is visible to K, else w is said to be invisible to K. We often
write WK for the set {w ∈W | K ∈ θ(w)}. We require that:

(View-closure) K ∈ θ(w) and K ′ � K imply K ′ ∈ θ(w).

- ≤ is a pre-order on W called the implication relation. We require that:

(Imp-mon) w ≤ w′ imply θ(w) ⊆ θ(w′).

- For each K, vK is a subset of W ×WK called the modality relation. We require that:

(Mod-refl) If w ∈WK , then w vK w.

(Mod-trans) vK be transitive.

(Mod-closure) w vK w′ and K ′ � K imply w vK′ w′

(Commutativity) If w vK w′ ≤ w′′, then w vK w′′.

- ρ : W 7→ 2AtomicFormulas is a valuation function that maps each world to the set of
atomic formulas that hold in it. We require that:

(Rho-her) P ∈ ρ(w) and w ≤ w′ imply P ∈ ρ(w′).

- F ⊆W is the set of fallible worlds. We require that:

(F-her) w ∈ F and w ≤ w′ imply w′ ∈ F .

(F-univ) w ∈ F imply P ∈ ρ(w)

Definition 4.2 (Satisfaction). Given a model M = (W, θ,≤, (vK)K∈Prin, ρ, F ), and a world
w ∈W , the satisfaction relation w |= A (world w satisfies formula A) is defined by induction
on A as follows.

w |= P iff P ∈ ρ(w).
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w |= A ∧ B iff w |= A and w |= B.

w |= A ∨ B iff w |= A or w |= B.

w |= >.

w |= ⊥ iff w ∈ F .

w |= A ⊃ B iff for all w′, w ≤ w′ and w′ |= A imply w′ |= B.

w |= K says A iff either w ∈ F or for all w′, w′′, w ≤ w′ vK w′′ implies w′′ |= A.

We say that a principal K validates A in model M (written M |=K A) if for each world
w ∈ WK in M , it is the case that w |= A. The Kripke semantics defined above are sound
and complete in the following sense.

Theorem 4.3 (Soundness and Completeness). · K−→ A in the sequent calculus if and only
if for each Kripke model M , M |=K A.

Soundness (“only if” direction) follows by an induction on the given sequent calculus
proof. We must generalize the statement to allow non-empty hypotheses. The proof of
completeness (“if” direction) uses a canonical model construction, which we omit here. The
construction generalizes Alechina et al’s construction of canonical models for constructive
S4 [7].

DTL0 as a Generalization of Constructive S4

In the special case where there is only one principal (say `), DTL0 reduces to the modal
logic constructive S4. The sole modality ` says A behaves exactly like the necessitation
modality �A. The sequent calculus of Figure 1 reduces to a judgmental sequent calculus for
constructive S4 (e.g., [25]). Similarly, the Kripke semantics reduce to those of constructive
S4 described by Alechina et al [7], with the exception that our treatment of falsehood uses
fallible worlds explicitly, and that DTL0 does not have a modality corresponding to ♦. The
following theorem is straightforward.

Theorem 4.4. In the special case where there is only one principal `, the following are
equivalent:

1. ` A treating ` says · as the � modality from constructive S4.

2. `−→ A in the sequent calculus of Figure 1.

3. ` ` says A in the axiomatic system of Section 2.
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Even though DTL0 reduces to constructive S4 when there is only one principal, it is very
different from the multi-modal constructive S4 obtained by taking independent S4 � modal-
ities (i.e., the logic S4⊗S4. . .⊗S4). For example, the latter logic validates (K says K ′ says
A) ⊃ K ′ says A, which DTL0 does not. In earlier work, we described the use of this logic
for modeling knowledge in authorization policies [25].

5 Related Work

Many authorization logics have been proposed in the past, all of which contain the modality
K says A [2, 3, 8–10, 15, 18, 20, 24–26, 29, 30]. The axioms and rules used in these
logics differ widely. The particular combination of rules used in DTL0 appears to be novel.
Perhaps most closely related to DTL0 is a proposal by Abadi in a survey paper [2], where
the axiom (K says A) ⊃ (K ′ says K says A) is suggested. says with this axiom behaves very
much like the defined connective publ in DTL0. In a recent paper, Abadi studies connections
between many possible axiomatizations of says, as well as higher level policy constructs such
as delegation and control [4].

Also related to DTL0 is work on languages for authorization (e.g., [11, 19, 27, 34]), most
notably the languages Soutei and Binder [19, 34]. Our use of the term “context” is borrowed
from the latter. Binder was also one of the earliest languages to explicitly define a notion
of exporting policies from one context to another, which is very similar to publication of
policies illustrated in Section 2. The pre-order � on principals draws on ideas from the
Dependency Core Calculus [3, 5], where the modal indices are elements of a lattice.

Our Kripke semantics, as well as the completeness proof, are based on those of Alechina
et al’s work [7] for constructive S4. View functions were used earlier by the author and Abadi
to describe semantics of authorization logics with lax-like modalities [24]. Fallible worlds
have been used in the past to explain intuitionistic logic [21, 36], and also in semantics of
lax logic [22]. It also appears to us that DTL0 may be closely related to intuitionistic hybrid
logics, and especially to the work of Chadha and others [17], but further investigation is
needed to make an explicit connection. The presentation of the sequent calculus for DTL0 is
inspired by Pfenning and Davies’ work on constructive S4 [33], and more directly by earlier
work of the author and others [25].

6 Conclusion

We have presented a new constructive authorization logic, which explicitly relativizes hy-
pothetical reasoning to the policies of individual principals. We have described the proof-
theory and Kripke semantics of the logic. In ongoing work, we are considering extensions
of the logic with first-order connectives, explicit time, and linearity to model other policy
motifs. We are also translating existing authorization logics and languages for writing au-
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thorization policies to DTL0, with the goal of understanding relations between the different
formalisms.

There are several other avenues for future work. For instance, there seem to be strong
connections between DTL0 and hybrid logics. A useful generalization of DTL0 would be
to internalize the pre-order � as a formula. Such an extension would allow us to model
delegation, along lines of the “speaks for” connective present in some authorization log-
ics [3, 6, 24, 28]. Although the proof-theory of such an extension is relatively straightfor-
ward, it would be interesting to see its effects on Kripke semantics.
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