
92

Relational Cost Analysis for Functional-Imperative

Programs

WEIHAO QU, University at Buffalo, SUNY, USA

MARCO GABOARDI, University at Buffalo, SUNY, USA

DEEPAK GARG, MPI-SWS, Germany

Relational cost analysis aims at formally establishing bounds on the difference in the evaluation costs of two

programs. As a particular case, one can also use relational cost analysis to establish bounds on the difference in

the evaluation cost of the same program on two different inputs. One way to perform relational cost analysis

is to use a relational type-and-effect system that supports reasoning about relations between two executions

of two programs.

Building on this basic idea, we present a type-and-effect system, called ARel, for reasoning about the

relative cost of array-manipulating, higher-order functional-imperative programs. The key ingredient of our

approach is a new lightweight type refinement discipline that we use to track relations (differences) between

two mutable arrays. This discipline combined with Hoare-style triples built into the types allows us to express

and establish precise relative costs of several interesting programs which imperatively update their data. We

have implemented ARel using ideas from bidirectional type checking.

CCS Concepts: • Theory of computation→ Type structures; Program verification.

Additional Key Words and Phrases: relational type systems, refinement types, type-and-effect systems

ACM Reference Format:

Weihao Qu, Marco Gaboardi, and Deepak Garg. 2019. Relational Cost Analysis for Functional-Imperative

Programs. Proc. ACM Program. Lang. 3, ICFP, Article 92 (August 2019), 29 pages. https://doi.org/10.1145/3341696

1 INTRODUCTION

Standard cost analysis aims at statically establishing an upper or a lower bound on the evaluation
cost of a program. The evaluation cost is usually measured in abstract units, e.g., the number of
reduction steps in an operational semantics, the number of recursive calls made by the program,
the maximum number of abstract units of memory used during the program’s evaluation, etc. Cost
analysis has been developed using a variety of techniques such as type systems [Avanzini and
Dal Lago 2017; Dal Lago and Gaboardi 2011; Danielsson 2008; Grobauer 2001; Hoffmann et al.
2012b], term rewriting and abstract interpretation [Brockschmidt et al. 2014; Hermenegildo et al.
2005; Sinn et al. 2014], and Hoare logics [Atkey 2010; Carbonneaux et al. 2015; Charguéraud and
Pottier 2015].

Relational cost analysis, the focus of this paper, is a more recently developed problem that aims
at statically establishing an upper bound on the difference in the evaluation costs of two related
programs or two runs of the same program with different inputs [Çiçek et al. 2017; Ngo et al. 2017;
Radicek et al. 2018]. This difference is called the relative cost of the two programs or runs. Relational

Authors’ addresses: Weihao Qu, University at Buffalo, SUNY, USA, weihaoqu@buffalo.edu; Marco Gaboardi, University at

Buffalo, SUNY, USA, gaboardi@buffalo.edu; Deepak Garg, MPI-SWS, Germany, dg@mpi-sws.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/8-ART92

https://doi.org/10.1145/3341696

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3341696
https://doi.org/10.1145/3341696

92:2 Weihao Qu, Marco Gaboardi, and Deepak Garg

cost analysis has many applications: It can show that an optimized program is not slower than the
original program on stipulated inputs; in cryptography, it can show that an algorithm’s run time
is independent of secret inputs and, hence, that there are no leaks on the timing side-channel; in
algorithmic analysis, it can help understand the sensitivity of an algorithm’s cost to input changes,
which can be useful for resource allocation.

There are two reasons for examining relational cost analysis as a separate problem, as opposed to
performing standard unary cost analysis separately on the two programs and taking a difference of
the established costs. First, in many cases, relational cost analysis is easier than unary cost analysis,
since it can focus only on the differences between the two programs. As a trivial example, if t
is a complex closed program, it may be very difficult to perform unary cost analysis on it, but it
is obvious that the cost of t relative to itself is 0. Second, in many cases, a direct relational cost
analysis may be more precise than the difference of two unary analyses, since the relational analysis
can exploit relations between intermediate values in the programs that the unary analyses cannot.
As an example, the relative cost of two runs of merge sort on lists of length n that differ in at
most k positions is in O(n · (1 + log(k))). This relative cost can be established by a direct relational
analysis [Çiçek et al. 2017], but two separate unary analyses can only establish the coarser relative
cost O(n · log(n)).

Hitherto, literature on relational cost analysis has been limited to functional languages. However,
many practical programs are stateful and use destructive updates, which are more difficult to reason
about. Consequently, our goal in this work is to develop relational cost analysis for functional
languages with mutable state (i.e., for functional-imperative programs).
To this end, we design a refinement type-and-effect system, ARel, for relational cost analysis in

a functional, higher-order language with mutable state. The first question we must decide on is
what kind of state to consider. One option could be to work with standard references as found in
many functional languages like ML. However, from the perspective of cost analysis it is often more
interesting to consider programs that operate on entire data structures (e.g., a sorting algorithm), not
just on individual references. Consequently, we considermutable arrays, the standard data structure
available in almost all imperative languages. This makes our type system more complicated than it
would be with standard references but allows us to verify more interesting examples.

Second, we must decide how to treat state in our functional language. Broadly, we have two
choices: State could be a pervasive effect as in ML, or it could be confined to a monad as in Haskell,
which limits the side-effect to only those sub-computations that actually access the heap. In ARel,
we choose the latter option since this separates the pure and impure (state-affecting) parts of the
language at the level of types and reduces the complexity of our typing rules.
The primary typing judgment of ARel, ⊢ t1 ⊖ t2 ≲ r : τ , states that the programs t1 and t2 are

related at type τ , which can specify relational properties of their results and, importantly, that
their relative cost (cost of t1 minus the cost of t2) is upper-bounded by r .1 To reason about array-
manipulating programs, we also need to express relations between corresponding arrays across the
two runs. For this, our monadic type (the type of impure computations that can access state) has a
refinement that specifies how arrays are related across the two runs before and after a heap-accessing

computation. Specifically, our monadic type has the form
diff(r)

{P} ∃®γ .τ {Q}. This type represents a
pair of computations which, when starting from arrays related by the relational pre-condition
P , end with arrays related by the relational post-condition Q , return values related at τ , newly
generated arrays referred by static names ®γ , and have relative cost at most r . This design is inspired

1This judgment is inspired by Çiçek et al. [2017] proposing a type-and-effect system for relational cost analysis of functional

programs without state. Notice that one can use this typing judgment also to reason about lower bounds on the relative cost,

by exchanging t2 and t1 and considering a negative cost −r .

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:3

by relational Hoare logics [Benton 2004; Nanevski et al. 2013], but there are two key differences:
1) Our pre- and post-conditions are minimalÐthey only specify the indices at which a pair of
arrays differ across the two runs, not full functional properties. This suffices for relational cost
analysis of many programs and simplifies our metatheory and, importantly, the implementation.
2) Our monadic types carry a relative cost, and the monad’s constructs combine and propagate the
different costs.

Additionally, ARel supports establishing lower and upper bounds on the cost of a single expression,
and falling back to such unary analysis in the middle of a proof of relative cost. Improving over
previous type-and-effect systems for relational cost analysis, ARel permits combinations of these
two kinds of reasoning in the definition of recursive functions. ARel provides typing rules for the
fix-point operator that allow one to simultaneously reason about unary and relational cost. This is
useful for the analysis of several programs.

To prove that our type system is sound, we develop a logical relations model of our types. This
model combines unary and binary logical relations and it supports two different effects, cost and
state, that are structurally dissimilar. For the state aspect, we build on step-indexed Kripke logical
relations [Ahmed et al. 2009; Ahmed 2004]. Specifically, our logical relations are indexed by a
łstepžÐa standard device for inductive proofs that counts how many steps of computation the
logical relation is good for [Ahmed 2006; Appel and McAllester 2001]. Owing to the simplicity of
our pre- and post-conditions, we do not need state-dependent worlds as in some other work [Neis
et al. 2011; Turon et al. 2013].
To show the effectiveness of our approach, we implemented a bidirectional type-checker for

ARel. Thanks to the simplified form of our pre- and post-conditions, we can solve the constraints
generated by the type-checker using SMT solvers. The type-checker also uses a restricted number
of heuristics in order to address some of the non-determinism coming from the relational reasoning.
We used our implementation to type-check a broad set of examples showing some of the challenges
of relational cost analysis in programs manipulating arrays.

Our overarching contribution lies in extending relational cost analysis to higher-order functional-
imperative programs. Our specific contributions are:

• ARel, a type system for relational cost analysis of functional-imperative programs with
mutable arrays.
• A design for lightweight (relational) refinements of array-based computations.
• A soundness proof for our type system via a new step-indexed logical relation.
• An implementation of ARel, based on bidirectional type checking, which we use to type
check several functional-imperative examples.

2 AREL THROUGH EXAMPLES

In this section, we illustrate the key ideas behind ARel through two simple examples.

Inplace Map. Consider the following imperative map function taking as input a pure function f ,
a mutable array a, an index k and the array’s length n. For all i ∈ [k,n], the function replaces the
current value in the ith cell of a with f (a[i]), thus performing a destructive update.

fix map (f).λa.λk .λn. if k ≤ n then
(
let {x} = read a k in

let{_} = updt a k (f x) in map f a (k + 1)n
)

else return()

The expression (read a k) returns the element at index k in the array a, and (updt a k v) updates
the index k in a to v . Our language uses a state monad to isolate all side-effects like array reads

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:4 Weihao Qu, Marco Gaboardi, and Deepak Garg

and updates, so (read a k) and (updt a k v) are actually expressions of monadic types, also called
computations. The construct (let {x} = t1 in t2) is monadic sequencing, often called łbindž.
Consider the problem of establishing an upper-bound on the relative cost of two runs of map

that use the same function f but two different arrays a. Intuitively, the relative cost should be
upper-bounded by the product of the maximum variation in the cost of the function f (across
inputs) and the number of indices in the range [k,n] at which the two arrays differ.
To support reasoning about two runs as in this example, ARel supports relational types that

ascribe a pair of related values or related expressions in the two runs. Relational types are written
τ . In general, when we say x : τ , we mean that the variable x may be bound to two different values
in the two runs, but these two values will be related by the type τ . Specifically, x : τ1 → τ2 means
that x can be bound to two different functions f1, f2 in the two runs, satisfying the property that
for any two v1,v2 of relational type τ1, the two expressions f1 v1, f2 v2 have relational type τ2. ARel
also supports unary types, denoted A, that ascribe a value or expression in a single run, but we will
have no occasion to use unary types in this example, so we postpone their discussion.
To establish the relative cost of map, we first need a way to represent that the same function f

will be given to map in both runs. For this, ARel offers the type annotation □. The type □τ relates
expressions in two runs that are (syntactically) equal and are additionally related at the relational
type τ . Note that □ is a relational refinement: It refines the relation defined by the underlying type
τ . Specifically, the relational typing assumption f : □(τ1 → τ2) means that, in the two runs, f will
be bound to two copies of the same function, say f , that given arguments v1,v2 related at type τ1,
give expressions f v1 and f v2 related at type τ2. In our example, if the array’s elements have type
τ , the type of f would be □(τ → τ).

Next, we need to represent the maximum possible variation in the cost of applying f . The
possible variation in the cost can be seen as an effect, and the cost of applying a function can be seen
as the effect associated with the body of the function, in particular. Hence as is common in effect
systems [Nielson and Nielson 1999], we can record the possible variation in cost by means of a

refinement of the function type. ARel offers a refinement of this kind.Wewrite
diff (r)

τ1 −→ τ2 to represent
two functions of relational type τ1 → τ2, the relative cost of whose bodies is upper-bounded by r .

Accordingly, if f ’s cost can vary by r , its type can be further refined to □(
diff (r)
τ −→ τ).

Next, we need a way to specify where the arrays given as inputs to map in the two runs differ.
There are various design choices for supporting this. One obvious but problematic option would be
to refine the type of an array itself, to specify where the two ascribed arrays differ across two runs.
However, this design quickly runs into an issue: An update on the arrays might be different in the
two runs, so it might change the arrays’ type. This would be highly unsatisfactory since we don’t
expect the type of an array to change due to an update; in particular, this design would not satisfy
(semantic or syntactic) type preservation.

Consequently, we use a different approach inspired by relational Hoare logics: We provide a

relational refinement type
diff(r)

{P} ∃®γ .τ {Q} for monadic expressions that manipulate arrays. The
number r is an upper-bound on the relative cost of the computation, similar to the one we have
in function types, and τ is the relational type of the pure values the computation returns. The
pre-condition P specifies for each pair of related arrays in scope where (at which indices) the arrays
are allowed to differ before the computation runs, while the post-condition Q specifies where the
arrays may differ after the computation completes. More specifically, P andQ are lists of annotations
of the form γ → β , where γ is a static name for an array and β is a set of indices where the array
identified by γ may differ in the two runs. At any index not in β , the array must be the same in the
two runs. Note that even at indices in β , the corresponding values must be related at τ , but our type

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:5

system includes types that do not force equality of the related values. One such type isU (A,B) that
only insists that the left and right values have (unary) types A and B, without requiring any other

relation between them. (The existentially quantified ®γ in
diff(r)

{P} ∃®γ .τ {Q} is the list of static names of
arrays that are allocated during the computation.)
For example, if x : □τ , i.e., x is the same in two runs, and b is an array of static name γ , then

(updt b 5 x) can be given the type
diff(0)

{γ → β} ∃_.unit {γ → (β \ {5})} relative to itself for any β .2

This type means that if the array b differs at the set of indices β before (updt b 5 x) executes in two
runs, then afterwards it can still differ in the indices β except at the index 5, which has been overwrit-
ten by the same value x . If we replace the assumption x : □τ with x : τ , so that x may differ in the

two runs, then the type of (updt b 5 x) relative to itself would be
diff(0)

{γ → β} ∃_.unit {γ → (β ∪ {5})},
indicating that the arrays may differ at index 5 after the update (even if they did not differ at that
index before the update).

We also need a way to tie static names γ appearing in computation types to specific arrays. For
this, we refine the type of arrays to include γ . In fact, we also refine the type of arrays to track the
length of the array. This doubly refined type is written Arrayγ [l] τÐa pair of arrays of length l

each, identified statically by the name γ , and carrying elements related pointwise at type τ . Finally,
we refine integers very precisely: The type int[n] is the singleton type containing only the integer n
in both runs. The n in the type is a static representation of the runtime values the type ascribes.

With all these components we can now represent the relative cost of map that we are interested
in by the judgment:

⊢ map ⊖ map ≲ 0 :
∀r : .□(

diff (r)
τ −→ τ) → ∀k,n,γ , β .(k ≤ n) ⊃

Arrayγ [n] τ→ int[k] → int[n] →
diff(|β∩[k,n] |∗r)

{γ → β} ∃_.unit {γ → β}

This typing means thatmap relates to itself in the following way. Consider two runs ofmapwith

the same function f of relative cost r (type □(
diff (r)
τ −→ τ)), two arrays of static length n, statically

named γ (type Arrayγ [n] τ), two indices, both k (type int[k]), and two lengths, both n (type int[n]).

Then, the two runs return computations with the following relational property: If the two arrays
differ at most at indices β before they are passed to map, then they differ at most at the same
positions after the computations and the relative cost of the two computations is upper-bounded
by |β ∩ [k,n]| ∗ r , i.e., the number of positions in the range [k,n] at which the arrays may differ
times r . This is exactly the expected relative cost because at positions where the arrays are equal, f
will have the same cost in the two runs (we are assuming language-level determinism here). Note
that the variables r ,k,n,γ and β are universally quantified in the type above. Also note how γ links
the input array to the β in the pre- and post-condition of the computation type.

Consider now a slightly different situation where different functions f may be passed to map in
the two runs. Suppose that the relative cost of the bodies of the two f s passed is upper-bounded by

r , i.e., f has the type
diff (r)
τ −→ τ (without the prefix □). In this case, the relative cost of the two runs

of map can only be upper-bounded by |[k,n]| ∗ r , since even at indices where the arrays agree, the
cost of applying the two different f s may differ by as much as r . Moreover, the final arrays may
differ in all positions in the range [k,n]. This is formalized in the following, second relational type

2As usual, _ represents a variable whose name is unimportant.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:6 Weihao Qu, Marco Gaboardi, and Deepak Garg

for map.

⊢ map ⊖ map ≲ 0 :
∀r .(

diff (r)
τ −→ τ) → ∀k,n,γ , β .(k ≤ n) ⊃

Arrayγ [n] τ→ int[k] → int[n] →
diff((n−k)∗r)

{γ → β} ∃_.unit {γ → β ∪ [k,n]}

Boolean Or. Next, we describe how high-level reasoning about relative cost is internalized in the
typing. ARel supports two kinds of typing modes: relational typing as shown in the map example
above, and unary typing which supports traditional (unary) min- and max-cost analysis for a single
run of a program. We will introduce these modes formally in the next section but here we want to
show with the following example how they can be meaningfully combined.

fix BoolOr (a). λk .λn.if k < n then
(
let{x} =read a k in if x then return true else BoolOra (k + 1)n

)

else return f alse

This function, given as input an array of booleans a, an index k and the array’s length n tells
whether there exists an element in a with index ≥ k and value true.

Given two arbitrary arrays a in two runs, a simple upper-bound on the relative cost of BoolOr is
(n − k) ∗ c where c is the cost of one iteration. This is because in one run we can find an element
with value true in position k , and so the computation can return immediately, while in the other
run we may not find any such element, and would need to visit every element of the array with
its index greater than k . This kind of high-level reasoning corresponds to a worst-case, best-case
analysis of the two individual runs. ARel supports this kind of reasoning by supporting worst-case,
best-case (unary) cost analysis in unary mode, and by means of a rule R-S, presented formally in
Section 3, allows us to derive a relational typing from two unary typings, with relative cost equal
to the difference between the max and the min costs of the unary typings.

However, this kind of reasoning does not account for the case where the two input arrays have a
meaningful relation, e.g., they may be equal in some positions. In such cases, a better upper bound
on the relative cost would be expressed in term of the first index i (if any) where the two arrays
differ. That is, we could have the upper bound (n − i) ∗ c . Showing this upper bound in a formal
way is more involved. We first need to proceed by case analysis on whether the element x we are
reading at each step is the same in the two runs or not. Case analysis in ARel is provided by the
rule R-P, presented in Section 3. Using this rule we can consider the two cases separately in typing
the subexpression if x then (return true) else BoolOra (k + 1)n.
If x is the same in the two runs, there is no difference in cost because we either return true in

both runs or we perform the recursive call in both runs. In case the two x ’s differ, we must switch
to unary analysis of the two individual runs, since in one run we will return immediately while
in the other we will make a recursive call, so there is no way to continue reasoning relationally.
Hence, in order to derive the required upper bound on the overall relative cost we need to have
information about the unary type of BoolOr. However, since we started by trying to type the body
of BoolOr relationally, the standard fixpoint rule only allows us to assume its relational type.

One solution to this impasse is to automatically transform relational types of variables in context
to unary types when switching from relational to unary reasoning. This approach was adopted
by Çiçek et al. [2017] for analyzing pure functional programs but it provides only trivial lower and
upper bounds (0 and∞) on the costs of function variables in the context during the unary analysis.
In our example here, this approach yields the trivial upper bound∞, which is not what we want.
To allow for a more precise analysis, ARel includes a new rule R-FIX-EXT which we introduce

formally in Section 3. This rule allows us to assume the result of a unary typing of two recursive
functions, when typing their bodies relationally. With this rule, we can use the (assumed) relational

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:7

Index terms I ,L,U ,D,α , β ::= i | b | n | r | I1 + I2 | I1 ∗ I2 | I1 − I2 |max(I1, I2) |min(I1, I2)
| loд2(I) | ⌊I⌋ | ⌈I⌉ | {Ii }i ∈K | β ∪ β | β \ β | β ∩ β

Terms t ::= x | n | r | () | λx .t | fix f (x).t | t1 t2 | let x = t1 in t2 | inl t | inr t
| case (t ,x .t1,y.t2) | Λ.t | t [] | pack t | unpack t1 asx in t2 | celim t

| return t | let{x} = t1 in t2 | alloc t1 t2 | read t1 t2 | updt t1 t2 t3

Values v ::= n | l | r | () | λx .t | fix f (x).t | inl v | inr v | Λ.t | packv
| return t | alloc t1 t2 | updt t1 t2 t3 | read t1 t2 | let{x} = t1 in t2

Unary types A ::= c | int[I] |
exec(L,U)

{P} ∃®γ .A {Q} |
exec(L,U)

∀i::S . A | ∃i :: S . A |
exec(L,U)

A −→ A | Arrayγ [I] A

| list[I] A |A1 +A2 |C&A |C ⊃ A

Relat. types τ ::= c | int[I]|
diff(D)

{P} ∃®γ .τ {Q} |
diff (D)

∀i::S . τ | ∃i::S . τ |
diff (D)
τ −→ τ | Arrayγ [I] τ

| listα [I] τ | τ1 + τ2 |C&τ |C ⊃ τ |U (A1,A2) |□τ

Unary Type Env. Ω ::= ∅ | Ω,x : A

Relational Type Env. Γ ::= ∅ | Γ,x : τ

Sort Env. ∆ ::= ∅ | ∆, i :: S

Loc Env. Σ ::= ∅ | Σ,γ :: L

Sorts S ::= R |N | B | P | L

Constraints C ::= I1 = I2 | I1 < I2 | ¬C | I1 ∈ I2

Constraint Env. Φ ::= ⊤ |C ∧ Φ

Assertions P ,Q ::= empty | γ → β | P ⋆Q

Heaps H ::= [] | [l → z]|H1 ⊎ H2

Arrays z ::= [v1, . . . ,vm]

Judgments

Σ;∆;Φ;Ω ⊢U
L
t : A

Σ;∆;Φ; Γ ⊢ t1 ⊖ t2 ≲ D : τ

Σ;∆ ⊢ I :: S

Σ;∆;Φ ⊢ A wf

Σ;∆;Φ ⊢ τ wf

∆ ⊢ C wf

Ω ⊢ H wf

Σ;∆ ⊢ P wf

Σ;∆;Φ |= A1 ⊑ A2

Σ;∆;Φ |= τ1 ⊑ τ2

Fig. 1. Syntax of ARel where n ∈ N, r ∈ R, x ∈ Var , i ∈ iVar , γ ∈ iLoc, l ∈ Loc .

type of BoolOr and its unary type in typing the subexpression BoolOra (k + 1)n. Hence, we can
conclude the inductive step and assign the precise relative cost (n − i) ∗ c to BoolOr.

3 AREL FORMALLY

3.1 Syntax

We summarize ARel’s syntax in Figure 1. The term language underlying ARel is a simply typed
λ-calculus with recursion and constructs for mutable arrays. Most of these constructs are inherited
from RelCost [Çiçek et al. 2017], a type system for relative cost analysis in pure functional programs.
Following that work, ARel also has type refinements in the style of DML [Xi and Pfenning 1999].
The term constructs Λ.t and t [], pack t and unpack t1 asx in t2 correspond to the introduction
and elimination of universal and existential types. The construct celim t eliminates the constraint
implication C ⊃ τ .

New here are the constructs to deal with arrays: for allocating arrays (alloc t1 t2, where t1 specifies
the number of array cells to be allocated, and t2 the initial value to be stored in each array cell),
for reading from arrays (read t1 t2, where t1 specifies the array to read from, and t2 the position in
the array to read from), and for updating arrays (updt t1 t2 t3, where t1 specifies the array to be
updated, t2 the position in the array to be updated, and t3 the value to be used for the update). All

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:8 Weihao Qu, Marco Gaboardi, and Deepak Garg

v ⇓0,0 v
e-v

t1 ⇓
c1,k1 λx .t ′ t2 ⇓

c2,k2 v t ′[v/x] ⇓c3,k3 v1

t1 t2 ⇓
c1+c2+c3+capp,k1+k2+k3+1 v1

e-a

t1 ⇓
c1,k1 fix f x .t ′ t2 ⇓

c2,k2 v t ′[fix f x .t ′/f][v/x] ⇓c3,k3 v1

t1 t2 ⇓
c1+c2+c3+cfapp,k1+k2+k3+1 v1

e-f

t1 ⇓
c1,k1 v v ;H ⇓c2,k2

f
v1;H1 t2[v1/x] ⇓

c3,k3 v2 v2;H1 ⇓
c4,k4
f

v3;H2

let{x} = t1 in t2;H ⇓
c1+c2+c3+c4+clet,k1+k2+k3+k4+1
f

v3;H2

f-e

t1 ⇓
c1,k1 l t2 ⇓

c2,k2 n t3 ⇓
c3,k3 v

updt t1 t2 t3;H ⇓
c1+c2+c3+cupdate,k1+k2+k3+1

f
();H (l)[n] ← v

f-u

t ⇓c,k v

return t ;H ⇓c+cret,k+1
f

v ;H
f-t

t1 ⇓
c1,k1 l t2 ⇓

c2,k2 n2 H (l)[n] = v

read t1 t2;H ⇓
c1+c2+cread,k1+k2+1
f

v ;H
f-r

t1 ⇓
c1,k1 n t2 ⇓

c2,k2 v z = [

n
︷ ︸︸ ︷
v, . . . ,v] l fresh

alloc t1 t2;H ⇓
c1+c2+calloc,k1+k2+1
f

l ;H ⊎ [l → z]
f-l

Fig. 2. Selection of rules for pure evaluation t ⇓c,k v , and forcing evaluation t ;H ⇓c,k
f

v ;H ′.

imperative (array-manipulating) constructs are confined to a monad. The constructs return t and
let{x} = t1 in t2 are the usual return and bind of the monad. Impure expressions are distinguished by
monadic types, but not syntactically distinguished in the syntax of expressions. Impure expressions
(expressions of monadic types) are values, but can be forced using a special forcing semantics that
we describe below. Finally, arrays are referenced through locations, l ∈ Loc . Although locations do
not appear in programs, they do show up during evaluation, so they are included in the syntax.

3.2 Operational Semantics

We define a cost-annotated, big-step operational semantics for our language. Part of this semantics
is based on heap manipulation. We represent heaps as mappings H = [l1 → z1, . . . , ln → zn] from
memory locations to concrete arrays z = [v1, . . . ,vn]. The notation H (l)[n] = v expresses that the
value v is stored in the heap H in the array pointed by the location pointer l at the index n, the
notation H (l)[n] ← v represents the heap H where the array pointed by l is updated with the value
v at index n, and the notation H1 ⊎ H2, in the spirit of separation logic, denotes a disjoint union of
the heaps H1 and H2. We give a selection of the evaluation rules in Figure 2. We have two kinds of
evaluation judgments: pure evaluation t ⇓c,k v states that the (pure) expression t evaluates to the

value v with cost c , using k steps, while forcing evaluation t ;H ⇓c,k
f

v ;H ′ states that the impure

expression t can be forced in the heap H to the value v and to the updated heap H ′ with cost c ,
consuming k steps.
Steps k are a proof artifact, needed only in our soundness proof that relies on a step-indexed

logical relation (Section 4). We count a unit step for every elimination and monadic construct.
Readers may ignore steps for now. The costs c are what we seek to upper bound (relatively) using
our type system and are, therefore, important. At every elimination form or monadic construct, the
semantics add a construct-dependent cost. For example, the cost capp appearing in the rules is the
cost of an application. By changing these costs and setting some of them to 0, we can get different
cost models. Our type system is parametric in the costs of individual constructs.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:9

Most of the pure evaluation rules are standard. The forcing evaluation rules are used to evaluate
impure (monadic) expressions manipulating heaps (arrays). The rule F-T forces the evaluation of
an expression return t by evaluating the underlying pure expression t using the pure evaluation
semantics. The cost consists of the cost of the pure evaluation of t and the constant cost cret for the
monadic return. The rule F-E combines pure and forcing evaluations in order to evaluate a bind
fully. An additional cost clet is added. The rule F-R forces the evaluation of a read expression in the
heap H by first extracting the heap location l from which to read, the index of the element n to
read, and then returning the value stored in l at index n. The rule F-U forces the evaluation of an
update expression in a similar way; it returns a unit value. Finally, the rule F-L forces the evaluation
of an alloc expression by creating a new array with the length specified by the first argument and
initial values specified by the second argument, and by allocating it in the heap at a new location l ,
which is returned.

3.3 Index Terms and Constraints

In the spirit of DML [Xi and Pfenning 1999], types are indexed using static index terms that are
defined in Figure 1. Index terms include booleans, natural numbers and real numbers. A subclass
of index terms specific to ARel and that allows us to reason about arrays is one representing
(potentially infinite) sets of natural numbers. We denote this class β . These sets can be used to
represent at the type level different information on arrays. In relational types, they represent where
two related arrays may differ (as explained earlier), while in unary types, they represent the write
permissions for the array. We will return to this point later, after we explain the types. We can
explicitly form a set through an indexed set comprehension of the form {Ii }i ∈K , where K ⊆ N,
and we can take the union β1 ∪ β2 or the difference β1 \ β2 of two sets β1, β2. We consider only
well-sorted index terms. To this end, we have a sorting judgment of the form ∆ ⊢ I :: S where ∆ is a
sort environment, assigning sorts to index variables, and S is a sort. Our language has five sorts: N of
natural numbers, used for sizes of arrays; R of real numbers, used to express costs; B of booleans; P
of sets β just described; and, L of static names γ of arrays. We omit the sorting judgment because it
is straightforward. As a convention, we use L,U to represent unary minimum and maximum costs,
and D to denote a maximum relational cost (L,U and D are always of sort R). Index terms can also
appear in constraints C . Figure 1 shows some constraints built out of equalities and inequalities
over index terms.

3.4 Unary and Relational Types

In ARel we have two typing modes: unary and relational. This separation is also reflected at the
type level where we have two different type languages: unary types A and relational types τ .

Unary types ascribe expressions in a single run. They use index terms to represent size informa-
tion, as in the case of the type list[I] A where I represents the size of the list, and costs, as in the

case of the type
exec(L,U)

A −→ A′ where L and U represent lower- and upper-bounds on the cost of the
body of the function being typed. Cost can also be seen as a type system effect. Index terms are
also used for size in basic types like integers, booleans, etc. and for cost in universal quantification.
Additionally, unary types can contain constraints in types C&A and C ⊃ A, that can be used to
implement conditional typing.

We also have a type for arrays and a type for impure computations. The type Arrayγ [I] A is the

type of arrays of length I containing objects of type A. The annotation γ associates a static name to
the array that is typed. This static name can be used to refer to the array in other types. Impure
expressions are typed with monadic types. In our case, a monadic unary type is a cost-annotated

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:10 Weihao Qu, Marco Gaboardi, and Deepak Garg

Hoare triple type of the shape
exec(L,U)

{P} ∃®γ .A {Q}, which is inspired by Hoare Type Theory [Nanevski
et al. 2008]. Assertions P ,Q are sets {γ1 → β1, . . . ,γn → βn} assigning to each static location γi a
set of natural numbers βi called the (write) permissions. The idea is that the array named γi can be
written only at indices in βi (although it may read anywhere). The index terms L andU are lower-
and upper-bounds on the execution cost of the (forcing) evaluation of the typed expression.

Relational types ascribe pairs of expressions, one from each of the two runs and, as we will see
in Section 4, they are actually interpreted as sets of pairs of expressions in our model. In relational
types, index terms carry not just size information but also information about the relation between
the two values from the two runs. The type listα [I] τ ascribes a pair of lists, each of length I , whose
elements are pointwise related at type τ . Importantly, the relational refinement α specifies an upper
bound on the number of positions at which the corresponding elements may differ. In other words,
at at least I − α positions, the two lists must have equal elements, even if τ allows them to be
completely unrelated. The type int[I] represents pairs of integers both of which are equal to I .

In arrow types
diff (D)

τ −→ τ ′, the index term D represents an upper bound on the relative cost of the
underlying pair of functions.
Given a pair of unary types A1,A2, the relational type U (A1,A2) represents arbitrary pairs of

expressions of typesA1,A2, respectively. This offers a principle of relationally typing two łunrelatedž
values. As explained in Section 2, we also have a comonadic relational type □τ which represents
pairs of expressions of type τ which are syntactically equal. In particular,□U (A1,A2) is the diagonal
relation on A1 ∩A2.
The relational type Arrayγ [I] τ is similar to the unary array type but it represents two arrays,

each of length I , containing values related at τ pointwise. γ is the static name for both arrays.
As we will see in Section 4, our logical relation relates γ to two arrays in two different heaps.
Relational impure computations, illustrated in the map example of Section 2, are typed using a

relational cost-annotated monadic type of the form
diff(D)

{P} ∃®γ .τ {Q}. This looks similar to the unary

type
exec(L,U)

{P} ∃®γ .A {Q}. However, the type means something very different. In the relational type, the
pre- and post-conditions P , Q of form {γ1 → β1, . . . ,γn → βn} have a relational interpretation,
namely, that (for all i) the two arrays named γi must carry equal values at all positions not in β
(and the values must be related at τ). At positions in β , the values must still be related at τ , but
they need not be equal (unless τ forces this). D is an upper bound on the relative cost of forcing the
two impure expressions.
As usual, we consider only types that are well-formed. We have well-formedness judgments

Σ;∆;Φ ⊢ A wf for unary types, and Σ;∆;Φ ⊢ τ wf for relational types. Here, Σ is a location envi-

ronment listing the locations that can appear in the rest of the judgment, ∆ is a sort environment
listing all free index variables, and Φ is a constraint environment to support conditional typing.

3.5 Unary and Relational Typing

Unary Typing Judgments. ARel’s unary typing uses the judgment form

Σ;∆;Φ;Ω ⊢UL t : A

where t is an expression, Σ is a location environment, ∆ is a sort environment, Φ is a constraint
environment, Ω is a unary type environment assigning unary types to variables, A is a unary
type, and L and U are index terms representing a lower bound and an upper bound on the cost
of evaluating t , respectively. We give a selection of the typing rules for deriving unary typing
judgments in Figure 3. Rules U-I and U-V are similar to the ones available in indexed type systems,

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:11

Σ;∆;Φ;Ω ⊢00 n : int[n]
u-I

Σ;∆;Φ;x : A, f :
exec(L,U)

A −→ B,Ω ⊢UL e : B

Σ;∆;Φ;Ω ⊢00 Fix f (x).e :
exec(L,U)

A −→ B

u-f

Ω(x) = A

Σ;∆;Φ;Ω ⊢00 x : A
u-V

Σ;∆;Φ;Ω ⊢UL t : A Σ;∆ ⊢ P wf

Σ;∆;Φ;Ω ⊢00 return t :
exec(L,U)

{P} ∃γ .A {P}

u-t

P = P1 ⋆ P2

Σ;∆;Φ;Ω ⊢U1

L1
t1 :

exec(L,U)

{P1} ∃ ®γ1.A {Q1 ⋆Q2} Σ;∆, ®γ1;Φ;Ω,x : A ⊢U2

L2
t2 :

exec(L′,U ′)

{Q1 ⋆ P2} ∃ ®γ2.B {Q}

Σ;∆;Φ;Ω ⊢
U1+U2+Ul
L1+L2+Ll

let{x} = t1 in t2 :
exec(L+L′,U+U ′)

{P} ∃ ®γ1, ®γ2.B {Q ⋆Q2}

u-e

Σ;∆;Φ;Ω ⊢U1

L1
t1 :

exec(L,U)

A −→ B Σ;∆;Φ;Ω ⊢U2

L2
t2 : A

Σ;∆;Φ;Ω ⊢
U1+U2+U+Uapp
L1+L2+L+Lapp

t1 t2 : B
u-a

Σ;∆;Φ;Ω ⊢U1

L1
t1 : int[I] Σ;∆;Φ;Ω ⊢U2

L2
t2 : A γ fresh Σ;∆ ⊢ P wf

Σ;∆;Φ;Ω ⊢00 alloc t1 t2 :
exec(L1+L2+La,U1+U2+Ua)

{P} ∃γ . Arrayγ [I] A {P ⋆γ → N}

u-l

Σ;∆;Φ;Ω ⊢U1

L1
t1 :Arrayγ [I] A Σ;∆;Φ;Ω ⊢U2

L2
t2 : int[I

′] ∆;Φ ⊨ I ′ ≤ I Σ;∆ ⊢ P wf

Σ;∆;Φ;Ω ⊢00 read t1 t2 :
exec(L1+L2+Lr ,U1+U2+Ur)

{P} ∃_.A {P}

u-r

Σ;∆;Φ;Ω ⊢U1

L1
t1 :Arrayγ [I] A Σ;∆;Φ;Ω ⊢U2

L2
t2 : int[I

′]

Σ;∆;Φ;Ω ⊢U3

L3
t3 : A ∆;Φ ⊨ I ′ ≤ I Σ;∆ ⊢ P wf ∆;Φ ⊨ I ′ ∈ β

Σ;∆;Φ;Ω ⊢00 updt t1 t2 t3 :
exec(L1+L2+L3+Lu ,U1+U2+U3+Uu)

{P ⋆γ → β} ∃_.unit {P ⋆γ → β}

u-u

Σ;∆;Φ;Ω ⊢UL t : A Σ;∆;Φ |= A ⊑ A′ ∆;Φ ⊨ U ≤ U ′ ∆;Φ ⊨ L′ ≤ L

Σ;∆;Φ;Ω ⊢U
′

L′ t : A
′

u-x

Fig. 3. Selection of unary typing rules.

with explicit cost 0. Rules U-F and U-A are similar to the ones available in classical effect systems.
We present them here to show how the costs change in the typing.

The remaining rules concern impure expressions of monadic types. Rules U-T and U-E type the
unit and the bind of the monad, respectively. They combine the different costs and assertions in
the monadic type, using a style similar to separation logic. The rule for allocations, U-L, introduces
a new static location γ and creates a new monadic type whose postcondition assigns to γ all the
natural numbers (N), indicating that all the continuation has the permission to write all positions of
the array. Additionally, like all other rules, this rule also adds a cost accounting for the forcing of the

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:12 Weihao Qu, Marco Gaboardi, and Deepak Garg

Σ;∆;Φ; Γ ⊢ t ⊖ t ≲ D : τ ∀x ∈ dom(Γ).Σ;∆;Φ |= Γ(x) ⊑ □Γ(x)

Σ;∆;Φ; Γ ⊢ t ⊖ t ≲ 0 : □τ
r-nc

Σ;∆;Φ,C; Γ ⊢ t1 ⊖ t2 ≲ D : τ Σ;∆;Φ,¬C; Γ ⊢ t1 ⊖ t2 ≲ D : τ

Σ;∆;Φ; Γ ⊢ t1 ⊖ t2 ≲ D : τ
r-p

Fig. 4. Selection of pure relational synchronous typing rules.

Σ;∆;Φ; |Γ |1 ⊢
U1

L1
t1 : A1 Σ;∆;Φ; |Γ |2 ⊢

U2

L2
t2 : A2

Σ;∆;Φ; Γ ⊢ t1 ⊖ t2 ≲ U1 − L2 : U (A1,A2)
r-s

Σ;∆;Φ; |Γ |1 ⊢
U1

L1
t1 : A1 Σ;∆;Φ; Γ,x : U (A1,A1) ⊢ t2 ⊖ t

′
2 ≲ D2 : τ

Σ;∆;Φ; Γ ⊢ let x = t1 in t2 ⊖ t
′
2 ≲ U1 + D2 + cl t : τ

r-lt-e

Σ;∆;Φ; |Γ |2 ⊢
U1

L1
t ′1 : A

′
1 Σ;∆;Φ; Γ,x : U (A′1,A

′
1) ⊢ t2 ⊖ t

′
2 ≲ D2 : τ

′

Σ;∆;Φ; Γ ⊢ t2 ⊖ let x = t ′1 in t
′
2 ≲ D2 − L1 − cl t : τ

′
r-e-lt

Σ;∆;Φ; |Γ |1 ⊢
U1

L1
t1 :

exec(L,U)

A1 −→ A2 Σ;∆;Φ; Γ ⊢ t2 ⊖ t
′
2 ≲ D2 : U (A1,A

′
2)

Σ;∆;Φ; Γ ⊢ t1 t2 ⊖ t
′
2 ≲ U1 +U + D2 + capp : U (A2,A

′
2)

r-app-e

Σ;∆;Φ; |Γ |1 ⊢
U1

L1
t : A1 +A2

Σ;∆;Φ; Γ,x : U (A1,A1) ⊢ t1 ⊖ t
′ ≲ D2 : τ Σ;∆;Φ; Γ,y : U (A2,A2) ⊢ t2 ⊖ t

′ ≲ D2 : τ

Σ;∆;Φ; Γ ⊢ case (t ,x .t1,y.t2) ⊖ t
′ ≲ U1 + D2 + ccase : τ

r-case-e

Fig. 5. Selection of pure relational asynchronous typing rules.

allocation. Finally, note that the upper- and lower-bounds on the judgment are 0. This is because
alloc t1 t2 is a value. In the pure evaluation, it returns without cost. Cost arises only when the term
is forced; this is accounted in the cost annotations in the monadic type. The rule for reading, U-R,
merely checks that the index being read is within the array bounds. The rule for updating, U-U, also
performs a similar check but, in addition, it also requires that the updated index is contained in the
permissions available for the array in the precondition. Finally, the rule U-X allows weakening the
upper and lower bounds on the cost and applying subtyping.

Relational Typing Judgments. ARel’s relational typing uses the judgment form

Σ;∆;Φ; Γ ⊢ t1 ⊖ t2 ≲ D : τ

Here, t1 and t2 are two expressions, Σ, ∆, and Φ are environments similar to the ones used by unary
typing judgments, Γ is a relational type environment assigning relational types to variables, τ is
a relational type for t1, t2, and D is an index term representing an upper bound on the relative

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:13

cost of evaluating t1 and t2, i.e., cost(t1) − cost(t2). We have two kinds of relational typing rules:
synchronous rules which relate two structually similar programs, and asynchronous rules which
relate programs that are not necessarily structurally similar. We first present a selection of the pure
typing rules which include both synchronous rules (Figure 4) and asynchronous rules (Figure 5),
inspired by the work of Çiçek et al. [2017]. Then, we present a selection of the monadic typing
rules which support relational cost analysis for arrays. We present the synchronous rules (Figure 6)
and the asynchronous rules (Figure 7). The rest of the typing rules can be found in the Appendix.

Pure Synchronous Rules. We present two synchronous rules R-P and R-NC in Figure 4. The other
rules are similar to the one from Çiçek et al. [2017] and they can be found in the Appendix. Rule
R-P allows reasoning by cases on any constraint in the constraint environment. Rule R-NC is the
introduction rule for □-ed types. Briefly, t can be related to itself at type □τ when t relates to itself
at type τ and, additionally, all variables in the context morally have □-ed types. The latter ensures
that variables can only be substituted by equal terms. In this case, the relative cost is trivially 0.

Pure Asynchronous Rules. We present a selection of the pure asynchronous rules in Figure 5
including the generic rule R-S, and rules for the pure let binding, function application and case
elimination. Rule R-S allows switching from relational reasoning about t1 and t2 to unary reason-
ing about the two terms, independently. Notice that the relational type in the conclusion is the
embedding of the two unary types without any meaningful relation (U (A1,A2)). The rule uses a
straightforward map |Γ |i from relational environments to unary environments, whose definition
can be found in the appendix. Importantly, the relative cost in the conclusion is the difference of
the unary costs in the premises. Rule R-LT-E relates a pure let binding expression to an arbitrary
expression. In this rule, we use the metavariable cl t to denote the cost of a let elimination. Notice
that one of the assumptions in this rule, the one for the expression t1, is a unary typing judgment.
This is needed to provide guarantees on typability of t1 and to provide the cost of evaluating it,
which is used in the bound on the relative cost in the conclusion of the rule. The rule R-E-LT is
dual to R-LT-E ś it relates an arbitrary expression with a let. Notice that while the rule R-LT-E

uses the upper bound on the unary cost of t1, the rule R-E-LT uses the lower bound. Rule R-APP-E

relates a function application with an arbitrary expression, while rule R-CASE-E relates a case
expression with an arbitrary expression. Also in these rules we use some unary typing assumptions
to guarantee typability and to provide unary costs which are used in giving upper bounds on the
relative costs. We also have dual rules which we present in the Appendix.

Synchronous Rules. Figure 6 shows a selection of relational synchronous typing rules pertaining
to monadic constructs and arrays. Rules R-T and R-LET relationally type the return and bind of our
monad. The rules introduce the trivial relational Hoare-triple and combine two relational Hoare
triples by sequencing, respectively. In particular, the rule R-LET uses the style of separation logic.
Rule R-FIX-EXT types fixpoint expressions relationally. During the relational reasoning, it also
allows assuming the unary types of the two functions, which are established in separate premises.
This rule, introduces a weak form of intersection types in the environment which can be used in
combination with the rule R-S (Figure 5) to give precise bounds on relative cost.
For each operation on arrays we have two rules, one that is general and the other that works

under some assumption about equality of arguments in the two runs. Consider, for example, the
rules R-L and R-LB for relationally typing the alloc construct. The rules are similar, e.g., both create
a new static name γ for the two allocated arrays and both account for relative costs very similarly.
However, R-LB applies only when the expressions initializing the two arrays are related at a □-ed
type (second premise). As a result, it is guaranteed that the arrays allocated in the two runs will

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:14 Weihao Qu, Marco Gaboardi, and Deepak Garg

P = P1 ⋆ P2 Σ;∆;Φ; Γ ⊢ t1 ⊖ t
′
1 ≲ D1 :

diff(D)

{P1} ∃ ®γ1.τ {Q1 ⋆Q2}

Σ;∆, ®γ1 : ®L;Φ; Γ,x : τ ⊢ t2 ⊖ t
′
2 ≲ D2 :

diff(D′)

{Q1 ⋆ P2} ∃ ®γ2.σ {Q}

Σ;∆;Φ; Γ ⊢ let{x} = t1 in t2 ⊖ let{x} = t ′1 in t
′
2 ≲ D1 + D2 :

diff(D+D′)

{P} ∃ ®γ1 ®γ2.σ {Q ⋆Q2}

r-let

Σ;∆;Φ; Γ ⊢ t1 ⊖ t2 ≲ D : τ Σ;∆ ⊢ P wf

Σ;∆;Φ; Γ ⊢ return t1 ⊖ return t2 ≲ 0 :
diff(D)

{P} ∃_.τ {P}

r-t

Σ;∆;Φ; Γ ⊢ t1 ⊖ t
′
1 ≲ D1 : int[I] Σ;∆;Φ; Γ ⊢ t2 ⊖ t

′
2 ≲ D2 : τ γ fresh Σ;∆ ⊢ P wf

Σ;∆;Φ; Γ ⊢ alloc t1 t2 ⊖ alloc t ′1 t
′
2 ≲ 0 :

diff(D1+D2)

{P} ∃γ . Arrayγ [I] τ {P ⋆γ → N}

r-l

Σ;∆;Φ; Γ ⊢ t1 ⊖ t
′
1 ≲ D1 : int[I]

Σ;∆;Φ; Γ ⊢ t2 ⊖ t
′
2 ≲ D2 : □τ γ fresh Σ;∆ ⊢ P wf

Σ;∆;Φ; Γ ⊢ alloc t1 t2 ⊖ alloc t ′1 t
′
2 ≲ 0 :

diff(D1+D2)

{P} ∃γ . Arrayγ [I] τ {P ⋆γ → ∅}

r-lb

Σ;∆;Φ; Γ ⊢ t1 ⊖ t
′
1 ≲ D1 : Arrayγ [I] τ

Σ;∆;Φ; Γ ⊢ t2 ⊖ t
′
2 ≲ D2 : int[I

′] ∆;Φ |= I ′ ≤ I Σ;∆ ⊢ P wf

Σ;∆;Φ; Γ ⊢ read t1 t2 ⊖ read t ′1 t
′
2 ≲ 0 :

diff(D1+D2)

{P} ∃_.τ {P}

r-r

Σ;∆;Φ; Γ ⊢ t1 ⊖ t
′
1 ≲ D1 : Arrayγ [I] τ

Σ;∆;Φ; Γ ⊢ t2 ⊖ t
′
2 ≲ D2 : int[I

′] ∆;Φ |= I ′ ≤ I I ′ < β Σ;∆ ⊢ P wf

Σ;∆;Φ; Γ ⊢ read t1 t2 ⊖ read t ′1 t
′
2 ≲ 0 :

diff(D1+D2)

{P ⋆γ 7→ β} ∃_.□τ {P ⋆γ 7→ β}

r-rb

Σ;∆;Φ; Γ ⊢ t1 ⊖ t
′
1 ≲ D1 : Arrayγ [I] τ Σ;∆;Φ; Γ ⊢ t2 ⊖ t

′
2 ≲ D2 : int[I

′]

Σ;∆;Φ; Γ ⊢ t3 ⊖ t
′
3 ≲ D3 : τ ∆;Φ |= I ′ ≤ I Σ;∆ ⊢ P wf

Σ;∆;Φ; Γ ⊢ updt t1 t2 t3 ⊖ updt t ′1 t
′
2 t
′
3 ≲ 0 :

diff(D1+D2+D3)

{P ⋆γ 7→ β} ∃_.unit {P ⋆γ 7→ β ∪ {I ′}}

r-u

Σ;∆;Φ; Γ ⊢ t1 ⊖ t
′
1 ≲ D1 : Arrayγ [I] τ Σ;∆;Φ; Γ ⊢ t2 ⊖ t

′
2 ≲ D2 : int[I

′]

Σ;∆;Φ; Γ ⊢ t3 ⊖ t
′
3 ≲ D3 : □τ ∆;Φ |= I ′ ≤ I Σ;∆ ⊢ P wf

Σ;∆;Φ; Γ ⊢ updt t1 t2 t3 ⊖ updt t ′1 t
′
2 t
′
3 ≲ 0 :

diff(D1+D2+D3)

{P ⋆γ 7→ β} ∃_.unit {P ⋆γ 7→ β \ {I ′}}

r-ub

Σ;∆;Φ;x : τ1, f :
diff (D)

τ1 −→ τ2, Γ, f : U (A1,A2) ⊢ t1 ⊖ t2 ≲ D : τ2
Σ;∆;Φ; |Γ |1 ⊢

0
0 Fix f (x).t1 : A1 Σ;∆;Φ; |Γ |2 ⊢

0
0 Fix f (x).t2 : A2

Σ;∆;Φ; Γ ⊢ Fix f (x).t1 ⊖ Fix f (x).t2 ≲ D :
diff (D)

τ1 −→ τ2

r-fix-ext

Fig. 6. Selection of monadic synchronous relational typing rules.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:15

Σ;∆;Φ; |Γ |1 ⊢
U1

L1
t1 :

exec(L,U)

{P1} ∃ ®γ1 : A1 {Q1} Σ;∆;Φ; |Γ |2 ⊢
U2

L2
t ′2 :

exec(L′,U ′)

{P2} ∃ ®γ1 : A
′
1 {Q2}

dom(P) = dom(P1) Σ;∆;Φ; Γ,x : U (A1,A1) ⊢ t2 ⊖ t
′
2 ≲ D2 :

diff(D′)

{P ⊔ P1} ∃ ®γ1.τ {Q}

Σ;∆;Φ; Γ ⊢ let{x} = t1 in t2 ⊖ t
′
2 ≲ −L2 :

diff(U1+U+(D2+U2)+D
′
+clet)

{P} ∃ ®γ1.τ {Q}

r-let-e

Σ;∆;Φ; |Γ |2 ⊢
U1

L1
t ′1 :

exec(L,U)

{P1} ∃ ®γ1 : A
′
1 {Q1} Σ;∆;Φ; |Γ |1 ⊢

U2

L2
t2 :

exec(L′,U ′)

{P2} ∃ ®γ1 : A1 {Q2}

dom(P) = dom(P1) Σ;∆;Φ; Γ,x : U (A′1,A
′
1) ⊢ t2 ⊖ t

′
2 ≲ D2 :

diff(D′)

{P ⊔ P1} ∃ ®γ1.τ
′ {Q}

Σ;∆;Φ; Γ ⊢ t2 ⊖ let{x} = t ′1 in t
′
2 ≲ U2 :

diff(D′+(D2−L2)−L1−L−clet)

{P} ∃ ®γ1.τ
′ {Q}

r-e-let

Fig. 7. Selection of monadic asynchronous relational typing rules.

have equal values in all positions. This is reflected in the assertion γ → ∅ in the postcondition of
the monadic type in the rule, which says that there are no locations where the newly allocated
arrays (named γ) can differ. In contrast, the rule R-L does not require the initializing expressions
to be related at a □-ed type, but it has γ → N in the postcondition, meaning that the two arrays
may differ anywhere. A similar difference arises in the rules R-R and R-RB for relationally typing
the construct read. In R-RB, the read index I ′ must not be in the β of the array being read in the
precondition; as a result, the values read must be equal in the two runs. Hence, the resulting type
has a□ on it. R-R is similar, but, here, there is no requirement that I ′ is not in the β , so two different
values may be read, and there is no □ on the result type. The rules R-U and R-UB for updt follow
the principle of alloc: In R-UB, the values being written in the two runs are known to be equal (via
a □-ed type), so the index I ′ that is updated is removed from β in the postcondition. This is not
the case in R-R, where it must be added to β , since the two values at index I ′ might differ after
the update.3 In all these rules, the premise ∆;Φ ⊨ I ′ ≤ I denotes a constraint entailment which
reads as follows: under the substitution of all the variables in the index environment ∆, under the
assumption of the constraint Φ, the constraint I ′ ≤ I holds. This premise gurantees that the array
bound is not exceeded. We omit here the rules for deriving this judgment since they are standard.

Finally, note that all monadic rules łpropagatež relative costs from the premises to the monadic
types. This is similar to the unary rules; the difference is that the costs propagated here are relative,
whereas the unary type system propagates unary lower- and upper-bounds.

Asynchronous Rules. Figure 7 shows the two asynchronous rules R-LET-E and R-E-LET, relating a
monadic binding construct and an arbitrary expression. We explain only the rule R-LET-E which
relates the monadic binding construct let{x} = t1 in t2 to an arbitrary expression t

′
2 (the rule R-E-LET

is its dual and it can be understood similarly). The first premise of the rule R-LET-E requires a unary
typing for the monadic expression t1. This typing has two kinds of costs: the lower bound L1 and
upper boundU1 for the unary execution cost of t1, and the lower bound L and upper boundU for
the execution cost of the resulting computation evaluated from t1, this is embedded in the monadic
type of t1. The second premise requires a unary typing for the monadic expression t ′2. This gives

3The astute reader will note that the set of γ s in any pre- or postcondition must be written down explicitly, i.e., we have not

introduced sophisticated constructors (like set comprehension) for pre- and postconditions. This means that we cannot

meaningfully specify monadic computations that allocate a data-dependent number of arrays. This hasn’t been a problem

for our examples, and we believe an extension to lift this restriction will be straightforward.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:16 Weihao Qu, Marco Gaboardi, and Deepak Garg

us an upper bound U2 on the cost of evaluating this expression. The premise dom(P) = dom(P1)
requires that the execution of the computation resulting from the expression t1 can only affect
arrays that appear in both P1 and P . Finally, the last premise requires relating the subexpression t2
to t ′2 with the relative cost upper-bounded by D2 under the assumption that the values substituted
for the variable x are related at the type U (A1,A1). Notice that this is the weakest requirement
in terms of types that we can have. Additionally, this typing judgment also gives us the upper
bound D ′ on the relative cost for executing the two computations resulting from evaluating the
two expressions. To put the information of the unary and relational typing together we use the
precondition P ⊔ P1 in this premise, where the operation ⊔ gives a precondition where a name γ
which is used in P , e.g. γ 7→ β ∈ P , and in P1, e.g. γ 7→ β1 ∈ P1, now points to the union of the
two corresponding sets, i.e. e.g. γ 7→ β ∪ β1 ∈ P ⊔ P1. The conclusion of the rule uses all the cost
information we discussed to compute an upper bound on the relative cost of the two expressions,
where, as usual, we use the metavariable clet to denote the cost of evaluating the monadic binding
construct.

One can also design similar asynchronous rules for the other monadic constructs. However, the
syntactic forms of the other constructs considerably constrain their asynchronous typing rules,
making the scope of application of such rules rather narrow. For this reason we do not commit to
the design of such rules here.

Subtyping. Subtyping is important in ARel. It serves several purposes. First, as in all refinement
type systems, subtyping equates terms up to refinement, e.g., it allows replacing int[2 + i] with
int[5] under the constraint i = 3. Second, specific to cost analysis, subtyping allows weakening

costs, e.g., the relational type
diff (D)

τ1 −→ τ2 can be subtyped to
diff (D′)

τ1 −→ τ2 when D ≤ D
′ since the D on

the arrow is an upper bound on relative cost. Third, subtyping allows łmassagingž of modalities
□ andU , e.g., □τ can be subtyped to τ . Finally, specific to ARel, subtyping allows weakening of
pre- and postconditions in monadic types. The first three uses are standard (e.g., see Çiçek et al.
[2017]), so we only describe the last use here. The unary and relational subtyping judgments have
the forms Σ;∆;Φ |= A1 ⊑ A2 and Σ;∆;Φ |= τ1 ⊑ τ2, respectively. Figure 8 shows selected subtyping
rules. The notation P ⊆ P ′ means that P = {γ1 → β1,γ2 → β2, . . . ,γn → βn}, P

′
= {γ1 → β ′1,γ2 →

β ′2, . . . ,γn → β ′n}, and ∀i ∈ {1, . . . ,n}.βi ⊆ β
′
i .

Rule S-UM allows subtyping on the unary monadic type. It says that we can subtype by weakening
the costs, adding more (write) permissions to the pre-condition and removing permissions from
the postcondition, as manifest in the premises P ⊆ P ′ and Q ′ ⊆ Q . Rule S-RM similarly allows
subtyping on the relational monadic type. This rule says that we can subtype by weakening the
relative cost, making the precondition more precise and the postcondition less precise, where P ′

is more precise than P when P ′ tells us more about which values are equal. In particular, γ → β

is more precise than γ → β ′ when β ′ ⊆ β . This is why the premises of S-RM check P ′ ⊆ P and
Q ⊆ Q ′. Note that the checks on P , P ′ and Q,Q ′ are dual in the two rules. This is pure coincidence;
the meanings of the pre-(post-)condition in the unary and relational monadic types are completely
different. Finally, rule S-RUM allows subtyping from U applied to two unary monadic types to a
single relational monadic type. This rule is best read as follows: If we have two computations that
modify an array (γi) at positions in Ti and T

′
i , respectively (left side of ⊑), then running them on

two arrays that agree at all positions outside the set β will result in two arrays that agree at all
positions outside the set β ∪Ti ∪Ti ’ (right side of ⊑).

4 LOGICAL RELATIONS

To prove the soundness of ARel we build a step-indexed logical relation for its types. We give two
interpretationsÐone unary and one monadic, that interact at the typeU (A1,A2).

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:17

Σ;∆;Φ |= A ⊑ A′ ®γ1 ⊆ ®γ2
∆;Φ |= L′≤L ∆;Φ |= U≤U ′

Σ,∆;Φ |= P⊆P ′

Σ, ®γ1;∆;Φ |= Q
′⊆Q

Σ;∆;Φ |=
exec(L,U)

{P} ∃ ®γ1.A {Q} ⊑
exec(L′,U ′)

{P ′} ∃ ®γ2.A
′ {Q ′}

s-um

Σ;∆;Φ |= τ ⊑ τ ′ ∆;Φ |= D≤D ′ Σ, ®γ1;∆;Φ |= Q⊆Q
′

Σ;∆;Φ |= P ′⊆P ®γ1 ⊆ ®γ2

Σ;∆;Φ |=
diff(D)

{P} ∃ ®γ1.τ {Q} ⊑
diff(D′)

{P ′} ∃ ®γ2.τ
′ {Q ′}

s-rm

s-rum

β ′i = βi ∪Ti ∪T
′
i

Σ;∆;Φ ⊨ U (

exec(L,U)

{γi Ti } ∃ ®γ
′
1 .A1 {Q1},

exec(L′,U ′)

{γi T ′i } ∃
®γ ′2 .A2 {Q2}) ⊑

diff(U−L′)

{γi βi } ∃ ®γ1, ®γ2.U (A1,A2) {γi β ′i }

Fig. 8. Selection of subtyping rules.

Unary Interpretation. The value interpretation JAKд,k of a unary typeA is, as usual, a set of values.
Also, as usual, this interpretation is indexed by a łstep-indexž k ∈ N, which is merely a proof device
for induction [Ahmed 2006; Appel and McAllester 2001]. The step index counts the łstepsž in our
operational semantics. Importantly, the interpretation is also refined by a mapping д from static
names γ to triples (l ,n,A) expressing the location, the length of the array, and the syntactic type of
the elements of the array named γ . д is our version of a Kripke world from the literature on logical
relations [Neis et al. 2011; Turon et al. 2013]. We give a selection of the clauses defining the value
interpretation of unary types in Figure 9.
For example, the value interpretation JArrayγ [n] AKд,k of an array type is a set of locations l

which are assigned to γ in д. The value interpretation J
exec(L,U)

{P} ∃®γ .A {Q}Kд,k of a monadic type uses a
heap relation H |=д,k P which says that the assertion P holds for the heap H at world д. All the
static names γ in P refer through д to concrete arrays in H that have the right type and length.
The value interpretation for monadic types is a set of monadic values v that when forced using a
heap H validating the precondition P , yield a heap H1 validating the postcondition Q . Additionally,
the interpretation only allows those computations v that update arrays at locations for which the
precondition P asserts permissions. We can extend the value interpretation to expressions:

JAKE,(L,U)
д,k

= {t | ∀v,k ′ ≤ k . t ⇓c,k
′

v ⇒ v ∈ JAKд,k−k ′ ∧ L ≤ c ≤ U }

This definition accounts for costs. The interpretation is also extended to environments in a standard
way. In the following theorem we use ⊢ δ : ∆ and ⊨ δΦ to denote that δ is a substitution for the
index variables in ∆ satisfying the constraint environment Φ.

Theorem 4.1 (Fundamental Theorem for Unary Typing). If Σ;∆;Φ;Ω ⊢U
L
t : A, ⊢ δ : ∆ and

⊨ δΦ, and σ ∈ JδΩKд,k , then (δσt) ∈ JδAKE,(δL,δU)
д,k

.

Relational Interpretation. We give a selection of clauses for the definition of the value interpretation
Lτ MG,k of relational types in Figure 9. The interpretation of a relational type is a set of pairs of
related values. G, the Kripke world of the relational interpretation, is a mapping from static array
names γ to 4-tuples (l1, l2,n,τ). If G(γ) = (l1, l2,n,τ), then l1, l2 are the locations where the arrays
statically named γ are stored in the two runs, n is the length of these two arrays, and τ is the type
at whose relational interpretation the two arrays’ corresponding elements should be related. This
is used for instance in the interpretation of the type Arrayγ [n] τ . To define the interpretation of

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:18 Weihao Qu, Marco Gaboardi, and Deepak Garg

Jint[n]Kд,k = {n } Lint[n]MG,k = { (n,n)} JArrayγ [n] AKд,k = { l | д(γ) = (l ,n,A)}

LArrayγ [n] τ MG,k = { (l1, l2) |G(γ) = (l1, l2,τ ,n)} L□τ MG,k = { (v,v) | (v,v) ∈ Lτ MG,k }

LU (A1,A2)MG,k = { (v1,v2) | ∀k
′
,v1 ∈ JA1KG |1,k ′ ∧v2 ∈ JA2KG |2,k ′}

J
exec(L,U)

{P} ∃®γ .A {Q}Kд,k =

v | ∀д1 ⊇ д,∀k1 ≤ k,∀k2 < k1, c,∀H .
(
H ⊨д1,k1 P ∧v ;H ⇓

c,k2
f

)

⇒ ∃д2 ⊇ д1,H1,v1, ®γ .(v ;H ⇓
c,k2
f

v1;H1) ∧ L ≤ c ≤ U ∧ H1 ⊨д2,k1−k2 Q

∧v1 ∈ JAKд2,k1−k2 ∧
(
(∃n.P = {γ1 → T1, . . . ,γn → Tn}

∧∀i ∈ [1,n].д(γi) = (li ,A,m)) ⇒ ∀j .(H [li][j]) , H1[li][j] ⇒ j ∈ Ti
)

L
diff(D)

{P} ∃®γ .τ {Q}MG,k =

(v1,v2) | ∀G1 ⊇ G,k1 ≤ k,k2 < k1,k3, c1, c2,H1,H2.(
(H1,H2) ⊨G1,k1 P ∧v1;H1 ⇓

c1,k2
f
∧v2;H2 ⇓

c2,k3
f

)
⇒

∃G2 ⊇ G1,H
′
1,H

′
2,v
′
1,v
′
2, ®γ .

(
v1;H1 ⇓

c1,k2
f

v ′1;H
′
1 ∧ v2;H2 ⇓

c2,k3
f

v ′2;H
′
2

∧(H ′1,H
′
2) ⊨G2,k1−k2 Q ∧ (v

′
1,v
′
2) ∈ Lτ MG2,k1−k2 ∧ c1 − c2 ≤ D

)

Fig. 9. Selection of the clauses defining the unary interpretation and the relational interpretation of types.

monadic types we need a relation (H1,H2) ⊨G,k P which says that the relational assertion P holds
of the heaps H1,H2 at world G. We show the definition for the case P = {γ → β} here:

(H1,H2) ⊨G,k (γ → β) iff ∃l1, l2,τ ,n : G(γ) = (l1, l2,τ ,n)
∧
(
∀i ≤ n.

(
H1(l1)[i],H2(l2)[i]

)
∈ Lτ MG,k−1

)

∧
(
∀i ≤ n.

(
H1(l1)[i] , H2(l2)[i] ⇒ i ∈ β

))

Two heaps H1,H2 satisfy the assertion γ → β when all the related elements in the arrays H1(l1) and
H2(l2) are in the value interpretation Lτ MG,k−1 and, additionally, for indices i < β , the corresponding
array elements are equal. Thus, β tracks positions where the two arrays may differ, consistent with
our earlier description. Whether elements at indices in β can actually differ or not depends on τ .
For example, when τ is int[n] (for some n) or even ∃i .int[i], this forces corresponding elements to
be equal at all indices (not just at those outside β) since the relational interpretation of int[n] is
the singleton {(n,n)}. However, when τ = U (A1,A2), elements at indices not in β can be arbitrary
values of types A1,A2 since the relational interpretation ofU (A1,A2) is morally A1 ×A2.

The definition of the relational interpretation for a monadic type
diff(D)

{P} ∃®γ .τ {Q} (Figure 9) is the
set of pairs of values (v1,v2) that when forced starting from heapsH1,H2 satisfying the precondition
P , result in heaps H ′1,H

′
2 satisfying the postcondition Q . The relative cost of forcing must be upper-

bounded by D. We extend the relational interpretation to pairs of expressions as follows:

Lτ ME,D
G,k
= {(t1, t2) | ∀k1 ≤ k,v1v2.(t1 ⇓

c1,k1 v1 ∧ t2 ⇓
c2,k2 v2) ⇒ (v1,v2) ∈ Lτ MG,k−k1 ∧ c1 − c2 ≤ D}

We also extend the interpretation to environments in the obvious way and prove a fundamental
theorem for the relational typing.

Theorem 4.2 (Fundamental Theorem for Relational Typing). If Σ;∆;Φ; Γ ⊢ t1 ⊖ t2 ≲ D : τ

and ⊢ δ : ∆ and ⊨ δΦ and (σ1,σ2) ∈ LδΓMG,k , then (δσ1t1,δσ2t1) ∈ Lδτ ME,(δD)
G,k

.

For readers familiar with Kripke logical relations, we note that our worlds д and G are not

step-indexed (only our logical relations are step-indexed). This is unlike some prior work [Neis et al.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:19

2011; Turon et al. 2013]. We do not need step-indexed worlds since we include syntactic types, A or
τ , for mutable locations (arrays) in the worlds. This suffices for our purposes. Our logical relations
are well-founded. The relational interpretation for heaps, (H1,H2) ⊨G,k P , refers back to the value
interpretation only at a step index strictly smaller than k , while the value interpretation refers back

to the heap relation (via the clause for the monadic type,
exec(L,U)

{P} ∃®γ .A {Q}) at a smaller or equal step
index. Consequently, the relation is well-founded by the lexicographic order ⟨step-index, size of
type⟩. Our unary interpretation is well-founded for a similar reason.

5 MORE EXAMPLES

We discuss here three more examples demonstrating how we perform relational cost analysis on
programs with arrays. To improve readability, we omit some annotations and use syntactic sugar.

Cooley Tukey FFT Algorithm. This example shows how to use relational cost analysis to reason
about constant-time programs with imperative updates. We consider the following implementation
of the Cooley Tukey algorithm for fast Fourier transforms [Cooley and Tukey 1965].

fix FFT (_).λx .λy.λn.λp.
if 2 ≤ n then let {_} = separate () x ny p in let {_} = FFT ()x y (n/2) p in

let {_} = FFT ()x y (n/2) (p + n/2) in loop() 0n x p else return ()

FFT implements a divide-and-conquer algorithm. x is the input array, y is another array used for
temporary storage, n is the length of the two arrays, and p is an index pointing to the index where
the array should be split in the recursive call. This function uses a helper function separate to
relocate elements in even positions to the lower half of the array x and elements in odd positions
to the upper half of the input array x respectively, using y as a scratchpad. We omit the code of
separate here; it can be found in the Appendix. Another helper function loop simulates a for loop
in which the input array x is updated using the mathematical manipulations needed for the Fourier
transform.

fix loop (_).λk .λn.λx .λp. if k < (n/2) then
let {e} = read x (k + p) in let {o} = read x (k + p + n/2) in
letw = exp(−2πk/n) in let {_} = updt x (k + p) (e +w ∗ o) in
let {_} = updt x (k + p + n/2) (e −w ∗ o) in loop () (k + 1)n x p else return ()

Intuitively, this example is constant time (for arrays with fixed length) because array manipulations
depend only on the positions of the elements, and not on their values (assuming constant time
addition and multiplication). One way to internalize this observation in the typing process is using
only relational rules and relational types, always with relative cost 0. We do this for the auxiliary
functions separate and loop first, and with these we can easily give the following relational type to
FFT, witnessing the constant-time nature of this function.

⊢ FFT ⊖ FFT ≲ 0 :

unit→ ∀γ1,γ2, β1,M,N , P .(P +M < N) ⊃
Arrayγ1 [N]U (int, int)→Arrayγ2 [N]U (int, int)→ int[M] → int[P] →

diff(0)

{γ1 → β1,γ2 → N} ∃_.unit {γ1 → N,γ2 → N}

Another way to achieve the same result is to first compute the precise lower and upper bounds on
the unary cost of FFT and then show that they are, in fact, equal. However, computing the precise
unary cost of FFT is more difficult. We first establish the precise cost of the helper functions. For

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:20 Weihao Qu, Marco Gaboardi, and Deepak Garg

example, we need to give the following unary type to loop.

⊢ loop :
unit→ ∀γ1,K ,M,N , P .(P +M < N) ⊃ int[K] → int[M] →Arrayγ1 [N] int→

int[P] →
exec(4∗(M−K),4∗(M−K))

{γ1 → N} ∃_.unit {γ1 → N}

Similarly, for the function separate we would need to establish the precise cost, 4 ∗M . Once these
unary costs are available, we can conclude that the function FFT has the same min and max costs:
8 ∗M ∗ log(M) and is, thus, constant time (using the rule R-S).4

While both the unary and relational reasoning can show that this example is constant time, the
relational reasoning is much easier in this case since the relative cost is 0 everywhere.

Naive String Search. We show how a combination of unary and relational reasoning can give a
precise relative cost to a class array algorithm: substring search.

NSS = fix F (s). λw .λm.λls .λlw .λp.
if (m + lw) ≤ ls then let _ = search s wm 0 ls lw p

in F (s)w (m + 1) ls lw p else return ()

Here, strings are represented as arrays of integers (storing the ASCII code of each character). The
function NSS takes as input, a łlongž string s and a łshortž string w in arrays, the lengths ls and lw
of these arrays, and an array p of length ls (we call this the result array). This function iteratively
searches the substring w at each position in s and records whether the substring is found at that
position (1) or not (0). To do this, NSS uses the following helper function search.

fix search (_). λs . λw . λm. λi . λls . λlw . λp.
let {x} = read s (m + i) in let {y} = readw i in

if (i + 1 == lw) then
(
if (x == y) then updt p m 1 else updt p m 0

)

else
(
if (x == y) then search () s wm (i + 1) ls lw p else updt p m 0

)

The function search has the same inputs as NSS except for the additional index i , that iterates over
the positions of lw . The two conditionals check whether search is in its final step (i + 1 == lw), and
whether the two corresponding characters in s and w coincide. When the two characters differ, p is
updated with 0. When the two conditionals are satisfied at the same time, p is updated with 1.

Intuitively, search runs fastest when the first character of w does not appear in s. It runs slowest
when the suffix of w starting at index i occurs in s at offsetm + i . The difference of these two costs
is a bound on the relative cost of search. However, in the specific case where we consider two runs
of search on the same string s, the same index i and where the two ws agree on some prefix, we
can see that the two runs behave identically until we reach an index where the ws start to differ. In
this case, we can give a better bound. To write this bound, we need to express the first index in
the range [i, lw] where the two ws differ. In ARel, the index termMIN (β2 ∩ [I ,∞)) represents this
index (assuming β2 is the relational pre-condition of w and I is the static index refinement for i’s
size). Then, search incurs a nontrivial relative cost only after this index is reached. Using this idea,
we can show:

⊢ search ⊖ search ≲ 0 :

unit→ ∀γ1,γ2,γ3, I ,M,R,N , β2, β3.(I < R < N ∧M + I < N) ⊃
Arrayγ1 [N]U (int)→Arrayγ2 [R]U (int)→ int[M] → int[I] → int[N]

int[R] →Arrayγ3 [N]U (bool)→
diff((R−1−min(MIN (β2∩[I,∞)),R−1))∗r)

{P ,γ3 β3} ∃_.unit {P ,γ3 β3 ∪ {M}}

4It is not hard to see that FFT has unary cost in O (M ∗ log(M)): The unary costs of separate and the call to loop() are both

linear in M , so the cost f (M) of FFT satisfies the recurrence f (M) = 2 ∗ f (M/2) +O (M), which has the standard solution

O (M ∗ log(M)). However, proving this in the type system is much harder than the direct relational proof of 0 relative cost.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:21

where P = γ1 → ∅,γ2 → β2, R is the static size of lw , and r is the (constant) cost of two read
operations. To account for the case where w is the same in the two executions we also add a lower
bound R − 1 in the cost. The relative cost we establish here is more precise than the one we would
achieve with a non-relational analysis ((R − 1 − I) ∗ r).
We stress here that to obtain this relative cost, the rule R-FIX-EXT is essential. At a high level,

typing proceeds by case analysis on I ∈ β2. When I < β2 we can proceed relationally with
relative cost 0 in the recursive call. When I ∈ β2 the control flows may differ in the two runs
and we need to switch to unary reasoning via the rule R-S. To obtain our bound using unary
worst- best-case analysis we need the precise unary type of search, which is available in the
context thanks to the rule R-FIX-EXT. The details of this proof are in our appendix. By using the
typing above for search, we can also obtain an improved relative cost for NSS relative to itself:
(R − 1−min(MIN (β2 ∩ [I ,∞)),R − 1)) ∗ r ∗ (N −M −R). This is simply the number of times search
is called multiplied by the relative cost of search.

Inplace Insertion Sort. Our next example, inplace insertion sort, implements the insertion sort
algorithm without any temporary arrays. The relative cost is complex but we can show that under
reasonable assumptions, ARel provides a more precise relative cost than a unary analysis. The
algorithm is written in our language as follows.

fix ISort (_). λs . λi . λls . if (i < ls) then let {a} = read s i in

let {b} = insert () s a 0 i in ISort () s (i + 1) ls else return ()

Intuitively, we observe that the cost of ISort relative to itself should be the sum of the possible cost
variation of every recursive call, which is mainly decided by the auxiliary function insert below.

fix insert (_). λs . λa. λx . λi . let {b} = read s x in

if (a ≥ b) then insert () s a (x + 1) i

else let {_} = shift () s x (i − 1) in updt s x a

The recursive function insert implements the standard operation of inserting an element into
an array by finding the right position x to insert the element at and shifting elements behind x in
the array backward before updating the value at index x to a. This function uses a helper function
shift, which performs the shift operation. We omit the code here but note that shift uses one read
operation and one update operation at every index, and finding the right position only needs one
read operation. The unary cost of ISort is maximum when the input array is initially sorted in
descending order. In contrast, the unary cost is minimum when the input array is initially sorted
ascending. Assuming that read and update operations incur unit cost, the unary type of insert is as
follows.

⊢ insert :
unit→ ∀γ1.∀N ,X , I .(X ≤ N ∧ I ≤ N) ⊃ Arrayγ1 [N] int

→ int→ int[X] → int[I] →
exec(I−X+1,2∗(I−X)+2)

{γ1 → N} ∃_.unit {γ1 → N}

With this unary type of insert in hand, we can obtain the relative cost of insert by switching to
unary reasoning and then taking the difference. An interesting observation is that if the input
arrays of the two runs coincide in the insertion range [0, I] and the elements ‘a’ being inserted also
agree, then insert’s cost relative to itself is 0. The corresponding relational type is shown below.

⊢ insert ⊖ insert ≲ 0 :
unit→ ∀γ1, β1.∀N ,A,X , I .(X ≤ N ∧ I ≤ N ∧ β1 ∩ [X , I] = ∅) ⊃

Arrayγ1 [N]U (int)→ int→ int[X] → int[I] →
diff(0)

{γ1 β1} ∃_.unit {γ1 β1}

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:22 Weihao Qu, Marco Gaboardi, and Deepak Garg

This observation can be used in typing ISort: For every I , we split cases on whether β1∩[0, I] = ∅
or not (using rule R-P). While β1 ∩ [0, I] = ∅, we proceed relationally (with 0 relative cost). Once
β1 ∩ [0, I] , ∅, we switch to unary reasoning using rule R-S since control flow may differ in the two
runs. As in the previous example, we need the rule R-FIX-EXT for this. Using this idea, we obtain a
very precise relational cost for ISort.

⊢ ISort ⊖ ISort ≲ 0 :

unit→ ∀γ1, β1,N , I .(I ≤ N) ⊃

Arrayγ1 [N]U (int)→ int[I] → int[N] →
diff(

N ∗(N+1)−k∗(k+1)
2)

{γ1 → β1} ∃_.unit {γ1 → N}

where the index term k =max(I ,min(MIN (β1),N)) represents the first index where the two arrays

differ. The relative cost N ∗(N+1)−k∗(k+1)
2 is the sum of all the relative costs generated in the recursive

calls corresponding to indices in the range [k,N]. Recursive calls up to index k incur 0 relative cost,
as noted above. More details are provided in the appendix. We note that the cost obtained here is
more precise than the relative cost that can be obtained using unary reasoning alone.

6 BIDIRECTIONAL TYPE CHECKING

Our next goal is to implement our type systemARel to try out our examples. However, implementing
ARel naively results in an immediate challenge: Some of the rules are not syntax-directed and lead
to nondeterminism in an implementation. For example, in the split rule R-P, we can choose any
constraint to split on (and this is an infinite space); we can apply the switch rule R-S anywhere;
in the rule R-FIX-EXT we have to guess the unary types of the functions (again an infinite space);
and, there are two rules for every array operator. To resolve this nondeterminism, we introduce
an extended expression language with annotations to guide type-checking. For example, the term
(split t with C) marks uses of rule R-P that split on constraint C in type-checking t . The use of
rule R-FIX-EXT is indicated by the construct (FIXEXT f (x).t with A) that provides the unary type
A of (fixf (x).t). Similarly, we introduce two variants of array operations, e.g., alloc and allocb
corresponding to the two rules R-L and R-LB, respectively.

Further, there is nondeterminism in subtyping due to the modal types □ andU . We resolve this
by adding explicit type coercions where subtyping would be needed. Prior work shows that this
approach is complete for these two modal types [Çiçek et al. 2019].

Beyond this, we face the usual challenge of algorithmizing any type system: The need to either
annotate or infer the types of bound variables. Here, the problem is more nuanced than would be
in a simply typed or even a refinement type calculus, since we must also deal with cost bounds
in function and monadic types. To address this challenge, we rely on the well-known middle
ground of bidirectional type-checking or local type inference [Pierce and Turner 2000], where
type annotations must be provided only at explicit β-redexes and for top-level functions, but
everything else can be inferred. We design a bidirectional type system for ARel which is similar
in spirit to the one for RelCost [Çiçek et al. 2019], but extended in nontrivial ways to support
bidirectional type-checking for array operations and for our fixpoint extension. This system can
derive in an algorithmic way four typing judgments, two relational and two unary. The relational
typing judgment of ARel splits into two relational judgments in the bidirectional version, one for
the łchecking modež and one for łinference modež. The relational checking judgment has the form:

Σ;∆;ψa ;Φa ; Γ ⊢ t1 ⊖ t2 ↓ τ ,D ⇒ Φ.

Given the location environment Σ, the index variable environment ∆, the existential variable context
Ψa , the current constraint environment Φa , the relational typing context Γ, and terms t1 and t2, we
check against the relational type τ and the relative cost D, and we generate the constraint Φ, which

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:23

∆;ψa ;Φa ; |Γ | ⊢ t1 ↑A1 ⇒ [ψ1], _,U1,Φ1 ∆;ψa ;Φa ; |Γ | ⊢ t2 ↑A2 ⇒ [ψ2],L2, _,Φ2

∆;ψa ;Φa ; Γ ⊢ switch t1 ⊖ switch t2 ↑U (A1,A2) ⇒ [ψ1,ψ2],U1 − L2,Φ1 ∧ Φ2

alg-r-switch↑

L1,U1,L2,U2 ∈ fresh(R) ∆;U1,L1,ψa ;Φa ; |Γ | ⊢ t1 ↓A1,L1,U1 ⇒ Φ1

∆;U2,L2,ψa ;Φa ; |Γ | ⊢ t2 ↓A2,L2,U2 ⇒ Φ2 Φ = Φ1 ∧ ∃L2,U2 :: R.Φ2 ∧U1 − L2 � D

Σ;∆;ψa ;Φa ; Γ ⊢ switch t1 ⊖ switch t2 ↓U (A1,A2),D ⇒ ∃L1,U1 :: R.(Φ)
alg-r-switch↓

Σ;∆;ψa ;C ∧ Φa ; Γ ⊢ t1 ⊖ t
′
1 ↓ τ ,D ⇒ Φ1

Σ;∆;ψa ;¬C ∧ Φa ; Γ ⊢ t1 ⊖ t
′
1 ↓ τ ,D ⇒ Φ2 ∆ ⊢ C wf

Σ;∆;ψa ;Φa ; Γ ⊢ split (t1) with C ⊖ split (t ′1) with C ↓ τ ,D ⇒ C → Φ1 ∧ ¬C → Φ2

alg-r-split↓

alg-fixext↓

∆;ψa ;Φa ; |Γ | ⊢ fixf (x).t ↓A1, 0, 0⇒ Φ1 ∆;ψa ;Φa ; |Γ | ⊢ fixf (x).t
′ ↓A2, 0, 0⇒ Φ2

Σ;∆;ψa ;Φa ; f : τ1
diff(D′)
−−−−−→ τ2, f : U (A1,A2),x : τ1, Γ ⊢ t ⊖ t

′ ↓ τ2,D
′⇒ Φ Φr = Φ ∧ Φ1 ∧ Φ2

Σ;∆;ψa ;Φa ; Γ ⊢ FIXEXTf (x).t with A1 ⊖ FIXEXTf (x).t ′ with A2 ↓ τ1
diff(D′)
−−−−−→ τ2,D ⇒ Φr ∧ 0 � D

Fig. 10. Selection of algorithmic typing rules

must be discharged separately. In contrast, the relational inference judgment has the form:

Σ;∆;ψa ;Φa ; Γ ⊢ t1 ⊖ t2 ↑ τ ⇒ [ψ],D,Φ.

Here, we synthesize the relational type τ and the relative cost D, and we generate the constraint Φ
with all the newly generated (existential) variables inψ . We have similar judgments for the unary
case. The unary checking judgment has the form Σ;∆;ψa ;Φa ;Ω ⊢ t ↓A,L,U ⇒ Φ, while the unary
inference judgment has the form Σ;∆;ψa ;Φa ;Ω ⊢ t ↑A⇒ [ψ],L,U ,Φ. Both these judgments can
be understood in a way similar to their relational counterparts. In all the judgments, we write
all the outputs (inferred components) in red and inputs in black. Notice that in comparison with
the typing judgments in ARel, the algorithmic typing judgments have one more input context Ψa
which records previously eliminated existential variables.

We show selected algorithmic typing judgments in Figure 10 to explain how we handle ARel’s
non-determinism. The switch rule (R-S) exists in both checking and inference modes because we
find it convenient to use the rule in both modes in our examples. Both algorithmic rules relate the
annotated terms (switch t1) and (switch t2) at the typeU (A1,A2) and generate the final constraint
based on the constraints from subterms t1 and t2 obtained in unary mode. The relative cost D must
be the difference of the maximal unary cost of t1 (U1) and the minimal unary cost of t2 (L2). In the
checking rule, alg-r-switch↓, this is forced in the output constraint. The split rule (R-P) exists only
in checking mode (alg-r-split↓). The terms (split t1 with C) and (split t2 with C) determine that
this rule must be applied, splitting on constraintC . The final output constraintC → Φ1 ∧¬C → Φ2

also analyzes C . The algorithmic counterpart of the rule R-FIX-EXT in checking mode, alg-fixext↓,
relates the annotated terms (FIXEXT f (x).t with A1) and (FIXEXT f (x).t with A1) and checks the
subterms fixf (x).t and fixf (x).t ′ at the unary types A1 and A2, respectively. The final constraint is
the combination of the constraints generated from the unary checking of the two subterms and the
relational checking of the two function bodies.
Next, we discuss selected rules for array operations. These operations constitute the main

challenge in our bidirectional type system relative to prior work.We show a selection of bidirectional

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:24 Weihao Qu, Marco Gaboardi, and Deepak Garg

alg-r-alc-↓

D1,D2 ∈ fresh(R)
Σ;∆;D1,ψa ;Φa ; Γ ⊢ t1 ⊖ t

′
1 ↓ int[I],D1 ⇒ Φ1 Σ;∆;D2,ψa ;Φa ; Γ ⊢ t2 ⊖ t

′
2 ↓ τ ,D2 ⇒ Φ2

Φ = Φ2 ∧ D1 + D2 � D Σ ⊢ γ fresh Σ;∆ ⊢ P wf Φr = ∃D1 :: R.Φ1 ∧ (∃D2 :: R.Φ)

Σ;∆;ψa ;Φa ; Γ ⊢ alloc t1 t2 ⊖ alloc t ′1 t
′
2 ↓

diff(D)

{P} ∃γ . Arrayγ [I] τ {P ⋆γ → N}, 0⇒ Φr

alg-r-alcB-↓

D1,D2 ∈ fresh(R)
Σ;∆;D1,ψa ;Φa ; Γ ⊢ t1 ⊖ t

′
1 ↓ int[I],D1 ⇒ Φ1 Σ;∆;D2,ψa ;Φa ; Γ ⊢ t2 ⊖ t

′
2 ↓□τ ,D2 ⇒ Φ2

Φ = Φ2 ∧ D1 + D2 � D Σ ⊢ γ fresh Σ;∆ ⊢ P wf Φr = ∃D1 :: R.Φ1 ∧ (∃D2 :: R.Φ)

Σ;∆;ψa ;Φa ; Γ ⊢ allocb t1 t2 ⊖ allocb t
′
1 t
′
2 ↓

diff(D)

{P} ∃γ . Arrayγ [I] τ {P ⋆γ → ∅}, 0⇒ Φr

alg-r-read-↓

∆;ψa ;Φa ; Γ ⊢ t1 ⊖ t
′
1 ↑ Arrayγ [I] τ ⇒ [ψ1],D1,Φ1

∆;ψ1,ψa ;Φa ; Γ ⊢ t2 ⊖ t
′
2 ↑ int[I

′] ⇒ [ψ2],D2,Φ2 P = P ′ ⋆γ → _
∆;ψa ;Φa ⊨ I ′ ≤ I Φ = Φ2 ∧ D1 + D2 � D Σ;∆ ⊢ P wf Φr = ∃(ψ1).Φ1 ∧ (∃(ψ2).Φ)

∆;ψa ;Φa ; Γ ⊢ read t1 t2 ⊖ read t ′1 t
′
2 ↓

diff(D)

{P} ∃_.τ {P}, 0⇒ Φr

alg-r-readB-↓

∆;ψa ;Φa ; Γ ⊢ t1 ⊖ t
′
1 ↑ Arrayγ [I] τ ⇒ [ψ1],D1,Φ1 P = P ′ ⋆γ → β

∆;ψ1,ψa ;Φa ; Γ ⊢ t2 ⊖ t
′
2 ↑ int[I

′] ⇒ [ψ2],D2,Φ2 ∆;ψa ;Φa ⊨ I ′ ≤ I ∧ ¬(I ′ ∈ β)
Φ = Φ2 ∧ D1 + D2 � D Σ;∆ ⊢ P wf Φr = ∃(ψ1).Φ1 ∧ (∃(ψ2).Φ)

∆;ψa ;Φa ; Γ ⊢ readb t1 t2 ⊖ readb t
′
1 t
′
2 ↓

diff(D)

{P} ∃_.□τ {P}, 0⇒ Φr

alg-r-updt-↓

∆;ψa ;Φa ; Γ ⊢ t1 ⊖ t
′
1 ↑ Arrayγ [I] τ ⇒ [ψ1],D1,Φ1 D3 ∈ fresh(R)

∆;ψ1,ψa ;Φa ; Γ ⊢ t2 ⊖ t
′
2 ↑ int[I

′] ⇒ [ψ2],D2,Φ2 ∆;ψa ;Φa ⊨ I ′ ≤ I ∧ β ′ = β ∪ {I ′}
∆;D3,ψ2,ψ1,ψa ;Φa ; Γ ⊢ t3 ⊖ t

′
3 ↓ τ ,D3 ⇒ Φ3 P = P ′ ⋆γ → β Q = P ′ ⋆γ → β ′

Φ = Φ2 ∧ D1 + D2 + D3 � D Σ;∆ ⊢ P ′ wf Φr = ∃(ψ1).(Φ1 ∧ (∃(ψ2).(Φ2 ∧ ∃D3 :: R.Φ))

∆;ψa ;Φa ; Γ ⊢ updt t1 t2 t3 ⊖ updt t ′1 t
′
2 t
′
3 ↓

diff(D)

{P} ∃_.unit {Q}, 0⇒ Φr

alg-r-updtB-↓

∆;ψa ;Φa ; Γ ⊢ t1 ⊖ t
′
1 ↑ Arrayγ [I] τ ⇒ [ψ1],D1,Φ1 D3 ∈ fresh(R)

∆;ψ1,ψa ;Φa ; Γ ⊢ t2 ⊖ t
′
2 ↑ int[I

′] ⇒ [ψ2],D2,Φ2 ∆;ψa ;Φa ⊨ I ′ ≤ I ∧ β ′ = β \ {I ′}
∆;D3,ψ2,ψ1,ψa ;Φa ; Γ ⊢ t3 ⊖ t

′
3 ↓□τ ,D3 ⇒ Φ3 P = P ′ ⋆γ → β Q = P ′ ⋆γ → β ′

Φ = Φ2 ∧ D1 + D2 + D3 � D Σ;∆ ⊢ P ′ wf Φr = ∃(ψ1).(Φ1 ∧ (∃(ψ2).(Φ2 ∧ ∃D3 :: R.Φ))

∆;ψa ;Φa ; Γ ⊢ updtb t1 t2 t3 ⊖ updtb t
′
1 t
′
2 t
′
3 ↓

diff(D)

{P} ∃_.unit {Q}, 0⇒ Φr

Fig. 11. Selection of algorithmic typing rules for array operations

rules for array operations in Figure 11. As mentioned, to resolve the non-determinism between
the □-ed and non-□-ed rules for each array operation, we use distinct expressions, e.g., allocb t1 t2
vs alloc t1 t2. To start understanding the rules, note that the conclusion of every array operation
is typed in checking mode. The two allocation rules alg-r-alc-↓ and alg-r-alcB-↓ check the first

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:25

arguments t1 and t
′
1 against the relational type int[I] and relative cost D1, then check the second

arguments t2 and t
′
2 against the relational type τ (or □τ) and relative cost D2. The final constraint

Φr = ∃D1 :: R.Φ1 ∧ (∃D2 :: R.Φ) requires that there exist D1 and D2 such that Φ1 and Φ2 hold and
that D1 + D2 equals the given cost D. The algorithmic typing rules for read and updt have other
interesting aspects. These rules are in checking mode but the types of the first two arguments are
inferred, not checked. This is because, although we know that the first argument of read t1 t2 or
updtb t1 t2 t3 must be an array and the second argument must be a number, we do not know the
size of the array or the size (refinement index) of the number. Hence, we must infer this information.
Additionally, these rules make checks on the pre- and post-conditions. As an example, the condition
¬(I ′ ∈ β) is checked on the rule alg-r-readB-↓ to guarantee that we are indeed reading the same
element on the two sides. Similarly, in the rules alg-r-updt-↓ and alg-r-updtB-↓, the β ′ in the
post-condition, representing the differences between the two arrays, must be the same as the β in
the pre-condition except for the index I ′ which has been updated. For this, in the rule alg-r-updt-↓
we check that β ′ = β ∪ {I ′}, while in the rule alg-r-updtB-↓we check that β ′ = β \ {I ′}, consistent
with the (non-algorithmic) typing rules.

7 IMPLEMENTATION AND EXPERIMENTS

We implemented the bidirectional type checking system for ARel described in Section 6. Using
this implementation, we checked all the examples described in this paper as well as some others
that are described in the appendix. We explain the results of our experiments in this section. One
small difference between the system described in Section 6 and our implementation is that rather
than support two syntactic variants of every array operation, we use heuristics to infer whether to
apply the□-ed rule or the non-□-ed rule. For example, to decide to apply the rule alg-r-readB-↓ as
opposed to alg-r-read-↓, we check that I < β . We always try the □-ed rules first. These heuristics
suffice for our examples and reduce our annotation burden at the cost of some extra constraint
solving time. Our typechecker is implemented in OCaml and we plan to open source it.

Constraint Solving. The primary difficulty in our implementation and the most time-consuming
step in type checking is solving the constraints that the bidirectional type system generates. For
this we rely on an SMT solver. Specifically, we use Alt-Ergo [Bobot et al. 2013] through the Why3
frontend [Filliâtre and Paskevich 2013]. A fundamental difficulty here is that the SMT solver
struggles with constraints that have too many existential quantifiers. To alleviate this concern, we
rely on a solution proposed in the implementation of RelCost [Çiçek et al. 2019]: We implement a
simple algorithm that generates candidate substitutions for existentially quantified variables by
examining equality and inequality constraints that mention the variables. This works remarkably
well (we refer to [Çiçek et al. 2019] for details). A new challenge for ARel is how to represent and
solve constraints involving the sets β . For this, we rely on the library for set theory from Why3.

Experiments. Table 1 summarizes some statistics about the performance of our type checker on
different examples. For each example, we show the number of lines of code (LOC), the number
of type annotations that are needed (#TYP), the number of annotations needed to disambiguate
rules (#ESF), the time needed for type checking (TC), the time needed for solving the constraints
that arise as premises during type checking (TC-SMT), and the time needed for solving the final
constraint which is the output of the type checking (TF-SMT). Our experiments were performed
on a 3.1 GHz Intel Core i5 processor with 8GB of RAM.
The programs map(1), map(2), boolOr, FFT, NSS and ISort are implementations of the corre-

sponding examples discussed in Section 2 and Section 5. For FFT, which uses the auxiliary functions
separate and loop, we report statistics for the whole program and individually for each auxiliary
function. The program ISort uses helper functions insert and shift. These are also shown separately.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:26 Weihao Qu, Marco Gaboardi, and Deepak Garg

The programs merge(1) and merge(2) consider an imperative versions of merge sort, typed with
two different relational types. The function SAM (square-and-multiply) computes a positive power
of a number represented as an array of bits, while comp checks the equality of two passwords
represented as arrays of bits. These last two examples are array-based implementations of similar
list-based implementations presented in Çiçek et al. [2017]. More details are in the appendix.

Table 1. Summary of experimental results

Benchmark LOC #TYP #ESF TC TC-SMT TF-SMT

map(1) 19 3 0 0.802s 1.051s 0.01s
map(2) 12 2 1 1.247s 0.994s 0.02s

boolOr 48 8 3 1.574s 1.131 2.38s

separate 36 8 0 1.351s 2.148s 0.01s
loop 23 5 0 1.167s 2.114s 0.01s
FFT 66 17 0 2.591s 4.268s 0.01s

Search 62 10 3 3.753s 4.43s 6.56s
NSS 94 12 3 4.158s 4.413s 10.03s

shift 14 3 0 0.660s 1.394s 0.01s
insert 22 6 0 1.001s 3.019s 0.01s
iSort 134 12 3 2.897s 6.181s 10.70s

merge(1) 29 8 0 2.203s 2.232s 0.01s
merge(2) 64 11 2 3.231s 0.349s 0.02s

sam 19 4 1 0.946s 0.083s 0.02s

comp 20 3 0 1.138s 0.112s 0.01s

The results in Table 1 show that ARel can be used effectively to reason about the relative cost
of functional-imperative programs. Unsurprisingly, examples combining relational and unary
reasoning (using rules R-FIX-EXT and R-S) such as boolOr, NSS and ISort need more annotations
and need more time for both type checking and SMT solving. In some examples like ISort, TC-SMT,
the time taken for solving constraints in the premises of the rules is very high. This is because of the
heuristic we described at the beginning of this section where we try □-ed rules before non-□-ed
rules. The SMT solver first tries to prove that the □-ed rule can be applied, but in some cases it
times out. This timeout period is counted in TC-SMT. It is set to 1s in all examples, except ISort
and Insert, where we try for 2s. TF-SMT, the time taken to check the final output constraint, is
also high for some examples like ISort, but this is due to the complexity of the constraint. Further
improving our heuristics and the constraint solving process remains a direction for future work.

8 RELATED WORK

A lot of prior work has studied static cost analysis. We discuss some of this work here. Reistad
and Gifford [1994] present a type and effect system for cost analysis where, like ARel, the cost can
depend on the size of the input. Danielsson [2008] uses a cost-annotated monad similar in spirit to
the one we use here. Dal Lago and Gaboardi [2011] present a linear dependent type system using
index terms to analyze time complexity. Hoffmann et al. [2012a] present an automated amortized
cost analysis for programs with complex data structures such as matrices. Wang et al. [2017] develop
a type system for cost analysis with time complexity annotations in types. However, none of these
systems consider relational analysis of costs.

Charguéraud and Pottier [2015] present an amortized resource analysis based on an extension of
separation logic with time credits. Our use of triples and separation-based management of arrays

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:27

references is similar to theirs. However, their technique is based on separation logic, while ours is
based on a type-and-effect system. Moreover, they consider only unary reasoning while we are
interested primarily in relational reasoning. Lichtman and Hoffmann [2017] present an amortized
resource analysis for arrays and reference based on arrays with potentials. Their technique repre-
sents the available łpotentialž before and after a computation, similar to our triples. Again, they
focus only on unary cost analysis and, consider mostly first-order programs and linear potentials.

Outside of cost analysis, a lot of work has considered relational verification techniques for other
applications. Lahiri et al. [2010] present a differential static analysis to find code defects looking at
two pieces of code relationally. Probabilistic relational verification has seen many applications in
cryptography [Barthe et al. 2014] and differential privacy [Barthe et al. 2015; Gaboardi et al. 2013].
The indexed types used by Gaboardi et al. [2013] are similar in spirit to ours. Zhang et al. [2015]
introduce dependent labels into the type of SecVerilog, an extension of Verilog with information
flow control. The use of a lightweight invariant on variables and security levels in SecVerilog is
similar to our use of β , which is also an invariant on static location variables. Unno et al. [2017]
present an automated approach to verification based on induction for Horn clauses, which can also
be used for relational verification. Benton et al. [Benton et al. 2014, 2016] introduce abstract effects
to reason about abstract locations. This is conceptually similar to the way our preconditions and
postconditions allow us to reason about different independent locations.
Our work is inspired by RelCost [Çiçek et al. 2017] and DuCostIt [Çiçek et al. 2016]. These are

refinement type and effect systems for pure functional languages without mutable state. RelCost
supports relational cost analysis of pure programs. In contrast, ARel supports imperative arrays.
The difference is substantial: Besides significant changes to the model, the type system has to be
enriched with Hoare-like triples, whose design is a key contribution of our work. RelCost has an
implementation via an SMT back-end [Çiçek et al. 2019]; we extend this approach with imperative
features and support for sets of indices (our βs). Ngo et al. [2017] combine information flow and
amortized resource analysis to guarantee constant-resource implementations. Their type system
allows relational reasoning about resources through precise unary analysis. Their focus is on
first-order functional programs and on the constant time guarantee, while we want to support
functional-imperative programs and more general relative costs. Radicek et al. [2018] add a cost
monad to a relational refinement type system, where refinements reason about relational cost, for
programs without state. This system is expressive: it supports a combination of cost analysis with
value-sensitivity and full functional specifications (RelCost can also be embedded in it). However,
it requires a framework for full functional verification. Our approach is complementary in that we
use lighter refinements that are easier to implement, but do not support full functional verification.

9 CONCLUSION

We presented ARel, a relational type-and-effect system that can be used to reason about the
relative cost of functional-imperative programs with mutable arrays. Our key contribution is a set
of lightweight relational refinements allowing one to establish different relations between pairs
of state-affecting computations, including upper-bounds on cost difference. We have discussed
how ARel is implemented and used ARel to reason about the relational cost of several nontrivial
examples.

ACKNOWLEDGMENTS

This work is in part supported by the National Science Foundation under Grant No. 1718220.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

92:28 Weihao Qu, Marco Gaboardi, and Deepak Garg

REFERENCES

Amal Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types. In Proceedings of the

European Conference on Programming Languages and Systems (ESOP).

Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009. State-dependent representation independence. In Proceedings of

the Symposium on Principles of Programming Languages (POPL).

Amal G Ahmed. 2004. Semantics of types for mutable state.

Andrew W. Appel and David A. McAllester. 2001. An indexed model of recursive types for foundational proof-carrying

code. ACM Trans. Program. Lang. Syst. 23, 5 (2001), 657ś683.

Robert Atkey. 2010. Amortised Resource Analysis with Separation Logic. In Proceedings of the European Conference on

Programming Languages and Systems (ESOP).

Martin Avanzini and Ugo Dal Lago. 2017. Automating sized type inference for complexity analysis. In Proceedings of

DICE-FOPARA.

Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy, and Santiago Zanella Béguelin. 2014.

Probabilistic relational verification for cryptographic implementations. In Proceedings of the Symposium on Principles of

Programming Languages (POPL).

Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Pierre-Yves Strub. 2015. Higher-

Order Approximate Relational Refinement Types for Mechanism Design and Differential Privacy. In Proceedings of the

Symposium on Principles of Programming Languages (POPL).

Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations.. In Proceedings of

the Symposium on Principles of Programming Languages (POPL).

Nick Benton, Martin Hofmann, and Vivek Nigam. 2014. Abstract effects and proof-relevant logical relations. In Proceedings

of the Symposium on Principles of Programming Languages (POPL).

Nick Benton, Martin Hofmann, and Vivek Nigam. 2016. Effect-dependent transformations for concurrent programs. In

Proceedings of the 18th International Symposium on Principles and Practice of Declarative Programming.

François Bobot, Sylvain Conchon, E Contejean, Mohamed Iguernelala, Stéphane Lescuyer, and Alain Mebsout. 2013. The

Alt-Ergo automated theorem prover, 2008.

Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. 2014. Alternating Runtime and Size

Complexity Analysis of Integer Programs. In Tools and Alg. for the Constr. and Anal. of Systems - 20th Int. Conf. (TACAS).

Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. 2015. Compositional Certified Resource Bounds. In Proceedings of

the 36th Conference on Programming Language Design and Implementation (PLDI).

Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017. Relational Cost Analysis. In Proceedings

of the Symposium on Principles of Programming Languages (POPL).

Arthur Charguéraud and François Pottier. 2015. Machine-Checked Verification of the Correctness and Amortized Complexity

of an Efficient Union-Find Implementation. In Interactive Theorem Proving - 6th International Conference, ITP.

Ezgi Çiçek, Zoe Paraskevopoulou, and Deepak Garg. 2016. A Type Theory for Incremental Computational Complexity With

Control Flow Changes. In Proceedings of the International Conference on Functional Programming(ICFP).

Ezgi Çiçek, Weihao Qu, Gilles Barthe, Marco Gaboardi, and Deepak Garg. 2019. Bidirectional type checking for relational

properties. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. 533ś547.

James W. Cooley and John W. Tukey. 1965. An Algorithm for the Machine Calculation of Complex Fourier Series. Math.

Comp. (1965).

Ugo Dal Lago and Marco Gaboardi. 2011. Linear Dependent Types and Relative Completeness. In Proceedings of the IEEE

26th Annual Symposium on Logic in Computer Science (LICS).

Nils Anders Danielsson. 2008. Lightweight Semiformal Time Complexity Analysis for Purely Functional Data Structures. In

Proceedings of the Symposium on Principles of Programming Languages (POPL).

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3: Where Programs Meet Provers. In Proceedings of the European

Conference on Programming Languages and Systems (ESOP).

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. 2013. Linear Dependent Types for

Differential Privacy. In Proceedings of the Symposium on Principles of Programming Languages (POPL).

Bernd Grobauer. 2001. Cost recurrences for DML programs. In Proceedings of the 6th International Conference on Functional

Programming (ICFP).

M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. 2005. Integrated Program Debugging, Verification, and

Optimization Using Abstract Interpretation (and The Ciao System Preprocessor). Science of Computer Programming 58,

1ś2 (October 2005), 115ś140.

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012a. Multivariate Amortized Resource Analysis. ACM Trans. Program.

Lang. Syst. (2012).

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

Relational Cost Analysis for Functional-Imperative Programs 92:29

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012b. Resource Aware ML. In Computer Aided Verification - 24th

International Conference, CAV.

Shuvendu K. Lahiri, Kapil Vaswani, and C. A. R. Hoare. 2010. Differential static analysis: opportunities, applications, and

challenges. In Proceedings of the Workshop on Future of Software Engineering Research, FoSER 2010, at the 18th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, Gruia-Catalin Roman and Kevin J. Sullivan

(Eds.).

Benjamin Lichtman and Jan Hoffmann. 2017. Arrays and References in Resource Aware ML. In The 2nd International

Conference on Formal Structures for Computation and Deduction, FSCD.

Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2013. Dependent Type Theory for Verification of Information

Flow and Access Control Policies. ACM Trans. Program. Lang. Syst. 35, 2 (2013).

Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. 2008. Hoare type theory, polymorphism and separation. J.

Funct. Program. 18, 5-6 (2008).

Georg Neis, Derek Dreyer, and Andreas Rossberg. 2011. Non-parametric parametricity. J. Funct. Program. 21, 4-5 (2011),

497ś562.

Van Chan Ngo, Mario Dehesa-Azuara, Matt Fredrikson, and Jan Hoffmann. 2017. Verifying and Synthesizing Constant-

Resource Implementations with Types. In 2017 IEEE Symposium on Security & Privacy.

Flemming Nielson and HanneRiis Nielson. 1999. Type and Effect Systems. In Correct System Design. Lecture Notes in

Computer Science, Vol. 1710. 114ś136.

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (Jan. 2000),

1ś44.

Ivan Radicek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. 2018. Monadic refinements for relational

cost analysis. PACMPL 2, POPL (2018).

Brian Reistad and David K. Gifford. 1994. Static Dependent Costs for Estimating Execution Time. In Proceedings of the 1994

ACM Conference on LISP and Functional Programming (LFP ’94). 65ś78.

Moritz Sinn, Florian Zuleger, and Helmut Veith. 2014. A Simple and Scalable Approach to Bound Analysis and Amortized

Complexity Analysis. In Computer Aided Verification - 26th International Conference, CAV.

Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. 2013. Logical relations for fine-

grained concurrency. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’13, Rome, Italy - January 23 - 25, 2013. 343ś356.

Hiroshi Unno, Sho Torii, and Hiroki Sakamoto. 2017. Automating Induction for Solving Horn Clauses. In Computer Aided

Verification - 29th International Conference, CAV.

Peng Wang, Di Wang, and Adam Chlipala. 2017. TiML: A Functional Language for Practical Complexity Analysis with

Invariants. In Proceedings of the International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA).

Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Programming. In Proceedings of the Symposium on

Principles of Programming Languages (POPL).

Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. 2015. A Hardware Design Language for Timing-

Sensitive Information-Flow Security. In Proceedings of the Twentieth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 92. Publication date: August 2019.

	Abstract
	1 Introduction
	2 ARel through examples
	3 ARel formally
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Index Terms and Constraints
	3.4 Unary and Relational Types
	3.5 Unary and Relational Typing

	4 Logical Relations
	5 More Examples
	6 Bidirectional Type Checking
	7 Implementation and Experiments
	8 Related work
	9 Conclusion
	Acknowledgments
	References

