
A Type Theory for Incremental Computational
Complexity with Control Flow Changes

Ezgi Çiçek
MPI-SWS, Germany
ecicek@mpi-sws.org

Zoe Paraskevopoulou
Princeton University, USA

zoe.paraskevopoulou@princeton.edu

Deepak Garg
MPI-SWS, Germany
dg@mpi-sws.org

Abstract
Incremental computation aims to speed up re-runs of a program
after its inputs have been modified slightly. It works by recording a
trace of the program’s first run and propagating changes through the
trace in incremental runs, trying to re-use as much of the original
trace as possible. The recent work CostIt is a type and effect system
to establish the time complexity of incremental runs of a program,
as a function of input changes. However, CostIt is limited in two
ways. First, it prohibits input changes that influence control flow.
This makes it impossible to type programs that, for instance, branch
on inputs that may change. Second, the soundness of CostIt is
proved relative to an abstract cost semantics, but it is unclear how
the semantics can be realized.

In this paper, we address both these limitations. We present
DuCostIt, a re-design of CostIt, that combines reasoning about
costs of change propagation and costs of from-scratch evaluation.
The latter lifts the restriction on control flow changes. To obtain the
type system, we refine Flow Caml, a type system for information
flow analysis, with cost effects. Additionally, we inherit from CostIt
index refinements to track data structure sizes and a co-monadic
type. Using a combination of binary and unary step-indexed logical
relations, we prove DuCostIt’s cost analysis sound relative to not
only an abstract cost semantics, but also a concrete semantics,
which is obtained by translation to an ML-like language.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Specifying and verifying and reasoning about pro-
grams; F.3.2 [Logics and meanings of programs]: Semantics of pro-
gramming languages

General Terms Verification

Keywords Complexity analysis, incremental computation, type
and effect systems

1. Introduction
Programs are often optimized under the implicit assumption that
they will execute only once. However, in practice, many programs
are executed again and again on slightly different inputs: spread-
sheets compute the same formulas with modifications to some of
their cells, search engines periodically crawl the web and software
build processes respond to small source code changes. In such set-
tings, it is not enough to design a program that is efficient for the
first (from-scratch) execution; the program must also be efficient
for the subsequent incremental executions (ideally much more ef-
ficient than the from-scratch execution). Incremental computation
is a promising approach to this problem that aims to design soft-
ware that can automatically and efficiently respond to changing in-
puts. The potential for efficient incremental updates comes from
the fact that, in practice, large parts of the computation repeat be-
tween the first and the incremental run. As shown by prior work on

self-adjusting computation [3, 4], by storing intermediate results in
a trace in the first run, it is possible to re-execute only those parts
that depend on the input changes during the incremental run, and
to reuse the parts that didn’t change free of cost.

Although previous work has investigated incremental computa-
tion from different aspects (demand-driven settings [18], compiler-
driven automatic incrementalization [8], etc.), until recently, the
programmer had to reason about the asymptotic time complexity of
incremental execution, the dynamic stability, by direct analysis of
the cost semantics of programs [23]. Such reasoning is usually dif-
ficult as the programmer has to reason about two executions—the
first run and the incremental run—and their relation (dynamic sta-
bility is inherently a relational property of two runs of a program).
Moreover, dynamic stability analysis heavily relies on a variety of
parameters such as the underlying incremental execution technique,
the input size, the nature of the input change, etc. Although many
specific benchmark programs have been analyzed manually, estab-
lishing the dynamic stability of a program can be both difficult and
tedious.

In our prior work, CostIt, we took the first steps towards ad-
dressing this problem by providing a refinement type and effect
system for establishing upper bounds on the asymptotic update
complexities of incremental programs [11]. This approach is attrac-
tive because programmers can reason about the dynamic stability of
their programs without worrying about the semantics of traces and
incremental computation algorithms, from which the type system
abstracts away. Furthermore, the analysis is compositional: Large
programs are analyzed by composing the results of the analysis of
subprograms. CostIt can establish precise bounds on the dynamic
stability of many examples, including list programs like map, ap-
pend and reverse, matrix programs like dot products and multipli-
cation and, divide-and-conquer algorithms like balanced list folds.

However, CostIt suffers from two serious limitations. First, Cos-
tIt assumes that changes to inputs do not change control flow—
closures executed in the incremental run must match those executed
in the first run. The type system imposes stringent restrictions to en-
sure this and cannot analyze many programs. For instance, CostIt ’s
analysis of merge sort has to assume that the merge function, which
merges two sorted sub-lists, has been analyzed by external means,
since this function’s control flow depends on the values in the in-
put lists. Second, the soundness of CostIt is established relative to
an abstract change propagation semantics based on previous work
on self-adjusting computation [3, 4], but beyond empirical analysis
for specific programs, there is no evidence that the semantics are
realizable.

In this paper, we address both these limitations. To address the
first limitation, we re-design the type system, properly account-
ing for the fact that during incremental run, some closures, which
were not executed during the first run, may have to be evaluated
from scratch. Accordingly, our type system, called DuCostIt, has

two typing judgments—one counts costs of incremental updates
(change propagation) and the other counts costs of from-scratch
evaluation. Switches between the two modes are mediated by type
refinements. To address the second limitation, we show that our
language, a λ-calculus with lists, can be translated (type-directed)
to a low-level language similar to ML, preserving both incremental
and from-scratch costs estimated by the type system. This transla-
tion significantly improves upon existing work [9], which provides
a related translation but only shows that the translation preserves
the cost of the first run (the more important cost here is the cost
of the incremental run). We briefly summarize the key insights in
DuCostIt’s design.

First, dynamic stability is a function of input changes, so to
analyze dynamic stability precisely, the type system must track
which values may change. For this, we use type refinements that
trace lineage to types for information flow analysis [26]: The type
(A)S contains values of type A that cannot change structurally,
while (A)C contains values of type A that may change arbitrarily.
Second, dynamic stability depends on sizes of input data structures
like lists. To track these sizes, we use index refinements in the style
of DML [28] and DFuzz [15].

Third, like CostIt, DuCostIt’s type system treats costs as an
effect on the typing judgment. However, unlike CostIt, where the
only possible effect is the cost of incremental update, in DuCostIt
there are two possible costs, which are manifest in two different
typing judgments. The judgment `S e : τ | κ means that e (of type
τ) has incremental update cost at most κ, while `C e : τ | κ means
that e’s from-scratch execution cost is at most κ. For example, if
x : (real)S, i.e., x is a real number that cannot change, then
`S x+ 1 : (real)S | 0 (since x cannot change, there is nothing
to incrementally update in x + 1, so the cost is zero), but `C
x+ 1 : (real)S | 1 (executing x + 1 from scratch requires unit
time to compute the addition). By adding the from-scratch cost
judgment, DuCostIt allows dynamic stability analysis of programs
whose executed closures depend on inputs that may change. CostIt
rejects such programs upfront. Examples of such programs are
(if x then e1 else e2) when x : (bool)C, and (y 0) when
y : (real → real)C is a function which may change completely
(e.g., from λy. y + 1 to λy. y). Overall, our type system can be
viewed as a cost-effect refinement of the pure fragment of [26].

Finally, incremental update has the inherent property that any
subcomputation whose dependencies don’t change incurs zero cost.
This property is needed in the analysis of many recursive programs
like merge sort, the fast Fourier transform, etc. Much like CostIt, we
internalize this property into the type system using a co-monadic
type�(τ), which contains values that cannot depend on values that
may change (transitively). This type is stronger than (A)S since
(A)S includes values that do not change structurally, but whose
contained closures capture variables that may change, while �(τ)
excludes such values. In contrast, the annotations �(·) and (·)S
coincide in CostIt due to its syntactic restrictions.

In addition to showing how to type several examples with
DuCostIt, we prove DuCostIt’s type system sound relative to two
semantics. Here, soundness means that costs established by typing
are upper bounds on the costs of incremental update and from-
scratch evaluation in a model of the runtime. The first semantics is
an abstract cost semantics for evaluation from-scratch and for in-
cremental update. The incremental update part extends similar se-
mantics in CostIt with the possibility of switching to from-scratch
evaluation when a closure not executed in the first run is reached.
The second semantics is a concrete semantics that translates our
source language to an ML-like target language with references and
a cost semantics. The translation explicitly records dependencies
(a trace) in the first run. We provide a concrete algorithm for in-
cremental update and prove soundness relative to it. This shows

that the costs estimated by our type system can be realized algo-
rithmically. The reader may wonder why we present the abstract
semantics when we also have a concrete semantics. The answer is
that the abstract semantics are very easy to understand and they
specify what the concrete semantics must do.

To prove soundness of the type system with respect to the two
semantics, we develop logical relation models of types and typing
judgments. These models are interesting in themselves: They com-
bine a binary relation for the judgment `S e : τ | κ with a unary
relation for the judgment `C e : τ | κ, with an interesting interac-
tion in the step-indices.

In summary, we make the following contributions:

• We develop a type system, DuCostIt, for dynamic stability that
combines analyses of costs of incremental update and of from-
scratch evaluation. The type system combines index refine-
ments, changeability refinements, co-monadic reasoning and
two kinds of cost effects. Our type system significantly extends
prior work. (Section 3)
• We show that the type system can precisely type several inter-

esting examples. (Section 2)
• We develop an abstract cost semantics and a concrete cost se-

mantics and prove soundness with respect to both using models
that mix binary and unary step-indexed logical relations. The
soundness with respect to the concrete cost semantics is com-
pletely new and covers a gap in prior work. (Sections 4 and 5)

Omitted inference rules and proofs of theorems are included in
an appendix available from the authors’ webpages [1].

Implementation We have also designed and implemented an al-
gorithmic version of DuCostIt’s type system. Our bidirectional
type-checker reduces the problem of type-checking to constraint
solving over a first-order theory of integers and reals which, al-
though undecidable, can be handled by SMT solvers with some
manual intervention. All but one example in this paper were type-
checked on this implementation but due to space limitations the
implementation’s details are deferred to a separate paper.

2. Typing for Dynamic Stability
This section introduces DuCostIt through examples. The main idea
behind incremental computational complexity analysis is dynamic
stability [11]. Assume that a program e is initially executed with in-
put v and then the program is re-run with a slightly different input
v′. Dynamic stability measures the amount of time it takes to re-run
the program with the modified input v′ using incremental compu-
tation. In incremental computation [3, 4], all intermediate values
are stored in a trace during the initial run. During the re-run (also
called the incremental or second run), a special algorithm, called
incremental update or change propagation tries to re-use as many
values from the trace as possible, and re-computes from-scratch
only when a completely new closure is encountered, or a primi-
tive function is reached and the function’s arguments have changed.
Concretely, change propagation is implemented by storing all val-
ues in reference cells, representing the trace as a dynamic depen-
dence graph over those references, and updating the references by
traversing the graph starting from changed leaves (inputs) and re-
computing all references that depend on the changed references.
This is a bottom-up procedure, that incurs cost only for the parts of
the trace that have changed. The graph can be traversed using many
different strategies [2]. We explain one such strategy in Section 5,
but this intuition suffices for now. It should be clear that dynamic
stability is a relational property of two runs of a program.

Like CostIt [11], our broad goal is to build a type and effect
system to establish (upper bounds on) dynamic stability. In general,

change propagation may have to recompute an intermediate value
if either (a) that value was obtained as the result of a primitive
function, whose inputs have changed, or (b) that value was obtained
from a closure, but the closure has now changed, either due to
a change in control flow or due to a non-trivial change to an
input function (our setting is higher-order). CostIt only considers
possibility (a); restrictions in CostIt’s type system immediately
discard any program that might afford possibility (b). Our primary
goal is to re-design CostIt to lift this restriction.

Example 1a (Warm-up) Consider the boolean expression x ≤ 5
with one input x of type real. Assuming that computing ≤ from-
scratch costs 1 unit of time, what is the the dynamic stability of
this expression? While one may instinctively answer 1, the pre-
cise answer depends on whether x may change in the incremen-
tal run or not: If x may change, then change propagation may
recompute ≤, so the dynamic stability would be 1. If x cannot
change, then change propagation will simply bypass this expres-
sion, and the cost will be 0. To track statically whether a value
may change, we use type refinements (A)S and (A)C inspired
by similar refinements in CostIt. (A)S ascribes values of type A
that may not change structurally, while (A)C ascribes values of
type A that may or may not change.1 In words, S is read “sta-
ble” and C is read “changeable”. The cost is written as an effect
over the turnstile in typing. Hence, our program can be typed in
two different ways: x : (real)S ` x ≤ 5 : (bool)S | 0 and
x : (real)C ` x ≤ 5 : (bool)C | 1.

Dual-mode typing The typing judgment described above suffices
for typing programs under CostIt’s restrictions, where only primi-
tive functions are re-executed during change propagation. However,
in general, change propagation may execute fresh closures from-
scratch. To count the costs of these closures, we need a second
“mode” of typing, that upper-bounds the from-scratch execution
cost of an expression. Accordingly, we use two typing judgments:
`S e : τ | κ, which means that the cost of change propagating
through e is at most κ and `C e : τ | κ, which means that the cost of
evaluating e from-scratch is at most κ. As a rule, the from-scratch
cost always dominates the change propagation cost. We often write
the judgments generically as `ε e : τ | κ for ε ∈ {S,C}.

Remark on notation When used on typing judgments `S e : τ | κ
an `C e : τ | κ, the annotations S and C stand for change-
propagation and from-scratch execution respectively, whereas on
types (A)S and (A)C, the annotations S and C stand for stable and
changeable.

Example 1b (From-scratch cost) The program x ≤ 5 can be
given a from-scratch execution cost using the C-mode typing judg-
ment: x : (real)µ `C x ≤ 5 : (bool)µ | 4. The cost 4 counts unit
costs for each of the following: applying the comparison function,
reading from the variable x, (immediately) evaluating the constant
5, and executing the body of the comparison. Note that the from-
scratch cost is independent of whether or not xmay change. Hence,
it holds for both µ = C and µ = S.

Example 2 (Mode-switching) To understand how the two modes
of typing interact with each other, consider (if x then e1 else e2).
How do we establish the change propagation cost of this expression

1 Values of type (A)S may admit indirect changes in nested sub-values.
This is explained in Section 3. Also, our refinements S and C do not
coincide semantically with their homonyms in CostIt. CostIt’s refinement S
is semantically equal to a third annotation that we write � (see Examples 4
and 5), and CostIt’s refinement C mixes the semantics of our S and C
refinements. Owing to restrictions in CostIt’s type system that we don’t
want, we do not believe it possible to build a semantically conservative
extension of CostIt’s refinements.

when x has types (bool)S and (bool)C? If x : (bool)S, we know
that x will not change. So, the incremental run will execute the
same branch (e1 or e2) as the initial run. This means that change
propagation can be continued in the branch. Consequently, in this
case, we only need to establish change propagation costs of the two
branches ei, not their from-scratch evaluation costs. In the type
system, this means that the branches can be typed in S mode, as in
the following derivation.

x : (bool)S `S x : (bool)S | 0
x : (bool)S `S e1 : τ | κ x : (bool)S `S e2 : τ | κ

x : (bool)S `S if x then e1 else e2 : τ | κ

If x : (bool)C then x may change. Consequently, the initial and
incremental runs may execute different branches. If the branches
end up being different, change propagation must execute the new
branch from-scratch. Hence, we must establish the from-scratch
costs of the two branches. (If the branch doesn’t actually change,
change propagation will not evaluate from-scratch, but in that case
the cost will only be lower, so our established cost would be con-
servative.)

x : (bool)C `S x : (bool)C | 0
x : (bool)C `C e1 : τ | κ′ x : (bool)C `C e2 : τ | κ′

x : (bool)C `S if x then e1 else e2 : τ | κ′ + 1

In the second premise, κ′ is not the cost for change-propagation,
but from-scratch execution (ε = C, not S). We also add a cost of
1 for determining which branch must be taken in the incremental
run. CostIt cannot type-check this example when x : (bool)C.
The pattern illustrated by this example is general: Whenever we
eliminate a boolean, sum, list or existential type labeled C, we
switch to the C (from-scratch) mode in typing the branches. We
do not switch to the C mode when the eliminated type is labeled S.

Example 3 (Map) Branch points are not the only reason why
change propagation may end up executing a completely fresh ex-
pression. A second reason is that a function provided as input to
another function may change non-trivially. To illustrate this, we
type the standard list function map. We need two additional type
refinements. First, dynamic stability usually depends on the sizes
of input data structures, so we introduce index refinements as in
CostIt. In particular, list types are refined to the form list [n]α τ .
Here, τ is the type of the elements of the list, n is the exact length
of the list and α is an upper bound on the number of elements
that may change. Second, the function type τ1 → τ2 is refined to

τ1
S(κ)−−→ τ2 and τ1

C(κ)−−−→ τ2. The former type says that the cost of
change propagating through the body of the function is κ, whereas
the latter type says that the cost of executing the function’s body
from scratch is κ. For instance, based on Example 1a, the function

λx. (x ≤ 5) can be given the types (real)S
S(0)−−→ (bool)S and

(real)C
S(1)−−→ (bool)C and based on Example 1b, it can be given

the type (real)µ
C(4)−−−→ (bool)µ for µ ∈ {S,C}.

Consider the standard map function that applies an input func-
tion f to every element of an input list l.

fix map(f). λl. caseL l of nil → nil
| cons(h, tl) → cons(f h, map f tl)

To type map, we introduce a new co-monadic type �(τ), which
ascribes values of type τ that do not depend on anything that
may change. Suppose that the input list l has type (list [n]α τ)S.

Assume that f has type �(τ
S(κ)−−→ τ ′), i.e., f does not depend

on anything that may change and its body change-propagates with
cost at most κ. In this case, to change propagate map’s body, we

must only change propagate through f on changed elements of l,
of which there are at mostα. Hence, the cost isO(α·κ) and, indeed,
map can be given the following type in CostIt (and our type system)
for a suitable linear function h.

map : �(τ
S(κ)−−→ τ ′)

S(0)−−→ ∀n, α :: N.
(list [n]α τ)S

S(h(α·κ))−−−−−−→ (list [n]α τ ′)S

The more interesting question is what happens if we allow f to

change, i.e., f has type (τ
C(κ)−−−→ τ ′)C. In this case, change propa-

gation may have to re-execute the function on all list elements from
scratch, so the cost of map isO(n·κ). This yields the following sec-
ond type for map for a suitable linear function g.

map : (τ
C(κ)−−−→ τ ′)C

S(0)−−→ ∀n, α :: N.
(list [n]α τ)S

S(g(n·κ))−−−−−−→ (list [n]n τ ′)S

Note that even though CostIt can express a similar second type for
map, that type is actually more restrictive: In CostIt’s interpretation
of types, a function labeled C cannot change arbitrarily, e.g., it
cannot change from λx. (x ≤ 5) to λx. (x ≥ 5), whereas in our

interpretation it can. Finally, if the type of f were (τ
S(κ)−−→ τ ′)C

(changeable function, whose body change-propagates with cost κ),
then we would not be able to type map, because we would not
be able to conservatively estimate the cost of change propagation:
Since the function may change, change propagation may have to re-
execute its body from scratch, but the cost of doing that would be
unknown. In fact, our type system prohibits application of functions
whose outer annotation is C and whose arrow has annotation S
(Section 3).

Example 4 (Merge) The following example demonstrates the ef-
fect of mode-switching on the typing of recursive functions. Con-
sider the following standard function that merges two sorted (as-
cending) lists x and y to produce a sorted list.
fix merge(x). λy. caseL x of
nil → y
| cons(a, as) → caseL y of

nil → x
| cons(b, bs) → if a ≤ b then cons(a, merge as y)

else cons(b, merge x bs)

Suppose that the lists x and y have types list [n]α (real)C and
list [m]β (real)C, respectively. How can we type merge? Since
the list heads a, b : (real)C (they may change), (a ≤ b) :
(bool)C, so as explained in Example 2, the two branches of the
if-then-else must be typed in C-mode, i.e., we must establish
their from-scratch evaluation costs. This immediately means that
for merge, which is recursively called in those branches, we must
also calculate the from-scratch cost. Hence, the arrows in merge’s
type must be annotated C. The rest of the typing is not surprising:
It is easy to see that the from-scratch cost is O(n + m) and that
even a single change to an input list can cause the entire output
to change. This yields the following type for merge, for a suitable
linear function h.

merge : �(∀n,m, α, β :: N. list [n]α (real)C
C(1)−−−→

list [m]β (real)C
C(h(n+m))−−−−−−−→ (list [n+m]n+m (real)C)C)

The outer annotation � on the type of merge states that merge
does not depend on anything that can change (this is trivially true
because merge is a closed expression). Its significance will become
clear in the next example, where we use merge to type merge sort.
We note that because merge’s type establishes its from-scratch
cost, CostIt cannot type merge. (In CostIt, merge is treated as a
primitive function.)

Example 5 (Merge sort) This example is taken from CostIt and
its analysis is similar to that in CostIt. We present the example here
because it highlights central type system features that we inherit
from CostIt. The standard function merge sort (msort) divides
a given list into two nearly equal sized lists, sorts the two lists
recursively and then merges the two sorted lists using the function
merge from Example 4.
fix msort(l). caseL l of
nil → nil
| cons(h1, tl1) → caseL tl1 of

nil → cons(h1, nil)
| cons(_, _) → let (z1, z2) = (bsplit l) in

merge (msort z1, msort z2)
The function bsplit used to split the list has type

bsplit : �(∀n, α :: N. list [n]α (real)C
S(0)−−→

∃β.(list
[⌈
n
2

⌉]β
(real)C × list

[⌊
n
2

⌋]α−β
(real)C))

bsplit alternates elements of the input list to the two output
lists. Its code is unimportant, but it is important that the function’s
change propagation cost is 0 (this holds because the function only
rearranges the input list’s elements, without inspecting them). What
is the dynamic stability of msort? Suppose that the input list l has
type list [n]α (real)C. msort is a divide-and-conquer algorithm
and its trace is a balanced binary tree of height H = dlog2(n)e.
At each node of the tree, msort splits the local list, makes two
recursive calls to sort the resulting sublists and merges the sorted
sublists. Counting tree levels starting from leaves (leaves have level
0), the cost of re-applying merge at a node at level k is at most
h(2k), where h is the linear cost function from Example 4. If α
changes occur, then the number of nodes at level k re-evaluated
by change propagation is upper bounded by both α, which is the
total number of changed leaves, and 2H−k, which is the maximum
number of nodes at level k. Hence, the total cost incurred at level k
is at most h(2k) · min(α, 2dlog2(n)e−k). The dynamic stability is,

therefore,Q(n, α) =
dlog2(n)e∑
k=0

h(2k) ·min(α, 2dlog2(n)e−k). It can

be easily shown that for linear h, this is in O(n · (1 + log2(α))).
For α = 1, this yieldsO(n) and for α = n, this yieldsO(n·logn),
which is the standard from-scratch cost of merge sort.

We now explain briefly how this cost is established in DuCostIt
and CostIt. We wish to type msort as follows:

msort : �(∀n, α :: N. list [n]α (real)C
S(Q(n,α))−−−−−−→

list [n]n (real)C)

Consider the most interesting case, where the list has at least two
elements. Then, inductively, the two recursive calls to msort on the
sublists z1 and z2 have change propagation costs Q(

⌈
n
2

⌉
, β) and

Q(
⌊
n
2

⌋
, α−β). Splitting incurs zero cost (for change propagation)

and merge has cost h(
⌈
n
2

⌉
+
⌊
n
2

⌋
) = h(n) from Example 4.

Consequently, to complete the typing, we must show that

h(n) +Q(
⌈n

2

⌉
, β) +Q(

⌊n
2

⌋
, α− β) ≤ Q(n, α)

This inequality is an arithmetic tautology for α > 0 (it is estab-
lished as a constraint outside our type system). For α = 0, this
inequality does not hold: The left side is at least h(n), while the
right side is 0. To proceed, we observe that when α = 0, the list
does not change at all, so (dynamically) change propagation has
nothing to do. Hence, its cost must be 0. To reflect this observation
into the static type system and complete our proof, we introduce a
typing rule (called nochange in Section 3), which essentially says
that if all free variables of an expression are labeled �, then the
change propagation cost of the expression is 0. We use this rule
on the subexpression starting let (z1, z2) = This subexpres-

Base types B ::= real | unit
Unann. types A ::= B | τ1 × τ2 | τ1 + τ2 | list [n]α τ |

τ1
δ(κ)−−−→ τ2 | ∀i

δ(κ)
:: S. τ | ∃i::S. τ |

C ⊃ τ | C & τ
Types τ ::= (A)µ | �(τ)
Modes µ, ε, δ ::= S | C
Sorts S ::= N | R+ | V

Index terms I, κ, ::= i | µ | 0 | I + 1 | I1 + I2 | I1 − I2 |
n, α I1 · I2 | I1I2 | dIe | bIc | log2(I) |

II21 | min(I1, I2) | max(I1, I2) |
In∑
i=I1

I

Constraints C ::= I1
.
= I2 | I1<I2 | ¬C

Constraint env. Φ ::= > | C ∧ Φ

Sort env. ∆ ::= ∅ | ∆, i :: S

Type env. Γ ::= ∅ | Γ, x : τ

Primitive env. Υ ::= ∅ | Υ, ζ : (B1 . . . Bn)
κ′
−→ B

Figure 1: Syntax of types

sion has four free variables: bsplit, msort, merge and l. bsplit
and merge are already labeled � from their types. msort is in-
ductively labeled � (this requires a new rule for typing recursive
functions). l can be labeled � because α = 0 and we can always
coerce list [n]α τ to �(list [n]α τ) when α = 0 (no changes
are allowed). It follows from the new typing rule that the entire
subexpression has cost 0. That completes the proof of msort’s type.

Other examples DuCostIt is a conservative extension of CostIt
and can type all of CostIt’s examples including list append and
reverse, matrix transpose, dot products, matrix multiplication, list
fold and balanced list fold. Additionally, we have typed several ex-
amples where control flow depends on changing data, e.g., merge
(and, hence, msort) shown above and other divide-and-conquer al-
gorithms like the fast Fourier transform (FFT) and list inversion
count. In all these examples, change propagation and from-scratch
costs established in DuCostIt are asymptotically tight.

3. Syntax and Type System
DuCostIt is a higher-order, call-by-value functional language with
recursive functions, lists, sums, products and base types like reals.
DuCostIt’s type system has two kinds of refinements—index re-
finements to track sizes of lists and mode refinements S,C to track
which values may change. The main novelty in DuCostIt is two dif-
ferent type effects—the cost of from-scratch evaluation and the cost
of change propagation. Only the latter is a relational effect. The two
effects are established using two different typing judgments that in-
teract with each other in the typing rules.

Types The syntax of types is shown in Figure 1. Unannotated
types contain most familiar types with some refinements. The list
type list [n]α τ is refined with n, the exact length of the list and
α, the maximum number of allowed changes (α ≤ n, even though

we don’t write this for brevity). Function types τ1
δ(κ)−−−→ τ2 are

refined with an effect κ and a mode δ. If δ = S, then κ is the
cost of change propagating through the body of the function, and
if δ = C, then κ is the cost of executing the body from-scratch.

Universally quantified types ∀i
δ(κ)
:: S. τ are also refined with a cost

Values v ::= r | (v1, v2) | inl v | inr v | nil |
cons(v1, v2) | fix f(x). e | Λ. e |
pack v | ()

Expr. e ::= x | r | (e1, e2) | fst e | snd e | inl e | inr e |
case(e, x.e1, y.e2) | nil | cons(e1, e2) |
(caseL e of nil → e1 | cons(h, tl) → e2) |
fix f(x). e | e1 e2 | ζ e | Λ. e | e[] |
pack e | unpack e as x in e′ |
letx = e1 in e2 | e.c | clet e1 as x in e2 | ()

Figure 2: Syntax of expressions and values

κ and a mode δ for the closure’s body. Constraints C are predicates
over index terms (described below). The type C ⊃ τ reads “τ if
constraint C is true, else every expression” and C & τ reads “τ
and constraint C is true”.

Unannotated types are refined with annotations S (stable) and
C (changeable) to obtain annotated types or, simply, types, τ .
(A)C specifies values of unannotated type A that may change
arbitrarily between the initial and incremental run, whereas (A)S

specifies values of ground type A whose values cannot change
structurally. For base types like real, (·)S specifies values that
cannot change at all. For lists and products, the annotation has no
specific meaning (it is present only for technical convenience in
writing typing rules). On sums, the annotation S means that the
value is not allowed to change from inl _ to inr _ or vice versa
(whether the value within inl or inr may change is determined
by the nested annotations in the two components of the sum type).
On function types, the annotation S means that the function’s body
cannot change syntactically, but it may capture free changeable
variables from outer contexts. Thus, if y : (real)C, then both

functions λx. x and λx. (y + 1; x) have type (τ
S(κ)−−→ τ)S for

an appropriate κ. The stronger annotation �(τ) represents values
of τ that cannot even depend on changeable variables from outer
contexts and, hence, cannot change at all. Thus, λx. (y + 1; x)

does not have type �((τ
S(κ)−−→ τ)S), but λx. x does. Technically,

�(τ) is a co-monadic type (see subtyping later in this section).

Index terms Static index terms I, κ, n, α that refine DuCostIt’s
types are classified into the following sorts: (a) natural numbers,
N, which are used to specify list sizes and the number of allowed
changes in lists, (b) non-negative real numbers, R+, that appear
in logarithmic expressions in costs and (c) the two-valued sort
V = {S,C}, whose primary purpose has been explained above.
Most operators are overloaded for the sorts R+ and N and there
is an implicit coercion from N to R+. Sorts are assigned to index
terms via a sorting judgment ∆ ` I :: S, whose details we omit.
∆ is a sort environment that maps index variables (denoted i, t) to
their sorts.

Expressions The grammar of DuCostIt’s values and expressions
is shown in Figure 2. Most of the syntax is standard. r denotes
constants of type real. ζ denotes a primitive function and ζ e is
application of the function to e. The construct caseL is case analy-
sis on lists. Quantification and instantiation over index variables are
written Λ. e and e[], respectively. Elimination forms for constrained
types C ⊃ τ and C & τ are written e.c and clet x as e1 in e2,
respectively. Expressions do not mention any index terms. This is
done to simplify the code of programs that case analyze lists, as in
CostIt.

Constraints and assumptions Constraints C are predicates over
index terms. Our subtyping rules critically rely on constraint entail-

∆; Φ; Γ `ε e : τ | κ expression e has type τ . We use ε to stand for S or C. Every rule should be read separately as its instantiation for
both possible values of ε. If ε = S, then the change propagation cost of e is at most κ. If ε = C, then the from-scratch cost of e is at most κ.

κ = ((ε
.
= C) ? cvar() : 0)

∆; Φ; Γ, x : τ `ε x : τ | κ
var

κ = ((ε
.
= C) ? creal() : 0)

∆; Φ; Γ `ε r : (real)S | κ
real

∆; Φ ` τ wf κ = ((ε
.
= C) ? cnil() : 0)

∆; Φ; Γ `ε nil : (list [0]0 τ)S | κ
nil

∆; Φ ` (τ1
δ(κ)−−−→ τ2)S wf

∆; Φ; f : (τ1
δ(κ)−−−→ τ2)S, x : τ1,Γ `δ e : τ2 | κ′

κ = ((ε
.
= C) ? cfix() : 0)

∆; Φ; Γ `ε fix f(x). e : (τ1
δ(κ′)−−−→ τ2)S | κ

fix1

∆; Φ; Γ `ε e1 : (τ1
δ(κ′)−−−→ τ2)µ | κ1 ∆; Φ; Γ `ε e2 : τ1 | κ2

|= (ε t µ) ≤ δ |= µ E τ2
κ = κ1 + κ2 + κ′ + (((ε t µ)

.
= C) ? capp(ε, µ) : 0)

∆; Φ; Γ `ε e1 e2 : τ2 | κ
app

∆; Φ; Γ `ε e : τ1 | κ′ ∆; Φ ` τ2 wf

κ = κ′ + ((ε
.
= C) ? cinl() : 0)

∆; Φ; Γ `ε inl e : (τ1 + τ2)S | κ
inl

∆; Φ; Γ `ε e : (τ1 + τ2)µ | κe ∆; Φ; Γ, x : τ1 `εtµ e1 : τ | κ′
∆; Φ; Γ, y : τ2 `εtµ e2 : τ | κ′ |= µ E τ

κ = κe + κ′ + (((ε t µ)
.
= C) ? ccase(ε, µ) : 0)

∆; Φ; Γ `ε case(e, x.e1, y.e2) : τ | κ
case

∆; Φ; Γ `ε e1 : �(τ) | κ1 ∆; Φ; Γ `ε e2 : (list [n]α τ)µ | κ2 κ = κ1 + κ2 + (((ε t µ)
.
= C) ? ccons() : 0)

∆; Φ; Γ `ε cons(e1, e2) : (list [n+1]α τ)µ | κ
cons1

∆; Φ; Γ `ε e1 : τ | κ1 ∆; Φ; Γ `ε e2 : (list [n]α−1 τ)µ | κ2 ∆; Φ |= α> 0 κ = κ1 + κ2 + (((ε t µ)
.
= C) ? ccons() : 0)

∆; Φ; Γ `ε cons(e1, e2) : (list [n+1]α τ)µ | κ
cons2

∆; Φ; Γ `ε e : (list [n]α τ)µ | κe
∆; Φ ∧ n .

= 0 ∧ α .
= 0; Γ `εtµ e1 : τ ′ | κ′ i :: ι,∆; Φ ∧ n .

= i+ 1 ∧ α≤ i;h : �(τ), tl : (list [i]α τ)µ,Γ `εtµ e2 : τ ′ | κ′

i :: ι, β :: ι,∆; Φ ∧ n .
= i+ 1 ∧ β≤ i ∧ α .

= β + 1;h : τ, tl : (list [i]β τ)µ,Γ `εtµ e2 : τ ′ | κ′
|= µ E τ ′ κ = κe + κ′ + (((ε t µ)

.
= C) ? ccaseL(ε, µ) : 0)

∆; Φ; Γ `ε caseL e of nil → e1 | cons(h, tl) → e2 : τ ′ | κ
caseL

∆; Φ; Γ `ε e : τ | κ′ ∀x ∈ dom(Γ). ∆; Φ |= Γ(x) v �Γ(x)
κ = ((ε

.
= S ? 0 : κ′))

∆; Φ; Γ,Γ′ `ε e : �(τ) | κ
nochange

∆; Φ; Γ `ε e : τ | κ′ ∀x ∈ Γ ∆; Φ ∧ C |= Γ(x) v �(Γ(x))
∆; Φ ∧ ¬C |= κ′≤κ
∆; Φ; Γ `ε e : τ | κ

r-split

Figure 3: Selected typing rules. The context that carries types of primitive functions is omitted from all rules.

ment, which is represented as ∆; Φ |= C (“for any substitution of
index variables in ∆, the constraints Φ entail the constraintC”). We
do not stipulate syntactic rules for this judgment, but assume that it
codifies the standard rules of arithmetic. Constraints are also sub-
ject to a standard syntactic well-formedness judgment ∆ ` C wf,
which we omit entirely.

Typing rules DuCostIt relies on two typing judgments —
∆; Φ; Γ `S e : τ | κ and ∆; Φ; Γ `C e : τ | κ, which say that
κ is an upper bound on the cost of change propagating through e
and evaluating e from-scratch, respectively. However, the cost of
change propagation is no more than the cost of evaluating from-
scratch, so the second judgment implies the first semantically and,
hence, it is perfectly sound to change propagate through expres-
sions typed with either judgment. We rely on this property heavily
in our semantics. For brevity in writing rules, we often use the uni-
fied notation ∆; Φ; Γ `ε e : τ | κ with ε ∈ {S,C} being the mode
of the typing judgment.2 Besides the typing environments Γ and ∆
for type and index variables, respectively, an extra environment Φ
records assumed constraints. The judgments also include a fourth
context that specifies the types of primitive functions ζ, but this

2 The annotation ε on typing judgments is based on a similar annotation
called pc in type systems for information flow analysis [26]. Our entire
type system can be viewed as a substantial extension of the pure fragment
of [26] with index refinements and costs. Our models of types (Sections 4
and 5) are tailored to incremental computation and substantially differ from
models of types needed for information flow analysis.

context does not change in the rules, so we exclude it from the
presentation.

Important typing rules are shown in Figure 3. If an expression
contains subexpressions, then the costs (κ’s) of subexpressions are
added to obtain the total cost of the expression. In addition, each
language construct incurs a runtime execution cost that depends on
the mode of evaluation, ε, and, in the case of elimination constructs,
the annotation on the type of the eliminated value (which we uni-
formly denote with µ). For instance, if we are change propagating
(ε = S) and we encounter a case analysis over a sum annotated
C (i.e., µ = C), then because the sum may have been inl _ in
the first run and may be inr _ now, we must incur some cost to
determine the current tag. If, on the other hand, the sum were an-
notated S (i.e., µ = S), we know statically that this tag would not
change, so there would be no need to read it during change prop-
agation. In the type system, we use meta-symbols like ccase(ε, µ)
to denote such ε- and µ-dependent costs. The concrete semantics
(Section 5) determine the exact definitions of these meta-symbols.
For asymptotic cost analysis, the exact constants represented by
these meta-symbols are irrelevant, so we defer their details to our
appendix. However, even for asymptotic analysis, we need to know
whether a cost is zero or non-zero, so when the cost of a construct
is zero, we write this explicitly in the typing rule.

We explain some of the rules here. In a call-by-value language
like ours, variables are substituted by values and the cost of updat-
ing (change propagating) the substitution for a variable is paid by
the context that provides the substitution. So a variable incurs zero

cost during change propagation (ε = S). On the other hand, during
from-scratch evaluation (ε = C), a variable incurs a constant cost,
denoted cvar(), to copy the variable’s value to a place where it can
be used by its context (during change propagation, the value is up-
dated in-situ, so this cost of copying does not have to be paid). This
explains the premise κ = ((ε

.
= C) ? cvar() : 0) of the rule var.

A similar premise appears for all value forms, including functions
(rule fix1) and constants (rule real).

Rules fix1 and app type recursive functions and function ap-
plications, respectively. In rule fix1, the body of the function is
typed in the same mode as the annotation δ in the function’s type

(τ1
δ(κ′)−−−→ τ2)S. The annotation on the function’s type is S because

the function is constructed within the program, so it will not change
syntactically across runs. This principle also applies to all value in-
troduction forms (for instance, the rules inl and real).

In the rule app, the meta-function ε t µ returns C when either
ε = C or µ = C, else it returns S. The partial order ≤ on
annotations is defined by S ≤ C and µ ≤ µ. The rule is best
understood separately for ε = C and ε = S. When ε = C, we
may be executing from-scratch so the function can be applied only
if its body was typed in mode C, i.e., only if δ = C (else we cannot
count the cost of executing the body soundly). This is forced by the
premise ε t µ ≤ δ. When ε = S, we are change propagating, so
the function can be applied independent of the mode in which its
body was typed, but if the function itself may change completely
(µ = C), then we may have to run the function’s body from-
scratch, so the function’s body must have been typed with δ = C.
Again, this is forced by ε t µ ≤ δ. Finally, if the function may
change (µ = C), then the result type τ2 must also have annotation
C, as the result may change completely. This is checked by the
premise |= µ E τ2, which holds when τ2 = (A)µ

′
and µ ≤ µ′.

The rule case eliminates a sum type and is similar to app:
Whenever the scrutinee is C-annotated, the branches are typed in
with ε = C because the branch executed in the incremental run may
be different from that executed in the first run. The rules cons1 and
cons2 type non-empty lists of type (list [n+ 1]α τ)µ. Depend-
ing on whether the head may change or not, the tail expression is
permitted either α or α−1 changes. Correspondingly, the list elim-
ination rule caseL considers three cases. If the list is empty, then
the number of changes and the size of the list are both 0 (second
premise). If the list is not empty, then there are two possibilities:
the head of the list does not change and the tail has up to α changes
(third premise) or the head of the list may change and the tail has
up to β = α− 1 changes (fourth premise). In all cases, if the elim-
inated list is changeable, i.e. µ = C, then we switch to ε = C for
typing the case branches.

Note that the premises of the rules app, case and caseL may be
typed with ε = C, even when the conclusion is typed with ε = S.
Thus, we may switch from S-mode to C-mode in constructing a
typing derivation bottom-up. The reverse transition may also occur
but only in typing a closure’s body, as in fix1.

The rule nochange captures the intuition that if no dependencies
(substitutions for free variables) of an expression can change, then
the expression’s result cannot change and there is no need to change
propagate through its trace (i.e., its change propagation cost is
zero). The second premise of nochange checks that the types of
all variables can be subtyped to the form �(·), which ensures
that the dependencies of the expression cannot change. The rule’s
conclusion allows the type to be annotated �(·) and, additionally,
if ε = S, then the cost κ is 0. For from-scratch evaluation (ε = C),
the rule has no effect on the cost.

In typing many programs like merge sort, we case analyze
whether or not a list has any allowed changes. For this, we need
a case analysis rule for constraints, such as the following straight-

∆; Φ |= τ1 v τ2 τ1 is a subtype of τ2

∆; Φ |=A A1 v A2 A1 is a subtype of A2

∆; Φ |=A A1 v A2

∆; Φ |= (A1)µ v (A2)µ
C

∆; Φ |= µ1 ≤ µ2
∆; Φ |= (A)µ1 v (A)µ2

µµµ

∆; Φ |= τ ′1 v τ1 ∆; Φ |= τ2 v τ ′2 ∆; Φ |= κ ≤ κ′

∆; Φ |=A τ1
δ(κ)−−−→ τ2 v τ ′1

δ(κ′)−−−→ τ ′2

→→→

∆; Φ |= �((τ1
δ(κ)−−−→ τ2)µ) v (�(τ1)

δ(κ)−−−→ �(τ2))S
→ �→ �→ �

∆; Φ |= n1
.
= n2 ∆; Φ |= α1≤α2≤n2 ∆; Φ |= τ1 v τ2

∆; Φ |=A list [n1]α1 τ1 v list [n2]α2 τ2
l1

∆; Φ |= α
.
= 0

∆; Φ |=A list [n]α τ ≡ list [n]α �(τ)
l2

∆; Φ |= �((list [n]α τ)µ) ≡ (list [n]α �(τ))S
l���

∆; Φ |= �(τ) v τ
T

Figure 4: Selected subtyping rules

forward rule:
∆; Φ ∧ C; Γ `ε e : τ | κ ∆; Φ ∧ ¬C; Γ `ε e : τ | κ

∆; Φ; Γ `ε e : τ | κ split

However, this rule is incompatible with our concrete semantics,
where the two premises may get translated in incompatible ways.
Accordingly, we restrict the type system to a special case of this
rule, where this rule is immediately preceded by the rule nochange
in the first premise. The resulting rule, r-split in Figure 3, can be
derived using nochange and split and also suffices for typing all
examples we have encountered so far.

Subtyping Subtyping plays a crucial role in DuCostIt. Subtyping
is constraint dependent. The subtyping judgment ∆; Φ |= τ1 v τ2
states that τ1 is a subtype of τ2 under the index environment ∆ and
constraints Φ. We write τ1 ≡ τ2 for τ1 v τ2 and τ2 v τ1. Selected
rules are shown Figure 4. The rule µµµ allows weakening of annota-
tions along the order≤ on {S,C}. In particular, (A)S v (A)C. This
subtyping is immediately justified by the intuitive meanings of the
annotations (A)S and (A)C. The rule → is the subtyping rule for
functions, contravariant in the argument and covariant in the result
and cost (as expected). The rule l1 allows the number of changes in
a list to be weakened as long as the revised number does not exceed
the size of the list. The rule l2 allows a list with 0 changes to be re-
typed as a list whose elements’ type is labeled �(·). In addition,
the rule l�l�l� states that �((list [n]α τ)µ) ≡ (list [n]α �(τ))S:
A list that is not allowed to change, represented by the outer � on
the left side, is equivalent to a list whose elements cannot change,
represented by the inner � on the right side. The rules l2 and l�l�l�
are critical for typing Example 5 of Section 2.

For readers familiar with co-monadic types, we note that the
type �(τ) is a co-monad: �(τ) v τ (rule T) and �(τ1 → τ2) v
�(τ1) → �(τ2) (rule→ �→ �→ �). The rule l��� for lists is analogous to
the standard co-monadic property �(τ1 × τ2) ≡ �(τ1)×�(τ2).

4. Abstract Semantics and Soundness
In this section, we define abstract cost-counting semantics for
change propagation and for from-scratch evaluation. We then prove
our type system sound relative to this abstract semantics. Later, in

e ⇓ 〈v,D〉, f e evaluates to value v with derivation D in f steps

v ⇓ 〈v, v〉, 0
value

F = fix f(x). e

fix f(x). e ⇓ 〈F, F 〉, cfix()
fix

e1 ⇓ T1, f1 e2 ⇓ T2, f2 vi = V(Ti)

cons(e1, e2) ⇓ 〈cons(v1, v2), cons(T1, T2)〉, f1 + f2 + ccons(C, _)
cons

e ⇓ T, f inl v = V(T) e1[v/x] ⇓ Tr, fr vr = V(Tr)

case(e, x.e1, y.e2) ⇓ 〈vr, caseinl(T, Tr)〉, f + fr + ccase(C, _)
case-l

Figure 5: Selected evaluation rules

Section 5, we show how these abstract semantics can be realized
by translation to an ML-like language.

Evaluation semantics and traces Our big-step call-by-value
evaluation judgment e ⇓ T, f states that expression e evaluates
to a trace T with evaluation cost f . The trace T is a representation
of the entire big-step derivation and explicitly includes the final
and all intermediate values. It is a pair 〈v,D〉, where v is the result
of the evaluation and D is a derivation, which recursively contains
subtraces. For every big-step evaluation rule, there is one derivation
constructor. The syntax below shows only some of the constructors
for brevity. The constructors for case analysis record which branch
was taken using subscripts like inl or inr. Selected evaluation
rules are shown in Figure 5. The rules are obtained by adding costs
to standard big-step evaluation rules. The costs are based on meta-
symbols like capp that the type system also uses. The meta function
V(·) returns the final value contained in a trace: V(〈v,D〉) = v.

Traces T ::= 〈v,D〉
Derivations D::= v | r | (T1, T2) | fst T | snd T | inl T |

inr T | caseinl(T, Tr) | caseinr(T, Tr) | . . .

Changes and biexpressions Change propagation takes an expres-
sion’s evaluation trace and a modified expression and produces an
updated trace and a new output result (along with a cost of doing all
the updates). Change propagation is bottom up: It starts from mod-
ified leaves of the expression (trace) and moves towards the root,
updating values in place. When there is a change to control flow,
e.g., an updated value causes a fresh branch or a fresh closure to be
executed, change propagation switches to from-scratch evaluation.
Importantly, change propagation bypasses parts of the trace whose
leaves have not changed and is thus faster than evaluating the whole
expression from scratch.

To formalize change propagation, we first need notation to spec-
ify where an expression has changed. For this we adapt CostIt’s bi-
expressions. A biexpression, denoted ee, represents in a single syn-
tax two expressions—the original one and the updated one—that
share most structure, but may differ at some leaves. To represent
differing leaves, we use the biexpression constructor new(v1, v2),
which represents v1 in the first run and v2 in the second run. v1
and v2 do not have to be related to each other. CostIt restricted
this constructor to the case where v1 and v2 are primitive values
(like reals). Although this change is syntactically small, it has
deep implications. In particular, by allowing sums and functions
to change arbitrarily, we allow for changes to control flow during
change propagation and, hence, we need to switch to from-scratch
evaluation during change propagation.

The syntax of bivalues and biexpressions is shown below. The
syntax mirrors the syntax of values and expressions. The con-
struct keep(r) represents a real number r that has not changed.
As explained above, new(v1, v2) represents v1 in the first run and
an unrelated valued v2 in the second run. The remaining con-

∆; Φ; Γ `ε vv� τ and ∆; Φ; Γ `ε ee� τ | κ Bivalue and

biexpression typing

∆; Φ; Γ `ε keep(r)� (real)S
keep-r

∆; Φ; · `C v : τ | κ ∆; Φ; · `C v′ : τ | κ′ |= C E τ
∆; Φ; Γ `ε new(v, v′)� τ

new

∆; Φ; Γ `ε vv� τ
∀x ∈ Γ. ∆; Φ |= Γ(x) v �(Γ(x)) stable(vv)

∆; Φ; Γ,Γ′ `ε vv� �(τ)
nochange

∆; Φ; Γ `ε vvi � τi ∆; Φ;xi : τi,Γ `ε e : τ | κ
∆; Φ; Γ `ε peq[vvi/xi]� τ | κ

exp

Figure 6: Selected typing rules for bivalues and biexpressions

structors are interpreted homomorphically over pairs. For instance,
fix f(x).(x+ new(1, 2)) represents fix f(x). x + 1 in the first
run and fix f(x). x+ 2 in the second run. More generally, we de-
fine the functions L(ee) and R(ee) that project the first-run (“left”)
and second-run (“right”) expressions from ee as the homomorphic
lifts of the following rules: L(keep(r)) = R(keep(r)) = r,
L(new(v1, v2)) = v1 and R(new(v1, v2)) = v2.

Bival. vv ::= keep(r) | new(v, v′) | (vv1, vv2) |
inl vv | inr vv | nil | cons(vv1, vv2) |
fix f(x).ee | Λ.ee | pack vv | ()

Biexpr. ee::= x | keep(r) | new(v, v′) | (ee1, ee2) |
fst ee | snd ee | inl ee | inr ee |
case(ee, x.ee1, y, ee2) | . . .

Both bivalues and biexpressions are typed. Selected typing rules
are shown in Figure 6. The judgment ∆; Φ; Γ `ε vv � τ states
that the bivalue vv represents a valid change from an initial value
L(vv) of type τ to the modified value R(vv) of type τ . The typing
rules for bivalues mirror those for values. The construct keep(r)
is typed at (real)S since it represents a real number that did not
change. The construct new(v1, v2) can be typed at τ only if τ is
labeled C (premise |= C E τ in rule new). There is only one rule,
exp, for typing biexpressions. This rule uses explicit substitutions
for technical convenience. We could also have written equivalent
syntax-directed rules for typing biexpressions. The notation peq
denotes the biexpression that represents e in both the first and
second runs. It is obtained by replacing every primitive constant
like r in e with keep(r).

Change propagation Change propagation is formalized abstractly
by the judgment 〈T, ee〉 y vv′, T ′, c′. It takes as inputs the trace
T and the biexpression ee and it returns vv′, T ′ and c′. The input T
must be the trace that is obtained from executing the original ex-
pression L(ee). The bivalue vv′ resulting from change propagation
represents two values, L(vv′) and R(vv′), which are the results of
evaluating the original and modified expressions, respectively. The
output T ′ is the trace of the modified expression. The non-negative
number c′ represents the total cost incurred in change propagation.

Selected rules for change propagation are shown in Figure 7.
The rules case analyze the syntax of ee. The most important rule
is r-nochange. Its premise, stable(ee) holds when ee does not
contain new(·, ·) anywhere, i.e., when ee represents an expression
that has not changed. In this case, the value v stored in the original
trace is output immediately (technically, it must be cast into the
bivalue pvq) and the cost of change propagation is 0.

To change propagate case(ee, x.ee1, y, ee2), we first change
propagate through the scrutinee ee. If the initial and incremental

〈D, ee〉 y vv′, D′, c′ Change propagation with cost-counting

stable(ee)

〈〈v,D〉, ee〉 y pvq, 〈v,D〉, 0
r-nochange

〈〈v,D〉, new(_, v′)〉 y new(v, v′), 〈v′, v′〉, 0
r-new

〈T, ee〉 y inl vv, T ′, c′

〈Tr, ee1[vv/x]〉 y vv′r, T
′
r, c
′
r v′r = V(T ′r)

〈〈_, caseinl(T, Tr)〉, case(ee, x.ee1, y.ee2)〉 y
vv′r, 〈v′r, caseinl(T ′, T ′r)〉, c′ + c′r

r-case-inl1

〈T, ee〉 y new(_, inr v′), T ′, c′

R(ee2)[v′/y] ⇓ T ′r, f ′r v′r = V(C′r)

〈〈vr, caseinl(T, Tr)〉, case(ee, x.ee1, y.ee2)〉 y
new(vr, v

′
r), 〈v′r, caseinr(T ′, T ′r)〉, c′ + f ′r + ccase(S,C)

r-case-inl2

〈T1, ee1〉 y fix f(x).ee, T ′1, c
′
1 〈T2, ee2〉 y vv′2, T

′
2, c
′
2

〈Tr, ee[vv′2/x, (fix f(x).ee)/f]〉 y vv′r, T
′
r, c
′
r

v′r = V(T ′r) c′ = c′1 + c′2 + c′r
〈〈_, app(T1, T2, Tr)〉, ee1 ee2〉 y vv′r, 〈v′r, app(T ′1, T

′
2, T
′
r)〉, c′

r-app1

〈T1, ee1〉 y new(_, fix f(x). e′), T ′1, c
′
1

〈T2, ee2〉 y vv′2, T
′
2, c
′
2

e′[R(vv′2)/x, (fix f(x). e′)/f] ⇓ T ′r, f ′r
v′r = V(T ′r) c′ = c′1 + c′2 + f ′r + capp(S,C)

〈〈vr, app(T1, T2, Tr)〉, ee1 ee2〉 y
new(vr, v

′
r), 〈v′r, app(T ′1, T

′
2, T
′
r)〉, c′

r-app2

Figure 7: Selected Replay Rules

runs both took the same branch, e.g. the bivalue resulting from ee
is inl vv, we keep change propagating through that branch (rule r-
case-inl1). However, if ee’s result has changed from inl _ to inr _
(detected by a bivalue of the form new(_, inr v)), then we execute
the right branch from-scratch, as in rule r-case-inl2. In addition, we
incur an extra cost, ccase(S,C), for switching to the from-scratch
mode. This pattern of switching to from-scratch evaluation repeats
in all rules that apply closures. To change propagate a function
application ee1 ee2, we first change propagate through the function
ee1. If the resulting function does not differ from the original one
structurally, i.e., the resulting bivalue has the form fix f(x).ee,
then we keep change propagating through the body (rule r-app1).
However, if the resulting function is structurally different from
the original one (bivalue new(_, fix f(x). e′)), then we switch
to from-scratch execution and incur an additional cost capp(S,C)
(rule r-app2).

Soundness We prove our type system sound with respect to
the abstract evaluation and change propagation semantics. First,
we show that on well-typed expressions, evaluation and abstract
change propagation (formalized by ⇓ and y respectively) are total
and the latter produces correct results. Second, we show that the
costs κ estimated by expression typing for ε = C and ε = S are
upper bounds on the costs of from-scratch evaluation and change
propagation, respectively. These three statements are formalized
in the following two theorems. For readability, we only state the
theorems with a single input x, but the generalized versions with
any number of inputs hold as well.

Theorem 1 (Soundness for from-scratch execution)
Suppose that (a) x : τ `C e : τ ′ | κ; (b) `C v : τ | –. Then the
following hold for some v′, D and f : (1) e[v/x] ⇓ 〈v′, D〉, f and
(2) f ≤ κ.

Theorem 2 (Soundness for change propagation)
Suppose that (a) x : τ `S e : τ ′ | κ; (b) `ε vv � τ ; and

(c) e[L(vv)/x] ⇓ T, f . Then the following hold for some T ′, vv′

and c: (1) 〈T, peq[vv/x]〉 y vv′, T ′, c; (2) e[R(vv)/x] ⇓ T ′, f ′; (3)
V(T ′) = R(vv′); and (4) c ≤ κ.

To prove these theorems, we build two cost-annotated models
of types: a relational (binary) one for change propagation (ε = S)
and a unary one for from-scratch execution (ε = C). The relational
model depends on the unary model. The unary model is a standard
logical relation. To handle recursive functions, we step-index the
relation [5]. Each type τ has a value and an expression interpreta-
tion. The value interpretation, written LτMv , contains pairs (m, v)
of step indices and values. The expression interpretation, written
LτMκε , contains pairs (m, e) of step indices and expressions, with
the proviso that if κ < m, then e evaluates to a value with cost
no more than κ. Selected clauses of this relation are shown in Fig-
ure 9. The relation is agnostic to almost all “relational” refinements
such as the annotations C and S and the annotation α on list types.

The only exception is that Lτ1
S(κ)−−→ τ2Mv contains all functions,

since a function of this type cannot be applied during from-scratch
evaluation, i.e., when ε = C (see rule app in Figure 3).

The relational model is based on bivalues and biexpressions.
The relational value interpretation of a type, written JτKv , contains
pairs (m, vv) of a step-index and a bivalue. The relation relates the
original value L(vv) to the updated value R(vv). The expression in-
terpretation JτKκε is a set of pairs of the form (m, ee). It forces
that change propagating ee (using the rules of y) cost no more
than κ. The relation is defined in Figure 8. We note some salient
points. First, the expression interpretation is asymmetric in the left
and right components of ee. Second, J�((A)µ)Kv ⊆ J(A)SKv ⊆
J(A)CKv . �((A)µ) contains only those bivalues whose two projec-
tions are identical, (A)S contains bivalues whose projections are
related (in the logical sense), whereas (A)C contains all bivalues,
even those of the form new(v, v′) that contain completely unre-
lated values. Third, (m, new(v, v′)) is in J(A)CKv only if (k, v) and
(k, v′) are in the unary relation LAMv for any step index k. When
reasoning with the relational step-index m, we can call out to any
unary step-index k. This shows up in our proofs and works because
the unary relation does not depend on the binary relation. Fourth,

Jτ1
C(κ)−−−→ τ2Kv ⊆ Jτ1

S(κ)−−→ τ2Kv . This is needed because we may
change propagate through the body of a function even if that body
was typed in C-mode. It also allows us to show that the judgment
∆; Φ; Γ `C e : τ | κ entails the judgment ∆; Φ; Γ `S e : τ | κ se-
mantically. Finally, on list types, the relational interpretation uses
both the length and the number of allowed changes meaningfully.

We prove the fundamental theorem for our typing judgments,
which roughly says that an expression typed with ε = S (ε = C)
lies in the binary (unary) relation for any bivalue (value) substitu-
tion that respects the binary (unary) relation. Technically, the the-
orem consists of six mutually inductive statements, one for each
of the three syntactic categories expressions, bivalues and biex-
pressions, in each of the two modes change propagation and from-
scratch evaluation. Here, we show only the statements for expres-
sions. Theorems 1 and 2 are immediate corollaries of this theorem.

Theorem 3 (Fundamental Theorem)
1. If ∆; Φ; Γ `S e : τ | κ and σ ∈ DJ∆K and (m, θ) ∈ GJσΓK

and |= σΦ, then (m, θpeq) ∈ JστKσκε .
2. If ∆; Φ; Γ `C e : τ | κ and σ ∈ DJ∆K and (m,U) ∈ GLσΓM

and |= σΦ, then (m,Ue) ∈ LστMσκε .

5. Concrete Semantics and Soundness
In order to show the realizability of the from-scratch and change
propagation costs estimated by our type system, we present a trans-
lation from our source language to an ML-like language with cost

JτKv ⊆ Step index × Bivalue and JτKκε ⊆ Step index × Biexpression

J(A)SKv = JAKv
J(A)CKv = JAKv ∪ {(m, new(v, v′)) | ∀k. (k, v) ∈ LAMv ∧ (k, v′) ∈ LAMv}
J�(τ)Kv = {(m, vv) | stable(vv) ∧ (m, vv) ∈ JτKv}
JrealKv = {(m, keep(r)) | >}
Jτ1 + τ2Kv = {(m, inl vv) | (m, vv) ∈ Jτ1Kv} ∪ {(m, inr vv) | (m, vv) ∈ Jτ2Kv}
Jlist [0]0 τKv = {(m, nil) | >}
Jlist [n+ 1]α τKv = {(m, cons(vv1, vv2)) | ((m, vv1) ∈ JτKv ∧ (m, vv2) ∈ Jlist [n]α−1 τKv ∧ α > 0) ∨

((m, vv1) ∈ J�(τ)Kv ∧ (m, vv2) ∈ Jlist [n]α τKv)}
Jτ1

S(κ)−−→ τ2Kv = {(m, fix f(x).ee) | ∀j < m. ∀vv. (j, vv) ∈ Jτ1Kv ⇒ (j, ee[fix f(x).ee/f][vv/x]) ∈ Jτ2Kκε}
Jτ1

C(η)−−−→ τ2Kv = {(m, fix f(x).ee) | (∀k. (k, fix f(x).L(ee)) ∈ Lτ1
C(η)−−−→ τ2Mv ∧ (k, fix f(x).R(ee)) ∈ Lτ1

C(η)−−−→ τ2Mv) ∧
(∀j < m. ∀vv. (j, vv) ∈ Jτ1Kv ⇒ (j, ee[fix f(x).ee/f][vv/x]) ∈ Jτ2Kκε)}

J∀t
S(κ)
:: S. τKv = {(m,Λ.ee) | ∀I. ` I :: S ⇒ (m, ee) ∈ Jτ [I/t]Kκ[I/t]ε }

J∀t
C(κ)
:: S. τKv = {(m,Λ.ee) | (∀k. (k,L(Λ.ee)) ∈ L∀t

C(κ)
:: S. τMv ∧ (k,R(Λ.ee)) ∈ L∀t

C(κ)
:: S. τMv) ∧

(∀I. ` I :: S ⇒ (m, ee) ∈ Jτ [I/t]Kκ[I/t]ε)}
J∃t::S. τKv = {(m, pack vv) | ∃I. ` I :: S ∧ (m, vv) ∈ Jτ [I/t]Kv}

JτKκε = {(m, ee) | ∀f,D, v. L(ee) ⇓ 〈v,D〉, f ∧ f < m ⇒ ∃ v′, D′, vv′, c′, f ′ such that
1. 〈〈v,D〉, ee〉yvv′, 〈v′, D′〉, c′
2. R(ee) ⇓ 〈v′, D′〉, f ′
3. v′ = R(vv′) ∧ v = L(vv′)
4. c′ ≤ κ
5. (m− f, vv′) ∈ JτKv}

GJ·K = {(k, ∅)}
GJΓ, x : τK = {(m, θ[x 7→ vv]) | (m, θ) ∈ GJΓK ∧ (m, vv) ∈ JτKv}

Figure 8: Step-indexed binary interpretation of selected types

LτMv ⊆ Step index × Value and LτMκε ⊆ Step index × Expression

L(A)µMv = LAMv
L�(τ)Mv = LτMv
Llist [0]0 τMv = {(m, nil) | >}
Llist [n+ 1]α τMv = {(m, cons(v1, v2)) | (m, v1) ∈ LτMv ∧

((m, v2) ∈ Llist [n]α τMv∨
(m, v2) ∈ Llist [n]α−1 τMv)}

Lτ1
S(κ)−−→ τ2Mv = {(m, fix f(x). e) | >}

Lτ1
C(κ)−−−→ τ2Mv = {(m, fix f(x). e) | ∀j < m. ∀v. (j, v) ∈ Lτ1Mv ⇒ (j, e[fix f(x). e/f][v/x]) ∈ Lτ2Mκε}

L∀t
S(κ)
:: S. τMv = {(m,Λ. e) | >}

L∀t
C(κ)
:: S. τMv = {(m,Λ. e) | ∀I. ` I :: S ⇒ (m, e) ∈ Lτ [I/t]Mκ[I/t]ε }

L∃t::S. τMv = {(m, pack v) | ∃I. ` I :: S ∧ (m, v) ∈ Lτ [I/t]Mv}

LτMκε = {(m, e) | κ < m⇒ ∃ v,D, f such that
1. e ⇓ 〈v,D〉, f
2. f ≤ κ
3. (m− f, v) ∈ LτMv}

GL·M = {(m, ∅)}
GLΓ, x : τM = {(m,U [x 7→ v]) | (m,U) ∈ GLΓM ∧ (m, v) ∈ LτMv}

Figure 9: Step-indexed unary interpretation of selected types

semantics and we prove that the translations of typed programs re-
spect statically established costs. To support change propagation,
the translation stores all values in mutable references in the first
run to allow in-place update during the incremental run. Addition-
ally, during the first run the translation constructs a dependency
graph that indicates which locations depend on any given loca-
tion. Change propagation then proceeds bottom up: It starts from
input locations that have changed, then updates their dependents
and so on.

The target language, MLC , is inspired by AFL [3]. It extends
(simply typed) ML with a single primitive, read(e1, x. e2), that
evaluates e1 to a reference l, binds the value in that reference to
x and then evaluates e2. On the side, the construct automatically
records a dependency edge from l to the location l′ that holds the
result of evaluating e2. The edge is labeled λx. e2. If l changes,
then change propagation will re-execute e2 to obtain a new updated
value for l′. The syntax, and typing rule of read(e1, x. e2) are
shown below.

e ::= . . . | read(e1, x. e2)

Γ ` e1 : ref τ ′ Γ, x : τ ′ ` e2 : τ

Γ ` read(e1, x. e2) : ref τ

The semantics of MLC are a slight variant of ML, formalized
by two judgments: e1, σ1, t1 ⇓S l, σ2, t2, c and e1, σ1, t1 ⇓C(l)
v, σ2, t2, c. Both judgments say that expression e1, when executed
in store σ1, results in store σ2 and the cost of this evaluation is
c. The two judgments differ in the final result: e1, σ1, t1 ⇓S
l, σ2, t2, c allocates a fresh location l, stores the final result in it
and returns l whereas e1, σ1, t1 ⇓C(l) v, σ2, t2, c directly returns
the computed value v and, additionally, records dependency edges
to the output location l, which is passed as an input. In addition, the
judgments also say that the execution happens during the logical
time interval [t1, t2]. Logical time points t are necessary during
change propagation to decide which closures are nested inside
others, as in prior work [3]. We increment the time counter by 1
whenever we start or end a new dependency. The last point to note
here is that the store maps a location l to not just a value, but a pair
of a value and a list of dependents, together written (v,~e). Each
dependent in ~e is a tuple (l′, λx.e′, t′1, t

′
2) and means that, in the

first run, the value in l′ was obtained as a result of the execution
of read(l, x. e′) and that e′[v/x] evaluated during the interval
[t′1, t

′
2]. It is these dependencies that change propagation traverses

to update results. As examples, the evaluation rules for the construct
read(e1, x. e2) are shown in Figure 10. We note that the time
stamps and dependencies that are baked into the semantics here
could readily be implemented in an actual language or via a library.
Type translation Our translation is type-directed and preserves
typing. At the type level, the translation is essentially an erasure of
refinements, that additionally puts every value (and sub-value) in a
reference. The type translation is shown below. Importantly, note
that both (A)S and (A)C map to ref ‖A‖A, which allows us to
subtype from (A)S to (A)C without paying any coercion cost. A
list of type list [n]α τ translates to reflist (‖τ‖ + ‖τ‖). The
sum type is used to distinguish �(τ)-typed elements from τ -typed
elements, corresponding to the two typing rules cons1 and cons2:
Any element tagged inl corresponds to a source element of type
�(τ) and any element tagged inr corresponds to a source element
of type τ .

‖(A)µ‖ = ref ‖A‖A
‖�(τ)‖ = ‖τ‖
‖τ1 + τ2‖A = ‖τ1‖+ ‖τ2‖
‖list [n]α τ‖A = reflist (‖τ‖+ ‖τ‖)
‖τ1

κ(µ)−−−→ τ2‖A = ‖τ1‖ −→ ‖τ2‖

‖∀i
µ(κ)

:: S. τ‖A = unit −→ ‖τ‖
‖∃i::S. τ‖ = ‖τ‖
where reflist τ = nil | cons τ × ref (reflist τ)

Expression translation Interesting cases of the translation are
shown in Figure 11. The translation is type-directed, but is indepen-
dent of costs, so we omit several constraints related to costs from
the rules. The main idea is twofold. First, every introduction form
puts the result in a reference (e.g., rules real and fix1). Second, to
translate the elimination of an expression with a type labeled C, we
introduce a read on the expression’s translation to force the addi-
tion of a dependence edge, as in rule appC. This ensures that if the
expression changes, then the elimination form is re-executed during
change propagation. In contrast, in eliminating an expression with
a type labeled S, we do not add a read, as in rule appS. The rule
caseLS for list case is quite interesting. Recall that the typing rule
caseL has two premises for the cons case: One where the head may
not change and one where it may. In the translation, these cases are
distinguished by the tags inl and inr on the head. Consequently,
the translation of list case also immediately case analyzes the head
to decide which premise to use. Our translation is total on typed
expressions and it generates well-typed target expressions.

Theorem 4 (Totality of the translation and type soundness)
If ∆; Φ; Γ `ε e : τ | κ, then ∆; Φ; Γ `ε e : τ | κ ↪→ peq and
‖Γ‖ ` peq : ‖τ‖

Change propagation During the first run of a translated program,
dependencies generated by read are recorded in the store. These
dependencies constitute an acyclic graph on references, whose
edges are labeled by closures and pairs of starting and ending
timestamps. An input change is manifest by (externally) updat-
ing some of the initial references in this graph. To change propa-
gate, we need to re-run all closures that are reachable from these
changes in a topologically sorted order (else, we run the risk of
evaluating a closure before its dependencies have been updated).
To do this, we first do a bit of one time pre-processing on the de-
pendency graph of the first run. We restrict the graph to references
and edges reachable from inputs that may change (these are all
clearly marked using types annotated C and, in the case of list ele-
ments, using the tag inr). Then, we sort all edges in this restricted
graph in order of their starting timestamps. We then delete any edge
whose two timestamps are contained in another selected edge’s two
timestamps—in this case, the first edge represents a subcomputa-
tion of the second edge and since the second edge’s closure will
be re-executed from scratch, there is no need to evaluate the first
edge’s closure separately. We then throw away the timestamps.
This yields a topologically sorted list D of tuples (edges) of the
form (ls, ld, λx. e). Such a tuple says that the updated value of ld
should be obtained by executing e[v/x], where v is the updated
value in ls.

Change propagation is then an extremely simple algorithm, that
just evaluates e[v/x] in sequence for all tuples in the listD in order
after inputs have been updated externally. We formalize change
propagation using the judgment D, σ σ′, c, which means that
list D change propagates store σ (which contains updated inputs)
to store σ′ (which contains the entire updated computation) with
cost c. The judgment has only two rules, which are shown below.
Saliently, the second rule adds the cost of evaluating closures from-
scratch (denoted c) to the cost of change propagation.

[], σ σ, 0
stop

σ(ls) = (v, _)

e[v/x], σ ⇓C(ld) v, σ′, c D, σ′[ld 7→ (v, [])] σ′′, c′

(ls, ld, λx. e) :: D, σ σ′′, c+ c′ + 1
eval

We note that this algorithm is simpler than prior work on adaptive
change propagation as in AFL [3], where the goal is to change prop-
agate only from the inputs that have actually changed. AFL’s algo-
rithm uses a priority queue, whose overhead is difficult to estimate
statically. To avoid this overhead, our algorithm updates all loca-

e1, σ, t1 ⇓S l, σ′, t2, c1 ln 6∈ dom(σ′) σ′(l) = (v′, ~e) e2[v′/x], σ′[ln 7→ �], t2 + 1 ⇓C(ln) v, σ′′, t3, c2

read(e1, x. e2), σ, t1 ⇓S ln, σ′′[l 7→ (v′, (ln, λx. e2, t2, t3) :: ~e), ln 7→ (v, [])], t3 + 1, c1 + c2 + 1
readS

e1, σ, t1 ⇓S l, σ′, t2, c1 σ′(l) = (v′, ~e) e2[v′/x], σ′, t2 + 1 ⇓C(ln) v, σ′′, t3, c2

read(e1, x. e2), σ, t1 ⇓C(ln) v, σ′′[l 7→ (v′, (ln, λx. e2, t2, t3) :: ~e)], t3 + 1, c1 + c2 + 1
readC

Figure 10: Selected rules of the target evaluation semantics

∆; Φ; Γ `ε e : τ | κ ↪→ peq

∆; Φ; Γ, x : τ `S x : τ | 0 ↪→ x
varS

∆; Φ; Γ, x : τ `C x : τ | 1 ↪→ read(x, x. x)
varC

∆; Φ; Γ `ε r : (real)S | κ ↪→ ref r
real

∆; Φ; Γ, f : (τ1
δ(κ′)−−−→ τ2)S, x : τ1 `δ e : τ2 | κ′ ↪→ peq

∆; Φ; Γ `ε fix f(x). e : (τ1
δ(κ′)−−−→ τ2)S | κ ↪→ ref (fix f(x). peq)

fix1

∆; Φ; Γ `ε e1 : (τ1
δ(κ′)−−−→ τ2)S | κ1 ↪→ pe1q ∆; Φ; Γ `ε e2 : τ1 | κ2 ↪→ pe2q
∆; Φ; Γ `ε e1 e2 : τ2 | κ ↪→ !pe1q pe2q

appS

∆; Φ; Γ `ε e1 : (τ1
C(κ′)−−−−→ τ2)C | κ1 ↪→ pe1q ∆; Φ; Γ `ε e2 : τ1 | κ2 ↪→ pe2q

∆; Φ; Γ `ε e1 e2 : τ2 | κ ↪→ let f = pe1q in letx = pe2q in read(f, f. f x)
appC

∆; Φ; Γ `ε nil : (list [0]0 τ)S | κ ↪→ ref nil
nil

∆; Φ; Γ `ε e1 : �(τ) | κ1 ↪→ pe1q ∆; Φ; Γ `ε e2 : (list [n]α τ)µ | κ2 ↪→ pe2q
∆; Φ; Γ `ε cons(e1, e2) : (list [n+1]α τ)µ | κ ↪→ ref (cons(inl pe1q, pe2q))

cons1

∆; Φ; Γ `ε e1 : τ | κ1 ↪→ pe1q ∆; Φ; Γ `ε e2 : (list [n]α−1 τ)µ | κ2 ↪→ pe2q
∆; Φ; Γ `ε cons(e1, e2) : (list [n+1]α τ)µ | κ ↪→ ref (cons(inr pe1q, pe2q))

cons2

∆; Φ; Γ `ε e : (list [n]α τ)S | κe ↪→ peq
∆; Φ ∧ n .

= 0; Γ `ε e1 : τ ′ | κ′ ↪→ pe1q ∆, i :: ι; Φ ∧ n .
= i+ 1; Γ, h : �(τ), tl : (list [i]α τ)S `ε e2 : τ ′ | κ′ ↪→ pe2lq

∆, i :: ι, β :: ι; Φ ∧ n .
= i+ 1 ∧ α .

= β + 1; Γ, h : τ, tl : (list [i]β τ)S `ε e2 : τ ′ | κ′ ↪→ pe2rq
∆; Φ; Γ `ε caseL e of nil → e1 | cons(h, tl) → e2 : τ ′ | κ ↪→ caseL !peq of nil → pe1q | cons(h, tl) → case(h, h.pe2lq, h.pe2rq)

caseLS

Figure 11: Selected rules of the translation

tions that might possibly change by starting from all C-annotated
inputs. Another difference from AFL is that our algorithm does not
update the dependency graph during the incremental run. So every
incremental run must use the dependency graph of the first run, as
opposed to AFL, where every incremental run uses the dependency
graph of the previous run.

Soundness We show that our translation is sound, both func-
tionally and with respect to costs established by the type sys-
tem, for both from-scratch evaluation and change propagation.
For the soundness proof, we design two new step-indexed logi-
cal relations—one unary and one binary. The unary relation, writ-
ten VLτM, relates one source value to one target value (the source
value’s translation) and a target store. The binary relation, written
VJτK, relates two source values (obtained by applying a relational
substitution to the same value) to a target value with two related
stores (corresponding to the relational substitution). As expected,
the corresponding expression relations capture costs. Due to lack
of space, we defer details of the relations to our appendix, but the
relations allow us to prove the following soundness theorems. In
the second theorem, γ represents the subpart of σ that is updated
due to input changes, γσ denotes the update of σ with γ wherever γ
is defined, andD(σf , dom(γ)) denotes the result of pre-processing
the dependency graph in store σf , starting from the locations in
γ. The important clauses in these two theorems are (3) and (4),
respectively, which say that the from-scratch and change propaga-

tion costs established in the type system are upper bounds on the
corresponding costs of the result of the translation.

Theorem 5 (Soundness of from-scratch execution)
If x : τ ′ `C e : τ | κ ↪→ peq and (v′s, v

′
t, σ) ∈ VLτ ′M, then

1. e[v′s/x] ⇓ vs, j
2. peq[v′t/x], σi ⇓S vt, σ′, cl
3. c ≤ κ
4. (vs, vt, σ

′) ∈ VLτM

Theorem 6 (Soundness of change propagation)
If ·; ·;x : τ ′ `S e : τ | κ ↪→ peq and (v′i, v

′
c, v

′
t, σ, γσ ∪ σ′) ∈

VJτ ′K and e[v′i/x] ⇓ vi, _, then

1. e[v′c/x] ⇓ vc, _
2. peq[v′t/x], σ ⇓S vt, σf , _
3. D(σf , dom(γ)), γσf ∪ σ′ σ′f , c
4. c ≤ κ
5. (vi, vs, vt, σf , σ

′
f) ∈ VJτK

6. Related Work
Incremental computation There is a vast amount of literature
on incremental computation, ranging from algorithmic techniques
like memoization [19, 24], to language-based approaches using dy-
namic dependence graphs [3, 7, 8] and static techniques like finite
differencing [6, 22, 25]. To speed up incremental runs, approaches

based on dynamic dependency graphs store intermediate results
from the initial run. A prominent language-based technique that
uses this approach is self-adjusting computations (AFL) [3], which
has been subsequently expanded to Standard ML [4] and a dialect
of C [17]. Our change propagation algorithm is inspired by AFL,
but is different. AFL uses a priority queue ordered by timestamps to
decide which closures to execute; we rely on not only timestamps
but also static annotations to pre-process the dependency graph to
determine which closures to execute. AFL’s approach is more flex-
ible but incurs higher bookkeeping cost for priority queue opera-
tions when the same inputs change in subsequent incremental runs.

Previous work by Chen et al. [8, 9] automatically translates
purely functional programs to their incremental counterparts. Our
translation (Section 5) is loosely inspired by this work, but the
translation itself and the theorems differ significantly. In particular,
we translate both S- and C-labeled expressions to reference types,
while Chen et al. translate only C-labeled types to reference types.
Our approach allows cost-free coercion from (A)S to (A)C, and
also supports the nochange rule, which is essential to typing recur-
sive functions with precise costs. A second significant difference is
that Chen et al. only show that the initial run of the translated pro-
gram is no slower (asymptotically) than the source program. They
do not analyze costs for incremental runs. In contrast, we show that
both incremental and from-scratch costs of translated programs are
bounded by those estimated by our type system. (Chen et al.’s type
system does not provide cost bounds.)

Approaches based on static transformations extract program
derivatives, which can be executed in place of the original programs
with only the updated inputs to produce updated results [6, 25].
Such techniques make use of the algebraic properties of a set of
primitives and restrict the programmer to only those primitives.
In contrast to these approaches, our work is based on dynamic
dependence graphs and our static analysis only establishes the cost
of incremental runs.

In general, in all prior work on incremental computation the
efficiency of incremental updates is established either by empirical
analysis of benchmark programs, algorithmic analysis or direct
analysis of cost semantics [23]. CostIt [11] was the first proposal for
statically analyzing dynamic stability. Our work directly builds on
CostIt, but our type system is richer: CostIt cannot type programs
where fresh closures may execute in the incremental runs. We do
away with this restriction by introducing a second typing mode that
analyzes from-scratch execution costs. This requires a re-design of
the type system and substantially complicates the metatheory (we
use both a binary and a unary logical relation, while CostIt needs
only the former) but allows the analysis of many programs that
CostIt cannot handle. Additionally, we prove soundness of the type
system relative to a concrete change propagation algorithm, which
CostIt does not.

Refinement types and information flow control Like CostIt, we
rely on index refinements in the style of DML [28]. Index refine-
ments are usually data structure-specific. Allowing programmer-
defined size metrics and extending our analysis with algebraic
datatypes is nontrivial. We believe that recent work by Danner et
al. is a good starting point [14].

In addition, our type system can be considered as a cost-effect
refinement of the pure fragment of Pottier and Simonet’s informa-
tion flow type system for ML [26]. The security levels L ("low")
and H ("high") in information flow analysis correspond to S ("sta-
ble") and C ("changeable") respectively in DuCostIt. Our ε corre-
sponds to what is often called the program counter or pc in informa-
tion flow analysis. The pc tracks implicit influences due to control
flow.

Type systems on resource bounds/complexity analysis Static
analysis of resource bounds of one run of a program is well-studied.
Specifically, many different techniques can be used to prove worse-
case execution time (WCET) complexity. These include linear de-
pendent types [12, 13], abstract interpretation [16], amortized re-
source analysis [20] and sized types [10, 21, 27]. In particular,
amortized resource analysis [20] is an automatic technique that can
infer WCET, but only for polynomial-time programs. However, all
these techniques differ from our work (and CostIt) in a fundamen-
tal way: They all reason about a single execution of a program,
whereas dynamic stability is a property of two executions of a
program. The from-scratch cost analysis that we add in DuCostIt
is closer to the aforementioned prior work. We could have used an
existing technique for from-scratch cost analysis, but it was unclear
how existing techniques could be extended to relational analysis,
so we found it easier to build our own analysis.

7. Conclusion and Future Work
This paper introduces DuCostIt, a type system that combines
unary- and relational-cost analysis using type refinements. Al-
though the focus here is on a specific application—analysis of
dynamic stability—the overall design of type system is quite gen-
eral. It can be adapted to other kinds of relational cost analysis, e.g.,
to show that of two similar programs, one consumes less resources
than the other (as may be relevant for compiler optimizations), or
that a program’s execution time is independent of certain input val-
ues (as may be relevant for showing the absence of timing-based
leaks in security settings). In our ongoing work, we are examining
such generalizations.

References
[1] A type theory for incremental computational complexity with con-

trol flow changes (technical appendix). Online at http://www.
mpi-sws.org/~ecicek/ducostit_appendix.pdf.

[2] U. A. Acar. Self-Adjusting Computation. PhD thesis, Department of
Computer Science, Carnegie Mellon University, 2005.

[3] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional
programming. ACM Trans. Program. Lang. Syst., 28(6), 2006.

[4] U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and K. Tang-
wongsan. An experimental analysis of self-adjusting computation.
ACM Trans. Program. Lang. Syst., 32(1):3:1–3:53, 2009.

[5] A. Ahmed. Step-indexed syntactic logical relations for recursive and
quantified types. In Proceedings of the 15th European Conference on
Programming Languages and Systems, ESOP’06, pages 69–83, 2006.

[6] Y. Cai, P. G. Giarrusso, T. Rendel, and K. Ostermann. A theory
of changes for higher-order languages: Incrementalizing λ-calculi by
static differentiation. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’14, pages 145–155, 2014.

[7] M. Carlsson. Monads for incremental computing. In Proceedings of
the 7th International Conference on Functional Programming, ICFP
’02, pages 26–35, 2002.

[8] Y. Chen, J. Dunfield, and U. A. Acar. Type-directed automatic incre-
mentalization. In Proceedings of the 33rd Conference on Program-
ming Language Design and Implementation, PLDI ’12, pages 299–
310, 2012.

[9] Y. Chen, J. Dunfield, M. A. Hammer, and U. A. Acar. Implicit self-
adjusting computation for purely functional programs. J. Functional
Programming, 24(1):56–112, 2014.

[10] W.-N. Chin and S.-C. Khoo. Calculating sized types. In Proceedings
of the Workshop on Partial Evaluation and Semantics-based Program
Manipulation, PEPM ’00, pages 62–72, 1999.

[11] E. Çiçek, D. Garg, and U. A. Acar. Refinement types for incremental
computational complexity. In Programming Languages and Systems -

24th European Symposium on Programming Proceedings, pages 406–
431, 2015.

[12] U. Dal Lago and M. Gaboardi. Linear dependent types and relative
completeness. In Proceedings of the 2011 IEEE 26th Annual Sympo-
sium on Logic in Computer Science, LICS ’11, pages 133–142, 2011.

[13] U. Dal lago and B. Petit. The geometry of types. In Proceedings of the
40th Annual Symposium on Principles of Programming Languages,
POPL ’13, pages 167–178, 2013.

[14] N. Danner, D. R. Licata, and R. Ramyaa. Denotational cost seman-
tics for functional languages with inductive types. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2015, pages 140–151, 2015.

[15] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce.
Linear dependent types for differential privacy. In Proceedings of the
40th Annual Symposium on Principles of Programming Languages,
POPL ’13, pages 357–370, 2013.

[16] S. Gulwani, K. K. Mehra, and T. Chilimbi. Speed: Precise and effi-
cient static estimation of program computational complexity. In Pro-
ceedings of the 36th Annual Symposium on Principles of Programming
Languages, POPL ’09, pages 127–139, 2009.

[17] M. A. Hammer, U. A. Acar, and Y. Chen. Ceal: A C-based language
for self-adjusting computation. In Proceedings of the 2009 Conference
on Programming Language Design and Implementation, PLDI ’09,
pages 25–37, 2009.

[18] M. A. Hammer, K. Y. Phang, M. Hicks, and J. S. Foster. Adapton:
Composable, demand-driven incremental computation. In Proceed-
ings of the 35th Conference on Programming Language Design and
Implementation, PLDI ’14, pages 156–166, 2014.

[19] A. Heydon, R. Levin, and Y. Yu. Caching function calls using precise
dependencies. In Proceedings of the Conference on Programming
Language Design and Implementation, PLDI ’00, pages 311–320,

2000.

[20] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized
resource analysis. In Proceedings of the 38th Annual Symposium on
Principles of Programming Languages, POPL ’11, pages 357–370,
2011.

[21] J. Hughes and L. Pareto. Recursion and dynamic data-structures in
bounded space: Towards embedded ML programming. In Proceedings
of the Fourth International Conference on Functional Programming,
ICFP ’99, pages 70–81, 1999.

[22] C. Koch. Incremental query evaluation in a ring of databases. In Pro-
ceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS ’10, pages 87–98,
2010.

[23] R. Ley-Wild, U. A. Acar, and M. Fluet. A cost semantics for self-
adjusting computation. In Proceedings of the 36th Annual Symposium
on Principles of Programming Languages, POPL ’09, pages 186–199,
2009.

[24] Y. A. Liu and T. Teitelbaum. Systematic derivation of incremental
programs. Science of Computer Programming, 24(1):1–39, 1995.

[25] R. Paige and S. Koenig. Finite differencing of computable expressions.
ACM Trans. Program. Lang. Syst., 4(3):402–454, 1982.

[26] F. Pottier and V. Simonet. Information flow inference for ML. ACM
Trans. Prog. Lang. Sys., 25(1):117–158, 2003.

[27] P. B. Vasconcelos and K. Hammond. Inferring cost equations for re-
cursive, polymorphic and higher-order functional programs. In Im-
plementation of Functional Languages, 15th International Workshop,
IFL 2003, pages 86–101, 2003.

[28] H. Xi and F. Pfenning. Dependent types in practical programming.
In Proceedings of the 26th Symposium on Principles of Programming
Languages, POPL ’99, pages 214–227, 1999.

