
A Logic for Reasoning About Networked Secure Systems∗

Deepak Garg Jason Franklin Dilsun Kaynar Anupam Datta

{dg,jfrankli,dilsun}@cs.cmu.edu, danupam@cmu.edu
Carnegie Mellon University

Abstract

We initiate a program to model and analyze end-to-end security properties of contemporary secure
systems that rely on network protocols and memory protection. Specifically, this paper introduces the
Logic of Secure Systems (LS2). LS2 extends an existing logic for security protocols by incorporating
shared memory, time and limited forms of access control. The proof system for LS2 supports high-level
reasoning about secure systems in the presence of adversaries on the network and the local machine.
We prove a soundness theorem for the proof system and illustrate its use by proving a relevant security
property of a protocol inspired by the Transport Layer Protocol of the Secure Shell (SSH).

1 Introduction

We initiate a program to model and analyze end-to-end security properties of contemporary secure systems
that rely on network protocols and memory protection. Examples of such systems include operating systems,
hypervisors, virtual machine monitors and secure co-processor-based systems such as those utilizing the
Trusted Computing Group’s Trusted Platform Module (TPM) [1, 26, 27]. These systems are under attack
from two classes of malicious agents: (a) network adversaries who intercept messages passed between
protocol participants or inject fake messages, and (b) local adversaries in control of malicious local threads.
A local adversary may perform a number of insidious attacks including altering local state on machines (both
code and data), stealing secrets such as private keys, and exploiting TOCTTOU (time of check to time of
use) race conditions [2, 3]. The two classes of adversaries may even collude; a malicious agent may, for
example, insert a Trojan horse to steal keys, and listen on the network for messages at the same time. While
the network adversary is successfully addressed by research on security protocol analysis, research into the
design and analysis of secure systems with local adversaries is less mature. One common strategy to counter
local adversaries is to enumerate and defend against specific attacks. However, the number and complexity of
local attacks makes this process unsatisfactory. In this paper, we develop a unified security analysis method
that takes into account the capabilities of both classes of adversaries.

Specifically, this paper introduces the Logic of Secure Systems (LS2). The logic is built around a pro-
gramming language for specifying the behavior of systems. It draws its lineage from a logic for network
∗This work was partially supported by the Air Force Research Laboratory grant FA87500720028 Accountable Information

Flow via Explicit Formal Proof, the U.S. Army Research Office contract on Perpetually Available and Secure Information Systems
(DAAD19-02-1-0389) to CMU’s CyLab, and the NSF Science and Technology Center TRUST. The second author performed
this research while on appointment as a U.S. Department of Homeland Security (DHS) Fellow under the DHS Scholarship and
Fellowship Program.

protocol analysis, Protocol Composition Logic (PCL) [6, 7, 10, 22]. We focus on the syntax, semantics, and
general theory of LS2 in this paper, leaving substantial applications to other papers.

Programming Language. The programming language is designed to be expressive enough to model prac-
tical secure systems while still maintaining a sufficiently high level of abstraction to enable simple reasoning.
It includes constructs to model cryptographic primitives, network communication and other common system
motifs such as shared memory. The language mixes primitives from process calculi and both functional and
imperative languages. It borrows from PCL standard process calculus style communication primitives as
well as functional primitives for standard cryptographic operations. It extends PCL in three significant ways.
First, the language includes a model of shared memory in the form of abstract locations and operations for
reading and writing to these locations. This is essential for modeling many secure systems. The primitives for
reading and writing locations are inspired by the treatment of memory cells in impure functional languages
like Standard ML [17]. Second, we model memory protection, a fundamental building block for secure
systems [23]. Protection is modeled at a high-level of abstraction – there are primitives to allow threads to
acquire exclusive-write locks on memory locations that preclude other threads from writing to them, but we
abstract over the actual implementation of these locks. Third, we explicitly model physical machines and
assume that each memory location and each thread is located on a unique machine. This is motivated by
an intent to reason about systems in the presence of machine failures and unexpected machine resets. The
operational semantics of the programming language specifies how concurrent programs (representing the
behavior of the system and the adversary) execute to produce traces.

Logic. The logicLS2 is used to express and reason about properties of traces obtained from programs. LS2

retains some basic features of PCL, such as predicates for reasoning about signatures and their verifications.
However, LS2 departs from PCL in the basic style of reasoning: instead of associating pre-conditions and
post-conditions with all actions in a process (as PCL does), we model time explicitly (as a dense total order),
and associate monotonically increasing time points with events on a trace. The basic modality, [P]tb,teI A,
means that in any trace where thread I executes exactly the actions in P during the interval [tb, te), formula
A holds. The presence of explicit time allows us to express invariants about memory; for instance, we may
express in LS2 that the memory location l contains the same value v throughout the interval [t1, t2]. Explicit
time is also used to reason about the relative order of events. Our formal treatment of explicit time is based
on work by one of the authors and others [8], and also draws ideas from hybrid logics [4, 21]. Whereas
explicit use of time may appear to be low-level and cumbersome for practical use, the proof system for LS2

actually uses time in a very limited way that is quite close to temporal logics such as LTL [20]. Indeed, it
seems plausible to rework the proof system in this paper using operators of LTL in place of explicit time.
However, we refrain from doing so because we believe that a model of real time may be needed to analyze
some systems of interest (e.g., [14, 24, 25]).

Security properties of a program are established without explicitly reasoning about adversarial actions
using LS2’s proof system. A program independent soundness theorem guarantees that any property so estab-
lished actually holds over all traces obtainable from the program, including those that contain any number of
adversarial threads. This implicit treatment of adversaries considerably simplifies proofs. Designing a sound
proof system that supports this local style of reasoning in spite of the global nature of memory changes
turned out to be a significant challenge. Despite this difficulty, we believe that the final design of LS2 is
robust, modular, and amenable to application specific extensions. In particular, the proof of the soundness
theorem is largely independent of both the cryptographic primitives and the operations on memory that are
allowed in the programming language.

2

Application. As an illustrative example, we analyze a protocol inspired by SSH [28], a network protocol
that allows data to be exchanged over a secure channel between a client and a server. SSH uses public-key
cryptography to provide mutual authentication. Since SSH is often used with uncertified (or self-certified)
public keys, a client typically stores a server’s public key locally the first time it enters into an SSH session
with that server; in subsequent sessions, it uses this to verify signed messages received from the server.
We prove the end-to-end property of a secure channel, which relies on the network protocol being secure
assuming the client’s copy of the server’s key is integrity protected, and, in addition, the client’s copy of the
server’s key actually being integrity protected on her local machine.

Extensions. In ongoing work, we are using LS2 to verify protocols and applications based on hardware
for trusted computing [26]. The axioms for reasoning about shared memory and time presented in this paper
appear to be general enough for this application. We have successfully extended LS2 to model trusted com-
puting primitives such as Platform Configuration Registers [26], as well as many cryptographic primitives
like encryption and hashing without much difficulty. We have also modeled extremely strong adversaries
who may reset running machines at arbitrary times. We are currently considering extensions of LS2 with
primitives that allow branching to arbitrary code in memory whose contents may not be known in advance.
This situation is relevant because attestation protocols for trusted computing are expressly designed to prove
the integrity of the software stack even in the presence of adversaries who can modify code. This has turned
out to be a technically challenging problem. We also plan to apply LS2 to analysis of virtual machines and
hypervisors [1, 27]. For these applications, we expect a formalism that will restrict the interfaces available
to different programs. For example, a process running inside a virtual machine may not be able to read and
write memory except through special hooks that are provided by the virtual machine. In addition, we hope
to identify design principles for secure systems, as well as a core set of basic building blocks from which
complex systems can be constructed via secure composition. We also plan to develop tool support for mech-
anized reasoning. The broader research goal of this effort is to bring the same kind of rigor to the study of
secure systems that current methods and tools do successfully for security protocols.

Related Work. LS2 shares a number of features with logics of programs [5, 7, 12, 13, 16, 19]. As men-
tioned earlier, one central difference from PCL is that LS2 considers shared memory systems in addition
to network communication. Although concurrent separation logic [5] also focuses on shared-memory pro-
grams with mutable state, a key difference is that it does not consider network communication. Furthermore,
concurrent separation logic and other approaches for verifying concurrent systems [15, 16, 19] typically do
not consider an adversary model. An adversary could be encoded as a regular program in these approaches,
but then proving invariants would involve an induction over the steps of the honest parties programs and the
adversary. On the other hand, in LS2 (as in PCL), invariants are established only by induction over the steps
of honest parties programs, thereby considerably simplifying the analysis.

The rest of the paper is organized as follows. Section 2 informally describes our central modeling
choices. Section 3 describes a programming language in which secure systems are specified. Section 4
describes the syntax of the logic LS2, its semantics, proof system, and soundness theorem. It also illustrates
use of the logic by applying it to the example protocol. Section 5 concludes the paper. Proofs of all theorems
are described in appendices.

3

2 Overview of Modeling Choices

A secure system is specified as a set of programs that represent relevant parts of the system. For example,
a typical two party client-server protocol will contain two programs, one to be executed by the client and
the other by the server. We describe below at a high level two of our core modeling choices. The technical
details of the programming language reflecting these choices are described in the next section.

Memory locations and protection. We assume a set of machines, and on each machine we assume an
abstract set of locations of memory. These locations model both the RAM, and persistent store such as hard
disks. Locations may be read and written using special actions in the programming language. We also model
an abstract form of memory protection through locking. A running thread may obtain an exclusive-write
lock on any location of memory on the machine on which it is executing. An exclusive-write lock means that
only the thread holding the lock may write the location; other threads may, however, read it. An unlocked
location on a machine may be written by any thread on the machine, including possibly a malicious thread.
Although we do not do so in this paper, it should be easy to add exclusive-read-write locks that preclude
all other threads from reading and writing the locked location. Such locks may be necessary if we wish to
reason about secrecy properties. The use of locks in our formalism differs significantly from their use in
logics for reasoning about concurrent programs [5], where locks are used to guarantee mutual exclusion in
critical regions of code. The two notions are equally expressive, but locks on memory locations seem more
suited to modeling secure systems.

Adversary Model. We formally model adversaries as extra threads executing concurrently with protocol
participants. The local adversary threads may be located on any machine, and may execute any program.
Such threads can, for example, use any of the following capabilities to attack the system: 1) reading any
memory location and writing to any memory location that is not explicitly locked by other threads, 2) sending
the contents of memory over the network, and 3) acquiring a lock on any unlocked location. Consequently,
the adversary is powerful enough to exploit race conditions and launch TOCTTOU attacks. The network
adversary is modeled in the standard way as in prior work [7]: the adversary can remove any message from
the network and send messages that it can create following the symbolic attacker model [9, 18]. The local
and network adversaries can communicate with each other by sending messages.

3 A Programming Language for Specifying Systems

Our language for specifying systems descends from the corresponding language in PCL and extends the
latter with constructs for reading, writing, and protecting memory. Its syntax is summarized in Figure 1.
We assume an algebra of expressions (denoted e). Expressions may be numbers n, identities of agents X̂ ,
keys K, or variables x. We allow pairing of expressions, written (e, e′), and signatures using private keys:
SIGK{|e|} denotes the signature on e made using the key K. We assume that the expression e may be
recovered from the signature if the verification key corresponding to K is known. Expressions are assumed
to be typed (for e.g., a pair can be distinguished from a number), but we elide the details of the types. The
algebra may be extended with constructs for other cryptographic operations like encryption and hashing if
required.

4

Expressions e ::= n Number
| X̂, Ŷ Agent
| K Key
| K−1 Inverse of key K
| x Variable
| (e, e′) Pair
| SIGK{|e|} Value e signed by key K

Machine m
Location l
Action a ::= read l Read location l

| write l, e Write e to location l
| send e Send e as a message
| receive Receive a message
| sign e,K−1 Sign e with private key K−1

| verify e,K Check that e = SIGK−1{|e′|}
| lock l Obtain write lock on location l
| unlock l Release write lock on location l
| proj1 e Project the 1st component of a pair
| proj2 e Project the 2nd component of a pair
| match e, e′ Check that e = e′

| new Generate a new nonce
Program P,Q ::= x1 := a1; . . . ;xn := an

Thread id I ::= 〈X̂, η,m〉
Thread identifier η
Thread T, S ::= [P]I
Store σ : Locations→ Expressions
Lock map ι : Locations→ (Thread ids) ∪ { }
Configuration C ::= ι, σ, T1| . . . |Tn

Figure 1: Syntax of the programming language

Agents and keys. Agents, denoted X̂, Ŷ , are principals associated with a system (e.g., users). Keys are
denoted by the letter K. The inverse of key K is denoted by K−1. As a convention, we use the notation
K−1 for private keys and the notation K for public keys. If K is a private key, we write K̂ to denote the
agent who owns it. If K is a public key, we write K̂ to denote the agent who owns the corresponding private
key. By definition, K̂ = ˆK−1.

Machines and locations. Machines (denoted m) are the sites of program execution, and the sites that
hold locations of memory. Locations, l, model both RAM and persistent store such as disks. The function
machine(l) returns the machine on which location l exists. For clarity, we often prefix the name of a location
with the name of the machine on which it exists, writing m.l instead of l if machine(l) = m.

Actions and programs. Actions, denoted a, perform specific functions such as reading or writing a loca-
tion of memory, sending or receiving a message, creating or verifying a signature, obtaining or releasing a
lock on a location of memory, projecting the components of a pair, checking that two expressions are equal,
or generating a new nonce. Allowed actions with their intuitive meanings are listed in Figure 1. The ac-
tions send and receive are undirected; an expression sent by any program may be received by any other
program.

5

Actions may not always succeed: a signature verification may fail, for instance. If an action fails, we
assume that the thread executing the action blocks forever. A successfully executed action always returns an
expression. For example, the action receive returns the expression obtained by synchronizing with another
thread, and the action verify returns the message contained in the signature it verifies. The expressions
returned by the actions write , send , lock , unlock , and match are unimportant. We assume that these
actions always return the constant 0.

A program (denoted P , Q) is a sequence x1 := a1; . . . ;xn := an of actions. The number n may be zero,
in which case the program is empty. The variable xi binds to the value returned by the action ai. The scope
of each variable extends to the end of the program. Variables may be α-varied. In this sense, our treatment of
variables is functional, not imperative. (Imperative stores are modeled by locations.) We often write P (e/x)
to mean the program P with e substituted for x. This substitution is capture avoiding, as usual. We also
write P ;Q to mean the program obtained by concatenating the actions in P and Q. The scope of variables
bound in P extends over Q.

Threads and Thread ids. A thread T is a sequentially executing program. Formally, it is a pair containing
a program and an identity I , written [P]I . The identity (id) I is a three tuple 〈X̂, η,m〉. X̂ is the agent who
owns the thread, η is a unique identifier for the thread (akin to a process id), and m is the machine on which
the thread executes. For I = 〈X̂, η,m〉, we define Î = X̂ and machine(I) = m.

Configurations. A configuration C is the collection of all threads executing concurrently on all machines.
Concurrent threads are separated by the symbol |, which is assumed to be commutative and associative. In
addition to threads, a configuration also contains a store σ, which is a map from the set of all locations to
the values that they contain, and a lock map ι that maps each location to the id of the thread that has an
exclusive-write lock on it. If no thread has a lock on location l, then ι(l) = . We often write σ[l 7→ e] to
denote the map σ augmented with the mapping of l to e. ι[l 7→ I] is defined similarly. We assume implicitly
that all threads in a configuration are closed, i.e., they do not contain any free variables.

3.1 Reduction Rules and Traces

The operational semantics of the programming language are defined by reduction rules on configurations,
summarized in Figure 2. In each rule, we include only the relevant parts of configurations. Parts not shown in
a rule remain unchanged in the reduction. Rules (sign)–(new) represent internal reductions of a thread. In the
rule (new), the value n is a fresh symbolic constant that has never occurred in the history of the configuration.
This rule is used for generating nonces. The rules (read) and (write) allow reading and writing locations. In
each case, the location read or written must be on the same machine as the thread executing the action. In
the case of writing, the location being written must either be locked by the thread executing the action, or be
unlocked (enforced by the side condition ι(l) ∈ {I, }). Rules (lock) and (unlock) allow a thread to obtain
and release an exclusive-write lock on a location. This change is noted in the lock map ι. Rule (comm)
allows communication between any two threads even if they are on different machines.

Traces and Timed Traces. A trace is a sequence of configurationsC0 −→ . . . −→ Cn such thatCi+1 may
be obtained from Ci by one of the reduction rules. Given a configuration C0, there may be many possible
traces starting from it because internal actions of different threads may be interleaved arbitrarily and also
because communication is non-deterministic. A timed trace (denoted T) is a trace in which a real number
has been associated with each reduction. We write a timed trace as C0

t1−→ C1 . . .
tn−→ Cn. The real numbers

6

(sign) [x := sign e,K−1; P]I −→ [P (SIGK−1{|e|}/x)]I
(verify) [x := verify SIGK−1{|e|},K; P]I −→ [P (e/x)]I
(proj1) [x := proj1 (e1, e2); P]I −→ [P (e1/x)]I
(proj2) [x := proj2 (e1, e2); P]I −→ [P (e2/x)]I
(match) [x := match e, e; P]I −→ [P (0/x)]I
(new) [x := new ; P]I −→ [P (n/x)]I (n fresh)
(read∗) σ, [x := read l; P]I −→ σ, [P (e/x)]I (σ(l) = e)
(write∗) ι, σ[l 7→ e′], [x := write l, e; P]I −→ ι, σ[l 7→ e], [P (0/x)]I

(ι(I) ∈ {I, })
(lock∗) ι[l 7→], [x := lock l; P]I −→ ι[l 7→ I], [P (0/x)]I
(unlock∗) ι[l 7→ I], [x := unlock l; P]I −→ ι[l 7→], [P (0/x)]I
(comm) [x := send e; P]I | [y := receive ; Q]I′ −→ [P (0/x)]I | [Q(e/y)]I′

∗ Side Condition: machine(l) = machine(I)

Figure 2: Reduction Rules of the Process Calculus

Client(m,KS , Ĉ) ≡
lockm.pk;
writem.pk,KS ;
——
n := new ;
send (Ĉ, n);
(s, r) := receive ;
match s, K̂S ;
k := readm.pk;
(n′, c) := verify r, k;
match n′, n;
match c, Ĉ;
unlockm.pk

Server(m′,K−1
S) ≡

(c, n) := receive ;
r := sign (n, c),K−1

S ;
send (ˆK−1

S , r)

Figure 3: An Extended Challenge Response Protocol

t1, . . . , tn represent points of time at which the reductions happened. We require that t1 < . . . < tn, i.e., the
time points be monotonically increasing. It is assumed that the effects of a reduction, such as changes to the
store or the lock map, come into effect immediately after the time at which the reduction happens, but not at
the time of reduction itself.

3.2 Example: An Extended Challenge Response Protocol

As an illustrative example, we consider an extension of a standard challenge response protocol for authenti-
cating a server to a client with explicit steps for storing and fetching the server’s public key in a file on the
client side. An exclusive-write lock on the file guarantees the integrity of the stored key during the protocol.
This idea of storing the server’s public key in a file is motivated by the SSH protocol [28], where clients
routinely store public keys of servers in a “known hosts” file. The programs of both the client and the server
are listed in Figure 3. We assume that the client agent is Ĉ, and that the public key of the server is KS . For
actions such as lock , unlock , and write that do not produce a useful result, we omit the binding variable.
(x, y) := a is an abbreviation for z := a;x := proj1 z; y := proj2 z. Both the client’s and the server’s
programs contain several parameters, including the machines m and m′ on which they execute.

7

The client’s program contains two parts, separated by —– for readability. In the first part (above ——),
the client obtains an exclusive write lock on the location m.pk, which models a file on the disk, and stores
the server’s public key KS in it. This step may be executed well in advance of the remaining protocol. In
the second part, the client generates a nonce n and sends it to the server, together with its own identity Ĉ.
Then it receives a signed message r from the server together with the server’s id s. It verifies that s matches
K̂S and also that r contains the nonce n and its own id Ĉ. In order to verify the signature in r, the client
reads the public key of server from the location m.pk, where it had stored the key earlier. The lock on m.pk
obtained in the first part ensures that the key was not changed in the meantime by another thread.

The server’s program is straightforward. It receives the nonce n and the client’s id c, produces a signature
r on both with its private key, and sends the signature together with its own id to the client. In later sections
we use the logic LS2 to show formally that this protocol is correct, in the sense that the client is guaranteed
that it was communicating with the intended server. The lock on m.pk is central to this correctness.

4 LS2: Syntax, Semantics, and Proof System

Formulas of LS2 express properties of timed traces obtainable from programs. LS2 descends from PCL,
and like its predecessor it is an extension of first-order logic. Besides some predicates for reasoning about
memory locations and locks, the main difference between PCL and LS2 is the presence of explicit time in
the latter. It is possible to say in LS2 that a formula A is true at exactly time t, written A @ t. For example,
the fact that location l contains the constant 0 at time t may be written Mem(l, 0) @ t. Explicit time is also
used for ordering events during reasoning.

4.1 Syntax

The syntax of formulas is shown in Figure 4. We classify predicates into two categories. Action predicates
express that certain actions happened on a timed trace. For example, the predicate New(I, n) holds on a trace
T at time t if and only if a thread with id I executed action new at time t in T , and received the nonce n
as a result of the action. The actions corresponding to each action predicate are listed in the figure. General
predicates capture those properties of a trace that are not specific to actions. The predicate Mem(l, e) holds
at time t on a trace, if location l contained e at time t on the trace. Similarly, IsLocked(l, I) holds on a
trace at time t iff thread I had an exclusive-write lock on location l at time t. e = e′ represents equality of
expressions, while Contains(e, e′) means that e contains e′ as a sub-expression.

Time points, denoted t, are elements of any totally ordered, dense set1 with a maximum element∞ and a
minimum element−∞. For simplicity, we assume that this set is R∪{−∞,∞}, ordered with the usual total
order ≥ on real numbers extended with −∞ and∞. Other comparison operators for time points ≤, >,<, 6=
may be defined using equality and ≥ as usual. Density of time points is needed to prove soundness of one of
the rules of the proof system (rule (Seq) in Figure 5), but is not axiomatized in the proof system.

Honesty. In the analysis of systems it is often necessary to assume that some agents are not adversarial, and
execute only the programs specified. For example, in the protocol of Section 3.2, if the server is adversarial, it
may leak its private key and thus compromise the authentication guarantee provided by the protocol. To this
end, we sometimes designate an agent X̂ as being honest, written as the predicate Honest(X̂). Honest(X̂)
means that no thread of X̂ ever leaks X̂’s private keys by sending them in a message, or by writing them to a

1By dense we mean that between any two non-identical time points there exists a third time point.

8

Action Predicates R ::= Read(I, l, e) read l getting value e
| Write(I, l, e) write l, e
| Send(I, e) send e
| Receive(I, e) receive receiving e
| Sign(I, e,K) sign e,K
| Verify(I, e,K) verify SIGK−1{|e|},K
| Lock(I, l) lock l
| Unlock(I, l) unlock l
| Match(I, e, e′) match e, e′

| New(I, n) new generating nonce n
General Predicates M ::= Mem(l, e) Location l contained e

| IsLocked(l, I) Thread I had a lock on l
| Contains(e, e′)
| e = e′ | t ≥ t′
| Honest(X̂)
| Honest(X̂, ~P)

Formulas A,B ::= R |M | > | ⊥ | A ∧ B | A ∨ B |
A ⊃ B | ¬A | ∀x.A | ∃x.A | A @ t

Defined Formula A on i = ∀t. ((t ∈ i) ⊃ (A @ t))
Modal Formulas J ::= [P]tb,te

I A | [a]tb,te

I,x A

Figure 4: Syntax of LS2

memory location. In addition, we sometimes assume that a given honest agent executes only fixed programs.
For example, it may be reasonable to assume that the server K̂S in the CR protocol only executes the role
Server(m′,K−1

S) from Figure 3, and never initiates the protocol as client. To represent such assumptions,
we use the predicate Honest(X̂, ~P). This predicate implies the predicate Honest(X̂) and in addition means
that threads owned by X̂ execute only the programs in the set ~P . The set of honest agents is assumed to be
known in advance, and is associated implicitly with a (timed) trace.

Formulas. Formulas, denoted A, may be predicates, or they may be constructed using the usual connec-
tives of first-order logic. Quantifiers may range over expressions, thread ids, time points, and locations. We
also allow the formula A @ t meaning that formula A is true at time t. Quite often in proofs we need to say
that a formula A holds throughout the interval i, where i has one of the forms (t1, t2), [t1, t2), (t1, t2], or
[t1, t2]. To represent these, we define the shorthand notation (A on i) as ∀t. ((t ∈ i) ⊃ (A @ t)). The mem-
bership predicate t ∈ i is defined in the obvious way for each type of interval. For example, if i = [t1, t2],
then t ∈ i = (t1 ≤ t) ∧ (t2 ≥ t).

In addition to the usual formulas A, LS2 includes two types of modal formulas for reasoning about
programs. The formula [P]tb,teI A means that if the thread with id I executes all actions in P in the time
interval [tb, te) (and no others), then formula A holds. The related formula [a]tb,teI,x A means that if thread I
executes only the action a in the interval [tb, te), returning the result x, thenA holds. As a general rule, tb, te,
and x are always parameters. The formulaA cannot mention variables bound in P . It may however, mention
tb, te, and any variables free in P or in a. In the modal formula [a]tb,teI,x A, A may mention x also. This allows
us to incorporate the result of executing an action into logical reasoning.

9

4.1.1 Example of a Correctness Property

Consider the following correctness property for the challenge response protocol in Section 3.2.
If a thread I executes the program Client(m,KS , Ĉ) successfully, then at some time tg the thread I

generated a nonce n, at some later time tr, a thread I ′ owned by K̂S received n in a message, and later, at
some time ts, I ′ created a signature on the pair (n, Ĉ).

Let us assume that the client program executes in a thread with id I . Then the correctness property above
may be expressed in LS2 as the modal formula:

JCR = [Client(m,KS , Ĉ)]tb,teI ∃n.∃tg.∃tr.∃ts.∃I ′. ((tb < tg < tr < ts < te)
∧ (New(I, n) @ tg) ∧ (Î ′ = K̂S) ∧
(Receive(I ′, (Ĉ, n)) @ tr) ∧
(Sign(I ′, (n, Ĉ),K−1

S) @ ts))

The modal annotation [Client(m,KS , Ĉ)]tb,teI means that the remaining formula holds whenever thread I
successfully executes the program Client(m,KS , Ĉ) in the interval [tb, te). The formula after this modal
annotation states the correctness property. The @ connective is used to specify the time at which actions
occurred. The actions are ordered using the natural order on time points (tg < tr < ts).

The above property cannot be established without assuming that K̂S is honest, i.e., it does not leak its
private key, and that it executes the role of the server. We also need to assume that Î 6= K̂S . We use
the notation ΓCR to denote these assumptions. ΓCR = {Honest(K̂S , Server(m′,K−1

S)), Î 6= K̂S}. In
Section 4.5 we show formally that ΓCR entails JCR in LS2.

4.2 Semantics

The formulas of LS2 are interpreted over timed traces. The basic semantic judgment, written T |=t A,
means that A holds in the trace T at time t. It is defined by induction on the structure of A.

Action Predicates. If A is an action predicate, T |=t A holds if a reduction corresponding to A occurred
at time t in T . For example,

T |=t Read(I, l, e) if thread I executed action read l at time t, reading e from location l.

T |=t Lock(I, l) if thread I executed action lock l at time t.

General Predicates.

T |=t Mem(l, e) if the location l contained e at time t, i.e., at time t, σ(l) = e.

T |=t IsLocked(l, I) if at time t, ι(l) = I .

T |=t Contains(e, e′) if e′ is a subexpression of e.

T |=t e = e′ if e and e′ are syntactically equal.

T |=t t1 ≥ t2 if t1 ≥ t2 in the usual ordering of real numbers.

T |=t Honest(X̂) if it is assumed that X̂ does not leak its private key.

T |=t Honest(X̂, ~P) if T |=t Honest(X̂), and all threads in T owned by X̂ execute programs in ~P
only.

10

Formulas. Formulas are interpreted in a standard way. The only new case is that for A @ t.

T |=t >.

T 6|=t ⊥.

T |=t A ∧ B if T |=t A and T |=t B.

T |=t A ∨ B if T |=t A or T |=t B.

T |=t A ⊃ B if T 6|=t A or T |=t B.

T |=t ¬A if T 6|=t A.

T |=t ∀x.A if for each ground instance v of x, T |=t A(v/x).

T |=t ∃x.A if there exists a ground instance v of x such that T |=t A(v/x).

T |=t A @ t′ if T |=t′ A.

It should be observed that by definition the relation T |=t A @ t′ is independent of t. This is consistent with
semantics of other hybrid logics (e.g., [4]).

Modal Formulas. For modal formulas, the semantic judgments are written T |= [P]tb,teI A and T |=
[a]tb,teI,x A. As opposed to the judgment T |=t A, these judgments are not relativized to time because modal
formulas express properties of programs and actions, and are independent of time. Intuitively, T |= [P]tb,teI A
holds if in the trace T , either the thread with id I does not execute the sequence of actions P in the interval
[tb, te) or A holds. To state this formally, we define a notion of matching between a timed trace T and a
modal prefix [P]tb,teI .

Matching. We say that a timed trace T = C0
t1−→ C1 . . .

tn−→ Cn matches the modal prefix [P]tb,teI with
substitution θ, written T � [P]tb,teI | θ if the following hold:

1. For some programQ, some configurationCi contains the thread [(P ;Q)θ]I , i.e., a substitution instance
of the program P ;Q running under id I .

2. For some i′ ≥ i and some substitution ϕ, Ci′ contains [Qϕ]I .

3. The time associated with each reduction of I between Ci and Ci′ lies in the interval [tb, te).

If P does not contain any actions, we trivially define T � [P]tb,teI | θ for any substitution θ if in T thread I
does not perform any reduction in the interval [tb, te).

In a similar manner, for an action a, we define T � [a]tb,teI,x | θ, e/x if T � [x := a]tb,teI | θ, when
x := a is viewed as a program with only one action, and in addition the execution of action a in T produces
the result e.

Given this definition of matching, we define semantic satisfaction for modal formulas as follows.

T |= [P]tb,teI A if for each θ, and all ground time points t, t′b and t′e, T � [P]t
′
b,t
′
e

I | θ implies
T |=t Aθ(t′b/tb)(t

′
e/te).

11

` A
` A @ t

NecAt
` [a]tb,tm

I,x A1 ` [P]tm,te

I A2 (tm fresh)

` [x := a;P]tb,te

I ∃tm.∃x. ((tb < tm < te) ∧ A1 ∧ A2)
Seq

` [P]tb,te

I A1 ` [P]tb,te

I A2

` [P]tb,te

I A1 ∧ A2

Conj1
` [a]tb,te

I,x A1 ` [a]tb,te

I,x A2

` [a]tb,te

I,x A1 ∧ A2

Conj2

` [P]tb,te

I A1 ⊃ A2 ` [P]tb,te

I A1

` [P]tb,te

I A2

Imp1
` [a]tb,te

I,x A1 ⊃ A2 ` [a]tb,te

I,x A1

` [a]tb,te

I,x A2

Imp2
` A

` [P]tb,te

I A
Nec1

` A
` [a]tb,te

I,x A
Nec2

∀Q ∈ IS(~P). ` [Q]tb,te

I A

` Honest(Î , ~P) ⊃ ∀te. A(−∞/tb)
Honesty

Figure 5: Proof system (Rules) for LS2

T |= [a]tb,teI,x A if for each θ, all ground time points t, t′b and t′e, and each ground e, T � [a]t
′
b,t
′
e

I,x | θ, e/x
implies T |=t Aθ(t′b/tb)(t

′
e/te)(e/x).

4.3 Proof System for LS2

Correctness properties of systems such as the one in Section 4.1.1 are proved using a proof system for LS2,
which we describe now. A soundness theorem (Section 4.4), shows that any property so established actually
holds on all traces. If Φ is a formula (modal or otherwise), we write ` Φ to mean that Φ is provable using
the proof system. The rules and axioms of the proof system are shown in Figures 5 and 6. In addition to
these rules and axioms, we assume a full axiomatization of first-order logic, and axioms that make the set
of time points a total order. We also assume that equality of expressions is an equivalence relation. Further,
we assume some axioms for the predicate Contains(e, e′), often relying on types of terms (for e.g., if e is a
number, then Contains(e, e′) ⊃ e = e′). These straightforward axioms are elided here.

Rule (NecAt) states that if A is provable, then so is A @ t. This rule is akin to the so called “neces-
sitation” rule from standard modal logics (see e.g., [11]). The basic rule used for reasoning about modal
formulas is (Seq). If we know that the program x := a;P was executed in the interval [tb, te), then by the
density of time points, there must be a time point tm such that action a executed in the interval [tb, tm) and
P reduced in the interval [tm, te). Using this fact, we may reason about the action x := a and the program P
in isolation and combine the two properties. The side condition (tm fresh) means that tm should not appear
free in A1 and A2 and that it should be distinct from both tb and te. Rules (Conj1) – (Nec2) allow us to
incorporate reasoning about ordinary formulas into modal formulas.

IS(~P) in the rule (Honesty) denotes programs that are prefixes of programs in the set ~P . Formally,
IS(~P) = {x1 := a1; . . . ;xi := ai | (x1 := a1; . . . ;xn := an) ∈ ~P and 0 ≤ i ≤ n}. IS(~P) also includes
the empty program. The rule (Honesty) may be interpreted as follows: if we know that thread I is executing
one of the programs in the set ~P (assumption Honest(Î , ~P)), and on all prefixes of programs in this set some
property A holds (premise), then property A must hold.

Figure 6 describes the axioms of LS2. Axioms (K) and (Disj) state basic properties of the connective
@. These axioms, together with the rule (NecAt) imply that (A ∧ B) @ t ≡ (A @ t) ∧ (B @ t)
and that (A ∨ B) @ t ≡ (A @ t) ∨ (B @ t), where A ≡ B denotes logical equivalence defined as

12

(K) ` ((A ⊃ B) @ t) ⊃ ((A @ t) ⊃ (B @ t))
(Disj) ` ((A ∨ B) @ t) ⊃ ((A @ t) ∨ (B @ t))
(Eq) ` ((e = e′) ∧ A(e/x)) ⊃ A(e′/x)

(Act) ` [a]tb,te

I,x ∃t. t ∈ [tb, te) ∧ (R(I, x, a) @ t) ∧
(¬R(I, x, a) on [tb, t)) ∧ (¬R(I, x, a) on (t, te))

(Act’) ` []tb,te

I ¬R(I, x, a) on [tb, te)
(¬Act) ` [a]tb,te

I,x ¬R(I, x′, a′) on [tb, te) if x 6= x′ or a 6= a′

(Verify) ` [verify e,K]tb,te

I,x e = SIGK−1{|x|}
(Sign) ` [sign e,K−1]tb,te

I,x x = SIGK−1{|e|}
(Proj1) ` [proj1 e]

tb,te

I,x ∃e′. e = (x, e′)
(Proj2) ` [proj2 e]

tb,te

I,x ∃e′. e = (e′, x)
(Match) ` (Match(I, e, e′) @ t) ⊃ e = e′

(Lock) ` [lock l]tb,te

I,x IsLocked(l, I) @ te
(Write) ` [write l, e]tb,te

I,x ∃t. t ∈ (tb, te) ∧ (Mem(l, e) @ t)
∧ ((∀e′. ¬Write(I, l, e′)) on [t, te))

(Mem=) ` ((Mem(l, e) @ t) ∧ (Mem(l, e′) @ t)) ⊃ (e = e′)
(MemI) ` (IsLocked(l, I) on [tb, te) ∧ (Mem(l, e) @ tb)

∧ (∀e′. ¬Write(I, l, e′) on [tb, te))) ⊃ (Mem(l, e) on [tb, te))
(LockI) ` ((IsLocked(l, I) @ t) ∧ (¬Unlock(I, l) on [t, t′))) ⊃ (IsLocked(l, I) on [t, t′])

(VER) ` ((Verify(I, e,K) @ t) ∧ (Î 6= K̂) ∧ Honest(K̂))
⊃ (∃I ′.∃t′.∃e′. (t′ < t) ∧ (Î ′ = K̂) ∧ Contains(e′, SIGK−1{|e|})
∧ ((Send(I ′, e′) @ t′) ∨ ∃l. (Write(I ′, l, e′) @ t′)))

(NEW) ` ((New(I, n) @ t) ∧ (Receive(I ′, e) @ t′) ∧ Contains(e, n)) ⊃ (t′ > t)
(READ) ` (Read(I, l, e) @ t) ⊃ (Mem(l, e) @ t)
(Hon) ` Honest(X̂, ~P) ⊃ Honest(X̂)

Figure 6: Proof system (Axioms) for LS2

(A ⊃ B) ∧ (B ⊃ A). In axioms (Act)–(¬Act), we use the notation R(I, x, a) as an abbreviation for
the action predicate corresponding to the action x := a, performed by thread with id I . For example, if
a = receive , then R(I, x, a) = Receive(I, x), and if a = send e, then R(I, x, a) = Send(I, e). As a
syntactic convention, we assume that ¬ binds tighter than on. The axiom (Act) states that if thread I executes
only the action a in the interval [tb, te) returning value x, then there is a time point t in the interval such that
R(I, x, a) holds at time t, and that R(I, x, a) does not hold at any other point interval [tb, te).

Axioms (Verify)–(Write) describe properties of specific actions. Of particular importance are axioms
(Lock) and (Write). (Lock) states that if thread I executes only the action lock l in the interval [tb, te), then
at time te, I has a lock on l. (Write) states that if a thread I writes expression e to location l in some interval,
then there is at least one time point t in the interval when the location contained the expression, and that I
does not write to l after that time point during the interval.

Axiom (Mem=) states that the same location cannot contain two different expressions at the same time.
(MemI) is an invariance axiom: if thread I has an exclusive-write lock on location l during an interval, and
it does not write to the location in the interval, then the expression contained in the location does not change
during the interval. (LockI) is a similar invariance axiom for locks.

Axiom (VER) captures the unforgeability of signatures. If a thread I verifies a signature with public

13

key K, and the owner K̂ of the corresponding private key is honest, then some thread I ′ of K̂ must have
either sent out the signature in a message in the past, or written the signature to a memory location in the
past. Axiom (NEW) captures the freshness of nonces: if thread I generates nonce n, and a thread receives a
message with the nonce in it, then the latter must have happened after the former.

4.4 Soundness

Our main technical result, a soundness theorem, states that if a formula (modal or otherwise) is provable
in LS2’s proof system, then it is satisfied by all timed traces. Let Φ denote an arbitrary, possibly modal
formula, and let Γ denote a set of non-modal formulas. We say that Γ ` Φ, if taking the formulas in Γ as
axioms, ` Φ may be derived using the proof system. For non-modal formulas A, we say that T |= A if for
each t, T |=t A. T |= Γ means that for each B ∈ Γ, T |= B.

Theorem 1 (Soundness).

1. If A is a non-modal formula and Γ ` A, then T |= Γ implies T |= A.

2. If J is a modal formula and Γ ` J , then T |= Γ implies T |= J .

The proof of this theorem is given in Appendix A. It proceeds by induction on the derivations given in the
proof system. Most cases are straightforward, but for the case of the axiom (VER), we make the following
assumption:

In the starting configuration of any trace, expressions signed by honest agents do not exist in threads of
other agents, nor in memory locations.

4.5 Example of Proof of Correctness

As an illustration of reasoning in LS2, we prove the following theorem that establishes the correctness
property JCR (Section 4.1.1) for the extended challenge response protocol.

Theorem 2 (Correctness). For ΓCR and JCR defined in Section 4.1.1, ΓCR ` JCR using the axioms and
rules of LS2.

Proof (Outline). A full proof of the theorem is available in Appendix B. A brief outline is as follows. Since
the client’s program executes completely, there must be time points tL and tW , tL < tW at which the actions
lockm.pk and writem.pk,KS executed (axiom (Act) and rule (Seq)). Further, at a later point tV , the
action verify r, k must have executed, where k was read from location m.pk. Since in the interim the
client’s thread neither released the lock on locationm.pk, nor wrote to the location, k = KS . This deduction
uses axioms (Lock), (Write), (LockI) and (MemI) and relies heavily on the fact that the client’s program
maintains an exclusive write-lock on the location m.pk throughout its execution.

Since the client successfully verified a signature made by the server’s public key, and the server’s private
key is known only to its own threads (assumption Honest(K̂S , Server(m′,K−1

S))), some thread of the server
must have sent the signature in a message or written it to memory (axiom (VER)). By a straightforward
analysis of the server’s program, we now deduce that in the past the server received the nonce n from
the client, and generated the signature. By freshness of nonces (axiom (NEW)), both of these must have
happened after the nonce was generated. This provides an order on the events: first the client generated
the nonce n, then the server received it, and finally the server signed it. This is essentially what we had to
prove.

14

The analysis of the server’s program in this proof is rather standard (see e.g., [7]). The novel part of the
proof is the analysis of the lock on the location m.pk and the deduction that (owing to the lock) the value
KS does not change while the client’s program executes. Indeed, this lock is essential. In its absence, there
is simple a attack on the protocol: an adversary on the client’s machine may change the key stored in m.pk
before it is read by the client, thus fooling the client into believing that it completed the protocol with K̂S ,
when it actually did not. The lock prevents this attack. What our formalism allows is precise modeling of
such memory protection, and formal proofs that the protection works as expected.

5 Conclusion

We initiate a program to model and analyze end-to-end security properties of contemporary secure systems
that rely on network protocols and memory protection. As a concrete first step, we introduce LS2, a logic for
reasoning about security properties of systems with shared memory that communicate over a network. Our
technical contributions include a precise definition of a programming language for modeling such systems,
a logic for specifying properties, and a sound proof system for reasoning about such systems. The use of the
logic is illustrated using a simple example. In subsequent work, we plan to apply the logic to secure systems
of practical relevance including trusted computing systems and virtual machine-based secure architectures.

References

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of virtualization. In Proceedings of the Symposium on
Operating Systems Principles, 2003.

[2] M. Bishop. Race conditions, files, and security flaws; or the tortoise and the hare redux. Technical
Report CSE-95-8, University of California at Davis, Sep 1995.

[3] M. Bishop and M. Dilger. Checking for race conditions in file accesses. Computing Systems, 9(2):131–
152, 1996.

[4] Torben Braüner and Valeria de Paiva. Towards constructive hybrid logic. In Electronic Proceedings of
Methods for Modalities 3 (M4M3), 2003.

[5] Stephen Brookes. A semantics for concurrent separation logic. In Proceedings of 15th International
Conference on Concurrency Theory, 2004.

[6] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A derivation system and composi-
tional logic for security protocols. Journal of Computer Security, 13(3):423–482, 2005.

[7] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol Composition Logic (PCL).
Electr. Notes Theor. Comput. Sci., 172:311–358, 2007.

[8] Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic with explicit time. In
Proceedings of the 21st IEEE Computer Security Foundations Symposium (CSF-21), June 2008.

[9] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on Information
Theory, 2(29), 1983.

15

[10] Nancy Durgin, John C. Mitchell, and Dusko Pavlovic. A compositional logic for proving security
properties of protocols. Journal of Computer Security, 11:677–721, 2003.

[11] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science. The MIT
Press, 1990.

[12] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. Foundations of Computing. MIT Press,
2000.

[13] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 1969.

[14] Rick Kennell and Leah H. Jamieson. Establishing the genuinity of remote computer systems. In
Proceedings of the 2003 USENIX Security Symposium, August 2003.

[15] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and
Systems, 16(3), May 1994.

[16] Leslie Lamport and Fred B. Schneider. The “hoare logic” of csp, and all that. ACM Trans. Program.
Lang. Syst., 6(2):281–296, 1984.

[17] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press, Cambridge,
MA, USA, 1990.

[18] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large networks of comput-
ers. Communications of the ACM, 21(12):993–999, 1978.

[19] Susan S. Owicki and David Gries. Verifying properties of parallel programs: An axiomatic approach.
Commun. ACM, 19(5):279–285, 1976.

[20] A. Pnueli. The temporal logic of programs. In Proceedings of 19th Annual Symposium on Foundations
on Computer Science, 1977.

[21] Jason Reed. Hybridizing a logical framework. In International Workshop on Hybrid Logic 2006 (HyLo
2006), Electronic Notes in Computer Science, August 2006.

[22] Arnab Roy, Anupam Datta, Ante Derek, John C. Mitchell, and Jean-Pierre Seifert. Secrecy analysis in
protocol composition logic. Formal Logical Methods for System Security and Correctness, 2008.

[23] J. Saltzer and M. Schroeder. The protection of information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, September 1975.

[24] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.
Pioneer: Verifying code integrity and enforcing untampered code execution on legacy platforms. In
Proceedings of ACM Symposium on Operating Systems Principles (SOSP), October 2005.

[25] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla. SWATT: Software-based
attestation for embedded devices. In Proceedings of the IEEE Symposium on Security and Privacy,
May 2004.

[26] Trusted Computing Group (TCG). https://www.trustedcomputinggroup.org/, 2003.

16

https://www.trustedcomputinggroup.org/

[27] VMWare. VMWare Workstation. Available at: http://www.vmware.com/, October 2005.

[28] T. Yolen and C. Lonvick. The secure shell (ssh) transport layer protocol. See
http://www.ietf.org/rfc/rfc4253.txt, 2006.

A Proof of the Soundness Theorem

In this appendix we prove soundness (Theorem 1). In proving this theorem, we assume the following:
In the starting configuration of any trace, expressions signed by honest parties do not exist in threads of

other agents, nor in memory locations.
We induct on the given proof system derivations, showing some of the representative cases. The above

assumption is needed in the case of the axiom (VER).

Case (HYP). This is the case where Γ ` A because A ∈ Γ. Let us assume that for some T , T |= Γ. Clearly,
then T |= A because A ∈ Γ. This is what we wanted to show.

Case (NecAt).
` A
` A @ t

NecAt

We need to show that for any time t′, and any timed trace T , T |=t′ A @ t. By definition of |=, it suffices to
show that T |=t A. By the i.h., T |=t′′ A for each t′′. In particular, T |=t A, as required.

Case (Seq).
` [a]tb,tmI,x A1 ` [P]tm,teI A2 (tm fresh)

` [x := a;P]tb,teI ∃tm.∃x. ((tb < tm < te) ∧ A1 ∧ A2)
Seq

Suppose for some ground time points t′b and t′e, T � [x := a;P]t
′
b,t
′
e

I | θ. By definition, in T , there
is a configuration Ci containing the thread [x := a;P ;Q]I , and in some later C ′i (reached at some time
less than t′e), there is a thread [Qθ(ϕ[x 7→ e])]I . Clearly, then at some time point ta between Ci and
C ′i, there is a reduction Ca

ta−→ C ′a that reduces x := a and substitutes e for x, and the remaining re-
ductions of P produce ϕ. Let tn be the time at which the next reduction before te occurs in I . (If
there is no such reduction, P is empty; choose tn = te.) Now take t′m = (ta + tn)/2. Clearly, then
T � [a]t

′
b,t
′
m

I,x | θ, e/x and T � [P]t
′
m,t
′
e

I | θ, e/x. Hence, by i.h., T |=t (A1θ)(e/x)(t′b/tb)(t
′
m/tm),

and T |=t (A2θ)(e/x)(t′m/tm)(t′e/te). Thus, T |=t ((A1 ∧ A2)θ)(e/x)(t′b/tb)(t
′
m/tm)(t′e/te) (because

te 6∈ A1 and tb 6∈ A2). We immediately have T |=t (∃tm.∃x.((tb < tm < te) ∧ A1 ∧ A2))θ(t′b/tb)(t
′
e/te),

as required, since t′b < t′m < t′e.

Case (Conj1).
` [P]tb,teI A1 ` [P]tb,teI A2

` [P]tb,teI A1 ∧ A2

Conj1

Suppose for some ground time points t′b and t′e, T � [P]t
′
b,t
′
e

I | θ. By i.h., for any ground t, T |=t

A1θ(t′b/tb)(t
′
e/te) and T |=t A2θ(t′b/tb)(t

′
e/te). By definition of satisfaction, T |=t (A1 ∧ A2)θ(t′b/tb)(t

′
e/te),

17

http://www.vmware.com/

as required.

Cases (Conj2), (Imp1), (Imp2). These are similar to the previous case.

Case (Nec1).
` A

` [P]tb,teI A
Nec1

Suppose for some trace T , T |= Γ. Further suppose that for some t′b, t
′
e, T � [P]t

′
b,t
′
e

I | θ. Given
any t, we need to show that T |=t (Aθ)(t′b/tb)(t

′
e/te). However, since ` A, A must be closed. Hence

(Aθ)(t′b/tb)(t
′
e/te) = A. Thus it is enough to show that T |=t A. This follows immediately from the induc-

tion hypothesis, since T |= Γ.

Case (Nec2). Similar to above case.

Case (Honesty).
∀Q ∈ IS(~P). ` [Q]tb,teI A

` Honest(Î , ~P) ⊃ ∀te. A(−∞/tb)
Honesty

We have to show that for any ground t it is the case that T |=t Honest(X̂, ~P) ⊃ ∀te. A(−∞/tb). So,
suppose that T |=t Honest(X̂, ~P), and pick any ground time point t′e. It suffices to show that T |=t

A(−∞/tb)(t′e/te). Now take any thread I in C0 that belongs to Î . If there is no such thread, we can assume
an empty program. By honesty, the program of this thread is in ~P . Let P be this program, and suppose that
up to time te (but not including it), a prefix P ′ (possibly empty) has reduced, i.e., P = P ′;P ′′ and P ′ reduces
in the interval (−∞, te). It follows immediately that T � [P ′]−∞,t

′
e

I | ·. Clearly, P ′ ∈ IS(~P). Hence, by
i.h., T |=t A(−∞/tb)(t′e/te), as required.

Case (K).
` ((A ⊃ B) @ t) ⊃ ((A @ t) ⊃ (B @ t))

We have to show that for each time t′ and each timed trace T , T |=t′ ((A ⊃ B) @ t) ⊃ ((A @ t) ⊃ (B @
t)). Assume that T |=t′ (A ⊃ B) @ t and T |=t′ A @ t. We must show that T |=t′ B @ t. From our
assumptions and definition of |= it follows that T |=t A ⊃ B and that T |=t A. Hence, T |=t B, from
which we obtain T |=t′ B @ t as required.

Case (Disj).
` ((A ∨ B) @ t) ⊃ ((A @ t) ∨ (B @ t))

We have to show that for each time t′ and each timed trace T , T |=t′ ((A ∨ B) @ t) ⊃ ((A @ t) ∨ (B @ t)).
Assume that T |=t′ (A ∨ B) @ t. It suffices to show that T |=t′ (A @ t) ∨ (B @ t). By assumption and
definition of |=, we obtain T |=t A ∨ B. Thus either T |=t A or T |=t B. In the former case, we obtain
T |=t′ A @ t. In the latter case, T |=t′ B @ t. In each case, T |=t′ (A @ t) ∨ (B @ t), as required.

Case (Eq).
` ((e = e′) ∧ A(e/x)) ⊃ A(e′/x)

18

We have to show that for each t′ and each timed trace T , T |=t′ ((e = e′) ∧ A(e/x)) ⊃ A(e′/x). Assume
that T |=t′ e = e′ and that T |=t′ A(e/x). Then, by definition, e and e′ are syntactically equal. Thus
A(e/x) = A(e′/x). Hence T |=t′ A(e′/x).

Case (Act).
` [a]tb,teI,x ∃t. t ∈ [tb, te) ∧ (R(I, x, a) @ t) ∧

(¬R(I, x, a) on [tb, t)) ∧ (¬R(I, x, a) on (t, te))

Suppose that for some ground t′b and t′e, T � [a]t
′
b,t
′
e

I,x | θ, e/x. We have to show that T |=t0 (∃t. t ∈ [t′b, t
′
e) ∧

(R(I, x, a) @ t) ∧ (¬R(I, x, a) on [t′b, t)) ∧ (¬R(I, x, a) on (t, t′e)))θ(e/x). By the definition of the
match, there has to be a time point t (t′b ≤ t < t′e) such that aθ happened at t (hence (R(I, x, a) @ t)θ(e/x)
holds), and that no other action of I happened at any other time in the interval [t′b, t

′
e). This is what we had

to show.

Cases (Act’) and (¬Act). These are similar to the previous case.

Cases (Verify).
` [verify e,K]tb,teI,x e = SIGK−1{|x|}

Suppose that for some ground points t′b and t′e, T � [verify e,K]t
′
b,t
′
e

I,x | θ, e′/x. By definition of
the match, at some time t ∈ [tb, te), the action verify eθ,Kθ reduces, returning e′ in x. This forces
eθ = SIGK−1θ{|e′|}. We now need to show that T |=t (e = SIGK−1{|x|})θ(e′/x), i.e., that eθ(e′/x) =
SIGK−1θ(e′/x){|e′|}. But by the binding structure, e and K cannot mention x. Hence we need to show
eθ = SIGK−1θ{|e′|}. We have already established this.

Cases (Sign), (Proj1), (Proj2), and (Match). These are similar to the previous case.

Case (Lock).
` [lock l]tb,teI,x IsLocked(l, I) @ te

Suppose that for some t′b and t′e, T � [lock l]t
′
b,t
′
e

I,x | θ, 0/x. We need to show that T |=t IsLocked(l, I) @ t′e,
i.e., T |=t′e IsLocked(l, I), i.e., at time t′e, ι(l) = I in T . From the definition of the match, there is a time
t′ ∈ [t′b, t

′
e) at which I executes lock l. Thus immediately after t′, ι(l) = I . Hence by the side condi-

tions on rules (lock) and (unlock), the first thread to execute a lock or unlock on l after time t′ must be I .
But we know that I does not execute any such action in the interval (t′, te). Hence at te, ι(l) = I , as required.

Case (Write).

` [write l, e]tb,teI,x ∃t. t ∈ (tb, te) ∧ (Mem(l, e) @ t) ∧ ((∀e′. ¬Write(I, l, e′)) on [t, te))

Suppose that for some t′b and t′e, T � [write l, e]t
′
b,t
′
e

I,x | θ, 0/x. We need to show that T |=t0 ∃t. t ∈
(t′b, t

′
e) ∧ (Mem(l, eθ) @ t) ∧ ((∀e′. ¬Write(I, l, e′)) on [t, t′e)). It suffices to show that there is a time point

t ∈ (t′b, t
′
e) such that at time t, σ(l) = eθ, and that I did not perform a write action in the interval [t, t′e).

By definition of the match, there is a time tw ∈ [t′b, t
′
e) such that I executed write l, eθ at time tw. Let us

assume that the next action in any thread happens at time tn. Pick any t in the interval (tw, min(tn, t′e)).
Clearly, t ∈ (t′b, t

′
e), and at time t, σ(l) = eθ (because no action happened between tw and t). Further, by

19

definition of the match, I did not execute any action in the interval [t, t′e). In particular, it did not execute a
write action in that interval.

Case (Mem=).
` ((Mem(l, e) @ t) ∧ (Mem(l, e′) @ t)) ⊃ (e = e′)

Suppose that T |=t0 (Mem(l, e) @ t) ∧ (Mem(l, e′) @ t). By definition, T |=t Mem(l, e) and T |=t

Mem(l, e′). Thus in T , at time t, σ(l) = e and σ(l) = e′. But σ is a function, so e and e′ must be syntacti-
cally equal. Hence T |=t0 e = e′ as required.

Case (MemI).

` (IsLocked(l, I) on [tb, te) ∧ (Mem(l, e) @ tb) ∧ (∀e′. ¬Write(I, l, e′) on [tb, te)))
⊃ (Mem(l, e) on [tb, te))

Assume for the sake of contradiction that T |=t IsLocked(l, I) on [tb, te) ∧ (Mem(l, e) @ tb) ∧
(∀e′. ¬Write(I, l, e′) on [tb, te)), and T 6|=t Mem(l, e) on [tb, te). By the latter, there is a time point
t′ ∈ [tb, te) such that T 6|=t Mem(l, e) @ t′, i.e., T 6|=t′ Mem(l, e). Thus at time t′ in trace T , σ(l) 6= e.
By assumption, T |=t Mem(l, e) @ tb. Thus T |=tb Mem(l, e). Hence at time tb, σ(l) = e. Thus, between
tb and t′, σ(l) changed. Now there is only one reduction that can change σ(l), namely write l, e′′ (see Fig-
ure 2). Thus some thread executed write l, e′ at some time t′′ ∈ [tb, t′). Clearly, this thread is not I because
we assumed that T |=t ∀e′. ¬Write(I, l, e′) on [tb, te). So it must be a thread other than I , say I ′. By the side
condition on rule (write), ι(l) ∈ {I ′, } at time t′′. This violates the assumption IsLocked(l, I) on [tb, te),
and gives us the required contradiction.

Case (LockI). Follows reasoning similar to the above case.

Case (VER).

` ((Verify(I, e,K) @ t) ∧ (Î 6= K̂) ∧ Honest(K̂))
⊃ (∃I ′.∃t′.∃e′. (t′ < t) ∧ (Î ′ = K̂) ∧ Contains(e′, SIGK−1{|e|})
∧ ((Send(I ′, e′) @ t′) ∨ ∃l. (Write(I ′, l, e′) @ t′)))

Suppose T |=t0 ((Verify(I, e,K) @ t) ∧ (Î 6= K̂) ∧ Honest(K̂)). It follows that at time t, I executed the
action x := verify SIGK−1{|e|},K in T . Since in the initial configuration, I cannot contain SIGK̂{|e|}
(because K̂ is honest, and Î 6= K̂), at some earlier time point SIGK̂{|e|} must have appeared in I’s thread
for the first time. This could only have happened in two ways: either some other thread sent it to I , or I
read it from a memory location. In the latter case, some other thread Y wrote it to the location. In either
case, some other thread either sent the signature to I , or wrote it to memory at an earlier time. If this thread
belongs to K̂, we are done, else we can repeat the argument on thread Y (the argument terminates because
we are moving backwards on the trace, which is finite).

Case (NEW).

` ((New(I, n) @ t) ∧ (Receive(I ′, e) @ t′) ∧ Contains(e, n)) ⊃ (t′ > t)

Suppose T |=t0 (New(I, n) @ t) ∧ (Receive(I ′, e) @ t′) ∧ Contains(e, n). By definition, T |=t New(I, n)
and T |=t′ Receive(I ′, e). Suppose for the sake of contradiction that t′ ≤ t. Then, since we assume that

20

actions happen at distinct time points, t′ < t. It follows that at time t, I executed new resulting in expression
n, which existed earlier in the configuration (at time t′). This violates the freshness of n.

Case (READ).
` (Read(I, l, e) @ t) ⊃ (Mem(l, e) @ t)

Suppose T |=t0 Read(I, l, e) @ t. By definition, T |=t Read(I, l, e). Again by definition, thread I executed
action read l at time t, obtaining value e. Hence σ(l) = e at time t by the side condition on the rule (read).
By definition T |=t Mem(l, e). Thus T |=t0 Mem(l, e) @ t, as required.

Case (Hon). Follows from definition of honesty.

B Proof of Correctness of the Extended CR Protocol

This section describes a complete proof of the correctness of the Extended CR Protocol (Theorem 2). We
remind the reader that we are trying to prove the following modal formula. (For convenience, we omit the
leading ` from all judgments that we derive.)

[Client(m,KS , Ĉ)]tb,teI ∃n.∃tg.∃tr.∃ts.∃I ′.
((tb < tg < tr < ts < te) ∧ (New(I, n) @ tg) ∧ (Î ′ = K̂S) ∧
(Receive(I ′, (Ĉ, n)) @ tr) ∧ (Sign(I ′, (n, Ĉ),K−1

S) @ ts))

subject to the assumptions Honest(K̂S , Server(m′,K−1
S)) and Î 6= K̂S . We start by analyzing the indi-

vidual actions executed by the client, and combining the properties we derive from the fact that they were
executed. From the axiom (Lock) we derive that

[lockm.pk]tb,teI, IsLocked(m.pk, I) @ te (B.0.1)

Axioms (Write) and (¬Act), and the rule (Conj2) imply that

[writem.pk,KS]tb,teI, (¬Unlock(I,m.pk) on [tb, te))
∧ ∃t. t ∈ (tb, te) ∧ (Mem(m.pk,KS) @ t)
∧ ((∀e′.¬Write(I,m.pk, e′)) on [t, te))

(B.0.2)

Using the rule (Seq), we obtain

[lockm.pk; writem.pk,KS]tb,teI ∃tm. (tb < tm < te) ∧ IsLocked(m.pk, I) @ tm
∧ (¬Unlock(I,m.pk) on [tm, te))
∃t. t ∈ (tm, te) ∧ (Mem(m.pk,KS) @ t)
∧ ((∀e′.¬Write(I,m.pk, e′)) on [t, te))

(B.0.3)

Simplifying slightly using standard axioms of first order logic, and α-renaming the bound variables tm and
t, to tL and tM respectively, we obtain,

[lockm.pk; writem.pk,KS]tb,teI ∃tL, tM . (tb < tL < tM < te) ∧
(IsLocked(m.pk, I) @ tL) ∧ (¬Unlock(I,m.pk) on [tL, te))
∧ (Mem(m.pk,KS) @ tM)
∧ ((∀e′.¬Write(I,m.pk, e′)) on [tM , te))

(B.0.4)

21

Continuing further in this manner, we consider each action in turn, and combine inferences drawn from them
using the rule (Seq), thus obtaining:

[Client(m,KS , Ĉ)]tb,teI ∃tL, tM , tN , tR, tV , t1, t2, tU . ∃n, k, n′, c.
(tb < tL < tM < tN < tR < tV < tU < te)
∧ (IsLocked(m.pk, I) @ tL) ∧ (¬Unlock(I,m.pk) on [tL, tU))
∧ (Mem(m.pk,KS) @ tM) ∧ ((∀e′.¬Write(I,m.pk, e′)) on [tM , te))
∧ (New(I, n) @ tN)
∧ (Read(I,m.pk, k) @ tR) ∧ (Verify(I, (n′, c), k) @ tV)
∧ (Match(n′, n) @ t1) ∧ (Match(c, Ĉ) @ t2)

(B.0.5)
Using axiom (Match), we obtain,

(Match(I, n′, n) @ t1) ⊃ (n = n′) (B.0.6)

(Match(I, c, Ĉ) @ t2) ⊃ (c = Ĉ) (B.0.7)

Axiom (Eq) in combination with B.0.5 gives

[Client(m,KS , Ĉ)]tb,teI ∃tL, tM , tN , tR, tV , t1, t2, tU . ∃n, k, n′, c.
(tb < tL < tM < tN < tR < tV < tU < te)
∧ (IsLocked(m.pk, I) @ tL) ∧ (¬Unlock(I,m.pk) on [tL, tU))
∧ (Mem(m.pk,KS) @ tM) ∧ ((∀e′.¬Write(I,m.pk, e′)) on [tM , te))
∧ (New(I, n) @ tN)
∧ (Read(I,m.pk, k) @ tR) ∧ (Verify(I, (n, Ĉ), k) @ tV)

(B.0.8)
From axiom (LockI) we obtain

((IsLocked(m.pk, I) @ tL) ∧ (¬Unlock(I,m.pk) on [tL, tU))) ⊃ (IsLocked(m.pk, I) on [tL, tU])
(B.0.9)

Combining with B.0.8, we obtain

[Client(m,KS , Ĉ)]tb,teI ∃tL, tM , tN , tR, tV , t1, t2, tU . ∃n, k, n′, c.
(tb < tL < tM < tN < tR < tV < tU < te)
∧ (IsLocked(m.pk, I) on [tL, tU])
∧ (Mem(m.pk,KS) @ tM) ∧ ((∀e′.¬Write(I,m.pk, e′)) on [tM , te))
∧ (New(I, n) @ tN)
∧ (Read(I,m.pk, k) @ tR) ∧ (Verify(I, (n, Ĉ), k) @ tV)

(B.0.10)
Now we observe that from the definition of A on i, and basic axioms for a total order it follows that:

(tL < tM ∧ tV < tU ∧ (A on [tL, tU])) ⊃ (A on [tM , tV)) (B.0.11)

(tV < te ∧ (B on [tM , te))) ⊃ (B on [tM , tV)) (B.0.12)

22

Instantiating the above formulas withA = IsLocked(I,m.pk),B = ∀e′.¬Write(I,m.pk, e′), and combining
with B.0.10, we obtain

[Client(m,KS , Ĉ)]tb,teI ∃tL, tM , tN , tR, tV , t1, t2, tU . ∃n, k, n′, c.
(tb < tL < tM < tN < tR < tV < tU < te)
∧ (IsLocked(m.pk, I) on [tM , tV))
∧ (Mem(m.pk,KS) @ tM) ∧ ((∀e′.¬Write(I,m.pk, e′)) on [tM , tV))
∧ (New(I, n) @ tN)
∧ (Read(I,m.pk, k) @ tR) ∧ (Verify(I, (n, Ĉ), k) @ tV)

(B.0.13)
From axiom (MemI), we obtain

(IsLocked(m.pk, I) on [tM , tV) ∧ (Mem(m.pk,KS) @ tM) ∧ (∀e′. ¬Write(I,m.pk, e′) on [tM , tV)))
⊃ (Mem(m.pk,KS) on [tM , tV))

(B.0.14)
Combining with B.0.13,

[Client(m,KS , Ĉ)]tb,teI ∃tL, tM , tN , tR, tV , t1, t2, tU . ∃n, k, n′, c.
(tb < tL < tM < tN < tR < tV < tU < te)
∧ (Mem(m.pk,KS) on [tM , tV))
∧ (New(I, n) @ tN)
∧ (Read(I,m.pk, k) @ tR) ∧ (Verify(I, (n, Ĉ), k) @ tV)

(B.0.15)

By definition of A on i, we derive that

(t ∈ i) ⊃ ((A on i) ⊃ (A @ t)) (B.0.16)

Instantiating the above formula with A = Mem(m.pk,KS), i = [tM , tV), t = tR, and combining with
B.0.15, we get

[Client(m,KS , Ĉ)]tb,teI ∃tL, tM , tN , tR, tV , t1, t2, tU . ∃n, k, n′, c.
(tb < tL < tM < tN < tR < tV < tU < te)
∧ (Mem(m.pk,KS) @ tR)
∧ (New(I, n) @ tN)
∧ (Read(I,m.pk, k) @ tR) ∧ (Verify(I, (n, Ĉ), k) @ tV)

(B.0.17)

Using axioms (READ) and (Mem=),

(Read(I,m.pk, k) @ tR) ⊃ (Mem(m.pk, k) @ tR) (B.0.18)

((Mem(m.pk, k) @ tR) ∧ (Mem(m.pk,KS))) ⊃ (k = KS) (B.0.19)

Combining with B.0.17, we derive

[Client(m,KS , Ĉ)]tb,teI ∃tL, tM , tN , tR, tV , t1, t2, tU . ∃n, k, n′, c.
(tb < tL < tM < tN < tR < tV < tU < te)
∧ (Mem(m.pk,KS) @ tR) ∧ (k = KS)
∧ (New(I, n) @ tN)
∧ (Read(I,m.pk, k) @ tR) ∧ (Verify(I, (n, Ĉ), k) @ tV)

(B.0.20)

23

Using axiom (Eq), and simplifying gives

[Client(m,KS , Ĉ)]tb,teI ∃tN , tV , n. (tb < tN < tV < te)
∧ (New(I, n) @ tN)
∧ (Verify(I, (n, Ĉ),KS) @ tV)

(B.0.21)

Now we use the axiom (VER) to conclude that

((Verify(I, (n, Ĉ),KS) @ tV) ∧ (Î 6= K̂S) ∧ Honest(K̂S))
⊃ (∃I ′.∃t′.∃e′. (t′ < tV) ∧ (Î ′ = K̂S) ∧ Contains(e′, SIGK−1

S
{|(n, Ĉ)|})

∧ ((Send(I ′, e′) @ t′) ∨ ∃l. (Write(I ′, l, e′) @ t′)))
(B.0.22)

Combining with B.0.21 and our assumptions Honest(K̂S , Server(m′,K−1
S)) and Î 6= K̂S , we obtain that

[Client(m,KS , Ĉ)]tb,teI ∃tN , tV , n. (tb < tN < tV < te)
∧ (New(I, n) @ tN)
∧ (∃I ′.∃t′.∃e′. (t′ < tV) ∧ (Î ′ = K̂S)
∧ Contains(e′, SIGK−1

S
{|(n, Ĉ)|})

∧ ((Send(I ′, e′) @ t′) ∨ ∃l. (Write(I ′, l, e′) @ t′)))

(B.0.23)

Now we establish invariants about the program Server(m′,K−1
S). It is easy to show that for each Q ∈

IS(Server(m′,K−1
S))

[Q]tb,teI′ ∀e, l. ((¬Write(I ′, l, e)) on [tb, te)) (B.0.24)

[Q]tb,teI′ ∀t.((t ∈ [tb, te)) ∧ (Send(I ′, e′) @ t))

⊃ (∃c, n. (e′ = (ˆK−1
S , SIGK−1

S
{|(n, c)|}))

∧ ∃t′, t′′. t′ < t′′ < t ∧ (Receive(I ′, (c, n)) @ t′) ∧ (Sign(I ′, (n, c),K−1
S) @ t′′))

(B.0.25)

Using rule (Honesty) and the assumption Honest(K̂S , Server(m′,K−1
S), we obtain,

∀te.∀e, l. ((¬Write(I ′, l, e)) on (−∞, te)) (B.0.26)

∀te.∀t. ((t < te) ∧ (Send(I ′, e′) @ t))

⊃ (∃c, n. (e′ = (ˆK−1
S , SIGK−1

S
{|(n, c)|}))

∧ ∃t′, t′′. t′ < t′′ < t ∧ (Receive(I ′, (c, n)) @ t′) ∧ (Sign(I ′, (n, c),K−1
S) @ t′′)) (B.0.27)

Setting te =∞ in formula B.0.26 and using B.0.16, we get for any t′ and e′ that

(¬Write(I ′, l, e′)) @ t′ (B.0.28)

Combining with B.0.23, we derive

[Client(m,KS , Ĉ)]tb,teI ∃tN , tV , n. (tb < tN < tV < te)
∧ (New(I, n) @ tN)
∧ (∃I ′.∃t′.∃e′. (t′ < tV) ∧ (Î ′ = K̂S)
∧ Contains(e′, SIGK−1

S
{|(n, Ĉ)|})

∧ (Send(I ′, e′) @ t′))

(B.0.29)

24

Instantiating te = tV , t = t′ in formula B.0.27, and combining with formula B.0.29, we obtain

[Client(m,KS , Ĉ)]tb,teI ∃tN , tV , n. (tb < tN < tV < te)
∧ (New(I, n) @ tN)
∧ ∃I ′.∃t′.∃e′. (t′ < tV) ∧ (Î ′ = K̂S)
∧ Contains(e′, SIGK−1

S
{|(n, Ĉ)|})

∧ (∃c, n. (e′ = (ˆK−1
S , SIGK−1

S
{|(n, c)|}))

∧ ∃t′′, t′′′. t′′ < t′′′ < t′ ∧ (Receive(I ′, (c, n)) @ t′′)
∧ (Sign(I ′, (n, c),K−1

S) @ t′′′))

(B.0.30)

Rearranging and renaming bound variables, we obtain

[Client(m,KS , Ĉ)]tb,teI ∃tN , tV , n. (tb < tN < tV < te)
∧ ∃I ′, t′, t′′, t′′′, e′, c′, n′. (t′′ < t′′′ < t′ < tV)
∧ (New(I, n) @ tN) ∧ (Î ′ = K̂S)
∧ Contains(e′, SIGK−1

S
{|(n, Ĉ)|})

∧ (e′ = (ˆK−1
S , SIGK−1

S
{|(n′, c′)|}))

∧ (Receive(I ′, (c′, n′)) @ t′′) ∧ (Sign(I ′, (n′, c′),K−1
S) @ t′′′)

(B.0.31)

Using axiom (Eq), we get

[Client(m,KS , Ĉ)]tb,teI ∃tN , tV , n. (tb < tN < tV < te)
∧ ∃I ′, t′, t′′, t′′′, e′, c′, n′. (t′′ < t′′′ < t′ < tV)
∧ (New(I, n) @ tN) ∧ (Î ′ = K̂S)

∧ Contains((ˆK−1
S , SIGK−1

S
{|(n′, c′)|}), SIGK−1

S
{|(n, Ĉ)|})

∧ (Receive(I ′, (c′, n′)) @ t′′) ∧ (Sign(I ′, (n′, c′),K−1
S) @ t′′′)

(B.0.32)

Using basic properties of the predicate Contains, we now obtain n′ = n and c′ = Ĉ, thus getting,

[Client(m,KS , Ĉ)]tb,teI ∃tN , tV , n. (tb < tN < tV < te)
∧ ∃I ′, t′, t′′, t′′′, e′, c′, n′. (t′′ < t′′′ < t′ < tV)
∧ (New(I, n) @ tN) ∧ (Î ′ = K̂S)
∧ (Receive(I ′, (Ĉ, n)) @ t′′) ∧ (Sign(I ′, (n, Ĉ),K−1

S) @ t′′′)

(B.0.33)

From axiom (NEW) we get

((New(I, n) @ tN) ∧ (Receive(I ′, (Ĉ, n)) @ t′′) ∧ Contains((Ĉ, n), n)) ⊃ (t′′ > tN) (B.0.34)

Combining with B.0.33, we get

[Client(m,KS , Ĉ)]tb,teI ∃tN , tV , n. (tb < tN < tV < te)
∧ ∃I ′, t′, t′′, t′′′, e′, c′, n′. (t′′ < t′′′ < t′ < tV) ∧ (tN < t′′)
∧ (New(I, n) @ tN) ∧ (Î ′ = K̂S)
∧ (Receive(I ′, (Ĉ, n)) @ t′′) ∧ (Sign(I ′, (n, Ĉ),K−1

S) @ t′′′)

(B.0.35)

25

Rearranging, and simplifying we obtain

[Client(m,KS , Ĉ)]tb,teI ∃tN , t′′, t′′′, I ′, n. (tb < tN < t′′ < t′′′ < te)
∧ (New(I, n) @ tN) ∧ (Î ′ = K̂S)
∧ (Receive(I ′, (Ĉ, n)) @ t′′) ∧ (Sign(I ′, (n, Ĉ),K−1

S) @ t′′′)
(B.0.36)

Further rearrangement and renaming of bound variables gives us the required formula

[Client(m,KS , Ĉ)]tb,teI ∃n.∃tg.∃tr.∃ts.∃I ′.
((tb < tg < tr < ts < te) ∧ (New(I, n) @ tg) ∧ (Î ′ = K̂S) ∧
(Receive(I ′, (Ĉ, n)) @ tr) ∧ (Sign(I ′, (n, Ĉ),K−1

S) @ ts))

26

	Introduction
	Overview of Modeling Choices
	A Programming Language for Specifying Systems
	Reduction Rules and Traces
	Example: An Extended Challenge Response Protocol

	LS2: Syntax, Semantics, and Proof System
	Syntax
	Example of a Correctness Property

	Semantics
	Proof System for LS2
	Soundness
	Example of Proof of Correctness

	Conclusion
	Proof of the Soundness Theorem
	Proof of Correctness of the Extended CR Protocol

