
Robustly Safe Compilation

Marco Patrignani12 and Deepak Garg3

1 Stanford University
2 CISPA Helmholz Center for Information Security

3 Max Planck Institute for Software Systems

Abstract. Secure compilers generate compiled code that withstands
many target-level attacks such as alteration of control �ow, data leaks
or memory corruption. Many existing secure compilers are proven to
be fully abstract, meaning that they re�ect and preserve observational
equivalence. Fully abstract compilation is strong and useful but, in cer-
tain cases, comes at the cost of requiring expensive runtime constructs in
compiled code. These constructs may have no relevance for security, but
are needed to accommodate di�erences between the source and target
languages that fully abstract compilation necessarily needs.
As an alternative to fully abstract compilation, this paper explores a
di�erent criterion for secure compilation called robustly safe compilation
or RSC . Brie�y, this criterion means that the compiled code preserves
relevant safety properties of the source program against all adversarial
contexts interacting with the compiled program. We show that RSC can
be proved more easily than fully abstract compilation and also often re-
sults in more e�cient code. We also develop two illustrative robustly-safe
compilers and, through them, illustrate two di�erent proof techniques for
establishing that a compiler attains RSC . Based on these, we argue that
proving RSC can be simpler than proving fully abstraction.

To better explain and clarify notions, this paper uses colours. For a
better experience, please print or view this paper in colours.4

1 Introduction

Low-level adversaries, such as those written in C or assembly can attack co-
linked code written in a high-level language in ways that may not be feasible in
the high-level language itself. For example, such an adversary may manipulate
or hijack control �ow, cause bu�er over�ows, or directly access private memory,
all in contravention to the abstractions of the high-level language. Speci�c coun-
termeasures such as Control Flow Integrity [3] or Code Pointer Integrity [41]

4 Speci�cally, in this paper we use a blue, sans-serif font for source elements, an orange,
bold font for target elements and a black , italic font for elements common to both
languages (to avoid repeating similar de�nitions twice). Thus, C is a source-level
component, C is a target-level component and C is generic notation for either a
source-level or a target-level component.

have been devised to address some of these attacks individually. An alterna-
tive approach is to devise a secure compiler, which seeks to defend against en-
tire classes of such attacks. Secure compilers often achieve security by relying
on di�erent protection mechanisms, e.g., cryptographic primitives [4,5,22,26],
types [11,10], address space layout randomisation [6,37], protected module ar-
chitectures [9,53,59,57] (also know as enclaves [46]), tagged architectures [39,7],
etc. Once designed, the question researchers face is how to formalise that such a
compiler is indeed secure, and how to prove this. Basically, we want a criterion
that speci�es secure compilation. A widely-used criterion for compiler security
is fully abstract compilation (FAC) [2,52,35], which has been shown to preserve
many interesting security properties like con�dentiality, integrity, invariant def-
initions, well-bracketed control �ow and hiding of local state [37,53,9,54].

Informally, a compiler is fully abstract if it preserves and re�ects observa-
tional equivalence of source-level components (i.e., partial programs) in their
compiled counterparts. Most existing work instantiates observational equivalence
with contextual equivalence: co-divergence of two components in any larger con-
text they interact with. Fully abstract compilation is a very strong property,
which preserves all source-level abstractions.

Unfortunately, preserving all source-level abstractions also has downsides. In
fact, while FAC preserves many relevant security properties, it also preserves a
plethora of other non-security ones, and the latter may force ine�cient checks in
the compiled code. For example, when the target is assembly, two observationally
equivalent components must compile to code of the same size [9,53], else full
abstraction is trivially violated. This requirement is security-irrelevant in most
cases. Additionally, FAC is not well-suited for source languages with unde�ned
behaviour (e.g., C and LLVM) [39] and, if used naïvely, it can fail to preserve even
simple safety properties [60] (though, fortunately, no existing work falls prey to
this naïvety).

Motivated by this, recent work started investigating alternative secure com-
pilation criteria that overcome these limitations. These security-focussed criteria
take the form of preservation of hyperproperties or classes of hyperproperties,
such as hypersafety properties or safety properties [33,8]. This paper investigates
one of these criteria, namely, Robustly Safe Compilation (RSC) which has clear
security guarantees and can often be attained more e�ciently than FAC.

Informally, a compiler attains RSC if it is correct and it preserves robust
safety of source components in the target components it produces. Robust safety
is an important security notion that has been widely adopted to formalize se-
curity, e.g., of communication protocols [17,14,34]. Before explaining RSC , we
explain robust safety as a language property.

Robust Safety as a Language Property. Informally, a program property is
a safety property if it encodes that �bad� sequences of events do not happen
when the program executes [63,13]. A program is robustly safe if it has relevant
(speci�ed) safety properties despite active attacks from adversaries. As the name
suggests, robust safety relies on the notions of safety and robustness which we
now explain.

Safety. As mentioned, safety asserts that �no bad sequence of events hap-
pens�, so we can specify a safety property by the set of �nite observations which
characterise all bad sequences of events. A whole program has a safety property
if its behaviours exclude these bad observations. Many security properties can be
encoded as safety, including integrity, weak secrecy and functional correctness.

Example 1 (Integrity). Integrity ensures that an attacker does not tamper with
code invariants on state. For example, consider the function charge_account(n)
which deducts amount n from an account as part of an electronic card payment. A
card PIN is required if n is larger than 10 euros. So the function checks whether n
> 10, requests the PIN if this is the case, and then changes the account balance.
We expect this function to have a safety (integrity) property in the account
balance: A reduction of more than 10 euros in the account balance must be
preceded by a call to request_pin(). Here, the relevant observation is a trace
(sequence) of account balances and calls to request_pin(). Bad observations for
this safety property are those where an account balance is at least 10 euros less
than the previous one, without a call to request_pin() in between. Note that
this function seems to have this safety property, but it may not have the safety
property robustly : a target-level adversary may transfer control directly to the
�else� branch of the check n > 10 after setting n to more than 10, to violate the
safety property. �

Example 2 (Weak Secrecy). Weak secrecy asserts that a program secret never
�ows explicitly to the attacker. For example, consider code that manages
network_h, a handler (socket descriptor) for a sensitive network interface. This
code does not expose network_h directly to external code but it provides an API
to use it. This API makes some security checks internally. If the handler is di-
rectly accessible to outer code, then it can be misused in insecure ways (since the
security checks may not be made). If the code has weak secrecy wrt network_h
then we know that the handler is never passed to an attacker. In this case we
can de�ne bad observations as those where network_h is passed to external code
(e.g., as a parameter, as a return value on or on the heap). �

Example 3 (Correctness). Program correctness can also be formalized as a
safety property. Consider a program that computes the nth Fibonacci number.
The program reads n from an input source and writes its output to an output
source. Correctness of this program is a safety property. Our observations are
pairs of an input (read by the program) and the corresponding output. A bad
observation is one where the input is n (for some n) but the output is di�erent
from the nth Fibonacci number. �

These examples not only illustrate the expressiveness of safety properties, but
also show that safety properties are quite coarse-grained : they are only concerned
with (sequences of) relevant events like calls to speci�c functions, changes to
speci�c heap variables, inputs, and outputs. They do not specify or constrain how
the program computes between these events, leaving the programmer and the
compiler considerable �exibility in optimizations. However, safety properties are

not a panacea for security, and there are security properties that are not safety.
For example, noninterference [70,72], the standard information �ow property,
is not safety. Nonetheless, many interesting security properties are safety. In
fact, many non-safety properties including noninterference can be conservatively
approximated as safety properties [20]. Hence, safety properties are a meaningful
goal to pursue for secure compilation.

Robustness. We often want to reason about properties of a component of
interest that hold irrespective of any other components the component inter-
acts with. These other components may be the libraries the component is linked
against, or the language runtime. Often, these surrounding components are mod-
elled as the program context whose hole the component of interest �lls. From a
security perspective the context represents the attacker in the threat model.
When the component of interest links to a context, we have a whole program
that can run. A property holds robustly for a component if it holds in any context
that the component of interest can be linked to.

Robust Safety Preservation as a Compiler Property. A compiler attains ro-
bustly safe compilation or RSC if it maps any source component that has a safety
property robustly to a compiled component that has the same safety property
robustly. Thus, safety has to hold robustly in the target language, which often
does not have the powerful abstractions (e.g., typing) that the source language
has. Hence, the compiler must insert enough defensive runtime checks into the
compiled code to prevent the more powerful target contexts from launching at-
tacks (violations of safety properties) that source contexts could not launch. This
is unlike correct compilation, which either considers only those target contexts
that behave like source contexts [49,65,40] or considers only whole programs [43].

As mentioned, safety properties are usually quite coarse-grained. This means
that RSC still allows the compiler to optimise code internally, as long as the
sequence of observable events is not a�ected. For example, when compiling the
fibonacci function of Example 3, the compiler can do any internal optimisation
such as caching intermediate results, as long as the end result is correct. Cru-
cially, however, these intermediate results must be protected from tampering by
a (target-level) attacker, else the output can be incorrect, breaking RSC .

A RSC -attaining compiler focuses only on preserving security (as captured
by robust safety) instead of contextual equivalence (typically captured by full
abstraction). So, such a compiler can produce code that is more e�cient than
code compiled with a fully abstract compiler as it does not have to preserve all
source abstractions (we illustrate this later).

Finally, robust safety scales naturally to thread-based concurrency [34,1,58].
Thus RSC also scales naturally to thread-based concurrency (we demonstrate
this too). This is unlike FAC , where thread-based concurrency can introduce
additional undesired abstractions that also need to be preserved.

RSC is a very recently proposed criterion for secure compilers. Recent work [33,8]
de�ne RSC abstractly in terms of preservation of program behaviours, but their
development is limited to the de�nition only. Our goal in this paper is to ex-
amine how RSC can be realized and established, and to show that in certain

cases it leads to compiled code that is more e�cient than what FAC leads to.
To this end, we consider a speci�c setting where observations are values in spe-
ci�c (sensitive) heap locations at cross-component calls. We de�ne robust safety
and RSC for this speci�c setting (Section 2). Unlike previous work [33,8] which
assumed that the domain of traces (bheaviours) is the same in the source and
target languages, our RSC de�nition allows for di�erent trace domains in the
source and target languages, as long as they can be suitably related. The second
contribution of our paper is two proof techniques to establish RSC .

� The �rst technique is an adaption of trace-based backtranslation, an ex-
isting technique for proving FAC [59,9,7]. To illustrate this technique, we
build a compiler from an untyped source language to an untyped target
language with support for �ne-grained memory protection via so-called ca-
pabilities [71,23] (Section 3). Here, we guarantee that if a source program is
robustly safe, then so is its compilation.

� The second proof technique shows that if source programs are veri�ed for
robust safety, then one can simplify the proof of RSC so that no backtrans-
lation is needed. In this case, we develop a compiler from a typed source
language where the types already enforce robust safety, to a target language
similar to that of the �rst compiler (Section 4). In this instance, both lan-
guages also support shared-memory concurrency. Here, we guarantee that
all compiled target programs are robustly safe.

To argue that RSC is general and is not limited to compilation targets based
on capabilities, we also develop a third compiler. This compiler starts from the
same source language as our second compiler but targets an untyped concurrent
language with support for coarse-grained memory isolation, modelling recent
hardware extensions such as Intel's SGX [46]. Due to space constraints, we report
this result only in the companion technical report [61].

The �nal contribution of this paper is a comparison between RSC and FAC .
For this, we describe changes that would be needed to attain FAC for the �rst
compiler and argue that these changes make generated code ine�cient and also
complicate the backtranslation proof signi�cantly (Section 5).

Due to space constraints, we elide some technical details and limit proofs to
sketches. These are fully resolved in the companion technical report [61].

2 Robustly Safe Compilation

This section �rst discusses robust safety as a language (not a compiler) prop-
erty (Section 2.1) and then presents RSC as a compiler property along with an
informal discussion of techniques to prove it (Section 2.2).

2.1 Safety and Robust Safety

To explain robust safety, we �rst describe a general imperative programming
model that we use. Programmers write components on which they want to en-
force safety properties robustly. A component is a list of function de�nitions that

can be linked with other components (the context) in order to have a runnable
whole program (functions in �other� components are like extern functions in C).
Additionally, every component declares a set of �sensitive� locations that con-
tain all the data that is safety-relevant. For instance, in Example 1 this set may
contain the account balance and in Example 3 it may contain the I/O bu�ers.
We explain the relevance of this set after we de�ne safety properties.

We want safety properties to specify that a component never executes a �bad�
sequence of events. For this, we �rst need to �x a notion of events. We have
several choices here, e.g., our events could be inputs and outputs, all syscalls,
all changes to the heap (as in CompCert [44]), etc. Here, we make a speci�c
choice motivated by our interest in robustness: We de�ne events as calls/re-
turns that cross a component boundary, together with the state of the heap
at that point. Consequently, our safety properties can constrain the contents of
the heap at component boundaries. This choice of component boundaries as the
point of observation is meaningful because, in our programming model, control
transfers to/from an adversary happen only at component boundaries (more
precisely, they happen at cross-component function call and returns). This al-
lows the compiler complete �exibility in optimizing code within a component,
while not reducing the ability of safety properties to constrain observations of
the adversary.

Concretely, a component behaviour is a trace, i.e., a sequence of actions
recording component boundary interactions and, in particular, the heap at these
points. Actions, the items on a trace, have the following grammar:

Actions α ::= call f v H ? | call f v H ! | ret H ! | ret H ?

These actions respectively capture call and callback to a function f with pa-
rameter v when the heap is H as well as return and returnback with a certain
heap H.5 We use ? and ! decorations to indicate whether the control �ow of the
action goes from the context to the component (?) or from the component to the
context (!). Well-formed traces have alternations of ? and ! decorated actions,
starting with ? since execution starts in the context. For a sequence of actions
α, relevant(α) is the list of heaps H mentioned in the actions of α.

Next, we need a representation of safety properties. Generally, properties are
sets of traces, but safety properties speci�cally can be speci�ed as automata (or
monitors in the sequel) [63]. We choose this representation since monitors are
less abstract than sets of traces and they are closer to enforcement mechanisms
used for safety properties, e.g., runtime monitors. Brie�y, a safety property is a
monitor that transitions states in response to events of the program trace. At
any point, the monitor may refuse to transition (it gets stuck), which encodes
property violation. While a monitor can transition, the property has not been
violated. Schneider [63] argues that all properties codable this way are safety
properties and that all enforceable safety properties can be coded this way.

5 A callback is a call from the component to the context, so it generates label
call f v H !. A returnback is a return from such a callback, i.e., the context re-
turning to the component, and it generates the label ret H ?.

Formally, a monitor M in our setting consists of a set of abstract states
{σ · · · }, the transition relation , an initial state σ0 , the set of heap locations
that matter for the monitor, {l · · · }, and the current state σc (we indicate a set of
elements of class e as {e · · · }). The transition relation is a set of triples of the
form (σs ,H , σf) consisting of a starting state σs , a �nal state σf and a heap H .
The transition (σs ,H , σf) is interpreted as �state σs transitions to σf when the
heap is H �. When determining the monitor transition in response to a program
action, we restrict the program's heap to the location set {l · · · }, i.e., to the set
of locations the monitor cares about. This heap restriction is written H

∣∣
{l··· }.

We assume determinism of the transition relation: for any σs and (restricted
heap) H , there is at most one σf such that (σs ,H , σf) ∈ .

Given the behaviour of a program as a trace α and a monitor M specifying
a safety property, M ` α denotes that the trace satis�es the safety property.
Intuitively, to satisfy a safety property, the sequence of heaps in the actions of a
trace must never get the monitor stuck (Rule Valid trace). Every single heap must
allow the monitor to step according to its transition relation (Rule Monitor Step).
Note that we overload the notation here to also denote an auxiliary relation,
the monitor small-step semantics (Rule Monitor Step-base and Rule Monitor
Step-ind).

(Valid trace)

M ; relevant(α) M ′

M ` α

(Monitor Step-base)

M ;∅ M

(Monitor Step-ind)

M ;H M ′′ M ′′;H M ′

M ;H ·H M ′

(Monitor Step)

(σc ,H
∣∣
{l··· }, σf) ∈

({σ · · · } , , σ0 , {l · · · } , σc);H ({σ · · · } , , σ0 , {l · · · } , σf)

With this setup in place, we can formalise safety, attackers and robust safety.
In de�ning (robust) safety for a component, we only admit monitors (safety
properties) whose {l · · · } agrees with the sensitive locations declared by the
component. Making the set of safety-relevant locations explicit in the compo-
nent and the monitor gives the compiler more �exibility by telling it precisely
which locations need to be protected against target-level attacks (the compiler
may choose to not protect the rest). At the same time, it allows for expressive
modelling. For instance, in Example 3 the safety-relevant locations could be the
I/O bu�ers from which the program performs inputs and outputs, and the safety
property can constrain the input and output bu�ers at corresponding call and
return actions involving the Fibonacci function.

De�nition 1 (Safety, attacker and robust safety).

M ` C : safe
def

= if ` C : whole then if Ω0 (C)
α

==⇒ _ then M ` α

C ` A : atk
def

= C = {l · · · } ,F and {l · · · } ∩ fn(A) = ∅

M ` C : rs
def

= ∀A. if M_C and C ` A : atk then M ` A [C] : safe

A whole program C is safe for a monitorM , writtenM ` C : safe, if the monitor
accepts any trace the program generates from its initial state (Ω0 (C)).

An attacker A is valid for a component C , written C ` A : atk , if A's free
names (denoted fn(A)) do not refer to the locations that the component cares
about. This is a basic sanity check: if we allow an attacker to mention heap
locations that the component cares about, the attacker will be able to modify
those locations, causing all but trivial safety properties to not hold robustly.

A component C is robustly safe wrt monitor M , written M ` C : rs, if
C composed with any attacker is safe wrt M . As mentioned, for this setup to
make sense, the monitor and the component must agree on the locations that
are safety-relevant. This agreement is denoted M _C .

2.2 Robustly Safe Compilation

Robustly-safe compilation ensures that robust safety properties and their mean-
ings are preserved across compilation. But what does it means to preserve mean-
ings across languages? If a source safety property says never write 3 to a location,
and we compile to an assembly language by mapping numbers to binary, the
corresponding target property should say never write 0x11 to an address.

In order to relate properties across languages, we assume a relation ≈ : v×v
between source and target values that is total, so it maps any source value v
to a target value v: ∀v.∃v.v≈v. This value relation is used to de�ne a relation
between heaps: H≈H, which intuitively holds when related locations point to
related values. This is then used to de�ne a relation between actions: α≈α,
which holds when the two actions are the �same� modulo this relation, i.e.,
call · · · ? only relates to call · · · ? and the arguments of the action (values
and heap) are related. Next, we require a relation M≈M between source and
target monitors, which means that the source monitor M and the target monitor
M code the same safety property, modulo the relation ≈ on values assumed
above. The precise de�nition of this relation depends on the source and target
languages; speci�c instances are shown in Sections 3.3 and 4.3.6

We denote a compiler from language S to language T by J·KST. A compiler

J·KST attains RSC , if it maps any component C that is robustly safe wrt M to a
component C that is robustly safe wrt M, provided that M≈M.

De�nition 2 (Robustly Safe Compilation).

` J·KST : RSC
def

= ∀C,M,M. if M ` C : rs and M≈M then M ` JCKST : rs

A consequence of the universal quanti�cation over monitors here is that the
compiler cannot be property-sensitive. A robustly-safe compiler preserves all
robust safety properties, not just a speci�c one, e.g., it does not just enforce
that fibonacci is correct. This seemingly strong goal is sensible as compiler
writers will likely not know what safety properties individual programmers will
want to preserve.

6 Accounting for the di�erence in the representation of safety properties sets us apart
from recent work [33,8], which assumes that the source and target languages have
the same trace alphabet. The latter works only in some settings.

Remark. Some readers may wonder why we do not follow existing work and
specify safety as �programmer-written assertions never fail� [34,31,45,68]. Un-
fortunately, this approach does not yield a meaningful criterion for specifying a
compiler, since assertions in the compiled program (if any) are generated by the
compiler itself. Thus a compiler could just erase all assertions and the compiled
code it generates would be trivially (robustly) safe � no assertion can fail if there
are no assertions in the �rst place!

Proving RSC . Proving that a compiler attains RSC can be done either by
proving that a compiler satis�es De�nition 2 or by proving something equivalent.
To this end, De�nition 3 below presents an alternative, equivalent formulation of
RSC . We call this characterisation property-free as it does not mention monitors
explicitly (it mentions the relevant(·) function for reasons we explain below).

De�nition 3 (Property-Free RSC).

` J·KST : PF -RSC
def

= ∀C,A, α.

if JCKST ` A : atk and ` A
[
JCKST

]
: whole and Ω0

(
A
[
JCKST

])
α

==⇒ _

then ∃A, α. C ` A : atk and ` A [C] : whole and Ω0 (A [C])
α

==⇒ _

and relevant(α)≈ relevant(α)

Speci�cally, PF -RSC states that the compiled code produces behaviours that
re�ne source level behaviours robustly (taking contexts into account).

PF -RSC and RSC should, in general, be equivalent (Proposition 1).

Proposition 1 (PF -RSC and RSC are equivalent).

∀J·KST,` J·K
S
T : PF -RSC ⇐⇒ ` J·KST : RSC

Informally, a property is safety if and only if it implies programs not having any
trace pre�x from a given set of bad pre�xes (i.e., �nite traces). Hence, not having
a safety property robustly amounts to some context being able to induce a bad
pre�x. Consequently, preserving all robust safety properties (RSC) amounts to
ensuring that all target pre�xes can be generated (by some context) in the source
too (PF -RSC). Formally, since De�nition 2 relies on the monitor relation, we
can prove Proposition 1 only after such a relation is �nalised. We give such a
monitor relation and proof in Section 3.3 (see Theorem 3). However, in general
this result should hold for any cross-language monitor relation that correctly
relates safety properties. If the proposition does not hold, then the relation does
not capture how safety in one language is represented in the other.

Assuming Proposition 1, we can prove PF -RSC for a compiler in place of
RSC . PF -RSC can be proved with a backtranslation technique. This technique
has been often used to prove full abstraction [50,59,39,53,9,33,7,54,8] and it aims
at building a source context starting from a target one. In fact PF -RSC , leads
directly to a backtranslation-based proof technique since it can be rewritten
(eliding irrelevant details) as:

If ∃A, α.Ω0

(
A
[
JCKST

])
α

==⇒ _

then ∃A, α.Ω0 (A [C])
α

==⇒ _ and relevant(α)≈ relevant(α)

Essentially, given a target context A, a compiled program JCKST and a target

trace α that A causes JCKST to have, we need to construct, or backtranslate to,
a source context A that will cause the source program C to simulate α. Such
backtranslation based proofs can be quite di�cult, depending on the features of
the languages and the compiler. However, backtranslation for RSC (as we show
in Section 3.3) is not as complex as backtranslation for FAC (Section 5.2).

A simpler proof strategy is also viable for RSC when we compile only those
source programs that have been veri�ed to be robustly safe (e.g., using a type
system). The idea is this: from the veri�cation of the source program, we can �nd
an invariant which is always maintained by the target code, and which, in turn,
implies the robust safety of the target code. For example, if the safety property
is that values in the heap always have their expected types, then the invariant
can simply be that values in the target heap are always related to the source
ones (which have their expected types). This is tantamount to proving type
preservation in the target in the presence of an active adversary. This is harder
than standard type preservation (because of the active adversary) but is still
much easier than backtranslation as there is no need to map target constructs
to source contexts syntactically. We illustrate this proof technique in Section 4.

RSC Implies Compiler Correctness. As stated in Section 1, RSC implies
(a form of) compiler correctness. While this may not be apparent from De�ni-
tion 2, it is more apparent from its equivalent characterization in De�nition 3.
We elaborate this here.

Whether concerned with whole programs or partial programs, compiler cor-
rectness states that the behaviour of compiled programs re�nes the behaviour
of source programs [44,65,40,49,36,18]. So, if {α · · · } and {α · · · } are the sets of
compiled and source behaviours, then a compiler should force {α · · · }⊂∼{α · · · },
where ⊂∼ is the composition of ⊆ and of the relation ≈−1.

If we consider a source component C that is whole, then it can only link
against empty contexts, both in the source and in the target. Hence, in this
special case, PF -RSC simpli�es to standard re�nement of traces, i.e., whole
program compiler correctness. Hence, assuming that the correctness criterion for
a compiler is concerned with the same observations as safety properties (values in
safety-relevant heap locations at component crossings in our illustrative setting),
PF -RSC implies whole program compiler correctness.

However, PF -RSC (or, equivalently, RSC) does not imply, nor is implied by,
any form of compositional compiler correctness (CCC) [65,40,49]. CCC requires
that the behaviours produced by a compiled component linked against a target
context that is related (in behaviour) to a source context can also be produced
by the source component linked against the related source context. In contrast,
PF -RSC allows picking any source context to simulate the behaviours. Hence,
PF -RSC does not imply CCC. On the other hand, PF -RSC universally quan-
ti�es over all target contexts, while CCC only quanti�es over target contexts
related to a source context, so CCC does not imply PF -RSC either. Hence,

compositional compiler correctness, if desirable, must be imposed in addition to
PF -RSC . Note that this lack of implications is unsurprising: PF -RSC and CCC
capture two very di�erent aspects of compilation: security (against all contexts)
and compositional preservation of behaviour (against well-behaved contexts).

3 RSC via Trace-based Backtranslation

This section illustrates how to prove that a compiler attains RSC by means of a
trace-based backtranslation technique [59,53,7]. To present such a proof, we �rst
introduce our source language LU, an untyped, �rst-order imperative language
with abstract references and hidden local state (Section 3.1). Then, we present
our target language LP, an untyped imperative target language with a concrete
heap, whose locations are natural numbers that the context can compute. LP

provides hidden local state via a �ne-grained capability mechanism on heap

accesses (Section 3.2). Finally, we present the compiler J·KL
U

LP and prove that it
attains RSC (Section 3.3) by means of a trace-based backtranslation. The section
conclude with an example detailing why RSC preserves security (Example 4).

To avoid focussing on mundane details, we deliberately use source and tar-
get languages that are fairly similar. However, they di�er substantially in one
key point: the heap model. This a�ords the target-level adversary attacks like
guessing private locations and writing to them that do not obviously exist in the
source (and makes our proofs nontrivial). We believe that (with due e�ort) the
ideas here will generalize to languages with larger gaps and more features.

3.1 The Source Language LU

LU is an untyped imperative while language [51]. Components C are triples
of function de�nitions, interfaces and a special location written `root, so C ::=
`root;F; I. Each function de�nition maps a function name and a formal argument
to a body s: F ::= f(x) 7→ s; return;. An interface is a list of functions that the
component relies on the context to provide (similar to C's extern declarations).
The special location `root de�nes the locations that are monitored for safety, as
explained below. Attackers A (program contexts) are function de�nitions that
represent untrusted code that a component interacts with. A function's body
is a statement, s. Statements are rather standard, so we omit a formal syntax.
Brie�y, they can manipulate the heap (location creation let x = new e in s, as-
signment x := e), do recursive function calls (call f e), condition (if-then-else),
de�ne local variables (let-in) and loop. Statements use e�ect-free expressions,
e, which contain standard boolean expressions (e⊗ e), arithmetic expressions
(e⊕ e), pairing (〈e, e〉) and projections, and location dereference (!e). Heaps H
are maps from abstract locations ` to values v.

As explained in Section 2.1, safety properties are speci�ed by monitors. LU's
monitors have the form: M ::= ({σ · · · } , , σ0, `root, σc). Note that in place of
the set {l · · · } of safety-relevant locations, the description of a monitor here (as
well as a component above) contains a single location `root. The interpretation is

that any location reachable in the heap starting from `root is relevant for safety.
This set of locations can change as the program executes, and hence this is more
�exible than statically specifying all of {l · · · } upfront. This representation of
the set by a single location is made explicit in the following monitor rule:

(LU-Monitor Step)

M = ({σ · · · } , , σ0, `root, σc) M′ = ({σ · · · } , , σ0, `root, σf)
(σc,H

′, σf) ∈ H′ ⊆ H dom(H′) = reach(`root,H)

M;H M′

Other than this small point, monitors, safety, robust safety and RSC are de-
�ned as in Section 2. In particular, a monitor and a component agree if they

mention the same `root: M_C
def

= (M = ({σ · · · } , , σ0, `root, σc)) and (C =
(`root;F; I))

A program state C,H . (s)f (denoted with Ω) includes the function bodies C,

the heap H, a statement s being executed and a stack of function calls f (often
omitted in the rules for simplicity). The latter is used to populate judgements of
the form I ` f, f ′ : internal/in/out. These determine whether calls and returns are
internal (within the attacker or within the component), directed from the attacker
to the component (in) or directed from the component to the attacker (out). This
information is used to determine whether the semantics should generate a label,
as in Rules ELU-return to ELU-retback, or no label, as in Rules ELU-ret-internal
and ELU-call-internal since internal calls should not be observable. LU has a big-
step semantics for expressions (H . e ↪→→ v) that relies on evaluation contexts, a

small-step semantics for statements (Ω
λ−−→ Ω′) that has labels λ ::= ε | α and a

semantics that accumulates labels in traces (Ω
α

==⇒ Ω′) by omitting silent actions
ε and concatenating the rest. Unlike existing work on compositional compiler
correctness which only rely on having the component [40], the semantics relies
on having both the component and the context.

(ELU-alloc)

H . e ↪→→ v ` /∈ dom(H)

C,H . let x = new e in s −→
C,H; ` 7→ v . s[` / x]

(ELU-return)

f′ = f′′; f′ C.intfs ` f, f′ : out

C,H . (return;)f′;f
ret H!−−−−−→

C,H . (skip)f′

(ELU-call)

f′ = f′′; f′ f(x) 7→ s; return; ∈ C.funs

C.intfs ` f′, f : in H . e ↪→→ v

C,H . (call f e)f′
call f v H?−−−−−−−−−→

C,H . (s; return;[v / x])f′;f

(ELU-callback)

f′ = f′′; f′ f(x) 7→ s; return; ∈ F

C.intfs ` f′, f : out H . e ↪→→ v

C,H . (call f e)f′
call f v H!−−−−−−−−−→

C,H . (s; return;[v / x])f′;f
(ELU-retback)

f′ = f′′; f′ C.intfs ` f, f′ : in

C,H . (return;)f′;f
ret H?−−−−−→

C,H . (skip)f′

(ELU-ret-internal)

f′ = f′′; f′ C.intfs ` f, f′ : internal

C,H . (return;)f′;f
ε−−→

C,H . (skip)f′

(ELU-call-internal)

C.intfs ` f, f′ : internal f′ = f′′; f′ f(x) 7→ s; return; ∈ C.funs H . e ↪→→ v

C,H . (call f e)f′
ε−−→ C,H . (s; return;[v / x])f′;f

3.2 The Target Language LP

LP is an untyped, imperative language that follows the structure of LU and it
has similar expressions and statements. However, there are critical di�erences
(that make the compiler interesting). The main di�erence is that heap loca-
tions in LP are concrete natural numbers. Upfront, an adversarial context can
guess locations used as private state by a component and clobber them. To sup-
port hidden local state, a location can be �hidden� explicitly via the statement
let x = hide e in s, which allocates a new capability k, an abstract token that
grants access to the location n to which e points [64]. Subsequently, all reads and
writes to n must be authenticated with the capability, so reading and writing
a location take another parameter as follows: !e with e and x := e with e. In
both cases, the e after the with is the capability. Unlike locations, capabilities
cannot be guessed. To make a location private, the compiler can make the capa-
bility of the location private. To bootstrap this hiding process, we assume that
a component has one location that can only be accessed by it, a priori in the
semantics (in our formalization, we always focus on only one component and we
assume that, for this component, this special location is at address 0).

In detail, LP heaps H are maps from natural numbers (locations) n to values
v and a tag η as well as capabilities, so H ::= ∅ | H;n 7→ v : η | H;k. The
tag η can be ⊥, which means that n is globally available (not protected) or a
capability k, which protects n. A globally available location can be freely read
and written but one that is protected by a capability requires the capability to
be supplied at the time of read/write (Rule ELP-assign, Rule ELP-deref).

LP also has a big-step semantics for expressions, a labelled small-step se-
mantics and a semantics that accumulates traces analogous to that of LU.

(ELP-deref)

n 7→ v : η ∈ H (η = ⊥) or (η = k and v′ = k)

H . !n with v′ ↪→→ H . v
(ELP-new)

H = H1;n 7→ (v, η) H . e ↪→→ v H′ = H;n+ 1 7→ v : ⊥
C,H . let x = new e in s −→ C,H′ . s[n+ 1 / x]

(ELP-hide)

H . e ↪→→ n k /∈ dom(H) H = H1;n 7→ v : ⊥;H2 H′ = H1;n 7→ v : k;H2;k

C,H . let x = hide e in s −→ C,H′ . s[k / x]

(ELP-assign)

H . e ↪→→ v H = H1;n 7→ _ : η;H2 H′ = H1;n 7→ v : η;H2

(η = ⊥) or (η = k and v′ = k)

C,H . n := e with v′ −→ C,H′ . skip
A second di�erence between LP and LU is that LP has no booleans, while

LU has them. This makes the compiler and the related proofs interesting, as
discussed in the proof of Theorem 1.

In LP, the locations of interest to a monitor are all those that can be reached
from the address 0. 0 itself is protected with a capability kroot that is assumed
to occur only in the code of the component in focus, so a component is de�ned
as C ::= kroot;F; I. We can now give a precise de�nition of component-monitor
agreement for LP as well as a precise de�nition of attacker, which must care

about the kroot capability.

M_C
def

= (M = ({σ · · · } , , σ0,kroot, σc)) and (C = (kroot;F; I))

C ` A : atk
def

= C = (kroot;F; I),A = F′,kroot /∈ fn(F′)

3.3 Compiler from LU to LP

We now present J·KL
U

LP , the compiler from LU to LP, detailing how it uses the

capabilities of LP to achieve RSC . Then, we prove that J·KL
U

LP attains RSC .

Compiler J·KL
U

LP takes as input a LU component C and returns a LP component
(excerpts of the translation are shown below). The compiler performs a simple
pass on the structure of functions, expressions and statements. Each LU location
is encoded as a pair of a LP location and the capability to access the location;
location update and dereference are compiled accordingly. The compiler codes
source booleans true to 0 and false to 1, and the source number n to the target
counterpart n.

q
`root;F; I

yLU

LP = kroot;
q

F
yLU

LP ;
q

I
yLU

LP

J!eKL
U

LP = !JeKL
U

LP .1 with JeKL
U

LP .2
t

let x = new e

in s

|LU

LP

=
let xloc = new JeKL

U

LP in let xcap = hide xloc in

let x = 〈xloc,xcap〉 in JsKL
U

LP

Jx := e′KL
U

LP = let xloc = x.1 in let xcap = x.2 in xloc := Je′KL
U

LP with xcap

This compiler solely relies on the capability abstraction of the target lan-
guage as a defence mechanism to attain RSC . Unlike existing secure compilers,

J·KL
U

LP needs neither dynamic checks nor other constructs that introduce runtime
overhead to attain RSC [32,59,53,9,39].

Proof of RSC . Compiler J·KL
U

LP attains RSC (Theorem 1). In order to set
up this theorem, we need to instantiate the cross-language relation for values,
which we write as ≈β here. The relation is parametrised by a partial bijection
β : `×n×η from source heap locations to target heap locations which determines
when a source location and a target location (and its capability) are related.
On values, ≈β is de�ned as follows: true≈β 0; false≈β n when n 6= 0; n≈β n;
`≈β 〈n,k〉 if (`,n,k) ∈ β; `≈β 〈n,_〉 if (`,n,⊥) ∈ β; 〈v1, v2〉≈β 〈v1,v2〉 if
v1≈β v1 and v2≈β v2. This relation is then used to de�ne the heap, monitor
state and action relations. Heaps are related, written H≈β H, when locations
related in β point to related values. States are related, written Ω≈β Ω, when
they have related heaps. The action relation (α≈β α) is de�ned as in Section 2.2.

Monitor Relation. In Section 2.2, we left the monitor relation abstract. Here,
we de�ne it for our two languages. Two monitors are related when they can
simulate each other on related heaps. Given a monitor-speci�c relation σ≈σ
on monitor states, we say that a relation R on source and target monitors is a

bisimulation if the following hold whenever M = ({σ · · · } , , σ0, `root, σc) and
M = ({σ · · · } , , σ0,kroot, σc) are related by R:

1. σ0≈σ0, and σc≈σc, and
2. For all β containing (`root,0,kroot) and all H,H with H≈β H:

(a) (σc,H,_) ∈ i� (σc,H,_) ∈ , and
(b) (σc,H, σ

′) ∈ and (σc,H, σ′) ∈ imply
({σ · · · } , , σ0, `root, σ′)R({σ · · · } , , σ0,kroot, σ

′).

In words, R is a bisimulation only if MRM implies that M and M simulate each
other on heaps related by any β that relates `root to 0. In particular, this means
that neither M nor M can be sensitive to the speci�c addresses allocated during
the run of the program. However, they can be sensitive to the �shape� of the heap
or the values stored in the heap. Note that the union of any two bisimulations
is a bisimulation. Hence, there is a largest bisimulation, which we denote as ≈.
Intuitively, M≈M implies that M and M encode the same safety property (up
to the aforementioned relation on values ≈β). With all the boilerplate for RSC
in place, we state our main theorem.

Theorem 1 (J·KL
U

LP attains RSC). ` J·KL
U

LP : RSC

We outline our proof of Theorem 1, which relies on a backtranslation 〈〈·〉〉L
P

LU .

Intuitively, 〈〈·〉〉L
P

LU takes a target trace α and builds a set of source contexts
such that one of them when linked with C, produces a related trace α in
the source (Theorem 2). In prior work, backtranslations return a single con-
text [53,59,11,21,50,10,28]. This is because they all, explicitly or implicitly, as-
sume that ≈ is injective from source to target. Under this assumption, the back-
translation is unique: a target value v will be related to at most one source value
v. We do away with this assumption (e.g., the target value 0 is related to both
source values 0 and true) and thus there can be multiple source values related to
any given target value. This results in a set of backtranslated contexts, of which
at least one will reproduce the trace as we need it.

We bypass the lengthy technical setup for this proof and provide an informal
description of why the backtranslation achieves what it is supposed to. As an

example, Figure 1 contains a trace α and the the output of 〈〈α〉〉L
P

LU .

〈〈·〉〉L
P

LU �rst generates empty method bodies for all context methods called by
the compiled component. Then it backtranslates each action on the given trace,
generating code blocks that mimic that action and places that code inside the
appropriate method body. Figure 1 shows the code blocks generated for each
action. Backtranslated code maintains a support data structure at runtime, a
list of locations denoted L where locations are added (::) and they are looked up
(L(n)) based on their second �eld n, which is their target-level address. In order
to backtranslate the �rst call, we need to set up the heap with the right values
and then perform the call. In the diagram, dotted lines describe which source
statement generates which part of the heap. The return only generates code that
will update the list L to ensure that the context has access to all the locations

(1) call f 0 (
︷ ︸︸ ︷
1 7→ 4 : ⊥,

︷ ︸︸ ︷
2 7→ 3 : ⊥)?

(2) ret (1 7→ 4 : ⊥,2 7→ 〈3,k〉 : ⊥,
︷ ︸︸ ︷
3 7→ 11 : k)!

(3) call f 2 (1 7→ 55 : ⊥︸ ︷︷ ︸,2 7→ 〈3,k〉 : ⊥,3 7→ 15 : k︸ ︷︷ ︸)?

main(z) 7→
let x = new 4 in L :: 〈x, 1〉 ;
let x = new 3 in L :: 〈x, 2〉 ;
call f 0;

 (1)

let x =!L(2) in L :: 〈x, 3〉 ;] (2)
let x = new L(1) in x := 55;

let x = new L(3) in x := 15;

call f 2;

 (3)

Fig. 1: Example of a trace and its backtranslated code.

it knows in the target too. In order to backtranslate the last call we lookup the
locations to be updated in L so we can ensure that when the call f 2 statement
is executed, the heap is in the right state.

For the backtranslation to be used in the proof we need to prove its correct-

ness, i.e., that 〈〈α〉〉L
P

LU generates a context A that, together with C, generates a
trace α related to the given target trace α.

Theorem 2 (〈〈·〉〉L
P

LU is correct).

if A
[
JCKL

U

LP

]
α

==⇒ Ω then ∃A ∈ 〈〈α〉〉L
P

LU .A [C]
α

==⇒ Ω and α≈β α and Ω≈β Ω.

This theorem immediately implies that ` J·KL
U

LP : PF -RSC , which, by Theorem 3

below, implies that ` J·KL
U

LP : RSC .

Theorem 3 (PF -RSC and RSC are equivalent for J·KL
U

LP).

` J·KL
U

LP : PF -RSC ⇐⇒ ` J·KL
U

LP : RSC

Example 4 (Compiling a secure program). To illustrate RSC at work, let us
consider the following source component Ca, which manages an account whose
balance is security-relevant. Accordingly, the balance is stored in a location (`root
that is tracked by the monitor. Ca provides functions to deposit to the account
as well as to print the account balance.

deposit(x) 7→ let q=abs(x) in let amt = !`root in `root := amt + q

balance() 7→ !`root

Ca never leaks any sensitive location (`root) to an attacker. Additionally, an
attacker has no way to decrement the amount of the balance since deposit only
adds the absolute value abs(x) of its input x to the existing balance.

By compiling Ca with J·KL
U

LP , we obtain the following target program.

deposit(x) 7→ let q=abs(x) in

let amt=!0 with kroot in 0 := amt + q with kroot

balance() 7→ !0 with kroot

Recall that location `root is mapped to location 0 and protected by the kroot

capability. In the compiled code, while location 0 is freely computable by a

target attacker, capability kroot is not. Since that capability is not leaked to
an attacker, an attacker will not be able to tamper with the balance stored in
location 0. �

4 RSC via Bisimulation

If the source language has a veri�cation system that enforces robust safety,
proving that a compiler attains RSC can be simpler than that of Section 3�it
may not require a back translation. To demonstrate this, we consider a speci�c
class of monitors, namely those that enforce type invariants on a speci�c set of
locations. Our source language, Lτ , is similar to LU but it has a type system
that accepts only those source programs whose traces the source monitor never

rejects. Our compiler J·KL
τ

Lπ is directed by typing derivations, and its proof of RSC
establishes a speci�c cross-language invariant on program execution, rather than
a backtranslation. A second, independent goal of this section is to show that RSC
is compatible with concurrency. Consequently, our source and target languages
include constructs for forking threads.

4.1 The Source Language Lτ

Lτ extends LU with concurrency, so it has a fork statement (‖ s), processes and
process soups [19]. Components de�ne a set of safety-relevant locations ∆, so
C ::= ∆;F; I and heaps carry type information, so H ::= ∅ | H; ` 7→ v : τ . ∆ also
speci�es a type for each safety-relevant location, so ∆ ::= ∅ | ∆; (` : τ).

Lτ has an unconventional type system that enforces robust type safety [34,14,1,31,45,58],
which means that no context can cause the static types of sensitive heap loca-
tions to be violated at runtime. Using a special type UN that is described below,
a program component statically partitions heap locations it deals with into those
it cares about (sensitive or �trusted� locations) and those it does not care about
(�untrusted� locations). Call a value shareable if only untrusted locations can be
extracted from it using the language's elimination constructs. The type system
then ensures that a program component only ever shares shareable values with
the context. This ensures that the context cannot violate any invariants (includ-
ing static types) of the trusted locations, since it can never gets direct access to
them.

Technically, the type system considers the types τ ::= Bool | Nat | τ × τ |
Ref τ | UN and the following typing judgements (Γ maps variables to types).

` C : UN Component C is well-typed. ∆, Γ ` e : τ Expression e has type τ .

τ ` ◦ Type τ is shareable. C,∆, Γ ` s Statement s is well-typed.

(TLτ -bool-pub)

Bool ` ◦

(TLτ -nat-pub)

Nat ` ◦

(TLτ -pair-pub)

τ ` ◦ τ ′ ` ◦
τ × τ ′ ` ◦

(TLτ -un-pub)

UN ` ◦

(TLτ -references-pub)

Ref UN ` ◦

Type UN stands for �untrusted� or �shareable� and contains all values that
can be passed to the context. Every type that is not a subtype of UN is im-
plicitly trusted and cannot be passed to the context. Untrusted locations are
explicitly marked UN at their allocation points in the program. Other types are
deemed shareable via subtyping. Intuitively, a type is safe if values in it can only
yield locations of type UN by the language elimination constructs. For example,
UN× UN is a subtype of UN. We write τ ` ◦ to mean that τ is a subtype of UN.

Further, Lτ contains an endorsement statement (endorse x = e as ϕ in s) that
dynamically checks the top-level constructor of a value of type UN and gives it
a more precise super�cial type ϕ ::= Bool | Nat | UN× UN | Ref UN [24]. This
allows a program to safely inspect values coming from the context. It is similar
to existing type casts [48] but it only inspects one structural layer of the value
(this simpli�es the compilation).

The operational semantics of Lτ updates that of LU to deal with concurrency
and endorsement. The latter performs a runtime check on the endorsed value [62].

Monitors M ::= ({σ · · · } , , σ0,∆, σc) check at runtime that the set of
trusted heap locations ∆ have values of their intended static types. Accordingly,
the description of the monitor includes a list of trusted locations and their ex-
pected types (in the form of an environment ∆). The type τ of any location in ∆
must be trusted, so τ 6` ◦. To facilitate checks of the monitor, every heap loca-
tion carries a type at runtime (in addition to a value). The monitor transitions
should therefore be of the form (σ,∆, σ), but since ∆ never changes, we write
the transitions as (σ, σ).

A monitor and a component agree if they have the same ∆: M_C
def

=
({σ · · · } , , σ0,∆, σc)_(∆;F; I). Other de�nitions (safety, robust safety and ac-
tions) are as in Section 2. Importantly, a well-typed component generates traces
that are always accepted, so every component typed at UN is robustly safe.

Theorem 4 (Typability Implies Robust Safety in Lτ).

If ` C : UN and C_M then M ` C : rs

Richer Source Monitors. In Lτ , source language monitors only enforce the
property of type safety on speci�c memory locations (robustly). This can be
generalized substantially to enforce arbitrary invariants other than types on lo-
cations. The only requirement is to �nd a type system (e.g., based on re�nements
or Hoare logics) that can enforce robust safety in the source (cf. [68]). Our com-
pilation and proof strategy should work with little modi�cation. Another easy
generalization is allowing the set of locations considered by the monitor to grow
over time, as in Section 3.

4.2 The Target Language Lπ

Our target language, Lπ, extends the previous target language LP, with support
for concurrency (forking, processes and process soups), atomic co-creation of a
protected location and its protecting capability (let x = newhide e in s) and
for examining the top-level construct of a value (destruct x = e as B in s or s′)
according to a pattern (B ::= nat | pair).

(ELπ-destruct-nat)

H . e ↪→→ n

C,H . destruct x = e as nat in s or s′ −→ C,H . s[n / x]
(ELπ-new)

H = H1;n 7→ (v, η) H . e ↪→→ v k /∈ dom(H) s′ = s[〈n+ 1,k〉 / x]

C,H . let x = newhide e in s −→ C,H;n+ 1 7→ v : k;k . s′

Monitors are also updated to consider a �xed set of locations (a heap H0), so
M ::= ({σ · · · } , , σ0,H0, σc). The atomic creation of capabilities is provided
to match modern security architectures such as Cheri [71] (which implement
capabilities at the hardware level). This atomicity is not strictly necessary and
we prove that RSC is attained both by a compiler relying on it and by one that
allocates a location and then protects it non-atomically. The former compiler
(with this atomicity in the target) is a bit easier to describe, so for space reasons,
we only describe that here and defer the other one to the companion report [61].

4.3 Compiler from Lτ to Lπ

The high-level structure of the compiler, J·KL
τ

Lπ , is similar to that of our earlier

compiler J·KL
U

LP (Section 3.3). However, J·KL
τ

Lπ is de�ned by induction on the type
derivation of the component to be compiled. The case for allocation (presented
below) explicitly uses type information to achieve security e�ciently, protecting
only those locations whose type is not UN.

u

ww
v

∆, Γ ` e : τ
C,∆, Γ; x : Ref τ ` s

C,∆, Γ `
let x = newτ e in s

}

��
~

Lτ

Lπ

=

let xo = new J∆, Γ ` e : τKL
τ

Lπ

in let x = 〈xo,0〉
in JC,∆, Γ; x : Ref τ ` sKL

τ

Lπ

if τ = UN

let x = newhide J∆, Γ ` e : τKL
τ

Lπ

in JC,∆, Γ; x : Ref τ ` sKL
τ

Lπ

otherwise

New Monitor Relation. As monitors have changed, we also need a new mon-
itor relation M≈M. Informally, a source and a target monitor are related if
the target monitor can always step whenever the target heap satis�es the types
speci�ed in the source monitor (up to renaming by the partial bijection β).

We write ` H : ∆ to mean that for each location ` ∈ ∆, ` H(`) : ∆(`). Given
a partial bijection β from source to target locations, we say that a target monitor
M = ({σ · · · } , , σ0,H0, σc) is good, written `M : β,∆, if for all σ ∈ {σ · · · }
and all H≈β H such that ` H : ∆, there is a σ′ such that (σ,H, σ′) ∈ . For
a �xed partial bijection β0 between the domains of ∆ and H0, we say that
the source monitor M and the target monitor M are related, written M≈M, if
`M : β0,∆ for the ∆ in M. With this setup, we de�ne RSC as in Section 2.

Theorem 5 (Compiler J·KL
τ

Lπ attains RSC). ` J·KL
τ

Lπ : RSC

To prove that J·KL
τ

Lπ attains RSC we do not rely on a backtranslation. Here,
we know statically which locations can be monitor-sensitive: they must all be

trusted, i.e., must have a type τ satisfying τ 0 ◦. Using this, we set up a simple
cross-language relation and show it to be an invariant on runs of source and
compiled target components. The relation captures the following:

� Heaps (both source and target) can be partitioned into two parts, a trusted
part and an untrusted part;

� The trusted source heap contains only locations whose type is trusted (τ 0 ◦);
� The trusted target heap contains only locations related to trusted source

locations and these point to related values; more importantly, every trusted
target location is protected by a capability;

� In the target, any capability protecting a trusted location does not occur
in attacker code, nor is it stored in an untrusted heap location.

We need to prove that this relation is preserved by reductions both in com-
piled and in attacker code. The former follows from source robust safety (The-
orem 4). The latter is simple since all trusted locations are protected with ca-
pabilities, attackers have no access to trusted locations, and capabilities are
unforgeable and unguessable (by the semantics of Lπ). At this point, know-
ing that monitors are related, and that source traces are always accepted by
source monitors, we can conclude that target traces are always accepted by tar-
get monitors too. Note that this kind of an argument requires all compilable
source programs to be robustly safe and is, therefore, impossible for our �rst

compiler J·KL
U

LP . Avoiding the backtranslation results in a proof much simpler
than that of Section 3.

5 Fully Abstract Compilation

Our next goal is to compare RSC to FAC at an intuitive level. We �rst de�ne
fully abstract compilation or FAC (Section 5.1). Then, we present an example
of how FAC may result in ine�cient compiled code and use that to present in
Section 5.2 what would be needed to write a fully abstract compiler from LU to
LP (the languages of our �rst compiler). We use this example to compare RSC
and FAC concretely, showing that, at least on this example, RSC permits more
e�cient code and a�ords simpler proofs that FAC .

However, this does not imply that one should always prefer RSC to FAC
blindly. In some cases, one may want to establish full abstraction for reasons
other than security. Also, when the target language is typed [11,10,21,50] or has
abstractions similar to those of the source, full abstraction may have no down-
sides (in terms of e�ciency of compiled code and simplicity of proofs) relative to
RSC . However, in many settings, including those we consider, target languages
are not typed, and often di�er signi�cantly from the source in their abstractions.
In such cases, RSC is a worthy alternative.

5.1 Formalising Fully Abstract Compilation

As stated in Section 1, FAC requires the preservation and re�ection of obser-
vational equivalence, and most existing work instantiates observational equiva-

lence with contextual equivalence ('ctx). Contextual equivalence and FAC are
de�ned below. Informally, two components C1 and C2 are contextually equiv-
alent if no context A interacting with them can tell them apart, i.e., they are
indistinguishable. Contextual equivalence can encode security properties such as
con�dentiality, integrity, invariant maintenance and non-interference [53,60,9,6].
We do not explain this well-known observation here, but refer the interested
reader to the survey of Patrignani et al. [54]. Informally, a compiler J·KST is fully
abstract if it translates (only) contextually-equivalent source components into
contextually-equivalent target ones.

De�nition 4 (Contextual equivalence and fully abstract compilation).

C1 'ctx C2
def

= ∀A.A [C1]⇑ ⇐⇒ A [C2]⇑, where ⇑ means execution divergence

` J·KST : FAC
def

= ∀C1,C2.C1'ctx C2 ⇐⇒ JC1K
S
T'ctx JC2K

S
T

The security-relevant part of FAC is the ⇒ implication [29]. This part is
security-relevant because the proof thesis concerns target contextual equivalence
('ctx). Unfolding the de�nition of 'ctx on the right of the implication yields
a universal quanti�cation over all possible target contexts A, which captures
malicious attackers. In fact, there may be target contexts A that can interact
with compiled code in ways that are impossible in the source language. Compilers
that attain FAC with untyped target languages often insert checks in compiled
code that detect such interactions and respond to them securely [60], often by
halting the execution [9,53,29,39,37,6,42,54]. These checks are often ine�cient,
but must be performed even if the interactions are not security-relevant. We now
present an example of this.

Example 5 (Wrappers for heap resources). Consider a password manager writ-
ten in an object-oriented language that is compiled to an assembly-like language.
The password manager de�nes a private List object where it stores the pass-
words locally. Shown below are two implementations of the newList method
inside List which we call Cone and Ctwo. The only di�erence between Cone and
Ctwo is that Ctwo allocates two lists internally; one of these (shadow) is used for
internal purposes only.

1 public newList(): List{
2

3 ell = new List();
4 return ell;
5 }

1 public newList(): List{
2 shadow = new List(); // diff
3 ell = new List();
4 return ell;
5 }

Cone and Ctwo are equivalent in a source language that does not allow pointer
comparison (like our source languages). To attain FAC when the target al-
lows pointer comparisons (as in our target languages), the pointers returned
by newList in the two implementations must be the same, but this is very dif-
�cult to ensure since the second implementation does more allocations. A sim-
ple solution to this problem is to wrap ell in a proxy object and return the
proxy [53,59,9,47]. Compiled code needs to maintain a lookup table mapping

the proxy to the original object and proxies must have allocation-independent
addresses. Proxies work but they are ine�cient due to the need to look up the
table on every object access. �

In this example, FAC forces all privately allocated locations to be wrapped
in proxies. However, RSC does not require this. Our target languages LP and
Lπ support address comparison (addresses are natural numbers in their heaps)

but J·KL
U

LP and J·KL
τ

Lπ just use capabilities to attain security e�ciently while J·KL
τ

LI

relies on memory isolation. On the other hand, for attaining FAC , capabilities
alone would be insu�cient since they do not hide addresses. We explain this in
detail in the next subsection.

Remarks. Our technical report lists many other cases of FAC forcing security-
irrelevant ine�ciency in compiled code [61]. All of these can be avoided by just
replacing contextual equivalence with a di�erent notion of equivalence in the
statement of FAC . However, it is not clear how this can be done generally for
any given kind of ine�ciency, and what the security consequences of such in-
stantiations of the statement of FAC are. On the other hand, RSC is uniform
and it does not induce any of these ine�ciencies.

A security issue that cannot be addressed just by tweaking equivalences is
information leaks on side channels, as side channels are, by de�nition, not ex-
pressible in the language. Neither FAC nor RSC deals with side channels.

5.2 Towards a Fully Abstract Compiler from LU to LP

To further compare FAC and RSC , we now sketch what would be needed to
construct a fully abstract compiler from LU to LP. In particular, this compiler
should not su�er from the �attack� described in Example 5.

Ine�ciency. We denote with
q
·
yLU

LP a (hypothetical) new compiler from LU

to LP that attains FAC . We describe informally what code generated by this
compiler would have to do. We know that fully abstract compilation preserves all
source abstractions in the target language. One abstraction that distinguishes
LP from LU is that locations are abstract in LP, but concrete natural numbers in
LU. Thus, locations allocated by compiled code must not be passed directly to the
context as this would reveal the allocation order. Instead of passing the location
〈n,k〉 to the context, the compiler arranges for an opaque handle 〈n′,kcom〉 (that
cannot be used to access any location directly) to be passed. Such an opaque
handle is often called a mask or seal in the literature [66].

To ensure that masking is done properly,
q
·
yLU

LP can insert code at entry
and exit points of compiled code, wrapping the compiled code in a way that
enforces masking [32,59]. The wrapper keeps a list L of component-allocated
locations that are shared with the context in order to know their masks. When a
component-allocated location is shared, it is added to the list L. The mask of a
location is its index in this list. If the same location is shared again it is not added
again but its previous index is used. To implement lookup in L we must compare
capabilities too, so we need to add that expression to the target language. To

ensure capabilities do not leak to the context, the second �eld of the pair is a
constant capability kcom which compiled code does not use otherwise. Clearly,
this wrapping can increase the cost of all cross-component calls and returns.

However, this wrapping is not su�cient to attain FAC . A component-allocated
location could be passed to the context on the heap, so before passing control
to the context the compiled code needs to scan the whole heap where a location
can be passed and mask all found component-allocated locations. Dually, when
receiving control the compiled code must scan the heap to unmask any masked
location so it can use the location. The problem now is determining what parts
of the heap to scan and how. Speci�cally, the compiled code needs to keep track
of all the locations (and related capabilities) that are shared, i.e., (i) passed from
the context to the component and (ii) passed from the component to the con-
text. Both keeping track of these locations as well as scanning them on every
cross-component control transfer is likely to be very expensive.

Finally, masked locations cannot be used directly by the context to be read
and written. Thus, compiled code must provide a read and a write function that
implement reading and writing to masked locations. The additional unmasking
in these functions (as opposed to native reads and writes) adds to the ine�ciency.

It should be clear as opposed to the RSC compiler J·KL
U

LP (Section 3), the FAC

compiler
q
·
yLU

LP just sketched is likely to generate far more ine�cient code.

Proof di�culty. Proving that
q
·
yLU

LP attains FAC can only be done by back-
translating traces, not contexts alone, since the newly-added target expressions
cannot be directly backtranslated to valid source ones [9,59,7]. For this, we need
a trace semantics that captures all information available to the context. This is
often called a fully abstract trace semantics [38,56,55]. However, the trace se-
mantics we de�ned for LP is not fully abstract, as its actions record the entire
heap in every action, including private parts of the heap. Hence, we cannot use
this trace semantics for proving FAC and so we design a new one. Building a
fully abstract trace semantics for LP is challenging because we have to keep
track of locations that have been shared with the context in the past. This sub-
stantially complicates both the de�nition of traces and the proofs that build on
the de�nition.

Finally, the source context that the backtranslation constructs from a target
trace must simulate the shared part of the heap at every context switch. Since
locations in the target may be masked, the source context has to maintain a
map from the source locations to the corresponding masked target ones, which
complicates the backtranslation and the proof substantially.

To summarize, it should be clear that the proof of FAC for
q
·
yLU

LP would be

much harder than the proof of RSC for J·KL
U

LP , even though the source and target
languages are the same and so is the broad proof technique (backtranslation).

6 Related Work

Recent work [33,8] presents new criteria for secure compilation that ensure
preservation of subclasses of hyperproperties. Hyperproperties [25] are a for-
mal representation of predicates on programs, i.e., they are predicates on sets of
traces. Hyperproperties capture many security-relevant properties including not
just conventional safety and liveness, which are predicates on traces, but also
properties like non-interference, which is a predicate on pairs of traces. Mod-
ulo technical di�erences, our de�nition of RSC coincides with the criterion of
�robust safety property preservation� in [33,8]. We show, through concrete in-
stances, that this criterion can be easily realized by compilers, and develop two
proof techniques for establishing it. We further show that the criterion leads to
more e�cient compiled code than does FAC . Additionally, the criteria in [33,8]
assume that behaviours in the source and target are represented using the same
alphabet. Hence, the de�nitions (somewhat unrealistically or ideally) do not
require a translation of source properties to target properties. In contrast, we
consider di�erences in the representation of behaviour in the source and in the
target and this is accounted for in our monitor relation M≈M. A slightly dif-
ferent account of this di�erence is presented by Patrignani and Garg [60] in the
context of reactive black-box programs.

Abate et al. [7] de�ne a variant of robustly-safe compilation called RSCC
speci�cally tailored to the case where (source) components can perform unde-
�ned behaviour. RSCC does not consider attacks from arbitrary target contexts
but from compiled components that can become compromised and behave in
arbitrary ways. To demonstrate RSCC, Abate et al. [7] rely on two backends
for their compiler: software fault isolation and tag-based monitors. On the other
hand, we rely on capability machines and memory isolation (the latter in the
companion report). RSCC also preserves (a form of) safety properties and can
be achieved by relying on a trace-based backtranslation; it is unclear whether
proofs can be simpli�ed when the source is veri�ed and concurrent, as in our
second compiler.

ASLR [6,37], protected module architectures [9,53,59,42], tagged architec-
tures [39], capability machines [69] and cryptographic primitives [4,5,22,26] have
been used as targets for FAC . We believe all of these can also be used as targets
of RSC -attaining compilers. In fact, some targets such as capability machines
seem to be better suited to RSC than FAC , as we demonstrated.

Ahmed et al. prove full abstraction for several compilers between typed lan-
guages [11,10,50]. As compiler intermediate languages are often typed, and as
these types often serve as the basis for complex static analyses, full abstraction
seems like a reasonable goal for (fully typed) intermediate compilation steps.
In the last few steps of compilation, where the target languages are unlikely to
be typed, one could establish robust safety preservation and combine the two
properties (vertically) to get an end-to-end security guarantee.

There are three other criteria for secure compilation that we would like to
mention: securely compartmentalised compilation (SCC) [39], trace-preserving
compilation (TPC) [60] and non-interference-preserving compilation (NIPC) [16,27,12,15].

SCC is a re-statement of the �hard� part of full abstraction (the forward impli-
cation), but adapted to languages with unde�ned behaviour and a strict notion
of components. Thus, SCC su�ers from much of the same e�ciency drawbacks
as FAC . TPC is a stronger criterion than FAC , that most existing fully ab-
stract compilers also attain. Again, compilers attaining TPC also su�er from
the drawbacks of compilers attaining FAC .

NIPC preserves a single property: noninterference (NI). However, this line of
work does not consider active target-level adversaries yet. Instead, the focus is
on compiling whole programs. Since noninterference is not a safety property, it
is di�cult to compare NIPC to RSC directly. However, noninterference can also
be approximated as a safety property [20]. So, in principle, RSC (with adequate
massaging of observations) can be applied to stronger end-goals than NIPC.

Swamy et al. [67] embed an F∗ model of a gradually and robustly typed
variant of JavaScript into an F∗ model of JavaScript. Gradual typing supports
constructs similar to our endorsement construct in Lτ . Their type-directed com-
piler is proven to attain memory isolation as well as static and dynamic memory
safety. However, they do not consider general safety properties, nor a speci�c,
general criterion for compiler security.

Two of our target languages rely on capabilities for restricting access to sen-
sitive locations from the context. Although capabilities are not mainstream in
any processor, fully functional research prototypes such as Cheri exist [71]. Ca-
pability machines have previously been advocated as a target for e�cient secure
compilation [30] and preliminary work on compiling C-like languages to them
exists, but the criterion applied is FAC [69].

7 Conclusion

This paper has examined robustly safe compilation (RSC), a soundness criterion
for compilers with direct relevance to security. We have shown that the criterion
is easily realizable and may lead to more e�cient code than does fully abstract
compilation wrt contextual equivalence. We have also presented two techniques
for establishing that a compiler attains RSC . One is an adaptation of an existing
technique, backtranslation, and the other is based on inductive invariants.

Acknowledgements. The authors would like to thank Dominique Devriese, Akram
El-Korashy, C t lin Hriµcu, Frank Piessens, David Swasey and the anonymous review-
ers for useful feedback and discussions on an earlier draft.

This work was partially supported by the German Federal Ministry of Education
and Research (BMBF) through funding for the CISPA-Stanford Center for Cyberse-
curity (FKZ: 13N1S0762).

References

1. Martín Abadi. Secrecy by typing in security protocols. In TACS, pages 611�638,
1997.

2. Martín Abadi. Protection in programming-language translations. In Secure Inter-
net programming, pages 19�34. Springer-Verlag, London, UK, 1999.

3. Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-�ow in-
tegrity principles, implementations, and applications. ACM Trans. Inf. Syst. Se-
cur., 13(1):4:1�4:40, 2009.

4. Martín Abadi, Cédric Fournet, and Georges Gonthier. Authentication primitives
and their compilation. In Proceedings of the 27th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL '00, pages 302�315, New
York, NY, USA, 2000. ACM.

5. Martín Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation of
channel abstractions. Information and Computation, 174:37�83, 2002.

6. Martín Abadi and Gordon D. Plotkin. On protection by layout randomization.
ACM Transactions on Information and System Security, 15:8:1�8:29, July 2012.

7. Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora Evans,
Guglielmo Fachini, Catalin Hritcu, Théo Laurent, Benjamin C. Pierce, Marco
Stronati, and Andrew Tolmach. When good components go bad: Formally secure
compilation despite dynamic compromise. CCS '18, 2018.

8. Carmine Abate, Roberto Blanco, Deepak Garg, C t lin Hriµcu, Marco Patrignani,
and Jérémy Thibault. Journey beyond full abstraction: Exploring robust property
preservation for secure compilation. arXiv:1807.04603, July 2018.

9. Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. Secure compila-
tion to modern processors. In 2012 IEEE 25th Computer Security Foundations
Symposium, CSF 2012, pages 171�185. IEEE, 2012.

10. Amal Ahmed and Matthias Blume. Typed closure conversion preserves obser-
vational equivalence. In Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming, ICFP '08, pages 157�168, New York, NY,
USA, 2008. ACM.

11. Amal Ahmed and Matthias Blume. An equivalence-preserving CPS translation via
multi-language semantics. In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ICFP '11, pages 431�444, New York, NY,
USA, 2011. ACM.

12. José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. Jasmin: High-assurance and high-speed cryptography. In ACM
Conference on Computer and Communications Security, pages 1807�1823. ACM,
2017.

13. Bowen Alpern and Fred B. Schneider. De�ning liveness. Inf. Process. Lett.,
21(4):181�185, 1985.

14. Michael Backes, Catalin Hritcu, and Matteo Ma�ei. Union, intersection and re�ne-
ment types and reasoning about type disjointness for secure protocol implementa-
tions. Journal of Computer Security, 22(2):301�353, 2014.

15. Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure compilation of
side-channel countermeasures: the case of cryptographic �constant-time�. CSF'18,
2018.

16. Gilles Barthe, Tamara Rezk, and Amitabh Basu. Security types preserving com-
pilation. Computer Languages, Systems and Structures, 33:35�59, 2007.

17. Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon,
and Sergio Ma�eis. Re�nement types for secure implementations. ACM Trans.
Program. Lang. Syst., 33(2):8:1�8:45, February 2011.

18. Nick Benton and Chung-kil Hur. Realizability and compositional compiler correct-
ness for a polymorphic language. Technical report, MSR, 2010.

19. Gérard Berry and Gérard Boudol. The chemical abstract machine. Theor. Comput.
Sci., 96(1):217�248, 1992.

20. Gérard Boudol. Secure information �ow as a safety property. chapter Formal
Aspects in Security and Trust, pages 20�34. Springer-Verlag, Berlin, Heidelberg,
2009.

21. William J. Bowman and Amal Ahmed. Noninterference for free. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional Programming,
ICFP '15, New York, NY, USA, 2015. ACM.

22. Michele Bugliesi and Marco Giunti. Secure implementations of typed channel ab-
stractions. In Proceedings of the 34th annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL '07, pages 251�262, New York,
NY, USA, 2007. ACM.

23. Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hardware support
for fast capability-based addressing. SIGPLAN Not., 29:319�327, 1994.

24. Stephen Chong. Expressive and Enforceable Information Security Policies. PhD
thesis, Cornell University, August 2008.

25. Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur.,
18(6):1157�1210, September 2010.

26. Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, Karthikeyan Bhargavan,
and James Leifer. A secure compiler for session abstractions. Journal of Computer
Security, 16:573�636, 2008.

27. David Costanzo, Zhong Shao, and Ronghui Gu. End-to-end veri�cation of
information-�ow security for C and assembly programs. In PLDI, pages 648�664.
ACM, 2016.

28. Dominique Devriese, Marco Patrignani, Steven Keuchel, and Frank Piessens. Mod-
ular, Fully-Abstract Compilation by Approximate Back-Translation. Logical Meth-
ods in Computer Science, Volume 13, Issue 4, October 2017.

29. Dominique Devriese, Marco Patrignani, and Frank Piessens. Secure Compilation
by Approximate Back-Translation. In POPL 2016, 2016.

30. Akram El-Korashy. A Formal Model for Capability Machines � An Illustrative
Case Study towards Secure Compilation to CHERI. Master's thesis, Universitat
des Saarlandes, 2016.

31. Cédric Fournet, Andrew D. Gordon, and Sergio Ma�eis. A type discipline for
authorization policies. ACM Trans. Program. Lang. Syst., 29(5), August 2007.

32. Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-Yves
Strub, and Benjamin Livshits. Fully abstract compilation to JavaScript. In Pro-
ceedings of the 40th annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL '13, pages 371�384, New York, NY, USA, 2013.
ACM.

33. D. Garg, C. Hritcu, M. Patrignani, M. Stronati, and D. Swasey. Robust Hyperprop-
erty Preservation for Secure Compilation (Extended Abstract). ArXiv e-prints,
October 2017.

34. Andrew D. Gordon and Alan Je�rey. Authenticity by typing for security protocols.
J. Comput. Secur., 11(4):451�519, July 2003.

35. Daniele Gorla and Uwe Nestman. Full abstraction for expressiveness: History,
myths and facts. Math Struct Comp Science, 2014.

36. Chung-Kil Hur and Derek Dreyer. A Kripke logical relation between ML and
Assembly. SIGPLAN Not., 46:133�146, January 2011.

37. Radha Jagadeesan, Corin Pitcher, Julian Rathke, and James Riely. Local memory
via layout randomization. In Proceedings of the 2011 IEEE 24th Computer Security

Foundations Symposium, CSF '11, pages 161�174, Washington, DC, USA, 2011.
IEEE Computer Society.

38. Alan Je�rey and Julian Rathke. Java Jr.: Fully abstract trace semantics for a core
Java language. In ESOP'05, volume 3444 of LNCS, pages 423�438. Springer, 2005.

39. Yannis Juglaret, C t lin Hriµcu, Arthur Azevedo de Amorim, and Benjamin C.
Pierce. Beyond good and evil: Formalizing the security guarantees of compartmen-
talizing compilation. In 29th IEEE Symposium on Computer Security Foundations
(CSF). IEEE Computer Society Press, July 2016. To appear.

40. Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor
Vafeiadis. Lightweight veri�cation of separate compilation. POPL 2016, pages
178�190, 2016.

41. Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. Code-pointer integrity. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI'14, pages 147�
163, Berkeley, CA, USA, 2014. USENIX Association.

42. Adriaan Larmuseau, Marco Patrignani, and Dave Clarke. A secure compiler for
ML modules. In Programming Languages and Systems - 13th Asian Symposium,
APLAS 2015, Pohang, South Korea, November 30 - December 2, 2015, Proceedings,
pages 29�48, 2015.

43. Xavier Leroy. Formal certi�cation of a compiler back-end or: programming a com-
piler with a proof assistant. In POPL, pages 42�54, 2006.

44. Xavier Leroy. A formally veri�ed compiler back-end. J. Autom. Reasoning,
43(4):363�446, 2009.

45. Sergio Ma�eis, Martín Abadi, Cédric Fournet, and Andrew D. Gordon. Code-
Carrying Authorization, pages 563�579. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008.

46. Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Sha�,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In HASP '13, pages 10:1�10:1. ACM, 2013.

47. James H. Morris, Jr. Protection in programming languages. Commun. ACM,
16:15�21, 1973.

48. Georg Neis, Derek Dreyer, and Andreas Rossberg. Non-parametric parametricity.
SIGPLAN Not., 44(9):135�148, August 2009.

49. Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer,
and Viktor Vafeiadis. Pilsner: A compositionally veri�ed compiler for a higher-
order imperative language. In Proceedings of the 20th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2015, pages 166�178. ACM,
2015.

50. Max S. New, William J. Bowman, and Amal Ahmed. Fully abstract compilation
via universal embedding. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, pages 103�116, New York,
NY, USA, 2016. ACM.

51. Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, USA, 1999.

52. Joachim Parrow. General conditions for full abstraction. Math Struct Comp Sci-
ence, 2014.

53. Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and
Frank Piessens. Secure Compilation to Protected Module Architectures. ACM
Trans. Program. Lang. Syst., 37:6:1�6:50, April 2015.

54. Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches to secure
compilation a survey of fully abstract compilation and related work. ACM Comput.
Surv., 51(6):125:1�125:36, January 2019.

55. Marco Patrignani and Dave Clarke. Fully abstract trace semantics of low-level
isolation mechanisms. In Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC '14, pages 1562�1569. ACM, 2014.

56. Marco Patrignani and Dave Clarke. Fully abstract trace semantics for protected
module architectures. Computer Languages, Systems & Structures, 42(0):22 � 45,
2015.

57. Marco Patrignani, Dave Clarke, and Frank Piessens. Secure compilation of object-
oriented components to protected module architectures. In Proceedings of the 11th
Asian Symposium on Programming Languages and Systems (APLAS'13), volume
8301 of LNCS, pages 176�191, 2013.

58. Marco Patrignani, Dave Clarke, and Davide Sangiorgi. Ownership Types for the
Join Calculus. In FMOODS/FORTE 2011, volume 6722 of LNCS, pages 289�303,
2011.

59. Marco Patrignani, Dominique Devriese, and Frank Piessens. On Modular and
Fully Abstract Compilation. In Proceedings of the 29th IEEE Computer Security
Foundations Symposium, CSF 2016, 2016.

60. Marco Patrignani and Deepak Garg. Secure Compilation and Hyperproperties
Preservation. In Proceedings of the 30th IEEE Computer Security Foundations
Symposium CSF 2017, Santa Barbara, USA, CSF 2017, 2017.

61. Marco Patrignani and Deepak Garg. Robustly safe compilation or, e�cient, prov-
ably secure compilation. CoRR, abs/1804.00489, 2018.

62. Andrei Sabelfeld and David Sands. Declassi�cation: Dimensions and principles. J.
Comput. Secur., 17(5):517�548, October 2009.

63. Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
3(1):30�50, 2000.

64. Ian Stark. Names and Higher-Order Functions. PhD thesis, University of Cam-
bridge, December 1994. Also available as Technical Report 363, University of
Cambridge Computer Laboratory.

65. Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. Com-
positional compcert. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL '15, pages 275�287,
New York, NY, USA, 2015. ACM.

66. Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic sealing. In
Principles of Programming Languages, pages 161�172, 2004.

67. Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan
Chen, Pierre-Yves Strub, and Gavin Bierman. Gradual typing embedded securely
in javascript. SIGPLAN Not., 49(1):425�437, January 2014.

68. David Swasey, Deepak Garg, and Derek Dreyer. Robust and compositional veri�-
cation of object capability patterns. In Proceedings of the 2017 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2017. October 22 - 27, 2017, 2017.

69. Stelios Tsampas, Akram El-Korashy, Marco Patrignani, Dominique Devriese,
Deepak Garg, and Frank Piessens. Towards Automatic Compartmentalization of
C Programs on Capability Machines. In Workshop on Foundations of Computer
Security 2017 August 21, 2017, FCS 2017, 2017.

70. Dennis Volpano, Cynthia Irvine, and Geo�rey Smith. A sound type system for
secure �ow analysis. Journal of Computer Security, 4:167�187, 1996.

71. Jonathan Woodru�, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Nor-
ton, and Michael Roe. The CHERI Capability Model: Revisiting RISC in an Age
of Risk. In Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ISCA '14, pages 457�468, Piscataway, NJ, USA, 2014. IEEE Press.

72. Stephan Arthur Zdancewic. Programming Languages for Information Security.
PhD thesis, Cornell University, 2002.

	Robustly Safe Compilation

