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Abstract

We present a constructive authorization logic where the
meanings of connectives are defined by their associated in-
ference rules. This ensures that the logical reading of ac-
cess control policies expressed in the logic and their im-
plementation coincide. We study the proof-theoretic con-
sequences of our design including cut-elimination and two
non-interference properties that allow administrators toex-
plore the correctness of their policies by establishing that
for a given policy, assertions made by certain principals
will not affect the truth of assertions made by others.

1. Introduction

An authorization logicis a logic for access control in
distributed systems. An access control policy is presented
as a logical theory in an authorization logic, and a principal
is granted access to a resource if there is aformal proof that
he or she is authorized to do so according to the present
access control policy.

The study of authorization from a logical perspective
was initiated by Abadi et al. [4]. A number of different pro-
posals for authorization logics and supporting distributed
architectures have been made since then [2]. We are particu-
larly interested inproof-carrying authorization(PCA) [5, 6]
where a resource is presented with a formally checkable
proof object for authorization, expressed in a logical frame-
work. This is combined with a separate mechanism forau-
thenticationusing cryptographic techniques such as digi-
tal signatures. In combination, these provide a powerful,
flexible, and extensible foundation for access control in dis-
tributed systems [8].

In this paper we propose a particular authorization logic
and study it with proof-theoretic means. The following fea-
tures distinguish our logic from previous proposals along
similar lines. First, the logic is constructive, as opposedto
most previous proposals that are classical. This is done to
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keep evidence contained in proofs as direct as possible. For
example, Abadi [2] remarks that in a classical logic where
principalsK affirm all true propositions, we have that if
K affirmsA (written K says A), then eitherA is true or
K affirms the truth of every other propositionB (written
K says A ⊃ (A ∨ (K says B))). However, it is in
general impossible to come up with a proof ofeither A or
K says B given a proof ofK says A. In our logic this
classical reasoning does not hold.

The second fact that distinguishes our logic from other
authorization logics is that we define the meanings of con-
nectives only by the inference rules that introduce them,
without relying on any other semantics. This ensures that
the intended reading of logical propositions coincides with
the available formal proofs. Finally, we want our logic to
remain open to extensions with new connectives. This re-
quires that the meanings of connectives be independent of
each other. Formally this is documented in the form of a cut
elimination theorem and the subformula property for our
logic. To our knowledge, this is the first time that an access
control logic has been developed constructively, and that the
structure of proofs has been delineated precisely through a
cut elimination theorem.

Even with a good understanding of the authorization
logic it is possible for complex policies to have unintended
consequences. We therefore would like to give users and
administrators the ability to explore their policies. We pro-
pose the use ofnon-interference propertiesfor this pur-
pose. In this context, non-interference properties character-
ize classes of propositions whose presence or absence can
have no effect on the existence of proofs of certain other
propositions. For example, without explicit links between
principalsK andL, no assertions made byK (including
even contradictory statements) can influence the truth of as-
sertions made byL. We formalize and prove two such prop-
erties for our authorization logic. As far as we know this is
the first time that explicit non-interference properties for au-
thorization logics have been formulated and proved.

In summary, our paper makes two major conceptual con-
tributions. First, it introduces a new approach to designing
authorization logics based on principles of judgments and
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explicit evidence, in contrast with the prevalent axiomatic
approach. We believe that our approach makes it much eas-
ier to be confident in the correct interpretation and proper
enforcement of complex policies. Second, it introduces the
concepts of affirmation flow and non-interference for ac-
cess control policies and relates them to the proof-theoretic
property of strengthening. These take a quite different form
than the standard non-interference properties used to char-
acterize information flow.

The paper also makes two significant technical contri-
butions, namely a fully formalized proof of cut elimination
for an authorization logic, and a decidable approximation of
affirmation flow for automatic policy analysis. If we are to
generalize access control policies to admit complex logical
specification, then tools to analyze policy specifications to
uncover possibly unintended consequences will be a critical
component of future security infrastructures.

The remainder of this paper is organized as follows. In
section 2 we develop a sequent calculus for our authoriza-
tion logic and present its meta-theoretic properties. Sec-
tion 3 describes non-interference properties for reasoning
with policies written in our logic. Section 4 discusses re-
lated work and section 5 concludes with some directions
for future work.

2. Constructive Authorization Logic

Access control in a distributed system decomposes into
two distinct, but necessarily interconnected tasks:authen-
tication and authorization. Authentication requires us to
determine reliablywho is requesting access to a resource.
Authorization must answer the questionwhetherand, more
generally,why access should be granted. In this paper we
are concerned with authorization; we refer to other papers
regarding authentication and the surrounding protocols and
infrastructure currently being deployed at Carnegie Mellon
University in the Grey project [8].

From the problem statement itself it should be immedi-
ately clear that authorization is a question oflogic since we
are trying toreason aboutwhether a principal should have
access to a resource. But which logic should we use? There
have been several proposals in the literature (see [2] for a
recent survey), but we are not aware of a systematic devel-
opment and meta-theoretic analysis of authorization logic
from first principles. Such an analysis is necessary if we are
to properly understand the meaning of statements in an au-
thorization logic and the access control policies expressed
in it. Moreover, if access control decisions in an imple-
mented system are based on an authorization logic, then the
security of whole system rests critically on properties of this
logic. For example, if a principal makes contradictory state-
ments (which is quite plausible), we do not want the whole
logic to become inconsistent because this would give every

principal access to every resource. We will isolate some
desirable properties, design an authorization logic around
them, and then verify that these properties do indeed hold.
In fact, most of the properties have been formally verified
using the Twelf meta-logical framework [22] and are avail-
able on-line athttp://www.cs.cmu.edu/˜self/ .

2.1. Judgments and Verifications

In authorization logic, access to a resource is granted
precisely when presented with a proof that it should be. To
understand the meaning of a proposition in authorization
logic therefore requires us to understand its proofs. The
idea that the meaning of logical connectives is determined
by their proofs goes back to Gentzen [15]. Later, Martin-
Löf [18] introduced a distinction between judgments and
propositions which is crucial in our setting. We can give
here only a very brief sketch as it impacts our development;
the interested reader is referred to [21] for further justifi-
cations and discussions of the general approach in modal
logic. A judgmentmay beevidentby virtue of aproof.
Judgments are therefore the subjects of inference rules. The
most basic judgment is the truth of a propositionA, written
A true. The meaning of a propositionA is determined by its
verificationswhich are the proofs ofA true that proceed en-
tirely by analysis ofA. The cut elimination theorem tells us
how to construct a verification ofA given an arbitrary proof
and thereby shows that the meaning of the connectives has
been properly defined.

In this paper, we will concentrate on the cut-free sequent
calculus, which is a calculus ofverifications, that is, each
proof only analyzes the structure of the given propositions.
In other words, it obeys thesubformula property. We write
asequent

A1 true, . . . , An true =⇒ C true

to express “Under the hypotheses thatA1, . . . , An are all
true, C is true”. We will often omit the explicit judgment
true for the sake of brevity. We will abbreviate a collec-
tion of hypotheses asΓ and writeΓ =⇒ C true. We freely
permit reordering of hypotheses.

The first principle ofidentity pertains to the nature of
hypothetical reasoning: if we have a hypothesisA true we
should be able to concludeA true. We assume this for
atomic propositionsP as an explicit rule; we have to prove
it for compound propositionsA (see theorem 2, part 2).

Γ, P true =⇒ P true
INIT

The second principle ofcut states that if we can prove
thatA is true, we are justified in assuming it as a hypothesis:
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If Γ =⇒ A true andΓ, A true =⇒ C true then
Γ =⇒ C true.

We have to prove this (see theorem 2, part 4); if it were
formulated as an inference rule it would violate the nature
of verifications because the propositionA does not appear
in the conclusion judgmentΓ =⇒ C true.

The first logical connective we introduce is implication.
Each connective◦ is characterized byright rules that show
how to verifyA◦B true, andleft rulesthat show how to use
the hypothesisA◦B true. Here we have one each, hopefully
self-explanatory. They are most easily understood when
read bottom-up.

Γ, A true =⇒ B true

Γ =⇒ A ⊃ B true
⊃R

Γ =⇒ A true Γ, B true =⇒ C true

Γ, A ⊃ B true =⇒ C true
⊃L

We use the convention that the principal proposition of the
left rule (A ⊃ B in the second rule) is still available in
all premises, even though it is not explicitly written down
again in order to save space and draw attention to the more
essential features of the rule.

We can also add the propositionfalse(⊥). It has no right
rule, because there should be no verification of⊥ unless the
hypotheses are contradictory, and a left rule that allows us
to infer anything.

no⊥ right rule Γ,⊥ true =⇒ C true
⊥L

Even though we have included⊥ as a connective, we
do not advocate its use in access control policies because
we believe it is a security risk.⊥ can be used to define
negation as¬A = A ⊃ ⊥, which expresses the fact thatA
does not hold. This can be very difficult to verify as it may
require looking at all facts in the system, including those on
remote sites. If access to a resource depends on¬A, we run
the risk of inadvertently granting access simply because we
failed to discoverA on some site in the system.

2.2. Affirmation

Gentzen and Martin-Löf were mainly concerned with
truth of propositions because of its central role in mathe-
matics. However, in authorization logic the principals have
to expressintent or policy. So in addition to the truth of a
proposition (which is independent of any particular princi-
pal), we have a new judgment formK affirms A, stating
that principalK affirms propositionA. Note that the logic
does not make any particular commitment to a set or lan-
guage of principals because the logical reasoning does not
depend on it.

When should we be able to conclude thatK affirms A?
The first rule states that ifA true thenK affirms A.

Γ =⇒ A true

Γ =⇒ K affirms A
AFF

How do we use the knowledge thatK affirmsA? We can-
not simply assume thatA is true because by using the rule
above, any principal would then affirmA. However, if we
are trying to prove that the same principalK affirms some
C, then it is perfectly legitimate to assume thatA is true,
because we are currently insideK ’s mind, so to speak.

Γ, A true =⇒ K affirms C

Γ, K affirms A =⇒ K affirms C

The restriction of this rule to the same principalK is cru-
cial and the basis of non-interference properties. It turns
out to be convenient to limit ourselves to hypotheses of the
form A true. We can achieve this by only always eliminat-
ing K affirms A immediately when such an assumption is
introduced. ThesaysL rule below is an example of this
kind.

The new judgment entails a new cut principle that relates
the two rules above:

If Γ =⇒ K affirms A and
Γ, A true =⇒ K affirms C then
Γ =⇒ K affirms C.

Note the accordance of the principalsK in the two given
deductions.

K affirms C is a judgment, not a proposition. We there-
fore cannot use it inside propositions, for example, in an
argument to implication. Thus we need to internalize the
judgment as a new form of proposition with proper left and
right rules to define when it is true. We write this proposi-
tion asK says A.

Γ =⇒ K affirms A

Γ =⇒ (K says A) true
saysR

Γ, A true =⇒ K affirms C

Γ, (K says A) true =⇒ K affirms C
saysL

Note that the premises of the left and right rule match up
exactly in the way predicted by the second cut principle.
This ensures that the proof of cut elimination goes through
in this case and justifies these rules.

The introduction of a new judgment also requires us to
generalize the previously introduced left rules to allow a
conclusion of theK affirms C. We writeγ for a judgment
of the formC true or K affirms C. The resulting collection
of rules is summarized in Figure 1 at the end of this section.
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We can now state and prove some simple theorems in ac-
cess control logic. Perhaps equally important are properties
that cannot be proved parametrically inA, B, K, K1 and
K2. We use the convention that thesays operator binds
more tightly than other logical operators, although some-
times we make parentheses explicit for the sake of clarity.
We write` A for · =⇒ A true and 6` A if · =⇒ A true is
not derivable in the given generality.

` A ⊃ (K says A)
` (K says (A ⊃ B)) ⊃ (K says A) ⊃ (K says B)
` (K says (K says A)) ⊃ (K says A)
6` (K says A) ⊃ A
6` (K says ⊥) ⊃ ⊥
6` (K1 says A) ⊃ (K2 says A)

The fourth proposition,(K says A) ⊃ A is an example
of something not true in general where particular instances
may either be true (for example, the one right above) or false
(for example, the one just below).

It is very easy to show that the last three propositions are
not provable: try to construct a sequent derivation using the
given rules and the proof attempt will fail after one or two
steps. This demonstrates, for example, that even contradic-
tory statements by a principalK do not imply inconsistency
of the logic.

2.3. Quantification

First-order quantification can now be added in a stan-
dard and straightforward way. We introduce sortss the
extent of which is open-ended, except that we explicitly
postulate a sortprincipal of principalsK. Quantification
over principals is necessary, for example, to model groups
and other, more complex, access control mechanisms. We
usec for parameters introduced in a derivation andt for
general terms. We track all constants and parameters that
may occur in a sequent in a signatureΣ which has the form
c1:s1, . . . , cn:sn, and in which no constant may be declared
more than once. If necessary we choose names so as to
avoid re-declaration. We writeΣ ` t : s for the standard
judgment that termt has sorts. We further assume that all
predicate and function symbols prescribe sorts for their ar-
guments, and that their usage respects these declarations.
We writeA(x) to denote a propositionA with possible oc-
currences of the variablex andA(t) for the result of replac-
ing all occurrences ofx by t.

The main sequent now has the formΣ; Γ =⇒ A true for
a signatureΣ, contextΓ, and propositionA. Σ is added
to all prior rules, but never changes from conclusion to
premises. In addition, we have the following right and left
rules for universal quantification,∀x:s. A(x), which binds

the variablex.

Σ, c:s; Γ =⇒ A(c) true

Σ; Γ =⇒ (∀x:s. A(x)) true
∀R

Σ ` t : s Σ; Γ, A(t) true =⇒ γ

Σ; Γ, (∀x:s. A(x)) true =⇒ γ
∀L

For Σ, c:s to be well-formed in the∀R rule,c must be new
which is therefore an implicit side condition.

2.4. Meta-Theory

The meta-theory of the logic is relatively straightforward
given the careful justification of the rules. We assume here
weakening as well as a substitution property for sorts:If
Σ ` t : s andΣ, c:s ` t′ : s′ thenΣ ` [t/c]t′ : s′, where
[t/c]t′ denotes the result of substitutingt for c in t′.

Theorem 2

1. (Weakening) IfΣ; Γ =⇒ γ thenΣ; Γ, A true =⇒ γ
andΣ, c:s; Γ =⇒ γ.

2. (Identity)Σ; Γ, A true =⇒ A true for any proposition
A.

3. (Substitution) IfΣ ` t : s and Σ, c:s; Γ =⇒ γ then
Σ; [t/c]Γ =⇒ [t/c]γ

4. (Cut) IfΣ; Γ =⇒ A true andΣ; Γ, A true =⇒ γ then
Σ; Γ =⇒ γ.

5. (Affirmation Cut) IfΣ; Γ =⇒ K affirms A and
Σ; Γ, A true =⇒ K affirms C then Σ; Γ =⇒
K affirms C.

Proof. Weakening follows by induction on the structure of
the given derivation. Identity follows by induction on the
structure ofA. Substitution follows by induction on the
structure of the second given derivation, using our assump-
tion about the substitution property for sorting as needed.

Cut and affirmation cut follow simultaneously by nested
induction, first on the structure of the propositionA, second
on the structure of the two given derivations. �

The structure of the proof of the cut principles follows a
prior proof by the second author [20] and has been formal-
ized in the Twelf meta-logical framework. The cut elimina-
tion theorem proper, namely that if we formulate cut as an
inference rule it can be eliminated from any sequent deriva-
tion, follows by a straightforward induction from part 4
above, as in [20]. The judgmental methodology entails a
formulation where the definitions of the connectives are in-
dependent of one another and depend only on the underly-
ing judgments. This means it is straightforward to add other
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Σ;Γ, P true =⇒ P true
INIT

Σ;Γ =⇒ A true Σ ` K : principal

Σ;Γ =⇒ K affirms A
AFF

Σ; Γ, A true =⇒ B true

Σ; Γ =⇒ A ⊃ B true
⊃R

Σ; Γ =⇒ A true Σ;Γ, B true =⇒ γ

Σ;Γ, A ⊃ B true =⇒ γ
⊃L

no⊥ right rule Σ; Γ,⊥ true =⇒ γ
⊥L

Σ;Γ =⇒ K affirms A

Σ; Γ =⇒ (K says A) true
saysR

Σ; Γ, A true =⇒ K affirms C

Σ;Γ, (K says A) true =⇒ K affirms C
saysL

Σ, c:s; Γ =⇒ A(c) true

Σ;Γ =⇒ (∀x:s. A(x)) true
∀Rc

Σ ` t : s Σ; Γ, A(t) true =⇒ γ

Σ;Γ, (∀x:s. A(x)) true =⇒ γ
∀L

Principal propositions of left rules implicitly remain available
in all premises.γ stands forK affirms C or C true

Figure 1. Rules for authorization logic

connectives, such as conjunction, disjunction, or existential
quantification while preserving theorem 2. We omit the de-
tails.

The logic itself is related to lax logic [14] in the formu-
lation of Pfenning and Davies [21], except that we use a se-
quent calculus here instead of natural deduction. For each
principal K, the judgmentK affirms A is a judgment of
lax truth, with no direct interaction between different prin-
cipals. Hence, each “K says ” forms a strong monad [19]
as familiar from functional programming [24]. There, mon-
ads provide a means of isolating pure computations from
effects; here the monads isolate the intentions of the prin-
cipals from each other. The Dependency Core Calculus
(DCC) [3] uses a family of strong monads indexed by el-
ements of a lattice to model security levels in systems in a
generic manner. Non-interference theorems similar to our
property 1 (section 3) hold in this calculus also.

Authorization logics have sometimes been characterized
as epistemic logics or belief logics, whereK says A is

interpreted as “K believesA” or “ K knowsA”. We be-
lieve that this is not quite the right view. In authorization
logics, truth and intent are freely shared. There are no se-
crets. Instead, the logic serves to relate truth and the intents
of different principals. For example,A ⊃ (K says A) is
true in our authorization logic and expresses that everyone
is prepared to affirm true propositions. On the other hand,
in epistemic logics it isnot the case thatA ⊃ �KA: not
everyone knowsA just because it is true.

3. Non-Interference Properties

Non-interference properties, in our context, characterize
classes of propositions whose presence or absence has no
effect on proofs of certain other propositions. They can be
used by policy administrators and users to explore the con-
sequences and verify the correctness of policies expressed
in the logic. In this section, we develop and prove two
such properties. These are theorems of the following form:
Σ; Γ, A =⇒ γ if and only if Σ; Γ =⇒ γ, provided some
non-interference conditionholds onΣ, Γ, A andγ.1 The
two properties differ in the non-interference condition that
must hold. In general, there is a trade-off between the ex-
pressiveness of the property and the ease of verifying the
associated non-interference condition.

We use the termformula to mean a proposition or an
affirmation (K affirms A). Before we describe our non-
interference properties, we develop the notion ofsignson
formulas. Given a formulaA, we can associate a sign
g ∈ {+,−} to it. This is written asAg. The notion of
subformula (denoted by≤) extends to signed subformulas
and affirmations by the inductive rules given below. We use
g, g′, g′′ to denote arbitrary signs and̄g to denote the sign
complementary tog.

Ag ≤ Ag
A

g ≤ B
g′

B
g′

≤ C
g′′

A
g ≤ C

g′′

Aḡ ≤ (A ⊃ B)g Bg ≤ (A ⊃ B)g

A(t)− ≤ (∀x:s.A(x))− A(c)+ ≤ (∀x:s.A(x))+

(K affirms A)g ≤ (K says A)g Ag ≤ (K affirms A)g

We say thatAg is a signed subformula of a sequent
Σ; Γ =⇒ γ if either Ag ≤ γ+ or for someB ∈ Γ,
Ag ≤ B−. The sign of a subformula of a sequent com-
pletely determines whether the subformula will occur as an
assumption or a conclusion in a cut-free proof of the se-
quent. This is formalized by lemma 2.

1We drop the judgmenttrue from A true and simply writeA because
this does not cause any ambiguity.

5



Lemma 2 (Signed subformula property) If
Σ′; Γ′, A =⇒ γ′ is a sequent occurring in a cut-free
proof of Σ; Γ =⇒ γ, then A− and γ′+ are signed
subformulas ofΣ; Γ =⇒ γ.

Our first non-interference property (shown below) is
simple and probably obvious, but it has important conse-
quences in the authorization logic. In particular, it can be
used toformally show that statements made by principals
other than those mentioned explicitly in a policy have no
consequence on decisions made using the policy.

Property 1 (First non-interference property) Suppose
K does not occur free inΓ and γ, and the sequent
Σ; Γ =⇒ γ does not have any signed subformula of the
form (∀x:principal.A(x))−. ThenΣ; Γ, K says B =⇒ γ
if and only ifΣ; Γ =⇒ γ.

Proof. In the “if” direction by weakening and “only if”
direction by induction on the given derivation. �

Example 1.Figure 2 shows the policies of three principals:
a companyBCL, its parent companyBigCo and a service
companyS that assesses if employees ofBigCo work hard.2

Let Σe; Γe represent this policy in our logic, i.e., letΣe =
{BCL : principal, BigCo : principal, S : principal, john :
person} and let Γe be the set of all five policy state-
ments in figure 2. Then for any principalK distinct from
BigCo, BCL andS, and for everyx, K does not occur inΓe

andS says employee(x, BigCo). Also, there are no neg-
ative occurrences of a universal quantifier over principals
in Σe; Γe =⇒ S says employee(x, BigCo). We can ap-
ply property 1 to conclude thatΣe; Γe, K says B =⇒
S says employee(x, BigCo) if and only if Σe; Γe =⇒
S says employee(x, BigCo). Thus, statements made by
principals other than those occurring explicitly in the policy
have no effect on conclusions drawn byS regarding who
the employees ofBigCo are. The same analysis works if we
replaceS by BigCo or BCL.

Property 1 is too weak to let us conclude anything about
hypotheses of the formBigCo says B, BCL says B and
S says B, because each of these three principals occurs in
the policy. The property can be used to show that “irrele-
vant” principals (those that are not mentioned in a policy)
cannot inadvertently or maliciously affect decisions made
from the policy.

3.1. Non-Interference Through Affirmation
Flow Analysis

In many cases, we can examine a policy to determine pairs
of principals(K1, K2) such that an affirmation of the truth

2This example is based on an example in [13].

Policy ofBCL:
BCL says employee(john, BCL)

Policy ofBigCo:
BigCo says ∀x : person.

(BCL says employee(x,BCL) ⊃ employee(x,BCL))
BigCo says ∀x : person.

(employee(x,BCL) ⊃ employee(x, BigCo))
BigCo says ∀x : person.

(S says workshard(x) ⊃ workshard(x))

Policy ofS:
S says ∀x : person.

(BigCo says employee(x,BigCo) ⊃ employee(x, BigCo))

Figure 2. Policies of principals for example 1

of some formula byK1 may result in the affirmation of truth
of some other formula byK2. For example, consider a pol-
icy which contains the formulasK1 says A ⊃ K2 says B
andK2 says B′ ⊃ K3 says C. SupposeK1 makes an as-
sertion of the formK1 says A′. Then, up to a very coarse
approximation, it is possible that this assertion will leadto
the truth ofK2 says B, which might result in the truth of
K3 says C. In this case we say thataffirmation may flow
fromK1 to K3. The related analysis is called anaffirmation
flow analysis.

If we can determine that affirmation cannot flow fromK1

to K3 in some policy, then we can safely say that statements
made byK1 will not affect statements concluded byK3

using the policy. Such a result has a strong flavor of a non-
interference property. In this subsection, we will formalize
the idea of affirmation flow analysis and use it to obtain a
non-interference property. As it turns out, it is not enough
to consider just principals for affirmation flow analysis. We
will consider a richer set of symbols over which we perform
the analysis.

Throughout this subsection, we impose two restrictions
on the logical formulas we consider. First, we assume that
there are no positive occurrences of the universal quantifier
over principals in our formulas. This may appear to be a
big restriction, but we are yet to come across any policy
that uses such a quantification in its encoding. The reason
for this is that a positively occurring universal quantifierex-
pressescreationof fresh principals. Even though the im-
plementation of a policy may require creation of principals,
the specification usually does not. Second, we assume that
first order function symbols do not generate principals. This
also does not appear to be a significant restriction in prac-
tice. Together these restrictions imply that if a principalK
occurs in a cut-free proof of the sequentΣ; Γ =⇒ γ, then
K:principal ∈ Σ.
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We now formalize our non-interference property based
on affirmation flow analysis. LetP denote predicate sym-
bols. First we define the class ofsymbolsL.

L ::= P | ⊥ | K.L

During our analysis, we use sets of symbols to abstract over
formulas. Briefly, the non-interference property works as
follows. We define a functionps, indexed by signatures
Σ, that maps a formulaA to a set of symbolspsΣ(A).
Informally speaking, this set contains every possible sym-
bol K1 . . . Kn.P , such that the truth ofA may imply the
truth of K1 says . . .Kn says P . Next, given a sequent
Σ; Γ =⇒ γ, we construct anaffirmation flow pre-order
(�) between symbols based on this sequent. The non-
interference property says that if for someA ∈ Γ, it is the
case that theredo notexistL1 ∈ psΣ(A) andL2 ∈ psΣ(γ)
such thatL1 � L2, thenA has no effect on the conclusion
γ, i.e.,Σ; Γ =⇒ γ if and only if Σ; Γ\A =⇒ γ.

LetL denote a set of symbols. IfL = {L1, . . . , Ln}, we
defineK.L to be the set{K.L1, . . . , K.Ln}. Now we de-
fine theΣ-indexed mapps from formulas to sets of symbols
as follows.

psΣ(⊥) = {⊥}
psΣ(P t1 . . . tn) = {P}
psΣ(A ⊃ B) = psΣ(B)
psΣ(K says A) = K.psΣ(A)
psΣ(∀x:s.A(x)) = psΣ(A(x)) (s 6= principal)
psΣ(∀x:principal.A(x)) =

S

(K:principal∈Σ) psΣ(A(K))

psΣ(K affirms A) = K.psΣ(A)

Next, we develop a sequent calculus that lets us reason
with affirmation flow between symbols. This calculus is the
basis of our affirmation flow analysis. The calculus works
with ordering formulasF , defined by the following gram-
mar.

F ::= L1 � L2 | K.F

L1 � L2 is an assertion that affirmation may flow from
the symbolL1 to the symbolL2. K.F is an assertion of
F , which can be used only when we are reasoning about
statements made by principalK. We useΦ to denote multi-
sets of ordering formulas. Figure 3 describes the sequent
calculus for reasoning with ordering formulas. It uses only
one judgment:Φ ⇒ L1 � L2. This judgment should be
read as follows: given that the assumptions inΦ hold, we
can conclude that affirmation may flow fromL1 to L2.

Theorem 3 The sequent calculus of figure 3 satisfies the
following properties.

1. (Weakening) IfΦ ⇒ L1 � L2, thenΦ, F ⇒ L1 � L2.

2. (Contraction) IfΦ, F, F ⇒ L1 � L2, thenΦ, F ⇒
L1 � L2.

Φ ⇒ P � P Φ ⇒ ⊥ � L

Φ ⇒ L � L
′

Φ ⇒ L � K.L
′

Φ ⇒ L � K.L
′

Φ ⇒ K.L � K.L
′

Φ, K.F, F ⇒ L � K.L
′

Φ, K.F ⇒ L � K.L
′

Φ, L1 � L2 ⇒ L3 � L1 Φ, L1 � L2 ⇒ L2 � L4

Φ, L1 � L2 ⇒ L3 � L4

Figure 3. Sequent calculus for reasoning with
ordering formulas

3. (Transitivity) IfΦ ⇒ L1 � L2 andΦ ⇒ L2 � L3,
thenΦ ⇒ L1 � L3.

4. (Admissibility of cut) IfΦ ⇒ L1 � L2 andΦ, L1 �
L2 ⇒ L � L′, thenΦ ⇒ L � L′.

5. (Reflexivity)Φ ⇒ L � L.

6. (Identity)Φ, L � L′ ⇒ L � L′.

Proof. Weakening and contraction follow by induction on
the given derivations. Transitivity can be proved by a simul-
taneous induction on both given derivations. Admissibility
of cut follows by induction on the second given derivation,
using transitivity as needed. Reflexivity can be proved by
induction onL and identity follows from reflexivity using
one application of the last rule in figure 3. �

The sequent calculus of figure 3 is designed to make it
easy to prove the above theorem and property 2. However, it
is not immediate that this calculus is decidable. This can be
proved by constructing an alternate sequent calculus equiv-
alent to this one, as shown in Appendix A.

Theorem 4 The sequent calculus of figure 3 is decidable,
i.e., given anyΦ, L1 andL2, it is decidable whetherΦ ⇒
L1 � L2 or not.

Proof. See Appendix A. �

If Φ = {F1, . . . , Fn}, we define K.Φ =
{K.F1, . . . , K.Fn}. Next we define a function that
obtains the affirmation flow information of a signed for-
mula. Formally, this is aΣ-indexed function that maps a
signed formula to a set of ordering formulasΦ. We call
this functionARΣ. It is described below. Note that there is
no rule definingARΣ((∀x:principal.A(x))+) because we
have assumed that there are no positive occurrences of the
universal quantifier over principals.
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ARΣ(⊥g) = {}
ARΣ((P t1 . . . tn)g) = {}
ARΣ((A ⊃ B)+) = ARΣ(A−) ∪ARΣ(B+)
ARΣ((A ⊃ B)−) = ARΣ(A+) ∪ ARΣ(B−) ∪

{L1 � L2 | L1 ∈ psΣ(A), L2 ∈ psΣ(B)}
ARΣ((K says A)g) = K.ARΣ(Ag)
ARΣ((∀x:s.A(x))g) = ARΣ(A(x)g) s 6= principal

ARΣ((∀x:principal.A(x))−) =
S

(K:principal∈Σ) ARΣ(A(K)−)

ARΣ((K affirms A)+) = K.ARΣ(A+)

Finally we define theaffirmation flow pre-order(�)
of a sequentΣ; Γ =⇒ γ. Let Γ = A1, . . . , An and
Φ = ARΣ(A−

1 ) ∪ . . . ∪ ARΣ(A−

n ) ∪ ARΣ(γ+). Then
the affirmation flow pre-order of this sequent is the binary
relation� between symbols such thatL1 � L2 if and only
if Φ ⇒ L1 � L2. Note that� is a pre-order because of the
reflexivity and transitivity properties from theorem 3.

Property 2 (Second non-interference property)Let
� be the affirmation flow relation for the sequent
Σ; Γ, A =⇒ γ, and suppose that theredo not exist
L1 ∈ psΣ(A) andL2 ∈ psΣ(γ) such thatL1 � L2. Then
Σ; Γ, A =⇒ γ if and only ifΣ; Γ =⇒ γ.

Proof. By weakening in the “if” direction and by induction
on the structure of the derivationΣ; Γ, A =⇒ γ in the other
direction. �

Example 2. Let Σe; Γe represent the policy in fig-
ure 2. Consider the sequentΣe; Γe, BigCo says

employee(x, y) =⇒ BCL says employee(z, u) for any
x, y, z, u. Then the affirmation flow pre-order of this se-
quent isL1 � L2 if and only if Φ ⇒ L1 � L2, where

Φ = {BigCo.(BCL.employee � employee),
BigCo.(employee � employee),
BigCo.(S.workshard � workshard)
S.(BigCo.employee � employee)}

By definition psΣe

(BigCo says employee(x, y)) =
{BigCo.employee} and psΣe

(BCL says

employee(z, u)) = {BCL.employee}. It is very
easy to show using the rules of figure 3 that
Φ 6⇒ BigCo.employee � BCL.employee. Consequently
by property 2, we can conclude thatΣe; Γe, BigCo says

employee(x, y) =⇒ BCL says employee(z, u) if and only
if Σe; Γe =⇒ BCL says employee(z, u), which is to say
that statements regarding the predicateemployee by BigCo

do not influence the truth of similar statements byBCL.
Property 2 applies in a large number of cases, but

verifying its associated non-interference condition requires
reasoning with the sequent calculus in figure 3, which
can be cumbersome in some cases, if done manually. We
see this property as a valuable tool for reasoning about
policies expressed in our logic using an automated decision
procedure for the sequent calculus in figure 3, which is

Policy ofKa:
Ka says isHospital(Kc)

Ka says isHospital(Kd)

Ka says ∀x, y : person.

isPhysicianOf(x, y) ⊃ readMedRec(x, y)

Ka says ∀x, y : person. ∀k : principal.

isHospital(k) ⊃
(k says isPhysicianOf(x, y)) ⊃
isPhysicianOf(x, y)

Ka says ∀k1, k2, k : principal.

isHospital(k1) ⊃ isHospital(k2) ⊃
(k1 says isHospital(k)) ⊃ (k2 says isHospital(k)) ⊃
isHospital(k)

Policy ofKb:
Kb says isPhysicianOf(alice, peter)

Policy ofKc:
Kc says isHospital(Kb)

Policy ofKd:
Kd says isHospital(Kb)

Figure 4. Policies of four hospitals

decidable (theorem 4). Efficient implementation of such a
decision procedure is a subject of immediate future work.
The next example describes a more complicated policy
where property 2 can be used.

Example 3. The policies of four hospitalsKa, Kb, Kc

andKd are shown in figure 4.3 The policies govern physi-
cians’ access to medical records of patients. The propo-
sition readMedRec(x, y) means thatx can read the med-
ical records ofy. Ka’s policy can be summarized as fol-
lows. Ka believes that the principalsKc andKd are hos-
pitals. Ka grantsx access toy’s medical records if it be-
lieves thatx is y’s physician.Ka trusts all hospitals’ state-
ments regarding physician-patient relationships. Finally, if
two hospitals affirm that a principal is a hospital,Ka is
willing to believe this claim. It is quite easy to show that
Ka says readMedRec(alice, peter) is provable with this
policy.

According to Ka’s policy, it believes other hospi-
tals’ statements regarding the predicatesisHospital and
isPhysicianOf only. It does not directly trust other hos-
pitals’ statements regarding the predicatereadMedRec. In
particular, if Kb says readMedRec(x, y) for any per-
sonsx, y, then this should not influence the provability

3This example is based on an example in [23].
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of Ka says readMedRec(x, y). Formally, let Σe =
{Ka : principal, Kb : principal, Kc : principal, Kd :
principal, alice : person, peter : person} be the set
of all terms under consideration and letΓe be the set of
all policy statements in figure 4. Then we want to show
that for anyx, y, Σe; Γe, Kb says readMedRec(x, y) =⇒
Ka says readMedRec(x, y) only if Σe; Γe =⇒ Ka says

readMedRec(x, y).
We can prove this result using property 2. Consider the

affirmation flow pre-order of the sequentΣe; Γe, Kb says

readMedRec(x, y) =⇒ Ka says readMedRec(x, y). This
pre-order isL1 � L2 if and only if Φ ⇒ L1 � L2, where

Φ = {Ka.(isPhysicianOf� readMedRec),
Ka.(isHospital � isPhysicianOf),
Ka.(Ka.isHospital � isPhysicianOf),
Ka.(Kb.isHospital � isPhysicianOf),
Ka.(Kc.isHospital � isPhysicianOf),
Ka.(Kd.isHospital � isPhysicianOf),
Ka.(isHospital � isHospital),
Ka.(Ka.isHospital � isHospital),
Ka.(Kb.isHospital � isHospital),
Ka.(Kc.isHospital � isHospital),
Ka.(Kd.isHospital � isHospital)}

We observe thatpsΣe

(Ka says readMedRec(x, y)) =
{Ka.readMedRec} and psΣe

(Kb says

readMedRec(x, y)) = {Kb.readMedRec}. Thus, if we
can show thatΦ 6⇒ Kb.readMedRec � Ka.readMedRec,
we can use property 2 to conclude thatΣe; Γe, Kb says

readMedRec(x, y) =⇒ Ka says readMedRec(x, y) if
and only ifΣe; Γe =⇒ Ka says readMedRec(x, y). The
former can be shown using the sequent calculus in figure 3,
but this is a tedious exercise to perform manually. Using
an automated decision procedure for this calculus would
enable verification of this fact easily.

4. Further Related Work

We only touch here upon some of the most closely re-
lated work. Further pointers to the literature can be found
in a survey by Abadi [2].

The study of access control with logical means was ini-
tiated by Abadi et al. [4]. Their system was a classical
propositional logic with a rich algebra of principals. They
presented a Kripke semantics for which the axioms and in-
ference rules were sound. However, they were complete
only for a fragment. The system was axiom-based and no
proof-theoretic analysis or non-interference propertieswere
given. Here we avoid a complex calculus of principals by
allowing first-order quantification over principals to express
concepts such as groups. This comes at the cost of a pri-
ori undecidability, which, however, has not been a problem

in the setting of proof-carrying authorization [5, 6] (PCA),
where distributed theorem proving procedures appear to be
efficient enough in practice [9]. We believe that it is possi-
ble to extend our logic with further judgments or proposi-
tion to deal with more complex principals where a mapping
to first-order quantification may be undesirable (as perhaps
in [1]).

Another concept studied by Abadi et al. is delegation of
rights among principals. Delegation of rights related to spe-
cific predicates can be readily encoded in the logic we have
presented. There is also a more general form of delegation
where a principal delegates another principal the right to
makeanystatements on its behalf. While there is a method
to systematically extend our logic to include such delega-
tion, we do not present it here, because we believe that such
delegation is a security risk for policies. The problem with
general delegation is that it extends to all predicates, includ-
ing those that the delegating principal may not be aware of.

The logic underlying proof-carrying authorization [5, 6]
has been explicitly designed as a (classical) higher-order
logic. This makes a meta-theoretic analysis of the logic and
policies expressed in it extremely difficult because proof
calculi will not obey the subformula property. Besides an
argument for consistency, no analysis of non-interference
properties of this logic has been provided. We advocate a
more tractable logic such as the one presented here since
the logical calculus is part of the trusted computing base of
a PCA architecture implementation such as the Grey sys-
tem [8] and should therefore be easy to understand and ana-
lyze, ideally with formal verification tools as we have done.

A logic that more closely resembles ours is the one un-
derlying Binder [13]. Even though Binder is first-order,
queries are decidable in polynomial time because it is de-
rived from the Datalog fragment of first-order logic. The
Binder logic appears to be intuitionistic because on Horn
formulas intuitionistic and classical logic coincide. How-
ever, the logical status of the modal operators, their non-
interference, or other properties of proofs are not ana-
lyzed. We conjecture that a similarly decidable Datalog-
inspired restriction exists for our logic and plan to inves-
tigate this in future work. There are several other propos-
als [10, 17, 16, 12] for authorization logics based on Datalog
and its extensions, but like Binder, they do not analyze the
logical status of their operators, or non-interference.

Rueß and Shankar’s Cyberlogic [23] is a more expressive
logic in that one can reason about more than just authoriza-
tion. It is constructed along similar lines as the Binder logic
in that interesting fragments permit a logic programming
interpretation and that it is intuitionistic, just like ourlogic.
However, no analysis ofattestation(the analogue ofaffir-
mation) in terms of standard modal logic concepts or proof
theory is provided, and some of the axioms such as distribu-
tion of attestation over disjunction and implication are ques-
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tionable from our point of view. Proving non-interference
properties for Cyberlogic appears to be difficult.

5. Conclusion

We have presented a new constructive authorization
logic developed from judgmental principles, which yields
a clean proof theory, an analysis of the meaning of the
connectives from their proof rules, and is inherently open-
ended and extensible. We have shown that the logic itself
satisfies some non-interference properties between princi-
pals and provided some high-level tools for analyzing poli-
cies expressed in the authorization logic. We believe it is
a promising logic for reasoning about authorization in gen-
eral, and also a good foundation for the implementation of
a proof-carrying authorization infrastructure where policy
enforcement is directly based on proof objects.

There are several avenues for future work besides those
mentioned with the related work. One is to consider
whether one should integrate certificate revocation in a
more logical manner than standard techniques using revo-
cation lists or short-lived certificates. Another is whether
explicit reasoning about time should be integrated into the
logic via temporal operators. Either of these might change
the character of the logic significantly and complicate its
analysis and the interpretation of the statements made in it.

Another promising direction is the integration oflinear
reasoningwhich can support consumable credentials and
therefore electronic transactions. Intuitionistic linear logic
is fully compatible with lax logic [11, 25] and therefore
with the family of monads indexed by principals we devel-
oped here. The logic design based on judgmental principles
means that such an extension will be conservative over the
logic presented here, so that the present non-interference
properties will continue to hold. The difficulty then appears
not to be the logical reasoning, but the design of an en-
forcement mechanism to support consumable credentials at
the right level of atomicity that is consistent with the logic.
See [7] for some initial developments in this direction.
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A. Decidability of Ordering Formulas

This appendix shows that the sequent calculus for order-
ing formulas given in figure 3 is decidable. This is done in
two steps. First we construct another sequent calculus for
reasoning with ordering formulas and show that it is equiv-
alent to the one given in figure 3. In the second step, we
show that the new calculus is decidable.

The second calculus we consider is shown in figure 5. It
differs from the first calculus only in the premises of the last
two rules. We denote its sequents using the arrow⇒D.

We first show that the calculi in figure 3 and 5 are equiv-
alent in the sense thatΦ ⇒ L1 � L2 if and only if
Φ ⇒D L1 � L2. We need a few lemmas about the two
calculi.

Lemma 3 (Properties of calculus in figure 3) 1. If
Φ, F, K.F ⇒ L1 � L2, thenΦ, F ⇒ L1 � L2.

2. If Φ, L1 � L2 ⇒ L3 � L1, thenΦ ⇒ L3 � L1.

3. If Φ, L1 � L2 ⇒ L2 � L3, thenΦ ⇒ L2 � L3.

Proof. In each case by induction on the given derivation.�

Lemma 4 (Weakening for calculus in figure 5) The cal-
culus in figure 5 satisfies weakening: IfΦ ⇒D L1 � L2,
thenΦ, F ⇒D L1 � L2.

Lemma 5 (Equivalence) Φ ⇒ L1 � L2 if and only if
Φ ⇒D L1 � L2.

Proof. In each direction by induction on the given deriva-
tion. The proof in the “only if” direction requires use of
lemma 3. �

Lemma 6 Given anyΦ, L1, L2, it can be decided whether
Φ ⇒D L1 � L2 or not.

Proof. In the calculus in figure 5, the sequents in the
premise of each rule have a strictly smaller size than the
sequent of the conclusion. Further, given any sequent, there
are only a finite number of rules that could have been used
to conclude it. As a result, if we reason backward, then the
calculus is decidable. �

Theorem 5 Given anyΦ, L1, L2, it can be decided whether
Φ ⇒ L1 � L2 or not.

Proof. Follows immediately from lemmas 5 and 6. �
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