
SecurePtrs: Proving Secure Compilation with
Data-Flow Back-Translation and Turn-Taking Simulation

Akram El-Korashy1 Roberto Blanco2 Jérémy Thibault2 Adrien Durier2 Deepak Garg1 Cătălin Hrit,cu2

1Max Planck Institute for Software Systems (MPI-SWS) 2Max Planck Institute for Security and Privacy (MPI-SP)

Abstract—Proving secure compilation of partial programs
typically requires back-translating an attack against the compiled
program to an attack against the source program. To prove back-
translation, one can syntactically translate the target attacker to a
source one—i.e., syntax-directed back-translation—or show that
the interaction traces of the target attacker can also be emitted
by source attackers—i.e., trace-directed back-translation.

Syntax-directed back-translation is not suitable when the
target attacker may use unstructured control flow that the
source language cannot directly represent. Trace-directed back-
translation works with such syntactic dissimilarity because only
the external interactions of the target attacker have to be
mimicked in the source, not its internal control flow. Revealing
only external interactions is, however, inconvenient when sharing
memory via unforgeable pointers, since information about shared
pointers stashed in private memory is not present on the
trace. This made prior proofs unnecessarily complex, since the
generated attacker had to instead stash all reachable pointers.

In this work, we introduce more informative data-flow traces,
combining the best of syntax- and trace-directed back-translation
in a simpler technique that handles both syntactic dissimilarity
and memory sharing well, and that is proved correct in Coq.
Additionally, we develop a novel turn-taking simulation relation
and use it to prove a recomposition lemma, which is key to
reusing compiler correctness in such secure compilation proofs.
We are the first to mechanize such a recomposition lemma in the
presence of memory sharing.

We use these two innovations in a secure compilation proof for
a code generation compiler pass between a source language with
structured control flow and a target language with unstructured
control flow, both with safe pointers and components.

1 Introduction
Compiler correctness, a.k.a. semantics preservation, is the
current gold standard for formally verified compilers [22, 25,
27, 36]. However, compiler correctness alone is insufficient
for reasoning about the security of compiled partial programs
linked with arbitrary target contexts (e.g., components such
as libraries) because compiler correctness shows that the
compiled program simulates the source program, only under
the assumption that the target context obeys all restrictions
of the source language semantics, i.e., it does not perform
any low-level attacks disallowed by the source language. This
assumption is usually false in practice: compiled programs
are routinely linked with arbitrary, unverified target-language
code that may be buggy, compromised, or outright malicious
in contravention of source semantics. In these cases, compiler
correctness (even in compositional form [21, 31, 42, 43]), es-
tablishes no security guarantees for compiled partial programs.

This problem can be addressed by secure compilation [3,
34], by enforcing that any violation of a security property of a
compiled program in some target context also appears for the
source program in some source context. Formally, this requires
proving the existence of a property-violating source context
given a target-level violation and the corresponding violating
target context. This proof step, often called back-translation,
is crucial for establishing that a vulnerable compiled program
only arises from a vulnerable source program, thus preserving
the security of partial source programs even against adversarial
target contexts. Although there is a long line of work on
proving secure compilation for prototype compilation chains
that differ in the specific security properties preserved and the
way security is enforced [2, 3, 5, 6, 12, 14, 15, 17, 32, 34, 34,
35, 41, 45, 47], back-translation is a common, large element
of such secure compilation proofs.

Back-translation is usually done in one of two different
ways: syntax-directed or trace-directed. Syntax-directed back-
translation defines a function from the violating target context
(a piece of syntax) to a source context, basically treating back-
translation as a target-to-source compiler. While this approach
is easy to use in some situations [5, 6, 14, 15, 32, 34, 41, 45,
47], it has a significant limitation: it cannot be used if some
constructs of the target language cannot be easily mimicked in
the source language. For example, it is not well suited when
the source language only has structured control flow, while the
target language has unstructured control flow (goto or jump),
as representing unstructured control flow in the source would
require complex transformations or rely on heuristics that
may not always work [29, 52].1 Yet this kind of a difference
between source and target languages is commonplace, e.g.,
when compiling any block-structured language to assembly.

In contrast, trace-directed back-translation works by defin-
ing a target interaction trace semantics that represents all the
interactions between the compiled program and its context
(e.g., cross-component calls and returns) and constructing the
violating source context from the violating target trace instead
of the target context [2, 17, 33, 35]. This has the advantage of
not having to mimic the internal behavior of the target context
in the source language. So in contrast to syntax-directed back-
translation, this trace-directed method works well even when

1An alternative to representing unstructured control flow in the source could
be to write an emulator for the target language in the source language, but
we think that proving such an emulator correct in a proof assistant would be
a challenging undertaking.



some target language construct cannot be easily mimicked in
the source language, as long as the construct’s effect does not
cross linking (program-context) boundaries.

Although very powerful in principle, trace-directed back-
translation is rather understudied for settings where the pro-
gram and its context can share private memory by passing
pointers or references to each other, something that is common
in practical languages like Java, Rust, and ML. There is a good
reason for this relative paucity of work: memory sharing is a
source of interesting interaction between the program and its
context, so allowing it makes the definition of traces [17, 24],
the back-translation, and the proof of secure compilation
significantly more complex. Moreover, as we explain below,
memory sharing changes parts of the proof conceptually and
needs fundamentally new techniques.

This is precisely the gap that this paper fills: it significantly
advances proofs of secure compilation from a memory-safe
source language with memory sharing to a target language
that provides fine-grained memory protection. For this, we
introduce two new proof techniques: (1) data-flow back-
translation, a form of back-translation that is simpler and more
mechanization-friendly than the closest prior work [17], and
(2) turn-taking simulation, which we used to adapt another
key lemma in the secure compilation proof to memory sharing.
Next, we briefly explain the need for these new techniques.

Data-flow back-translation Consider a compiler from a
memory-safe source language that prevents pointer forging (as
in Java, Rust, or ML) to a target that provides fine-grained
memory protection, such as a capability machine [48, 51] or
a tagged-memory architecture [13, 16]. Suppose a compiled
program has shared a pointer to its private memory with
the co-linked target context in the past, and the context has
stored this pointer somewhere in its (i.e., the context’s) private
memory. Later in the execution, the context may use a chain
of memory dereferences within its private memory to recover
this shared pointer and write through it. Since this write
changes shared memory, it must be recorded on the trace and
must be mimicked by the source context constructed by back-
translation. To mimic this write in the source language, the
back-translated source context cannot forge a pointer. Instead,
it must follow a similar chain of dereferences in the source
to the one used by the target context. However, the chain of
memory dereferences leading to this pointer is in the target
context’s private memory and interaction traces omit these
private dereferences by design!

Consequently, information needed to reconstruct how to
access the shared pointer is missing from interaction traces,
which led prior work [17, 33] to have the back-translation
perform complex bookkeeping in order to reconstruct this
missing information. For instance, the source context gen-
erated by El-Korashy et al. [17] had to fetch all reachable
pointers every time it got control and stash them in its internal
state. This required complex simulation invariants, on top
of the usual invariants between the states of the target and
source contexts. We think this informal stashing approach is

unnecessarily complex and would be difficult to mechanize in
a proof assistant (see §3.1).

To back-translate, we instead first enrich the standard
interaction traces with information about data-flows within
the context. This considerably simplifies the back-translation
definition by providing precisely the missing chain of private
memory dereferences in the trace itself. The data-flow back-
translation function then translates each such dereference
(or in general each data-flow event) one by one to simple
source expressions. For each data-flow event, we prove the
correctness of its back-translation, i.e., that its corresponding
predefined source expression keeps source memory related
to the target memory. The proof relies on just setting up
an invariant between the target memory that now appears in
each data-flow event and the source memory in the state after
executing the source expression obtained by back-translating
the given event. Crucially, proofs about stashing all reachable
pointers are not needed any more.

We see data-flow back-translation as a sweet spot between
standard trace-directed back-translation, which abstracts away
all internal behavior of the context, and syntax-directed back-
translation, which mimics the internal behavior of the context
in detail, but which cannot handle syntactic dissimilarity well.

Turn-taking simulation Turn-taking simulation is useful
when one tries to reuse compiler correctness as a lemma in
the secure compilation proof to separate concerns and avoid
duplicating large amounts of work. Specifically, one defines
a simulation relation between the run of the source program
in the back-translated source context on one hand and the
property-violating run of the compiled program in the target
context on the other. Some of the source and target steps
are executed by the source program and its compilation and
are thus already related by compiler correctness. Having to
reprove the simulation for these steps would be tantamount to
duplicating an involved compiler correctness proof [25]. This
duplication can be avoided by proving a so-called recomposi-
tion lemma in the target language, as proposed by Abate et al.
[2]. Intuitively, recomposition says that if a program P1 linked
with a context C1, and a program P2 linked with a context
C2 both emit the same trace, then one may recompose—link
P1 with C2—to obtain again the same trace.

The proof of recomposition is a ternary simulation between
the runs of P1 ∪ C1, P2 ∪ C2, and the recomposed program
P1 ∪ C2. The question that becomes nuanced with memory
sharing is how should the memory of the recomposed program
be related to those of the given programs in this simulation.
Without memory sharing, this is straightforward: at any point
in the simulation, the projection of P1’s memory in the
recomposed run of P1 ∪ C2 will equal the projection of P1’s
memory from the run P1 ∪C1 (and dually for C2’s memory).
With memory sharing, however, this simple relation does not
work because C2 may change parts of P1’s shared memory in
ways that C1 does not. Specifically, while control is not in P1,
the projections of P1’s memories in the two runs mentioned
above will not match.



This is where our turn-taking simulation comes in. We relate
the memory of P1 from the run of P1∪C2 to that from the run
of P1∪C1 only while control is in P1. When control shifts to
the contexts (C2 or C1), this relation is limited to P1’s private
memory (which is not shared with the context). The picture
for C2’s memory is exactly dual. Overall, the relation takes
“turns”, alternating between two memory relations depending
on where the control is. This non-trivial relation allows us to
prove recomposition and therefore reuse a standard compiler
correctness result even with memory sharing.

Concrete setting We illustrate our two new proof techniques
by extending an existing mechanized secure compilation proof
by Abate et al. [2] to cover dynamic memory sharing. The
compilation pass we extend goes from an imperative source
language with structured control flow (e.g., calls and re-
turns, if-then-else) to an assembly-like target with unstructured
jumps. Both languages had components and safe pointers—
i.e., out of bound accesses are errors that stop execution.2 In
both languages, the program and the context had their own
private memories, and pointers to these memories could not
be shared with other components. The program and the context
interacted only by calling each other’s functions, and passing
only primitive values via call arguments and return values.

We extend both languages by allowing their safe pointers
to be passed to and dereferenced by other components, thus
introducing dynamic memory sharing. We then prove that this
extended compilation step is secure with respect to a criterion
called “robust safety preservation” [3, 4, 33]. For this, we
apply our two new techniques, data-flow back-translation and
turn-taking simulation. Since the parts of the proof using these
new techniques are fairly involved and non-trivial, we also
fully mechanize them in the Coq proof assistant.

Summary of contributions:
• We introduce data-flow back-translation and turn-taking

simulation, two new techniques for proving secure com-
pilation from memory-safe source languages to target
languages with fine-grained memory protection, when the
languages support memory sharing and may be syntacti-
cally dissimilar.

• We apply these conceptual techniques to prove secure
compilation for a code generation pass between a source
language with structured control flow and a target with
unstructured control flow. Both languages have safe point-
ers only, and in both memory is dynamically shared by
passing safe pointers between components.

• We formalize this secure compilation proof in Coq,
focusing on back-translation and recomposition, which
illustrate our techniques and which we fully mechanized.

Mechanized proof The Coq proof of secure compilation for
the compilation pass outlined above is available as supple-
mentary material uploaded with this submission. The size of

2While this is orthogonal to our current work on proof techniques, such
safe pointers can be efficiently implemented using, for instance, hardware
capabilities [48, 51] or programmable tagged architectures [13, 16].

the back-translation and recomposition proof steps—which we
fully mechanized and which constitute the biggest and most
interesting parts of the proof—is 3k lines of specifications and
29k lines of proof. For comparison, in the Coq development
without memory sharing on which we are building [2], these
two steps were 2.7k lines in total.

As in Abate et al. [2], our mechanized secure compilation
proof assumes only standard axioms (excluded middle, func-
tional extensionality, etc.) and axioms about whole-program
compiler correctness that are mostly standard and stated in
the style of corresponding CompCert theorems (these are all
documented in §5.3 and the included README.md). Compared
to previous paper proofs of secure compilation with memory
sharing [17, 33], all details of our proofs are mechanized with
respect to the clear axioms mentioned above. We found that
the use of a proof assistant was vital in getting all the invariants
right and alleviating the human burden of checking our proof.

Outline The rest of the paper is organized as follows: In
§2 we illustrate our secure compilation criterion and outline a
previous proof [2] that did not support memory sharing. In §3
we explain the challenges of memory sharing, introduce data-
flow back-translation and turn-taking simulation, and show
how they fit into the existing proof outline. In §4 we show
the source and target languages to which we apply these
techniques. §5.1 and §5.2 provide details of applying data-
flow back-translation and turn-taking simulation to our setting
and §5.3 explains our assumptions. Finally, we discuss related
work (§6), scope and limitations (§7), and future work (§8).

2 Background
We start with a motivating example explaining the broad
setting we work with (§2.1), the formal secure compilation
criterion we prove (called robust safety preservation; §2.2),
and a proof strategy from prior work on which we build (§2.3).

2.1 Motivating Example and Setting
Broadly speaking, we are interested in the common scenario
where a part of a program is written in a memory-safe
source language, compiled to a target language and then
linked against other target-language program parts, possibly
untrusted or prone to be compromised, to finally obtain an
executable target program. By “program part”, we mean a
collection of components (modules), each of which contains
a set of functions. These functions may call other functions,
both within this part and those in other parts. We use the terms
“program” and “program part” to refer to the program part we
wrote and compiled, and “context” to refer to the remaining,
co-linked program part that we didn’t write.

As an example, consider the following source program
part, a single component, Main, which implements a main
function that calls two other functions Net.init_network and
Net.receive, both implemented by a third-party networking
library Net (not shown).

import component Net
component Main {



static iobuffer[1024];
static user_balance_usd;

main () {
Net.init_network(iobuffer);
Net.receive();

}
}

Suppose that the source language is memory safe and that
the program part above is compiled using a correct com-
piler to some lower-level language, then linked to a context
that implements Net.init_network and Net.receive, and the
resulting program is executed. Our goal is to ensure a safety
property nowrite—that Net.receive never modifies the variable
user_balance_usd (which is high integrity). Note that it is okay
for Net.receive to modify the array iobuffer, whose pointer is
passed as a parameter to the previous call to the Net library
(to the function Net.init_network). The concern really is that a
low-enough implementation of Net.receive may overflow the
array iobuffer to overwrite user_balance_usd.

Broadly speaking, we can attain the invariant nowrite in
at least two different ways, which we call Setting 1 and
Setting 2. In Setting 1, we compile to any target language,
possibly memory-unsafe, but restrict the compilation of the
program part above to be linked only to target-language con-
texts that were obtained by compiling program parts written in
the same source language. Since the source language is safe,
there is no way for any source function to cause a buffer over-
flow and a correct compiler will transfer this restriction to the
target language so, in particular, the compilation of Net.receive
cannot overwrite user_balance_usd, thus ensuring nowrite.
This kind of restriction on linking—and the verification of
compilers under such restrictions—has been studied exten-
sively in compositional compiler correctness [21, 31, 42, 43].

In Setting 2, we compile to a target language with sup-
port for fine-grained memory protection, e.g., a capability
machine [48, 51] or a tagged-memory architecture [13, 16],
but allow target contexts to be arbitrary. The compiler uses
the target language’s memory protection to defend against
malicious attacks that do not necessarily adhere to source
language’s memory-safety semantics. Now, nowrite does not
follow from source memory safety and the correctness of the
compiler. Instead, we must show that the compilation chain
satisfies some additional security property. It is this second
setting that interests us here and, more broadly, a large part
of the literature on secure compilation.

2.2 Robust Safety Preservation (RSP∼)
The next question is what security criterion the compilation
chain must satisfy to ensure that nowrite or, more generally,
any property of interest, holds in Setting 2. The literature on
secure compilation has proposed many such criteria (see Abate
et al. [3], Patrignani et al. [34]). Here we describe and adopt
one of the simplest criteria that ensures nowrite, namely,
robust safety preservation or RSP∼ [4]:3

Definition 2.1 (Compilation chain has RSP∼ [4]).

RSP∼ def
= ∀P Ct t. (Ct ∪ P↓ ) ⇝∗ t

=⇒ ∃Cs t
′. (Cs ∪ P)⇝∗ t′ ∧ t′ ∼ t

This definition states the following: Consider any source
program part4 P and its compilation P↓. If P↓ linked with
some (arbitrarily chosen) target context Ct emits a finite trace
prefix t, then there must exist a source context Cs that when
linked to P is able to cause P to emit a related trace prefix t′.

To understand why this definition captures secure compi-
lation in Setting 2, consider the case where t is a trace wit-
nessing the violation of a safety property of interest. Then, if
the compiler has RSP∼, there must be a source context which
causes a similar violation entirely in the source language. In
other words, an attack from some target-level context can only
arise if the source program is vulnerable to a similar attack
from some source-level context. In our particular example,
since there clearly is no source context violating nowrite,
RSP∼ guarantees that no target context can violate it either.

A compilation chain attains RSP∼ by enforcing source
language abstractions against arbitrary target contexts. The
specific source abstraction of interest to us here is memory
safety. Our goal in this paper is to explain that proving RSP∼

in the presence of memory sharing and source memory safety
is difficult and to develop proof techniques for doing this. For
simplicity, the concrete target language we use is memory safe,
but our techniques benefit any compiler that targets a language
with fine-grained memory protection. Our source and target
languages differ significantly in their control flow constructs,
which makes back-translation challenging.

The definition of RSP∼ is indexed by a relation ∼ between
source and target traces. The concrete instantiation of this rela-
tion determines how safety properties transform from source to
target [4]. In our setting, ∼ is a bijective renaming relation on
memory addresses, which we describe later (Definition 3.10).

2.3 A Proof Strategy for Robust Safety Preservation

(Ct ∪ P↓)
⇝∗ t1

(Cs↓ ∪ P′↓) ⇝∗ t2

t1 ↑ = (Cs ∪ P′) ⇝∗ tbacktr

(Cs↓ ∪ P↓) ⇝∗ t1,2

(Cs ∪ P) ⇝∗ tQED

I. Back-
translation

II. Forward
Compiler
Correctness

III. Recomposition

IV. Backward
Compiler
Correctness

Fig. 2.1: Generic proof technique [2] for RSP∼. The traces t1,
tbackr, t2, t1,2, and tQED are pairwise related by ∼.

3As a notational convention, we use different fonts and colors for
source language elements and target language elements. Common
elements are written in normal black font. We also use the symbol ↓ for
the compiler’s translation function.

4We use the notation uppercase P for a program, partial or whole, but only
whole programs can execute. Whole-program execution is denoted P ⇝∗ t

or P t−→ s where s is a state reached after emitting a trace prefix t.



RSP∼ can be proved in various ways [2, 3, 33]. Here, we
adapt a proof strategy by Abate et al. [2], since it reuses the
proof of compiler correctness, thus avoiding duplication of
work. Figure 2.1 summarizes the proof strategy.5

Overall, Abate et al. [2]’s proof of RSP∼ consists of four
steps, two of which are immediate from compiler correctness.
RSP∼ requires starting from (Ct ∪ P↓)⇝∗ t1 to demonstrate
the existence of a Cs such that (Cs ∪ P) ⇝∗ tQED. The
first proof step uses back-translation (Lemma 2.2) to show
from (Ct ∪ P↓) ⇝∗ t1 that there exist Cs and P′ such that
(Cs ∪ P′) ⇝∗ tbacktr with t1 ∼ tbacktr. Note that the back-
translation produces both a new context and a new program
part, and that P′ may be completely different from P. The
second step directly uses a form of compiler correctness called
forward compiler correctness (Assumption 2.3), to conclude
that the compilation of this new source program, (Cs ∪ P′)↓ =
Cs↓∪P′↓, produces t2, related to t1. At this point, we have two
target programs – Ct∪P↓ and Cs↓∪P′↓ – that produce related
traces t1 and t2. The third step uses an innovative target-
language lemma, recomposition (Lemma 2.4), to show that a
third program Cs↓∪P↓, which takes P↓ from the first program
and Cs↓ from the second, also produces a related trace t1,2. The
final, fourth step uses another form of compiler correctness,
called backward compiler correctness (Assumption 2.5), to
conclude from this that the corresponding source, Cs ∪ P
produces a related trace tQED. This concludes the proof.

Lemma 2.2 (Whole-Program Back-translation [2]).

∀P t. P⇝∗ t =⇒ ∃P t′. P⇝∗ t′ ∧ t′ ∼ t

Assumption 2.3 (Whole-Program Forward Compiler Correct-
ness). ∀P t. P⇝∗ t =⇒ ∃t′. P↓⇝∗ t′ ∧ t′ ∼ t

Lemma 2.4 (Recomposition [2]).

∀P1 C1 P2 C2 t1t2.

(P1 ∪C1)⇝
∗ t1 =⇒ (P2 ∪C2)⇝

∗ t2 =⇒
t1 ∼ t2 =⇒ ∃t1,2. (P1 ∪C2)⇝

∗ t1,2 ∧ t1,2 ∼ t1

Assumption 2.5 (Whole-Program Backward Compiler Cor-
rectness). ∀P t. P↓ ⇝∗ t =⇒ ∃t′. P⇝∗ t′ ∧ t′ ∼ t

By following this proof strategy, Abate et al. [2] are able
to reuse compiler correctness (Assumptions 2.3 and 2.5) and
reduce the entire proof of RSP∼ to two key lemmas: back-
translation (Lemma 2.2) and recomposition (Lemma 2.4).

However, Abate et al. execute this strategy for languages
without any memory sharing between components. Their
components—both source and target—interact only through
integers passed as function call arguments and return values.
As such, our earlier example cannot even be expressed in their
setting. In the rest of this paper, we adapt their proof strategy
for RSP∼ to the setting where memory sharing is allowed. We
show that memory sharing significantly complicates the proofs

5Abate et al. [2] instantiate the strategy mostly for ∼ set to equality, while
we use a nontrivial ∼ everywhere, but this difference is less important here.
We also removed everything they do about undefined behavior, which we do
not consider in this work (see also §8).

of both back-translation and recomposition, and requires new
proof techniques. However, before explaining these, we briefly
show what traces actually look like.

Interaction traces A trace or, more precisely, an interac-
tion trace, is a modeling and proof artifact that arises from
an instrumented reduction semantics of a language, wherein
certain steps are labeled with descriptors called events. The
sequence of events along a reduction sequence forms a trace,
denoted t. In prior work on secure compilation, only steps
involving cross-component interactions or external commu-
nication (input-output) have been labeled with events. For
example, in Abate et al.’s [2] setting without shared memory,
cross-component interaction happens through calls and returns
only, hence, their events are only cross-component calls and
returns. We denote these events eno_shr where the subscript
no_shr stands for “no memory sharing”.

eno_shr ::= Call ccaller ccallee.f (v) | Ret cprev cnext v

The event Call ccaller ccallee.f (v) represents a call from com-
ponent ccaller to the function f of component ccallee with
argument v. The dual event Ret cprev cnext v represents a return
from component cprev to component cnext with return value v.
Along a trace, calls and returns are always well-bracketed (the
semantics of both the source and target languages enforce this).

In our setting, memory shared between components is
another medium of interaction, so reads and writes to it must
be represented on interaction traces. However, our languages
are sequential (only one component executes at a time), so
writes to shared memory made by a component become vis-
ible to another component only when the writing component
transfers control to the other component. As such, to capture
interactions between components, it suffices to record the
state of the shared memory only when control transfers from
one component to another, i.e., at cross-component calls and
returns. For this, we modify call and return events to also
record the state of the memory shared up to the time of the
event (the shared part of memory grows along an execution
as more pointers are passed across components). The new
events, denoted e, are defined below. The shared memory
on each event, written Mem, is underlined for emphasis only.
Technically, Mem is a just a partial map from locations l to
values v, which themselves can be pointers to locations.

Definition 2.6 (Interaction-trace events w/ memory sharing).

e ::= Call Mem ccaller ccallee.f (v) | Ret Mem cprev cnext v

Interaction traces serve two broad purposes. First, they
are used to express safety properties of interest, such as the
nowrite property in our earlier example. Second, as we explain
in §3, interaction traces are essential to the proof of back-
translation, Lemma 2.2. One of our key insights is that, with
memory sharing, enriching interaction traces with selective
information about data-flows within a component can simplify
the proof of back-translation considerably.



3 Key Technical Ideas
We describe why the proofs of Lemmas 2.2 and 2.4 become
substantially more difficult in the presence of memory sharing,
and our new techniques—data-flow back-translations and turn-
taking simulations—that offset some of the extra difficulty.

3.1 Data-Flow Back-translation

In proving back-translation (Lemma 2.2), we are given a target
language whole program P and an interaction trace t that it
produces, and we have to construct a whole source program P
that produces a related interaction trace t′. For RSP∼, we can
construct P from either P or t. Prior work has considered both
approaches. Construction of P from P, which we call syntax-
directed back-translation, typically works by simulating P in
the source language [5, 6, 14, 15, 32, 34, 41, 45, 47]. This is
tractable when every construct of the target language can be
simulated easily in the source. However, as explained earlier,
this is not the case for many pairs of languages including
our source and target languages (§4). The alternative then is
to construct P from the given target trace t [2, 17, 33, 35].
This alternative, which we call trace-directed back-translation,
should be easier in principle, since the interaction trace only
records cross-component interactions, so there is no need to
simulate every language construct in the source; instead, only
constructs that can influence cross-component interactions
need to be simulated.

Indeed, trace-directed back-translation is fairly straightfor-
ward when there is no memory sharing [2, 35] or when
memory references (pointers) can be constructed from primi-
tive data like integers in the source language. However, with
memory sharing and unforgeable memory references in the
source—something that is common in safe source languages
like Java, Rust, Go and ML—trace-directed back-translation
is really difficult. To understand this, consider the following
run of the compiled version of our example from §2.1.

Example 3.1. Suppose we want to back-translate the follow-
ing four-event target interaction trace:

Call Mem cMain cNet.init_network(liobuffer)
:: Ret Mem cNet cMain 0

:: Call Mem cMain cNet.receive()

:: Ret Mem′ cNet cMain 0

where Mem = [liobuffer 7→ 0, liobuffer + 1 7→
0, . . . , liobuffer + 1023 7→ 0] and Mem′ = [liobuffer 7→
4, liobuffer + 1 7→ 4, . . . , liobuffer + 1023 7→ 4]6

In this example run, the program first shares some memory
(corresponding to iobuffer) by calling Net.init_network
with the pointer liobuffer. This call does not modify the
shared memory (the shared memory’s state is Mem both
before and after the call). Later the program calls the function

6Technically, in our languages, function calls and returns and, hence, inter-
action traces carry pointers to locations, not locations themselves. However,
in this section, we blur this distinction.

Net.receive without any arguments, but this call changes
the shared memory to Mem′. (Assuming that our compiler
uses the target’s memory protection correctly, this could only
have happened if the Net library stashed the pointer liobuffer
during the first call and retrieved it during the second call.)

The question is how we can back-translate this interaction
sequence into a source program, as required by Lemma 2.2.
If pointers were forgeable in the source, this would be quite
easy: liobuffer, being forgeable, could simply be hardcoded
in the body of the simulating source function Net.receive().
However, in our memory-safe source language, the only option
is to construct a source Net.init_network that stashes liobuffer
for Net.receive’s use. Even though this “stashing” solution
may seem straightforward, it is actually quite difficult because
the back-translated context must fetch and stash (e.g., in an
indexed data structure) all pointers that become accessible to
it directly or indirectly by following shared pointers, since any
of these pointers may be dereferenced later.

Prior work [17, 33] has used such a stashing data structure.
They fetch pointers by a custom graph traversal (pointers
are the edges and pointed locations are the nodes) whose
output is a list of source commands. Each source command
is responsible for traversing a path in memory and stashing
the content of the destination location in private memory (in
anticipation that this stashed content might be a pointer in
which case it might be needed when back-translating a later
interaction event). We found that proving the correctness of
this construction in a proof assistant is difficult, even though
the proofs seem easy on paper. For instance, even leaving aside
the correctness of this traversal (which seems rather difficult),
just proving its termination is nontrivial in a proof assistant.

Note that traversing the entire shared memory is a proactive,
over-approximating strategy on the part of the generated
source context, by which it mimics all possible stashing steps
that the target context could have made. This complex strategy
was needed in prior work because information about data flows
within the target context is missing from standard interaction
traces, which prior work relied on. If only a trace recorded
precisely which memory paths were actually traversed, we
could eliminate the complexity of the full traversal. This is
exactly what our new data-flow back-translation idea supports.

The new idea: data-flow back-translation We enrich the
interaction traces of the target language—only for the purposes
of the back-translation proof—with information about all
data-flows, even those within (the private state of) a single
component. We call these enriched traces data-flow traces.
From the target language’s reduction semantics, we can easily
prove that every interaction trace as described above can
be enriched to a data-flow trace (Lemma 3.4 below). And,
given such a data-flow trace, we can easily back-translate
to a simulating source program, since we know exactly how
pointers flow. In the example above, the enriched trace would
tell us exactly what Net.init_network did to stash liobuffer
and how Net.receive retrieved it later. We can then mimic
this in the constructed source program, without having to stash



all reachable pointers in memory whenever passing control to
the context (see Example 3.3 below).

Concretely, we define a new type of data-flow traces,
denoted T , whose events, E , extend those of interaction traces
to capture all possible data flows in the target language. In the
following, we show the events for our target language (§4),
which is a memory-safe assembly-like language with registers
and memory. The events dfCall and dfRet are just the Call

and Ret events of interaction traces (Definition 2.6). The
remaining events correspond to target language instructions
that cause data flows: loading a constant to a register (Const),
copying from a register to another (Mov), binary operations
(BinOp), copying from a register to memory or vice-versa
(Store, Load) and allocating a fresh location (Alloc). Im-
portantly, in a data-flow trace, every event records the entire
state—both shared state and state private to individual com-
ponents. Accordingly, in the events below, Mem also includes
locations that were not shared to other components, and Reg
is the state of the register file.

Definition 3.2 (Events of data-flow traces).

E ::= dfCall Mem Reg ccaller ccallee.proc(v)

| dfRet Mem Reg cprev cnext v

| Const Mem Reg ccur v rdest

| Mov Mem Reg ccur rsrc rdest

| BinOp Mem Reg ccur op rsrc1 rsrc2 rdest

| Load Mem Reg ccur raddr rdest

| Store Mem Reg ccur raddr rsrc

| Alloc Mem Reg ccur rptr rsize

Example 3.3. Consider the following data-flow trace, which
expands a part of Example 3.1’s interaction trace—the part that
covers the call and return to Net.init_network() only. Here,
l is a fixed, hardcodable location that can always be accessed
by Net, rCOM is a special register used to pass arguments and
return values, and Mem1 and Reg1 are some initial states of
memory and registers, respectively.

dfCall Mem1 (Reg1[rCOM 7→ liobuffer])

cMain cNet.init_network(liobuffer)
:: Const Mem1 (Reg1[rCOM 7→ liobuffer, r1 7→ l]) cNet l r1

:: Store (Mem1[l 7→ liobuffer])

(Reg1[rCOM 7→ liobuffer, r1 7→ l]) cNet r1 rCOM

:: dfRet (Mem1[l 7→ liobuffer])

(Reg1[rCOM 7→ liobuffer, r1 7→ 0]) cNet cMain liobuffer

This data-flow trace shows clearly how Net.init_network
stashed away liobuffer: It copied liobuffer to its private
memory location l. The rest of the data-flow trace (not
shown) will also show precisely how Net.receive() later
retrieved liobuffer. It is not difficult to construct a source
program that mimics these data flows step-by-step, by using
source memory locations to mimic the target’s register file
and memory (see §5.1 for further details). The step-by-step

mimicking induces a step-for-step inductive invariant that we
found much simpler to prove than the coarse-grained invariants
from prior work [17] in which the back-translation input was
just the non-informative trace of Example 3.1, and the lost
target steps were compensated using the full graph traversal.

Outline of data-flow back-translation proof Data-flow
traces simplify the proof of back-translation (Lemma 2.2)
by splitting it into two key lemmas: Enriching interaction
traces to data-flow traces (Lemma 3.4) and back-translation
of data-flow traces (Lemma 3.5), both of which are shown
below and are much easier to prove than standard trace-
directed backtranslation. Recall that T denotes a data-flow
trace. remove_df(T ) denotes the interaction trace obtained by
removing all internal data-flow events from T , i.e., by retaining
only Call and Return events.

Lemma 3.4 (Enrichment).

∀P t. P ⇝∗ t =⇒ ∃T. P ⇝∗
DF T ∧ t = remove_df(T )

Proof. Immediate from the definition of the target-language
semantics.

Lemma 3.5 (Data-flow back-translation).

∀P T. P ⇝∗
DF T =⇒ ∃P t. P⇝∗ t ∧ t ∼ remove_df(T )

Proof sketch. By constructing a P that simulates the data flows
in T , thus keeping its state in lock-step with the state in T ’s
events. See §5.1 for further details.

Composing these two lemmas yields Lemma 2.2.

3.2 Turn-Taking Simulation for Recomposition
Next, we turn to recomposition (Lemma 2.4). This lemma
states that if two programs P1 ∪C1 and P2 ∪C2 produce
two related interaction traces, then the program P1 ∪C2 can
also produce an interaction trace related to both those traces.
We refer to P1 ∪C1 and P2 ∪C2 as base programs, and to
P1 ∪C2 as the recomposed program. We say that the partial
programs P1 and C2 are retained by the recomposition, and
that P2 and C1 are discarded. Traces in this section refer to
the interaction traces of Definition 2.6. Data-flow traces are
used only for back-translation, not for recomposition.

The proof of recomposition is a ternary simulation over
executions of the three programs. For this, we need a ternary
relation between a pair of states s1 and s2 of the base programs
and a state s1,2 of the recomposed program. The question is
how we can relate the memories in s1 and s2 to that in s1,2.

In the absence of memory sharing, as in Abate et al. [2],
this is straightfoward: We simply project P1’s memory from
s1, C2’s memory from s2, put them together (take a disjoint
union), and this yields the memory of s1,2:

Definition 3.6 (Memory relation of Abate et al. [2]). 7

mem_rel(s1, s2, s1,2)
def
=

s1,2.Mem = (projP1
(s1.Mem) ⊎ projC2

(s2.Mem))

7See Section 4 for the precise definition of proj.



However, with memory sharing, this definition no longer
works, as illustrated by the following example.

Example 3.7. Consider the following three target-language
components C1, C2 and P1, represented in C-like syntax
for simplicity. The fourth component P2 is irrelevant for this
explanation, hence not shown.

component C1 {
int* ptr_to_P1 = malloc();
void store(int* arg) {
ptr_to_P1 = arg;
int val_to_revert = *ptr_to_P1;

*ptr_to_P1 = 42;
...

*ptr_to_P1 = val_to_revert;
}

}

component C2 {
int* ptr_to_P1_or_P2 = malloc();
void store(int* arg) {
ptr_to_P1_or_P2 = arg;

}
}

component P1 {
int* priv_ptr = malloc();
int* shared_ptr = malloc();
void call_store() {
store(shared_ptr);

}
}

In the base program P1 ∪C1, P1 shares shared_ptr with
the function C1.store(). This function temporarily updates
shared_ptr but reverts it to its original value before returning.
Somewhat differently, in the recomposed program P1 ∪C2,
C2.store() does not modify shared_ptr at all. Thus, even
though the end-to-end interaction behavior of store() in
both the programs is exactly the same, shared_ptr (which
is actually in P1’s memory) has been temporarily modified
in C1.store() but not in C2.store(). Consequently, during
the execution of the context’s function store(), the memory
relation of Definition 3.6 does not hold.

More abstractly, the problem here is that P1’s shared
memory in the recomposed program P1 ∪C2 can be related to
that in the base program P1 ∪C1 only while control is in P1.
When control is in C2, the contents of P1’s shared memory
can change unrelated to the base runs. This naturally leads to
the following program counter-aware memory relation, where
the relation ∼ren captures location renaming and is formally
defined later in this section.

Definition 3.8 (First attempt at our memory relation).

mem_rel_pc(s1, s2, s1,2)
def
=

if s1,2 is executing in P1 then:

projP1
(s1,2.Mem) ∼ren projP1

(s1.Mem)

else: (i.e., , s1,2 is executing in C2)

projC2
(s1,2.Mem) ∼ren projC2

(s2.Mem)

Although this definition relates shared memory correctly, it
is inadequate for P1’s private memory—the memory P1 has
not shared with the context in the past, such as the pointer
priv_ptr in Example 3.7. This private memory must remain
related in the base program P1 ∪C1 and the recomposed
program P1 ∪C2 independent of where the execution is.
However, Definition 3.8 does not say this.

Accordingly, we revise our definition again. To determine
which locations have been shared and which are still private,
we rely on the interaction trace prefixes t1, t2 and t1,2 that are
emitted before reaching the states s1, s2 and s1,2, respectively.
For a memory mem and a trace t, we write shared(mem, t) for
the projection of mem on addresses that are transitively shared
on the trace t and private(mem, t) for the projection of mem
on all the other addresses. With this, we can finally define a
turn-taking relation mem_rel_tt that accurately describes the
memory s1,2.Mem of the recomposed program in terms of the
memories s1.Mem and s2.Mem of the two base programs:

Definition 3.9 (Turn-Taking Memory Relation).

mem_rel_tt(s1,2, s1, s2, t1,2, t1, t2)
def
=

if s1,2 is executing in P1 then:

mem_rel_exec(P1, t1, t1,2, s1.Mem, s1,2.Mem) ∧
mem_rel_not_exec(C2, t2, t1,2, s2.Mem, s1,2.Mem)

else: (i.e., , s1,2 is executing in C2)

mem_rel_exec(C2, t2, t1,2, s2.Mem, s1,2.Mem) ∧
mem_rel_not_exec(P1, t1, t1,2, s1.Mem, s1,2.Mem)

where

mem_rel_exec(part, t, t1,2,mbase,mrecomp)
def
=

projpart(mrecomp) ∼ren projpart(mbase) ∧
shared(mrecomp, t1,2) ∼ren shared(mbase, t)

and

mem_rel_not_exec(part, t, t1,2,mbase,mrecomp)
def
=

projpart(mrecomp) ∩ private(mrecomp, t1,2)

∼ren projpart(mbase) ∩ private(mbase, t)

Intuitively, Definition 3.9 says the following about P1’s
memory: (a) While P1 executes, P1’s entire memory—both
private and shared—is related in the runs of the base program
P1 ∪C1 and the recomposed program P1 ∪C2. (b) While
the contexts (C1 and C2) execute, only the private memory
of P1 in these two runs is related. For the context’s memory,
the dual relation holds. Figure 3.1 depicts this visually.



s
2
.Mem

s
1
.Mem

s
1,2

.Mem

mem_rel_exec

mem_rel_not_exec

s
1,2

  is executing in  P
1

s
1,2

  is executing in  C
2

s
2
.Mem

s
1
.Mem

s
1,2

.Mem

mem_rel_exec

mem_rel_not_exec

Fig. 3.1: The turn-taking memory relation, mem_rel_tt.

The memory relation ∼ren. We now explain the memory
relation ∼ren that appears in the above definitions. This
relation simply allows for a consistent renaming of memory
locations up to a partial bijection. The need for this renaming
arises because corresponding program parts may differ in
the layouts of their private memories. In the example above,
consider the case where the component P2, which we didn’t
show until now, is the same as P1, just without the private
pointer priv_ptr and the corresponding malloc. In this case,
the exact value of shared_ptr could differ across the base run
P2 ∪C2 and the recomposed run P1 ∪C2. Formally, ren
denotes a partial bijection that may depend on P1, P2, C1

and C2, and ∼ren is renaming of memories (both locations
and their contents) up to ren.

Proof of recomposition. In our Coq proof we effectively
show that the turn-taking memory relation of Definition 3.9
is an invariant of the execution of any recomposed program
of the target language of §4. Formally, this follows from two
lemmas (Lemmas 5.4 and 5.5) that can be seen as expected
properties of the memory relation. Using these lemmas, we are
able to prove recomposition (Lemma 2.4). A key additional
idea we use is strengthening, which we apply at cross-
component calls and returns to strengthen mem_rel_not_exec
into mem_rel_exec. The former relates only the private
memory of a component, the latter relates private and shared
memories of the same component. Strengthening follows from
the assumption that the two base runs emit related interaction
traces. §5.2 provides additional details.

3.3 Applying our ideas to an RSP∼ proof

Figure 3.2 summarizes our overall proof technique for proving
RSP∼ with dynamic memory sharing. ↑ denotes the data-
flow back-translation function. Relative to Abate et al.’s [2]
proof technique shown in Figure 2.1, the two key changes
are that: (1) Step I (back-translation) has now been factored
into two steps Ia and Ib to use data-flow traces. Steps Ia and
Ib correspond to Lemma 3.4 and Lemma 3.5, respectively.
(2) The proof of step III (recomposition) now relies on

(Ct ∪ P↓)
⇝∗ t1

(Cs↓ ∪ P′↓) ⇝∗ t2

(Ct ∪ P↓) ⇝∗
DF T1

T1 ↑ = (Cs ∪ P′) ⇝∗ tbacktr

(Cs↓ ∪ P↓) ⇝∗ t1,2

(Cs ∪ P) ⇝∗ tQED

Ib. Back-
translation

Ia. Enrichm.

II. Forward
Compiler
Correctness

III. Recomposition

IV. Backward
Compiler

Correctness

Fig. 3.2: Our proof technique for RSP∼ with memory sharing.
The interaction traces t1, remove_df(T1), tbackr, t2, t1,2, and
tQED are pairwise related by the trace relation ∼.

turn-taking simulations. Steps II and IV, which simply reuse
compiler correctness, remain unchanged.

Trace relation ∼ We now also define the trace relation ∼,
mentioned in §2 and §3. It says that two traces are related if
corresponding events have the same kind (both call or both
return, and between the same components), and there is a
bijective renaming of locations ren such that the memories
mentioned in corresponding events of the traces are related by
∼ren (§3.2), and so are the arguments of calls and returns.

Definition 3.10 (Relation on interaction traces). For address
renaming relations ren, suppose ∼ren is the memory renaming
relation described in §3.2.

t1 ∼ t2
def
= ∃ren. ∀i. t1[i].Mem ∼ren t2[i].Mem

∧ match_events(t1[i], t2[i])
∧ valrenren(t1[i].arg, t2[i].arg)

Here t[i] denotes the ith event of trace t. Notation t[i].Mem is
the memory that appears in the event t[i] (see the Definition 2.6
of events). match_events(e1, e2) says that the kind of events
e1 and e2 (again see Definition 2.6 for the two possible kinds)
and the component ids appearing on them (e.g., caller and
callee) are the same. valrenren is a value renaming relation
that just lifts the address renaming relation ren to pointers.
We give a precise definition of valrenren in §4.

4 Concrete Languages and Compiler Pass
Next, we describe specific source and target languages—SafeP
and Mach, respectively—and a specific compiler from the
source to the target language. This specific setup is the testbed
on which we have instantiated our new ideas from §3. In both
languages, a program P consists of a set of named functions,
a set of statically allocated data buffers and an interface. The
interface divides the program into components (denoted c) and
assigns every function to a component. It also defines which
functions are imported and exported by each component.

Values, pointers and memory Both languages are memory
safe and use the same memory model, which is adapted
from CompCert’s block-memory model [26]. A value v may



be an integer i, an (unforgeable) pointer, or a special error
value error used to initialize memory.8 A pointer is a tuple
(perm, c, b, o) consisting of a permission perm (used to distin-
guish code and data pointers), the identifier c of the allocating
component, a unique block identifier b, and an integer offset o
within the block. A location, which we denoted by l so far, is
a triple of a component id, a block id, and an offset, (c, b, o).

A memory maps locations to values. CompCert’s memory
consists of an unbounded number of finite and isolated blocks
of values. The memory in both our languages is similar,
but is additionally partitioned by component ids. It can be
seen as a collection (c ⇀ cMem) of individual component
memories (cMem = b ⇀ (o ⇀ v)). The projection operator
that we used in Definitions 3.6 and 3.9 is formally defined as
projP (Mem)

def
= [c 7→ (Mem c) | c ∈ component_ids(P )],

returning a sub-collection of the collection Mem contain-
ing just the component memories that correspond to the
components of the program part P . Although each memory
block is initially accessible to only the allocating component,
memory sharing is allowed, so the contents (i.e., values v)
of a component memory can be pointers to other component
memories. In particular, the contents of a component memory
in the collection projP (Mem) can very well be pointers to a
component memory that happens to not be in the collection.

Pointers can be incremented or decremented (pointer arith-
metic), but this only changes the offset o. The block identifier
b cannot be changed by any language operation. Additional
metadata not shown here tracks the size of each allocated
block. Any dereference of a data pointer with an offset beyond
the allocated size or any call/jump to a code pointer with a non-
zero offset causes the program to halt, which enforces memory
safety. Code pointers can be shared between components,
but a component cannot dereference code pointers to another
component.9 Components interact only by calling exported
functions of other components and by sharing memory.

Our languages are strongly inspired by those of Abate et al.
[2] but, unlike them, we allow a component to pass pointers to
other components. The receiving components can dereference
these pointers, possibly after changing their offsets. However,
a component cannot access a block without allocating it itself
or receiving a location from it. Hence, our languages provide
memory protection at block granularity.

Block ids are subject to renaming when relating two
component implementations. Our memory and trace relations
(Definitions 3.9 and 3.10) relate two implementations of a
component even when the concrete block ids of pointers that
they share with the outside world are different, as long as
there exists a function10 that consistently renames the pointers
shared by one implementation into those of the second. With
such a block id renaming ren : b ⇀ b in hand, one can

8Another possibility could have been to model error as a fixed default
integer instead (like zero), so not necessarily a separate runtime type.

9This condition is not unrealistic and can be realized on, e.g., CHERI
by implementing code pointers either as mere integer offsets or as sealed
capabilities, but not as unsealed capabilities with execute permission.

10See the Coq file Common/RenamingOption.v

exp ::= v values
| arg function argument
| local local static buffer
| exp1 ⊗ exp2 binary operations
| exp1; exp2 sequence
| if exp1 then exp2 else exp3 conditional
| alloc exp memory allocation
| !exp dereferencing
| exp1 := exp2 assignment
| c.func(exp) function call
| ∗[exp1](exp2) call pointer
| &func function pointer
| exit terminate

Fig. 4.1: Syntax of source language expressions

define value renaming (which we introduced informally in
Section 3.3) as follows:

• i1 = i2 =⇒ valrenren(i1, i2)

• valrenren(error, error)
• ren(b, b′) =⇒ valrenren((DATA, c, b, o), (DATA, c, b

′, o))

• valrenren((CODE, c, b, o), (CODE, c, b, o))

The only block-id-renaming relations we actually use in our
proofs are the identity, and increment-by-1 (in Figure 5.1).

The operational semantics of both languages produce inter-
action traces of events from Definition 2.6, recording cross-
component calls and returns. Calls and returns are necessarily
well-bracketed in the semantics.

The two languages differ significantly in the constructs
allowed within the bodies of functions, as we describe next.

The source language (SafeP) The body of a SafeP function
is a single expression, exp, whose syntax is shown in Fig-
ure 4.1 and is inspired by the source language of Abate et al.
[2]. The construct arg evaluates to the argument of the current
function, which is a value (which may be a pointer). There
are constructs for if-then-else, dereferencing a pointer (!exp),
assigning value to a pointer (exp1 := exp2), calling a function
func in component c with argument exp (c.func(exp)), calling
a function pointer exp1 (∗[exp1](exp2)), and taking the address
of a function (&func). Additionally, every component has
access to a separate statically allocated memory block, whose
pointer is returned by the construct local.

Importantly, the source language has only structured control
flow: Calls and returns are well-bracketed by the semantics, the
only explicit branching construct is if-then-else, and indirect
function calls with non-zero offsets beyond function entry
points are stopped by the semantics.

Function pointers exist in SafeP not only because they are
a natural programming feature, but also to make specific steps
of the back-translation convenient. Function pointers allow
us, e.g., to easily mimic a store of the program counter to
memory, an operation that a target-language program routinely



instr ::= Const i -> r | Bnz r L
| Mov rs -> rd | Jump r
| BinOp r1 ⊗ r2 -> rd | JumpFunPtr r
| Label L | Jal L
| PtrOfLabel L -> rd | Call c func
| Load ∗ rp -> rd | Return
| Store ∗ rp <- rs | Nop
| Alloc r1 r2 | Halt

Fig. 4.2: Instructions of the target language

performs. Without function pointers in the source, our cross-
language value relation may have been more complex—a
complexity that would propagate to the trace relation (Def-
inition 3.10) and to the top-level theorem (Definition 2.1).

The target language (Mach) Mach is an assembly-like
language inspired by RISC architectures, with two high-level
features: the block-based memory model shared with SafeP
and the component structure provided by interfaces. Its instruc-
tions are shown in Figure 4.2. Its state comprises a register file
with a separate program counter and an abstract (protected)
call stack for cross-component calls, which enforces well-
bracketed cross-component Calls and Returns. A designated
register rCOM is used for passing arguments and return values.
At every cross-component call or return, all registers except
rCOM are set to error.

Importantly, Mach has unstructured control flow: One
may label statements (instruction Label L), jump to labeled
statements (Jump L, Bnz r L), and call labeled statements
(Jal L). Such unstructured jumps are confined to a single
component (see the boxed premise of the rule for Jump
that enforces this restriction), but may cross intra-component
function boundaries. This makes it infeasible to syntactically
back-translate Mach to SafeP.
JUMP

fetch(E, pc) = Jump r pc′ = reg[r]

is_code_pointer(pc′) comp(pc) = comp(pc′)

E ⊢ (σ,mem, reg, pc)
[]−→ (σ,mem, reg, pc′)

In addition to the interaction trace semantics (Definition 2.6)
like SafeP’s, Mach also enriches the trace with data-flow
events (Definition 3.2) as explained in §3.1 and illustrated by
the boxed premise of the Store rule:
STORE

fetch(E, pc) = Store ∗ rp <- rs
ptr = reg[rp] v = reg[rs] mem′ = mem[ptr 7→ v]

α = Store mem′ reg comp(pc) rp rs

E ⊢ (σ,mem, reg, pc)
[α]−−→ (σ,mem′, reg, pc + 1)

Compiler from SafeP to Mach Our compiler from
SafeP to Mach is single-pass and quite simple. It imple-
ments SafeP’s structured control flow with labels and di-
rect jumps, intra-component calls using jump-and-link (Jal),

and function pointer calls using indirect jumps (Jump and
JumpFunPtr).

Even this simple compilation chain, where security is mostly
enforced by the target language semantics, suffices to bring out
the difficulties in proving secure compilation in the presence
of memory sharing. Using the ideas developed in §3, we have
proved that this compilation chain provides RSP∼ security.

Theorem 4.1. Our SafeP to Mach compiler is RSP∼ (i.e.,
it satisfies Definition 2.1).

5 Some Details of the Coq Proof
5.1 Data-Flow Back-Translation of Mach

We provide some details of how we back-translate Mach’s
data-flow traces to SafeP, i.e., how we prove Lemma 3.5. The
back-translation function, written ↑, takes as input a data-flow
trace T and outputs a SafeP whole program P that produces
the (standard) trace remove_df(T ) in SafeP.11 As for Abate
et al. [2], each component in P maintains an event counter
to keep track of which trace event the component is currently
mimicking. This counter, as well as a small amount of other
metadata used by the back-translation, is stored inside the
statically allocated buffers of each component of P, which
are accessed using the local construct.

Control flow of the result of the back-translation The
outermost structure and control flow of the result of our
data-flow back-translation is very similar to that of Abate
et al. [2]’s interaction-trace-directed back-translation. Every
procedure has a main loop (implemented using a tail-recursive
call) that emits, one after the other, the events this procedure’s
component is responsible for emitting. In the “loop body”,
the event counter mentioned above is checked using a switch
statement to determine the event whose turn it is to be emitted.

Mimicking register operations A technical difficulty in
the back-translation is that, unlike Mach, SafeP does not
have registers. In order to mimic data-flow events involving
registers, P simulates these registers and operations on them
within the static buffer of the active component. For instance, a
Mov Mem Reg ccur rsrc rdest event (which copies a value from
register rsrc to register rdest) is simulated by the expression
(local+ OFFSET(rdest)) := !(local+ OFFSET(rsrc)), where
OFFSET(r) is statically expanded to the offset corresponding
to register r in the simulated register file.

Mimicking memory operations Because like in CompCert
the source and target memory models coincide, we are able
to back-translate memory events quite easily. That is, a Store

event is back-translated using assignment (:=) and a Load

event is back-translated using dereferencing (!). Since the static
buffer (whose block number is 0 in our semantics) is already
used by the back-translation to store metadata and simulated

11↑ also takes as input the interface of the given target-language program
to be able to mimic the same interface in the source program, but we elide the
details as they are not very insightful, and largely similar to those in Abate
et al. [2]. P can then be split into a context CS and a program part P′ by
slicing it along this interface.



…

ctr … r1 rcom raux …

…

r1 rcom raux …

0

1

2

3

0

1

2

3

metadata

simulated registers

Fig. 5.1: Memory layout of a back-translated component
(left) compared to a target component (right) witnessing the
increment-by-1 block-id-renaming relation

registers, the back-translated program’s memory shifts by one
block relative to the memory in the target: for each component,
block b in the target corresponds to block b+1 in the source.
The memory layout of the back-translated program (P=T↑)
relative to the given Mach program P is shown in Figure 5.1.
P maintains the invariant that, after simulating an event in T ,
P’s memory and its current component’s simulated registers
are synchronized with the target memory Mem and the target
register file Reg mentioned in the simulated event (This is part
of a mimicking_state invariant—see Lemma 5.1 below).

Mimicking calls and returns Mach’s semantics enforce
a calling convention: calls and returns store the argument or
return value in rCOM, and set all other registers to error.
Therefore, calls and returns in P need extra administrative
steps to mimic this convention. For example, mimicking a call
event requires two administrative steps: (1) In the caller, deref-
erence the content of the location simulating rCOM to get the
argument and pass it to the function. (2) In the callee, assign
the function argument arg to the location simulating rCOM,
and set all other registers to error. Similar administrative
steps are needed for mimicking a return event.

Proof of back-translation To prove back-translation
(Lemma 3.5), we use a simulation lemma that en-
sures a relation mimicking_state holds between the
state of P and the prefix mimicked so far. Intuitively,
mimicking_state Tpref Tsuff s means that s is the state reached
after mimicking all the data-flow events in Tpref , and that the
starting state of the remaining trace Tsuff matches s.

Lemma 5.1 (Trace-prefix mimicking).

∀P T Tpref Tsuff . P⇝∗
DF T =⇒ T = Tpref ++ Tsuff =⇒

∃s t′pref . T ↑
t′pref−→

∗

s ∧ t′pref ∼ remove_df(Tpref )

∧ mimicking_state Tpref Tsuff s

Because Lemma 5.1 ensures the relation mimicking_state
holds for every prefix, it effectively states that the memory of
the back-translation is in lock-step with the Mem and Reg ap-
pearing in each data-flow event E from T . mimicking_state

is also strong enough to ensure that the trace relation
holds between the projection of the prefix mimicked so far
remove_df(Tpref ) and the corresponding prefix t′pref that the
back-translation emits.

The fully mechanized Coq proof of Lemma 3.5
is in Source/DefinabilityEnd.v, which in turn uses
Source/Definability.v and Source/NoLeak.v.12

5.2 Proof of Recomposition for Mach

We use the turn-taking memory relation from §3.2
to prove recomposition (Lemma 2.4). To do that, we
prove that Definition 3.9 of mem_rel_tt is an invariant.
Definition 3.9 is part of a bigger invariant state_rel_tt
on execution states that we elide here for space reasons.
The Coq proof of Lemma 2.4 is, however, available in
Intermediate/RecompositionRel.v, which in turn uses all
of RecompositionRelCommon.v, RecompositionRelOptionSim.v,
RecompositionRelLockStepSim.v and
RecompositionRelStrengthening.v13

As explained at the end of Section 3.2, a key requirement of
the recomposition proof is a strengthening lemma that recovers
a stronger invariant, state_rel_border, which holds at
states that emit interaction events. We show the memory part
of state_rel_border:

Definition 5.2 (Memory Relation At Interaction Events).

mem_rel_border(s1,2, s1, s2, t1,2, t1, t2)
def
=

mem_rel_exec(P1, t1, t1,2, s1.Mem, s1,2.Mem) ∧
mem_rel_exec(C2, t2, t1,2, s2.Mem, s1,2.Mem)

where mem_rel_exec is exactly as in Definition 3.9.

Among other things, mem_rel_border ensures that the
shared memories of the three states (of the recomposed pro-
gram and the two base programs) are all in sync. We are able
to instantiate this strong invariant only at interaction events,
because at these points we can use the assumption that the
traces of the two base programs are related (last assumption
of Lemma 5.3), which implies that the shared memories of the
base programs are related. This assumption can be combined
with mem_rel_tt (which holds universally for every triple of
corresponding states) to obtain mem_rel_border.

Lemma 5.3 (Strengthening at interaction events).

∀s1,2 s1 s2 t1,2 t1 t2 s′1 s′2 e1 e2.

state_rel_tt(s1,2, s1, s2, t1,2, t1, t2) =⇒

s1
[e1]−→ s′1 =⇒

s2
[e2]−→ s′2 =⇒

t1 ++ [e1] ∼ t2 ++ [e2] =⇒

∃s′1,2 e1,2. s1,2
[e1,2]−→ s′1,2 ∧

state_rel_border(s′1,2, s′1, s′2,

12For a total of 1.3k lines of specification and 14.3k lines of proof.
13For a total of 830 lines of specification and 12.6k lines of proof.



t1,2 ++ [e1,2], t1 ++ [e1], t2 ++ [e2])

The relation state_rel_tt is a turn-taking simulation
invariant. It ensures that the memory relation mem_rel_tt
holds of the memories of the three related states. Similarly,
the stronger state relation state_rel_border ensures that
the memory relation mem_rel_border holds of the memories
of the three related states.

The exact definition of the relation state_rel_tt is in
RecompositionRelCommon.v. We show here two key lemmas:

Lemma 5.4 (Option simulation w.r.t. non-executing part).

∀s1,2 s1 s2 t1,2 t1 t2 s′1.

s1,2 is executing in C2 (i.e., not in P1) =⇒
state_rel_tt(s1,2, s1, s2, t1,2, t1, t2) =⇒

s1
[]−→

∗
s′1 =⇒

state_rel_tt(s1,2, s′1, s2, t1,2, t1, t2)

The last assumption (s1
[]−→

∗
s′1) of the option simula-

tion (Lemma 5.4) says that state s1 of the base program
P1 ∪C1 takes some non-interaction steps. This base program
contributes just P1 to the recomposed program (P1 ∪C2),
and we know by assumption “s1,2 is executing inC2” that
the recomposed state s1,2 is not executing in P1. The invariant
state_rel_tt ensures that s1,2 executes in P1 whenever s1
executes in P1. Thus, the steps that s1 has made must be taken
by the discarded part C1, not the retained part P1. As shown
in Example 3.7, we know that steps taken by C1 can cause
a mismatch between the memory of the recomposed program
and the memory of the base program P1 ∪C1. The option
simulation lemma ensures that this mismatch is tolerated by
the state_rel_tt invariant.

Lemma 5.5 (Lock-step simulation w.r.t. executing part).

∀s1,2 s1 s2 t1,2 t1 t2 s′1.

s1,2 is executing in C2 (i.e., not in P1) =⇒
state_rel_tt(s1,2, s1, s2, t1,2, t1, t2) =⇒

s2
[]−→ s′2 =⇒

∃s′1,2. s1,2
[]−→ s′1,2 ∧

state_rel_tt(s′1,2, s1, s′2, t1,2, t1, t2)

Lock-step simulation (Lemma 5.5) ensures that the invariant
state_rel_tt is strong enough to keep every non-interaction
step of a retained part in sync between the recomposed
program and the corresponding base program.

Although both Lemmas 5.4 and 5.5 hold only for the
scenario when “s1,2 is executing in C2 (i.e., not in P1)”,
they are still general enough because we can apply symme-
try lemmas to our invariant state_rel_tt to reduce the
other scenario “s1,2 is executing in P1” to the former
scenario—thus avoiding lots of duplicate proof. The symmetry

lemmas are proved in RecompositionRelCommon.v. Here is
the main symmetry lemma we use:

Lemma 5.6 (Symmetry of state_rel_tt).

∀s1,2 s1 s2 t1,2 t1 t2.

state_rel_tt(s1,2, s1, s2, t1,2, t1, t2) =⇒
state_rel_tt(s1,2, s2, s1, t1,2, t2, t1)

Intuitively, the two situations that Lemma 5.6 asserts as
symmetric are those where the main function of the recom-
posed program P1 ∪C2 is (a) implemented by P1 and (b) by
C2. The symmetry lemmas consequently allow us to apply our
simulation lemmas to both of these cases even though these
simulation lemmas are proved for just one of the cases.

In RecompositionRel.v, the reader can find the top-level
proof of recomposition (Lemma 2.4) that uses these symmetry
lemmas in addition to strengthening (Lemma 5.3), option sim-
ulation (Lemma 5.4), and lock-step simulation (Lemma 5.5).

To summarize, the new idea of turn-taking simulations
helped us complete the recomposition proof with memory
sharing, which is fully mechanized in Coq.

5.3 Axioms
Our three novel proof steps (data-flow back-translation,
Lemma 3.5, recomposition using the turn-taking simulation,
Lemma 2.4, and enrichment, Lemma 3.4) are fully mechanized
and rely only on standard logical axioms: proof irrelevance,
functional extensionality, and classical excluded middle.

The proof of Theorem 4.1 relies (in addition to the fully
mechanized lemmas above) intuitively on assumptions 2.3
and 2.5 about (separate) compilation of whole programs from
SafeP to Mach. These kind of assumptions are axiomatized
in our Coq development in a similar way to that of Abate
et al. [2]. In detail: (a) we have four axioms stating that the
result of compilation is syntactically well-formed if the source
program is well-formed; (b) one separate compilation axiom
stating that compilation and linking commute; (c) two axioms
stating the existence of a forward and a backward simulation
for whole-program compilation; and (d) one axiom ensuring
that our compiler preserves the privacy of the local buffer. We
expect this last axiom to hold because our compiler pass does
not merge memory blocks.14 To prove it, we expect one can
use fine-grained simulation invariants very similar to the ones
one would use for a compiler correctness proof. The precise
statements of these axioms are given in our README.md file.

One key motivation for building on the strategy of Abate
et al. [2] (§2.3) is to benefit from separation of concerns
between secure compilation concern and whole-program com-
piler correctness concern). Axiomatizing whole-program com-
piler correctness, however, is only reasonable for the purposes
of a methodology-oriented case study like ours, but is not
reasonable if the goal were to provide RSP∼-style assurance
for a real system. In that case though, our methodology will
enable reuse of the compiler correctness proof.

14If the compiler did merge blocks, then satisfying the axiom would require
ensuring that it never merges a private block with a shared one.



6 Related Work
Memory relations similar to turn-taking simulations
(mem_rel_tt) El-Korashy et al. [17] and Stewart et al. [43]
use memory relations that are similar to mem_rel_tt in that
the shared memories of two related executions may mismatch
and the memory relation guarantees that the context does
not modify the private memory of the compiled program.
However, there are notable differences. First, their relations
are binary—between two runs that differ in one component—
unlike ours, which is ternary. This allows their relations to
be strengthened whenever the compiled program is executing,
while our relation can be strengthened (Definition 5.2) only for
single steps right after interaction events. Second, the applica-
tions are quite different. Stewart et al. [43]’s relation is used in
a non-security proof about compositional compiler correctness
where guarantees come from assumptions about the target
context (Setting 1, Section 2.1), while our guarantees come
from memory protection features of Mach (Setting 2). El-
Korashy et al. [17]’s memory relation is used to establish a
different security criterion, full abstraction [1, 34].

Reuse of standard compiler correctness for secure compi-
lation We are aware of only two works that reuse compiler
correctness lemmas in a secure compilation proof. Abate et al.
[2], which we directly build on, have goals similar to ours,
but without memory sharing, which is really the focus of
our paper. El-Korashy et al. [17] support memory sharing and
proof reuse using a different proof technique they call TrICL.
As explained in the paragraph on memory relations above,
their memory relation (which is part of TrICL) is technically
very different from our turn-taking simulations. Additionally,
unlike our technique, their proof is not mechanically verified
and, as explained in Section 3.1, mechanizing their proof is
very difficult due to their use of complex bookkeeping.

Other kinds of informative traces Using inspiration from
fully abstract trace semantics [24], Patrignani and Garg [33]
perform back-translation (with shared memory) for a compiler
pass using traces that record the whole memory but still only
emit it at just interaction events. Although more informative
than traces that record only shared memory at interaction
events [17, 24], these traces still do not eliminate the need
for bookkeeping, unlike our data-flow traces that selectively
expose non-interaction events to simplify back-translation.

Handling memory sharing as message passing Patrignani
et al. [35] describe a completely different secure compilation
of object-oriented programs with memory sharing: Their com-
piled code implements shared memory in a trusted third party
(realized as a hardware-protected module), and all reads and
writes become explicit RPCs to this third party. Under the
hood, the third party relies on dynamic sealing to hide memory
addresses [28]. This effectively reduces memory sharing to
message passing and elides most of the complications in
proofs with true memory sharing, but also results in extremely
inefficient code that requires heavyweight calls at every read-

/write to shared memory, thus largely defeating the purpose of
sharing memory in the first place.

It would be interesting to study whether enforcing encap-
sulation while also allowing more direct memory sharing is
feasible, and if so, whether the same challenges we faced still
arise, and hence whether our proof techniques still apply.

Secure linking To ensure safe interaction with low-level
code, typed assembly languages and multi-language semantics
have been used by Patterson et al. [37]. Their technique
restricts the low-level language not with runtime enforcement
of memory isolation like in some architectures [16, 44, 48,
49, 50, 51] and in our Mach model, but instead with a
static type system. The type system and the accompanying
logical relation allow reasoning about the equivalence of a
“mixed-language” setting, which is similar to our Setting 2 but
sometimes requires exposing low-level abstractions to high-
level code. The secure compilation approach we follow has a
chance of avoiding that. For example, by avoiding the need for
directly reasoning in Setting 2, our secure compilation result
beneficially hides from the programmer the fact that a Mach
function can jump to non-entry points of other functions in
the same component.

Robust safety preservation Robust safety preservation
(RSP), the secure compilation criterion we use, was first
described by Abate et al. [3], Patrignani and Garg [33] and
Abate et al. [2]. However, this initial work uses a trivial
relation (equality) between source and target traces. With a
general relation, as in our setting, RSP was first examined
by Abate et al. [4]. RSP further traces lineage to the robust
verification of safety properties of a given program (not a
given compiler), which is often called “robust satisfaction of
safety properties” [23]. Robust satisfaction is a well-developed
concept, used in model checking [19], type systems [18], and
program logics [20, 38, 46].

Secure compilation of information-flow-like properties A
long line of work [7, 8, 9, 10, 11, 30, 39, 40] develops proof
techniques and verified compilers to ensure that information
flow properties like non-interference, the constant-time policy,
or side-channel resistance are preserved by compilation. These
techniques, however, are all concerned with whole programs,
unlike our work, which starts with the premise that partial
programs will interact with untrusted code.

7 Scope and Limitations
We emphasize again that the key benefit of our data-flow
back-translation lies in simplifying secure compilation proofs
when memory is shared via pointers and the source and
target languages are syntactically dissimilar. However, our
technique is useful only if the target language has fine-grained
memory protection, which is available in some capability
architectures like CHERI [51] or tagged architectures [13],
but not in mainstream architectures such as x86. Nonetheless,
this is not a limitation of our proof technique, but rather
a fundamental enforcement problem. Even leaving aside the



proof, we believe it is not known how to efficiently compile
a memory-safe source language with fine-grained memory
sharing to an architecture without support for fine-grained
memory protection in a way that maintains security against
arbitrary target-level contexts.

While the presentation in the paper kept the renaming
relation abstract, our RSP theorem in Coq is stated only for a
concrete subclass of renaming relations, which was sufficient
for our particular back-translation function and our particular
compiler pass. Our compiler satisfies compiler correctness
for the identity renaming, meaning that it does not rename
pointers. To simplify our formalization, we exploit this fact
by only considering renamings that are constant shifts. We
leave for future work the generalization of this subclass. Such
a generalization would be needed for applying our proof
technique to o a more interesting compiler that needs a more
complex renaming relation [25, 26]. For instance, instead of
storing the whole stack in a single block, the compiler could
implement the stack by allocating a new block for each stack
frame. In this case the renaming relation needed for compiler
correctness would relate blocks in a more subtle way than the
simple identity or increment-by-1 relation. While the proof of
back-translation would not be affected by such a change, with
a generalized renaming relation, we will have to think more
explicitly about the properties needed for the recomposition
proof and the top-level proof to go through. We expect that
consistency of the renaming is one such property, but there
may be other properties on which we relied implicitly for our
special subclass.

8 Future Work
In the future, we would like to apply our proof techniques
to more realistic compilers and also to lower-level compiler
passes that implement enforcement mechanisms, for instance
based on capability machines [48, 51] or programmable tagged
architectures [13, 16]. We also think our techniques can
be extended to stronger secure compilation criteria, building
on work by Abate et al. [3], who illustrate that the robust
preservation of a large class of relational safety properties can
be proved by trace-directed back-translation. This is stronger
than both RSP∼ and a full abstraction variant, but their back-
translation technique does not yet cope with mutable state.

The languages we studied are both dynamically typed. It
would be interesting to study how our proof techniques apply
to secure compilers from statically-typed source languages too.

Another line for extending our work is to study a more
realistic calling convention involving a single stack for data
and control (our target language uses just a control stack and
passes arguments only in registers). We expect data-flow back-
translation to still be applicable, but to build such a secure
compiler one will need to specify the interface of the low-level
context and dynamically enforce that the low-level context’s
use of the stack adheres to its interface.

Finally, allowing undefined behavior, as done by Abate et al.
[2], should be compatible with our techniques, as long as the
cross-component memory operations of the source language

are compiled safely, not left completely undefined—e.g., out-
of-bounds accesses to pointers shared by other components.

References
[1] M. Abadi. Protection in programming-language transla-

tions. ICALP. Springer, 1998.
[2] C. Abate, A. Azevedo de Amorim, R. Blanco, A. N.

Evans, G. Fachini, C. Hritcu, T. Laurent, B. C. Pierce,
M. Stronati, J. Thibault, and A. Tolmach. When good
components go bad: Formally secure compilation despite
dynamic compromise. arXiv:1802.00588 v5 (previous
version appeared at CCS’18), 2019.

[3] C. Abate, R. Blanco, D. Garg, C. Hritcu, M. Patrignani,
and J. Thibault. Journey beyond full abstraction: Explor-
ing robust property preservation for secure compilation.
CSF, 2019.

[4] C. Abate, R. Blanco, Ş. Ciobâcă, A. Durier, D. Garg,
C. Hritcu, M. Patrignani, É. Tanter, and J. Thibault.
Trace-relating compiler correctness and secure compila-
tion. ESOP. 2020.

[5] A. Ahmed and M. Blume. Typed closure conversion
preserves observational equivalence. SIGPLAN Not.’08.

[6] A. Ahmed and M. Blume. An equivalence-preserving
CPS translation via multi-language semantics. SIGPLAN
Not., 46(9), 2011.

[7] G. Barthe, A. Basu, and T. Rezk. Security types preserv-
ing compilation. VMCAI. 2004.

[8] G. Barthe, B. Grégoire, and V. Laporte. Secure com-
pilation of side-channel countermeasures: the case of
cryptographic “constant-time”. CSF. IEEE, 2018.

[9] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte,
D. Pichardie, and A. Trieu. Formal verification of
a constant-time preserving C compiler. PACMPL, 4
(POPL), 2019.

[10] G. Barthe, S. Blazy, R. Hutin, and D. Pichardie. Secure
compilation of constant-resource programs. CSF. 2021.

[11] F. Besson, A. Dang, and T. Jensen. Securing compilation
against memory probing. PLAS. ACM, 2018.

[12] M. Busi, J. Noorman, J. Van Bulck, L. Galletta,
P. Degano, J. T. Mühlberg, and F. Piessens. Provably
secure isolation for interruptible enclaved execution on
small microprocessors. CSF. IEEE, 2020.

[13] A. A. De Amorim, M. Dénes, N. Giannarakis, C. Hritcu,
B. C. Pierce, A. Spector-Zabusky, and A. Tolmach.
Micro-policies: Formally verified, tag-based security
monitors. S&P. IEEE, 2015.

[14] D. Devriese, M. Patrignani, and F. Piessens. Fully-
abstract compilation by approximate back-translation.
POPL, 2016.

[15] D. Devriese, M. Patrignani, F. Piessens, and S. Keuchel.
Modular, fully-abstract compilation by approximate
back-translation. LMCS, 13(4), 2017.

[16] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis,
S. Chiricescu, J. M. Smith, T. F. Knight, Jr., B. C. Pierce,
and A. DeHon. Architectural support for software-

http://arxiv.org/abs/1802.00588
http://arxiv.org/abs/1802.00588
http://arxiv.org/abs/1802.00588
http://dx.doi.org/10.1145/1411203.1411227
http://dx.doi.org/10.1145/1411203.1411227
http://dx.doi.org/10.1145/2034574.2034830
http://dx.doi.org/10.1145/2034574.2034830
http://dx.doi.org/10.1145/3371075
http://dx.doi.org/10.1145/3371075
http://dx.doi.org/10.1109/CSF51468.2021.00020
http://dx.doi.org/10.1109/CSF51468.2021.00020
http://dx.doi.org/10.1145/2837614.2837618
http://dx.doi.org/10.1145/2837614.2837618
http://dx.doi.org/10.23638/LMCS-13(4:2)2017
http://dx.doi.org/10.23638/LMCS-13(4:2)2017
http://dx.doi.org/10.1145/2786763.2694383


defined metadata processing. SIGARCH Comput. Archit.
News, 43(1), 2015.

[17] A. El-Korashy, S. Tsampas, M. Patrignani, D. Devriese,
D. Garg, and F. Piessens. CapablePtrs: Securely com-
piling partial programs using the pointers-as-capabilities
principle. CSF, 2021.

[18] A. D. Gordon and A. Jeffrey. Authenticity by typing for
security protocols 1. JCS, 11(4), 2003.

[19] O. Grumberg and D. E. Long. Model checking and
modular verification. CONCUR. Springer, 1991.

[20] L. Jia, S. Sen, D. Garg, and A. Datta. A logic of programs
with interface-confined code. CSF, 2015.

[21] J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, and V. Vafeiadis.
Lightweight verification of separate compilation. SIG-
PLAN Not., 51(1), 2016.

[22] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens.
CakeML: a verified implementation of ML. POPL. 2014.

[23] O. Kupferman and M. Y. Vardi. Robust satisfaction.
CONCUR. 1999.

[24] J. Laird. A fully abstract trace semantics for general
references, pages 667–679. Springer Verlag, 2007.

[25] X. Leroy. A formally verified compiler back-end. Journal
of Automated Reasoning, 43(4), 2009.

[26] X. Leroy and S. Blazy. Formal verification of a C-
like memory model and its uses for verifying program
transformations. J. Autom. Reason., 41(1), 2008.

[27] R. Milner and R. Weyhrauch. Proving compiler correct-
ness in a mechanized logic. Machine Intelligence, 1972.

[28] J. H. Morris, Jr. Protection in programming languages.
Commun. ACM, 16(1), 1973.

[29] M. O. Myreen, M. J. C. Gordon, and K. Slind. Machine-
code verification for multiple architectures: An applica-
tion of decompilation into logic. FMCAD. 2008.

[30] K. S. Namjoshi and L. M. Tabajara. Witnessing secure
compilation. VMCAI. 2020.

[31] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin,
D. Dreyer, and V. Vafeiadis. Pilsner: A compositionally
verified compiler for a higher-order imperative language.
ICFP. 2015.

[32] M. S. New, W. J. Bowman, and A. Ahmed. Fully abstract
compilation via universal embedding. ICFP. 2016.

[33] M. Patrignani and D. Garg. Robustly safe compilation,
an efficient form of secure compilation. TOPLAS’21.

[34] M. Patrignani, A. Ahmed, and D. Clarke. Formal ap-
proaches to secure compilation: A survey of fully abstract
compilation and related work. ACM Comput. Surv.’19.

[35] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke,
and F. Piessens. Secure compilation to protected module
architectures. TOPLAS, 37(2), 2015.

[36] D. Patterson and A. Ahmed. The next 700 compiler
correctness theorems (functional pearl). PACMPL, 3
(ICFP), 2019.

[37] D. Patterson, J. Perconti, C. Dimoulas, and A. Ahmed.
Funtal: Reasonably mixing a functional language with
assembly. SIGPLAN Not., 52(6), 2017.

[38] M. Sammler, D. Garg, D. Dreyer, and T. Litak. The

high-level benefits of low-level sandboxing. POPL’19.
[39] R. Sison and T. Murray. Verifying That a Compiler Pre-

serves Concurrent Value-Dependent Information-Flow
Security. ITP. 2019.

[40] R. Sison and T. Murray. Verified secure compilation for
mixed-sensitivity concurrent programs. JFP, 2021.

[41] L. Skorstengaard, D. Devriese, and L. Birkedal. StkTo-
kens: Enforcing well-bracketed control flow and stack
encapsulation using linear capabilities. PACMPL, 3
(POPL), 2019.

[42] Y. Song, M. Cho, D. Kim, Y. Kim, J. Kang, and C.-
K. Hur. CompCertM: CompCert with C-assembly link-
ing and lightweight modular verification. PACMPL, 4
(POPL), 2019.

[43] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel.
Compositional compcert. POPL. 2015.

[44] R. Strackx, J. Noorman, I. Verbauwhede, B. Preneel, and
F. Piessens. Protected software module architectures.
pages 241–251. Springer, 2013.

[45] T. V. Strydonck, F. Piessens, and D. Devriese. Linear
capabilities for fully abstract compilation of separation-
logic-verified code. PACMLP, 3(ICFP), 2019.

[46] D. Swasey, D. Garg, and D. Dreyer. Robust and compo-
sitional verification of object capability patterns. Proc.
ACM Program. Lang., 1(OOPSLA), 2017.

[47] S. Tsampas, D. Devriese, and F. Piessens. Temporal
safety for stack allocated memory on capability ma-
chines. CSF, 2019.

[48] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka,
B. Laurie, et al. CHERI: A hybrid capability-system
architecture for scalable software compartmentalization.
S&P. IEEE, 2015.

[49] R. N. M. Watson, R. M. Norton, J. Woodruff, S. W.
Moore, P. G. Neumann, J. Anderson, D. Chisnall,
B. Davis, B. Laurie, M. Roe, N. H. Dave, K. Gudka,
A. Joannou, A. T. Markettos, E. Maste, S. J. Murdoch,
C. Rothwell, S. D. Son, and M. Vadera. Fast protection-
domain crossing in the CHERI capability-system archi-
tecture. IEEE Micro, 36(5), 2016.

[50] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe,
H. Almatary, J. Anderson, J. Baldwin, D. Chisnall,
B. Davis, N. W. Filardo, A. Joannou, B. Laurie, A. T.
Markettos, S. W. Moore, S. J. Murdoch, K. Nienhuis,
R. Norton, A. Richardson, P. Rugg, P. Sewell, S. Son,
and H. Xia. Capability Hardware Enhanced RISC In-
structions: CHERI Instruction-Set Architecture (Version
7). Technical Report UCAM-CL-TR-927, University of
Cambridge, Computer Laboratory, 2019.

[51] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore,
J. Anderson, B. Davis, B. Laurie, P. G. Neumann,
R. Norton, and M. Roe. The CHERI Capability Model:
Revisiting RISC in an Age of Risk. SIGARCH Comput.
Archit. News, 42(3), 2014.

[52] F. Zhang and E. D’Hollander. Using hammock graphs to
structure programs. IEEE Trans. Softw. Eng., 2004.

http://dx.doi.org/10.1145/2786763.2694383
http://dx.doi.org/10.1109/CSF51468.2021.00036
http://dx.doi.org/10.1109/CSF51468.2021.00036
http://dx.doi.org/10.1109/CSF51468.2021.00036
http://dx.doi.org/10.1109/CSF.2015.38
http://dx.doi.org/10.1109/CSF.2015.38
http://dx.doi.org/10.1145/2914770.2837642
http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1007/978-3-540-73420-8_58
http://dx.doi.org/10.1007/978-3-540-73420-8_58
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1007/s10817-008-9099-0
http://dx.doi.org/10.1007/s10817-008-9099-0
http://dx.doi.org/10.1007/s10817-008-9099-0
http://dx.doi.org/10.1145/361932.361937
http://dl.acm.org/citation.cfm?id=1517424.1517444
http://dl.acm.org/citation.cfm?id=1517424.1517444
http://dl.acm.org/citation.cfm?id=1517424.1517444
http://dx.doi.org/10.1145/2784731.2784764
http://dx.doi.org/10.1145/2784731.2784764
http://dx.doi.org/10.1145/2951913.2951941
http://dx.doi.org/10.1145/2951913.2951941
http://dx.doi.org/10.1145/3436809
http://dx.doi.org/10.1145/3436809
http://dx.doi.org/10.1145/3280984
http://dx.doi.org/10.1145/3280984
http://dx.doi.org/10.1145/3280984
http://dx.doi.org/10.1145/3341689
http://dx.doi.org/10.1145/3341689
http://dx.doi.org/10.1145/3140587.3062347
http://dx.doi.org/10.1145/3140587.3062347
http://dx.doi.org/10.1145/3371100
http://dx.doi.org/10.1145/3371100
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ITP.2019.27
http://dx.doi.org/10.1017/S0956796821000162
http://dx.doi.org/10.1017/S0956796821000162
http://dx.doi.org/10.1145/3290332
http://dx.doi.org/10.1145/3290332
http://dx.doi.org/10.1145/3290332
http://dx.doi.org/10.1145/3371091
http://dx.doi.org/10.1145/3371091
http://dx.doi.org/10.1145/2676726.2676985
http://dx.doi.org/10.1145/3341688
http://dx.doi.org/10.1145/3341688
http://dx.doi.org/10.1145/3341688
http://dx.doi.org/10.1109/CSF.2019.00024
http://dx.doi.org/10.1109/CSF.2019.00024
http://dx.doi.org/10.1109/CSF.2019.00024
http://dx.doi.org/10.1109/MM.2016.84
http://dx.doi.org/10.1109/MM.2016.84
http://dx.doi.org/10.1109/MM.2016.84
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
http://dx.doi.org/10.1145/2678373.2665740
http://dx.doi.org/10.1145/2678373.2665740
http://dx.doi.org/10.1109/TSE.2004.1274043
http://dx.doi.org/10.1109/TSE.2004.1274043

	Introduction
	Background
	Motivating Example and Setting
	Robust Safety Preservation (RSP)
	A Proof Strategy for Robust Safety Preservation

	Key Technical Ideas
	Data-Flow Back-translation
	Turn-Taking Simulation for Recomposition
	Applying our ideas to an RSP proof

	Concrete Languages and Compiler Pass
	Some Details of the Coq Proof
	Data-Flow Back-Translation of RedOrangeMach
	Proof of Recomposition for RedOrangeMach
	Axioms

	Related Work
	Scope and Limitations
	Future Work

