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Abstract—Good programming languages provide helpful ab-
stractions for writing secure code, but the security properties of
the source language are generally not preserved when compiling a
program and linking it with adversarial code in a low-level target
language (e.g., a library or a legacy application). Linked target
code that is compromised or malicious may, for instance, read and
write the compiled program’s data and code, jump to arbitrary
memory locations, or smash the stack, blatantly violating any
source-level abstraction. By contrast, a fully abstract compilation
chain protects source-level abstractions all the way down, ensur-
ing that linked adversarial target code cannot observe more about
the compiled program than what some linked source code could
about the source program. However, while research in this area
has so far focused on preserving observational equivalence, as
needed for achieving full abstraction, there is a much larger space
of security properties one can choose to preserve against linked
adversarial code. And the precise class of security properties one
chooses crucially impacts not only the supported security goals
and the strength of the attacker model, but also the kind of
protections a secure compilation chain has to introduce.

We are the first to thoroughly explore a large space of formal
secure compilation criteria based on robust property preserva-
tion, i.e., the preservation of properties satisfied against arbitrary
adversarial contexts. We study robustly preserving various classes
of trace properties such as safety, of hyperproperties such as
noninterference, and of relational hyperproperties such as trace
equivalence. This leads to many new secure compilation criteria,
some of which are easier to practically achieve and prove than
full abstraction, and some of which provide strictly stronger
security guarantees. For each of the studied criteria we pro-
pose an equivalent “property-free” characterization that clarifies
which proof techniques apply. For relational properties and
hyperproperties, which relate the behaviors of multiple programs,
our formal definitions of the property classes themselves are
novel. We order our criteria by their relative strength and show
several collapses and separation results. Finally, we adapt existing
proof techniques to show that even the strongest of our secure
compilation criteria, the robust preservation of all relational
hyperproperties, is achievable for a simple translation from a
statically typed to a dynamically typed language.

1 Introduction
Good programming languages provide helpful abstractions for
writing secure code. Even in unsafe low-level languages like
C, safe programs have structured control flow and obey the
procedure call and return discipline. Languages such as Java,
C#, ML, Haskell, or Rust provide type and memory safety
for all programs and additional abstractions such as modules
and interfaces. Languages for efficient cryptography such as
qhasm [21], Jasmin [11], and Low? [80] enforce a “constant-

time” coding discipline to rule out certain side-channel attacks.
Finally, verification languages such as Coq and F? [80, 93]
provide abstractions such as dependent types, logical pre- and
postconditions, and tracking side-effects, e.g., distinguishing
pure from stateful computations. Such abstractions make rea-
soning about security more tractable and have, for instance,
enabled developing high-assurance libraries in areas such as
cryptography [11, 33, 43, 102].

However, such abstractions are not enforced all the way
down by mainstream compilation chains. The security prop-
erties a program satisfies in the source language are generally
not preserved when compiling the program and linking it
with adversarial target code. High-assurance cryptographic
libraries, for instance, get linked into real applications such as
web browsers [24, 43] and web servers, which include millions
of lines of legacy C/C++ code. Even if the abstractions of
the source language ensure that the API of a TLS library
cannot leak the server’s private key [33], such guarantees
are completely lost when compiling the library and linking
it into a C/C++ application that can get compromised via
a buffer overflow, simply allowing the adversary to read the
private key from memory [39]. A compromised or malicious
application that links in a high-assurance library can easily
read and write its data and code, jump to arbitrary memory
locations, or smash the stack, blatantly violating any source-
level abstraction and breaking any security guarantee obtained
by source-level reasoning.

An idea that has been gaining increasing traction recently
is that it should be possible to build secure compilation chains
that protect source-level abstractions even against linked ad-
versarial target code, which is generally represented by target
language contexts. Research in this area has so far focused on
achieving full abstraction [2, 3, 6, 7, 8, 9, 35, 47, 52, 55, 64,
71, 76, 77, 78], whose security-relevant direction ensures that
even an adversarial target context cannot observe more about
the compiled program than some source context could about
the source program. In order to achieve full abstraction, the
various parts of the secure compilation chain—including, e.g.,
the compiler, linker, loader, runtime, system, and hardware—
have to work together to provide enough protection to the
compiled program, so that whenever two programs are obser-
vationally equivalent in the source language (i.e., no source
context can distinguish them), the two programs obtained by
compiling them are observationally equivalent in the target



language (i.e., no target context can distinguish them).
Observational equivalences are, however, not the only class

of security properties one may want to robustly preserve, i.e.,
preserve against arbitrary adversarial contexts. One could in-
stead be interested in robustly preserving, for instance, classes
of trace properties such as safety [63] or liveness [12], or of
hyperproperties [31] such as hypersafety, including variants
of noninterference [13, 48, 68, 85, 86, 101], which cover
data confidentiality and integrity. However, full abstraction is
generally not strong enough on its own to imply the robust
preservation of any of these properties (as we show in §5, and
as was also argued by others [74]). At the same time, the kind
of protections one has to put in place for achieving full abstrac-
tion seem like overkill if all one wants is to robustly preserve
safety or hypersafety. Indeed, it is significantly harder to hide
the differences between two programs that are observationally
equivalent but otherwise arbitrary, than to protect the internal
invariants and the secret data of a single program. Thus, a
secure compilation chain for robust safety or hypersafety can
likely be more efficient than one for observational equivalence.
Moreover, hiding the differences between two observationally
equivalent programs is hopeless in the presence of any side-
channels, while robustly preserving safety is not a problem
and even robustly preserving noninterference seems possible
in specific scenarios [19]. Finally, even when efficiency is not
a concern (e.g., when security is enforced by static restrictions
on target contexts [1, 7, 8, 9, 71]), proving full abstraction is
notoriously challenging even for simple languages, and con-
jectures have survived for decades before being settled [37].

Convinced that there is no “one-size-fits-all” criterion for
secure interoperability with linked target code, we explore,
for the first time, a large space of secure compilation criteria
based on robust property preservation. Some of the criteria
we introduce are strictly stronger than full abstraction and,
moreover, immediately imply the robust preservation of well-
studied property classes such as safety and hypersafety. Other
criteria we introduce seem easier to practically achieve and
prove than full abstraction. In general, the richer the class of
security properties one tries to robustly preserve, the harder
efficient enforcement becomes, so the best one can hope for
is to strike a pragmatic balance between security and efficiency
that matches each application domain.

For informing such difficult design decisions, we explore
robustly preserving classes of trace properties (§2), of hy-
perproperties (§3), and of relational hyperproperties (§4). All
these property notions are phrased in terms of execution traces,
which for us are (finite or infinite) sequences of events such as
inputs from and outputs to an external environment [60, 65].
Trace properties such as safety [63] restrict what happens
along individual program traces, while hyperproperties [31]
such as noninterference generalize this to predicates over
multiple traces of a program. In this work we generalize
this further to a new class we call relational hyperproperties,
which relate the traces of different programs. An example of
relational hyperproperty is trace equivalence, which requires
that two programs produce the same set of traces. We work

out many interesting subclasses that are also novel, such as
relational trace properties, which relate individual traces of
multiple programs. For instance, “On every input, program A’s
output is less than program B’s” is a relational trace property.

We order the secure compilation criteria we introduce
by their relative strength as illustrated by the partial order
in Figure 1. In this Hasse diagram edges represent logical
implication from higher criteria to lower ones, so the higher a
criterion is, the harder it is to achieve and prove. Intuitively,
the criteria based on the robust preservation of trace properties
(in the yellow area) only require sandboxing the context (i.e.,
linked adversarial code) and protecting the internal invariants
of the program from it, i.e., only data integrity. The criteria
based on hyperproperties (in the red area) require additionally
hiding the data of the program from the context, i.e., data
confidentiality. Finally, the criteria based on relational hyper-
properties (in the blue area) require additionally hiding the
code of the program from the context, i.e., code confidentiality.

While most implications in the diagram follow directly from
the inclusion between the property classes [31], strict inclusion
between property classes does not imply strict implication
between criteria. Robustly preserving two distinct property
classes can in fact lead to equivalent criteria, as happens in
general for hyperliveness and hyperproperties (§3.5) and, in
the presence of source-level reflection or internal nondetermin-
ism, for many criteria involving hyperproperties and relational
hyperproperties (§4.5). To show the absence of more collapses,
we also prove various separation results, for instance that
Robust Safety Property Preservation (RSP) is strictly weaker
than Robust Trace Property Preservation (RTP). For this, we
design (counterexample) compilation chains that satisfy the
weaker criterion but not the stronger one.

For each introduced secure compilation criterion we also
discovered an equivalent “property-free” characterization that
is generally better tailored for proofs and that provides im-
portant insights into what kind of techniques one can use
to prove the criterion. For instance, for proving RSP and
RTP we can produce a different source context to explain
each attack trace, while for proving stronger criteria such as
Robust Hyperproperty Preservation (RHP) we have to produce
a single source context that works for any attack trace.

We also formally study the relation between our new
security criteria and full abstraction (§5) proxied by the
robust preservation of trace equivalence (RTEP), which
in determinate languages—i.e., languages without internal
nondeterminism—was shown to coincide with observational
equivalence [27, 42]. In one direction, RTEP follows uncondi-
tionally from Robust 2-relational Hyperproperty Preservation,
which is one of our stronger criteria. However, if the source
and target languages are determinate and we make some mild
extra assumptions (such as input totality [46, 100]) RTEP
follows even from the weaker Robust 2-relational relaXed
safety Preservation (R2rXP). Here, the challenge was iden-
tifying these extra assumptions and showing that they are
sufficient to establish RTEP. In the other direction, we adapt a
counterexample proposed by Patrignani and Garg [74] to show
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Fig. 1: Partial order with the secure compilation criteria studied in this paper. Criteria higher in the diagram imply the lower
ones to which they are connected by edges. Criteria based on trace properties are grouped in a yellow area, those based on
hyperproperties are in a red area, and those based on relational hyperproperties are in a blue area. Criteria with an italics name
preserve a single property that belongs to the class they are connected to; the dotted edge requires an additional determinacy
assumption. Finally, each edge with a thick arrow denotes a strict implication that we have proved as a separation result.

that RTEP (and thus full abstraction), even in conjunction with
compositional compiler correctness, does not imply even the
weakest of our criteria, RSP, RDP, and RTINIP.

Finally, we show that two proof techniques originally de-
veloped for full abstraction can be readily adapted to prove
our new secure compilation criteria (§6). First, we use a
“universal embedding” [71] to prove that the strongest of our
secure compilation criteria, Robust Relational Hyperproperty
Preservation (RrHP), is achievable for a simple translation
from a statically typed to a dynamically typed first-order
language with first-order functions and I/O. Second, we use
the same simple translation to illustrate that for proving Robust
Finite-relational relaXed safety Preservation (RFrXP) we can
employ a “trace-based back-translation” [53, 76], a slightly
less powerful but more generic technique that we extend to
back-translate a finite set of finite execution prefixes into a
source context. This second technique is applicable to all
criteria implied by RFrXP, which includes robust preservation
of safety, of hypersafety, and in a determinate setting also of
trace (and thus observational) equivalence.

In summary, our paper makes five contributions:

C1. We phrase the formal security guarantees obtained by
protecting compiled programs from adversarial contexts in
terms of robustly preserving classes of properties. We are
the first to explore a large space of security criteria based
on this idea, including criteria that provide strictly stronger

security guarantees than full abstraction, and also criteria that
are easier to practically achieve and prove, which is important
for building more realistic secure compilation chains.
C2. We carefully study each new secure compilation criterion
and the non-trivial relations between them. For each criterion
we propose a property-free characterization that clarifies which
proof techniques apply. For relating the criteria, we order them
by their relative strength, show several interesting collapses,
and prove several challenging separation results.
C3. We introduce relational properties and hyperproperties,
which are new property classes of independent interest, even
outside of secure compilation.
C4. We formally study the relation between our security
criteria and full abstraction. In one direction, we show that
determinacy is enough for robustly preserving classes of rela-
tional properties and hyperproperties to imply preservation of
observational equivalence. In the other direction, we show that,
even when assuming compiler correctness, full abstraction
does not imply even our weakest criteria.
C5. We show that two existing proof techniques originally
developed for full abstraction can be readily adapted to our
new criteria, which is important since good proof techniques
are difficult to find in this space [36, 71, 78].

The paper closes with discussions of related (§7) and
future work (§8). The appendix contains omitted tech-
nical details. Many of the theorems formally or in-
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formally mentioned in the paper were also mechanized
in the Coq proof assistant and are marked with ;
this development has around 4400 lines of code and
is available at https://github.com/secure-compilation/
exploring-robust-property-preservation

2 Robustly Preserving Trace Properties
In this section we look at robustly preserving classes of trace
properties, and first study the robust preservation of all trace
properties and its relation to correct compilation (§2.1). We
then look at robustly preserving safety properties (§2.2), which
are the trace properties that can be falsified by a finite trace
prefix (e.g., a program never performs a certain dangerous
system call). These criteria are grouped in the Trace Properties
yellow area in Figure 1. We also carefully studied the robust
preservation of liveness properties, but it turns out that the
very definition of liveness is highly dependent on the specifics
of the program execution traces, which makes that part more
technical. For saving space and avoiding a technical detour,
we relegate to the appendix (§B) the details of our CompCert-
inspired trace model, as well as the part about liveness.

2.1 Robust Trace Property Preservation (RTP)

Like all secure compilation criteria we study in this paper,
the RTP criterion below is a generic property of an arbitrary
compilation chain, which includes a source and a target lan-
guage, each with a notion of partial programs (P ) and contexts
(C) that can be linked together to produce whole programs
(C[P ]), and each with a trace-producing semantics for whole
programs (C[P ]    t). The sets of partial programs and of
contexts of the source and target languages are unconstrained
parameters of our secure compilation criteria; our criteria make
no assumptions about their structure, or whether the program
or the context gets control initially once linked and executed
(e.g., the context could be an application that embeds a library
program or the context could be a library that is embedded
into an application program).1 The traces produced by the
source and target semantics2 are arbitrary for RTP, but for
RSP we have to consider traces with a specific structure
(finite or infinite sequences of events drawn from an arbitrary
set). Intuitively, traces capture the interaction between a whole
program and its external environment, including for instance
user input, output to a terminal, network communication,
system calls, etc. [60, 65]. As opposed to a context, which
is just a piece of a program, the environment’s behavior is not
(and often cannot be) modeled by the programming language,
beyond the (often nondeterministic) interaction events that we
store in the trace. Finally, a compilation chain includes a

1 One limitation of our formal setup, is that for simplicity we assume
that any partial program can be linked with any context, irrespective of their
interfaces (e.g., types or specs). One can extend our criteria to take interfaces
into account, as we illustrate in §G for the example in §6.

2In this paper we assume for simplicity that traces are exactly the same
in both the source and target language, as is also the case in the CompCert
verified C compiler [65]. We hope to lift this restriction in the future (§8).

compiler: the compilation of a partial source program P is
a partial target program we write P↓.3

The responsibility of enforcing secure compilation does not
have to rest just with the compiler, but may be freely shared
by various parts of the compilation chain. In particular, to
help enforce security, the target-level linker could disallow
linking with a suspicious context (e.g., one that is not well-
typed [1, 7, 8, 9, 71]) or could always allow linking but
introduce protection barriers between the program and the
context (e.g., by instrumenting the program [35, 71] or the
context [5, 95, 96] to introduce dynamic checks). Similarly,
the semantics of the target language can include various
protection mechanisms (e.g., processes with different virtual
address spaces [25, 50, 59, 81, 82], protected enclaves [76],
capabilities [30, 40, 90, 98], tags [5, 14]). Finally, the compiler
might have to refrain from aggressive optimizations that would
break security [19, 38, 89]. Our secure compilation criteria are
agnostic to the concrete enforcement mechanism used by the
compilation chain to protect the compiled program from the
adversarial target context.

Trace properties are defined simply as sets of allowed
traces [63]. A whole program C[P ] satisfies a trace property π
when the set of traces produced by C[P ] is included in the set
π or, formally, {t | C[P ]    t} ⊆ π. More interestingly, we
say that a partial program P robustly satisfies [49, 61, 94]
a trace property π when P linked with any (adversarial)
context C satisfies π. Armed with this, Robust Trace Property
Preservation (RTP) is defined as the preservation of robust
satisfaction of all trace properties. So if a partial source
program P robustly satisfies a trace property π ∈ 2Trace (wrt.
all source contexts) then its compilation P↓ must also robustly
satisfy π (wrt. all target contexts). If we unfold all intermediate
definitions, a compilation chain satisfies RTP iff:

RTP : ∀π ∈ 2Trace. ∀P. (∀CS t.CS [P]   t⇒ t ∈ π)⇒
(∀CT t.CT [P↓]   t⇒ t ∈ π)

This definition directly captures which properties (specifi-
cally, all trace properties) of the source are robustly preserved
by the compilation chain. However, in order to prove that a
compilation chain satisfies RTP we propose an equivalent ( )
“property-free” characterization, which we call RTC (for
“RTP Characterization”):

RTC : ∀P. ∀CT. ∀t. CT [P↓]   t⇒∃CS.CS [P]   t

RTC requires that, given a compiled program P↓ and a target
context CT which together produce an attack trace t, we can
generate a source context CS that causes trace t to be produced
by P. When proving that a compilation chain satisfies RTC we
can pick a different context CS for each t and, in fact, try to
construct CS from trace t or from the execution CT [P↓]   t.

We present similar property-free characterizations for each
of our criteria (Figure 1). However, for criteria stronger than
RTP, a single context CS will have to work for more than

3For easier reading, we use a blue, sans-serif font for source elements, an
orange,bold font for target elements and a black, italic font generically
for elements of either language.
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one trace. In general, the shape of the property-free character-
ization explains what information can be used to produce the
source context CS when proving a compilation chain secure.

Relation to compiler correctness RTC is similar to “back-
ward simulation” (TC), a standard compiler correctness crite-
rion [65]. Let W denote a whole program.

TC : ∀W. ∀t. W↓   t⇒W   t

Maybe slightly less known is that this property-free character-
ization of correct compilation also has an equivalent property-
full characterization as the preservation of all trace properties:
TP : ∀π ∈ 2Trace. ∀W.

(∀t.W   t⇒ t ∈ π)⇒ (∀t. W↓   t⇒ t ∈ π)

The major difference compared to RTP is that TP only
preserves the trace properties of whole programs and does
not consider adversaries. In contrast, RTP allows linking a
compiled partial program with arbitrary target contexts and
protects the program so that all robustly satisfied trace proper-
ties are preserved. In general, RTP and TP are incomparable.
However, RTP strictly implies TP when whole programs (W )
are a subset of partial programs (P ) and, additionally, the
semantics of whole programs is independent of any linked
context (i.e., ∀W t C. W    t ⇐⇒ C[W ]    t, which
happens, intuitively, when the whole program starts execution
and, being whole, never calls into the context).

More compositional criteria for compiler correctness have
also been proposed [56, 70, 79, 92]. At a minimum such
criteria allow linking with contexts that are the compilation
of source contexts [56], which can be formalized as follows:

SCC : ∀P. ∀CS. ∀t. CS↓ [P↓]   t⇒ CS [P]   t

More permissive criteria allow linking with any target context
that behaves like some source context [70], which in our
setting can be written as:

CCC : ∀P CT CS t. CT≈CS ∧CT [P↓]   t⇒ CS [P]   t

Here ≈ relates equivalent partial programs in the target and the
source, and could, for instance, be instantiated with a cross-
language logical relation [7, 70]. RTP is incomparable to SCC
and CCC. On the one hand, RTP allows linking with arbitrary
target-level contexts, which is not allowed by SCC and CCC,
and requires inserting strong protection barriers. On the other
hand, in RTP all source-level reasoning has to be done with
respect to an arbitrary source context, while with SCC and
CCC one can reason about a known source context.

2.2 Robust Safety Property Preservation (RSP)

Robust safety preservation is an interesting criterion for secure
compilation because it is easier to achieve and prove than most
criteria of Figure 1, while still being quite expressive [49, 94].

Recall that a trace property is a safety property if, within
any (possibly infinite) trace that violates the property, there
exists a finite “bad prefix” that violates it. We write m ≤ t for
the prefix relation between a finite trace prefix m and a trace
t(and give a precise definition in §B). Using this we define

safety properties in the usual way [12, 63, 88]:

Safety , {π ∈ 2Trace | ∀t 6∈ π. ∃m ≤ t. ∀t′ ≥ m. t′ 6∈ π}

The definition of RSP simply restricts the preservation of
robust satisfaction from all trace properties in RTP to only
safety properties; otherwise the definition is exactly the same:

RSP : ∀π ∈ Safety. ∀P. (∀CS t.CS [P]   t⇒ t ∈ π)⇒
(∀CT t.CT [P↓]   t⇒ t ∈ π)

One might wonder how safety properties can be robustly
satisfied in the source, given that execution traces can contain
events emitted not just by the partial program but also by the
adversarial context, which could trivially emit “bad events”
and, hence, violate any safety property. A first alternative is
for the semantics of the source language to simply prevent
the context from producing any events, maybe other than
termination, or, at least, prevent the context from producing
any events the safety properties of interest consider bad. The
compilation chain has then to “sandbox” the context to restrict
the events it can produce [95, 96]. A second alternative is
for the source semantics to record enough information in the
trace so that one can determine the origin of each event—the
partial program or the context. Then, safety properties in which
the context’s events are never bad can be robustly satisfied.
With this second alternative, the obtained global guarantees
are weaker, e.g., one cannot enforce that the whole program
never makes a dangerous system call, but only that the partial
program cannot be tricked by the context into making it.

The equivalent ( ) property-free characterization for RSP
requires one to back-translate a program (P), a target context
(CT), and a finite bad trace prefix (CT [P↓]    m) into a
source context (CS) producing the same finite trace prefix (m)
in the source (CS [P]   m):

RSC : ∀P. ∀CT. ∀m. CT [P↓]   m⇒ ∃CS.CS [P]   m

Syntactically, the only change with respect to RTC is the
switch from whole traces t to finite trace prefixes m. As for
RTC, we can pick a different context CS for each execution
CT [P↓]    m. (In our formalization we define W    m
generically as ∃t≥m. W    t.) The fact that for RSC these
are finite execution prefixes can significantly simplify the back-
translation into source contexts (as we show in §6.4).

It is trivially true that RTP implies RSP, since the former
robustly preserves all trace properties while the latter only
robustly preserves safety properties. We have also proved that
RTP strictly implies RSP.

Theorem 2.1. RTP⇒ RSP, but RSP 6⇒ RTP

Proof sketch. As explained above, RTP ⇒ RSP is trivial.
Showing strictness requires constructing a counterexample
compilation chain to the reverse implication. We take any
target language that can produce infinite traces. We take the
source language to be a variant of the target with the same
partial programs, but where we extend whole programs and
contexts with a bound on the number of events they can
produce before being terminated. Compilation simply erases
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this bound. (While this construction might seem artificial,
languages with a fuel bound are gaining popularity [99].) This
compilation chain satisfies RSP (equivalently, RSC) but not
RTP. To show that it satisfies RSC, we simply back-translate
a target context CT and a finite trace prefix m to a source
context (CT, length(m)) that uses the length of m as the
allowed bound, so this context can still produce m in the
source without being prematurely terminated. However, this
compilation chain does not satisfy RTP, since in the source
all executions are finite and, hence, no infinite target trace can
be simulated by any source context.

3 Robustly Preserving Hyperproperties
So far, we have studied the robust preservation of trace prop-
erties, which are properties of individual traces of a program.
In this section we generalize this to hyperproperties, which are
properties of multiple traces of a program [31]. A well-known
hyperproperty is noninterference [13, 48, 68, 85, 101], which
usually requires considering two traces of a program that differ
on secret inputs. Another hyperproperty is bounded mean re-
sponse time over all executions. We study robust preservation
of many subclasses of hyperproperties: all hyperproperties
(§3.1), subset-closed hyperproperties (§3.2), hypersafety and
K-hypersafety (§3.3), and hyperliveness (§3.5). These criteria
are in the red area in Figure 1.

3.1 Robust Hyperproperty Preservation (RHP)
While trace properties are sets of traces, hyperproperties are
sets of sets of traces [31]. We call the set of traces of a whole
program W the behavior of W : Behav (W ) = {t | W    t}.
A hyperproperty is a set of allowed behaviors. Program W
satisfies hyperproperty H if the behavior of W is a member
of H , i.e., Behav (W ) ∈ H , or, equivalently, {t | W    t} ∈
H . Contrast this to W satisfying trace property π, which
holds if the behavior of W is a subset of the set π, i.e.,
Behav (W ) ⊆ π, or, equivalently, ∀t. W    t ⇒ t ∈ π.
So while a trace property determines whether each individual
trace of a program should be allowed or not, a hyperproperty
determines whether the set of traces of a program, its behavior,
should be allowed or not. For instance, the trace property
π123 = {t1, t2, t3} is satisfied by programs with behaviors
such as {t1}, {t2}, {t2, t3}, and {t1, t2, t3}, but a program
with behavior {t1, t4} does not satisfy π123. A hyperproperty
like H1+23 = {{t1}, {t2, t3}} is satisfied only by programs
with behavior {t1} or with behavior {t2, t3}. A program with
behavior {t2} does not satisfy H1+23, so hyperproperties can
express that if some traces (e.g., t2) are possible then some
other traces (e.g., t3) should also be possible. A program
with behavior {t1, t2, t3} also does not satisfy H1+23, so
hyperproperties can express that if some traces (e.g., t2 and
t3) are possible then some other traces (e.g., t1) should not
be possible. Finally, trace properties can be easily lifted to
hyperproperties: A trace property π becomes the hyperproperty
[π] = 2π , the powerset of π.

We say that a partial program P robustly satisfies a hy-
perproperty H if it satisfies H for any context C. Given this

we define RHP as the preservation of robust satisfaction of
arbitrary hyperproperties:

RHP : ∀H ∈ 22Trace
. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒

(∀CT. Behav (CT [P↓]) ∈ H)

The equivalent ( ) characterization of RHP is RHC :

RHC : ∀P. ∀CT. ∃CS. Behav (CT [P↓]) = Behav (CS [P])

RHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓]   t ⇐⇒ CS [P]   t

This requires that, for every partial program P and target
context CT, there is a (back-translated) source context CS

that perfectly preserves the set of traces of CT [P↓] when
linked to P. There are two differences from RTP: (1) the
∃CS and ∀t quantifiers are swapped, so the back-translated
CS must work for all traces t, and (2) the implication in
RTC (⇒) became a two-way implication in RHC ( ⇐⇒ ),
so compilation has to perfectly preserve the set of traces. In
particular the compiler cannot refine behavior (remove traces),
e.g., it cannot implement nondeterministic scheduling via a
deterministic scheduler.

In the following subsections we study restrictions of RHP to
various subclasses of hyperproperties. To prevent duplication
we define RHP(X) to be the robust satisfaction of a class X
of hyperproperties (so RHP above is simply RHP(22Trace

)):

RHP(X) : ∀H ∈ X. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒
(∀CT. Behav (CT [P↓]) ∈ H)

3.2 Robust Subset-Closed Hyperproperty Preservation
(RSCHP)

If one restricts robust preservation to only subset-closed hy-
perproperties then refinement of behavior is again allowed.
A hyperproperty H is subset-closed, written H∈SC, if for
any two behaviors b1⊆b2, if b2∈H then b1∈H . For instance,
the lifting [π] of any trace property π is subset-closed,
but the hyperproperty H1+23 above is not. It can be made
subset-closed by allowing all smaller behaviors: HSC

1+23 =
{∅, {t1}, {t2}, {t3}, {t2, t3}} is subset-closed.

Robust Subset-Closed Hyperproperty Preservation
(RSCHP) is simply defined as RHP(SC). The equivalent ( )
property-free characterization of RSCHC simply gives up the
⇐ direction of RHC:

RSCHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓]   t⇒ CS [P]   t

The most interesting subclass of subset-closed hyperprop-
erties is hypersafety, which we discuss next. The appendix
(§C.2.3)also studies K-subset-closed hyperproperties [67],
which can be seen as generalizing K-hypersafety below.

3.3 Robust Hypersafety Preservation (RHSP)
Hypersafety is a generalization of safety that is very important
in practice, since several important notions of noninterference
are hypersafety, such as termination-insensitive noninterfer-
ence [13, 45, 86], observational determinism [68, 83, 101],
and nonmalleable information flow [26].

According to Alpern and Schneider [12], the “bad thing”
that a safety property disallows must be finitely observable
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and irremediable. For safety the “bad thing” is a finite trace
prefix that cannot be extended to any trace satisfying the
safety property. For hypersafety, Clarkson and Schneider [31]
generalize the “bad thing” to a finite set of finite trace
prefixes that they call an observation, drawn from the set
Obs = 2FinPref

Fin , which denotes the set of all finite subsets
of finite prefixes. They then lift the prefix relation to sets:
an observation o ∈ Obs is a prefix of a behavior b ∈ 2Trace,
written o≤b, if ∀m ∈ o. ∃t ∈ b. m≤t. Finally, they define
hypersafety analogously to safety, but the domains involved
include an extra level of sets:

Hypersafety,{H | ∀b 6∈H. (∃o∈Obs. o≤b∧ (∀b′≥o. b′ 6∈H))}
Here the “bad thing” is an observation o that cannot be
extended to a behavior b′ satisfying the hypersafety prop-
erty H . We use this to define Robust Hypersafety Preserva-
tion (RHSP) as RHP(Hypersafety) and propose the following
equivalent ( ) characterization for it:
RHSC : ∀P. ∀CT. ∀o ∈ Obs.

o ≤ Behav (CT [P↓])⇒ ∃CS. o ≤ Behav (CS [P])

This says that to prove RHSP one needs to be able to back-
translate a partial program P, a context CT, and a prefix o of
the behavior of CT [P↓], to a source context CS so that the
behavior of CS [P] extends o. It is possible to use the finite set
of finite executions corresponding to observation o to drive
this back-translation (as we do in §6.4).

For hypersafety the involved observations are finite sets but
their cardinality is otherwise unrestricted. In practice though,
most hypersafety properties can be falsified by very small
sets: counterexamples to termination-insensitive noninterfer-
ence [13, 45, 86] and observational determinism [68, 83, 101]
are observations containing 2 finite prefixes, while counterex-
amples to nonmalleable information flow [26] are observations
containing 4 finite prefixes. To account for this, Clarkson and
Schneider [31] introduce K-hypersafety as a restriction of
hypersafety to observations of a fixed cardinality K. Given
ObsK = 2FinPref

Fin(K) , the set of observations with cardinality K, all
definitions and results above can be ported to K-hypersafety
by simply replacing Obs with ObsK . Specifically, we denote
by RKHSP the criterion RHP(K-Hypersafety).

The set of lifted safety properties, {[π] | π ∈ Safety}, is pre-
cisely the same as 1-hypersafety, since the counterexample for
them is a single finite prefix. For a more interesting example,
termination-insensitive noninterference (TINI) [13, 45, 86] can
be defined as follows in our setting:

TINI , {b | ∀t1 t2∈b. (t1 terminating ∧ t2 terminating

∧ pub-inputs(t1)=pub-inputs(t2))

⇒ pub-events(t1)=pub-events(t2)}
This requires that trace events are either inputs or outputs,
each of them associated with a security level: public or
secret. TINI ensures that for any two terminating traces of
the program behavior for which the two sequences of public
inputs are the same, the two sequences of public events—
inputs and outputs—are also the same. TINI is 2-hypersafety,

since b 6∈ TINI implies that there exist finite traces t1 and t2
that agree on the public inputs but not on all public events,
so we can simply take o = {t1, t2}. Since the traces in o
are already terminated, any extension b′ of o can only add
extra traces, i.e., {t1, t2} ⊆ b′, so b′ 6∈ TINI as needed to
conclude that TINI is in 2-hypersafety. In Figure 1, we write
Robust Termination-Insensitive Noninterference Preservation
(RTINIP) for RHP({TINI}).

3.4 Separation Between Properties and Hyperproperties

Enforcing RHSP is strictly more demanding than enforcing
RSP. Because even R2HSP (robust 2-hypersafety preserva-
tion) implies RTINIP, a compilation chain satisfying R2HSP
has to make sure that a target-level context cannot infer more
information about the internal data of P↓ than a source context
could infer about the data of P. By contrast, a RSP compilation
chain can allow arbitrary reads of P↓’s internal data, even if
P’s data is private at the source level. Intuitively, for proving
RSC, the source context produced by back-translation can
guess any secret P↓ receives in the single considered execu-
tion, but for R2HSP the single source context needs to work
for two different executions, potentially with two different
secrets, so guessing is no longer an option. We use this idea
to prove a more general separation result RTP 6⇒ RTINIP, by
exhibiting a toy compilation chain in which private variables
are readable in the target language, but not in source.

Theorem 3.1. RTP 6⇒ RTINIP

This implies a strict separation between all criteria based
on hyperproperties (the red area in Figure 1, having RTINIP
as the bottom) and all the ones based on trace properties (the
yellow area in Figure 1 having RTP as the top).

Using a more complex counterexample involving a system
of K linear equations, we have also shown that, for any K,
robust preservation of K-hypersafety, does not imply robust
preservation of (K+1)-hypersafety.

Theorem 3.2. ∀K. RKHSP 6⇒ R(K+1)HSP

3.5 Where Is Robust Hyperliveness Preservation?

Robust Hyperliveness Preservation (RHLP) does not appear
in Figure 1, because it is provably equivalent to RHP (or,
equivalently, RHC). We define RHLP as RHP(Hyperliveness)
for the following standard definition of Hyperliveness [31]:

Hyperliveness , {H | ∀o ∈ Obs. ∃b≥o. b ∈ H}
The proof that RHLP implies RHC ( ) involves showing that
{b | b6=Behav (CT [P↓])}, the hyperproperty allowing all be-
haviors other than Behav (CT [P↓]), is hyperliveness. Another
way to obtain this result is from the fact that, as in previous
models [12], each hyperproperty can be decomposed as the
intersection of two hyperliveness properties. This collapse of
preserving hyperliveness and preserving all hyperproperties
happens irrespective of the adversarial contexts.
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4 Robustly Preserving Relational
Hyperproperties

Trace properties and hyperproperties are predicates on the
behavior of a single program. However, we may be interested
in showing that compilation robustly preserves relations be-
tween the behaviors of two or more programs. For example,
suppose we optimize a partial source program P1 to P2 such
that P2 runs faster than P1 in any source context. We may
want compilation to preserve this “runs faster than” relation
between the two program behaviors against arbitrary target
contexts. Similarly, in any source context, the behaviors of
P1 and P2 may be equal and we may want the compiler to
preserve such trace equivalence [17, 28, 32] in arbitrary target
contexts. This last criterion, which we call Robust Trace Equiv-
alence Preservation (RTEP) in Figure 1, is interesting because
in various determinate settings [27, 42] it coincides with
preserving observational equivalence, the security-relevant part
of full abstraction (see §5).

In this section, we study the robust preservation of such
relational hyperproperties and several interesting subclasses,
still relating the behaviors of multiple programs. Unlike hy-
perproperties and trace properties, relational hyperproperties
have not been defined as a general concept in the literature,
so even their definitions are new. We describe relational
hyperproperties and their robust preservation in §4.1, then look
at subclasses induced by what we call relational properties
(§4.2) and relational safety properties (§4.3). The appendix
(§C.3)presents a few other subclasses. The corresponding
secure compilation criteria are grouped in the blue area in
Figure 1. In §4.4 we show that, in general, none of these
relational criteria are implied by any non-relational criterion
(from §2 and §3), while in §4.5 we show two specific
situations in which most relational criteria collapse to non-
relational ones.

4.1 Relational Hyperproperty Preservation (RrHP)
We define a relational hyperproperty as a predicate (relation)
on a sequence of behaviors of some length. A sequence
of programs of the same length is then said to have the
relational hyperproperty if their behaviors collectively satisfy
the predicate. Depending on the arity of the predicate, we
get different subclasses of relational hyperproperties. For arity
1, the resulting subclass describes relations on the behavior
of individual programs, which coincides with hyperproperties
(§3). For arity 2, the resulting subclass consists of relations on
the behaviors of two programs. Both examples described at the
beginning of this section lie in this subclass. This generalizes
to any finite arity K (predicates on behaviors of K programs),
and to the infinite arity.

Next, we define the robust preservation of these subclasses.
For arity 2, robust 2-relational hyperproperty preservation,
R2rHP, is defined as follows:

R2rHP : ∀R ∈ 2(Behavs2). ∀P1 P2.

(∀CS. (Behav (CS [P1]), Behav (CS [P2])) ∈ R)⇒
(∀CT. (Behav (CT [P1↓]), Behav (CT [P2↓])) ∈ R)

R2rHP says that for any binary relation R on behaviors of
programs, if the behaviors of P1 and P2 satisfy R in every
source context, then so do the behaviors of P1↓ and P2↓
in every target context. In other words, a compiler satisfies
R2rHP iff it preserves any relation between pairs of program
behaviors that hold in all contexts. In particular, such a
compilation chain preserves trace equivalence in all contexts
(i.e., RTEP), which we obtain by instantiating R with equality
in the above definition ( ). If execution time is recorded on
program traces, then such a compilation chain also preserves
relations like “the average execution time of P1 across all
inputs is no more than the average execution time of P2 across
all inputs” and “P1 runs faster than P2 on all inputs” (i.e.,
P1 is an improvement of P2). This last property can also be
described as a relational predicate on pairs of traces (rather
than behaviors); we return to this point in §4.2.

R2rHP has an equivalent ( ) property-free variant that does
not mention relations R:

R2rHC : ∀P1 P2 CT.∃CS. Behav (CT [P1↓])=Behav (CS [P1])

∧ Behav (CT [P2↓])=Behav (CS [P2])

R2rHC is a generalization of RHC from §3.1, but now the
same source context CS has to simulate the behaviors of two
target programs, CT [P1↓] and CT [P2↓].

R2rHP generalizes to any finite arity K in the obvious
way, yielding RKrHP. Finally, this also generalizes to the
infinite arity. We call this Robust Relational Hyperproperty
Preservation (RrHP):

RrHP : ∀R ∈ 2(Behavsω). ∀P1, ..,PK, ...

(∀CS. (Behav (CS [P1]), .., Behav (CS [PK]), ..) ∈ R)⇒
(∀CT. (Behav (CT [P1↓]), .., Behav (CS [PK↓]), ..) ∈ R)

RrHP is the strongest criterion we study and, hence, it is
the highest point in Figure 1. This includes robustly preserving
predicates on all programs of the language, although we have
not yet found practical uses for this. More interestingly, RrHP
has a very natural equivalent property-free characterization,
RrHC, requiring for every target context CT, a source context
CS that can simulate the behavior of CT for any program:

RrHC : ∀CT. ∃CS. ∀P. Behav (CT [P↓])=Behav (CS [P])

It is instructive to compare the property-free characteriza-
tions of the preservation of robust trace properties (RTC),
hyperproperties (RHC), and relational hyperproperties (RrHC).
In RTC, the source context CS may depend on the target
context CT, the source program P and a given trace t. In
RHC, CS may depend only on CT and P. In RrHC, CS

may depend only on CT. This directly reflects the increasing
expressive power of trace properties, hyperproperties, and
relational hyperproperties, as predicates on traces, behaviors
(set of traces), and sequences of behaviors, respectively.

4.2 Relational Trace Property Preservation (RrTP)

Relational (trace) properties are the subclass of relational
hyperproperties that are fully characterized by relations on
individual traces of multiple programs. For example, the
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relation “P1 runs faster than P2 on every input” is a 2-ary
relational property characterized by pairs of traces, one from
P1 and the other from P2, which either differ in the input
or where the execution time in P1’s trace is less than that
in P2’s trace. Formally, relational properties of arity K are a
subclass of relational hyperproperties of the same arity. A K-
ary relational hyperproperty is a relational (trace) property if
there is a K-ary relation R on traces such that P1, .., PK are
related by the relational hyperproperty iff (t1, . . . , tk)∈R for
any t1∈Behav (P1), . . . , tk∈Behav (PK). Next, we define the
robust preservation of relational properties of different arities.
For arity 1, this coincides with RTP from §2.1. For arity 2,
we define Robust 2-relational Property Preservation:

R2rTP : ∀R ∈ 2(Trace2). ∀P1 P2.(
∀CS t1 t2. (CS [P1]   t1 ∧ CS [P2]   t2)⇒ (t1,t2)∈R

)
⇒(

∀CT t1 t2. (CT [P1↓]   t1 ∧CT [P2↓]   t2)⇒ (t1,t2)∈R
)

R2rTP is weaker than its relational hyperproperty counterpart,
R2rHP (§4.1): Unlike R2rHP, R2rTP does not imply the
robust preservation of relations like “the average execution
time of P1 across all inputs is no more than the average
execution time of P2 across all inputs” (a relation between
average execution times of P1 and P2 cannot be characterized
by any relation between individual traces of P1 and P2).

R2rTP also has an equivalent ( ) characterization:

R2rTC : ∀P1 P2 CT t1 t2.

(CT [P1↓]   t1 ∧ CT [P2↓]   t2)⇒
∃CS. (CS [P1]   t1 ∧ CS [P2]   t2)

Establishing R2rTC requires constructing a source context CS

that can simultaneously simulate a given trace of CT [P1↓]
and a given trace of CT [P2↓]. R2rTP generalizes from arity
2 to any finite arity K (yielding RKrTP) and the infinite one
(yielding RrTP) in the obvious way.

4.3 Robust Relational Safety Preservation (RrSP)

Relational safety properties are a natural generalization of
safety and hypersafety properties to multiple programs, and
an important subclass of relational trace properties. Several
interesting relational trace properties are actually relational
safety properties. For instance, if we restrict the earlier rela-
tional trace property “P1 runs faster than P2 on all inputs” to
terminating programs it becomes a relational safety property,
characterized by pairs of bad terminating prefixes, where
both prefixes have the same input, and the left prefix shows
termination no earlier than the right prefix.

Formally, a relation R ∈ 2(TraceK) is K-relational safety
if for every K “bad” traces (t1, . . . , tK) 6∈ R, there exist K
“bad” finite prefixes m1, . . . ,mk such that ∀i. mi ≤ ti, and
any K traces (t′1, . . . , t

′
K) pointwise extending m1, . . . ,mk are

also not in the relation, i.e., ∀i. mi ≤ t′i implies (t′1, . . . , t
′
K) 6∈

R. Then, Robust 2-relational Safety Preservation (R2rSP) is
simply defined by restricting R2rTP to only 2-relational safety
properties. The equivalent ( ) property-free characterization

for R2rSP is the following:

R2rSC : ∀P1 P2 CT m1 m2.

(CT [P1↓] m1 ∧ CT [P2↓] m2)⇒
∃CS. (CS [P1] m1 ∧ CS [P2] m2)

The only difference from the stronger R2rTC (§4.2) is
between considering full traces and only finite prefixes. Again,
R2rSP generalizes to any finite arity K (yielding RKrSP) and
the infinite one (yielding RrSP) in the obvious way.

4.4 Separation Between Relational and Non-Relational
Relational (hyper)properties (§4.1, §4.2) and hyperproperties
(§3) are different but both have a “relational” nature: relational
(hyper)properties are relations on the behaviors or traces of
multiple programs, while hyperproperties are relations on
multiple traces of the same program. So one may wonder
whether there is any case in which the robust preservation
of a class of relational (hyper)properties is equivalent to that
of a class of hyperproperties. Could a compiler that robustly
preserves all hyperproperties (RHP, §3.1) also robustly pre-
serves at least some class of 2-relational (hyper)properties?
In §4.5 we show special cases in which this is indeed the
case, while here we now show that in general RHP does not
imply the robust preservation of any subclass of relational
properties that we have described so far (except, of course,
relational properties of arity 1, that are just hyperproperties).
Since RHP is the strongest non-relational robust preservation
criterion that we study, this also means that no non-relational
robust preservation criterion implies any relational robust
preservation criterion in Figure 1. So, all edges from relational
to non-relational criteria in Figure 1 are strict implications.

To prove this, we build a compilation chain satisfying RHP,
but not R2rSP, the weakest relational criterion in Figure 1.

Theorem 4.1. RHP 6⇒ R2rSP

Proof sketch. Consider a source language that lacks code
introspection, and a target language that is exactly the same,
but additionally has a primitive with which the context can
read the code of the compiled program as data [91]. Consider
the trivial compiler that is syntactically the identity. It is clear
that this compiler satisfies RHP since the added operation of
code introspection offers no advantage to the context when
we consider properties of a single program, as is the case
in RHP. More precisely, in establishing RHC, the property-
free characterization of RHP, given a target context CT and a
program P, we can construct a simulating source context CS

by modifying CT to hard-code P wherever CT performs code
introspection. This works as CS can depend on P in RHC.

Now consider two programs that differ only in some dead
code, that both read a value from the context and write it
back verbatim to the output. These two programs satisfy the
relational safety property “the outputs of the two programs
are equal” in any source context. However, there is a trivial
target context that causes the compiled programs to break this
relational property. This context reads the code of the program
it is linked to, and provides 1 as input if it happens to be the
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first of our two programs and 2 otherwise. Consequently, in
this target context, the two programs produce outputs 1 and 2
and do not have this relational safety property in all contexts.
Hence, this compiler does not satisfy R2rSP. Technically, the
trick of hard-coding the program in CS no longer works since
there are two different programs here.

This proof provides a fundamental insight: To robustly pre-
serve any subclass of relational (hyper)properties, compilation
must ensure that target contexts cannot learn anything about
the syntactic program they interact with beyond what source
contexts can also learn. When the target language is low-level,
hiding code attributes can be difficult: it may require padding
the code segment of the compiled program to a fixed size, and
cleaning or hiding any code-layout-dependent data like code
pointers from memory and registers when passing control to
the context. These complex protections are not necessary for
any non-relational preservation criteria (even RHP), but are
already known to be necessary for fully abstract compilation
to low-level code [55, 57, 76, 77]. They can also be trivially
circumvented if the context has access to any side-channels,
e.g., it can measure time via a different thread. In fact, in
such settings trying to hide the source code can be seen as
a hopeless attempt at “security through obscurity”, which is
widely rejected by cryptographers since the early days [58].

4.5 Composing Contexts Using Full Reflection or
Internal Nondeterminism in the Source Language

The proof of the previous separation theorem strongly relies
on the absence of code introspection in the source language.
However, if source contexts can obtain complete intrinsic
information about the programs they are linked with, then RHP
implies R2rHP. Such “full reflection” facilities are available
in languages such as Lisp [91] and Smalltalk. 4For proving
this collapse we inspect the alternative characterizations, RHC
and R2rHC. The main difference between these two criteria,
as explained in §4.1, is that the source context CS obtained by
R2rHC depends on two, possibly distinct programs P1 and P2

and a target context CT, while every possible source context
obtained by RHC depends on one single program. Hence, by
applying RHC once for P1 and once for P2, with the same
context CT, we obtain two source contexts CS1 and CS2 that
are a priori unrelated. Without further hypotheses, one cannot
show R2rHC. However, with full reflection we can define a
source context C′S that behaves exactly like CS1 when linked
with P1, and like CS2 otherwise. We can use this construction
to show not only that RHP implies R2rHP, but also that
robust preservation of each class of finite-relational properties
collapses to the corresponding hyperproperty-based criterion:

Theorem 4.2. If the source language has full reflection then
RHP⇒RKrHP, RSCHP⇒RKrTP, and R2HSP⇒RFrSP.

One may wonder whether some other condition exists
that makes robust preservation of relational hyperproperty

4Full reflection was shown to cause observational equivalence to degenerate
to syntactical identity [44, 97].

classes collapse even to the corresponding trace-property-
based criteria (§2). This is indeed the case when the source
language has an internal nondeterministic choice operator ⊕,
such that the behavior of P1 ⊕ P2 is at least the union of
the behaviors of P1 and P2. Such an operator is standard
in process calculi [87]. To illustrate this we show that RTC
implies R2rTC. Note that R2rTC produces a source context
CS that depends on a target context, two source programs P1

and P2 and two, possibly incomparable, traces t1 and t2. RTC
produces a context depending only on a single trace of a single
source program. We can apply RTC twice: once for t1 and
P1 obtaining CS1 and once for t2 and P2 obtaining CS2 . To
prove R2rTC we need to build a source context that over-
approximates the behaviors of both CS1 and CS2 . This context
can be CS1 ⊕ CS2 . Hence, in this setting RTC (RTP) implies
R2rTC (R2rTP). This result generalizes to any finite arity.

Theorem 4.3. If the source language has an internal nonde-
terministic choice operator on contexts then RTP⇒ RKrTP,
RSCHP⇒ RFrSCHP, and RSP⇒ RFrSP.

Notice that since contexts are finite objects, the techniques
above only produce collapses in cases where finitely many
source contexts need to be composed. Criteria relying on
infinite-arity relations such as RrHP and RrTP are thus not
impacted by these collapses. The appendix (§F)has more
details and collapsed variants of Figure 1.

5 Where Is Full Abstraction?
Full abstraction—the preservation and reflection of observa-
tional equivalence—is a well-studied criterion for secure com-
pilation (§7). The security-relevant direction of full abstraction
is Observational Equivalence Preservation (OEP) [35, 78]:

OEP : ∀P1 P2. P1 ≈ P2 ⇒ P1↓ ≈ P2↓
One natural question is how OEP relates to our criteria of
robust preservation.

Here we answer this question for languages without in-
ternal nondeterminism. In such determinate [42, 65] settings
observational equivalence coincides with trace equivalence in
all contexts [27, 42] and, hence, OEP coincides with robust
trace-equivalence preservation (RTEP). As explained in §4.1,
it is obvious that RTEP is an instance of R2rHP, obtained by
choosing equality as the relation R. However, for determinate
languages with input totality [46, 100] (if the program accepts
one input value, it has to also accept any other input value) we
have proved that even the weaker R2rTP implies RTEP ( ).
This proof also requires that if a whole program can produce
every finite prefix of an infinite trace then it can also produce
the complete trace, but we have showed that this holds for the
infinite traces produced in a standard way by any determinate
small-step semantics. Under these assumptions, we have in
fact proved that RTEP follows from the even weaker Robust
2-relational relaXed safety Preservation (R2rXP). The class
2-relational relaXed safety is a variant of 2-relational Safety
from §4.3; with this relaxed variant “bad” prefixes x1 and x2

10



are allowed to end with silent divergence (denoted as XPref ):
R ∈ 2-relational relaXed safety ⇐⇒
∀(t1, t2) 6∈R. ∃x1 x2∈XPref . ∀t′1≥x1 t

′
2≥x2. (t′1, t

′
2)6∈R

Theorem 5.1. Assuming a determinate source language and a
determinate and input total small-step semantics for the target
language, R2rXP⇒ RTEP.

In the other direction, we adapt an existing counterexam-
ple [74] to show that RTEP (and, hence, for determinate
languages also OEP) does not imply RSP or any of the criteria
above it in Figure 1. Fundamentally, RTEP only requires
preserving equivalence of behavior. Consequently, an RTEP
compiler can insert code that violates any security property, as
long as it doesn’t alter these equivalences [74]. Worse, even
when the RTEP compiler is also required to be correct (i.e.,
TP, SCC, and CCC from §2.1), the compiled program only
needs to properly deal with interactions with target contexts
that behave like source ones, and can behave insecurely when
interacting with target contexts that have no source equivalent.

Theorem 5.2. There exists a compiler between two determin-
istic languages that satisfies RTEP, TP, SCC, and CCC, but
that does not satisfy RSP.

Proof. Consider a source language where a partial program
receives a natural number or boolean from the context, and
produces a number output, which is the only event. We
compile to a restricted language that only has numbers by
mapping booleans true and false to 0 and 1 respectively. The
compiler’s only interesting aspect is that it translates a source
function P = f(x:Bool) 7→ e that inputs booleans to P↓ =
f(x:Nat) 7→if x<2 then e↓ else if x<3 then f(x) else 42.
The compiled function checks if its input is a valid boolean (0
or 1). If so, it executes e↓. Otherwise, it behaves insecurely,
silently diverging on input 2 and outputting 42 on inputs 3 or
more. This compiler does not satisfy RSP since the source
program f(x:Bool)7→0 robustly satisfies the safety property
“never output 42”, but the program’s compilation does not.

On the other hand, it is easy to see that this compiler is
correct since a compiled program behaves exactly like its
source counterpart on correct inputs. It is also easily seen
to satisfy RTEP, since the additional behaviors added by the
compiler (silently diverging on input 2 and outputting 42 on
inputs 3 or more) are independent of the source code (they
only depend on the type), so these cannot be used by any
target context to distinguish two compiled programs.

In the appendix(§E.5), we use the same counterexample
compilation chain to also show that RTEP does not imply
the robust preservation of (our variant of) liveness properties.
We also use a simple extension of this compilation chain to
show that RTEP does not imply RTINIP either. The idea is
similar: we add a secret external input to the languages and
when receiving an out of bounds argument the compiled code
simply leaks the secret input, which breaks RTINIP, but not
RTEP.

6 Proof Techniques for RrHP and RFrXP

This section demonstrates that the criteria we introduce can
be proved by adapting existing back-translation techniques.
We introduce a statically typed source language and a similar
dynamically typed target one (§6.1), as well as a simple
translation between the two (§6.2). We then describe the
essence of two very different secure compilation proofs for
this compilation chain, both based on techniques originally
developed for showing fully abstract compilation. The first
proof shows (a typed variant of) RrHP (§6.3), the strongest
criterion from Figure 1, using a context-based back-translation,
which provides a “universal embedding” of a target con-
text into a source context [71]. The second proof shows
a slightly weaker criterion, Robust Finite-relational relaXed
safety Preservation (RFrXP; §6.4), but which is still very
useful, as it implies robust preservation of arbitrary safety and
hypersafety properties as well as RTEP. This second proof
relies on a trace-based back-translation [53, 76], extended
to produce a context from a finite set of finite execution
prefixes. These finiteness restrictions are offset by a more
generic proof technique that only depends on the context-
program interaction (e.g., calls and returns), while ignoring
all other language details. For space reasons, we leave the
details of the proofs for §G.

6.1 Source and Target Languages
The two languages we consider are simple first-order lan-
guages with named procedures and boolean and natural values.
The source language Lτ is typed while the target language Lu

is untyped. A program in either language is a collection of
function definitions, each function body is a pure expression
that can perform comparison and natural operations (⊕),
conditional branching, recursive calls, and use let-in bindings.
Expressions can also read naturals from the environment and
write naturals to the environment, both of which generate trace
events. Lu has all the features of Lτ and adds a primitive
e has τ to dynamically check whether an expression e has
type τ . A context C can call functions and perform general
computation on the returned values, but it cannot directly gen-
erate read and write e events, as those are security-sensitive.
Since contexts are single expressions, we disallow callbacks
from the program to the context: thus calls go from context
to program, and returns from program to context.

Programs P ::= I; F Contexts C ::= e

Types τ ::= Bool | Nat Interfaces I ::= f : τ → τ

Functions F ::= f(x : τ) : τ 7→ ret e

Expressions e ::= x | true | false | n ∈ N | e⊕ e | e ≥ e

| let x : τ = e in e | if e then e else e

| call f e | read | write e | fail

Programs P ::= I; F Contexts C ::= e

Types τ ::= Bool | Nat Interfaces I ::= f

Functions F ::= f(x) 7→ ret e

Expressions e ::= x | true | false | n ∈ N | e⊕ e | e ≥ e
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| let x = e in e | if e then e else e

| call f e | read | write e | fail | e has τ

Labels λ ::= ε | α
Actions α ::= read n | write n | ⇓ | ⇑ | ⊥

Each language has a standard small-step operational seman-
tics (omitted for brevity), as well as a big-step trace semantics
(Ω   α, as in previous sections). The initial state of a program
P plugged into a context C is denoted as P . C and the
behavior of such a program is the set of traces that can be
produced by the semantics:

Behav (C[P]) = {α | P . C   α}

6.2 Compiler
The compiler ·↓ takes programs of Lτ and generates programs
of Lu, by replacing static type annotations with dynamic type
checks of function arguments upon function invocation:

I1, · · · , Im; F1, · · · ,Fn↓ = I1↓, · · · , Im↓; F1↓, · · · , Fn↓
f : τ → τ ′

y = f

f(x : τ) : τ ′ 7→
ret e

y =

(
f(x) 7→ret if x has τ↓

then e↓ else fail

)
Nat↓ = Nat Bool↓ = Bool

true↓ = true false↓ = false

n↓ = n x↓ = x

e⊕ e′
y = e↓ ⊕ e′

y e ≥ e′
y = e↓ ≥ e′

y
read↓ = read write e↓ = write e↓

call f e↓ = call f e↓
let x : τ=e

in e′

y =
let x=e↓

in e′
y if e then e′

else e′′

y =
if e↓ then e′

y
else e′′

y
6.3 Proof of RrHP by Context-Based Back-Translation
To prove that ·↓ attains RrHP, we need a way to back-translate
target contexts into source contexts. To this end we use a
universal embedding, a technique previously proposed for
proving fully abstract compilation [71]. The back-translation
needs to generate a source context that respects source-level
constraints; in this case, the resulting source context must
be well-typed. To ensure this, we use Nat as an universal
back-translation type in the produced source contexts. The
intuition of the back-translation is that it will encode true as
0, false as 1 and an arbitrary natural number n as n + 2. Based
on this encoding, we translate values between regular source
types and the back-translation type. Specifically, we define the
following shorthand for the back-translation: injectτ (e) takes
an expression e of type τ and returns an expression of back-
translation type; extractτ (e) takes an expression e of the back-
translation type and returns an expression of type τ .

injectNat(e) = e + 2

injectBool(e) = if e then 1 else 0

extractNat(e) =
(
let x=e in if x ≥ 2 then x− 2 else fail

)

extractBool(e) =

(
let x=e in if x ≥ 2 then fail

else if x + 1 ≥ 2 then true else false

)
injectτ (e) never incurs runtime errors, but extractτ (e) may.
This mimics the ability of target contexts to write ill-typed
code (e.g., 3 + true) which we must be able to back-translate
and whose semantics we must preserve (see Example 6.1).

Concretely, the back-translation is defined inductively on
the structure of target contexts:

true↑ = 1 false↑ = 0 n↑ = n + 2 x↑ = x

e ≥ e′
x = let x1 : Nat=extractNat(e↑)

in let x2 : Nat=extractNat(e′
x)

in injectBool(x1 ≥ x2)

e⊕ e′
x = let x1 : Nat=extractNat(e↑)

in let x2 : Nat=extractNat(e′
x)

in injectNat(x1⊕ x2)

let x=e in e′
x = let x : Nat=e↑ in e′

x(
if e then

e′ else e′′

)x = if extractBool(e↑) then e′
x else e′′

x
e has Bool↑ = let x : Nat=e↑ in if x ≥ 2 then 0 else 1

e has Nat↑ = let x : Nat=e↑ in if x ≥ 2 then 1 else 0

call f e↑ = injectτ ′(call f extractτ (e↑))
if f : τ → τ ′ ∈ I

fail↑ = fail

Example 6.1 (Back-Translation). Through the back-
translation of two simple target contexts we explain why ·↑
is correct and why it needs inject· and extract·.

Consider the context C1 = 3 ∗ 5, which reduces to 15 irre-
spective of the program it links against. The back-translation
must intuitively ensure that C1↑ reduces to 17, which is the
back-translation of 15. If we unfold the definition of C1↑ we
have the following (given that 3↑=5 and 5↑=7):

let x1 : Nat=extractNat(5)

in let x2 : Nat=extractNat(7) in injectNat(x1 ∗ x2)

By examining the code of extractNat we see that in both
cases it will just perform a subtraction by 2, turning 5 and
7 respectively into 3 and 5. So after some reduction steps
we arrive at the following term: injectNat(3 ∗ 5). The inner
multiplication then returns 15 and its injection returns 17,
which is also the result of 15↑.

Let us now consider a different context, C2 = false + 3.
We know that no matter what program links against it, it will
reduce to fail. Its statically well-typed back-translation is:

let x1 : Nat=extractNat(0)

in let x2 : Nat=extractNat(7) in injectNat(x1 ∗ x2)

By looking at its code we can see that the execution of
extractNat(0) will indeed result in fail, which is what we want
and expect, as that is precisely the back-translation of fail. �

The RrHP proof for this compilation chain uses a simple
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logical relation that includes cases for both terms of source
type (intuitively used for compiler correctness) and for terms
of back-translation type [35, 71].

6.4 Proof of RFrXP by Trace-Based Back-Translation

Proving that this simple compilation chain attains RFrXC does
not require back-translating a target context, as we only need
to build a source context that can reproduce a finite set of
finite trace prefixes, but that is not necessarily equivalent to
the original target context. We describe this back-translation
on an example leaving again details to §G.

Example 6.2 (Back-Translation of Traces). Consider the fol-
lowing two programs:

P1 = (f(x:Nat) : Nat 7→ ret x, g(x:Nat) : Bool 7→ ret true)

P2 = (f(x:Nat) : Nat 7→ ret read, g(x:Nat) : Bool 7→ ret true)

Their compiled counterparts are almost identical, with the
only addition of dynamic type checks on function arguments:

P1↓ = f(x) 7→ ret (if x has Nat then x else fail),

g(x) 7→ ret (if x has Nat then true else fail)

P2↓ = f(x) 7→ ret (if x has Nat then read else fail),

g(x) 7→ ret (if x has Nat then true else fail)

Now, consider the following target context:

C = let x1=call f 5

in if x1 ≥ 5 then call g (x1) else call g (false)

The two programs plugged into this context can generate
(at least) the following traces (where ⇓ indicates termination
and ⊥ indicates failure):

C[P1↓]   ⇓ C[P2↓]   read 5;⇓ C[P2↓]   read 0;⊥
In the execution of C[P1↓], the program executes completely
and terminates, producing no side effects. In the first execution
of C[P2↓], the program reads 5, and the then branch of the
context’s conditional is executed. In the second execution of
C[P2↓], the program reads 0, the else branch of the context’s
conditional is executed and the program fails in g after
detecting a type error.

These traces alone are not enough to construct a source
context since they do not record information about the control
flow of program executions, specifically on which function
produces which input or output. To recover this information
we enrich execution prefixes with information about calls
(from context to program) and returns (from program to
context). The enriched rules on calls and returns now generate
events to model these control flows. If a call or return occurs
internally within the program, no trace event is generated
since they are not relevant for back-translating the context.
The revised semantics is almost identical to the original, and
allows exactly the same program executions, only producing
more informative traces. Hence, the original execution can be
enriched in a valid way for the new semantics.

Labels λ ::= · · · | β Interactions β ::= call f v | ret v

The traces produced by the compiled programs plugged into
the context become:

C[P1↓]   call f 5; ret 5; call g 5; ret true;⇓
C[P2↓]   call f 5; read 5; ret 5; call g 5; ret true;⇓
C[P2↓]   call f 5; read 0; ret 0; call g false;⊥
In our languages, reads and writes can only be performed

by programs, while the context only performs a sequence of
calls to the program, possibly performing some computation
and branching on return values. Thus, the role of the back-
translated source is to perform the appropriate calls to the
program, depending of the values returned. The inner workings
of the programs, that is inputs, outputs, and internal calls
and returns, are not a concern of the back-translation and
are obtained through compiler correctness. Furthermore, the
context is shared by all executions, but each execution has its
own program. Hence, since I/O occurs only in the program,
the only source of variation among all executions come from
the program.

From this, one can conclude that the context is a deter-
ministic expression, calling the program, and branching on
the returned values. This can be seen in the way traces are
organized: ignoring the I/O, the traces form a tree (Figure 2, on
the left). This tree can be translated to a source context using
nested conditionals as depicted below (Figure 2, on the right,
dotted lines indicated what the back-translation generates for
each action in the tree). When additional branches are missing
(e.g., there is no third trace that analyzes the first return or
no second trace that analyses the second return on the left
execution), the back-translation inserts fail in the code – they
are dead code branches (marked with a **).

call f 5

ret 5

call g 5

ret true

⇓

ret 0

call g false

⊥

let x=call f 5

in if x == 5

then let y=call g 5 in

if y == true then 0

else fail

else if x == 0

then fail else fail

**

Fig. 2: Example of a back-translation of traces.
To prove RFrXP we show correctness of the back-

translation, which ensures that the back-translated source
context produces exactly the original non-informative traces.
This is, however, not completely true of informative traces
(that track calls and returns). Since calling g with a boolean
is ill-typed, our back-translation shifts the failure from the
program to the context, so the picture links call g false action
to a fail. The call is never executed at the source level. �

7 Related Work
Full Abstraction was originally used as a criterion for
secure compilation in the seminal work of Abadi [1] and
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has since received a lot of attention [78]. Abadi [1] and,
later, Kennedy [57] identified failures of full abstraction in the
Java to JVM and C# to CIL compilers, some of which were
fixed, but also others for which fixing was deemed too costly
compared to the perceived practical security gain. Abadi et al.
[3] proved full abstraction of secure channel implementations
using cryptography, but to prevent network traffic attacks they
had to introduce noise in their translation, which in practice
would consume network bandwidth. Ahmed et al. [7, 8, 9, 71]
proved the full abstraction of type-preserving compiler passes
for simple functional languages. Abadi and Plotkin [2] and
Jagadeesan et al. [52] expressed the protection provided by
address space layout randomization as a probabilistic variant
of full abstraction. Fournet et al. [47] devised a fully abstract
compiler from a subset of ML to JavaScript. Patrignani et
al. [64, 76, 77] studied fully abstract compilation to machine
code, starting from single modules written in simple, ideal-
ized object-oriented and functional languages and targeting a
hardware isolation mechanism similar to Intel’s SGX [51].

Until recently, most formal work on secure interoperability
with linked target code was focused only on fully abstract
compilation. The goal of our work is to explore a diverse
set of secure compilation criteria, some of them formally
stronger than (the interesting direction of) full abstraction
at least in various determinate settings, and thus potentially
harder to achieve and prove, some of them apparently easier
to achieve and prove than full abstraction, but most of them
not directly comparable to full abstraction. This exploration
clarifies the trade-off between security guarantees and efficient
enforcement for secure compilation: On one extreme, RTP
robustly preserves only trace properties, but does not require
enforcing confidentiality; on the other extreme, robustly pre-
serving relational properties gives very strong guarantees, but
requires enforcing that both the private data and the code of
a program remain hidden from the context, which is often
much harder to achieve. The best criterion to apply depends
on the application domain, but our framework can be used
to address interesting design questions such as the following:
(1) What secure compilation criterion, when violated, would
the developers of practical compilers be willing to fix at least
in principle? The work of Kennedy [57] indicates that fully
abstract compilation is not such a good answer to this question,
and we wonder whether RTP or RHP could be better answers.
(2) What secure compilation criterion would the translations of
Abadi et al. [3] still satisfy if they did not introduce (inefficient)
noise to prevent network traffic analysis? Abadi et al. [3]
explicitly leave this problem open in their paper, and we
believe one answer could be RTP, since it does not require
preserving any confidentiality.

We also hope that our work can help eliminate common
misconceptions about the security guarantees provided (or not)
by full abstraction. For instance, Fournet et al. [47] illustrate
the difficulty of achieving security for JavaScript code using
a simple example policy that (1) restricts message sending
to only correct URLs and (2) prevents leaking certain secret
data. Then they go on to prove full abstraction apparently in

the hope of preventing contexts from violating such policies.
However, part (1) of this policy is a safety property and part
(2) is hypersafety, and as we showed in §4.5 fully abstract
compilation does not imply the robust preservation of such
properties. In contrast, proving RHSP would directly imply
this, without putting any artificial restrictions on code intro-
spection, which are unnecessarily required by full abstraction.
Unfortunately, this is not the only work in the literature that
uses full abstraction even when it is not the right hammer.

Development of RSP Two pieces of concurrent work have
examined more carefully how to attain and prove one of
the weakest of our criteria, RSP (§2.2). Patrignani and Garg
[75] show RSP for compilers from simple sequential and
concurrent languages to capabilities [98]. They observe that if
the source language has a verification system for robust safety
and compilation is limited to verified programs, then RSP can
be established without directly resorting to back-translation.
(This observation has also been made independently by Dave
Swasey in private communication to us.) Abate et al. [5] aim
at devising secure compilation chains for protecting mutually
distrustful components written in an unsafe language like C.
They show that by moving away from the full abstraction
variant used in earlier work [55] to a variant of our RSP
criterion from §2.2, they can support a more realistic model
of dynamic component compromise, while at the same time
obtaining a criterion that is easier to achieve and prove than
full abstraction.

Hypersafety Preservation The high-level idea of specify-
ing secure compilation as the preservation of properties and
hyperproperties goes back to the work of Patrignani and
Garg [74]. However, that work’s technical development is
limited to one criterion—the preservation of finite prefixes of
program traces by compilation. Superficially, this is similar to
one of our criteria, RHSP, but there are several differences
even from RHSP. First, Patrignani and Garg [74] do not
consider adversarial contexts explicitly. This might suffice for
their setting of closed reactive programs, where traces are
inherently fully abstract (so considering the adversarial context
is irrelevant), but not in general. Second, they are interested in
designing a criterion that accommodates specific fail-safe like
mechanisms for low-level enforcement, so the preservation of
hypersafety properties is not perfect, and one has to show,
for every relevant property, that the criterion is meaningful.
However, Patrignani and Garg [74] consider translations of
trace symbols induced by compilation, an extension that would
also be interesting for our criteria (§8).

Proof techniques New et al. [71] present a back-translation
technique based on a universal type embedding in the source
for the purpose of proving full abstraction of translations
from typed to untyped languages. In §6.3 we adapted the
same technique to show RrHP for a simple translation from
a statically typed to a dynamically typed language with first-
order functions and I/O. Devriese et al. [35] show that even
when a precise universal type does not exist in the source,
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one can use an approximate embedding that only works for
a certain number of execution steps. They illustrate such an
approximate back-translation by proving full abstraction for a
compiler from the simply-typed to the untyped λ-calculus.

Jeffrey and Rathke [53, 54] introduced a “trace-based” back-
translation technique. They were interested in proving full
abstraction for so-called trace semantics. This technique was
then adapted to show full abstraction of compilation chains to
low-level target languages [6, 73, 76, 77]. In §6.4, we showed
how these trace-based techniques can be extended to prove all
the criteria below RFrXP in Figure 1, which includes robust
preservation of safety, of noninterference, and in a determinate
setting also of observational equivalence.

While many other proof techniques have been previously
proposed [2, 3, 8, 9, 47, 52], proofs of full abstraction
remain notoriously difficult, even for simple translations, with
apparently simple conjectures surviving for decades before
being finally settled [37]. It will be interesting to investigate
which existing full abstraction techniques can be repurposed
to show the stronger criteria from Figure 1. For instance, it
will be interesting to determine the strongest criterion from
Figure 1 for which an approximate back-translation [35] can
be used.

Source-level verification of robust satisfaction While this
paper studies the preservation of robust properties in compi-
lation chains, formally verifying that a partial source program
robustly satisfies a specification is a challenging problem too.
So far, most of the research has focused on techniques for
proving observational equivalence [4, 28, 32, 53, 54] or trace
equivalence [17, 27]. Robust satisfaction of trace properties
has been model checked for systems modeled by nondetermin-
istic Moore machines and properties specified by branching
temporal logic [61]. Robust safety, the robust satisfaction of
safety properties, was studied for the analysis of security
protocols [15, 16, 49], and more recently for compositional
verification [94]. Verifying the robust satisfaction of relational
hyperproperties beyond observational equivalence and trace
equivalence seems to be an open research problem. For
addressing it, one can hopefully take inspiration in extensions
of relational Hoare logic [20] for dealing with cryptographic
adversaries represented as procedures parameterized by ora-
cles [18].

Other Kinds of Secure Compilation In this paper we
investigated the various kinds of security guarantees one can
obtain from a compilation chain that protects the compiled
program against linked adversarial low-level code. While this
is an instance of secure compilation [10], this emerging area
is much broader. Since there are many ways in which a
compilation chain can be “more secure”, there are also many
different notions of secure compilation, with different security
goals and attacker models. A class secure compilation chains
is aimed at providing a “safer” semantics for unsafe low-
level languages like C and C++, for instance ensuring memory
safety [29, 41, 69]. Other secure compilation work is targeted
at closing down side-channels: for instance by preserving

the secret independence guarantees of the source code [19],
or making sure that the code erasing secrets is not simply
optimized away by the unaware compilers [22, 34, 38, 89].
Closer to our work is the work on building compartmentalizing
compilation chains [5, 23, 50, 98] for unsafe languages like C
and C++. In particular, as mentioned above, Abate et al. [5]
have recently showed how RSP can be extended to express the
security guarantees obtained by protecting mutually distrustful
components against each other.

8 Conclusion and Future Work
This paper proposes a foundation for secure interoperability
with linked target code by exploring many different criteria
based on robust property preservation (Figure 1). Yet the
road to building practical secure compilation chains achieving
any of these criteria remains long and challenging. Even
for RSP, scaling up to realistic programming languages and
efficiently enforcing protection of the compiled program with-
out restrictions on the linked context is challenging [5, 75].
For R2HSP the problem is even harder, because one also
needs to protect the secrecy of the program’s data, which is
especially challenging in a realistic model in which the context
can observe side-channels like timing. Here, an RTINIP-like
property might be the best one can hope for in practice.

In this paper we assumed for simplicity that traces are
exactly the same in both the source and target language, and
while this assumption is currently true for other work like
CompCert [65] as well, it is a restriction nonetheless. We plan
to lift this restriction in the future.
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Appendix A
Notations
We use blue, sans-serif font for source elements, red,bold font for target elements and black, italic for elements common to
both languages (to avoid repeating similar definitions twice). Thus, P is a source-level program, P is a target-level program
and P is generic notation for either a source-level or a target-level program.

Whole Programs W

Partial Programs P

Contexts C

Termination Events ε

Events e

Finite Trace Prefixes m ,

(terminated) e1 · · · · · en ε
(not yet terminated) e1 · · · · · en◦

relaXed Trace Prefixes x ,

(terminated) e1 · · · · · en ε
(not yet terminated) e1 · · · · · en◦
(silent divergence) e1 · · · · · en 			

Traces t ,

(program termination) e1 · · · · · en ε
(silent divergence) e1 · · · · · en 			
(infinitely reactive) e1 · · · · · en · · · ·

Prefix relation m ≤ t
The set of all traces Trace

The set of all finite trace prefixes FinPref

The set of all relaxed trace prefixes XPref

Semantics of W W    t

Behavior of W Behav (W) = {t | W    t}
Set with elements from X 2X

Set of size K with elements from X 2XK

Set literal x̂ , {x1, x2, · · · }
Property π ∈ 2Trace

Behavior(the set of traces of a program) b ∈ 2Trace

Hyperproperty H ∈ 22Trace

Cardinality ||·||
In addition to trace-based, whole-program semantics, we also define a finite prefix-based semantics, W    m as ∃t ≥

m.W    t. The notations introduced for finite prefixes (≤, ≥,    , etc.) are used not only for finite trace prefixes, but also for
relaxed trace prefixes.
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Appendix B
Safety and Dense Properties with Event-Based Traces
We start by presenting the CompCert-inspired model for program execution traces we use in this work (§B.1). In this model
safety properties are defined in the standard way as the trace properties that can be falsified by a finite trace prefix (§2.2).
Perhaps more surprisingly, in this trace model the role generally played by liveness is taken by what we call dense properties,
which we define simply as the trace properties that can only be falsified by non-terminating traces (e.g., a reactive program
that runs forever eventually answers every network request it receives). Next, to validate the claim that dense properties indeed
play the same role that liveness plays in previously proposed trace models [12, 63, 72, 88], we prove several related properties
(§B.2), including the fact that every trace property is the intersection of a safety property and a dense property (this is our
variant of a standard decomposition result [12]), and the fact that our definition of dense properties is unique (§B.2). Finally,
we study the robust preservation of dense properties (RDP; §B.3).

B.1 Event-Based Trace Model for Safety and Liveness
For defining safety and liveness, traces need a bit of structure, and for this we use a variant of CompCert’s realistic trace
model [65].5 This model is different from the trace models generally used for studying safety and liveness of reactive
systems [12, 31, 62, 63, 66, 88] (e.g., in a transition system or a process calculus). A first important difference is that in
CompCert’s model, traces are built from events, not from states. This is important for efficient compilation, since taking
these events to be relatively coarse-grained gives the compiler more freedom to perform program optimizations. For instance,
CompCert is inspired by the C programming language standard and defines the outcome of the program to be a trace of all
I/O and volatile operations it performs, plus an indication of whether and how it terminates.

The events in our traces are drawn from an arbitrary nonempty set. Intuitively, traces t are finite or infinite lists of events, where
a finite trace means that the program terminates (possibly with some related information recording the cause of termination,
such as an exit code) or enters an unproductive infinite loop after producing all the events in the list. This kind of trace model
is natural for usual programming languages where most programs do indeed terminate and is standard for formally correct
compilers [60, 65]. It is different, however, from the trace model usually considered for abstract modeling of reactive systems,
which considers only infinite traces [31, 62, 66, 88] and where a common trick to force all traces to be infinite is to use
stuttering on the final state of an execution to represent termination [31]. In our model, however, events are observable and
infinitely repeating the last event would result in a trace of a non-terminating execution, so we have to be honest about the
fact that terminating executions produce finite traces. Moreover, working with traces of events also means that execution steps
can be silent (i.e., add no events to the trace) and one has to distinguish termination from silent divergence (a non-terminating
execution), although both of them produce a finite number of events. So in our model terminating traces are those that end in
an explicit termination event and can thus no longer be extended; all other traces, whether silently divergent or infinite, are
non-terminating. The proper treatment of program termination and silent divergence distinguishes the realistic trace model we
use here from previous theoretical work that extends safety and liveness to finite and infinite traces [72, 84].

Using this realistic trace model directly impacts the meaning of safety, which we try to keep as standard and natural as
possible, and also created the need for a new definition of dense properties to take the place of liveness.

Safety Properties The main component of the characterization of safety properties is a definition of finite trace prefixes,
which capture the finite observations that can be made about an execution, for instance by a reference monitor. We take the
stance that a reference monitor can observe that the program has terminated. To reflect this, in our trace model finite trace
prefixes are lists of events in which it is observable whether a prefix is terminated and can no longer be extended, or whether
it is not yet terminated and can still be extended with further events. Moreover, while termination and silent divergence are
two different terminal trace events, no monitor can distinguish between the two in finite time, since one cannot tell whether
a program that seems to be looping will eventually terminate. Technically, in our model finite trace prefixes m are lists with
two different final constructors: ε for a prefix terminated with final event ε (which for instance distinguishes successful
from erroneous termination) and ◦ for not yet terminated prefixes. In contrast, traces can end either with ε if the program
terminates or with 			 if the program silently diverges, or they can go on infinitely. The prefix relation m ≤ t is defined between
a finite prefix m and a trace t according to the intuition above: ε ≤ ε , ◦ ≤ t, and e ·m′ ≤ e · t′ whenever m′ ≤ t′ (where
· is concatenation).

The definition of safety properties is then unsurprising (as already seen in §2.2):

Safety , {π ∈ 2Trace | ∀t 6∈ π. ∃m ≤ t. ∀t′ ≥ m. t′ 6∈ π}
A trace property π is Safety if, within any trace t that violates π, there exists a finite “bad prefix” m that can only be

extended to traces t′ that also violate π.

5Our trace model is close to that of CompCert, but as opposed to CompCert, in this paper we use the word “trace” for the result of a single program
execution and later “behavior” for the set of all traces of a program (§3).
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Example B.1. For instance, the trace property π�¬e = {t | e 6∈ t}, stating that the bad event e never occurs in the trace, is
Safety, since for every trace t violating π�¬e there exists a finite prefix m = m′·e·◦ (some prefix m′ followed by e and then
by the unfinished prefix symbol ◦) that is a prefix of t, and every trace extending m still contains e, so it continues to violate
π�¬e. �

Example B.2. Consider the property π�¬ε = {t | ∀ε. ε 6∈ t} that rejects all terminating traces and accepts all non-terminating
traces. This is a safety property, the justification of which crucially relies on allowing ε in the finite trace prefixes. For any
finite trace t = e1 · . . . · en ε rejected by π�¬ε, there exists a bad prefix m = e1 · . . . · en ε such that all extensions of m are
also rejected by π�¬ε. This last condition is trivial since the prefix m is terminating (i.e., ends with ε ) and can thus only be
extended to t itself. �

Example B.3. The trace property πterm
♦e = {t | t terminating⇒ e ∈ t} states that in every terminating trace the event e must

eventually happen. This is also a safety property in our model, since for each terminating trace t = e1 · . . . · en ε violating
πterm
♦e there exists a bad prefix m = e1 · . . . · en ε that can only be extended to traces that also violate πterm

♦e , i.e., only to t
itself. �

Generally speaking, all trace properties (like π�¬ε and πterm
♦e ) that only reject terminating traces and therefore allow all

non-terminating traces are safety properties in our model. That is, if ∀t non-terminating. t ∈ π, then π is a safety property.
Consequently, for any property π, the derived trace property πS = π ∪ {t | t non-terminating} is a safety property.

Dense Properties In our trace model the liveness definition of Alpern and Schneider [12] does not have its intended intuitive
meaning, so instead we focus on the main properties that the Alpern and Schneider liveness definition satisfies in the infinite
state-based trace model and, in particular, that each trace property can be decomposed as the intersection of a safety property and
a liveness property. We discovered that in our model the following simple notion of dense properties satisfies the characterizing
properties of liveness and is, in fact, uniquely determined by these properties:

Dense , {π ∈ 2Trace | ∀t terminating. t ∈ π}
We say that a trace property π is Dense if it allows all terminating traces; or, conversely, it can only be violated by non-
terminating traces. For instance, the property π¬term

♦e = {t | t non-terminating⇒ e ∈ t}, stating that the event e will eventually
happen along every non-terminating trace is a dense property, since it accepts all terminating traces. The property π�¬			 =
{t | 			6∈ t} = {t | t non-terminating ⇒ t infinite} stating that the program does not silently diverge is also dense. Again,
more examples are given below:

Example B.4. The property π¬term
�♦e = {t | t non-terminating ⇒ t infinite ∧ ∀m ≤ t. ∃m′. m·m′·e≤t} states that event e

happens infinitely often in any non-terminating trace. Because it allows all terminating traces, it is a dense property. �

Example B.5. The property π♦ε = {t | t terminating} = {t | ∃ε. ε ∈ t} contains exactly all terminating traces and rejects
all non-terminating traces. It is therefore the minimal dense property of our trace model. �

Trivially, any property becomes dense in our model if we modify it to accept all terminating traces. That is, given any
property π, the derived πL = π ∪ {t | t terminating} is dense.

Example B.6. Take the safety property π�¬e = {t | e 6∈ t}, which forbids an event e from appearing in traces. The modified
dense property π¬term

�¬e states that event e never occurs along non-terminating traces: π¬term
�¬e = {t | t non-terminating⇒ e 6∈ t}.

�

B.2 Theory of Dense Properties
We have proved that our definition of dense properties satisfies the main properties of Alpern and Schneider’s related concept
of liveness [12], including its topological characterization, and in particular the following fact.

Theorem B.7. Any trace property can be decomposed into the intersection of a safety property and of a dense property ( ):
∀π.∃πS ∈ Safety.∃πD ∈ Dense.π = πS ∩ πD.

Proof. The proof of this decomposition theorem is in fact very simple in our model. Given any trace property π, define
πS = π∪{t | t non-terminating} and πD = π∪{t | t terminating}. As discussed above, πS ∈ Safety and πD ∈ Dense. Finally,
πS ∩ πL = (π ∪ {t | t non-terminating}) ∩ (π ∪ {t | t terminating}) = π.

Example B.8. In our trace model, the property π♦e = {t | e ∈ t} is neither safety nor dense. However, it can be decomposed
as the intersection of πterm

♦e (a safety property) and π¬term
♦e (a dense property). �

Concerning the relation between dense properties and the liveness definition of [12], the two are in fact equivalent in our
model, but this seems to be a coincidence and only happens because Alpern and Schneider’s definition completely loses its
original intent in our model, as the following theorem and simple proof suggests.
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Theorem B.9. ∀π∈2Trace. π∈Dense⇐⇒ ∀m.∃t.m≤t ∧ t∈π

Proof. We will prove each of the directions in turn.
To show the⇒ direction, take some π ∈ Dense and some finite prefix m. We can construct tmε from m by simply replacing

any final ◦ with ε , for some designated ε. By definition m≤tmε and moreover, since tmε is terminating and π ∈ Dense, we
can conclude that t ∈ π.

To show the ⇐ direction, take some π ∈ 2Trace and some terminating trace t; since t is terminating we can choose m = t
and since this finite prefix extends only to t we immediately obtain t ∈ π.

We now show that our definition of dense properties is uniquely determined given the trace model, the definition of safety,
and three conditions (see Theorem B.11) usually satisfied by the class of liveness properties [12]. The key idea consists in
looking at safety properties from a topological point of view [12, 31]. Conditions in Theorem B.11 provide a characterization
of another topological class of interest, that is shown to be exactly the class we called Dense (Theorem B.12).

Definition B.10 (Trace Topology [12, 31]). A is the topology on Trace defined by its closed set being all and only the Safety
properties.

Theorem B.11. Let X ⊆ 2Trace such that

i) Safety ∩X = {True} (trivial intersection)

ii) ∀π ∈ 2Trace. ∃S ∈ Safety ∃x ∈ X. π = S ∩ x (decomposition)

iii) ∀x1x2 ∈ X. ∀S ∈ Safety. x1 = x2 ∩ S ⇒ x2 = x1 ∧ S = True (unique decomposition for X)

Then X is the class of the dense sets in A.

Proof. See file TopologyTrace.v, Theorem X_dense_class.

Theorem B.12. Dense is the class of the dense sets in the topology A.

Proof. See file TopologyTrace.v, Lemma Dense_dense.

Corollary B.13. Assume X ⊆ 2Trace satisfies the assumptions of Theorem B.11, then X = Dense

Proof. See file TopologyTrace.v, X_Dense_class.

A property of legacy trace models that does not hold in our model is that any trace property can be decomposed as the
intersection of two liveness properties [12]. To show it, first recall that if a set is dense, then every set including it is still
dense. This means that if the topology allows for two disjoint dense sets D1 ∩ D2 = ∅, we can always write an arbitrary
property π as intersection of two dense sets.

π = (D1 ∪ π) ∩ (D2 ∪ π)

This happens for instance in the trace model of Clarkson et al., where it is possible to write an arbitrary property as
intersection of two liveness properties (that play the role of the dense sets) [12, 31] and is strictly related to the fact that only
infinite traces are considered. In our trace model it is not possible to have disjoint dense sets as they must all include the set
of all finite traces. It follows that a property discarding some terminating trace cannot have a similar decomposition.

B.3 Robust Dense Property Preservation (RDP)
RDP restricts RTP to only dense properties:

RDP : ∀π ∈ Dense. ∀P. (∀CS t.CS [P]   t⇒ t ∈ π)⇒
(∀CT t.CT [P↓]   t⇒ t ∈ π)

Again, one might wonder how one can get dense properties to be robustly satisfied in the source and then preserved by
compilation. As for robust safety, one concern is that the context may perform bad events to violate the dense property. This
can be handled in the same way as for robust safety (§2.2). An additional concern is that the context may refuse to give back
control (but not terminate) or silently diverge, thus violating a dense property such as “along every infinite trace, an infinite
number of good outputs are produced”. For this, the enforcement mechanism may use time-outs on the context, forcing it
to relinquish control to the partial program periodically. Alternatively, we may add information to traces about whether the
context or the partial program produces an event, and weaken dense properties of interest to include traces in which the context
keeps control forever.

The property-free variant of RDP, called RDC, restricts RTC to only back-translating non-terminating traces:

RDC : ∀P. ∀CT. ∀t non-terminating. CT [P↓]   t⇒
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∃CS.CS [P]   t

Non-terminating traces are either infinite or silently divergent. We are not aware of good ways to make use of infinite executions
CT [P↓]   t to produce a finite context CS, so, unlike for RSC, back-translation proofs of RDC will likely have to rely only
on CT and P, not t, to construct CS.

Finally, we have proved that RTP strictly implies RDP ( ; §E.1). The counterexample compilation chain we use for showing
the separation is roughly the inverse of the one we used for RSP (Theorem 2.1). We take the source to be arbitrary, with
the sole assumption that there exists a program PΩ that can produce a single infinite trace w irrespective of the context. We
compile programs by simply pairing them with a constant bound on the number of steps, i.e., P↓ = (P, k). On the one hand,
RDC holds vacuously, as target programs cannot produce infinite traces. On the other hand, this compilation chain does not
have RTP, since the property π = {w} is robustly satisfied by PΩ in the source but not by its compilation (PΩ, k) in the
target.

This separation result does not hold in models with only infinite traces, wherein any trace property can be decomposed
as the intersection of two liveness properties [12]. In fact, in that model, the analogue of RDP—Robust Liveness Property
Preservation—and RTP trivially coincide.

Further, neither RDP nor RSP implies the other. This follows because every property can be written as the intersection of a
safety and a dense property (§B.2). So, if RDP implies RSP, then RDP must imply RTP, which we just proved to not hold.
By a dual argument, RSP does not imply RDP. More details are given in §E.1.
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Appendix C
Secure Compilation Criteria
This appendix describes all the new secure compilation criteria considered in this work, depending on what class of
properties they robustly preserve: arbitrary trace properties (Section C.1.1), safety properties (Section C.1.2), dense properties
(Section C.1.3); arbitrary hyperproperties (Section C.2.1), subset-closed hyperproperties (Section C.2.2), including K-subset-
closed hyperproperties (Section C.2.3), hypersafety (Section C.2.4), including K-hypersafety (Section C.2.5), hyperliveness
(Section C.2.6); and arbitrary relational hyperproperties (Section C.4.1) and properties (Section C.3.2), their K- and 2-relational
variants (Section C.4.2, Section C.3.1), and safety relational properties (Section C.3.3), including the finite, K-, and 2-relational
variants (Section C.3.4). We also describe the relaxed (X) variants of relational safety (Section C.3.5).

Each of these sections gives two definitions: a criterion that is explicit about the class of properties it robustly preserves,
and an equivalent characterization that is property free, and is thus better suited for proofs.

As in the introduction, we organize these criteria in the diagram from Figure 3, where criteria above imply criteria below,
and arrows indicate the strict separation between the two criteria, that is the existence of a compilation chain satisfying the
lower criterion but not the higher. These separation results are described in Section E.
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Robust 2-Relational Hyperproperty
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Fig. 3: Partial order of the secure compilation criteria studied in this paper.

C.1 Trace Property-Based Criteria
We start by describing the three criteria at the bottom of the lattice, RTP, RSP, and RDP, corresponding to the robust
preservation of trace properties, defined as sets of allowed traces.

These criteria state that for any property π in the class they preserve, if a source program can only produce traces belonging
to π, when linked with any source context, then the same is true of the compiled program linked with any target context.

C.1.1 Robust Trace Property Preservation
The first of these criteria is called Robust Trace Property Preservation, or RTP, and corresponds to the robust preservation of
all trace properties.

Definition C.1 (Robust Trace Property Preservation (RTP)).
RTP : ∀π ∈ 2Trace.∀P. (∀CS t.CS [P] t⇒ t ∈ π)⇒

(∀CT t.CT [P↓] t⇒ t ∈ π)

The property-free characterization of RTP is RTC. This characterization captures the fact that if a target program can produce
a given trace, then the source can also produce this trace. Intuitively, this corresponds to the fact that any violation of a trace
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property in the target can be explained by the same violation in the source.

Definition C.2 (Equivalent Characterization of RTP (RTC)).
RTC : ∀P. ∀CT. ∀t. CT [P↓] t⇒

∃CS.CS [P] t

Theorem C.3 (RTP and RTC are equivalent).
RTP ⇐⇒ RTC

Proof. See file Criteria.v, theorem RTC_RTP for a Coq proof. The proof is simple, but still illustrative for how such proofs
work in general:
⇒ Let P be arbitrary. We need to show that ∀CT.∀t.CT [P↓]   t ⇒ ∃CS.CS [P]   t. We can directly conclude this by

applying RTP to P and the property π = {t | ∃CS. CS [P]   t}; for this application to be possible we need to show that
∀CS t.CS [P]   t⇒ ∃C′S.C

′
S [P]   t, which is trivial if taking C′S = CS.

⇐ Given a compilation chain that satisfies RTC and some P and π so that ∀CS t.CS [P]   t⇒ t ∈ π (H) we have to show
that ∀CT t.CT [P↓]   t⇒ t ∈ π. Let CT and t so that CT [P↓]   t, we still have to show that t ∈ π. We can apply
RTC to obtain ∃CS.CS [P]   t, which we can use to instantiate H to conclude that t ∈ π.

C.1.2 Robust Safety Property Preservation

Robust Safety Property Preservation is the criterion corresponding to the robust preservation of safety properties, i.e., properties
that can be finitely refuted: for any safety property, and any trace not in the property, there exists a finite bad prefix of the
trace that can not be extended to belong to the property.

Definition C.4 (Safety Property). We define the set of safety properties, Safety:

Safety ,
{
π ∈ 2Trace

∣∣ ∀t 6∈π. ∃m≤t. ∀t′≥m. t′ 6∈π}
A property π is a safety property if and only if π ∈ Safety.

Definition C.5 (Robust Safety Property Preservation (RSP)).
RSP : ∀π ∈ Safety. ∀P. (∀CS t.CS [P] t⇒ t ∈ π)⇒

(∀CT t.CT [P↓] t⇒ t ∈ π)

The equivalent property-free characterization, RSC, captures the fact that a safety property can be refuted by one finite bad
prefix m: all finite violation of a safety property at the target level can be explained by the same finite violation at the source
level.

Definition C.6 (Equivalent Characterization of RSP (RSC)).
RSC : ∀P. ∀CT. ∀m. CT [P↓] m⇒

∃CS.CS [P] m

Theorem C.7 (RSP and RSC are equivalent).
RSP ⇐⇒ RSC

Proof. See file Criteria.v, theorem RSC_RSP.

C.1.3 Robust Dense Property Preservation

Robust Dense Property Preservation is the criterion corresponding to the robust preservation of dense properties. Dense
properties are the properties that include all finite traces, and roughly correspond to liveness in our model. See Section B
and Section B.2 for more details.

A more detailed view of Robust Dense Property Preservation is given in Section B.3.

Definition C.8 (Dense Property). We define the set of dense property, Dense:

Dense ,
{
π ∈ 2Trace

∣∣ ∀t terminating. t ∈ π
}

A property π is a dense property if and only if π ∈ Dense.

Definition C.9 (Robust Dense Property Preservation (RDP)).
RDP : ∀π ∈ Dense. ∀P. (∀CS t.CS [P] t⇒ t ∈ π)⇒

(∀CT t.CT [P↓] t⇒ t ∈ π)
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The property-free characterization RDC captures the fact that dense properties can be violate only by infinite traces.

Definition C.10 (Equivalent Characterization of RDP (RDC)).
RDC : ∀P. ∀CT. ∀t infinite. CT [P↓] t⇒

∃CS.CS [P] t

Theorem C.11 (RDP and RDC are equivalent).
RDP ⇐⇒ RDC

Proof. See file Criteria.v, theorem RDC_RDP.

C.2 Hyperproperty-Based Criteria

The criteria in this section describe the robust preservation of hyperproperty, that is sets of allowed program behaviors. Formally,
a hyperproperty is an element H of the set 22Trace

, and a program P satisfies this hyperproperty H if and only if Behav (P ) ∈ H .
Hyperproperties allow to express more security properties than trace properties, such as noninterference for instance.

Again, these criteria state that for any hyperproperty H in the class they preserve, if a source program’s behavior when
linked with any any source context belongs to H , then the same is true for the compiled program.

Note that the behavior being considered is not the set of traces generated by the program when linked with all source
contexts, but only the set of traces generated when linked with a particular context.

C.2.1 Robust Hyperproperty Preservation

Robust Hyperproperty Preservation is the criterion corresponding to the robust preservation of all hyperproperties.

Definition C.12 (Robust Hyperproperty Preservation (RHP)).

RHP : ∀H ∈ 22Trace
. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒

(∀CT. Behav (CT [P↓]) ∈ H)

The equivalent characterization, RHC, states that all behaviors of the compiled program are behaviors of the source program:
if the compiled program violate a hyperproperty with a particular behavior, then the source program does too.

Definition C.13 (Equivalent Characterization of RHP (RHC)).
RHC : ∀P. ∀CT. ∃CS. Behav (CT [P↓]) = Behav (CS [P])

Unfolding this definition gives:

RHC : ∀P. ∀CT. ∃CS. ∀t. (CT [P↓] t ⇐⇒ CS [P] t)

Theorem C.14 (RHP and RHC are equivalent).
RHP ⇐⇒ RHC

Proof. See file Criteria.v, theorem RHC_RHP.

C.2.2 Robust Subset-Closed Hyperproperty Preservation

In general a program satisfies a certain hyperproperty if its set of traces, its behavior, is in the hyperproperty. With subset-closed
hyperproperties (§3.2), if a set of traces is accepted then so are all smaller sets of traces. Subset closed hyperproperties can
therefore be used to formalize the notion of refinement [31].

Definition C.15 (Subset-Closed Hyperproperties). We define the set of Subset-Closed Hyperproperties, SC:

SC , {H | ∀b1 ⊆ b2.b2 ∈ H ⇒ b1 ∈ H}
A hyperproperty H is subset-closed if and only if H ∈ SC.

Definition C.16 (Robust Subset-Closed Hyperproperty Preservation (RSCHP)).
RSCHP : ∀H ∈ SC. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒

(∀CT. Behav (CT [P↓]) ∈ H)

The equivalent characterization of RSCHP states that the behaviors of a compiled program in an arbitrary target context are
the refinement of the behaviors of the original program in some source context.
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Definition C.17 (Equivalent Characterization of RSCHP (RSCHC)).
RSCHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓] t⇒ CS [P] t

Theorem C.18 (RSCHP and RSCHC are equivalent).
RSCHP ⇐⇒ RSCHC

Proof. See file Criteria.v, RSCHC_RSCHP.

C.2.3 Robust K-Subset-Closed Hyperproperty Preservation

While for K-Hypersafety a set of K bad finite prefixes is enough to refuse a behavior, for K-subset-closed hyperproperties,
K complete traces could be necessary.

Definition C.19 (K-Subset-Closed Hyperproperties [67]). We define the set of K-Subset-Closed Hyperproperties, KSC:

KSC , {H | ∀b. b /∈ H ⇐⇒ (∃TK ⊆ b. (|TK | ≤ K ∧ TK /∈ H))}
A hyperproperty H is K-subset-closed if and only if H ∈ KSC.

Definition C.20 (Robust K-Subset-Closed Hyperproperty Preservation (RKSCHP)).
RKSCHP : ∀H ∈ KSC. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒

(∀CT. Behav (CT [P↓]) ∈ H)

Definition C.21 (Equivalent Characterization of RKSCHP (RKSCHC)).
RKSCHC : ∀P,CT.∀̂t.||̂t|| = K.

(̂t ⊆ Behav (CT [P↓]))⇒ ∃CS.(̂t ⊆ Behav (CS [P]))

Theorem C.22 (RKSCHP and RKSCHC are equivalent).
RKSCHP ⇐⇒ RKSCHC

Proof. Analogous to that of Theorem C.23 below.

R2SCHC is an instance of Definition C.21 with ||̂t|| = 2. Similarly, R2SCHP is an instance of Definition C.20 for 2SC.

Theorem C.23 (R2SCHP and R2SCHC are equivalent).
R2SCHP ⇐⇒ R2SCHC

Proof. See file Criteria.v, theorem R2SCHC_R2SCHPC.

C.2.4 Robust Hypersafety Preservation

Robust Hypersafety Preservation (§3.3) is the criterion corresponding to the robust preservation of hypersafety properties (aka.
safety hyperproperties), i.e., hyperproperties that can be refuted by a finite number of finite trace prefixes.

Hypersafety is a generalization of safety that captures many important security properties, such as noninterference. Informally,
a hypersafety property disallows a certain finite observation, i.e., a finite set of finite prefixes. This observation o ∈ Obs is a
“bad observation”, and all its extensions cannot satisfy the hyperproperty.

Definition C.24 (Observations). We define the set of observations, Obs:

Obs , 2FinPref
Fin

Definition C.25 (Hypersafety Property). We define the set of hypersafety properties, Hypersafety:

Hypersafety , {H | ∀b 6∈ H. (∃o ∈ Obs. o≤b ∧ (∀b′≥o. b′ 6∈ H))}
A hyperproperty H is a safety hyperproperty, or a hypersafety property, if and only if H ∈ Hypersafety.

Definition C.26 (Robust Hypersafety Preservation (RHSP)).
RHSP : ∀H ∈ Hypersafety. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒

(∀CT. Behav (CT [P↓]) ∈ H)

The property-free characterization captures the fact that if a compiled program can produce an observation o (in the sense
that it contains a prefix of each trace of the program) that refutes a hypersafety property, then the same observation can also
be produced by the source program.
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Definition C.27 (Equivalent Characterization of RHSP (RHSC)).
RHSC : ∀P. ∀CT. ∀o ∈ Obs. o ≤ Behav (CT [P↓])⇒

∃CS. o ≤ Behav (CS [P])

Theorem C.28 (RHSP and RHSC are equivalent).
RHSP ⇐⇒ RHSC

Proof. See file Criteria.v, theorem RHSC_RHSP.

C.2.5 Robust K-Hypersafety Preservation
K-hypersafety properties are hypersafety properties that can be refuted by observations of size at most K, that is one need
only K appropriately chosen finite prefixes to prove a program doesn’t satisfy the hyperproperty.

Definition C.29 (K-Observations). We define the set of K-observations, i.e., observations of cardinal at most K:

ObsK , 2FinPref
Fin(K)

Definition C.30 (K-Hypersafety Property). We define the set of K-hypersafety properties:

KHypersafety , {H | ∀b 6∈ H. (∃o ∈ ObsK . o≤b ∧ (∀b′≥o. b′ 6∈ H))}
A hyperproperty H is K-hypersafety if and only if H ∈ KHypersafety.

Definition C.31 (Robust K-Hypersafety Preservation (RKHSP)).
RKHSP : ∀H ∈ KHypersafety. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒

(∀CT. Behav (CT [P↓]) ∈ H)

The property-free characterization has the same intuition, except it is restricted to behaviors of size K.

Definition C.32 (Equivalent Characterization of RKHSP (RKHSC)).
RKHSC : ∀P,CT. ∀m̂. ||m̂|| = K ⇒ m̂ ≤ Behav (CT [P↓])⇒

∃CS.m̂ ≤ Behav (CS [P])

Theorem C.33 (RKHSP and RKHSC are equivalent).
RKHSP ⇐⇒ RKHSC

Proof. Analogous to Theorem C.34 below.

R2HSP is an instance of Definition C.31 for K = 2. Similarly, R2HSC is an instance of Definition C.32 for K = 2.

Theorem C.34 (R2HSP and R2HSC are equivalent).
R2HSP ⇐⇒ R2HSC

Proof. See file Criteria.v, theorem R2HSC_R2HSP.

A particular instance of R2HSP is RTINIP (§3.3).

C.2.6 Robust Hyperliveness Preservation
Definition C.35 (Hyperliveness Property). We define the set of hyperliveness properties (or liveness hyperproperties)
Hyperliveness:

Hyperliveness , {H | ∀o ∈ Obs. ∃b≥o. b ∈ H}
A hyperproperty H is a hyperliveness property if and only if H ∈ Hyperliveness.

Definition C.36 (Robust Hyperliveness Preservation (RHLP)).
RHLP : ∀H ∈ Hyperliveness. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒

(∀CT. Behav (CT [P↓]) ∈ H)

We give no property-free characterization for RHLP, since RHLP collapses with RHP, as was pointed out in §3.5:

Theorem C.37 (RHP and RHLP are equivalent).
RHP ⇐⇒ RHLP

Proof. See file Criteria.v, theorem RHLP_RHP.
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C.3 Relational Trace Property-Based Criteria
Relational trace properties are a generalization of trace properties to allow comparing individual runs of different programs.
For instance, relational trace properties allow expressing properties such as “program P1 runs faster than P2 on every input”.

C.3.1 Robust K-Relational Trace Property Preservation
A K-relational trace property is a relational trace property of arity K, that is a relation R between K traces.
Given K programs, this programs are said to satisfy the K-relation R if and only if for any traces t1, . . . , tK they can produce
when linked with the same context, (t1, . . . , tK) ∈ R. Here, we only give an explicit definition in the case of 2-relations.
These definitions can be lifted trivially to the case of K-relations.

Definition C.38 (Robust 2-Relational Trace Property Preservation (R2rTP)).

R2rTP : ∀R ∈ 2(Trace2). ∀P1 P2. (∀CS t1 t2. (CS [P1] t1 ∧ CS [P2] t2)⇒ (t1, t2) ∈ R)⇒
(∀CT t1 t2. (CT [P1↓] t1 ∧ CT [P2↓] t2)⇒ (t1, t2) ∈ R)

The equivalent characterization captures the following intuition: if compiled programs are unrelated by a relation R because
of certain traces, they the source programs are also unrelated because of the same traces.

Definition C.39 (Equivalent Characterization of R2rTP (R2rTC)).
R2rTC : ∀P1 P2. ∀CT. ∀t1 t2. (CT [P1↓] t1 ∧ CT [P2↓] t2)⇒

∃CS. (CS [P1] t1 ∧ CS [P2] t2)

Theorem C.40 (R2rTP and R2rTC are equivalent).
R2rTP ⇐⇒ R2rTC

Proof. See file Criteria.v, theorem R2rTC_R2rTP.

The definitions of RKrTP and RKrTC are an easy generalization.

Theorem C.41 (RKrTP and RKrTC are equivalent).
RKrTP ⇐⇒ RKrTC

Proof. Analogous to Theorem C.40.

C.3.2 Robust Relational Trace Property Preservation
Relational trace properties (§4.2) are a generalization of the previous relational trace properties, allowing comparing individual
runs of countably many programs. They are defined as predicate over (infinite) sequence of programs.

Definition C.42 (Robust Relational Trace Property Preservation (RrTP)).
RrTP : ∀R ∈ 2(Traceω). ∀P1, ..,PK, ...

(∀CS.∀t1, .., tk, ..(∀i.CS [Pi] ti)⇒ (t1, .., tk, ..) ∈ R)⇒
(∀CT.∀t1, .., tk, ..(∀i.CT [Pi] ti)⇒ (t1, .., tk, ..) ∈ R)

Definition C.43 (Equivalent Property-Full Characterization of (RrTP′)).
RrTP′ : ∀R ∈ 2(Progs→Trace). (∀CS.∀f. (∀P.CS [P] f(P))⇒ f ∈ R)⇒

(∀CT.∀f. (∀P.CT [P↓] f(P))⇒ f ∈ R)

Definition C.44 (Equivalent Property-Free Characterization of RrTP (RrTC)).
RrTC : ∀f : Progs→ Trace. ∀CT. (∀P. CT [P↓] f(P))⇒

∃CS. (∀P. CS [P] f(P))

Theorem C.45 (RrTP′ and RrTC are equivalent).
RrTP′ ⇐⇒ RrTC

Proof. See file Criteria.v, theorem RrTC_RrTP’.

Theorem C.46 (RrTP′ and RrTP). Assuming the set Progs is countable,

RrTP′ ⇐⇒ RrTP

Proof. Same argument used in Theorem C.77.
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Theorem C.47 (RrTP and RrTC). Assuming the set Progs is countable,

RrTP ⇐⇒ RrTC

Proof. Follows from Theorem C.46 and Theorem C.45.

C.3.3 Robust Relational Safety Preservation
See Section 4.3 for a more detailed account of robust relational safety preservation.

C.3.4 Robust Finite-relational Safety Preservation
A relation R ∈ 2Trace

K

is a K-ary relational safety property if for every “bad” K-trace (t1, . . . , tK) 6∈ R, there exists a set
of prefixes m1, . . . ,mk ∈ FinPref such that mi ≤ ti, i = 1, . . . ,K, and every K-trace (t′1, . . . , t

′
K) that extends the set of

“bad” prefixes pointwise is also not in the relation, i.e., mi ≤ t′i, i = 1, . . . ,K implies (t′1, . . . , t
′
K) 6∈ R.

We provide the definition for preservation of the robust satisfaction of relational safety of arity 2 (Definition C.48), the reader
can easily deduce the definition for arity K, that we denote by RKrSP.

At arity 2, we define Robust 2-relational Safety Preservation (R2rSP) as follows (cf. Definition C.48).

Definition C.48 (Robust 2-Relational Safety Preservation (R2rSP)).
R2rSP : ∀R ∈ 2-relational Safety. ∀P1 P2.

(∀CS t1 t2.(Cs [P1]   t1 ∧ Cs [P2]   t2) =⇒ (t1, t2) ∈ R) =⇒
(∀CT t1 t2.(CT [P1↓]   t1 ∧CT [P2↓]   t2) =⇒ (t1, t2) ∈ R)

We show that R2rSP can be written in the following form, more convenient to work with.

Definition C.49 (Equivalent Characterization of R2rSP (R2rSC)).
R2rSC : ∀P1 P2. ∀CT. ∀m1 m2. (CT [P1↓] m1 ∧ CT [P2↓] m2)⇒

∃CS. (CS [P1] m1 ∧ CS [P2] m2)

Theorem C.50 (R2rSP and R2rSC are equivalent).
R2rSP ⇐⇒ R2rSC

Proof. See Criteria.v, theorem R2rSC_R2rSP.

The following theorem gives us an alternative formulation of R2rSP, in terms of preservation of robust satisfaction of
relations over finite prefixes. Theorem C.51 allows us to define in a more elegant way the criteria for arbitrary (but finite)
relational safety (Definition C.53) as well infinite ones (Definition C.56). A similar theorem holds for RKrSP.

Theorem C.51 (Characterization of R2rSP using finite prefixes).

R2rSP ⇐⇒ ∀R ∈ 2(FinPref 2). ∀P1 P2.

(∀CS m1 m2.(Cs [P1]   m1 ∧ Cs [P2]   m2) =⇒ (m1,m2) ∈ R) =⇒
(∀CT m1 m2.(CT [P1↓]   m1 ∧CT [P2↓]   m2) =⇒ (m1,m2) ∈ R)

Proof. See Criteria.v, Theorem R2rSP_R2rSC’.

Notice that in the second script we quantify over arbitrary relations over finite prefixes. This captures the main difference
between this criterion and the stronger R2rTP: it considers finite prefixes rather than full traces. This is also the case in the
equivalent property free characterization, R2rSC.

The definitions of RKrSP and RKrSC are an easy generalization.

Theorem C.52 (RKrSP and RKrSC are equivalent).
RKrSP ⇐⇒ RKrSC

Proof. Analogous to Theorem C.50.

Finally, we define RFrSP as the union over all K of the RKrSPs.

Definition C.53 (Robust Finite-relational Safety Preservation (RFrSP)).

RFrSP : ∀K,P1, · · · ,Pk,R ∈ 2(FinPref k).

(∀CS,m1, · · · ,mk, (CS [P1]   m1 ∧ · · · ∧ CS [Pk]   mk)

⇒ (m1, · · · ,mk) ∈ R)⇒
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(∀CT.(CT [P1↓]   m1 ∧ · · · ∧CT [Pk↓]   mk)

⇒ (m1, · · · ,mk) ∈ R)

The intuition for this property-free criterion is the same as for finite-relational properties, except it only requires considering
finite prefixes.

Definition C.54 (Equivalent Characterization of RFrSP (RFrSC)).
RFrSC : ∀K. ∀P1 . . .PK. ∀CT. ∀m1 . . .mK . (CT [P1↓] m1 ∧ . . . ∧ CT [PK↓] mK)⇒

∃CS. (CS [P1] m1 ∧ . . . ∧ CS [PK] mK)

Theorem C.55 (RFrSP and RFrSC are equivalent).
RFrSP ⇐⇒ RFrSC

Proof. Analogous to Theorem C.50.

Definition C.56 (Robust relational Safety Preservation (RrSP)).
RrSP : ∀R ∈ 2(FinPref )ω .∀P1, .., Pk, ..(∀CS.∀m1, ..,mk, ... (∀i.CS [Pi] mi)⇒ (m1, ..,mk, ..) ∈ R)⇒

(∀CT.∀m1, ..,mk, ... (∀i.CT [Pi↓] mi)⇒ (m1, ..,mk, ..) ∈ R)

Definition C.57 (Equivalent Property-Full Characterization of RrSP′ (RrSP′)).
RrSP′ : ∀R ∈ 2(Progs→FinPref ). (∀CS.∀f. (∀P.CS [P] f(P))⇒ R(f))⇒

(∀CT.∀f. (∀P.CT [P↓] f(P))⇒ R(f))

Definition C.58 (Equivalent Property-Free Characterization of RrSP (RrSC)).
RrSC : ∀f : Progs→ FinPref . ∀CT. (∀P. CT [P↓] f(P))⇒

∃CS. (∀P. CS [P] f(P))

Theorem C.59 (RrSC and RrSP′ are equivalent).
RrSP′ ⇐⇒ RrSC

Proof. See file Criteria.v, theorem RrSC_RrSP’.

Theorem C.60 (RrSP′ and RrSP). Assuming the set Progs is countable,

RrSP′ ⇐⇒ RrSP

Proof. Same argument used in Theorem C.77.

Theorem C.61 (RrSP and RrSC). Assuming the set Progs is countable,

RrSP ⇐⇒ RrSC

Proof. Follows from Theorem C.60 and Theorem C.59.

C.3.5 Robust Relational Relaxed Safety Preservation
Relational Relaxed Safety properties generalize relational safety properties as they consider XPref instead of FinPref . The
semantics of a programming language can capture more than just finite prefixes of complete traces justifying the definition
of Xpref (see Section A). For instance, silent divergence is not finitely observable, but can be represented and produced by

small-step semantics, for instance with a rule such as
(Silent-Div)

∀n, e ε−−→ ne′

e   ⇑
where ⇑ represents silent divergence.

The criteria in this section are defined exactly as the criteria in the previous section, except they deal with extended
prefixes instead of finite prefixes.

Definition C.62 (Robust relational relaXed safety Preservation (RrXP)).
RrSP : ∀R ∈ 2(XPref )ω .∀P1, .., Pk, ..(∀CS.∀x1, .., xk, ... (∀i.CS [Pi] xi)⇒ (x1, .., xk, ..) ∈ R)⇒

(∀CT.∀x1, .., xk, ... (∀i.CT [Pi↓] xi)⇒ (x1, .., xk, ..) ∈ R)

Definition C.63 ( (RrXP′)).
RrXP : ∀R ∈ 2(Progs→XPref ). (∀CS.∀f. (∀P.CS [P] f(P))⇒ R(f))⇒

(∀CT.∀f. (∀P.CT [P↓] f(P))⇒ R(f))
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Definition C.64 (Equivalent Characterization of RrXP′ (RrXC)).
RrXC : ∀f : Progs→ XPref . ∀CT. (∀P. CT [P↓] f(P))⇒

∃CS. (∀P. CS [P] f(P))

Theorem C.65 (RrXC and RrXP′ are equivalent).
RrXP ⇐⇒ RrXC

Proof. See file Criteria.v, theorem RrXC_RrXP’.

Theorem C.66 (RrXP′ and RrXP). Assuming the set Progs is countable,

RrXP′ ⇐⇒ RrXP

Proof. Same argument used in Theorem C.77.

Theorem C.67 (RrXP and RrXC). Assuming the set Progs is countable,

RrXP ⇐⇒ RrXC

Proof. Follows from Theorem C.66 and Theorem C.65.

C.3.6 Robust Finite-Relational Relaxed Safety Preservation

Definition C.68 (Robust Finite-relational relaXed safety Preservation (RFrXP)).
RFrXP :

∀K,P1, · · · ,PK,R ∈ 2(XPref K).

(∀CS, x1, · · · , xK , (CS [P1]   x1 ∧ · · · ∧ CS [PK]   xK)

⇒ (x1, · · · , xK) ∈ R)⇒
(∀CT.(CT [P1↓]   x1 ∧ · · · ∧CT [PK↓]   xK)

⇒ (x1, · · · , xK) ∈ R)

Definition C.69 (Equivalent Characterization of RFrXP (RFrXC)).
RFrXC : ∀K. ∀P1 . . .PK. ∀CT. ∀x1 . . . xK . (CT [P1↓] x1 ∧ . . . ∧ CT [PK↓] xK)⇒

∃CS. (CS [P1] x1 ∧ . . . ∧ CS [PK] xK)

Theorem C.70 (RFrXP and RFrXC are equivalent).
RFrXP ⇐⇒ RFrXC

Proof. Analogous to Theorem C.73.

Definition C.71 (Robust 2-relational relaXed safety Preservation (R2rXP)).

R2rXP : ∀R ∈ 2(XPref 2). ∀P1 P2. (∀CS x1 x2. (CS [P1] x1 ∧ CS [P2] x2)⇒ (x1, x2) ∈ R)⇒
(∀CT x1 x2. (CT [P1↓] x1 ∧ CT [P2↓] x2)⇒ (x1, x2) ∈ R)

Definition C.72 (Equivalent Characterization of R2rXP (R2rXC)).
R2rXC : ∀P1 P2. ∀CT. ∀x1 x2. (CT [P1↓] x1 ∧ CT [P2↓] x2)⇒

∃CS. (CS [P1] x1 ∧ CS [P2] x2)

Theorem C.73 (R2rXP and R2rXC are equivalent).
R2rXP ⇐⇒ R2rXC

Proof. See file Criteria.v, R2rXC_R2rXP’.

Theorem C.74 (RKrXP and RKrXC are equivalent).
RKrXP ⇐⇒ RKrXC

Proof. Analogous to Theorem C.73.
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C.4 Relational Hyperproperty-Based Criteria
C.4.1 Robust Relational Hyperproperty Preservation
Definition C.75 (Robust Relational Hyperproperty Preservation (RrHP)).

RrHP : ∀R ∈ 2(Behavsω). ∀P1, ..,PK, ... (∀CS. (Behav (CS [P1]), .., Behav (CS [PK]), ..) ∈ R)⇒
(∀CT. (Behav (CT [P1↓]), .., Behav (CS [PK↓]), ..) ∈ R)

RrHP has an equivalent definition (RrHP′ below) that is also not property-free. We introduce this definition for technical
reasons as we use it in proofs later.

Definition C.76 ((RrHP’)).
RrHP′ : ∀R ∈ 2(Progs→Behavs). (∀CS. (λP. Behav (CS [P])) ∈ R)⇒

(∀CT. (λP. Behav (CT [P↓])) ∈ R)

Theorem C.77 (RrHP and RrHP′ are equivalent). Assuming the set Progs is countable,

RrHP ⇐⇒ RrHP′

Proof. (⇒) Following the definition of RrHP′, assume R ∈ 2(Progs→Behavs). We need to prove:
(∀CS. (λP. Behav (CS [P])) ∈ R)⇒

(∀CT. (λP. Behav (CT [P↓])) ∈ R)

Let G be a bijective function from source programs to N.6 Define R′ ∈ 2(Behavsω) as follows:

R′ = {(b1, .., bk, ..) | (λP.bG(P)) ∈ R}
For i ∈ N, let Qi = G−1(i). Instantiate RrHP to R′ and Q1, ..,QK, ... We get:

(∀CS. (Behav (CS [Q1]), .., Behav (CS [QK]), ..) ∈ R′)⇒
(∀CT. (Behav (CT [Q1↓]), .., Behav (CS [QK↓]), ..) ∈ R′)

Plugging in the definition of R′ above, this becomes:
(∀CS. (λP. Behav

(
CS

[
QG(P)

])
) ∈ R)⇒

(∀CT. (λP. Behav
(
CT

[
QG(P)

y])) ∈ R)

However, by definition, QG(P) = P. So, the above is equal to

(∀CS. (λP. Behav (CS [P])) ∈ R)⇒
(∀CT. (λP. Behav (CT [P↓])) ∈ R)

which is what we had to prove.

(⇐) Following the definition of RrHP, assume R ∈ 2(Behavsω) and some infinite sequence P1, ..,PK, ... We have to show:
(∀CS. (Behav (CS [P1]), .., Behav (CS [PK]), ..) ∈ R)⇒

(∀CT. (Behav (CT [P1↓]), .., Behav (CS [PK↓]), ..) ∈ R)

Define R′ ∈ 2(Progs→Behavs) as follows:
R′ = {f | (f(P1), .., f(PK), ..) ∈ R}

Instantiating RrHP′ to R′, we get:
(∀CS. (λP. Behav (CS [P])) ∈ R′)⇒

(∀CT. (λP. Behav (CT [P↓])) ∈ R′)

Expanding the definition of R′, this immediately reduces to what we wanted to show.

Definition C.78 (Equivalent Characterization of RrHP (RrHC)).
RrHC : ∀CT. ∃CS. ∀P. Behav (CT [P↓]) = Behav (CS [P])

Theorem C.79 (RrHP′ and RrHC are equivalent).
RrHP′ ⇐⇒ RrHC

Proof. See file Criteria.v, theorem RrHC_RrHP’.

6When the source language has fewer programs than ω, the proof isn’t very different.
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Theorem C.80 (RrHP and RrHC). Assuming the set Progs is countable,

RrHP ⇐⇒ RrHC

Proof. Follows from Theorem C.77 and Theorem C.79.

C.4.2 Robust K-Relational Hyperproperty Preservation
K-relational hyperproperties are relations between the behaviors of several programs. K programs satisfy a K-relational
hyperproperty if and only if, when plugged into any same context, their behaviors are related.

The criteria are as expected, generalizing the intuition of hyperproperties for multiple programs.

Definition C.81 (Robust 2-Relational Hyperproperty Preservation (R2rHP)).

R2rHP : ∀R ∈ 2(Behavs2). ∀P1 P2. (∀CS. (Behav (CS [P1]), Behav (CS [P2])) ∈ R)⇒
(∀CT. (Behav (CT [P1↓]), Behav (CS [P2↓])) ∈ R)

Definition C.82 (Equivalent Characterization of R2rHP (R2rHC)).
R2rHC : ∀P1 P2. ∀CT. ∃CS. Behav (CT [P1↓]) = Behav (CS [P1]) ∧

Behav (CT [P2↓]) = Behav (CS [P2])

Theorem C.83 (R2rHP and R2rHC are equivalent).
R2rHP ⇐⇒ R2rHC

Proof. See file Criteria.v, theorem R2rHC_R2rHP.

To obtain RKrHP and RKrHC, take the definitions of R2rHP and R2rHC above and replace ∀P1,P2 with ∀P1, · · · ,PK .

Theorem C.84 (RKrHP and RKrHC are equivalent).
RKrHP ⇐⇒ RKrHC

Proof. Analogous to Theorem C.83.

C.5 Comparison of Proof Obligations
We briefly compare the robust preservation of (variants of) relational hyperproperties (RrHP), relational trace properties (RrTP),
and relational safety properties (RrSP, this subsection) in terms of the difficulty of back-translation proofs. For this, it is
instructive to look at the property-free characterizations. In a proof of RrSP or any of its variants, we must construct a source
context CS that can induce a given set of finite prefixes of traces, one from each of the programs being related. In RrTP and
its variants, this obligation becomes harder—now the constructed CS must be able to induce a given set of full traces. In RrHP
and its variants, the obligation is even harder—CS must be able to induce entire behaviors (sets of traces) from each of the
programs being related. Thus, the increasing strength of RrSP, RrTP and RrHP is directly reflected in their corresponding
proof obligations.

Furthermore, looking just at the different variants of relational safety, we note that the number of trace prefixes the constructed
context CS must simultaneously induce in the source programs is exactly the arity of the corresponding relational property.
Constructing CS from a finite number of prefixes is much easier than constructing CS from an infinite number of prefixes.
Consequently, it is meaningful to define a special point in the partial order of Figure 3 that is the join of RKrSP for all finite
Ks. This point is the criterion we call Robust Finite-Relational Safety Preservation (see Section C.3.4), or RFrSP.
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Appendix D
Which of our Criteria Imply Robust Trace Equivalence Preservation?
This section extends Theorem 4.1 from §5. While RTEP is always implied by R2rHP, we show that in many cases, RTEP is
a consequence of weaker relational criteria.

D.1 Relational Criteria and Robust Trace Equivalence Preservation

We start by recalling the definition of RTEP, which is an instance of R2rHP:

Definition D.1 (Robust Trace Equivalence Preservation (RTEP)).
RTEP : ∀P1 P2. (∀CS. Behav (CS [P1]) = Behav (CS [P2]))⇒

(∀CT. Behav (CT [P1↓]) = Behav (CS [P2↓]))
In general, as explained in §5, RTEP is implied by R2rHP.

Theorem D.2. R2rHP⇒ RTEP.

Proof. The thesis immediately follows by instantiating R2rHP with the equality relation, see file Robustdef.v, theorem
R2rHP_RTEP for a formal proof.

Similarly, in a deterministic setting, RTEP is implied by R2rTP.

Theorem D.3. For deterministic source languages R2rTP⇒ RTEP.

Proof. See file Criteria.v, theorem R2rTP_RTEP.

The determinism of the source language is a strong assumption though. We show that R2rTP (and even the weaker R2rXP)
imply RTEP even if we weaken the determinism assumption to just determinacy, if we add two more assumptions on the
target language: input totality, and “safety-like” behavior.

Definition D.4 (Determinate Languages). We say a language is determinate iff

∀W. ∀t1 t2. W  t1 ∧W  t1 ⇒ t1 R t2

where
t1 R t2 ⇐⇒ t1 = t2 ∨

∃m. ∃e1e2 ∈ Input. e1 6= e2 ∧ m :: e1 ≤ t1 ∧ m :: e2 ≤ t2
Intuitively, determinacy states that a language has no internal non-determinism, or equivalently that the only source of

non-determinism is the inputs from the environment.

Definition D.5 (Input Totality). We say a language satisfies input totality iff

∀W. ∀m. ∀e1e2 ∈ Input. W  ∗ m :: e1 ⇒W  ∗ m :: e2

Intuitively, input totality states that whenever a program receives an input from the environment, then it could have received
any other input as well. Both determinacy [27, 42] and input totality [46, 100] are standard assumptions and are for instance
satisfied by the CompCert compiler [65].

Definition D.6 (“Safety-like” semantics). Given a language L, it semantics is “safety-like” iff

∀W.∀t infinite.W�� t⇒ ∃m.∃e.W  m ∧m :: e ≤ t ∧W�� m :: e

Intuitively, any infinite trace that cannot not produced by a program can be explained as a finite prefix of that trace that can
produced by the program, but after which the next event can no longer be produced by it. While this property is non-trivial,
in §D.2 we show that any small-step semantics satisfying a particular kind of determinacy always satisfies this property.

We can now state the following theorems:

Theorem D.7. If the following assumptions hold

1) The source language is determinate.
2) The target language satisfies input totality.
3) The target language is “safety-like”.

then R2rTP⇒ RTEP.

Proof. We give a sketch of the proof here, see file R2rTP_RTEP.v, theorem R2rTP_RTEP for a complete proof.
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Two contextually equivalent programs P1,P2 have the same behavior in any source context. This means that for any two
traces t1 ∈ Behav (Cs [P1]) and t2 ∈ Behav (Cs [P2]), since Behav (Cs [P1]) = Behav (Cs [P2]) we can use the determinacy
of the source language (1) to obtain that t1R t2, for the relation R used to define determinacy. This allows us to instantiate
R2rTP with the relational property R and deduce that for an arbitrary target context CT, programs CT [P1↓] and CT [P2↓]
can only produce traces also related by R. Together with hypotheses 2 and 3 this is enough to show mutual inclusion of the
target behaviors. We show that for an arbitrary CT, Behav (CT [P1↓]) ⊆ Behav (CT [P2↓]), the other inclusion is symmetric.
Assume by contradiction that there exists t1 ∈ Behav (C [P1↓]) \ Behav (C [P2↓]). Let mmax ≤ t1 be given by hypothesis 3.
Therefore there exists t2 ∈ Behav (CT [P2↓]) such that mmax ≤ t2, with t1 6= t2 but still t1R t2. By determinacy, t1 and t2
have a common prefix m, and there exist two input events e1 6= e2 such that m :: ei ≤ ti, i = 1, 2. By maximality of mmax

it must be m ≤ mmax. The inequality cannot be strict, otherwise both m :: e1, m :: e2 ≤ mmax. In case m = mmax apply
input totality and deduce that CT [P2↓] ;∗mmax :: e2 contradicting the maximality of mmax.

The next result was discussed previously as Theorem 5.1.

Theorem D.8. Under the same assumptions of Theorem D.7, R2rXP⇒ RTEP.

Proof. See file R2rXP_RTEP.v, theorem R2rXP_RTEP for a complete proof. The argument is very similar to the one in
Theorem D.7, the relation R is adapted to XPref as following.

x1 RX x2 ⇐⇒ x1 ≤ x2 ∨ x2 ≤ x1 ∨
∃m. ∃e1e2 ∈ Input. e1 6= e2 ∧ m :: e1 ≤ x1 ∧ m :: e2 ≤ x2

R holds for traces produces by contextually equivalent source programs P1,P2, and by unfolding CS [Pi↓] ;∗xi, i = 1, 2,
x1RX x2 holds as well.
Proceed as in Theorem D.7 to show mutual inclusion of behaviors. Determinacy ensures that if t1 6= t2 then there exist
two non comparable x1, x2 such that x1 ≤ t1, x2 ≤ t2 both with mmax as common prefix and still x1RX x2 and we can
conclude with the same argument as in Theorem D.7. It is crucial to observe that considering XPref instead of FinPref , x1, x2

can be considered non comparable. This can be proved by case analysis on the two traces, in particular if t1 = m ::	 and
t2 = m :: ε , x1 = m ::	 and x2 = m :: ε are two non comparable x-prefixes still related by RX but all finite prefixes
will be comparable, so that input totality is not useful to reach a contradiction.

While under the rather liberal condition above R2rSP does not imply RTEP, it does imply RTEP in the very special case
that target programs cannot produce any silently diverging traces, for instance because in the target language is terminating.
This is a technical result that we use in a later proof (Theorem E.10).

Theorem D.9. Under the following assumptions:
1) The source language is determinate.
2) The target language satisfies input totality.
3) The target language is “safety-like”.
4) Target programs cannot produce silently diverging traces.

then R2rSP⇒ RTEP.

Proof. See file R2rSP_RTEP.v, theorem R2rSP_RTEP for a complete direct proof. Here we just highlight that R2rXP and
R2rSP are equivalent under the very strong hypothesis 4, so we can simply apply Theorem D.8 above.

While assumption (4) above is very strong, it does hold for strictly terminating languages, and in all other cases one can
use Theorem D.8.

D.2 Safety-Like Small-Step Semantics
In this section we state and prove the property that many small-step semantics have the previous “safety-like” behavior, in the
sense that we can determine whether an infinite trace cannot be produced by a program after a finite number of steps.

First, we state our semantic model and its basic constituents.

Definition D.10 (Small-step semantics). A small-step semantics is defined in terms of the following abstract components:
• Program states are represented by configurations, c.
• An initial relation characterizes initial program states.
• A step relation, c e−→ c′ between pairs of states, producing an event. Its reflexive and transitive closure is denoted e1···en−−−−→

∗
.

• A well-founded order relation on elements of a type of “measures.”
Events can be either visible or silent. A configuration is stuck when there is no configuration it can step to; it can loop

silently if there is an infinite sequence of silent steps starting from it.
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A small-step semantics relates program configurations and the traces they produce; the relation is moreover parameterized
by an element of the type of measures. In our trace model, there are four possible cases, starting from a configuration c:
• If c is stuck, the semantics produces the terminating trace ε with some associated information ε.
• If c can loop silently, the semantics produces the silently diverging trace 			.
• If c can silently step c ∅−→

∗
c′ to a c′ while decreasing its ordering measure with respect to c, the semantics recurses on

c′.
• If c can step with some visible events c m−→

∗
c′, the semantics emits m and recurses on c′.

The addition of the well-founded order relation between measures is used to avoid the usual problem of infinite stuttering on
silent events, which is properly captured by silent divergence. Between two visible events there must mediate a finite number
of silent events. This requirement is enforced by having the ordered measure decrease when silent steps are taken (there are no
restrictions on ordering between states connected by visible events). A similar device is used, for example, in the CompCert
verified compiler.

The final result holds for a wide class of reasonable languages. The following determinacy condition is sufficient to prove
the result.

Definition D.11 (Weak determinacy). Two program configurations are related if they produce the same traces under the
semantics; we write c1Rc2 for this.

Under weak determinacy, if a pair of states is related and each element of this initial pair steps to another state producing
the same sequence of events, the pair of final states is also related:

∀c1.∀c′1.∀m.∀c2.∀c′2.c1Rc′1 ⇒ c1
m−→
∗
c2 ⇒ c′1

m−→
∗
c′2 ⇒ c2Rc

′
2

Thus stated, the “safety-like” quality of small-step semantics follows easily.

Theorem D.12. Assuming weak determinacy holds, all small-step semantics (that can be encoded by the scheme of
Definition D.10) are “safety-like.”

Proof. See file SemanticsSafetyLike.v, theorem tgt_sem.

Appendix E
Separation Results
The implications represented by arrows in Figure 3 are strict, that is, the two criteria linked by an arrow are not equivalent.
This section justifies these separation results by giving, for each of them, counterexample compilation chains that satisfy the
criterion occurring lower in the diagram (pointed to by the arrow), but not the upper one. Finally, in §E.5 we prove that RTEP
does not imply even the weakest criteria in our diagram (RSP and RDP), even when also assuming compiler correctness (TP,
SCC, and CCC).

E.1 RSP and RDP Do Not Imply RTP

In this section, we show that the robust preservation of either all safety properties (Lemma E.1) or of all dense properties
(Lemma E.2) is not enough to guarantee the robust preservation of all trace properties. (Note that, as a corollary to the
decomposition result in Theorem B.7, a compiler that preserves all safety properties and all dense properties preserves all
properties.) The two compilation chains in this section have been formalized in the Coq; see file Separation.v for more details.
This section expands upon the description from §2.2 (for safety properties) and §B.3 (for dense properties).

Take an arbitrary language L described by a small-step semantics. Assume it is possible to write a non-terminating program
in L, e.g., a program that produces some infinite trace. Assume moreover that such a program is independent from the context
with which it is linked (for instance, it is already whole). To keep things concrete, we consider a standard while language as
our L and the following non-terminating program PΩ, where n∈N:

while (true) {
output(n);

}

Next, define a language transformer φ(L), which produces a new language that is identical to L, except that it bounds
program executions by a certain number of steps (its “fuel”). In particular:
• If C is a context in L, then for every n ∈ N, (n,C) is a context in φ(L) with fuel n.
• Plugging in φ(L) is defined by (n,C)[P ]φ(L) ≡ (n,C[P ]L). Subscripts will be omitted when doing so introduces no

ambiguities.
• The semantics of φ(L) extends the semantics of L as follows. If the amount fuel is 0, no steps are allowed. Otherwise,

every time a step would be taken in L, the same step is taken in φ(L) and the amount of fuel is decremented by one.
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Lemma E.1. RSP 6⇒ RDP

Proof. Take φ(L) as source language, L as target, and the compiler to be the projection of contexts of φ(L) on their second
component. We are going to show that all safety properties that are robustly satisfied in the source are also robustly satisfied
in the target, but not all dense properties are preserved.

Let S ∈ Safety. Assume that all safety properties are robustly preserved, i.e., that for every program P , every source context
(n,C) and every trace t,

(n,C[P ]) t⇒ t ∈ S

In addition, assume for contradiction that there exists some target context C ′ and trace t′ such that

C ′[P ↓] t′ ∧ t′ 6∈ S
where P ↓= P . By definition of safety, there exists m ≤ t′ such that every continuation t′′ of m violates the property,

∀t′′. m ≤ t′′ ⇒ t′′ 6∈ S
Consider the source context (|m|, C ′) where |m| is the length of m. Denote by tm the trace that contains the events of m
followed by a termination marker. Since m ≤ tm we have that tm 6∈ S. However, (|m|, C ′) tm, which implies that tm ∈ S,
a contradiction.

Next, we produce a dense property that is not robustly preserved by this compiler. Consider

L = {t| t is finite ∨ t = output(42)ω}
Observe that L is a dense property as it includes all finite traces. Since programs in the source can produce only finite traces,
these will be in L. In the target, however, the program P = P ↓

while (true) {
output(41);

}

is no longer forced to stop after a finite number of steps, and produces an infinite trace different from output(42)ω .

Lemma E.2. RDP 6⇒ RSP

Proof. Take L as source language, φ(L) as target, and the compiler to be the identity. We are going to show that all dense
properties are robustly preserved but not all safety properties are robustly preserved.
Let L be a dense property. Every trace t produced by a program in the target is finite, so that by definition of Dense, t ∈ L.
Consider now the following property:

S = {output(42)ω}

S is a safety property because for every trace t 6∈ S, t starts with a number (possibly zero) of output(42) events, followed
either by some other event e 6= output(42) or terminated by ε for some ε, i.e.,

output(42)n; e ≤ t ∨ output(42)n; ε ≤ t
Here, every continuation of output(42)n; e is different from output(42)ω , and different from every finite trace. Finally, consider
the program P = P ↓

while (true) {
output(42);

}

which, in the source, produces the infinite trace output(42)ω ∈ S regardless of the context. In the target, only traces of length
k can be produced, which are not in S.

Theorem E.3. Neither RSP nor RDP separately imply RTP.

Proof. Follows directly from Lemma E.1 and Lemma E.2 and Theorem B.7.

In our previous discussion, Theorem 2.1 corresponds to the non-trivial direction of Theorem E.3.
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E.2 RTP Does Not Imply RTINIP

In this section we prove Theorem 3.1 from §3.4:

Theorem E.4. There is a compiler that satisfies RTP but not RTINIP.

Proof. We consider the following source language that works over integers; has traces with exactly two events, one input
followed by one output; and has exactly one program P:

x = input;
y = f();
output y;

where f() is a pure function provided by the context. The target language is the same as the source language, except the context
has the ability to directly read the program P’s private variables, like x. The compiler is the identity.

This compiler satisfies Robust Trace Property Preservation (RTP). The reason is that in the source, program P can generate
every possible trace given an appropriate source context: to generate the trace t = [input i, output o], take the context whose
f() returns the integer o. Basically, this source context simply guesses the output values from the single trace t.

However, this compiler does not satisfy RTINIP. If we take the input to be private and the output to be public, then for our
language TINI is equivalent to the following 2-hypersafety property H:

H = {b | ∀i1, o1, i2, o2. [input i1, output o1] ∈ b ∧ [input i2, output o2] ∈ b⇒ o1 = o2}
In the source, any f() defined by the context must be a constant function. This is because the context is purely functional

and has no access to the input stream or P’s local variables, hence f()’s result cannot depend on any changeable quantity. If
f() returns a constant c and we look at two source traces [input i1, output o1] and [input i2, output o2], then o1 = o2 = c
and thus the source program satisfies the hyperproperty H .

However, in the target, it is possible to write a context function f() that breaks H: f(){return(x); }. This function reads
P’s local variable x (which the target context is capable of accessing) and returns its value. Hence, with this context, the
program’s outputs depend on its inputs. In particular, [input 1, output 1] and [input 2, output 2] are two traces where the
output vary, so this context (and consequently the compilation chain) breaks the 2-hypersafety property H .

E.3 RKHSP Does Not Imply R(K+1)HSP

In this section, we prove Theorem 3.2 from §3.4 by exhibiting a counterexample compiler, parametric in K, that has Robust
K-Hypersafety Preservation, RKHSP, but not Robust (K + 1)-Hypersafety Preservation, R(K+1)HSP, for an arbitrary K.

Our source language is a standard while language with read and write events to standard I/O. It has traces of length exactly
two: one input (read) event followed by one output (write) event. This language’s inputs are always in the natural range
[1, . . . ,K+ 1], while its internal values and outputs are real numbers. The language has exactly one program, P, shown below.
The context provides the functions f1(), . . . fK().

x = read();
switch (x) {
case x = i where 1 <= i <= K:

y = x + (sum {f_j() | 1 <= j <= K && i <> j});
break;

case x = K + 1:
y = K + f_1();

}
write (y)

Our target language is identical to the source, with the exception that the context now has access to the private state of the
program, so it can read the local variable x. In the source language, the context lacks this capability.

The compiler under consideration, ·↓, is the identity, i.e., it maps P to its identical counterpart P.

Lemma E.5. The compiler ·↓ satisfies RKHSP.

Proof. We prove this by showing that for any finite K-set of prefixes {[read a1, write b1], ..., [read aK , write bK ]} that the
program CT [P] can produce (for some target context CT), there is some source context CS that produces these K prefixes
as well. This property immediately implies that the compiler has RKHSP.

To prove this property, note that if all K prefixes [read a1, write b1], . . . , [read aK , write bK ] can be produced by the
target, then, since the target is still deterministic, we must have: ∀i,∀j, ai = aj =⇒ bi = bj . Thus, we can assume without
loss of generality that all ais are distinct. It follows that I = {a1, . . . , aK} is a K-subset of {1, . . . ,K + 1}, so I must be
missing exactly one element in the set of allowed inputs {1, . . . ,K + 1}.
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We proceed by case analysis on the missing element:
• The missing element is K + 1. We can assume without loss of generality (by reordering I if needed) that ai = i, and

therefore I = {a1, . . . , aK} = {1, . . . ,K}. We now set up a system of linear equations whose solution characterizes the
source context CS. Let xi be a variable that represents the value of fi() (note that fi() must be a constant function in the
source context). Then, we formulate the system the equations:

x2 + · · ·+ xK−1 + xK = b1 − a1

x1 + + · · ·+ xK−1 + xK = b2 − a2

. . .

x1 + x2 + · · ·+ xK−1 + = bK − aK
This system has a unique solution. To see this, first add all the equations. This yields:

(K − 1)(x1 + · · ·+ xK) = (b1 + · · ·+ bK)− (a1 + · · ·+ aK).

This yields an equation x1 + · · · + xK = c for some c. Subtracting the first equation in the system (corresponding to
b1 − a1) from this sum gives us x1. Subtracting the second equation gives x2, and so on. Hence we obtain a value xi
that each fi() must return in the source in order to produce the required outcome. This is the required CS.

• The missing element is 1. Then, I = {a1, . . . , aK} = {2, . . . ,K + 1}. Assume without loss of generality that a1 =
2, . . . , aK = K + 1. Then, as before, we get the equations:

x1 + + · · ·+ xK−1 + xK = b1 − a1

. . .

x1 + x2 + · · ·+ xK−1 + = bK−1 − aK−1

x1 + = bK − aK
This set of equations also has a solution. First, the last equation directly gives x1. Now subtract the last equation from
all the previous K − 1 equations. This yields exactly K − 1 cyclic equations in K − 1 variables x2, . . . , xK . These can
be solved exactly as in the previous case.

• The missing element is between 2 and K (both inclusive). Without loss of generality, assume that it is K. Then, I =
{a1, . . . , aK} = {1, . . . ,K − 1,K + 1}. Again, assume that a1 = 1, . . . , aK−1 = K − 1, and aK = K + 1. Then, we get
the equations:

+ x2 + · · ·+ xK−2 + xK−1 + xK = b1 − a1

x1 + + · · ·+ xK−2 + xK−1 + xK = b2 − a2

. . .

x1 + x2 + · · ·+ xk−2 + + xK = bK−1 − aK−1

x1 + = bK − aK
Solving these equations is also easy. x1 is determined by the last equation. Adding the first and last equations gives the
value of x1 + · · ·+ xK . Subtracting the remaining equations from this one, one by one, yields x2, . . . , xK−1. Then, xK
follows from the first equation.

Lemma E.6. The compiler ·↓ is not R(K+1)HSP.

Proof. We construct a concrete K + 1 prefix set S and a CT such CT [P↓] can produce all prefixes of S, but no CS [P]) can
do the same. The proof relies on the fact that, in the source, each of f1(), . . . , fK() must be a constant function, so we can
have k + 1 inconsistent equations for these k constants. In the target, the equations are not required to be constant since any
fi can return a value based on the private input x.

Let c be the constant K − 1. Consider now the following falsifying prefix set:

S = {[1, 1 + c],

[2, 2 + c],

. . .

[K,K + c],

[K + 1,K + 1]}
So, for inputs x = 1, . . . ,K, the output is the input value plus c (i.e., K − 1), but for input K + 1 the output is the input

value K + 1 itself.
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The following target context CT generates this prefix set S:

f1() = if P.x = K + 1 then 0 else 1

f2() = 1

· · ·
fK() = 1

where P.x is the private value x of P.
The function f1() returns 1 except when the private input x is K + 1, when it returns 0. It is easy to see that for inputs x

between 1 and K the output of P is exactly x+ (K − 1), whereas for input x = K + 1 the output of P is K + 1 + f1() =
K + 1 + 0 = K + 1. Hence, CT [P↓] generates the entire prefix set S.

On the other hand, CS [P] cannot generate all prefixes of S for any CS. To see this, suppose that there exists some CS [P]
can actually generate all prefixes of S. Let fi() = xi. We get the equations:

x2 + · · ·+ xK−1 + xK = (1 +K − 1)− 1 = K − 1

x1 + + · · ·+ xK−1 + xK = (2 +K − 1)− 2 = K − 1

. . .

x1 + x2 + · · ·+ xK−1 + = (K +K − 1)−K = K − 1

x1 + = (K + 1)− (K + 1) = 0

However, these equations are inconsistent. The first K equations (which are cyclic) force that x1 = · · · = xK = 1, while the
last equation requires x1 = 0. This contradicts our hypothesis on the existence of CS [P].

Theorem E.7. For any K, there is a compiler that satisfies RKHSP but not R(K+1)HSP.

Proof. It follows from Lemma E.5 and Lemma E.6 that ·↓ is RKHSP but not R(K+1)HSP.

E.4 Robust Non-Relational Property Preservation Does Not Imply Robust Relational Property Preservation

In this section we prove that, as stated in Theorem 4.1 from 4.4, no non-relational preservation criterion implies any relational
preservation criterion. We do this constructively, by showing a source language, a target language, and a compiler between
them such that:

• The compiler satisfies the strongest non-relational preservation criterion (Robust Hyperproperty Preservation, RHP).
• The compiler does not satisfy the weakest relational preservation criterion (Robust 2-Relational Safety Preservation,

R2rSP). Because the languages will satisfy the conditions that make R2rSP imply Robust Trace Equivalence Preservation
(RTEP), we shall simply show that the compiler does not satisfy RTEP, and use the result from the next .

The source language we shall consider is a standard while language with read and write events to standard I/O. It has traces
comprising exactly two events: one input (read) followed by one output (write). This language works over integers (not natural
numbers) and has exactly two programs, P1 and P2, shown below, that are only different in that the second adds some dead
code to the first:

P1:
x = read();
y = f();
write (x + y)

P2:
x = read();
y = f();
... some dead code here ...
write (x + y)

Here, f() is a function provided by the context.
The target language is the same, but additionally allows the context to read the compiled code as a value.
The compiler under consideration, ·↓, is the identity.

Lemma E.8. The compiler ·↓ satisfies RHP.
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Proof. We need to show that ∀CT P.∃CS.Behav (CS [P]) = Behav (CT [P↓]). For this, pick a CT and a P. Note that P↓ = P
by definition of the compiler. To produce CS, modify the CT so that wherever CT reads the code of P↓, P (which is the
same as P↓) is hard-coded in CS instead.

It is trivial to see that CS [P] and CT [P↓] have exactly the same behaviors.

Lemma E.9. The compiler ·↓ does not satisfy RTEP.

Proof. Since P1 and P2 differ only in the presence of some dead code, which a source context cannot examine, it is trivially
the case that ∀CS.Behav (CS [P1]) = Behav (CS [P2]).

On the other hand, we can construct a target context CT whose f() checks whether the compiled code is P1 or P2, and
returns either 0 or 1, respectively. Then, CT [P1] produces [read 0, write 0] as a trace, while CT [P2] does not have this
trace. Hence, the compiler is not RTEP.

Theorem E.10. There exists a compiler between two languages that satisfy the assumptions of Theorem D.9 that has RHP,
but not RTEP.

Proof. Both language clearly satisfy determinacy and input totality. Furthermore, given an infinite trace t not produced by
some whole program W, the prefix needed is either the trace produced by the program, or the empty prefix.

The theorem follows immediately from Lemma E.8 and Lemma E.9.

Theorem E.11. There exists a compiler that satisfies RHP but not R2rSP.

Proof. Follows directly from Theorem E.10.

The Full Story More generally, if we take any source language in which the context cannot examine the code and compile
it to a target language that is similar, but where the context can examine the code as an added capability, then the identity
compiler satisfies every non-relational criterion including RHP, since for a single program, the target context’s additional
ability to observe the code is inconsequential. More formally, non-relational preservation criteria, including RHP, allow the
simulating source context CS to depend on the compiled program P, so that program code can be hard-coded into CS wherever
CT examines the code. However, it is extremely unlikely that this compiler satisfies any relational preservation criterion since
the target context can branch on the program being executed and provide different values to each of the programs.

E.5 RTEP Does Not Imply RSP or RDP

In this section, we give a counterexample compilation chain for showing a generalization of Theorem 5.2 from §5.
First, we recall three notions of correctness, from §2.1. For CCC we explicitly mention the condition that CS should be

linkable with P, which is a technical hypothesis that we omitted in the main paper text.

Definition E.12 (Backward Simulation (TP)).
TP : ∀W. W↓   t⇒W   t

Definition E.13 (Separate Compiler Correctness (SCC)).
SCC : ∀P. ∀CS. ∀t. CS↓ [P↓]   t⇒ CS [P]   t

Definition E.14 (Compositional Compiler Correctness (CCC)).
CCC : ∀P CT CS t. CT≈CS ∧ CS is linkable with P ∧CT [P↓]   t⇒ CS [P]   t

Theorem E.15. There exists a compiler between two deterministic languages that satisfies RTEP, TP, SCC, and CCC but that
satisfies neither RSP nor RDP.

Trace Model We consider languages where exactly one event is produced containing a natural number that represents the
final result of the computation. Allowed traces are final result singletons and silent divergence.

Source Language A source language program consists of one function obtaining one input from the context (a natural
number or a boolean), perfoming basic computations on it, and returning a natural number as a result.

Program P ::= f(x : Nat) 7→ e | f(x : Bool) 7→ e

Expression e ::= if x then e else e | if x < n then e else e | n | f(e)

Context C ::= f(n) | f(b)

In this example, the composition of a program and a context of incompatible types is statically disallowed. We do not
consider them in the criteria we prove, and implicitely assume that the criteria only apply when the operations ·[·] and ·[·] are
defined. See Section G for a example where we take into account the fact that not all components are linkable by using simple
variants of our criteria.
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Target Language The target language is identical to the source, but it only admits natural numbers as inputs.

Program P ::= f(x : Nat) 7→ e

Expression e ::= if x < n then e else e | n | f(e)

Context C ::= f(n)

Compiler We first define the compilation of expressions:

(if x then e1 else e2)
y = if x < 1 then e1↓ else e2↓

(if x < n then e1 else e2)
y = if x < n then e1↓ else e2↓

n↓ = n

true↓ = 0

false↓ = 1

f(e)
y = f(e↓)

Then, we define the compilation of partial programs:

(f(x : Nat) 7→ e)
y = f(x : Nat) 7→ e↓

(f(x : Bool) 7→ e)
y = f(x : Nat) 7→ if x < 2 then e↓ else if x < 3 then f(2) else 42

We can trivially extend this compiler to contexts, and whole programs as well.

Lemma E.16. ·↓ satisfies TP, SCC, and CCC.

Proof. We start by noting that for this compilation chain, TP is implied by SCC. Indeed, let W be a source whole program.
Then, by definition, there exists C and P such that W = C [P]. Furthermore, W↓ = C↓ [P↓] by definition of the compiler.
Hence, to show TP, one can simply apply SCC to this decomposition of W into two components.

We then show that for this compilation chain CCC is also implied by SCC. To show this, we need to explicit the instantiation
of ≈ and of the notion of linkable components in the definition of CCC:
• ≈ is defined by CT ≈ CS iff CT = CS↓.
• P and CS are linkable iff they agree on the argument type of the program’s function.

Then, by unfolding these definitions in CCC, and substituting equalities, we obtain exactly SCC.
So all that is left to prove is SCC. Suppose C↓ [P↓]   t. We will show that C [P]   t, proceeding by case analysis on P:
• P = f(x : Nat) 7→ e. By induction on e, we can prove that e↓ = e: indeed, because the function argument x must be a

natural number, and because x is the only “variable” ever in scope, e cannot contain a subexpression if x then e1 else e2.
Otherwise, it would mean that x is a boolean, this would be a contradiction.

• P = f(x : Bool) 7→ e. In this case, P↓ = f(x : Nat) 7→ if x < 2 then e↓ else if x < 3 then f(2) else 42. Since the
target context is a compiled context, this steps to the expression e↓. Now, f cannot be called recursively in e, because expres-
sions are natural numbers, but f expects a boolean. Hence, the same is true in the compiled version. Now, we can conclude
by proving the thesis by induction on e. In particular, note that (if x then e1 else e2)

y = if x < 1 then e1↓ else e2↓,
that if x = true then x < 1 is true, and if x = false then x < 1 evaluates to false, where x is the compilation of x.

Lemma E.17. ·↓ satisfies RTEP.

Proof. We prove the contrapositive form of the statement of RTEP.
Let P1 and P2 be two programs and suppose their compilations are not observationally equivalent; let C = f(n) be the

distinguishing context. We consider three cases:
• P1 and P2 both expect a natural number. Take C = f(n). Since the compiler is the identity for programs that expect a

natural number, we obtain the desired result.
• P1 and P2 both expect a boolean. If n = 0 or n = 1, then by taking C = f(true) in the first case, and C = f(false) in

the second case, we obtain the desired result by compiler correctness. Otherwise, this case is discharged by contradiction:
C [P1↓] and C [P2↓] have the same behavior, by definition of the compiler.

• P1 and P2 have different input types. This is a case we do not consider, because then the source context cannot be linked
with both programs.

Lemma E.18. ·↓ does not satisfy RSP.
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Proof. Consider the program P = f(x : Bool) 7→ 1. This program satisfies the safety property “never outputs 42,” but its
compilation does not (it violates it with input 3, for instance).

Lemma E.19. ·↓ does not satisfy RDP.

Proof. Consider the same program P = f(x : Bool) 7→ 1. This program satisfies the safety property “never silently diverge,”
but its compilation does not (it violates it with input 2).

The proof of Theorem E.15 is immediate from the previous lemmas.
We now extend this compilation chain to show that RTEP does not imply RTINIP either. We introduce a new command

at the target level, leak, to model information leakage. The semantics of this new instruction is simple: leak reduces to a
non-deterministically chosen natural number. Hence, this command can model looking-up the value of a secret inside memory,
and outputting it publicly. All outputs are considered public.

Then, we also modify the compilation of partial programs having a boolean argument:

(f(x : Bool) 7→ e)
y = f(x : Nat) 7→ if x < 2 then e↓ else if x < 3 then f(2) else if x < 4 then 42 else leak()

It is easy to show that the previous lemmas still hold. Now is left to show that the compiler does not satisfy RTINIP.
• Every source whole program trivially satisfies termination-insenstive noninterference, because whole source programs are

completely deterministic.
• Now, consider a source program P with a boolean argument, and the target context CT = f(3). Then, CT[P↓] ; 0, and

CT[P↓] ; 1. The public inputs are identical, but not the public output. Hence the compiler does not satisfy RTINIP.

Appendix F
Context Composition by Full Reflection or Internal Nondeterminism in the Source Language
In this section we prove the theorems from §4.5, where we analyzed how certain features of the source language can greatly
influence the partial order in Figure 3. In Section F.1 we assume source programs can completely examine their own code, a
mechanism that is sometimes called full reflection. First of all we need to introduce relational subset-closed hyperproperties,
the classes of relational hyperproperties that are downward-closed in each of its arguments. Then in Section F.2, we assume
it is possible to build a source context C whose behaviors approximate two given source contexts C1 and C2. This is the case
when an operator for internal nondeterministic choice is available.

Definition F.1 (2rSCH). Given R ∈ 2(2Trace× 2Trace)

R ∈ 2rSCH ⇐⇒ ∀(b1, b2) ∈ R.∀s1 ⊆ b1, s2 ⊆ b2. (s1, s2) ∈ R

Definition F.2 (R2rSCHP).
R2rSCHP : ∀P1P2 R ∈ 2rSCH ∀Cs. (Behav (Cs [P1]), Behav (Cs [P2])) ∈ R

∀Ct. (Behav (CT [P1↓]), Behav (CT [P1↓])) ∈ R

Definition F.3 (R2rSCHC).
R2rSCHC : ∀P1P2CT. ∃CS. Behav (Cs [P1]) ⊆ (Behav (CT [P1↓])∧

Behav (Cs [P2]) ⊆ (Behav (CT [P2↓])

Lemma F.4. R2rSCP ⇐⇒ R2rSCC

Proof. See file Criteria.v, theorem R2rSCHC_R2rSCHP.

As usual, it is possible to generalize these definitions from binary relations to relations of finite or arbitrary arities.

Definition F.5 (RrSCHP).
RrSCHP : ∀R ∈ 2(Progs→SCH). (∀CS. (λP. Behav (CS [P])) ∈ R)⇒

(∀CT. (λP. Behav (CT [P↓])) ∈ R)

F.1 Context Composition by Full Reflection
In this section we discuss our criteria assuming source programs can fully examine their own code, as is enabled by the
use of full reflection mechanisms in languages Lisp [91] and Smalltalk. More precisely, details we assume that given two
distinct source programs P1,P2 it is possible to compose two source contexts C1,C2, we write C = C1 ⊗ C2 such that
Behav (C [Pi]) = Behav (Ci [Pi]), i = 1, 2. Figure 3 reduces to the following diagram:

41



RrHP

RHP ⇐⇒ RFrHP

RSCHP ⇐⇒ RFrTP

RTP

RDP RSP

R2HSP ⇐⇒ RFrSP

RrSP

RkrTP

RrTP

RrSCHP

The file FullReflection.v contains proofs of the following collapses

• R2HSP⇒ R2rSP (theorem R2HSP_R2rSP)
• RHP⇒ R2rHP (theorem RHP_R2rHP)
• RSCHP⇒ R2rSCHP (theorem RSCHP_R2rSCHP)

To sketch a proof of RHP ⇒ R2rHP, consider their property-free characterizations. For P1,P2 distinct and C apply twice
RHC and get two source contexts C1,C2. Then C1 ⊗ C2 satisfies the thesis. We can generalize these facts to finitary relations.

Theorem F.6. R2HSP⇒ RFrSP

Proof. Same argument used in reflection.v, theorem R2HSP_R2rSP.

Theorem F.7. RHP⇒ RFrHP

Proof. Same argument used in reflection.v, theorem RHP_R2rHP.

Theorem F.8. RSCHP⇒ RFrSCHP

Proof. Same argument used in reflection.v, theorem RSCHP_R2rSCHP.

Some of the variants of the results in this section where previously stated in Theorem 4.2.

F.2 Context Composition by Internal Nondeterministic Choice

In this section we discuss our criteria in presence of source contexts that can nondeterministically behave like one of two
already existing source contexts. Many criteria, in general stronger, become equivalent to weaker ones. For instance an RSC
compiler preserves much more than the robust satisfaction of safety properties, including 2-hypersafety. Formally we assume
to have an operator ⊕ : C× C→ C such that

∀C1C2P. Behav (C1 ⊕ C2)[P]) ⊇ Behav (C1 [P]) ∪ Behav (C2 [P])

Figure 3 reduces to the following diagram:
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RrHP

RFrHP

RHP

RSCHP ⇐⇒ RFrSCHP

RTP ⇐⇒ RFrTP

RDP RSP ⇐⇒ RFrSP

RrSCHP

RrTP

RrSP

The file InternalNondet.v contains proofs of the following binary collapses
• RSCHP⇒ R2rSCHP (theorem RSCHP_R2rSCHP)
• RTP⇒ R2rTP (theorem RTP_R2rTP)
• RSP⇒ R2rSP (theorem RSP_R2rSP)

To sketch a proof for RSP ⇒ R2rSP consider their property-free characterizations, and assume C [P↓] m1,m2. Apply
twice RSC and get two, possibly different, source contexts C1,C2, then C = C1 ⊕ C2 satisfies the thesis. We can generalize
these facts to finitary relations.

Theorem F.9. RSCHP⇒ RFrSCHP

Proof. Same argument used in nd_ctxs.v, theorem RSCHP_R2rSCHP.

Theorem F.10. RTP⇒ RFrTP

Proof. Same argument used in nd_ctxs.v, theorem RTP_R2rTP.

Theorem F.11. RSP⇒ RFrSP

Proof. Same argument used in nd_ctxs.v, theorem RSP_R2rSP.

Some of the variants of the results in this section where previously stated in Theorem 4.3.

Appendix G
Proof Techniques for RrHC./ and RFrXC./

This section presents the formal details of §6. As explained in the main paper, we use two different proof techniques, one that
is “context-based”, and the other “trace-based”, to prove two different security criteria for the same compilation chain. We
argue that one of these techniques, the trace-based one, while less powerful, still gives us an interesting criterion, and should
be more generic, as it relies less on the details of the languages.

A remark on the security criteria used in this section In the languages used in this example, not all programs and contexts
can be linked together. In order for it to be the case, they have to satisfy some interfacing constraints. Here, these constraints
are the existence of functions called but not defined by the context, and, in the source language, also agreement on the types
of these functions. We introduce the operators ./ and ./ to represent these constraints. For instance, P ./ C means that C is
linkable with P. We prove two (§C.4.1) and RFrXC (§C.3.6), named RrHC./ (Definition G.6) and RFrXC./ (Definition G.45),
that take into account these linkability predicates.

G.1 The Source Language Lτ

A list of elements e1, · · · , en is indicated as e, the empty list is ∅.
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G.1.1 Syntax

Program P ::= I; F

Contexts C ::= e

Interfaces I ::= f : τ → τ

Functions F ::= f(x : τ) : τ 7→ return e

Types τ ::= Bool | Nat

Operations ⊕ ::= + | −
Values v ::= true | false | n ∈ N

Expressions e ::= x | v | e⊕ e | let x : τ = e in e | if e then e else e | e ≥ e

| call f e | read | write e | fail

Runtime Expr. e ::= · · · | return e

Eval. Ctxs. E ::= [·] | e⊕ E | E⊕ n | let x = E in e | if E then e else e | e ≥ E | E ≥ n

| call f E | write E | return E
Substitutions ρ ::= [v/x]

Prog. States Ω ::= P . e | fail

Environments Γ ::= ∅ | Γ; (x : τ)

Labels λ ::= ε | α
Actions α ::= read n | write n | ⇓ | ⇑ | ⊥

Interactions γ ::= call f v? | ret v!

Behaviors β ::= α

Traces σ ::= ∅ | σα | σγ

G.1.2 Static Semantics
The static semantics follows these typing judgements.

` P Program P is well-typed.
P ` F : τ → τ Function F has type τ → τ in program P.
Γ ` � Environment Γ is well-formed.
P; Γ ` e : τ Expression e has type τ in Γ and P.

` P

(TLτ -component)

P ≡ I; F P ` F : τ → τ dom
(
F
)
⊆ I

` P

P ` F : τ → τ

(TLτ -function)

F ≡ f(x : τ) : τ ′ 7→ return e P; x : τ ` e : τ ′

P ` F : τ → τ ′

P; Γ ` e : τ

(TLτ -true)
Γ ` �

P; Γ ` true : Bool

(TLτ -false)
Γ ` �

P; Γ ` false : Bool

(TLτ -nat)
Γ ` �

P; Γ ` n : Nat

(TLτ -var)
x : τ ∈ Γ

P; Γ ` x : τ

(TLτ -op)
P; Γ ` e : Nat
P; Γ ` e′ : Nat

P; Γ ` e⊕ e′ : Nat
(TLτ -geq)

P; Γ ` e : Nat
P; Γ ` e′ : Nat

P; Γ ` e ≥ e′ : Bool

(TLτ -letin)
P; Γ ` e : τ

P; Γ; x : τ ` e′ : τ ′

P; Γ ` let x : τ = e in e′ : τ ′

(TLτ -if)
P; Γ ` e : Bool

P; Γ ` et : τ P; Γ ` ef : τ

P; Γ ` if e then et else ef : τ
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(TLτ -function-call)

(f(x : τ) : τ ′ 7→ return e ∈ F)
P ≡ I; F P; Γ ` e : τ

P; Γ ` call f e : τ ′

(TLτ -context-function-call)

(f(x : τ) : τ ′ 7→ return e ∈ I)
P ≡ I; F P; Γ ` e : τ

P; Γ ` call f e : τ ′

(TLτ -read)

P; Γ ` read : Nat

(TLτ -write)
P; Γ ` e : Nat

P; Γ ` write e : Nat

(TLτ -fail)

P; Γ ` fail : τ

P ./ C

(Link-Lτ )

P ≡ I; F C ≡ e ` P P; Γ ` e : τ
fail /∈ P read,write _ /∈ C ∀call f ∈ C, f ∈ I

P ./ C

G.1.3 Dynamic Semantics

Ω
λ−−→ Ω′ Program state Ω steps to Ω′ emitting action λ.

Ω
β

==⇒ Ω′ Program state Ω steps to Ω′ with behavior β.

P . e
λ−−→ P . e′

(ELτ -op)

n⊕ n′ = n′′

P . n⊕ n′
ε−−→ P . n′′

(ELτ -geq-true)

n ≥ n′

P . n ≥ n′
ε−−→ P . true

(ELτ -geq-false)

n < n′

P . n ≥ n′
ε−−→ P . false

(ELτ -if-true)

P . if true then e else e′
ε−−→ P . e

(ELτ -if-false)

P . if false then e else e′
ε−−→ P . e′

(ELτ -let)

P . let x = v in e
ε−−→ P . e[v/x]

(ELτ -call-internal)

f(x : τ1) : τ2 7→ return e ∈ P

P .f call f v
ε−−→ P .f,f return e[v/x]

(ELτ -call-in)

f(x : τ1) : τ2 7→ return e ∈ P

P .ε call f v
call f v?−−−−−−−→ P .f return e[v/x]

(ELτ -ret-internal)

P .f,f,f′ return v
ε−−→ P .f,f v

(ELτ -ret-out)

P .f return v
ret v!−−−−−→ P . v

(ELτ -read)

P . read
read n−−−−−→ P . n

(ELτ -write)

P . write n
write n−−−−−−→ P . n

(ELτ -ctx)

P . e
ε−−→ P . e′

P . E [e]
ε−−→ P . E [e′]

(ELτ -fail)

P . fail
⊥−−→ fail

P . e
β

==⇒ P . e′

(ELτ -refl)

Ω =⇒ Ω

(ELτ -terminate)
Ω 6=⇒ _

Ω
⇓

==⇒ Ω

(ELτ -diverge)

∀n. Ω
ε−−→ n Ω′n

Ω
⇑

==⇒ Ω

(ELτ -silent)

Ω
ε−−→ Ω′

Ω =⇒ Ω′

(ELτ -single)

Ω
α−−→ Ω′

Ω
α

==⇒ Ω′

(ELτ -silent-act)

Ω
γ−−→ Ω′

Ω =⇒ Ω′

(ELτ -cons)

Ω
β

==⇒ Ω′′ Ω′′
β′

==⇒ Ω′

Ω
ββ′

===⇒ Ω′

P . e
t

=⇒⇒P . e′
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(ELτ -silent)

Ω
ε−−→ Ω′

Ω=⇒⇒Ω′

(ELτ -action)

Ω
α

==⇒ Ω′

Ω
α

==⇒⇒Ω′

(ELτ -single)

Ω
γ−−→ Ω′

Ω
γ

==⇒⇒Ω′

(ELτ -cons)

Ω
σ

==⇒⇒Ω′′

Ω′′
σ′

==⇒⇒Ω′

Ω
σσ′

===⇒⇒Ω′

G.1.4 Auxiliaries and Definitions

Helpers

(Lτ -Initial State)
P ./ C C ≡ e

Ω0(C[P]) = P . e

Definition G.1 (Program Behaviors).

Behav (P) =
{
β
∣∣∣ ∃Ω′.Ω0(P)

β
==⇒ Ω′

}
Theorem G.2 (Progress). If P; Γ ` e : τ then either e ≡ v or ∃e′.P . e ↪→ P . e′.

Theorem G.3 (Preservation). If P; Γ ` e : τ and P . e ↪→ P . e′ then P; Γ ` e′ : τ .

G.2 The Target Language Lu

G.2.1 Syntax

Program P ::= I; F

Contexts C ::= e

Interfaces I ::= f

Functions F ::= f(x) 7→ return e

Types τ ::= Bool | Nat

Operations ⊕ ::= + | −
Values v ::= true | false | n ∈ N

Expressions e ::= x | v | e⊕ e | let x = e in e | if e then e else e | e ≥ e

| call f e | read | write e | fail | e has τ

Runtime Expr. e ::= · · · | return e

Eval. Ctxs. E ::= [·] | e⊕ E | E⊕ n | let x = E in e | if E then e else e | e ≥ E | E ≥ n

| call f E | write E | return E | E has τ

Substitutions ρ ::= [v/x]

Prog. States Ω ::= P .f e | fail

Labels λ ::= ε | α | γ
Actions α ::= read n | write n | ⇓ | ⇑ | ⊥

Interactions γ ::= call f v? | ret v!

Behaviors β ::= α

Traces σ ::= ∅ | σα | σγ
Program states carry around the stack of called functions (the f subscript) in order to correctly characterise calls and returns
that go in Traces. We mostly omit this stack when it just clutters the presentation without itself changing and make it explicit
only when it is needed.

We define the linkability operator as follows:

P ./ C

(Link-Lu)

P ≡ I; F C ≡ e
read,write _ /∈ C ∀call f ∈ C, f ∈ I

P ./ C
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G.2.2 Dynamic Semantics

Ω
λ−−→ Ω′ Program state Ω steps to Ω′ emitting action λ.

Ω
β

==⇒ Ω′ Program state Ω steps to Ω′ with behavior β.

Ω
σ

==⇒⇒Ω′ Program state Ω steps to Ω′ with trace σ.

P . e
λ−−→ P . e′

(ELu-op)

n⊕ n′ = n′′

P . n⊕ n′
ε−−→ P . n′′

(ELu-geq-true)

n ≥ n′

P . n ≥ n′
ε−−→ P . true

(ELu-geq-false)

n < n′

P . n ≥ n′
ε−−→ P . false

(ELu-if-true)

P . if true then e else e′
ε−−→ P . e

(ELu-if-false)

P . if false then e else e′
ε−−→ P . e′

(ELu-let)

P . let x = v in e
ε−−→ P . e[v/x]

(ELu-read)

P . read
read n−−−−−→ P . n

(ELu-write)

P .write n
write n−−−−−−→ P . n

(ELu-ctx)

P . e
ε−−→ P . e′

P . E [e]
ε−−→ P . E [e′]

(ELu-check-bool-true)
v ≡ true ∨ v ≡ false

P . v has Bool
ε−−→ P . true

(ELu-check-bool-false)

P . n has Bool
ε−−→ P . false

(ELu-check-nat-true)

P . n has N ε−−→ P . true

(ELu-check-nat-false)
v ≡ true ∨ v ≡ false

P . v has N ε−−→ P . false
(ELu-call-internal)

f(x) 7→ return e ∈ P

P .f call f v
ε−−→ P .f ,f return e[v/x]

(ELu-call-in)

f(x) 7→ return e ∈ P

P .ε call f v
call f v?−−−−−−−→ P .f return e[v/x]

(ELu-ret-internal)

P .f ,f ,f ′ return v
ε−−→ P .f ,f v

(ELu-ret-out)

P .f return v
ret v!−−−−−→ P . v

(ELu-op-fail)

v ≡ true ∨ v ≡ false ∨ v′ ≡ true ∨ v′ ≡ false

P . v ⊕ v′
⊥−−→ fail

(ELu-geq-fail)

v ≡ true ∨ v ≡ false ∨ v′ ≡ true ∨ v′ ≡ false

P . v ≥ v′
⊥−−→ fail

(ELu-if-fail)

P . if n then e else e′
⊥−−→ fail

(ELu-fail)

P . fail
⊥−−→ fail

P . e
β

==⇒ P . e′

(ELu-refl)

Ω =⇒ Ω

(ELu-terminate)
Ω 6=⇒ _

Ω
⇓

==⇒ Ω

(ELu-diverge)

∀n. Ω
ε−−→n Ω′n

Ω
⇑

==⇒ Ω

(ELu-silent)

Ω
ε−−→ Ω′

Ω =⇒ Ω′

(ELu-silent-act)

Ω
γ−−→ Ω′

Ω =⇒ Ω′

(ELu-single)

Ω
α−−→ Ω′

Ω
α

==⇒ Ω′

(ELu-cons)

Ω
β

==⇒ Ω′′ Ω′′
β′

==⇒ Ω′

Ω
ββ′

===⇒ Ω′

P . e
σ

==⇒⇒P . e′

(ELu-silent)

Ω
ε−−→ Ω′

Ω=⇒⇒Ω′

(ELu-action)

Ω
α

==⇒ Ω′

Ω
α

==⇒⇒Ω′

(ELu-single)

Ω
γ−−→ Ω′

Ω
γ

==⇒⇒Ω′

(ELu-cons)

Ω
σ

==⇒⇒Ω′′

Ω′′
σ′

==⇒⇒Ω′

Ω
σσ′

===⇒⇒Ω′
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G.2.3 Auxiliaries and Definitions

Helpers

(Lu-Initial State)
P ./ C C ≡ e

Ω0(C[P]) = P . e

Definition G.4 (Program Behaviors).

Behav (P) =
{
β
∣∣∣ ∃Ω′.Ω0(P)

β
==⇒ Ω′

}
Definition G.5 (Program Traces).

TR(P) =
{
σ
∣∣∣ ∃Ω′.Ω0(P)

σ
==⇒⇒Ω′

}
G.3 ·↓: A Compiler from Lτ to Lu

I1, · · · , Im; F1, · · · ,Fn↓ = I1↓, · · · , Im↓; F1↓, · · · , Fn↓ ( ·↓-Prog)

f : τ → τ ′
y = f ( ·↓-Intf)

f(x : τ) : τ ′ 7→ return e
y = f(x) 7→ return if x has τ↓ then e↓ else fail ( ·↓-Fun)

n↓ = n ( ·↓-Nat)
true↓ = true ( ·↓-True)
false↓ = false ( ·↓-False)

x↓ = x ( ·↓-Var)

e⊕ e′
y = e↓ ⊕ e′

y ( ·↓-Op)

e ≥ e′
y = e↓ ≥ e′

y ( ·↓-Geq)

let x : τ = e in e′
y = let x = e↓ in e′

y ( ·↓-Let)

if e then e′ else e′′
y = if e↓ then e′

y else e′′
y ( ·↓-If)

call f e↓ = call f e↓ ( ·↓-Call)
read↓ = read ( ·↓-Read)

write e↓ = write e↓ ( ·↓-Write)
Nat↓ = Nat ( ·↓-Ty-Nat)

Bool↓ = Bool ( ·↓-Ty-Bool)

G.4 Proof That ·↓ Is RrHC./

We prove that the compiler satisfies the following variant of RrHC:

Definition G.6 (RrHC./).
RrHC./ : ∀I. ∀CT. ∃CS. ∀P : I. P↓ ./ CT =⇒

P ./ CS ∧ Behav (CT [P↓]) = Behav (CS [P])

All programs must satisfy the same interface I in order for the linkability with a single CS to be possible.
We also give the following property-full criteria:

Definition G.7 (RrHP./).
RrHP./ : ∀I. ∀R ∈ 2(Behavsω). ∀P1, ..,PK : I, ...

(∀CS. (∀i,Pi ./ CS) =⇒ (Behav (CS [P1]), .., Behav (CS [PK]), ..) ∈ R)⇒
(∀CT. (∀i, Pi↓ ./ CT) =⇒ (Behav (CT [P1↓]), .., Behav (CS [PK↓]), ..) ∈ R)

The proof of the equivalence of these two criteria is similar to the proof of Theorem C.80.
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G.4.1 ·↑: Backtranslation of Contexts from Lu to Lτ

Technically, the backtranslation needs one additional parameter to be passed around, the list of functions defined by the
compiled component I, we elide it for simplicity when it is not necessary.

n↑ = n + 2 ( ·↑-Nat)
true↑ = 1 ( ·↑-True)
false↑ = 0 ( ·↑-False)

x↑ = x ( ·↑-Var)

e⊕ e′
x = let x1 : Nat=extractNat(e↑)

in let x2 : Nat=extractNat(e′
x)

in injectNat(x1⊕ x2)

( ·↑-Op)

e ≥ e′
x = let x1 : Nat=extractNat(e↑)

in let x2 : Nat=extractNat(e′
x)

in injectBool(x1 ≥ x2)

( ·↑-Geq)

let x = e in e′
x = let x : Nat = e↑ in e′

x ( ·↑-Let)

if e then e′ else e′′
x = if extractBool(e↑) then e′

x else e′′
x ( ·↑-If)

call f e↑ = injectτ ′(call f extractτ (e↑)) ( ·↑-Call)

if f : τ → τ ′ ∈ I

e has τ↑ =

{
let x : Nat = e↑ in if x ≥ 2 then 0 else 1 if τ ≡ Bool

let x : Nat = e↑ in if x ≥ 2 then 1 else 0 if τ ≡ N
( ·↑-Check)

Helper functions The back-translation type is Nat but the encoding is not straight from Nat but it is Nat shifted by 2.
injectτ (e) takes an expression e of type τ and returns an expression whose type is the back-translation type. extractτ (e) takes
an expression e of back-translation type and returns an expression whose type is τ .

injectNat(e) = e + 2

injectBool(e) = if e then 1 else 0

extractNat(e) = let x = e in if x ≥ 2 then x− 2 else fail

extractBool(e) = let x = e in if x ≥ 2 then fail else if x + 1 ≥ 2 then true else false

G.4.2 Cross-Language Logical Relation

Language De-sugaring
v ::= . . . | call f

e ::= . . . | call f e

Types τ ::= σ | σ → σ

Base Types σ ::= Nat | Bool

Replace Rule TLτ -function-call with these below.

(TLτ -call)

f(x : σ) : σ′ 7→ return e ∈ dom
(
F
)

P; Γ ` call f : σ → σ′

(TLτ -app)

P; Γ ` call f : σ′ → σ
P; Γ ` e′ : σ′

P; Γ ` call f e′ : σ

Apply the same changes above to Lu too.
Context well-formedness ensures that expressions are never turned into call f values.

Γ ::= ∅ | Γ,x

(Ctx-Lu-true)

P; Γ ` true

(Ctx-Lu-false)

P; Γ ` false

(Ctx-Lu-nat)

P; Γ ` n

(Ctx-Lu-var)

x ∈ dom (Γ)

P; Γ ` x

(Ctx-Lu-app)

P; Γ ` e′ e′ 6≡ call f
f(x) 7→ return e ∈ P

P; Γ ` call f e′
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(Ctx-Lu-op)

P; Γ ` e P; Γ ` e′

e, e′ 6≡ call f

P; Γ ` e⊕ e′

(Ctx-Lu-geq)

P; Γ ` e P; Γ ` e′

e, e′ 6≡ call f

P; Γ ` e ≥ e′

(Ctx-Lu-letin)

P; Γ ` e P; Γ,x ` e′

e, e′ 6≡ call f

P; Γ ` let x = e in e′

(Ctx-Lu-if)

P; Γ ` e P; Γ ` e′ P; Γ ` e′′

e, e′, e′′ 6≡ call f

P; Γ ` if e then e′ else e′′

(Ctx-Lu-check)
P; Γ ` e

e 6≡ call f

P; Γ ` e has τ

Replace Section G.3 with these below.

call f↓ = call f ( ·↓-Call-v)

e e′
y = e↓ e′

y ( ·↓-App)

Worlds
World W ::= (n, (P,P))

lev((n, _)) = n

progs((_, (P,P))) = (P,P)

srcprog((_, (P,P))) = P

trgprog((_, (P,P))) = P

.((0, _)) = (0, _)

.((n+ 1, _)) = (n, _)

W wW ′ = lev(W ′) ≤ lev(W )

W =.W
′ = lev(W ′) < lev(W )

O(W ).
def
=

(e, e)

∣∣∣∣∣∣∣∣
if lev(W ) = n and progs(W ) = (P,P)

and P . e
β

==⇒ n P . e′

then ∃k. P . e
β

==⇒k P . e′


O(W )&

def
=

(e, e)

∣∣∣∣∣∣∣∣
if lev(W ) = n and progs(W ) = (P,P)

and P . e
β

==⇒n P . e′

then ∃k. P . e
β

==⇒ k P . e′


O(W )≈

def
= O(W ). ∩ O(W )&

. R
def
= {(W, v,v) | if lev(W ) > 0 then (.(W ), v,v) ∈ R}

↗ (R)
def
= {(W, v1,v2) | ∀W ′wW.(W ′, v1,v2) ∈ R}

for R a world-values relation

The Back-translation Type and Pseudo Types We index the logical relation by a pseudo type, which captures all the
standard types as well as the type of backtranslated stuff.

τ̂ ::= τ | EmulTy

Function toEmul (·) takes a Γ and returns a Γ that has the same domain but where variables all have type Nat.

Value, Context, Expression and Environment relation

V JBoolKO
def
= {(W, true, true), (W, false, false)}

V JNatKO
def
= {(W, n,n)}

V
r
τ̂ → τ̂ ′

z

O

def
=

(W, call f, call f)

∣∣∣∣∣∣∣∣∣∣

f(x : τ) : τ ′ 7→ return e ∈ srcprog(W ) and
f(x) 7→ return e ∈ trgprog(W )

∀W ′, v′,v′. if W ′=.W and (W ′, v′,v′) ∈ V Jτ̂KO then

(W ′, return e[v/x], return e[v/x]) ∈ E
r
τ̂ ′
z

O


V JEmulTyKO

def
= {(W, n + 2,n), (W, 1, true), (W, 0, false)}
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K Jτ̂KO
def
=

{
(W,E,E)

∣∣∣∣∣ ∀W ′, v,v. if W ′wW and (W ′, v,v) ∈ V Jτ̂KO then
(E [v],E [v]) ∈ O(W ′)O

}
E Jτ̂KO

def
= {(W, t, t) | ∀E,E. if (W,E,E) ∈ K Jτ̂KO then (E [t],E [t]) ∈ O(W )O}

G J∅KO
def
= {(W,∅,∅)}

G
r

Γ̂, x : τ̂
z

O

def
=
{

(W,γ[v/x], γ[v/x])
∣∣∣ (W,γ, γ) ∈ G

r
Γ̂
z

O
and (W, v,v) ∈ V Jτ̂KO

}
Relation for Open and Closed Terms and Programs

Definition G.8 (Logical relation up to n steps).

Γ̂; P; P ` e On e : τ̂
def
= Γ̂; P ` e : τ̂

and ∀W.
if lev(W ) ≥ n and progs(W ) = (P,P)

then ∀γ, γ. (W,γ, γ) ∈ G
r

Γ̂
z

O
,

(W, eγ, eγ) ∈ E Jτ̂KO
Definition G.9 (Logical relation for expressions).

Γ̂; P; P ` eO e : τ̂
def
= ∀n ∈ N. Γ̂; P; P ` e On e : τ̂

Definition G.10 (Logical relation for programs).

` POP
def
= f(x : σ′) : σ 7→ return e ∈ P iff f(x) 7→ return e ∈ P

x : σ′; P; P ` eO e : σ

Auxiliary Lemmas from Existing Work

Lemma G.11 (No observation with 0 steps).
if lev(W ) = 0

then ∀e, e.(e, e) ∈ O(W )O

Proof. Trivial adaptation of the same proof in [35, 36].

Lemma G.12 (No steps means relation).
if lev(W ) = n

P . e
β

==⇒ n _

P . e
β

==⇒n _
then (e, e) ∈ O(W )O

Proof. Trivial adaptation of the same proof in [35, 36].

Lemma G.13 (Later preserves monotonicity).
if ∀R,R ⊆ ↗ (R)

then . R ⊆ ↗ (. R)

Proof. Trivial adaptation of the same proof in [35, 36].

Lemma G.14 (Monotonicity for environment relation).
if W ′wW

(W,γ, γ) ∈ G JΓKO
then (W ′, γ, γ) ∈ G JΓKO

Proof. Trivial adaptation of the same proof in [35, 36].

Lemma G.15 (Monotonicity for continuation relation).
if W ′wW

(W,C,C) ∈ K Jτ̂KO
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then (W ′,C,C) ∈ K Jτ̂KO
Proof. Trivial adaptation of the same proof in [35, 36].

Lemma G.16 (Monotonicity for value relation).
V Jτ̂KO ⊆ ↗ (V Jτ̂KO)

Proof. Trivial adaptation of the same proof in [35, 36].

Lemma G.17 (Value relation implies term relation).
∀τ̂ ,V Jτ̂KO ⊆ E Jτ̂KO

Proof. Trivial adaptation of the same proof in [35, 36].

Lemma G.18 (Adequacy for .).
if ∅; P; P ` e.n e : τ

P . e
β

==⇒m P . e′ with n ≥ m

then P . e
β

==⇒ P . _.

Proof. By Definition G.9 (Logical relation for expressions) we have that (W, e, e) ∈ E JτK. for a W such that lev(W ) = n.
By taking (W, [·], [·]) ∈ K JτK. we know that (e, e) ∈ O(W ). .
By definition of O(·). , with the HP of the source reduction, we conclude the thesis.

Lemma G.19 (Adequacy for &).
if ∅; P; P ` e&n e : τ

P . e
β

==⇒m P . e′. with n ≥ m

then P . e
β

==⇒ P . _

Proof. By Definition G.9 (Logical relation for expressions) we have that (W, e, e) ∈ E JτK& for a W such that lev(W ) = n.
By taking (W, [·], [·]) ∈ K JτK& we know that (e, e) ∈ O(W )& .
By definition of O(·)& , with the HP of the target reduction, we conclude the thesis.

Lemma G.20 (Observation relation is closed under antireduction).

if P . e
β

==⇒ i P . e′

P . e
β

==⇒ j P . e′

(e′, e′) ∈ O(W ′)O for W ′wW
progs(W ) = progs(W ′) = (P,P)

lev(W ′) ≥ lev(W )− min (i, j)

( that is: lev(W ) ≤ lev(W ′) + min (i, j))

then (e, e) ∈ O(W )O

Proof. Trivial adaptation of the same proof in [35, 36].

Lemma G.21 (Closedness under antireduction).

if P . C[e]
β

==⇒ i P . C[e′]

P . C[e]
β

==⇒ i P . C[e′]

(W ′, e′, e′) ∈ E Jτ̂KO
W ′wW
lev(W ′) ≥ lev(W )− min (i, j)

( that is lev(W ) ≤ lev(W ′) + min (i, j))

then (W, e, e) ∈ E Jτ̂KO
Proof. Trivial adaptation of the same proof in [35, 36].
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Lemma G.22 (Related terms plugged in related contexts are still related).

if (W, e, e) ∈ E
r
τ̂ ′
z

O

and if W ′wW

(W ′, v,v) ∈ V
r
τ̂ ′
z

O

then (W ′,C[v],C[v]) ∈ E Jτ̂KO
then (W,C[e],C[e]) ∈ E Jτ̂KO

Proof. Trivial adaptation of the same proof in [35, 36].

Lemma G.23 (Related functions applied to related arguments are related terms).

if (W, v,v) ∈ V
r
τ̂ ′ → τ̂

z

O

(W, v′,v′) ∈ V
r
τ̂ ′
z

O

then (W, v v′,v v′) ∈ E Jτ̂KO
Proof. Trivial adaptation of the same proof in [35, 36].

Auxiliary Results

Lemma G.24 (If Extract reduces, it preserves relatedness).
if (W, v,v) ∈ V JEmulTyKO

P . extractσ(v) ↪→∗ P . v′

then (W, v′,v) ∈ V JσKO
Proof. Trivial case analysis:
σ = Bool means that v=0 or 1, so by definition of V JEmulTyKO v=false or true (respectively).

Consider the 0 and false case, the other is analogous.
By definition the reduction of extract goes as follows.

P . extractBool0

≡P . let x = 0 in if x ≥ 2 then fail else if x + 1 ≥ 2 then true else false

↪→ ↪→ P . if 1 ≥ 2 then true else false

↪→ P . false

We need to show that (W, false, false) ∈ V JBoolKO, which follows from its definition.
σ = Nat means that v=n + 2 and v=n

By definition the reduction of extract goes as follows. (we write n+2 as a value, not as an expression to simplify this)

P . extractNatn + 2

≡P . let x = n + 2 in if x ≥ 2 then x− 2 else fail

↪→ P . if n + 2 ≥ 2 then x− 2 else fail

↪→ P . n

We need to show that (W, n,n) ∈ V JNatKO, which follows from its definition.

Lemma G.25 (Inject reduces and preserves relatedness).
if (W, v,v) ∈ V JσKO

P . injectσv ↪→∗ P . v′

then (W, v′,v) ∈ V JEmulTyKO
Proof. Trivial case analysis on σ.
σ = Bool By definition of V JBoolKO we have v=true and v=true or false/false. We consider the first case only, the second

is analogous.
By definition of inject we have:

P . if true then 1 else 0
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↪→ P . 1

So we need to prove that (W, 1, true) ∈ V JEmulTyKO which follows from its definition.
σ = Nat By definition of V JNatKO we have v=n and v=n.

By definition of inject, we have:

P . n + 2

↪→ P . n + 2

(we keep the value as a sum for simplicity)
So we need to prove that (W, n + 2,n) ∈ V JEmulTyKO which follows from its definition.

Compatibility Lemmas for τ Types

Lemma G.26 (Compatibility lemma for calls).
if Γ, x : σ′; P; P ` e On e : σ

f(x : σ′) : σ 7→ return e ∈ P

f(x) 7→ return if x has σ′ then e else fail ∈ P

then Γ; P; P ` call f On call f : σ′ → σ

Proof. We need to prove that

Γ; P; P ` call f On call f : σ′ → σ

Take W such that lev(W ) ≤ n and HG (W,γ, γ) ∈ G JtoEmul (Γ)KO, the thesis is:
• (W, call f, call f) ∈ E Jσ′ → σKO
By Lemma G.17 (Value relation implies term relation) the thesis is:
• (W, call f, call f) ∈ V Jσ′ → σKO
By definition of the V J·KO we take HV (W ′, v,v) ∈ V Jσ′KO such that W ′=.W and the thesis is:
• (W ′, return e[v/x]γ, return if x has σ′ then e else fail[v/x]γ) ∈ E JσKO
The reductions proceed as:

P . return if x has σ′ then e else fail[v/x]γ

≡P . return if v has σ′ then (e[v/x]γ) else fail

↪→ P . return if true then (e[v/x]γ) else fail

↪→ P . return (e[v/x]γ)

By Lemma G.21 the thesis becomes:
• (W ′, return e[v/x]γ, return e[v/x]γ) ∈ E JσKO
This follows from the definition of logical relation if
• (W ′, [v/x]γ, [v/x]γ) ∈ G JΓ, x : σ′KO

This follows from HG with Lemma G.14 and by HV and Lemma G.16 and by the definition of G J·KO.

Lemma G.27 (Compatibility lemma for application).
if Γ; P; P ` e On e : σ′ → σ

Γ; P; P ` e′ On e′ : σ′

then Γ; P; P ` e e′ On e e′ : σ

Proof. This is standard using Lemma G.17, Lemma G.16, Lemma G.22 and Lemma G.21.

Lemma G.28 (Compatibility lemma for op).
if Γ; P; P ` e On e : Nat

Γ; P; P ` e′ On e′ : Nat

then Γ; P; P ` e⊕ e′ On e⊕ e′ : Nat

Proof. This is standard and analogous to the proof of Lemma G.27.

54



Lemma G.29 (Compatibility lemma for geq).
if Γ; P; P ` e On e : Nat

Γ; P; P ` e′ On e′ : Nat

then Γ; P; P ` e ≥ e′ On e ≥ e′ : Bool

Proof. This is standard and analogous to the proof of Lemma G.27.

Lemma G.30 (Compatibility lemma for letin).
if Γ; P; P ` e On e : σ

Γ, x : σ; P; P ` e′ On e′ : σ′

then Γ; P; P ` let x = e in e′ On let x = e in e′ : σ′

Proof. This is standard and analogous to the proof of Lemma G.27.

Lemma G.31 (Compatibility lemma for if).
if Γ; P; P ` e On e : Bool

Γ; P; P ` e′ On e′ : σ

Γ; P; P ` e′′ On e′′ : σ

then Γ; P; P ` if e then e′ else e′′ On if e then e′ else e′′ : σ

Proof. This is standard and analogous to the proof of Lemma G.27.

Lemma G.32 (Compatibility lemma for read).
if

then Γ; P; P ` read On read : Nat

Proof. By definition of the O(W )O.

Lemma G.33 (Compatibility lemma for write).
if Γ; P; P ` e On e : Nat

then Γ; P; P ` write e On write e : Nat

Proof. We need to prove that

Γ; P; P ` write e On write e : Nat

Take W such that lev(W ) ≤ n and (W,γ, γ) ∈ G JtoEmul (Γ)KO, the thesis is: (we omit substitutions as they don’t play an
active role)
• (W,write e,write e) ∈ E JNatKO
By Lemma G.22 (Related terms plugged in related contexts are still related) with HE, we have that for HW W ′wW , and

HV (W ′, n,n) ∈ V JNatKO, the thesis becomes:
• (W ′,write n,write n) ∈ E JNatKO

The reductions proceed as:

P . write n
write n

======⇒ P . n

and

P .write n
write n

======⇒ P . n

By Lemma G.21 (Closedness under antireduction) the thesis is:
• (W ′, n,n) ∈ E JNatKO

So the theorem holds by Lemma G.17 (Value relation implies term relation) with HV.

Semantic Preservation Results

Theorem G.34 ( ·↓ is semantics preserving for expressions).
if P; Γ ` e : τ

` P On P
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then ∀n. Γ; P; P ` e On e↓ : τ

Proof. The proof proceeds by induction on the type derivation.
true, false, nat By definition of V J·KO.
var By definition of G J·KO.
call By Lemma G.26 (Compatibility lemma for calls).
app By IH with Lemma G.27 (Compatibility lemma for application).
op By IH with Lemma G.28 (Compatibility lemma for op).
geq By IH with Lemma G.29 (Compatibility lemma for geq).
letin By IH with Lemma G.30 (Compatibility lemma for letin).
if By IH with Lemma G.31 (Compatibility lemma for if).
read By Lemma G.32 (Compatibility lemma for read).
write By IH with Lemma G.33 (Compatibility lemma for write).

Theorem G.35 ( ·↓ is semantics preserving for programs).
if ` P

then ` PO P↓

Proof. By induction on the size of P and then Section G.3 and with Theorem G.34 ( ·↓ is semantics preserving for expressions)
on each function body.

Compatibility Lemmas for Pseudo Types

Lemma G.36 (Compatibility lemma for backtranslation of op).
if (HE) toEmul (Γ); P; P ` e On e : EmulTy

(HEP ) toEmul (Γ); P; P ` e′ On e′ : EmulTy

then toEmul (Γ); P; P ` let x1 : Nat=extractNat(e)

in let x2 : Nat=extractNat(e′)

in injectNat(x1⊕ x2)

On e⊕ e′ : EmulTy

Proof. We need to prove that

toEmul (Γ); P; P ` let x1 : Nat=extractNat(e)

in let x2 : Nat=extractNat(e′)

in injectNat(x1⊕ x2)

O e⊕ e′ : EmulTy

Take W such that lev(W ) ≤ n and (W,γ, γ) ∈ G JtoEmul (Γ)KO, the thesis is:
• (W, let x1 : Nat=extractNat(e)

in let x2 : Nat=extractNat(e′)

in injectNat(x1⊕ x2)

, e⊕ e′) ∈ E JEmulTyKO

By Lemma G.22 (Related terms plugged in related contexts are still related) with HE we need to prove that ∀W ′wW ,
given IHV (W ′, v,v) ∈ V JEmulTyKO
• (W ′, let x1 : Nat=extractNat(v)

in let x2 : Nat=extractNat(e′)

in injectNat(x1⊕ x2)

,v ⊕ e′) ∈ E JEmulTyKO

By IHV we perform a case analysis on v:
• true/ false and thus v is 1/0 respectively.

We show the case for true, 1 the other is analogous.
In this case we have:

P . true⊕ e′
⊥

==⇒ fail

and

P . extractNat(1)

≡let x = 1 in if x ≥ 2 then x− 2 else fail

↪→ if 1 ≥ 2 then x− 2 else fail
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⊥
==⇒ fail

So this case follows from the definition of O(W ′)O as both terms perform the same visible action (⊥).
• n and thus v is n + 2.

In this case we have:

P . extractNat(n + 2)

≡let x = n + 2 in if x ≥ 2 then x− 2 else fail

↪→ if n + 2 ≥ 2 then x− 2 else fail

↪→ n

And by Lemma G.24 (If Extract reduces, it preserves relatedness) with IHV we know that IHN (W ′, n,n) ∈ V JNatKO.
Analogously, e′ and e′ follow the same treatment. So we apply Lemma G.22 (Related terms plugged in related contexts
are still related) with HEP, perform a case analysis, in one case they fail and in the other they reduce to n′/n′ such that
IHNP (W ′, n′,n′) ∈ V JNatKO.
So the reductions are :

P.let x1 : Nat=extractNat(e) in let x2 : Nat=extractNat(e′)

in injectNat(x1⊕ x2)

↪→∗ P.let x1 : Nat=extractNat(n) in let x2 : Nat=extractNat(e′)

in injectNat(x1⊕ x2)

↪→ P.let x2 : Nat=extractNat(e′)

in injectNat(n⊕ x2)

↪→∗ P.let x2 : Nat=extractNat(n′)

in injectNat(n⊕ x2)

↪→ P . injectNat(n⊕ n′)

and

P . e⊕ e′ ↪→∗ P . n⊕ e′ ↪→∗ P . n⊕ n′

By Lemma G.21 (Closedness under antireduction) the thesis becomes:
– (W ′, injectNat(n⊕ n′),n⊕ n′) ∈ E JEmulTyKO
If the lev(W ′) = 0 the thesis follows from Lemma G.12 (No steps means relation), otherwise:
By Rule ELτ -op and Rule ELu-op we can apply Lemma G.21 (Closedness under antireduction) (with IHN and IHNP in
the term relation by Lemma G.17 (Value relation implies term relation)) and the thesis becomes:
– (W ′, injectNat(n′′),n′′) ∈ E JEmulTyKO
The reductions proceed as follows:

P . injectNat(n′′) ↪→ P . n′′ + 2

By Lemma G.21 (Closedness under antireduction) and then Lemma G.17 (Value relation implies term relation) the thesis
becomes:
– (W ′, n′′′ + 2,n′′) ∈ V JEmulTyKO
By Lemma G.25 (Inject reduces and preserves relatedness) the thesis becomes:
– (W ′, n′′,n′′) ∈ V JNatKO
which follows from the definition of V JNatKO.

Lemma G.37 (Compatibility lemma for backtranslation of geq).
if toEmul (Γ); P; P ` e On e : EmulTy

toEmul (Γ); P; P ` e′ On e′ : EmulTy

then toEmul (Γ); P; P ` let x1 : Nat=extractNat(e)

in let x2 : Nat=extractNat(e′)

in injectBool(x1 ≥ x2)

On e ≥ e′ : EmulTy

Proof. Analogous to the proof of Lemma G.36.
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Lemma G.38 (Compatibility lemma for backtranslation of letin).
if toEmul (Γ); P; P ` e On e : EmulTy

toEmul (Γ), x : Nat; P; P ` e′ On e′ : EmulTy

then toEmul (Γ); P; P ` let x : Nat = e in e′ On let x = e in e′ : EmulTy

Proof. This is a trivial application of Lemma G.22 (Related terms plugged in related contexts are still related) and
Lemma G.21 (Closedness under antireduction) and definitions.

Lemma G.39 (Compatibility lemma for backtranslation of if).
if (HE) toEmul (Γ); P; P ` e On e : EmulTy

(HEP ) toEmul (Γ); P; P ` e′ On e′ : EmulTy

toEmul (Γ); P; P ` e′′ On e′′ : EmulTy

then toEmul (Γ); P; P ` if extractBool(e) then e′ else e′′ On if e then e′ else e′′ : EmulTy

Proof. We need to prove that

toEmul (Γ); P; P ` if extractBool(e) then e′ else e′′ O if e then e′ else e′′ : EmulTy

Take W such that lev(W ) ≤ n and (W,γ, γ) ∈ G JtoEmul (Γ)KO, the thesis is: (we omit substitutions as they don’t play an
active role)
• (W, if extractBool(e) then e′ else e′′, if e then e′ else e′′) ∈ E JEmulTyKO
By Lemma G.22 (Related terms plugged in related contexts are still related) with HE, we have that for HW W ′wW , and

HV (W ′, v,v) ∈ V JEmulTyKO, the thesis becomes:
• (W ′, if extractBool(v) then e′ else e′′, if v then e′ else e′′) ∈ E JEmulTyKO

We perform a case analysis based on HV:
• v=true/false and v=1/0

We consider the case true/1 the other is analogous.
The reductions proceed as follows:

P . extractBool(1)

≡P . let x = 1 in if x ≥ 2 then fail else if x + 1 ≥ 2 then true else false

↪→ P . if 1 ≥ 2 then fail else if 1 + 1 ≥ 2 then true else false

↪→ P . if 1 + 1 ≥ 2 then true else false

↪→ ↪→ P . true

By Lemma G.21 (Closedness under antireduction) the thesis becomes:
– (W ′, if true then e′ else e′′, if true then e′ else e′′) ∈ E JEmulTyKO
If the lev(W ′) = 0 the thesis follows from Lemma G.12 (No steps means relation), otherwise:
We can reduce based on Rule ELτ -if-true and Rule ELu-if-true. By Lemma G.21 (Closedness under antireduction) the
thesis becomes:
– (W ′, e′, e′) ∈ E JEmulTyKO
If the lev(W ′) = 0 the thesis follows from Lemma G.12 (No steps means relation), otherwise by HEP.

• v=n and v=n + 2
In this case we have that:

P . extractBool(n + 2)

≡P . let x = n + 2 in if x ≥ 2 then fail else if x + 1 ≥ 2 then true else false

↪→ P . if n + 2 ≥ 2 then fail else if x + 1 ≥ 2 then true else false
⊥

==⇒ fail

and

P . if n then e′ else e′′
⊥

==⇒ fail

So this case holds by definition of O(W ′)O.
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Lemma G.40 (Compatibility lemma for backtranslation of application).
if toEmul (Γ); P; P ` e On e : EmulTy

f(x : σ′) : σ 7→ return e ∈ P

(HP ) P; P ` call f On call f : σ′ → σ

then toEmul (Γ); P; P ` injectτ ′(call f extractτ (e)) On call f e : EmulTy

Proof. We need to prove that

toEmul (Γ); P; P ` injectτ ′(call f extractτ (e)) On call f e : EmulTy

Take W such that lev(W ) ≤ n and (W,γ, γ) ∈ G JtoEmul (Γ)KO, the thesis is: (we omit substitutions as they don’t play an
active role)
• (W, injectτ ′(call f extractτ (e)), call f e) ∈ E JEmulTyKO

By Lemma G.22 (Related terms plugged in related contexts are still related) with HE we have that for HW W ′wW , and HV
(W ′, v,v) ∈ V JEmulTyKO, the thesis becomes:
• (W, injectτ ′(call f extractτ (v)), call f v) ∈ E JEmulTyKO

We perform a case analysis based on HV:
• v=true/false and v=1/0 (respectively).

We consider the first case only, the other is analogous.
We perform a case analysis on τ :
– τ=Bool

The thesis is:
∗ (W ′, injectτ ′(call f extractBool(v)), call f v) ∈ E JEmulTyKO

By definition of extractBool we have

P . injectτ ′(call f extractBool(1))

≡P . injectτ ′(call f let x = 1 in if x ≥ 2 then fail else if x + 1 ≥ 2 then true else false)

↪→ P . injectτ ′(call f if 1 ≥ 2 then fail else if 1 + 1 ≥ 2 then true else false)

↪→ P . injectτ ′(call f if 1 + 1 ≥ 2 then true else false)

↪→ P . injectτ ′(call f true)

So by Lemma G.21 (Closedness under antireduction) the thesis becomes:
∗ (W ′, injectτ ′(call f true), call f true) ∈ E JEmulTyKO

If the lev(W ′) = 0 the thesis follows from Lemma G.12 (No steps means relation), otherwise:
By HP and by the Hs on the function bodies, and by the relatedness of true and true and by the Lemma G.16 (Mono-
tonicity for value relation) we have that HF:

(W ′, return e[true/x], return e[true/x]) ∈ E
r
τ̂ ′
z

O

By Lemma G.22 (Related terms plugged in related contexts are still related) with HF we have that for HW W ′′wW ′,
and HV (W ′′, v′,v′) ∈ V Jτ ′KO, the thesis becomes:
∗ (W ′, injectτ ′(v′),v′) ∈ E JEmulTyKO

This case follows from Lemma G.17 (Value relation implies term relation) and by Lemma G.25 (Inject reduces and
preserves relatedness) with HV.

– τ = Nat
By definition of extractNat we have:

P . injectτ ′(call f extractNat(1))

≡P . injectτ ′(call f let x = 1 in if x ≥ 2 then x− 2 else fail)

↪→ P . injectτ ′(call f if 1 ≥ 2 then 1− 2 else fail)

↪→ P . injectτ ′(call f fail)

↪→ fail

and by definition of the function bodies and Section G.3:

P . call f true

↪→ P . return if true has Nat↓ then e↓ else fail
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≡P . return if true has N then e↓ else fail

↪→ P . return if false then e↓ else fail

↪→ P . return fail

↪→ fail

So this case holds by definition of O(W ′)O.
• v=n and v=n + 2

Case analysis on τ
– τ=Bool

This is analogous to the case for naturals above.
– τ = Nat

This is analogous to the case for booleans above.

Lemma G.41 (Compatibility lemma for backtranslation of check).
if (HE) toEmul (Γ); P; P ` e On e : EmulTy

then 1 toEmul (Γ); P; P ` let x : Nat = e in if x ≥ 2 then 0 else 1 On e has Bool : EmulTy

2 toEmul (Γ); P; P ` let x : Nat = e in if x ≥ 2 then 1 else 0 On e has N : EmulTy

Proof. We need to prove that

1 toEmul (Γ); P; P ` let x : Nat = e in if x ≥ 2 then 0 else 1 On e has Bool : EmulTy

2 toEmul (Γ); P; P ` let x : Nat = e in if x ≥ 2 then 1 else 0 On e has N : EmulTy

We only show case 1, the other is analogous.
Take W such that lev(W ) ≤ n and (W,γ, γ) ∈ G JtoEmul (Γ)KO, the thesis is: (we omit substitutions as they don’t play an

active role)
1) (W, let x : Nat = e in if x ≥ 2 then 0 else 1, e has Bool) ∈ E JEmulTyKO
By Lemma G.22 (Related terms plugged in related contexts are still related) with HE we have that for HW W ′wW , and

HV (W ′, v,v) ∈ V JEmulTyKO, the thesis becomes:
• (W ′, let x : Nat = v in if x ≥ 2 then 0 else 1,v has Bool) ∈ E JEmulTyKO

We perform a case analysis based on HV:
• v=true/false and v=1/0 (respectively).

We consider only the first case, the other is analogous.
We have that

P . let x : Nat = 1 in if x ≥ 2 then 0 else 1

↪→ P . if 1 ≥ 2 then 0 else 1

↪→ P . 1

and

P . true has Bool ↪→ P . true

This case holds by Lemma G.21 (Closedness under antireduction) and Lemma G.17 (Value relation implies term relation)
and by the definition of V JEmulTyKO.

• v=n and v=n + 2
In this case we have that:

P . let x : Nat = n + 2 in if x ≥ 2 then 0 else 1

↪→ P . if n + 2 ≥ 2 then 0 else 1

↪→ P . 0

and

P . n has Bool ↪→ P . false

This case holds by Lemma G.21 (Closedness under antireduction) and Lemma G.17 (Value relation implies term relation)
and by the definition of V JEmulTyKO.
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Semantic Preservation of Backtranslation

Theorem G.42 ( ·↑ is semantics preserving).
if Γ ` e

(HP ) ` POP

then toEmul (Γ); P; P ` 〈〈e〉〉 On e : EmulTy

Proof. The proof proceeds by induction on the derivation of Γ ` e.

Base cases true,false,nat By definition of the V JEmulTyKO
var By definition of the G J·KO.
call This case cannot arise.

Inductive cases app By IH and HP and Lemma G.40 (Compatibility lemma for backtranslation of application).
op By IH and Lemma G.36 (Compatibility lemma for backtranslation of op).
geq Analogous to the case above.
if By IH and Lemma G.39 (Compatibility lemma for backtranslation of if).
letin By IH and Lemma G.38 (Compatibility lemma for backtranslation of letin).
check By IH and Lemma G.41 (Compatibility lemma for backtranslation of check).

Theorems that Yield RrHC

Theorem G.43 ( ·↓ preserves behaviors).

if (HT ) P↓ . e
β

==⇒ P↓ . e′

then P . e↑ β
==⇒ P . e′

Proof. By Theorem G.35 ( ·↓ is semantics preserving for programs) we have HPP:

• ` PO P↓
Given that ∅ ` e, by Theorem G.42 ( ·↑ is semantics preserving) with HPP we have HPE:

• toEmul (Γ); P; P↓ ` 〈〈e〉〉 On e : EmulTy

The thesis follows by Lemma G.19 (Adequacy for &) with HT.

Theorem G.44 ( ·↓ reflects behaviors).

if (HS) P . e↑ β
==⇒ P . e′

then P↓ . e
β

==⇒ P↓ . e′

Proof. By Theorem G.35 ( ·↓ is semantics preserving for programs) we have HPP:

• ` PO P↓
Given that ∅ ` e, by Theorem G.42 ( ·↑ is semantics preserving) with HPP we have HPE:

• toEmul (Γ); P; P↓ ` 〈〈e〉〉 On e : EmulTy

The thesis follows by Lemma G.18 (Adequacy for .) with HS.

G.4.3 Proof That ·↓ Satisfies Definition G.6 (RrHC./)

∀e.∃e.∀P such that P ./ e,∀β

P↓ . e
β

==⇒ P↓ . e′

⇐⇒ P . e
β

==⇒ P . e′

We instantiate e with e↑ then two cases arise.

⇒ direction By Theorem G.43 ( ·↓ preserves behaviors)
⇐ direction By Theorem G.44 ( ·↓ reflects behaviors).
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∀i,CT [Pi↓] ; mi ∀i,∃µiwmi,CT[Pi↓] ↪→ µi ∀i, Pi↓ ↪→prg µi ∀i,CT ↪→ctx µi

∀i,CS ↪→ctx µ
s
i

∀i,Pi↪→prg µi∀i,CS[Pi] ↪→ µsi∀i,CS[Pi] ; mi

Inf Dec

Dec

BTBCC

Comp

Comp

Uninf

Fig. 4: Proposed proof technique

G.5 Proof That ·↓ Is RFrXC./

This section focuses on giving a high-level overview of the proof technique that we use to prove that our compiler satisfies
the following variant of the criterion RFrXC:

Definition G.45 (RFrXC./).
RFrXC./ : ∀K. ∀P1 . . .PK : I. ∀CT. ∀x1 . . . xK .

(P1↓ ./ CT ∧ . . . ∧ PK↓ ./ CT) =⇒
(CT [P1↓] x1 ∧ . . . ∧ CT [PK↓] xK) =⇒
∃CS.P1 ./ CS ∧ . . . ∧ PK ./ CS∧

CS [P1] x1 ∧ . . . ∧ CS [PK] xK

This criterion is equivalent to the following property-full criterion:

Definition G.46 (RFrXP./).
RFrXP./ : ∀I. ∀K,P1, · · · ,Pk : I,R ∈ 2(XPref K).

(∀CS, x1, · · · , xK , (P1 ./ CS ∧ CS [P1]   x1 ∧ · · · ∧ PK ./ CS ∧ CS [PK]   xK)

⇒ (x1, · · · , xK) ∈ R)⇒
(∀CT, x1, · · · , xK(P1↓ ./ CT ∧CT [P1↓]   x1 ∧ · · · ∧ PK↓ ./ CT ∧CT [PK↓]   xK)

⇒ (x1, · · · , xK) ∈ R)

The proof of the equivalence of these two criteria is very similar to Theorem C.70.

G.5.1 Overview of the Proof Technique
Our proof technique for this is described in Figure 4. At the heart of this technique is the back-translation of a finite set of
finite trace prefixes into a source context. In particular, this back-translation technique do not inspect the code of the target
context. The first steps consist in transforming the trace prefixes into prefixes that can be back-translated easily, and separating
the target context from the compiled programs. Then, we build a back-translation that provides us with a source context that
can be composed with the initial source programs to generate the initial traces.

The reason for requiring all programs to share the same interface I is that it allows us to produce a well-typed context.
Otherwise, two programs could contain the same function, but one returning a natural number and the other a boolean. The
back-translation would be immediatly impossible.

G.5.2 Informative Traces
The first step of the proof is to augment the existing operational semantics with new events that allow to precisely track the
behavior of the program and of the context. This new semantics is called informative semantics and produce informative traces.
They are defined at both the source level and the target level. The relations ↪→ are the equivalent of ; for these informative
semantics, and are defined as:

C[P] ↪→ µ ⇐⇒ ∃e,P . C
µ

==⇒⇒P . e

C[P] ↪→ µ ⇐⇒ ∃e,P .C
µ

==⇒⇒P . e

We can state the theorem for passing to informative traces as follow
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Theorem G.47 (Informative traces). Let CT be a target context and PT a target program that are linkable. Then,

∀m,CT[PT] ; m =⇒ ∃µ w m,CT[PT] ↪→ µ

where
µ w m ⇐⇒ |µ|I/O/termination = m.

Proof. Let CT be a target context, PT a target program and m a finite prefix. We are going to show that if there exists e
such that PT .CT

m
==⇒ PT . e, then there exists µ such that |µ|I/O = m and PT .CT

µ
==⇒⇒PT . e.

Let us proceed by induction on the relation PT .CT
m

==⇒ PT . e.
Rule ELu-refl Immediate.
Rule ELu-terminate This is true by taking µ = ⇓, because the informative semantics can progress if and only if the non-

informative semantics can.
Rule ELu-diverge This is true by taking µ = ⇑, because the informative semantics can only diverge when executing the

program part (the context can not loop or do recursion), and calls from the program part do not generate any event.
Rule ELu-silent Then PT .CT

ε−−→ PT . e according to the non-informative semantics. Since the semantics only differ on
the events that are generated, we have two cases. Either PT .CT

ε−−→ PT . e according to the informative semantics,
in which case we can take µ = ε. Or PT .CT

α−−→ PT . e according to the informative semantics, in which case we
can take µ = α. This α must be a call or return event by definition of the informative semantics, hence the result.

Rule ELu-single Since PT .CT
α−−→ PT . e according to the non-informative semantics, this is also the case according

to the informative semantics, hence the result.
Rule ELu-cons Then PT .CT

m1===⇒ PT . e′ and PT . e′
m2===⇒ PT . e with m = m1m2. By applying the induction

hypothesis, there exists µ1 and µ2 such that PT .CT
µ1

==⇒⇒e′, PT . e′
µ2

==⇒⇒e, |µ1|I/O/termination = m1, and |µ2|I/O/termination =
m2.
Therefore by applying Rule ELu-cons, PT .CT

µ1µ2
====⇒⇒e. It is easy to see that |µ1µ2|I/O/termination = m1m2. We are done.

G.5.3 Decomposition
This decomposition step relies on the definition of partial semantics, one for programs and one for contexts. These partial
semantics describe the possible behaviors of a program in any context and of a context with respect to any program. Partial
semantics can often be defined by abstracting away one part of the whole program (the context for the partial semantics of
programs, and the program for the partial semantics of contexts), by introducing non-determinism for modeling the abstracted
part.

We index our relations by either “ctx” or “prg” to denote the partial semantics. The partial semantics for contexts defined
as:

(ELτ -ctx-call)

call f v
call f v?−−−−−−−→ctx return e

(ELu-ctx-call)

call f v
call f v?−−−−−−−→ctx return e

(ELτ -ctx-ret)

return v
ε−−→ctx v

(ELu-ctx-ret)

return v
ε−−→ctx v

and the relations ·
==⇒⇒ctx and ·

==⇒⇒ctx are defined in the same manner as the complete semantics.
The partial semantics for programs are defined in terms of the complete semantics, and are parameterized by the interface

of the program I. Informally, we define P ↪→prg µ to mean that the program P is able to produce each part of the trace µ that
comes from the program, i.e. each part that starts with a call event call f v? and ends before or with the corresponding
return event, when it is put into the context that simply calls this function f with this value v. For every “subtrace” µ′ of
µ starting with a call event call f v? and stopping at the latest at the next (corresponding) return event, it must be that
P . call f v ↪→ µ′.

Definition G.48 (Partial semantics for programs). P ↪→prg µ if and only if:
• for any trace µf,v,v′ = call f v?;µ′; ret v′! such that µ = µ1;µf,v,v′ ;µ2, such that there is no event return . . . in µ′,

and such that f : τ → τ ′ ∈ I with v ∈ τ , we have

PT . call f v
µf,v,v′

=====⇒⇒P . v′;

• for any trace µf,v = call f v?;µ′ such that µ = µ1;µf,v, such that there is no event return . . . in µ′, and such that
f : τ → τ ′ ∈ I with v ∈ τ , there exists e such that

PT . call f v
µf,v

===⇒⇒P . e.
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P ↪→prg µ if and only if:
• for any trace µf,v,v′ = call f v?;µ′; ret v′! such that µ = µ1;µf,v,v′ ;µ2, such that there is no event return . . . in µ′,

and such that f ∈ I we have
PT . call f v

µf,v,v′
=====⇒⇒P . v′;

• for any trace µf,v = call f v?;µ′ such that µ = µ1;µf,v, such that there is no event return . . . in µ′, and such that
f ∈ I there exists e such that

PT . call f v
µf,v

===⇒⇒P . e.

We must restrict this definition to the well-typed calls in the source level: indeed, a badly-typed call does not make sense
in the source language.

Our decomposition theorem talks about both programs and contexts:

Theorem G.49 (Decomposition). Let CT be a target context and PT a target program that are linkable. Then,

∀µ,CT [PT] ↪→ µ =⇒ CT ↪→ctx µ ∧PT ↪→prg µ

We are going to prove two different lemmas, one for contexts and one for programs.

Lemma G.50. Let CT be a target context and PT be a target program, µ an informative trace and e a target expression.
Then,

CT [PT]
µ

==⇒⇒e =⇒ CT
µ

===⇒⇒ctx e

Proof. By induction on the relation CT[PT]
µ

==⇒⇒PT . e

Rule ELu-silent Therefore CT[PT]
ε−−→ PT . e. By case analysis, it is also the case that CT

ε−−→ctx e hence the result.
Rule ELu-action CT[PT]

α−−→ PT . e. We proceed by case analysis on this relation: if α is an I/O operation, correct
termination or failure event, then we indeed have CT

α−−→ctx e.
Otherwise, α = ⇑. Therefore, ∀n,∃en,CT[PT]

ε−−→n PT . en. Now, by induction on n, we can prove that
∀n, ∃en,CT

ε−−→ctx
n
en. Hence the result.

Rule ELu-single Then CT[PT]
β−−→ PT . e. We proceed by case analysis on this relation:

• If β = call f v?, then CT = E [call f v] and e = E [return e′] for some evaluation context E and some expression
e′. Therefore, e

call f v?−−−−−−−→ctx E [return e′] by the partial semantics, hence the result.
• If β = ret f !v, then CT = E [return v] for some evaluation context E. Therefore, e

ret f !v−−−−−−→ctx E [v] according
to the partial semantics, hence the result.

Rule ELu-cons We have that PT .Ct
µ

====⇒⇒ctx e′ and PT . e′
µ

====⇒⇒ctx e. Then, by applying the induction hypothesis
to the two relations, we are done.

Then, we prove a similar lemma for programs:

Lemma G.51. Let PT be a target program, CT a target context and µ an informative trace. Suppose that CT [PT] ↪→ µ.
Then:
• for any trace µf,v,v′ = call f v?;µ′; ret v′! such that µ = µ1;µf,v,v′ ;µ2 and such that there is no event return . . . in
µ′, PT . call f v

µf,v,v′
=====⇒ v′

• for any trace µf,v = call f v?;µ′ such that µ = µ1;µf,v and such that there is no event return . . . in µ′, there exists
e such that PT . call f v

µf,v
===⇒ e.

Proof. Consider the first case for instance. From the fact that µf,v,v′ appears in µ, we can deduce the fact that there exists an
evaluation context E such that P . E [call f v]

µf,v,v′
======⇒⇒ctx E [v′].

From this, we can reason by induction and use Rule ELu-ctx to obtain the result.

G.5.4 Backward Compiler Correctness for Programs
Theorem G.52 (Backward Compiler Correctness). Let P be a source program. Then,

∀µ, P↓ ↪→prg µ =⇒ P ↪→prg µ.

Before proving the theorem, we state a preliminary lemma:

Lemma G.53. Suppose that P↓ . call f v
call f v?;µ

========⇒⇒P↓ . e′ where the call is well-typed.
Then, P↓ . call f v

call f v?
=======⇒⇒P↓ . e↓[x/v] and:
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• P↓ . e↓[x/v]
µ

==⇒⇒P↓ . e′,

• or, µ = ε and P↓ . call f v
call f v?

=======⇒⇒P↓ . e′

where e is the code of the function f in the source program.

Proof. By induction on P↓ . call f v
call f v?;µ

========⇒⇒e′.

Rule ELu-single In this case, µ = ε. The result is obtained by direct application of the semantics.
Rule ELu-cons There exists µ1 and µ2 such that µ1µ2 = µ and

P↓ . call f v
call f v?;µ1

=========⇒⇒e1

and

P↓ . e1
µ2

==⇒⇒e.

By applying the induction hypothesis to the first relation, we obtain the result.
Other cases: these cases are impossible

We can now prove the backward compiler correctness theorem:

Theorem G.54 (Backward Compiler Correctness). Let P be a source program. Then,

∀µ, P↓ ↪→prg µ =⇒ P ↪→prg µ.

Proof. Let P be a source program and µ an informative trace. Suppose that P↓ ↪→prg µ, we will prove that P ↪→prg µ.
Let µf,v,v′ = call f v?;µ′; ret v′! be a trace as defined by the source partial semantics. Let us show that

P . call f v
µf,v,v′

=====⇒⇒v′,

knowing that

P↓ . call f v
µf,v,v′

=====⇒⇒v′.

By the preliminary lemma, and since µ′ 6= ε, we have that

P↓ . call f v
call f v?

=======⇒⇒e↓[x/v]

where e is the source of f in the source program, because the call is well-typed and P↓ . e↓[x/v]
µ′;ret v′!

=======⇒⇒v′.
Now, we can conclude by induction on e.

G.5.5 Back-Translation of a Finite Set of Finite Trace Prefixes

The theorem we wish to prove in this section is the following theorem:

Theorem G.55. Let CT be a target context and {µi} be a finite set of trace prefixes such that ∀i,CT ↪→ctx µi. Then,

∃CS,∀i,CS ↪→ctx µ
s
i

where the relation between µi and µsi is explicited later.
We will construct a function ↑ such that if F is a set of finite prefixes, F↑ is a source context such that:

∀µ ∈ F, F↑ ↪→ctx µ
s.

where µs, defined later, is the trace µ with the possibility of swapping failure and calls events, as described previously.
We only consider traces that do not have any I/O. Indeed, I/O is produced only by the programs in these languages, hence

do not affect the backtranslation of a source context. First, we explicit the tree structure that is found in F by defining the
following inductive construction:

T ::= ε | ⇓ | ⊥ | ⇑
| (call f v?, (v1, T1), (v2, T2), . . . , (vi, Ti))

From a set of trace F , we define a relation F � T as follow:
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(Tree-Empty)
F = ∅ ∨ ∀µ ∈ F, µ = ε

F � ε

(Tree-Term)
∀µ ∈ F, µ 6= ε =⇒ µ = ⇓

F � ⇓

(Tree-Divr)
∀µ ∈ F, µ 6= ε =⇒ µ = ⇑

F � ⇑
(Tree-Fail)

∀µ ∈ F, µ 6= ε =⇒ µ = ⊥
F � ⊥

(Tree-Fail-Type)

∀µ ∈ F, µ 6= ε =⇒ µ = call f v?;µ′ ∧ f : τ → τ ′ ∧ v /∈ τ
F � ⊥

(Tree-Call-Ret)

∀i,∃µ ∈ F, µ = call f v?; ret vi!;µ
′

{µ′ | call f v?; ret vi!;µ
′ ∈ F} � Ti⋃

1≤j≤i{call f v?; ret vj !;µ
′ ∈ F} ∪ {call f v?;⇑} ∪ {call f v?} ∪ {ε} ⊇ F

F � (call f v?, (v1, T1), . . . , (vi, Ti))

This relation means that the tree T represents the set of traces F . The first five rules represent the base cases from the point
of view of the context: Rule Tree-Empty is the case where every trace is empty or there are no trace in F . Rule Tree-Term
represent the case where all traces terminate. Rule Tree-Divr is a case that should never happen, because the context should
never diverge. Rule Tree-Fail is the case where all traces fail in the context. Rule Tree-Fail-Type represent the case where all
traces call a function with an incorrect argument and must fail.

The last rule, Rule Tree-Call-Ret, represent the case where some traces may be cut, and the others shall call a function. The
next event must be either divergence, which is ignored because it is part of the program, or a return event. Then, the remaining
traces are separated into groups receiving the same return value: these traces are then considered on their own to construct
subtrees Ti. The third condition is required to ensure that no trace is forgotten.

The fact that this object is indeed defined is directly derived from the determinacy of the context. Indeed, let F be a set of
informative traces produced by the same context. They must either be empty, or start by the same event, by determinacy, and
this event has to be a call event. If this call in not correctly typed, then we are in the fifth case. Otherwise, we are necessarily
in the last case, and the Ti exist by induction.

The back-translation of F is defined by induction on the tree T such that F � T :

Definition G.56 (Backtranslation of the tree T ).

T ↑=



fail if T = ε or T = ⊥
0 if T = ⇓
fail if T = ⇑

let x = call f v in

(
if x = v1 then T1 ↑
else if x = v2 then . . .
else if x = vi then Ti ↑ else fail

)
if T = (call f v?, (v1, T1), . . . , (vi, Ti)) and
f : τ → τ ′ and v ∈ τ

fail otherwise

Lemma G.57. The back-translation of a set of traces F generated by a single context is well-typed and linkable.

Proof. By induction on the relation F � T .

We define what it means for a trace to be “part” of such a tree:

Definition G.58 (Trace extract from a tree). We say that a trace µ is extracted from a tree T if:
1) µ = ε
2) µ = ⇓ and T = ⇓
3) µ = ⊥ and T = ⊥
4) µ = call f v? :: ε, type(v) 6= input_type(f) and T = ⊥
5) µ = call f v? :: ⊥, type(v) 6= input_type(f) and T = ⊥
6) µ = call f v? :: ε or µ = call f v?;⇑, T = (call f v?, . . . ) and type(v) = input_type(f)
7) µ = call f v? :: ret v′! :: µ′, T = (call f v?, (v1, T1), . . . , (vi, Ti)), and ∃j, such that vj = v′ and µ′ is extracted

from Tj
8) µ = call f v? :: ε or µ = call f v?;⊥, T = ⊥ and type(v) 6= input_type(f)

We are going to prove that any such trace extracted from a tree can be produced by the back-translated context, modulo the
behaviors allowed at the target level but not at the source level.

Definition G.59.

µs =


µ′⊥ if µ = µ′call f v? such that input_type(f) 6= type(v)

µ′⊥ if µ = µ′call f v?⊥ such that input_type(f) 6= type(v)

µ otherwise
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Theorem G.60 (Correction of the backtranslation). Let T be a tree and µ a trace extracted from T . Then, T ↑; µs.

Proof. We are going to prove by induction on the relation “µ is extracted from T ” that there exists e such that T ↑ µs

==⇒⇒e.
1) µ = ε: OK.
2) µ = ⇓ and T = ⇓: T ↑= 0. OK.
3) µ = ⊥ and T = ⊥: T ↑= fail. OK.
4) µ = call f v?; ε, type(v) 6= input_type(f) and T = ⊥ We are in the first case for µs: OK.
5) µ = call f v?;⊥, type(v) 6= input_type(f) and T = ⊥ We are in the second case for µs: OK.
6) µ = call f v?; ε, T = (call f v?, . . . ) and type(v) = input_type(f): T ↑= let x = call f v in . . .. OK. Idem with ⇑

instead of ε.
7) t = call f v?; ret v′!;µ′, T = (call f v?, (v1, T1), . . . , (vi, Ti)), and ∃j, such that vj = v′ and µ′ is extracted from

Tj : Then:
T ↑= let x = call f v in if . . . then if x = vj then Tj ↑ else . . . else . . ..

By application of the partial semantics:

T ↑ call f v?;ret vj !
============⇒ctx if x = vj then Tj ↑ else . . . [vj/x]

and therefore by substituting and application of the partial semantics:

T ↑ call f v?;ret vj !
============⇒ctx Tj ↑ .

By induction hypothesis, we are done.
8) µ = call f v? :: ε or µ = call f v?;⊥, T = ⊥ and type(v) 6= input_type(f). The result is immediate

Now, we can prove that any of the initial traces that are used to construct the tree can be found in this tree, and then the
theorem applies to them.

Lemma G.61. Let F be a set of traces and T such that F � T . Then, any trace µ ∈ F is extracted from the tree T .

Proof. Let us prove by induction on T that if there exists F such that T = T (F ), then ∀µ ∈ F , µ is extracted from T . Since
the trace ε is always extracted from any tree, we ignore this case.
T = ε: OK.
T = ⇓: Then µ = ⇓. OK.
T = ⇑: Then µ = ⇑. OK.
T = (call f v?, (v1, T1), . . . , (vi, Ti)): By induction hypothesis.

G.5.6 Composition
The composition theorem states that if a context and a program can partially produce two related informative traces, then
plugging the program into the context gives a whole program that can produce one of the traces. The relation between the two
traces captures the fact that the way things fail in the source is not the same as in the target, as seen in the back-translation
section. The theorem is stated as follows:

Theorem G.62 (Composition). Let CS be a source context, PS be a source program, µi ∼ µsi two related traces, and suppose
PS ./ CS. Then, if CS ↪→ctx µ

s
i and PS ↪→prg µi, then CS [PS] ↪→ µsi .

We state a preliminary lemma:

Lemma G.63. If P ↪→prg µi, then P ↪→prg µ
s
i .

Proof. This is by definition of µsi .

Lemma G.64. Let CS be a source context, PS be a source program, µi ∼ µsi two related traces such that µi was produced by

PS↓ and some target context, and e an expression. Then, if CS
µs

i==⇒⇒e and Ps ↪→prg µ
s
i , then PS . CS

µs
i==⇒⇒e′ where CS

µs
i==⇒⇒e′.

Proof. We will prove by induction n that ∀n,∀µ, |µ| = n, ∀e,∀PS, e ↪→ctx µ ∧ PS ↪→prg µ =⇒ ∃e′, e
µ

==⇒⇒e′ ∧ PS . e
µ

==⇒⇒e′

Base case If n = 0, this is trivially true.
Inductive case Let n ∈ N, µ of length n, e and PS such that e ↪→ctx µ and PS ↪→prg µ.

We consider only one case, but the other cases are similar:

µ = µ1µ2µ3
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where µ2 = call f v?µ′2ret v
′! is defined as in the definition of ↪→prg.

• First, e ↪→ctx µ1 and e ↪→prg µ1, by definition of these relations. Therefore, by induction hypothesis, ∃e′, e
µ1

==⇒⇒e′ and
PS . e

µ1
==⇒⇒e′. In particular, e′ is of the form E [call f v] by determinism of the execution of the context (since the

read/writes are set by the trace), such that e′ ↪→ctx µ2µ3.
• We have that PS . e′

µ2
==⇒⇒E [v′] by definition of the partial semantics for programs, and the rules of evaluations inside

contexts.
• We can again apply the induction hypothesis to µ3.
Hence, we obtain the result: PS . e

µ1µ2µ3
======⇒⇒e′′ where e

µ1µ2µ3
======⇒⇒e′′.

By using these two lemmas, we can prove the composition theorem.

G.5.7 Back to Non-Informative Traces
The last step of the proof is to go back to the non-informative trace model. In particular, we must take into account that the
trace µsi that is generated by the whole program is not exactly equal to the original trace µi.

Theorem G.65 (Back to non-informative traces). Let CS be a source context, PS be a source program, m a non-informative
trace and µ an informative trace such that µ w m.

Then, CS [PS] ↪→ µs =⇒ CS [PS] ; m.

The proof is immediate by definition of µs.

G.5.8 Proving the Secure Compilation Criterion
The proof follows the scheme depicted by Figure 4.

Proof. Let P1 . . .Pk be k programs and m1 . . .mk be k finite trace prefixes. Let CT be a target context and suppose the
following holds:

∀i,CT[Pi↓] ; mi

We can pass to informative traces by applying Theorem G.47 to each mi

∀i,∃µi w m,CT[Pi↓] ↪→µi.
From here, we can apply the decomposition theorem (Theorem G.49) to each µi:

∀i,CT ↪→ctx µi ∧ Pi↓ ↪→prg µi.

By the backward compiler correctness theorem (Theorem G.54) for programs applied to each program, we obtain that:

∀i,Pi ↪→prg µi.

Also, by applying the back-translation theorem, we can produce a source context:

∃CS,∀i,CS ↪→ctx µ
s
i .

Moreover, this CS is well-typed and linkable with the Pi.
Now, we are able to apply the composition theorem (Theorem G.62) to each program:

∀i,CS[Pi] ↪→ µsi

Finally, we can go back to the non-informative traces by the last theorem (Theorem G.65):

∀i,CS[Pi] ; mi.

Remarks on the proof technique This proof technique should be fairly generic and could be adapted to other languages. if
needed, it is possible to change the top-level statement by introducing a more complex relation between source and target, that
could for instance model the exchange between failure and calls that might happen in our instance, or to model non-determinism
in a non-deterministic language. While decomposition and composition are natural properties that we expect to hold for most
languages, and while backward correctness can reasonably be expected from a secure compiler, the back-translation seems to
be the hardest part of the proof and the most subject to change between languages.
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[15] M. Backes, C. Hriţcu, and M. Maffei. Type-checking zero-knowledge.
CCS. 2008.
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