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Abstract

We initiate a program to develop a principled the-
ory of secure systems. Our main technical result is a
formal logic for reasoning about a network of shared
memory, multi-user systems. The logic is inspired by
an existing logic for security protocols. It extends the
attacker model and adds shared memory, time, and lim-
ited forms of access control. We prove soundness for the
proof system in the presence of an attacker who controls
the network and has partial control over shared memory
on individual machines. We illustrate the use of the logic
by proving a relevant security property of a part of the
Trusted Computing Group’s remote attestation protocol.

1. Introduction

This paper initiates a program to develop a theoreti-
cal basis for the design and analysis of secure systems.
For the purpose of this paper, we define asystemas a set
of concurrent, interacting threads with shared mutable
state. Interaction may take place locally through reads
and writes to shared memory or over a network. This
definition is motivated by our target application domain,
which includes a number of deployed and industrial-
standard contemporary systems such as OS kernels, vir-
tual machine monitors (VMMs), and co-processor-based
systems such as those utilizing the Trusted Computing
Group’s Trusted Platform Module (TPM) [31].

Our long-term goal is to develop a formal framework
for modeling and analysis of secure systems at two lev-
els of abstraction—system architectureandsystem im-
plementation. A specific issue that we plan to address in
developing and using this framework is to provide rigor-
ousdefinitions of securityandadversary models, a rel-
atively unexplored area in system security. In addition,
we hope to identifydesign principlesfor secure systems,
as well as a core set of basicbuilding blocksfrom which
complex systems can be constructed via secure compo-
sition.

In this paper, we take several steps towards achiev-
ing this goal. We introduce theLogic of Secure Sys-
tems(LS2), a logic for reasoning about security prop-
erties of systems at the architecture level. The logic is
designed around a programming language with two dis-
tinctive features. First, the language includes standard
process calculus style communication primitives as well
as imperative constructs for reading and updating mem-
ory. This (somewhat non-standard) design choice is mo-
tivated by our goal to (a) have a language in which the
representation of the system is close to its actual imple-
mentation, and (b) to develop simple, high-level reason-
ing principles for such systems. Using the replication
operator from process calculus would, while providing
a way to encode state, defeat these goals. Second, the
language includes primitives for modelingmemory pro-
tection, a fundamental building block for secure sys-
tems [27], at a high-level of abstraction. The opera-
tional semantics defines the set of traces produced by a
program. Adversaries are modeled as programs in the
same language. The adversary controls the complete
network and can write to any unprotected memory lo-
cation. Traces are augmented by associating time with
events. We use a dense total order to model time (i.e.
between any two time points, there exists another) and
require that successive events on a trace have monoton-
ically increasing time values associated with them. The
extension to a timed model is motivated by the need to
specify meaningful properties of secure systems. While
a temporal logic such as LTL [25] may suffice for certain
applications, we expect that a model of real time may be
needed to analyze some systems of interest [21,28,29].

LS2 draws its lineage from a logic for network pro-
tocol analysis,Protocol Composition Logic (PCL)[4–
13, 16, 26]. It extends PCL by incorporating time in all
formulas, and by introducing new axioms for reasoning
about shared memory, memory protection and machine
resets. It retains other features of PCL, such as predi-
cates for reasoning about signatures and their verifica-
tions. A major departure from PCL is the basic style
of reasoning: PCL associates pre-conditions and post-
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conditions with each action in a process; the presence
of time in LS2 allows us to reason globally about the
program (the order of events is captured by the natu-
ral order on time). This difference results in significant
differences in the judgments of the two logics. The cen-
tral judgment of the logic is~l ,tb,te` [P]X A, which intu-
itively means that ifX executes the programP between
time tb and te while starting from a configuration that
locks all locations in~l for X (so that onlyX has write
access to these locations), then the formulaA holds. The
proof system forLS2 allows us to derive such judgments.
It consists of about 20 generic rules for reasoning about
secure systems and 10 application-specific rules for rea-
soning about trusted computing systems. We prove a
soundness theoremfor the proof system. We illustrate
the use of the logic by proving a relevant security prop-
erty of a part of the Trusted Computing Group’s remote
attestation protocol. Our proof indicates in a precise way
certain security issues with the protocol (see Section 5.2
for details).

The rest of the paper is organized as follows. Sec-
tion 2 presents an example of a trusted computing sys-
tem protocol that we use as a running example through-
out the paper. The full definition of the syntax and oper-
ational semantics of the programming language as well
as the timed trace model is given in Section 3. Section 4
describes the syntax and semantics ofLS2. Section 5
presents a proof system forLS2, its soundness theorem
and the application to the trusted computing protocol.
Conclusions appear in Section 7. Detailed proofs are in
the appendices.

2. Motivating Example

As an illustration of our logic and proof method,
we prove the correctness of a simplified version of the
Trusted Computing Group’s (TCG’s) remote attestation
protocol. The protocol runs between a platform and
a remote verifier. The objective of the protocol is to
convince the remote verifier of the integrity of the
platform’s boot sequence.

Trusted Platform Module. To achieve this goal,
a platform utilizes a secure co-processor called the
Trusted Platform Module (TPM). Conceptually, the
TPM provides cryptographic primitives, shielded loca-
tions, protected capabilities, and a starting point for the
measurement process called the Core Root of Trust for
Measurement (CRTM). In today’s systems, the CRTM
may be in the BIOS rather than in the TPM, hence we
use CRTM and BIOS interchangeably. There are two

versions of the attestation protocol which differ based
on the point at which measurement begins. In this
paper, we focus on the standard Static Root of Trust
for Measurement (SRTM) protocol which begins mea-
surement at system boot. This protocol relies on the
TCG’s Platform Configuration Registers (PCRs) and
TPM Extend command. PCRs are protected registers
that can only be written by two special instructions, one
for resetting and one for extending stored values. We
denote the PCRs of a machinem by m.PCR(i) wherei
ranges over natural numbers. The instructionreset m
puts the special value 0 in all the PCRs of machine
m. It is assumed that this instruction is executed only
when a machine is rebooted, and that a PCR cannot ob-
tain this special value in any other way. The instruc-
tion extend m.PCR(k), m.loc modifies the content of
m.PCR(k) to be a hash of the concatenation of its cur-
rent value with a hash of the contents of the memory
locationm.loc (m.loc denotes an abstract memory loca-
tion loc on machinem). In pseudocode, the effect of this
instruction may be summarized as follows:

m.PCR(k)← HASH(m.PCR(k)||HASH(m.loc))

We often use the notation seq(0,v1, . . . ,vn)
(n ≥ 0) to denote the contents of a PCR which
started with 0 and has subsequently been ex-
tended with the sequence valuesv1, . . . ,vn. For-
mally, seq(0) = 0 and seq(0,v1 . . . ,vn,vn+1) =
HASH(seq(0,v1, . . . ,vn)||HASH(vn+1)).

A Modified SRTM Protocol. As an illustrative exam-
ple, we describe a simplified version of the SRTM at-
testation protocol in Figure 1. Subsequent sections de-
scribe an analysis of this protocol using the proof system
of LS2.

The SRTM protocol is a three agent protocol, each
agent executing a different process. The three processes
are: (1) Booting(m), executed by the machine itself
(called m̂), that measures the boot loader and operat-
ing system, and communicates with the remote veri-
fier, (2) Signer(m), executed by the TPM ofm, that
signs the PCR containing code measurements, and (3)
Veri f ier(m), executed by a remote verifier who wants to
verify the integrity ofm’s boot sequence.

The correctness of the SRTM protocol relies on a
number of non-trivial facts. First, it depends on the
fact that a PCR can only be extended, and never over-
written in any other way, and hence always contains a
record of everything that was written to it since the last
reboot. Second, this protocol (implicitly) depends on
write-protection in memory. For instance, it is critical
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Booting(m) ≡ extend m.PCR(s),m.bl loc; Extend bootloader’s code intoPCR(s)
b = read m.bl loc; Read bootloader’s code
call b; Call the bootloader
extend m.PCR(s),m.os loc; Extend operating system’s code intoPCR(s)
o = read m.os loc; Read the operating system
call o; Call the operating system
unlock locs(m); Unlock all locations
. . .
send (); SignalSigner(m) to signm.PCR(s)
s= receive ; Receive signature fromSigner(m)
send s Send signature toVeri f ier(m)

Signer(m) ≡ = receive ; Receive signal fromBooting(m)
w = read m.PCR(s); ReadPCR(s)
s= sign w; Sign the value inPCR(s)
send s Send signature toBooting(m)

Veri f ier(m) ≡ s= receive ; Receive signedPCR(s) from Booting(m)

verify s,seq(0,BL(m),OS(m)), ˆTPM(m) Verify the signature

Figure 1. A Modified SRTM Protocol

that the code of the boot loader remain the same between
the time it is measured into a PCR by and invoked. Prov-
ing the protocol correct, therefore, requires a formalism
that can deal with both PCRs and shared memory with
write locks.

We have simplified the protocol significantly from its
actual specification. For example, in our presentation,
both the boot loader and the operating system are loaded
by the BIOS (as opposed to the actual protocol in which
the operating system is loaded by the boot loader). As a
result, we do not have to model the exact code of the
boot loader, and also avoid having to model function
calls in our formalism. While we believe that our logic
can be extended to handle such branching code, we have
not worked out the extension in full detail yet.

Other simplifications we make are: (1) We do not
model software loaded after the operating system, and
assume that only one PCR is used for all hashes. Adding
further layers of software, or using more PCRs does
not change the structure of the proof of correctness, it
merely repeats steps. (2) We ignore a nonce that is in-
tended to avoid replay attacks in the actual protocol.
This change weakens the guarantee that is available to
verifier. We can easily model this nonce in our formal-
ism, but its addition does not highlight any new tech-
nique or method. (3) We do not model the transmission
or verification of a certificate or a measurement list con-
taining the list of programs whose hashes are included
in the PCRs. We also assume that the TPM is genuine
and that the measured programs are known a priori.

3 Modeling Secure Systems

In this section, we present the syntax and operational
semantics for our programming language. In addition,
we define precisely how time is added to the traces ob-
tained by executing programs.

3.1 Process calculus

Figure 2 summarizes the syntax of our process cal-
culus. We assume a fixed setM of machines (denoted
m), and a fixed setL of memory locations spanning all
machines (denotedl ). We write machine(l) to denote
the machine on whichl is located. Often, we explic-
itly qualify a location with the name of the machine on
which it is located by writingm.l . We use the notation
~l to denote asetof locations, andlocs(m) to denote the
set of all locations on machinem.

There is a special set of locations on each machinem
denotedm.PCR(x), representing the platform configura-
tion registers (PCRs) on machinem (x is the index of the
PCR). PCRs cannot be read or written in the usual way;
instead they can only be extended or reset.

Each machine may execute a number of concurrent
threads. There are send and receive primitives that allow
message based communication between threads. How-
ever, communication is undirected and insecure — any
message sent by any thread may be received by any other
thread, even perhaps on a remote machine.
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Machine m
Location l
Agent/Public Key K̂, X̂,Ŷ
Unique thread identifier η
Thread id X,Y ::= 〈X̂,η,m〉
Value/expression e,v ::= n Number

| K̂ Agent/Public Key
| v||v′ Pair
| HASH(v) Hash ofv
| SIGK̂{|v|} Valuev signed byK̂’s private key
| c Code that can be called
| x Variable

Action a ::= extend PCR(x), l ExtendPCR(x) with value at locationl
| read l Read locationl
| write l ,v Write v to locationl
| call c Call the codec
| send v Sendv as a message
| receive Receive a message
| sign v Signv with private key
| verify s,v,K Verify that s= SIGK̂{|v|}
| lock l Obtain write lock on locationl
| unlock l Release write lock on locationl

Process P,Q ::= x1 = a1; . . . ;xn = an

Thread T,S ::= 〈X,P〉
Store (function) σ : L→ Values
Lock map (function) ζ : L→ (Thread ids)∪ { }
Configuration C ::= ζ,σ ` T1| . . . |Tn

Figure 2. Syntax of the process calculus

We also assume a set of agentsX̂, Ŷ, K̂, etc. that ex-
ecute programs, possibly many at one time on several
machines. Each agent has a unique public or verifica-
tion key, which is identified with the name of the agent.
The private or signing key of an agentX̂ is represented
by the notationX̂−1. Some agents may participate in a
given protocol, others may be intruders and yet others
may be non-interfering observers. All these agents are
modeled the same way. We stipulate for each machine
ma special agent called ˆm, which owns any threads run-
ning on behalf of the machine itself.

Each thread is identified by a unique id, denoted
X. The id of a thread is actually a 3-tuple〈X̂,η,m〉
whereX̂ is the name of the agent on behalf of whom
the thread runs,η is a unique thread identifier (used to
distinguish multiple threads of the same agent), andm
is the machine on which the thread runs. We define
machine(X) = m if X = 〈X̂,η,m〉.

The program of a thread is called aprocess(P, Q,
etc.). Processes are written in functional style, with vari-
able names denoting expressions and values (denotede
andv, respectively), and reduction rules substituting val-
ues for variables. We implicitly assume that values and

expressions are typed. The types include numbers, keys,
pairs, signatures, hashes, and code. For the purposes of
this paper, we do not need to distinguish between values
and expressions.

A salient point is that machine names and locations
are not expressions. In particular variables can’t range
over them, nor can they be passed in messages or stored
in locations. This restriction is necessary to be able
to accurately track machine names and locations in our
proof system.

Formally, processes are (possibly empty) sequences
of actions. Eachaction(a) performs either communica-
tion, or changes the state of memory (on the local ma-
chine), or performs some evaluation such as signature
computation or signature verification. All actions return
a result, which immediately binds to a variable (written
xi in the figure). The bound variablexi is in scope in the
part of the process following the action. We freely allow
renaming of bound variables.

For an action such as reading a memory location or
receiving a message, the value returned is the obvious
one obtained by performing the action. For actions such
as writing to memory or sending a message, the value
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returned is a dummy (one may assume it to be zero). In
the latter case, we often omit the variable bound by the
action, writing in its place. The special actioncall c
describes a function call to the function whose code isc.
In our calculus, this call does nothing, except recording a
reduction on the trace, which can then be reasoned about
in the logic. The actionslock l andunlock l acquire
and release a write-lock on locationl .

A thread, denotedS, T, is formally a pair〈X,P〉,
whereX andP represent the id and the process of the
thread, respectively.

A snapshot of all threads running on all machines at
a point of time is called aconfiguration, denotedC. In
addition to threads, a configuration contains two other
pieces of information: (1) Astore, σ that maps each lo-
cation inL to the value stored in it, and (2) Alock map,
ζ that maps each location inL to the id of the thread that
has a lock on it. If no thread has a lock on a location, the
location is mapped to the special symbol. The locks we
consider in this paper are write-locks; a location locked
by a thread may still be read by other threads, but it may
be written only by the thread that holds the lock.

(It is relatively straightforward to conceive a different
process calculus with locks that restrict both writing and
reading. However, we do not consider such locks in this
paper.)

For any threadX, we define locked(X,ζ) as
the subset of L that contains exactly the loca-
tions which are locked byX according to ζ, i.e,
locked(X,ζ) = {l ∈ L|ζ(l) = X}. Similarly, we define
unlocked(ζ) = {l ∈ L|ζ(l) = }. In reality, both the
store and the lock map would be maintained on a
machine by machine basis. Our notation is equivalent
to this real situation, since the machine associated with
any location can be obtained simply by examining it.

Well-formed configurations. Not all configurations are
well-formed. For well-formedness, we require the fol-
lowing four syntactic conditions. Letmustlocked(P)
be the set of locations that occur inP in actions of the
formunlock l , that are not preceded by a corresponding
lock l . Intuitively, these are the locations that must be
locked beforeP is started.

1. The processes of all threads are closed, i.e., without
free variables.

2. No thread in the configuration should try to lock a
location that it already has a lock on. This property
can be checked syntactically by examining the pro-
cess of the thread since locations cannot be bound
as variables.

3. For any thread〈X,P〉 in the configuration,
mustlocked(P) ⊆ locked(X,ζ). This ensures that
an unlock action always succeeds.

4. The processP of each thread〈X,P〉 mentions
locations contained inmachine(X) only. This
means that remote locations cannot be accessed by
threads.

In the rest of the paper, we assume that all config-
urations are well-formed, without explicit reference to
this fact. The reader may check that our reduction rules
preserve well-formedness of configurations.

Honesty. We call an agent̂X honest, if the agent does
not leak its private (signing) key. In our logic, we write
this as the predicateHonest(X̂). We assume that for
each agent it is known whether the agent is honest
or not, and that this fact remains unchanged as the
configuration evolves. For an honest agent, we may
optionally specify the possible processes~P (~P denotes a
set of processes) that threads owned by it may execute.
In our logic this is written using the binary predicate
Honest(X̂,~P). Such information is often useful for
reasoning about the actions of the process.

Reduction Rules. The reduction rules for configura-
tions are shown in Figure 3. We use the notationσ[l 7→ v]
to mean the storeσ, with the change thatl contains the
valuev. Similarly, ζ[l 7→ X] means the mapζ, with the
exception thatl is locked byX (if X = , then l is un-
locked).

The reduction rules (with the exception of (reset)) are
associated with actions in processes. Each action corre-
sponds to one rule. Rules (extend) to (unlock) capture
internal reductions within a thread.

The rule (comm) captures synchronous communica-
tion between two threads, one willing to send a value
and the other willing to receive a value. There is no re-
striction on communication; arbitrary threads may syn-
chronize with each other.

The rule (reset) represents the action of resetting a
machinem. An important point is that this rule does
not correspond to any action in the process calculus; we
assume that any machine can be reset at any time sponta-
neously. Resetting a machine kills some threads that are
on the machine. The reason for not killing all threads is
that some threads which are modeled in the configura-
tion at the time of reset may not actually have started by
then, and may be waiting to start later. We stipulate that
any threads holding locks be necessarily killed.

The notation(T1 | . . . | Tn)−{m} denotes an arbi-
trary subset of threads inT1 | . . . | Tn, the only removed
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(extend) ζ,σ[m.PCR(x) 7→ seq(0,v1, . . . ,vn)][l 7→ vn+1] ` 〈X, = extend m.PCR(x), l ; P〉 | . . .
−→ ζ,σ[m.PCR(x) 7→ seq(0,v1, . . . ,vn,vn+1)][l 7→ vn+1] ` 〈X,P〉 | . . .

(wheremachine(X) = m andm.PCR(x) ∈ locked(X,ζ)∪unlocked(ζ))
(read) ζ,σ[l 7→ v] ` 〈X,x = read l ; P〉 | . . . −→ ζ,σ[l 7→ v] ` 〈X,P[v/x]〉 | . . .
(write) ζ,σ[l 7→ v′] ` 〈X, = write l ,v;P〉 | . . . −→ ζ,σ[l 7→ v] ` 〈X,P〉 | . . .

(wheremachine(X) = m andl ∈ locked(X,ζ)∪unlocked(ζ))
(call) ζ,σ ` 〈X, = call c;P〉 | . . . −→ ζ,σ ` 〈X,P〉 | . . .
(sign) ζ,σ ` 〈X,x = sign v;P〉 | . . . −→ ζ,σ ` 〈X,P[SIGX̂{|v|}/x]〉 | . . .
(verify) ζ,σ ` 〈X, = verify s,v,K;P〉 | . . . −→ ζ,σ ` 〈X,P〉 | . . .

(if s= SIGK̂{|v|})
(lock) ζ[l 7→ ],σ ` 〈X, = lock l ;P〉 | . . . −→ ζ[l 7→ X],σ ` 〈X,P〉 | . . .
(unlock) ζ[l 7→ X],σ ` 〈X, = unlock l ;P〉 | . . . −→ ζ[l 7→ ],σ ` 〈X,P〉 | . . .
(comm) ζ,σ ` 〈X, = send v;P〉 | 〈Y,x = receive ;Q〉 | . . .

−→ ζ,σ ` 〈X,P〉 | 〈Y,Q[v/x]〉 | . . .
(reset) ζ,σ ` T1 | . . . | Tn

−→ ζ[locs(m) 7→ X],σ[locs(m) 7→ 0] ` (T1 | . . . | Tn)−{m} | 〈X,Booting(m)〉
(whereX = 〈m̂,η,m〉 andη is fresh)

Figure 3. Reduction Rules of the Process Calculus

threads being situated on machinem. A special thread,
X, owned bym̂ is started onm after a reset. This thread
runs a fixed processBooting(m), which represents the
actions needed for booting the machine. The exact
details of this process depend on the way machines are
modeled (which we keep abstract). For the illustrative
example that we consider in this paper, this process is
defined in Figure 1. In addition, resetting machinem
acquires locks on all locations on the machine for the
new threadX (captured by the notationζ[locs(m) 7→ X])
and sets all locations on the machine, including PCRs,
to 0 (captured by the notationσ[locs(m) 7→ 0]).

Initial configurations. A configuration is called initial
if it satisfies the following conditions:

1. No value in the range of the store contains a sub-
expression of the formSIGX̂{|v|}, if X̂ is honest.

2. For each agent̂X, no thread of agent̂X contains
a value of the formSIGŶ{|v|} if X̂ 6= Ŷ and Ŷ is
honest.

3. Each PCR, on every machine, contains a value
other than 0 that cannot be written asHASH(v) for
anyv.

Conditions (1) and (2) state that in an initial con-
figuration, messages signed by honest agents should
neither be known to other agents, nor stored in memory.
Together they imply that, starting from an initial config-
uration with honest̂X, a process of a different agentŶ

may contain an expression of the formSIGX̂{|v|} only
if X̂ actually sent it in a message. This is necessary to
prove the correctness of some protocols. Condition (3)
is a technical condition needed to prove soundness. One
may assume that all PCRs initially contain the value 1.

Adversary Model. Adversaries are modeled as addi-
tional threads in a configuration. There is no constraint
on adversaries, except that they must respect conditions
(1) and (4) of well-formed configurations and condition
(2) of initial configurations. In particular, adversaries
do not have to be honest, and they may intercept any
communication, read any memory location, and write
any unlocked location. An important point to observe
here is that, owing to a restricted syntax of expressions,
adversaries are limited in what they can do with inter-
cepted messages. For example, there is no construct
for projecting the components of a pair. However, the
restricted syntax of expressions is merely a matter of
presentation; there is no new technical difficulty in
working with a bigger syntax of expressions.

3.2 Timed Traces and Matching

A trace is a sequence of configurationsC0, . . . , Cn,
such that (1)C0 is an initial configuration, and (2) for
eachi,Ci reduces toCi+1 using one of the reduction rules
of the process calculus.

A timed trace(denotedT ) is a trace, in which a time
point (real number) is associated with each reduction
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step. This time point represents the time at which the
reduction occurs. We require that the time points be
monotonically increasing. We often write a timed trace
as (t1 < .. . < tn are the reduction time points):

C0
t1−→C1 . . .

tn−→Cn

Let θ,ϕ denote substitutions mapping program variables
to ground expressions, andPθ denote the result of apply-
ing θ to P. We say that a timed traceT matches the tuple
〈~l ,tb,te,X,P〉 with substitutionθ if the reductions ofX’s
process in some subtrace ofT match the sequence of ac-
tions inPθ, all these reductions happen during the semi-
open interval[tb,te), and at the start of the first action in
P, each location in~l is locked forX. The reason for us-
ing semi-closed intervals such as[tb,te) instead of open
or closed intervals is mainly technical convenience.

Formally, we say thatT �〈~l ,tb,te,X,P〉 | θ (read “T
matches〈~l ,tb,te,X,P〉 with substitutionθ”) if the fol-
lowing hold:

1. For some Ci ∈ T and process Q,
Ci = ζi ,σi ` 〈X,(P;Q)θ〉 | . . .

2. locked(X,ζi)⊇~l

3. For somei′ ≥ i, Ci′ ∈ T , and substitutionϕ,
Ci′ = ζi′ ,σi′ ` 〈X,(Qθ)ϕ〉 | . . .

4. The time associated with each reduction ofX be-
tweenCi andCi′ lies in the interval[tb,te).

If P does not contain any actions, we trivially have
T � 〈~l ,tb,te,X,P〉 | θ for any substitutionθ, if in T , X
does not perform any reduction in the interval[tb,te).

For an action a, we define
T � 〈~l ,tb,te,X,y,a〉 | θ,v/y if T � 〈~l ,tb,te,X,(y =
a)〉 | θ and in addition, the actiona in T producesv.

4 LS2: Syntax and Semantics

In this section, we describe the syntax and semantics
of the logicLS2.

4.1 Syntax of LS2

The formulas ofLS2, together with their intuitive
meanings, are shown in Figure 4. Action predicates, de-
notedR, capture reductions of the timed trace. There is
one action predicate for each possible action. The sec-
ond argument of each action predicate specifies a time
point for the action. The predicate holds if a reduction

corresponding to the action happened on the trace at the
specified time point.

Other predicates (denotedM) capture other proper-
ties of the trace.MemContents(t, l ,v) means that loca-
tion l contains valuev at time t. Reset(m,t,X) means
that machinemwas reset at timet, creating a new thread
with id X (using the reduction rule (reset)). The two
predicates of different arity namedHonest capture hon-
esty invariants described earlier. The predicatet ≥ t ′ rep-
resents algebraic ordering between time points.e = e′

represents syntactic equality between expressions. We
also allow equality between time points. Together, the
two time comparison operators≥ and= are enough to
define all the other comparison operators:≤, <, > and
6= between time points. In the sequel, we use these op-
erators as if they were part of the formal syntax.

Formulas, denotedA, B, etc, are either predicates
or constructed using connectives of first-order classical
logic. The quantifiers∀x.A and∃x.A may range over ex-
pressions, thread ids, locations, and time points, but not
over processes or machines.

The subjects of deduction in the logic are judgments,
J. LS2 has two new judgments that are intuitively ex-
plained below:

- ~l ,tb,te ` [P]X A : If, starting in a configuration that
locks all locations in~l for X, all reductions ofX
betweentb andte matchP, thenA holds.

- ~l ,tb,te `y [a]X A : If, starting in a configuration that
locks all locations in~l for X, the process ofX exe-
cutes exactly one action matchingy= a betweentb
andte, thenA holds.

As an invariant, logical deduction keepstb andte para-
metric. The only free variables allowed inA aretb, te,
and any variables free inP. In the second judgment,A
may also mentiony. This departs from PCL, in which
A may also mention variables bound inP. This choice
is purely a matter of style, one could reconstructLS2 al-
lowing bound variables ofP to occur inA.

4.2 Semantics of LS2

We define the formal semantics ofLS2 by defin-
ing satisfaction of formulas and judgments over timed
traces. We writeT |= J to mean thatT satisfies the
judgmentJ. If J = (` A), we often abbreviateT |= J to
T |= A.
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Action Predicates R ::= Extend(X,t,PCR(x),v) | Read(X,t, l ,v) |Write(X,t, l ,v) | Call(X,t,c)
| Receive(X,t,v) | Sign(X,t,v) | Verify(X,t,v,K) | Lock(X,t, l) | Unlock(X,t, l)

Other Predicates M ::= MemContents(t, l ,v) | Reset(m,t,X) | Honest(X̂) | Honest(X̂,~P) | t ≥ t ′ | e= e′

Formulas A,B ::= R | M | A∧ B | A∨ B | A⊃ B | ¬A | ∀x.A | ∃x.A
Judgments J ::= ` A | ~l ,tb,te ` [P]X A | ~l ,tb,te`y [a]X A

Figure 4. Syntax of LS2

Action Predicates

An action predicate is satisfied byT if T contains a re-
duction matching the corresponding action.

T |= Extend(X,t,PCR(x),v,v′) if in T , X executed the
action = extend PCR(x), l at timet, l containedv and
PCR(x) containedv′ before the action.

T |= Read(X,t, l ,v) if in T , X executed the action
x = read l at timet, receivingv from locationl into x.

T |= Write(X,t, l ,v,v′) if in T , X executed the action
= write l ,v at timet andl containedv′ before the ac-

tion.

T |= Call(X,t,c) if in T , X executed the action
= call c at timet.

T |= Send(X,t,v) if in T , X executed the action
= send v at timet.

T |= Receive(X,t,v) if in T , X executed the action
x = receive at timet, receivingv into x.

T |= Sign(X,t,v) if in T , X executed the action
x = sign v at timet, receivingSIGX̂{|v|} into x.

T |= Verify(X,t,v,K) if in T , X executed the action
= verify s,v,K at timet, ands= SIGK̂{|v|}.

T |= Lock(X,t, l) if in T , X executed the action
= lock l at timet.

T |= Unlock(X,t, l) if in T , X executed the action
= unlock l at timet.

Other Predicates

Let T = C0
t1−→ C1 . . .

tn−→ Cn. For uniformity, define
t0 =−∞. Then,

T |= MemContents(t, l ,v) if ti < t ≤ ti+1 for some 0≤
i < n and inCi , σ(l) = v, or t > tn and inCn, σ(l) = v.

T |= Reset(m,t,X) if in T , the reduction (reset) hap-
pened on machinem at time t, creating a new thread
with id X and processBooting(m).

T |= Honest(X̂) if X̂ is assumed to be honest.

T |= Honest(X̂,~P) if X̂ is honest, and inC0, each process
of X̂ is in ~P.

T |= t ≥ t ′ if t ≥ t ′ (algebraically)

T |= e= e′ if e ande′ are syntactically equal.

Formulas

Satisfaction for formulas built with the connectives of
first-order logic is defined in the obvious way. For ex-
ample,

T |= A∧ B if T |= A andT |= B.

Judgments

Satisfaction for judgments captures their intuitive mean-
ing described earlier.

T |= (` A) if T |= A

T |= (~l ,tb,te ` [P]X A) if for any ground time
points t ′b and t ′e, T � 〈~l ,t ′b,t

′
e,X,P〉 | θ implies

T |= (Aθ)[t ′b/tb][t ′e/te]

T |= (~l ,tb,te `y [a]X A) if for any ground time
points t ′b and t ′e, T � 〈~l ,t ′b,t

′
e,X,y,a〉 | θ,v/y implies

T |= (Aθ)[v/y][t ′b/tb][t ′e/te]

4.3 SRTM: Correctness Property

We formalize a correctness property for the modified
SRTM protocol described in Figure 1. Later, in Sec-
tion 5.2, we use the logic’s proof system to actually es-
tablish this property. Suppose that the verifier’s thread,
V, executes the codeVeri f ier(m) in the time interval
[tb,te). Then, the following four properties are guaran-
teed: (1) At some point of timetR (tR < te), the machine
mwas reset, (2) At some time pointtRe(tR< tRe< te), the
TPM of m readseq(0,BL(m),OS(m)) from m.PCR(s),
(3) At some point of timetBL (tR < tBL < tRe), the correct
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boot loaderBL(m) was called onm, and (4) Machinem
was not reset betweentR andtRe.

Formally, let us define the following four formulas
corresponding to these four properties.

1. A1(tR,X) = Reset(m,tR,X)

2. A2(tRe)= ∃TPM(m). Read(TPM(m),tRe,m.PCR(s),
seq(0,BL(m),OS(m))

3. A3(tBL,X) = Call(X,tBL,BL(m))

4. A4(tR,tRe)= ∀t.∀Y. (tR < t < tRe)⊃¬Reset(t,m,Y)

Then, we establish the following judgment (called
JSRTM in the sequel):

·,tb,te ` [Veri f ier(m)]V ∃tR,tRe,tBL,X.

((tR < tBL < tRe< te) ∧

A1(tR,X) ∧ A2(tRe) ∧

A3(tBL,X) ∧ A4(tR,tRe))

Several desirable properties of the protocol do not ac-
tually hold. These are discussed in Section 5.2.

5 LS2: Proof System

The proof system is presented in Figures 5 and 6 re-
spectively. In addition to these rules and axioms, we as-
sume a full axiomatization of first-order classical logic
with explicit equality on terms. We omit these axioms,
since any presentation suffices. We also assume (implic-
itly) that the order on time points is total, i.e, it is re-
flexive, transitive, anti-symmetric, and that for any two
time pointst1 andt2, (t1 ≥ t2) ∨ (t2 ≥ t1) (totality). For
the purpose of reasoning in the proof system, we do not
need to assume that time points form a dense set, but
we need this property for proving soundness (hence the
choice of real numbers for representing time).

We use some notation to simplify our presentation.
If P = (x1 = a1; . . .xn = an) is a process, we define the
initial sequencesof P, written IS(P), as the set of se-
quences of the formx1 = a1; . . .xi = ai , where 0≤ i ≤ n.
This also includes the empty sequence. This easily gen-
eralizes to sets of processes;IS(~P) represents the set of
prefixes of all processes in~P.

If a is an action, R(X,t,x,a) denotes its corre-
sponding action predicate, withX as the first argu-
ment, t as the second, and the remaining arguments
taken from x = a. For example, ifa = write l ,v,
then R(X,t,x,a) = Write(X,t, l ,v). Similarly, if a =
read l , then R(X,t,x,a) = Read(X,t, l ,x). We write

NoReset(m,t,t ′) to mean thatm was not reset be-
tween t and t ′ (t included), i.e., as an abbreviation
for ∀t ′′.∀Y. (t ≤ t ′′ < t ′)⊃ ¬Reset(m,t′′,Y). A slightly
weaker property writtenNoResetw(m,t,t ′) does not in-
clude the time pointt. NoResetw(m,t,t ′) = ∀t ′′.∀Y. (t <
t ′′ < t ′)⊃ ¬Reset(m,t′′,Y).

We briefly describe the important rules and axioms.
Rule (Seq) states that we can reason about a process
x = a;P, all of whose actions happened betweentb and
te, by assuming a time pointtm, such that actiona hap-
pened beforetm and all other actions inP happened af-
terward, and combining the facts deduced from the two
components. Rules (Lock) and (Unlock) are similar, ex-
cept that the locations locked for the thread change as
we move from the conclusion to the premises.

Rules (Honesty) and (Reset) allow us to reason with
invariants: if it is known that a threadX can only be exe-
cuting a fixed set of processes ({Booting(m)} in case of
(Reset)), and on every prefix of these processes,A holds,
thenA must hold. Axiom (Act) states that if threadX
executes actiona betweentb andte, then there is exactly
one time pointt in that interval on whicha occurred.

Axiom (Mem1) states that if the only action ofX in
the interval[tb,te) does not write, extend or unlockl , at
tb, l containedv, X has a write lock onl , and the machine
does not reset in[tb,te), then throughout the intervall
has valuev. Axioms (Mem2) and (Mem3) generalize
(Mem1) when the action ofX writes or extendsl . In
these cases, there is a time pointt up to whichl contains
its old valuev, and after whichl contains the new value
written by the action. Axioms (Mem4) – (Mem6) are
similar to axioms (Mem1) – (Mem3), but they are used
to reason about a thread which is started after a reset.

Axiom (VER) states that if a thread of agentX̂ suc-
cessfully verifies another honest agentK̂’s signature,
then at some earlier time some thread ofK̂ either sent
the signature in a message, or stored it in memory. Ax-
iom (PCR1) says that if a PCR containsseq(0,v1, . . . ,vn)
at some point of time, then at some earlier time, it must
also have containedseq(0,v1, . . . ,vn−1), and that there
was no reset in between (which would have set the PCR
to 0). Axiom (PCR2) is similar.

5.1 Soundness

The main technical result of our work is asoundness
theorem: every judgment provable in the proof system
of LS2 is satisfied by every timed trace. We prove a more
general result. LetΓ denote a set of formulas, and let
Γ =⇒ J mean thatJ can be proved assuming that each
formula in Γ is provable. LetΓ |= J mean that every
trace which satisfies each formula inΓ also satisfiesJ.
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~l ,tb,tm `
y [a]X A1 ~l ,tm,te ` [P]X A2 a 6= lock l ′,unlock l ′ (tm fresh)

~l ,tb,te ` [y = a;P]X ∃tm.∃y.((tb < tm < te) ∧ A1 ∧ A2)
(Seq)

~l ,tb,tm `
y [lock l ′]X A1 ~l +{l ′},tm,te ` [P]X A2 (tm fresh)

~l ,tb,te ` [y = lock l ′;P]X ∃tm.∃y.((tb < tm < te) ∧ A1 ∧ A2)
(Lock)

~l +{l ′},tb,tm`
y [unlock l ′]X A1 ~l ,tm,te ` [P]X A2 (tm fresh)

~l +{l ′},tb,te` [y = unlock l ′;P]X ∃tm.∃y.((tb < tm < te) ∧ A1 ∧ A2)
(Unlock)

` A
~l ,tb,te` [P]X A

(Nec1)
` A

~l ,tb,te `
y [a]X A

(Nec2)

~l ,tb,te ` [P]X A1 ~l ,tb,te ` [P]X A2

~l ,tb,te ` [P]X A1 ∧ A2
(Conj1)

~l ,tb,te `
y [a]X A1 ~l ,tb,te `

y [a]X A2

~l ,tb,te`
y [a]X A1 ∧ A2

(Conj2)

~l ,tb,te ` [P]X A1⊃ A2 ~l ,tb,te` [P]X A1

~l ,tb,te ` [P]X A2
(Imp1)

~l ,tb,te `
y [a]X A1 ⊃ A2 ~l ,tb,te`

y [a]X A1

~l ,tb,te`
y [a]X A2

(Imp2)

∀ρ ∈ IS(~P). (mustlocked(ρ),tb,te ` [ρ]X A)

` Honest(X̂,~P)⊃ ∀te. A[−∞/tb]
(Honesty)

∀ρ ∈ IS(Booting(m)). (locs(m),tb,te ` [ρ]X A)

` Reset(m,t,X)⊃ ∀te. (te > t)⊃ A[t/tb]
(Reset)

Figure 5. Proof system (Rules) for LS2

The following theorem states thatΓ =⇒ J impliesΓ |=
J. Proof of the theorem proceeds by induction over the
derivation of the given judgment,J (see Appendix A).

Theorem 1 (Soundness).Γ =⇒ J impliesΓ |= J.

5.2 SRTM: Proof of Correctness

We now illustrate the proof system of the logic by
proving the correctness propertyJSRTM(Section 4.3) for
the SRTM protocol. In order to prove the property, we
have to make some assumptions. The assumptions are
stated as a setΓSRTM:

ΓSRTM = (V̂ 6= ˆTPM(m)), Honest( ˆTPM(m),Signer(m))

The first assumption says that the verifier is not the same
as the TPM ofm, while the second assumption states that
the TPM does not leak its signing key, and executes only
the processSigner(m). We prove the following theorem:

Theorem 2 (Correctness of SRTM). If ΓSRTMdenotes
the set defined above, and JSRTMis the judgment defined
in Section 4.3, thenΓSRTM=⇒ JSRTM.

A complete proof of the above theorem is described
in Appendix B. We describe here, in brief, the ma-
jor steps in the proof. Letv0 = seq(0,BL(m),OS(m)).

Suppose that threadV completely executes the pro-
cessVeri f ier(m) in the interval [tb,te). Then, since
this process contains a verification step (last line),
there must be a time pointtV (tV < te) such that
Verify(V,tV ,v0, ˆTPM(m)). By axiom (VER), there is
some threadTPM(m) of agent ˆTPM(m) such that ei-
ther TPM(m) wrote SIG ˆTPM(m){|v0|} to some location
in memory, or sent it in a message.

Next, we use the (Honesty) rule on threadTPM(m),
since we know fromΓSRTM that it can only be execut-
ing the processSigner(m). We show that: (1)TPM(m)
never writes any location, and (2) Whenever it sends the
messageSIG ˆTPM(m){|w|}, it readsw from m.PCR(s). It
follows from this, and our earlier deduction that at some
time pointtRe (tRe< tV ), m.PCR(s) containedv0. Using
axioms (PCR1) and (PCR2), we deduce that there is a
time pointtR (tR < tRe) such that the machine was reset
at timetR and not reset betweentR andtRe.

Finally, we use the (Reset) rule to incorporate another
invariant: for the processBooting(m) started immedi-
ately after a reset,m.PCR(s) can containseq(0,b,c, . . .)
at a later point only if in the interim,b was called. This
uses axioms (Mem1) – (Mem6) and critically relies on
the write locks onm.PCR(s) andm.bl loc. It follows
from this fact that at some timetBL (tR < tBL < tRe),

10



(Act) ~l ,tb,te`y [a]X ∃t. (tb ≤ t < te) ∧R(X,t,y,a) ∧
(∀t ′. ((t 6= t ′) ∧ (tb≤ t ′ < te))⊃¬R(X,t ′,y,a))

(¬Act) ~l ,tb,te`
y [a]X ∀t. (tb ≤ t < te)⊃ ¬R(X,t,x,a′) (a 6= a′ or x 6= y)

(¬Act’) ~l ,tb,te` [ ]X ∀t. (tb ≤ t < te)⊃ ¬R(X,t,x,a)

(Verify) ~l ,tb,te`y [verify s,v, K̂]X s= SIGK̂{|v|}
(Sign) ~l ,tb,te`y [sign v]X y = SIGX̂{|v|}
(Mem=) ` (MemContents(t, l ,v) ∧MemContents(t, l ,v′))⊃ (v = v′)
(Mem1)∗∗ (l ,~l ′),tb,te`y [a]X (MemContents(tb, l ,v) ∧ NoReset(m,tb,te))

⊃ ∀t. (tb < t ≤ te⊃MemContents(t, l ,v))
(Mem1’) (l ,~l ′),tb,te` [ ]X (MemContents(tb, l ,v) ∧NoReset(m,tb,te))

⊃ ∀t. (tb < t ≤ te⊃MemContents(t, l ,v))
(Mem2) (l ,~l ′),tb,te`y [write l ,v′]X (MemContents(tb, l ,v) ∧NoReset(m,tb,te))

⊃ ∃t. ((tb ≤ t < te) ∧
(∀t ′. (t < t ′ ≤ te)⊃MemContents(t ′, l ,v′)) ∧
(∀t ′. (tb < t ′ ≤ t)⊃MemContents(t ′, l ,v)))

(Mem3) (l ,~l ′),tb,te`y [extend l ,v′]X (MemContents(tb, l ,seq(~v)) ∧ NoReset(m,tb,te))
⊃ ∃t. ((tb ≤ t < te) ∧

(∀t ′. (t < t ′ ≤ te)⊃MemContents(t ′, l ,seq(~v,v′))) ∧
(∀t ′. (tb < t ′ ≤ t)⊃MemContents(t ′, l ,seq(~v))))

(Mem4)∗∗ (l ,~l ′),tb,te`y [a]X (Reset(m,tb,X) ∧ NoResetw(m,tb,te))
⊃ ∀t. (tb < t ≤ te⊃MemContents(t, l ,0))

(Mem4’) (l ,~l ′),tb,te` [ ]X (Reset(m,tb,X) ∧NoResetw(m,tb,te))
⊃ ∀t. (tb < t ≤ te⊃MemContents(t, l ,0))

(Mem5) (l ,~l ′),tb,te`y [write l ,v′]X (Reset(m,tb,X) ∧NoResetw(m,tb,te))
⊃ ∃t. ((tb ≤ t < te) ∧

(∀t ′. (t < t ′ ≤ te)⊃MemContents(t ′, l ,v′)) ∧
(∀t ′. (tb < t ′ ≤ t)⊃MemContents(t ′, l ,0)))

(Mem6) (l ,~l ′),tb,te`y [extend l ,v′]X (Reset(m,tb,X) ∧NoResetw(m,tb,te))
⊃ ∃t. ((tb ≤ t < te) ∧

(∀t ′. (t < t ′ ≤ te)⊃MemContents(t ′, l ,seq(0,v′))) ∧
(∀t ′. (tb < t ′ ≤ t)⊃MemContents(t ′, l ,0)))

(VER) ` (Verify(X,t,v, K̂) ∧ (X̂ 6= K̂) ∧Honest(X̂))
⊃ ∃K.∃t ′. (t ′ < t) ∧ (Send(K,t ′,SIGK̂{|v|}) ∨ ∃l . Write(K,t ′, l ,SIGK̂{|v|}))

(READ) ` Read(X,t, l ,v)⊃MemContents(t, l ,v)
(PCR1) `MemContents(t,m.PCR(s),seq(0,v1, . . . ,vn))

⊃ ∃t ′. (t ′ < t) ∧MemContents(t ′,m,seq(0,v1, . . . ,vn−1)) ∧NoReset(t ′,t)
(PCR2) `MemContents(t,m.PCR(s),0)

⊃ ∃t ′.∃X. (t ′ < t) ∧ Reset(m,t ′,X) ∧NoResetw(m,t ′,t)
(Hon) ` Honest(X̂,~P)⊃ Honest(X̂)

∗∗ Side condition:a 6= write l ,v′ anda 6= extend l ,v′ anda 6= unlock l

Figure 6. Proof system (Axioms) for LS2
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BL(m) was called. This completes the proof.
It is known that the SRTM protocol is vulnerable to

Time-Of-Check-To-Time-Of-Use (TOCTTOU) attacks
where code is modified after being measured, but before
it is loaded [30]. We identify four such attacks based on
our analysis. First, write locks are crucial for correct-
ness. In the proof, this shows up in the last part, where
we use the axioms (Mem1) – (Mem6) to infer invariants
about the roleBooting(m). In actual practice, memory
is not locked during booting, making the protocol sus-
ceptible to attacks.

Second, the protocol does not guarantee that the op-
erating system was loaded, merely that it was measured.
Formally, this shows up in the last part of the proof,
where it is impossible to prove a stronger invariant for
Booting(m), since between the measurement and load-
ing of the operating system (Figure 1, lines 4 and 6),
another thread on the machine may signal the TPM to
produce a signature and send it to the verifier. This prob-
lem extends to the actual protocol, where, there can be
no guarantee that the last piece of code measured was
actually loaded. One way to fix this problem is to use
read-write locks, thus preventing the TPM from signing
the PCR until the lock is released.

Third, the machine can be reset after the TPM signs
the PCR. This shows up in the first part of the proof,
where, by verifying the signature, all that the verifier can
deduce is that at some point of time in the past, the TPM
generated the signature. There is no information about
recency. This makes our version of the protocol sus-
ceptible to man-in-the-middle replay attacks. The actual
SRTM protocol includes a nonce intended to prevent this
gap. However, even with the nonce, one can only prove
that the machine was running the measured softwareat
the time of generation of the nonce.

Finally, the proof of the protocol relies on the fact that
PCRs can be reset only during the boot process (axiom
(PCR2)). However, current hardware does not enforce
this, and this makes the protocol insecure [20].

6. Related Work
As mentioned before,LS2 shares a number of fea-

tures with PCL [9] and therefore with other logics of
programs [2,15,18]. One central difference from PCL is
thatLS2 considers shared memory systems in addition to
network communication. Although concurrent separa-
tion logic [2] also focuses on shared-memory programs
with mutable state, a key difference is that it does not
consider network communication. Furthermore, concur-
rent separation logic and other approaches for verifying
concurrent systems [22] typically do not consider an ad-
versary model. An adversary could be encoded as a reg-

ular program in these approaches, but then proving in-
variants would involve an induction over the steps of the
honest parties programs and the attacker. On the other
hand, inLS2 (as in PCL), invariants are established only
by induction over the steps of honest parties programs,
thereby considerably simplifying the analysis.

In previous work, Abadi and Wobber used an autho-
rization logic to describe the basic ideas of NGSCB, the
predecessor to the TCG [1]. Their formalization docu-
ments and clarifies basic NGSCB concepts rather than
proving specific properties of systems utilizing a TPM.
Gurgens et al. used a model checker to analyze the se-
curity of several TCG protocols [14]. Millen et al. em-
ployed a model checker to understand the role and trust
relationships of a system performing a remote attestation
protocol [24]. Our analysis withLS2 is a complementary
approach: It provides provable guarantees beyond those
provided by model checkers, but with a less fine-grained
model. Chen et al. developed a formal logic tailored
to the analysis of a remote attestation protocol and sug-
gested improvements [3].LS2 is designed to be a more
general logic with TCG protocols providing one set of
applications. Lin [23] used a theorem prover and model
finder to analyze of the security of the TPM against in-
valid sequences of API calls. Proving the security of
systems with complex APIs such as the TPM is an ac-
tive area of research and a possible future application of
LS2 [17].

7. Conclusion and Future Work
As a first step towards developing a theoretical basis

for secure systems, we introduceLS2, a logic for rea-
soning about security properties of systems with shared
memory that communicate over a network. Our techni-
cal contributions include a precise definition of a pro-
gramming language for modeling such systems, a logic
for specifying properties, and a sound proof system for
reasoning about such systems. We apply the logic to
establish a non-trivial property of a part of the TCG re-
mote attestation protocol. Our analysis clearly identifies
the ways in which the protocol may fail, thereby pro-
viding a formal justification for previously discovered
attacks [20,30].

In future work, we plan to use this logic to carry out
a detailed analysis of the TCG’s SRTM and sealed stor-
age protocols and extensions of these protocols [19]. In
a complementary effort, we are currently investigating
semantically well-founded methods for modeling and
analysis of secure system implementations. Our long
term goal is to develop a coherent framework for anal-
ysis of secure system architectures and implementations
by meaningfully combining the two efforts.
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A Proof of Soundness

In this appendix we prove soundness. The reader
may recall that we are trying to prove thatΓ =⇒ J
implies Γ |= J. We do this by induction on derivation
of Γ =⇒ J in the proof system. We analyze cases of
the last rule in the proof, and show some representative
cases below.

Case (HYP).This is the case whereΓ =⇒ A because
A∈ Γ. We need to show thatT |= Γ impliesT |= (` A).
This follows becauseA∈ Γ.

Case (Seq).

~l ,tb,tm `
y [a]X A1 ~l ,tm,te ` [P]X A2

a 6= lock l ′,unlock l ′ (tm fresh)
~l ,tb,te ` [y = a;P]X ∃tm.∃y.((tb < tm < te) ∧ A1 ∧ A2)

Suppose for some ground time pointt ′b and
t ′e, T � 〈~l ,t ′b,t

′
e,X,(y = a;P)〉 | θ. By definition,

in T , there is a configurationCi containing the
thread 〈X,(y = a;P;Q)θ〉, and in some laterC′i
(reached at some time less thant ′e), there is a thread
〈X,(Qθ)(ϕ[y 7→ v])〉. Clearly, then at some time point

ta betweenCi and C′i , there is a reductionCa
ta−→ C′a

that reducesy = a and substitutesv for y, and the
remaining reductions ofP produceϕ. Let tn be the
time at which the next reduction beforete occurs in
X. (If there is no such reduction,P is empty; choose
tn = te.) Now taket ′m = (ta + t ′m)/2. Clearly, thenT �
〈~l ,t ′b,t

′
m,X,y,a〉 | θ,v/y andT � 〈~l ,t ′m,t ′e,X,P〉 | θ,v/y.

Hence, by i.h., T |= (A1θ)[v/y][t ′b/tb][t ′m/tm], and
T |= (A2θ)[v/y][t ′m/tm][t ′e/te]. Thus, T |= ((A1 ∧
A2)θ)[v/y][t ′b/tb][t ′m/tm][t ′e/te]. We immediately have
T |= ( ∃tm.∃y.((tb < tm < te) ∧ A1 ∧ A2))θ[t ′b/tb][t ′e/te],
as required, sincet ′b < t ′m < t ′e.

Cases (Lock) and (Unlock).Similar to the above case.

Case (Nec1).

` A
~l ,tb,te ` [P]X A

(Nec1)

Suppose for somet ′b,t
′
e, T � 〈~l ,t ′b,t

′
e,X,P〉 | θ. We need

to show thatT |= (Aθ)[t ′b/tb][t ′e/te]. However, since
` A, A must be closed. Hence(Aθ)[t ′b/tb][t ′e/te] = A.
Thus it is enough to show thatT |= A. This follows
immediately from the induction hypothesis.

Case (Nec2).Similar to above case.

Cases (Conj1), (Conj2), (Imp1), (Imp2).These follow
from the definition of satisfaction forA1 ∧ A2 and
A1⊃ A2.

Case (Honesty).

∀ρ ∈ IS(~P). (mustlocked(ρ),tb,te ` [ρ]X A)

` Honest(X̂,~P)⊃ ∀te. A[−∞/tb]
(Honesty)

We have to showT |= Honest(X̂,~P) ⊃ ∀te. A[−∞/tb].
So, suppose thatT |= Honest((̂X),~P), and pick
any ground time pointt ′e. It suffices to show that
T |= A[−∞/tb][t ′e/te]. Now takeany threadX in C0

that belongs toX̂. If there is no such thread, we can
assume an empty process. Then the process of this
thread is in~P. Let P be this process, and suppose
that up to timete (but not including it), a prefixP′

(possibly empty) has reduced, i.e.,P = P′;P′′ and P′

reduces in the interval(−∞,te). It follows immediately
that T � 〈mustlocked(P′),−∞,t ′e,X,P′〉 | ·. (The
fact thatmustlocked(P′) is locked forX follows from
well-formedness of configurations.) Clearly,P′ ∈ IS(~P).
Hence, by i.h.,T |= A[−∞/tb][t ′e/te], as required.

Case (Reset).

∀ρ ∈ IS(Booting(m)). (locs(m),tb,te ` [ρ]X A)

` Reset(m,t,X)⊃ ∀te. (te > t)⊃ A[t/tb]
(Reset)

This is similar to the above case, except that instead of
−∞, we uset.

Case (Act).

~l ,tb,te `y [a]X ∃t. (tb≤ t < te) ∧ R(X,t,y,a) ∧
(∀t ′. ((t 6= t ′) ∧ (tb ≤ t ′ < te))⊃ ¬R(X,t ′,y,a))

Suppose that for some t ′b,t
′
e, T �

〈~l ,t ′b,t
′
e,X,y,a〉 | θ,v/y. We have to show that

T |= ∃t. (t ′b ≤ t < t ′e) ∧ R(X,t,y,a) ∧ (∀t ′. ((t 6=
t ′) ∧ (t ′b ≤ t ′ < te;)) ⊃ ¬R(X,t ′,y,a))θ[v/y]. By the
definition of the match, there has to be a time point
t (tb ≤ t < t ′e ) such thataθ happened att (hence
R(X,t,y,a)θ[v/y] holds), and that no other action ofX
happened at any other time in the interval[t ′b,t

′
e). This is

what we had to show.

Cases (¬Act) and (¬Act’). These are similar to the
previous case.
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Cases (Verify) and (Sign).These follow directly from
the reduction rules.

Case (Mem=). We must show that T |=
(MemContents(t, l ,v) ∧ MemContents(t, l ,v′)) ⊃
(v = v′). So suppose thatT |= MemContents(t, l ,v)
andT |= MemContents(t, l ,v′). By definition, at time
t, in T , σ(l) = v andσ(l) = v′. But σ is a function, so
v = v′.

Case (Mem1).

(l ,~l ′),tb,te `y [a]X (MemContents(tb, l ,v) ∧
NoReset(m,tb,te))

⊃ ∀t. (tb < t ≤ te⊃MemContents(t, l ,v))

Suppose that for some t ′b,t
′
e, T �

〈(l ,~l ′),t ′b,t
′
e,X,y,a〉 | θ,v′/y. Assume that

T |= MemContents(tb, l ,v)θ[v′/y][t ′b/tb][t ′e/te]
and T |= NoReset(m,tb,te)θ[v′/y][t ′b/tb][t ′e/te].
These imply that T |= MemContents(t ′b, l ,v) and
T |= NoReset(m,t ′b,t

′
e). The first of these means that

in T , at time t ′b, σ(l) = v. Now, there are only three
ways to change the value in a memory location: extend
it, write to it, or reset the machine. However, we know
from the side condition that the only action ofX in
[t ′b,t

′
e), namelya, neither writes, nor extendsl . Also

from the conditionNoReset(t ′b,t
′
e,m), the machine was

not reset in the same interval. Furthermore, since att ′b,
l is locked forX, anda does not unlock it, it follows
that no other thread could have changed the value in
l . Thus the earliest point at whichl could be changed
is t ′e, and hence in the interval(tb,te], l must containv,
or equivalently,∀t. (tb < t ≤ te⊃MemContents(t, l ,v)).

Cases (Mem1’) – (Mem6). These are similar to the
above case.

Case (VER).

` (Verify(X,t,v, K̂) ∧ (X̂ 6= K̂) ∧Honest(X̂))
⊃ ∃K.∃t ′. (t ′ < t) ∧ (Send(K,t ′,SIGK̂{|v|})

∨ ∃l . Write(K,t ′, l ,SIGK̂{|v|}))

SupposeT |= Verify(X,t,v, K̂). It follows that at time
t, X executes the actionverify SIGK̂{|v|},v, K̂ in T .
Since in the initial configuration,X cannot contain
SIGK̂{|v|} (becauseK̂ is honest, andX̂ 6= K̂, at some
earlier time pointSIGK̂{|v|} must have appeared inX’s
thread for the first time. This could only have happened
in two ways: either some other thread sent it toX, or
X read it from a memory location. In the latter case,

some other threadY wrote it to the location. In either
case, some other thread either sent the signature toX,
or wrote it to memory at an earlier time. If this thread
belongs toK̂, we are done, else we can repeat the
argument on threadY.

Case (READ).Follows from definition of reduction.

Case (PCR1). Suppose T |=
MemContents(t,m.PCR(s),seq(0,v1, . . . ,vn)). Then at
time t, the contents ofm.PCR(s) wereseq(0,v1, . . . ,vn).
Now a straightforward induction on the number of
reductions in the trace shows that eitherm.PCR(s)
containedseq(0,v1, . . . ,vn) in the initial configuration,
or 0 = seq(0,v1, . . . ,vn), or at some earlier point of
time m.PCR(s) containedseq(0,v1, . . . ,vn−1), and there
was no subsequent reset. The first two possibilities are
ruled out by the definition of the initial configuration,
and the fact that 0 is special and cannot equal a hash (a
fundamental assumption made about PCRs). Thus the
third possibility must be the case, as required.

Case (PCR2). Suppose T |=
MemContents(t,m.PCR(s),0). So at timet, m.PCR(s)
contained 0. Since in the initial configuration,m.PCR(s)
cannot contain 0, and no extension can place 0 in it, the
only way this happened was by a reset. There may have
been many resets; we choose the last one beforet, and
the timet ′ of this reset satisfies our required property.

Case (Hon).Follows from definition of honesty.

B Proof of Correctness of SRTM Protocol

A complete proof of the correctness of the SRTM
protocol is shown in Figure 7. We remind the reader that
the judgment we are trying to prove,JSRTM, was defined
in Section 4.3 as:

·,tb,te ` [Veri f ier(m)]V ∃tR,tRe,tBL,X.

((tR < tBL < tRe< te) ∧

A1(tR,X) ∧ A2(tRe) ∧

A3(tBL,X) ∧ A4(tR,tRe))

whereA1 – A4 are defined as follows:

1. A1(tR,X) = Reset(m,tR,X)

2. A2(tRe)= ∃TPM(m). Read(TPM(m),tRe,m.PCR(s),
seq(0,BL(m),OS(m))

3. A3(tBL,X) = Call(X,tBL,BL(m))
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4. A4(tR,tRe)= ∀t.∀Y. (tR < t < tRe)⊃¬Reset(t,m,Y)

We assume that the following formulas are provable:

ΓSRTM = (V̂ 6= ˆTPM(m)), Honest( ˆTPM(m),Signer(m))

Figure 7 shows the 10 major steps used in the proof,
together with the rules needed to conclude them. Each
major step concludes a judgment of the form·,tb,te `
[Veri f ier(m)]V A, whereA is shown in the third column
of the table.
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Axioms/Rules FormulaA in ·,tb,te` [Veri f ier(m)]V A (v0 = seq(0,BL(m),OS(m)))

1. Act ∃tV . (tV < te) ∧ Verify(V,tV ,v0, ˆTPM(m))

2. VER ∃t ′. (t ′ < te) ∧ (∃TPM(m). Send(T PM(m),t ′,SIG ˆTPM(m)
{|v0|}) ∨ ∃l . Write(T PM(m),t ′, l ,v0))

3. Honesty, Act
¬Act, ¬Act’

∀t. (−∞≤ t < te) ⊃ (∀l .∀v. ¬Write(TPM(m),t, l ,v))
∧ (∀w. Send(TPM(m),t,SIG ˆTPM(m)

{|w|})

⊃ ∃tRe. ((tRe< t) ∧ Read(TPM(m),tRe,m.PCR(s),w)))

4. (2), (3), Nec1,
Imp1, Conj1

∃tRe. (tRe< te) ∧ ((∃TPM(m). Read(TPM(m),tRe,m.PCR(s),v0))≡ A2(tRe))

5. READ ∃tRe. (tRe< te) ∧ A2(tRe) ∧ MemContents(tRe,m.PCR(s),v0)

6. PCR1 ∃tRe,t2,t1. (t1 < t2 < tRe< te) ∧ A2(tRe) ∧
MemContents(tRe,m.PCR(s),seq(0,BL(m),OS(m)))∧
MemContents(t2,m.PCR(s),seq(0,BL(m)))∧
MemContents(t1,m.PCR(s),seq(0)) ∧
NoReset(m,t1,tRe)

7. PCR2 ∃tRe,t2,t1,tR,X. (tR < t1 < t2 < tRe< te) ∧ A2(tRe) ∧
MemContents(tRe,m.PCR(s),seq(0,BL(m),OS(m))) ∧
MemContents(t2,m.PCR(s),seq(0,BL(m)))∧
MemContents(t1,m.PCR(s),seq(0)) ∧
Reset(m,tR,X) ∧
NoResetw(m,tR,tRe)

8. Reset,
Mem1 – Mem6,
Act, ¬Act, Mem=

∃tRe,tR,X. (tR < tRe< te) ∧ A2(tRe) ∧
MemContents(tRe,m.PCR(s),seq(0,BL(m),OS(m)))∧
Reset(m,tR,X) ∧
NoResetw(m,tR,tRe) ∧
∀t ′e. (NoResetw(m,tR,t ′e) ∧ Reset(m,tR,X))
⊃ ∀t,b,~o. (tR < t ≤ t ′e)

⊃ (¬(MemContents(t,m.PCR(s),seq(0,b,~o)))
∨ (∃tBL. (tR < tBL < t) ∧ Call(X,tBL,b)))

9. Sett ′e = t = tRe,
~o = OS(m),
b = BL(m)

∃tRe,tR,X. (tR < tRe< te) ∧ A2(tRe) ∧
MemContents(tRe,m.PCR(s),seq(0,BL(m),OS(m)))∧
Reset(m,tR,X) ∧
NoResetw(m,tR,tRe) ∧
(NoResetw(m,tR,tRe) ∧ Reset(m,tR,X))
⊃ (tR < tRe≤ tRe)

⊃ (¬(MemContents(tRe,m.PCR(s),seq(0,BL(m),OS(m))))
∨ (∃tBL. (tR < tBL < tRe) ∧ Call(X,tBL,BL(m))))

10. Simplify ∃tR,tRe,tBL,X. (tR < tBL < tRe< te) ∧ A2(tRe) ∧
(Reset(m,tR,X)≡ A1(tR,X)) ∧
(NoResetw(m,tR,tRe)≡ A4(tR,tRe)) ∧
(Call(X,tBL,BL(m))≡ A3(tBL,X))

Figure 7. Proof of correctness for the SRTM protocol

17


