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Abstract

Fragments of first-order temporal logic are useful for representing many practical privacy and secu-
rity policies. Past work has proposed two strategies for checking event trace (audit log) compliance
with policies: online monitoring and offline audit. Although online monitoring is space- and time-
efficient, existing techniques insist that satisfying instances of all subformulas of the policy be
amenable to caching, which limits expressiveness when some subformulas have infinite support.
In contrast, offline audit is brute force and can handle more policies but is not as efficient. This
paper proposes a new online monitoring algorithm that caches satisfying instances when it can,
and falls back to the brute force search when it cannot. Our key technical insight is a new flow-
and time-sensitive static check of variable groundedness, called the temporal mode check, which
determines subformulas for which such caching is feasible and those for which it is not and, hence,
guides our algorithm. We prove the correctness of our algorithm and evaluate its performance over
synthetic traces and realistic policies.

z This is the extended version of the paper titled “Temporal Mode-Checking for Runtime Monitoring of Privacy
Policies” that appears in the 26th International Conference on Computer Aided Verification (CAV) 2014. All the
opinions expressed in this paper represent only the authors’ views.
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1 Introduction

Many organizations routinely collect sensitive personal information like medical and financial
records to carry out business operations and to provide services to clients. These organizations must
handle sensitive information in compliance with applicable privacy legislation like the Health Insur-
ance Portability and Accountability Act (HIPAA) [1] and the Gramm-Leach-Bliley Act (GLBA) [2].
Violations attract substantial monetary and even criminal penalties [3]. Hence, developing mech-
anisms and automatic tools to check privacy policy compliance in organizations is an important
problem.

The overarching goal of this paper is to improve the state of the art in checking whether an
event trace or audit log, which records relevant events of an organization’s data handling operations,
is compliant with a given privacy policy. At a high-level, this problem can be approached in two
different ways. First, logs may be recorded and compliance may be checked offline, when demanded
by an audit authority. Alternatively, an online program may monitor privacy-relevant events, check
them against the prevailing privacy policy and report violations on the fly. Both approaches have
been considered in literature: An algorithm for offline compliance checking has been proposed by
a subset of the authors [4], whereas online monitoring has been the subject of extensive work by
other researchers [5–11].

These two lines of work have two common features. First, they both assume that privacy policies
are represented in first-order temporal logic, extended with explicit time. Such extensions have been
demonstrated adequate for representing the privacy requirements of both HIPAA and GLBA [12].
Second, to ensure that only finitely many instances of quantifiers are tested during compliance
checking, both lines of work use static policy checks to restrict the syntax of the logic. The specific
static checks vary, but always rely on assumptions about finiteness of predicates provided by the
policy designer. Some work, e.g. [5, 8–11], is based on the safe-range check [5], which requires
syntactic subformulas to have finite support independent of each other; other work, e.g. [4, 7], is
based on the mode check from logic programming [13–15], which is more general and can propagate
variable groundedness information across subformulas.

Both lines of work have their relative advantages and disadvantages. An online monitor can
cache policy-relevant information from logs on the fly (in so-called summary structures) and discard
the remaining log immediately. This saves space. It also saves time because the summary structures
are organized according to the policy formula so lookups are quicker than scans of the log in the
offline method. However, online monitoring algorithms proposed so far require that all subformulas
of the policy formula be amenable to caching. Furthermore, many real policies, including several
privacy requirements of HIPAA and GLBA, are not amenable to such caching. In contrast, the
offline algorithm proposed in our prior work [4] uses brute force search over a stored log. This
is inefficient when compared to an online monitor, but it can handle all privacy requirements of
HIPAA and GLBA. In this work, we combine the space- and time-efficiency of online monitoring
with the generality of offline monitoring: We extend existing work in online monitoring [5] for
privacy policy violations with a brute force search fallback based on offline audit for subformulas
that are not amenable to caching. Like the work of Basin et al. [5], our work uses policies written
in metric first-order temporal logic (MFOTL) [16].

Our key technical innovation is what we call the temporal mode check, a new static check on
formulas to ensure finiteness of quantifier instantiation in our algorithm. Like a standard mode
check, the temporal mode check is flow-sensitive: It can propagate variable groundedness informa-
tion across subformulas. Additionally, the temporal mode check is time-sensitive: It conservatively
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approximates whether the grounding substitution for a variable comes from the future or the past.
This allows us to classify all subformulas into those for which we build summary structures during
online monitoring (we call such formulas buildable or B-formulas) and those for which we do not
build summary structures and, hence, use brute force search.

As an example, consider the formula ∃x, y, z.(p(x) ∧q(x, y) ∧r(x, z)), which means that
in all states, there exist x, y, z such that p(x) holds and in some past states q(x, y) and r(x, z)
hold. Assume that p and q are finite predicates and that r is infinite, but given a ground value
for its first argument, the second argument has finite computable support. One possible efficient
strategy for monitoring this formula is to build summary structures for p and q and in each state
where an x satisfying p exists, to quickly lookup the summary structure for q to find a past state
and a y such that q(x, y) holds, and to scan the log brute force to find a past state and z such
that r(x, z) holds. Note that doing so requires marking p and q as B-formulas, but r as not a
B-formula (because z can be computed only after x is known, but x is known from satisfaction
of p, which happens in the future of r). Unlike the safe-range check or the standard mode check,
our new temporal mode check captures this information correctly and our monitoring algorithm,
précis, implements this strategy. No existing work on online monitoring can handle this formula
because r cannot be summarized [5–11]. The work on offline checking can handle this formula [4],
it does not build summary structures and is needlessly inefficient on q.

We prove the correctness of précis over formulas that pass the temporal mode check and
analyze its asymptotic complexity. We also empirically evaluate the performance of précis on
synthetically generated traces, with respect to privacy policies derived from HIPAA and GLBA. The
goal of our experiment is to demonstrate that incrementally maintaining summary structures for
B-formulas of the policy can improve the performance of policy compliance checking relative to a
baseline of pure brute force search. This baseline algorithm is very similar to the offline monitoring
algorithm of [4], called reduce. In our experiments, we observe marked improvements in running
time over reduce, e.g., up to 2.5x-6.5x speedup for HIPAA and up to 1.5x speed for GLBA, even
with very conservative (unfavorable) assumptions about disk access. Even though these speedups
are not universal (online monitoring optimistically constructs summary structures and if those
structures are not used later then computation is wasted), they do indicate that temporal mode
checking and our monitoring algorithm could have substantial practical benefit for privacy policy
compliance.

2 Policy Specification Logic

Our policy specification logic, GMP, is a fragment of MFOTL [16, 17] with restricted universal
quantifiers. The syntax of GMP is shown below.

(Policy formula) ϕ ::= p(~t) | > | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃~x.ϕ | ∀~x.(ϕ1 → ϕ2)
ϕ1 S Iϕ2 |Iϕ | Iϕ | Iϕ | ϕ1 U Iϕ2 |Iϕ | Iϕ | Iϕ

The letter t denotes terms, which are constants or variables (x, y, etc.). Roman letters with
right arrows on the top like ~t denote sequences or vectors. Policy formulas are denoted by ϕ, α,
and β. Universal quantifiers have a restricted form ∀~x.ϕ1 → ϕ2. A guard [18] ϕ1 is required as
explained further in Section 3.

Policy formulas include both past temporal operators (, , S , ) and future temporal
operators (, , U , ). Each temporal operator has an associated time interval I of the form
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[lo, hi], where lo, hi ∈ N and lo ≤ hi. The interval selects a sub-part of the trace in which the
immediate subformula is interpreted. For example, [2,6]ϕ means that at some point between 2
and 6 time units in the past, ϕ holds. For past temporal operators, we allow the higher limit (hi) of
I to be ∞. We omit the interval when it is [0,∞]. Policies must be future-bounded : both limits (lo
and hi) of intervals associated with future temporal operators must be finite. GMP is not closed
under negation due to the absence of the duals of operators S and U . However, these operators
do not arise in the practical privacy policies we have investigated.

Formulas are interpreted over a timed event trace (or, log) L. Given a possibly-infinite domain
of terms D, each element of L—the ith element is denoted Li— maps each ground atom p(~t) for
~t ∈ ~D to either true or false. Each position Li is associated with a time stamp, τi ∈ N, which is
used to interpret intervals in formulas. We use τ to represent the sequence of time stamps, each
of which is a natural number. For any arbitrary i, j ∈ N with i > j, τi > τj (monotonicity). The
environment η maps free variables to values in D. Given an execution trace L and a time stamp-
sequence τ , a position i ∈ N in the trace, an environment η, and a formula ϕ, we write L, τ, i, η |= ϕ
to mean that ϕ is satisfied in the ith position of L with respect to η and τ . The definition of |=
is standard and is presented below. Note that, given an interval I = [lo, hi] where lo, hi ∈ N and
lo ≤ hi, we write d ∈ I if it satisfies the following: lo ≤ d ≤ hi.

• L, τ, i, η |= > and L, τ, i, η 6|= ⊥

• L, τ, i, η |= p(~t) iff Li(p(η(~t))) is true.

• L, τ, i, η |= ϕ1 ∧ ϕ2 iff L, τ, i, η |= ϕ1 and L, τ, i, η |= ϕ2.

• L, τ, i, η |= ϕ1 ∨ ϕ2 iff L, τ, i, η |= ϕ1 or L, τ, i, η |= ϕ2.

• L, τ, i, η |= ∃~x.ϕ iff there exists ~t such that L, τ, i, η[~x 7→ ~t] |= ϕ.

• L, τ, i, η |= ∀~x.(ϕ1 → ϕ2) iff for all ~t if L, τ, i, η[~x 7→ ~t] |= ϕ1 holds then L, τ, i, η[~x 7→ ~t] |= ϕ2

holds.

• L, τ, i, η |=Iϕ iff there exists k ≤ i, where k ∈ N, such that (τi− τk) ∈ I and L, τ, k, η |= ϕ.

• L, τ, i, η |= Iϕ iff for all k ≤ i, where k ∈ N, such that (τi − τk) ∈ I, L, τ, k, η |= ϕ holds.

• L, τ, i, η |= Iϕ iff i > 0, L, τ, i− 1, η |= ϕ, and τi − τi−1 ∈ I.

• L, τ, i, η |= ϕ1 S Iϕ2 iff there exists k ≤ i, where k ∈ N, such that (τi− τk) ∈ I and L, τ, k, η |=
ϕ2 and for all j, where j ∈ N and k < j ≤ i, it implies that L, τ, j, η |= ϕ1 holds.

• L, τ, i, η |=Iϕ iff there exists k ≥ i, where k ∈ N, such that (τk − τi) ∈ I and L, τ, k, η |= ϕ.

• L, τ, i, η |= Iϕ iff for all k ≥ i, where k ∈ N, such that (τk − τi) ∈ I, L, τ, k, η |= ϕ holds.

• L, τ, i, η |= Iϕ iff L, τ, i+ 1, η |= ϕ, and τi+1 − τi ∈ I.

• L, τ, i, η |= ϕ1 U Iϕ2 iff there exists k ≥ i, where k ∈ N, such that (τk−τi) ∈ I and L, τ, k, η |=
ϕ2 and for all j, where j ∈ N and i ≤ j < k, it implies that L, τ, j, η |= ϕ1 holds.

3



Example policy. The following GMP formula represents a privacy rule from clause §6802(a) of
the U.S. privacy law GLBA [2]. It states that a financial institution can disclose to a non-affiliated
third party any non-public personal information (e.g., name, SSN) if such financial institution
provides (within 30 days) or has provided, to the consumer, a notice of the disclosure.

∀p1, p2, q,m, t, u, d. ( send(p−1 , p
−
2 ,m

−) ∧ contains(m+, q−, t−) ∧ info(m+, d−, u−)→
inrole(p−1 , institution

+) ∧ nonAffiliate(p+2 , p
+
1 ) ∧ consumerOf(q−, p+1 ) ∧ attrIn(t, npi)

∧(∃m1.send(p−1 , q
−,m−1 ) ∧ noticeOfDisclosure(m+

1 , p
+
1 , p

+
2 , q

+, t+) )∨
[0,30]∃m2.send(p−1 , q

−,m−2 ) ∧ noticeOfDisclosure(m+
2 , p

+
1 , p

+
2 , q

+, t+) )

3 Temporal Mode Checking

We review mode-checking and provide an overview of our key insight, temporal mode-checking.
Then, we define temporal mode-checking for GMP formally.

3.1 Mode Checking

Consider a predicate addLessEq(x, y, a), meaning x+y ≤ a, where x, y, and a range over N. If we are
given ground values for x and a, then the number of substitutions for y for which addLessEq(x, y, a)
holds is finite. In this case, we may say that addLessEq’s argument position 1 and 3 are input
positions (denoted by ‘+’) and argument position 2 is an output position (denoted by ‘−’), denoted
addLessEq(x+, y−, a+). Such a specification of inputs and outputs is called a mode-specification.
The meaning of a mode-specification for a predicate is that if we are given ground values for
arguments in the input positions, then the number of substitutions for the variables in the output
positions that result in a satisfied relation is finite. For instance, addLessEq(x+, y+, a−) is not
a valid mode-specification. Mode analysis (or mode-checking) lifts input-output specifications on
predicates to input-output specification on formulas. It is commonly formalized as a judgment
χin ` ϕ : χout, which states that given a grounding substitution for variables in χin, there is at most
a finite set of substitutions for variables in χout that could together satisfy ϕ. For instance, consider
the formula ϕ ≡ p(x) ∧ q(x, y). Given the mode-specification p(x−) and q(x+, y−) and a left-to-
right evaluation order for conjunction, ϕ passes mode analysis with χin = {} and χout = {x, y}.
Mode analysis guides an algorithm to obtaining satisfying substitutions. In our example, we first
obtain substitutions for x that satisfy p(x). Then, we plug ground values for x in q(x, y) to get
substitutions for y. However, if the mode-specification is p(x+) and q(x+, y−), then ϕ will fail mode
analysis unless x is already ground (i.e., x ∈ χin).

Mode analysis can be used to identify universally quantified formulas whose truth is finitely
checkable. We only need to restrict universal quantifiers to the form ∀~x.(ϕ1 → ϕ2), and require
that ~x be in the output of ϕ1 and that ϕ2 be well-moded (x may be in its input). To check that
∀~x.(ϕ1 → ϕ2) is true, we first find the values of ~x that satisfy ϕ1. This is a finite set because ~x is
in the output of ϕ1. We then check that for each of these ~x’s, ϕ2 is satisfied.

3.2 Overview of Temporal Mode Checking

Consider the policy ϕp ≡ p(x−) ∧q(x+, y−) and consider the following obvious but inefficient
way to monitor it: We wait for p(x) to hold for some x, then we look back in the trace to find a
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position where q(x, y) holds for some y. This is mode-compliant (we only check q with its input x
ground) but requires us to traverse the trace backward whenever p(x) holds for some x, which can
be slow.

Ideally, we would like to incrementally build a summary structure for q(x, y) containing all
the substitutions for x and y for which the formula holds as the monitor processes each new trace
event. When we see p(x), we could quickly look through the summary structure to check whether
a relation of the form q(x, y) for the specific x and any y exists. However, note that building such a
structure may be impossible here. Why? The mode-specification q(x+, y−) tells us only that we will
obtain a finite set of satisfying substitutions when x is already ground. However, in this example,
the ground x comes from p, which holds in the future of q, so the summary structure may be infinite
and, hence, unbuildable. In contrast, if the mode-specification of q is q(x−, y−), then we can build
the summary structure because, independent of whether or not x is ground, only a finite number
of substitutions can satisfy q. In this example, we would label q(x, y) buildable or a B-formula
when the mode-specification is q(x−, y−) and a non-B-formula when the mode-specification is
q(x+, y−).

With conventional mode analysis, ϕp is well-moded under both mode-specifications of q. Con-
sequently, in order to decide whether ϕp is a B-formula, we need a refined analysis which takes
into account the fact that, with the mode-specification q(x+, y−), information about grounding of
x flows backward in time from p to q and, hence, q(x, y) is not a B-formula. This is precisely
what our temporal mode-check accomplishes: It tracks whether an input substitution comes from
the past/current state, or from the future. By doing so, it provides enough information to determine
which subformulas are B-formulas.

Formally, our temporal mode-checking has two judgments: χC `B ϕ : χO and χC , χF ` ϕ : χO.
The first judgment assumes that substitutions for χC are available from the past or at the current
time point; any subformula satisfying such a judgment is labeled as a B-formula. The second
judgment assumes that substitutions for χC are available from the past or at current time point, but
those for χF will be available in future. A formula satisfying such a judgment is not a B-formula
but can be handled by brute force search. Our implementation of temporal mode analysis first
tries to check a formula by the first judgment, and falls back to the second when it fails. The
formal rules for mode analysis (described later) allow for both possibilities but do not prescribe a
preference. At the top-level, ϕ is well-moded if {}, {} ` ϕ : χO for some χO.

To keep things simple, we do not build summary structures for future formulas such as αU Iβ,
and do not allow future formulas in the judgment form χC `B ϕ : χO (however, we do build
summary structures for nested past-subformulas of future formulas). To check αU Iβ, we wait until
the upper limit of I is exceeded and then search backward. As an optimization, one may build
conservative summary structures for future formulas, as in some prior work [5].

3.3 Recognizing B-formulas

We list selected rules of temporal mode-checking in Figure 1. The complete list of rules of temporal
mode checking can be found in Appendix A. Rule B-Pre, which applies to an atom p(t1, . . . , tn),
checks that all variables in input positions of p are in χC . The output χO is the set of variables in
output positions of p. (I(p) and O(p) are the sets of input and output positions of p, respectively.)
The rule for conjunctions ϕ1 ∧ ϕ2 first checks ϕ1 and then checks ϕ2, propagating variables in
the output of ϕ1 to the input of ϕ2. These two rules are standard in mode-checking. The new,
interesting rule is B-Since for the formula ϕ1 S Iϕ2. Since structures for ϕ1 and ϕ2 could be built
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χC `B ϕ : χO ∀k ∈ I(p).fv(tk) ⊆ χC χO =
⋃

j∈O(p)

fv(tj)

χC `B p(t1, . . . , tn) : χO
B-PRE

χC `B ϕ1 : χ1 χC ∪ χ1 `B ϕ2 : χ2 χO = χ1 ∪ χ2

χC `B ϕ1 ∧ ϕ2 : χO
B-AND

{} `B ϕ2 : χ1 χ1 `B ϕ1 : χ2 χO = χ1

χC `B ϕ1 S Iϕ2 : χO
B-SINCE

χC , χF ` ϕ : χO

∀k ∈ I(p).fv(tk) ⊆ (χC ∪ χF ) χO =
⋃

j∈O(p)

fv(tj)

χC , χF ` p(t1, . . . , tn) : χO
PRE

{} `B ϕ2 : χ1 χ1, χC ∪ χF ` ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 S Iϕ2 : χO
SINCE-1

χC `B ϕ2 : χ1 χC , χF ∪ χ1 ` ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 U Iϕ2 : χO
UNTIL-1

χC , χF ` ϕ1 : χ1 {~x} ⊆ χ1

fv(ϕ1) ⊆ χC ∪ χF ∪ {~x} fv(ϕ2) ⊆ (χC ∪ χ1 ∪ χF )
χC , χF ∪ χ1 ` ϕ2 : χ2

χC , χF ` ∀~x.(ϕ1 → ϕ2) : {}
UNIV-1

Figure 1: Selected rules of temporal mode-checking

at time points earlier than the current time, the premise simply ignores the input χC . The first
premise of B-since checks ϕ2 with an empty input. Based on the semantics of temporal logic,
ϕ1 needs to be true on the trace after ϕ2, so all variables ground by ϕ2 (i.e., χ1) are available as
“current” input in ϕ1. As an example, {} `B >S q(x−, y−) : {x, y}.

3.4 Temporal Mode Checking Judgement

In the mode-checking judgment χC , χF ` ϕ : χO, we separate the set of input variables for which
substitutions are available at the current time point or from the past (χC) from the set of variables
for which substitutions are available from the future (χF ). The distinction is needed because sub-
derivations of the form χ′C `B ϕ′ : χ′O should be passed only the former variables as input. Please
note that the complete list of rules of temporal mode checking can be found in Appendix A.

Rule Pre for atoms checks that variables in input positions are in the union of χC and χF .
There are four rules for ϕ1 S Iϕ2, accounting for the buildability/non-buildability of each of the
two subformulas. We show only one of these four rules, Since-1, which applies when ϕ2 is a
B-formula but ϕ1 is not. In this case, ϕ2 will be evaluated (for creating the summary structure)
at time points earlier than ϕ1 S ϕ2 and, therefore, cannot use variables in χC or χF as input (see
Figure 2). When checking ϕ1, variables in the output of ϕ2 (called χ1), χC and χF are all inputs,
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but those in χC or χF come from the future. The entire formula is not a B-formula as ϕ1 is not.

ϕ2 ϕ1 ϕ1 ϕ1 S Iϕ2 Current time

χC
χF

χ1

χ1
χ1

Time

Figure 2: Example: Temporal information in mode checking ϕ1 S Iϕ2

Similarly, there are four rules for ϕ1 U Iϕ2, of which we show only one, Until-1. This rule
applies when ϕ2 is a B-formula, but ϕ1 is not. Its first premise checks that ϕ2 is a B-formula
with input χC . Our algorithm checks ϕ1 only when ϕ2 is true, so the outputs χ1 of ϕ2 are available
as input for ϕ1. In checking ϕ1, both χ1 and χF may come from the future.

The first premise of rule UNIV-1 checks that the guard ϕ1 is well-moded with some output
χ1. The second premise, {~x} ⊆ χ1, ensures that the guard ϕ1 can be satisfied only for a finite
number of substitutions for ~x, which is necessary to feasibly check ϕ2. The third premise, fv(ϕ1) ⊆
(χC ∪ χF ∪ {~x}), ensures that no variables other than ~x are additionally grounded by checking ϕ1.
The fourth premise, fv(ϕ2) ⊆ (χC ∪ χF ∪ χ1), ensures that all free variables in ϕ2 are already
grounded by the time ϕ2 needs to be checked. The final premise ensures the well-modedness of ϕ2.
The third and fourth premises are technical conditions, needed for the soundness of our algorithm.

4 Runtime Monitoring Algorithm

Our policy compliance algorithm précis takes as input a well-moded GMP policy ϕ, monitors
the system trace as it grows, builds summary structures for nested B-formulas and reports a
violation as soon as it is detected.

We write σ to denote a substitution, a finite map from variables to values in the domain D.
The identity substitution is denoted • and σ⊥ represents an invalid substitution. For instance, the
result of joining (on) two substitutions σ1 and σ2 that do not agree on the values of shared variables
is σ⊥. We say that σ′ extends σ, written σ′ ≥ σ, if the domain of σ′ is a superset of the domain
of σ and they agree on mappings of variables that are in the domain of σ. We summarize relevant
algorithmic functions below.

précis(ϕ) is the top-level function (Algorithm 1).

checkCompliance(L, i, τ, π, ϕ) checks whether events in the ith position of the trace L satisfy
ϕ, given the algorithm’s internal state π and the time stamps τ . State π contains up-to-date
summary structures for all B-formulas of ϕ.

uSS(L, i, τ, π, ϕ) incrementally updates summary structures for B-formula ϕ when log position
i is seen. It assumes that the input π is up-to-date w.r.t. earlier log positions and it re-
turns the state with the updated summary structure for ϕ. (uSS is the abbreviation of
updateSummaryStructures).

sat(L, i, τ, p(~t), σ) returns the set of all substitutions σ1 for free variables in p(~t) that make p(~t)σ1
true in the ith position of L, given σ that grounds variables in the input positions of p. Here,
σ1 ≥ σ.
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ips(L, i, τ, π, σ, ϕ) generalizes sat from atomic predicates to policy formulas. It takes the state π
as an input to look up summary structures when B-formulas are encountered.

4.1 Top-level monitoring algorithm.

Algorithm 1 (précis), the top-level monitoring process, uses two pointers to log entries: curPtr
points to the last entry in the log L, and evalPtr points to the position at which we next check
whether ϕ is satisfied. Naturally, curPtr ≥ evalPtr . The gap between these two pointers is
determined by the intervals occurring in future temporal operators in ϕ. For example, with the
policy [lo,hi ]β, β can be evaluated at log position i only after a position j ≥ i with τj − τi ≥ hi
has been observed. We define a simple function ∆(ϕ) just below that computes a coarse but finite
upper bound on the maximum time the monitor needs to wait before ϕ can be evaluated. We want
to emphasize that future boundedness of GMP policies and monotonicity requirement on τ ensure
that ∆(ϕ) is finite and bounded.

∆(ϕ) =



0 if ϕ ≡ > | ⊥ | p(t1, . . . , pn)

max(∆(ϕ1),∆(ϕ2)) if ϕ ≡ ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∀~x.(ϕ1 → ϕ2) | ϕ1 S [c,d]ϕ2

∆(ϕ) if ϕ ≡ ∃~x.ϕ |[c,d]ϕ | [c,d]ϕ | [c,d]ϕ

d+ max(∆(ϕ1),∆(ϕ2)) if ϕ ≡ ϕ1 U [c,d]ϕ2

d+ ∆(ϕ) if ϕ ≡[c,d]ϕ | [c,d]ϕ | [c,d]ϕ

Figure 3: Definition of ∆(ϕ)

Algorithm 1 The précis algorithm

Require: A GMP policy ϕ
1: π ← ∅; curPtr ← 0; evalPtr ← 0; L ← ∅; τ ← ∅;
2: Mode-check ϕ. Label all B-formulas of ϕ.
3: while (true) do
4: Wait until new events are available
5: Extend L and τ with new entries
6: for all (B-formulas ϕs of ϕ in ascending formula size) do
7: π ← uSS(L, curPtr , τ, π, ϕs) //update summary structures
8: while (evalPtr ≤ curPtr) do
9: if (τcurPtr − τevalPtr ≥ ∆(ϕ)) then

10: tV al← checkCompliance(L, evalPtr , τ, π, ϕ)
11: if tV al = false then
12: Report violation on L position evalPtr
13: evalPtr ← evalPtr + 1
14: else
15: break
16: curPtr ← curPtr + 1

The algorithm précis first initializes relevant data structures and labels B-formulas using
mode analysis (lines 1-2). The main body of the précis is a trace-event triggered loop. In
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checkCompliance(L, i, τ, π, ϕ) =

{
true if ips(L, i, τ, π, •, ϕ) 6= {}
false otherwise

Figure 4: Definition of the checkCompliance function.

each iteration of the loop, précis: (1) updates the summary structures in π based on the newly
available log entries (lines 6-7), and (2) evaluates the policy at positions where it can be fully
evaluated, i.e., where the difference between the entry’s time point and the current time point
(curP tr) exceeds the maximum delay ∆(ϕ). Step (1) uses the function uSS and step (2) uses
the function checkCompliance (see Figure 4). checkCompliance is a wrapper for ips that
calls ips with • as the input substitution. If ips returns an empty set of satisfying substitutions,
checkCompliance returns false, signaling a violation at the current time point, else it returns
true.

4.2 Finding substitutions for policy formulas.

The recursive function ips returns the set of substitutions that satisfy a formula at a given log
position, given a substitution for the formula’s input variables. Selected clauses of the definition of
ips are shown in Figure 5. All the clauses of the definition of ips can be found in Appendix B.
When the formula is an atom, ips invokes sat, an abstract wrapper around specific implementa-
tions of predicates. When the policy is a universally quantified formula, ips is called on the guard
ϕ1 to find the guard’s satisfying substitutions Σ1. Then, ips is called to check that ϕ2 is true for
all substitutions in Σ1. If the latter fails, ips returns the empty set of substitutions to signal a
violation, else it returns {σin}.

When a B-formula αS Iβ is encountered, all its satisfying substitutions have already been
computed and stored in π. Therefore, ips simply finds these substitutions in π (expression
π.A(αS Iβ)(i).R), and discards those that are inconsistent with σin by performing a join (on).
For the non-B-formula αS Iβ, ips calls itself recursively on the sub-formulas α and β, and
computes the substitutions brute force.

4.3 Incrementally updating summary structures.

We explain how we update summary structures for formulas of the form ϕ1 S Iϕ2 here. Updates
for Iϕ, Iϕ, and Iϕ are similar and can be found in Appendix C.

For each B-formula of the form αS [lo,hi ]β, we build three structures: Sβ, Sα, and R. The
structure Sβ contains a set of pairs of form 〈σ, k〉 in which σ represents a substitution and k ∈ N is
a position in L. Each pair of form 〈σ, k〉 ∈ Sβ represents that for all σ′ ≥ σ, the formula βσ′ is true
at position k of L. The structure Sα contains a set of pairs of form 〈σ, k〉, each of which represents
that for all σ′ ≥ σ the formula ασ′ has been true from position k until the current position in L.
The structure R contains a set of substitutions, which make (αS [lo,hi ]β) true in the current position
of L. We use Ri (similarly for other structures too) to represent the structure R at position i of

L. We also assume S(−1)β , S(−1)α , and R(−1) to be empty (the same applies for other structures too).
We show here how the structures Sβ and R are updated. We defer the description of update of Sα
to Appendix C.

To update the structure Sβ, we first calculate the set Σβ of substitutions that make β true at i
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ips(L, i, τ, π, σin, p(~t)) = sat(L, i, τ, p(~t), σin)

ips(L, i, τ, π, σin,
∀~x.(ϕ1 → ϕ2))

=
let Σ1 ← ips(L, i, τ, π, σin, ϕ1)

return

{
∅ if ∃σc ∈ Σ1.(ips(L, i, τ, π, σc, ϕ2) = ∅)
{σin} otherwise

ips(L, i, τ, π, σin, αS Iβ) =



If αS Iβ is a B-formula then

return σin on π.A(αS Iβ)(i).R
Else

let Sβ ← {〈σ, k〉|k = max l.((0 ≤ l ≤ i) ∧ ((τi − τl) ∈ I)
∧σ ∈ ips(L, l, τ, π, σin, β))}

SR1
← {σ|〈σ, i〉 ∈ Sβ ∧ 0 ∈ I}

SR2 ← {./σαl 6= σ⊥|∃〈σβ , k〉 ∈ Sβ .k < i∧
∀l.(k < l ≤ i→ σαl ∈ ips(L, l, τ, π, σβ , ϕ1))}

return SR1
∪ SR2

Figure 5: Definition of the ips function, selected clauses

by calling ips. Pairing all these substitutions with the position i yields Sβnew. Next, we compute
the set Sβremove of all old 〈σ, k〉 pairs that do not satisfy the interval constraint [lo, hi] (i.e., for which

τi − τk > hi). The updated structure Siβ is then obtained by taking a union of Sβnew and the old

structure S(i−1)β , and removing all the pairs in the set Sβremove.

Σβ ← ips(L, i, τ, π, •, β) Sβremove ← {〈σ, k〉 | 〈σ, k〉 ∈ S(i−1)β ∧ (τi − τk) > hi}
Sβnew ← {〈σ, i〉 | σ ∈ Σβ} Siβ ← (S(i−1)β ∪ Sβnew) \ Sβremove

To compute the summary structure R for αS Iβ at i, we first compute the set SR1 of all
substitutions for which the formula β is true in the ith position and the interval constraint is
respected by the position i. Then we compute SR2 as the join σ on σ1 of substitutions σ for which β
was satisfied at some prior position k, and substitutions σ1 for which α is true from position k + 1
to i. The updated structure Ri is the union of SR1 and SR2 .

SR1
← {σ | 〈σ, i〉 ∈ Siβ ∧ 0 ∈ [lo, hi]}

SR2
← {σ on σ1 | ∃k, j.〈σ, k〉 ∈ Siβ ∧ (k 6= i) ∧ (τi − τk ∈ [lo, hi]) ∧ 〈σ1, j〉 ∈ Siα∧

(j ≤ (k + 1)) ∧ σ on σ1 6= σ⊥}
Ri ← SR1 ∪ SR2

4.4 Optimizations

When all temporal sub-formulas of ϕ are B-formulas, curPtr and evalPtr proceed in synchro-
nization and only the summary structure for position curPtr needs to be maintained. When ϕ
contains future temporal formulas but all past temporal sub-formulas of ϕ are B-formulas, then
we need to maintain only the summary structures for positions in [evalPtr , curPtr ], but the rest
of the log can be discarded immediately. When ϕ contains at least one past temporal subformula
that is not a B-formula we need to store the slice of the trace that contains all predicates in that
non-B-formula.

The following theorem states that on well-moded policies, précis terminates and is correct.
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The theorem requires that the internal state π be strongly consistent at curP tr with respect to the
log L, time stamp sequence τ , and policy ϕ. Strong consistency means that the state π contains
sound and complete substitutions for all B-formulas of ϕ for all trace positions in [0, curP tr]
(see Appendix D.3).

Theorem 1 (Correctness of précis). For all GMP policies ϕ, for all evalP tr, curP tr ∈ N, for
all traces L, for all time stamp sequences τ , for all internal states π, for all empty environments
η0 such that (1) π is strongly consistent at curP tr with respect to L, τ , and ϕ, (2) curP tr ≥
evalP tr and τcurPtr − τevalPtr ≥ ∆(ϕ), and (3) {}, {} ` ϕ : χO where χO ⊆ fv(ϕ), it is the case
that checkCompliance(L, evalP tr, τ, π, ϕ) terminates and if checkCompliance(L, evalP tr, τ ,
π, ϕ) = tV al, then (tV al = true)↔ ∃σ.(L, τ, evalP tr, η0 |= ϕσ).

Proof. By induction on the policy formula ϕ (see Appendix D).

Complexity of précis. The runtime complexity of one iteration of précis for a given policy
ϕ is |ϕ| × (complexity of the uSS function) + (complexity of ips function), where |ϕ| is the
policy size. We first analyze the runtime complexity of ips. Suppose the maximum number of
substitutions returned by a single call to sat (for any position in the trace) is F and the maximum
time required by sat to produce one substitution is A. The worst case runtime of ips occurs when
all subformulas of ϕ are non-B-formulas of the form ϕ1 S ϕ2 and in that case the complexity is
O((A×F×L)O(|ϕ|)) where L denotes the length of the trace. uSS is invoked only for B-formulas.
From the definition of mode-checking, all sub-formulas of a B-formula are also B-formulas.
This property of B-formulas ensures that when uSS calls ips, the worst case behavior of ips
is not encountered. The overall complexity of uSS is O(|ϕ| × (A × F)O(|ϕ|)). Thus, the runtime
complexity of each iteration of the précis function is O((A× F× L)O(|ϕ|)).

5 Implementation and Evaluation

This section reports an experimental evaluation of the précis algorithm. All measurements
were made on a 2.67GHz Intel Xeon CPU X5650 running Debian GNU/Linux 7 (Linux kernel
3.2.48.1.amd64-smp) on 48GB RAM, of which at most 2.2GB is used in our experiments. We store
traces in a SQLite database. Each n-ary predicate is represented by a n+1 column table whose first
n columns store arguments that make the predicate true on the trace and the last column stores the
trace position where the predicate is true. We index each table by the columns corresponding to
input positions of the predicate. We experiment with randomly generated synthetic traces. Given a
GMP policy and a target trace length, at each trace point, our synthetic trace generator randomly
decides whether to generate a policy-compliant action or a policy violating action. For a compliant
action, it recursively traverses the syntax of the policy and creates trace actions to satisfy the
policy. Disjunctive choices are resolved randomly. Non-compliant actions are handled dually. The
source code and traces used in the experiments are available from the authors’ homepages.

Our goal is to demonstrate that incrementally maintaining summary structures for B-formulas
can improve the performance of policy compliance checking. Our baseline for comparison is a vari-
ant of précis that does not use any summary structures and, hence, checks temporal operators
by brute force scanning. This baseline algorithm is very similar to the reduce algorithm of prior
work [4] and, indeed, in the sequel we refer to our baseline as reduce. For the experimental
results reported here, we deliberately hold traces in an in-memory SQLite database. This choice
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Figure 6: Experimental timing results (HIPAA) with memory-backed database

is conservative; using a disk-backed database improves précis’ performance relative to reduce
because reduce accesses the database more intensively (Appendix F contains comparative evalu-
ation using a disk-backed database and confirms this claim). Another goal of our experiment is to
identify how précis scales when larger summary structures must be maintained. Accordingly, we
vary the upper bound hi in intervals [lo, hi] in past temporal operators.

We experiment with two privacy policies that contain selected clauses of HIPAA and GLBA,
respectively. As précis and reduce check compliance of non-B-formulas similarly, to demon-
strate the utility of building summary structures, we ensure that the policies contain B-formulas
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Algorithms Incomplete states
allowed?

Mode of operation
Summary structures (past
formulas)

Summary structures (fu-
ture formulas)

précis no online yes no
reduce [4] yes offline no no

Chomicki [8, 9]
no online yes no

Krukow et al. [10]
Bauer et al. [11] yes online yes no
Basin et al. [5, 7] no online yes yes
Basin et al. [6] yes online yes yes
Bauer et al. [19] no online (automata)* (automata)*

Table 1: Comparison of design choices in précis and prior work using first-order temporal logic for privacy
compliance. *Automata-based approaches have no explicit notion of summary structures.

(in our HIPAA policy, 7 out of 8 past temporal formulas are B-formulas; for GLBA the number
is 4 out of 9). Appendix E lists the policies we used. Figure 6 show our evaluation times for the
HIPAA privacy policy for the following upper bounds on the past temporal operators: 100, 1000,
3000, and∞. Points along the x-axis are the size of the trace and also the number of privacy-critical
events checked. The y-axis represents the average monitoring time per event. We plot four curves
for each bound: (1) The time taken by précis, (2) The time taken by reduce, (3) The time
spent by précis in building and accessing summary structures for B-formulas, and (4) The
time spent by reduce in evaluating B-formulas. For all trace positions i ∈ N, τi+1 − τi = 1.

The difference between (1) and (3), and (2) and (4) is similar at all trace lengths because it is the
time spent on non-buildable parts of the policy, which is similar in précis and reduce. For the
policy considered here, reduce spends most time on B-formulas, so construction of summary
structures improves performance. For trace lengths greater than the bound, the curves flatten
out, as expected. As the bound increases, the average execution time for reduce increases as the
algorithm has to look back further on the trace, and so does the relative advantage of précis.
Overall, précis achieves a speedup up of 2.5x-6.5x over reduce after the curves flatten out in
the HIPAA policy. The results for GLBA, not shown here but presented in Appendix F are similar,
with speedups of 1.25x to 1.5x. The technical report also describes the amount of memory needed
to store summary structures in précis. Briefly, this number grows proportional to the minimum
of trace length and policy bound. The maximum we observe (for trace length 13000 and bound∞)
is 2.2 GB, which is very reasonable. This can be further improved by compression.

6 Related Work

Runtime monitoring of propositional linear temporal logic (pLTL) formulas [20], regular expressions,
finite automata, and other equivalent variants has been studied in literature extensively [21–47].
However, pLTL and its variants are not sufficient to capture the privacy requirements of legislation
like HIPAA and GLBA. To address this limitation, many logics and languages have been proposed
for specifying privacy policies. Some examples are P3P [48, 49], EPAL [50, 51], Privacy APIs
[52], LPU [53, 54], past-only fragment of first-order temporal logic (FOTL) [10, 11], predLTL [55],
pLogic [56], PrivacyLFP [12], MFOTL [5–7], the guarded fragment of first-order logic with explicit
time [4], and P-RBAC [57]. Our policy language, GMP, is more expressive than many existing
policy languages such as LPU [53,54], P3P [48,49], EPAL [50,51], and P-RBAC [57].

In Table 1, we summarize design choices in précis and other existing work on privacy policy
compliance checking using first-order temporal logics. The column “Incomplete states allowed?”
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indicates whether the work can handle some form of incompleteness in observation about states.
Our own prior work [4] presents the algorithm reduce that checks compliance of a mode-checked
fragment of FOL policies with respect to potentially incomplete logs. This paper makes the mode
check time-aware and adds summary structures to reduce, but we assume that our event traces
have complete information in all observed states.

Bauer et al. [11] present a compliance-checking algorithm for the (non-metric) past fragment of
FOTL. GMP can handle both past and future (metric) temporal operators. However, Bauer et al.
allow counting operators, arbitrary computable functions, and partial observability of events, which
we do not allow. They allow a somewhat simplified guarded universal quantification where the guard
is a single predicate. In GMP, we allow the guard of the universal quantification to be a complex
GMP formula. For instance, the following formula cannot be expressed in the language proposed
by Bauer et al. but GMP mode checks it: ∀x, y. (q(x+, y+)S p(x−, y−)) → r(x+, y+). Moreover,
Bauer et al. only consider closed formulas and also assume that each predicate argument position
is output. We do not insist on these restrictions. In further development, Bauer et al. [19], propose

an automata-based, incomplete monitoring algorithm for a fragment of FOTL called LTLFO. They
consider non-safety policies (unbounded future operators), which we do not consider.

Basin et al. [5] present a runtime monitoring algorithm for a fragment of MFOTL. Our sum-
mary structures are directly inspired by this work and the work of Chomicki [8, 9]. We improve
expressiveness through the possibility of brute force search similar to [4], when subformulas are not
amenable to summarization. Basin et al. build summary structures for future operators, which we
do not (such structures can be added to our monitoring algorithm). In subsequent work, Basin et
al. [6] extend their runtime monitoring algorithm to handle incomplete logs and inconsistent logs
using a three-valued logic, which we do not consider. In more recent work, Basin et al. [7] extend
the monitoring algorithm to handle aggregation operators and function symbols, which GMP does
not include. These extensions are orthogonal to our work.

Our temporal mode check directly extends mode checking from [4] by adding time-sensitivity,
although the setting is different— [4] is based on first-order logic with an explicit theory of linear
time whereas we work with MFOTL. The added time-sensitivity allows us to classify subformulas
into those that can be summarized and those that must be brute forced. Some prior work, e.g. [5–
11], is based on the safe-range check instead of the mode check. The safe-range check is less
expressive than a mode check. For example, the safe-range check does not accept the formula
q(x+, y+, z−)S p(x−, y−), but our temporal mode check does (however, the safe-range check will
accept the formula q(x−, y−, z−)S p(x−, y−)). More recent work [7] uses a static check intermediate
in expressiveness between the safe-range check and a full-blown mode check.

7 Conclusion

We have presented a privacy policy compliance-checking algorithm for a fragment of MFOTL.
The fragment is characterized by a novel temporal mode-check, which, like a conventional mode-
check, ensures that only finitely many instantiations of quantifiers are tested but is, additionally,
time-aware and can determine which subformulas of the policy are amenable to construction of
summary structures. Using information from the temporal mode-check, our algorithm précis
performs best-effort runtime monitoring, falling back to brute force search when summary structures
cannot be constructed. Empirical evaluation shows that summary structures improve performance
significantly, compared to a baseline without them.
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[35] Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security policies revisited. ACM
Trans. Inf. Syst. Secur. 16(1) (June 2013) 3:1–3:26

[36] Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In Cervesato, I., ed.:
Foundations of Computer Security: proceedings of the FLoC’02 workshop on Foundations of
Computer Security, Copenhagen, Denmark, DIKU Technical Report (25–26 July 2002) 95–104

[37] Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1) (February
2000) 30–50

[38] Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on
running programs. In: Automated Software Engineering, 2001. (ASE 2001). Proceedings. 16th
Annual International Conference on. (Nov 2001) 412–416

[39] Martinell, F., Matteucci, I.: Through modeling to synthesis of security automata. Electron.
Notes Theor. Comput. Sci. 179 (2007) 31–46

17



[40] Huisman, M., Tamalet, A.: A formal connection between security automata and jml anno-
tations. In: FASE ’09: Proceedings of the 12th International Conference on Fundamental
Approaches to Software Engineering, Berlin, Heidelberg, Springer-Verlag (2009) 340–354

[41] Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans.
Inf. Syst. Secur. 12(3) (January 2009) 19:1–19:41

[42] Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for run-time
security policies. Int. J. Inf. Sec. ’05

[43] Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In Arun-Kumar,
S., Garg, N., eds.: Proceedings of the 26th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS). Volume 4337 of Lecture Notes in Computer
Science., Berlin, Heidelberg, Springer-Verlag (December 2006)

[44] Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is ugly?
In Sokolsky, O., Tasiran, S., eds.: Proceedings of the 7th International Workshop on Runtime
Verification (RV). Volume 4839 of Lecture Notes in Computer Science., Berlin, Heidelberg,
Springer-Verlag (November 2007) 126–138

[45] Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification.
Logic and Computation 20(3) (2010) 651–674

[46] Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.
Softw. Eng. Methodol. 20(4) (September 2011) 14:1–14:64

[47] Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In Giannakopoulou, D., Méry, D., eds.:
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Appendix

A Temporal Mode Checking `B and ` Judgements

In this section, we present the formal rules for the temporal mode checking `B and ` judgement.
The complete set of rules for `B judgements are shown in Figure 7.

The complete set of rules for ` judgements are shown in Figures 8, 9, and 10. Note that, we do
not present the cases of , , , and . The mode checking judgements for  and  are exactly
like the  case. On the other hand, the mode checking judgements for  and  are exactly like
the  case.

B Definition of ips

We present the complete definition of ips in Figure 11.

C Updating Summary Structures

In this section, we present how to update the summary structure for the current trace position if
we are given the summary structures for the previous trace position.

C.1 Summary Structure For Iϕ

We now explain how to incrementally maintain the structure for buildable temporal sub-formula
of form [lo,hi]ϕ. For each such formula, we have two summary structures T and R. We denote
the summary structures at execution position i as follows: Ti and Ri. Each element of Ti is
a substitution σ, which signifies that the formula ϕ was true with substitution σ at execution
position i. Each element of Ri is a substitution σ which signifies that the formula [lo,hi]ϕ is true
in the current execution position i with substitution σ. We now show how can we incrementally
maintain the structure Ti and Ri provided that we have access to the structures T(i−1) and R(i−1).
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χC `B ϕ : χO

χC `B > : {} [B-TRUE]
χC `B ⊥ : {} [B-FALSE]

∀k ∈ I(p).fv(tk) ⊆ χC χO =
⋃

j∈O(p)

fv(tj)

χC `B p(t1, . . . , tn) : χO
[B-PRE]

{} `B ϕ2 : χ1 χ1 `B ϕ1 : χ2 χO = χ1

χC `B ϕ1 S Iϕ2 : χO
[B-SINCE]

χC `B ϕ1 : χ1 χC ∪ χ1 `B ϕ2 : χ2 χO = χ1 ∪ χ2

χC `B ϕ1 ∧ ϕ2 : χO
[B-AND]

χC `B ϕ1 : χ1 χC `B ϕ2 : χ2 χO = χ1 ∩ χ2

χC `B ϕ1 ∨ ϕ2 : χO
[B-OR]

χC `B ϕ : χ1 χO = χ1 \ {~x}
χC `B ∃~x.ϕ : χO

[B-EXISTS]

χC `B ϕ1 : χ1 fv(ϕ1), fv(ϕ2) ⊆ χC ∪ {~x} {~x} ⊆ χ1 χC ∪ χ1 `B ϕ2 : χ2

χC `B ∀~x.(ϕ1 → ϕ2) : {} [B-UNIV]

{} `B ϕ : χO
χC `B Iϕ : χO

[B-HIST]
{} `B ϕ : χO

χC `B Iϕ : χO
[B-ONCE]

{} `B ϕ : χO
χC `B Iϕ : χO

[B-LAST]

Figure 7: Temporal mode checking `B judgements
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χC , χF ` ϕ : χO

χC , χF ` > : {} [TRUE]
χC , χF ` ⊥ : {} [FALSE]

∀k ∈ I(p).fv(tk) ⊆ (χC ∪ χF ) χO =
⋃

j∈O(p)

fv(tj)

χC , χF ` p(t1, . . . , tn) : χO
[PRE-1]

χC `B p(t1, . . . , tn) : χO
χC , χF ` p(t1, . . . , tn) : χO

[PRE-2]

χC `B ϕ1 : χ1 χC ∪ χ1, χF ` ϕ2 : χ2 χO = χ1 ∪ χ2

χC , χF ` ϕ1 ∧ ϕ2 : χO
[AND-1]

χC , χF ` ϕ1 : χ1 χC , χF ∪ χ1 ` ϕ2 : χ2 χO = χ1 ∪ χ2

χC , χF ` ϕ1 ∧ ϕ2 : χO
[AND-2]

χC , χF ` ϕ1 : χ1 χC `B ϕ2 : χ2 χO = χ1 ∪ χ2

χC , χF ` ϕ1 ∧ ϕ2 : χO
[AND-3]

χC `B ϕ1 : χ1 χC ∪ χ1 `B ϕ2 : χ2 χO = χ1 ∪ χ2

χC , χF ` ϕ1 ∧ ϕ2 : χO
[AND-4]

χC `B ϕ1 : χ1 χC , χF ` ϕ2 : χ2 χO = χ1 ∩ χ2

χC , χF ` ϕ1 ∨ ϕ2 : χO
[OR-1]

χC , χF ` ϕ1 : χ1 χC , χF ` ϕ2 : χ2 χO = χ1 ∩ χ2

χC , χF ` ϕ1 ∨ ϕ2 : χO
[OR-2]

χC , χF ` ϕ1 : χ1 χC `B ϕ2 : χ2 χO = χ1 ∩ χ2

χC , χF ` ϕ1 ∨ ϕ2 : χO
[OR-3]

χC `B ϕ1 : χ1 χC `B ϕ2 : χ2 χO = χ1 ∩ χ2

χC , χF ` ϕ1 ∨ ϕ2 : χO
[OR-4]

Figure 8: Temporal mode checking ` judgements (base cases and logical connective cases)
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χC , χF ` ϕ : χO

χC , χF ` ϕ : χ1 χO = χ1 \ {~x}
χC , χF ` ∃~x.ϕ : χO

[EXIST-1]

χC `B ϕ : χ1 χO = χ1 \ {~x}
χC , χF ` ∃~x.ϕ : χO

[EXIST-2]

χC , χF ` ϕ1 : χ1 {~x} ⊆ χ1 fv(ϕ1) ⊆ χC ∪ χF ∪ {~x} fv(ϕ2) ⊆ (χC ∪ χ1 ∪ χF ) χC , χF ∪ χ1 ` ϕ2 : χ2

χC , χF ` ∀~x.(ϕ1 → ϕ2) : {} [UNIV-1]

χC `B ϕ1 : χ1 {~x} ⊆ χ1 fv(ϕ1) ⊆ χC ∪ {~x} fv(ϕ2) ⊆ (χC ∪ χ1 ∪ χF ) χC ∪ χ1, χF ` ϕ2 : χ2

χC , χF ` ∀~x.(ϕ1 → ϕ2) : {} [UNIV-2]

χC `B ϕ1 : χ1 {~x} ⊆ χ1 fv(ϕ1) ⊆ χC ∪ {~x} fv(ϕ2) ⊆ (χC ∪ χ1) χC ∪ χ1 `B ϕ2 : χ2

χC , χF ` ∀~x.(ϕ1 → ϕ2) : {} [UNIV-3]

χC , χF ` ϕ1 : χ1 {~x} ⊆ χ1 fv(ϕ1) ⊆ χC ∪ χF ∪ {~x} fv(ϕ2) ⊆ χC χC `B ϕ2 : χ2

χC , χF ` ∀~x.(ϕ1 → ϕ2) : {} [UNIV-4]

Figure 9: Temporal mode checking ` judgements (quantifier cases)

We have Ti ← ips(L, i, τ, π, •, ϕ). Once we have updated Ti, we can update Ri in the following
way.

Ri =

{
∅ when i = 0

{σ | σ ∈ T(i−1) ∧ (lo ≤ τi − τ(i−1) ≤ hi)} when i > 0

C.2 Summary Structure For Iϕ

We now explain how to incrementally maintain the structure for buildable temporal sub-formula
of form [lo,hi]ϕ. For each such formula, we have two summary structures P and R. We denote
the summary structures at execution position i as follows: Pi and Ri. Each element of Pi is a pair
of form 〈σ, k〉 which signifies that the formula ϕ was true with substitution σ at execution position
k. Each element of Ri is a substitution σ which signifies that the formula [lo,hi]ϕ is true in the
current execution position i with substitution σ. We now show how can we incrementally maintain
the structure Pi and Ri provided that we have access to the structures P(i−1) and R(i−1). Note
that, we assume both P(−1) and R(−1) to be empty.

Σ← ips(L, i, τ, π, •, ϕ)
Sa ← {〈σ, i〉|〈σ, i〉 ∈ Σ ∧ 0 ≤ hi}
Sr ← {〈σ, k〉|〈σ, k〉 ∈ P(i−1) ∧ τi − τk > hi}
Pi ← (P(i−1) \ Sr) ∪ Sa
Ri ← {σ|∃k.〈σ, k〉 ∈ Pi ∧ τi − τk ∈ [lo, hi]}

The set Σ contains all the substitutions for which ϕ holds true in execution position i. The set
Sa contains all the new pairs of 〈σ, i〉 denoting that ϕ holds with substitution σ at i. The set
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χC , χF ` ϕ : χO

{} `B ϕ2 : χ1 χ1, (χC ∪ χF ) ` ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 S Iϕ2 : χO
[SINCE-1]

{}, χC ∪ χF ` ϕ2 : χ1 {}, χC ∪ χF ∪ χ1 ` ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 S Iϕ2 : χO
[SINCE-2]

{}, χC ∪ χF ` ϕ2 : χ1 {} `B ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 S Iϕ2 : χO
[SINCE-3]

{} `B ϕ2 : χ1 χ1 `B ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 S Iϕ2 : χO
[SINCE-4]

χC `B ϕ2 : χ1 χC , χF ∪ χ1 ` ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 U Iϕ2 : χO
[UNTIL-1]

χC `B ϕ2 : χ1 χC `B ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 U Iϕ2 : χO
[UNTIL-2]

χC , χF ` ϕ2 : χ1 χC `B ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 U Iϕ2 : χO
[UNTIL-3]

χC , χF ` ϕ2 : χ1 χC , χF ∪ χ1 ` ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 U Iϕ2 : χO
[UNTIL-4]

{}, χC ∪ χF ` ϕ : χ1 χO = χ1

χC , χF `Iϕ : χO
[ONCE-1]

{} `B ϕ : χ1 χO = χ1

χC , χF `Iϕ : χO
[ONCE-2]

χC , χF ` ϕ : χ1 χO = χ1

χC , χF `Iϕ : χO
[EVENTUALLY-1]

χC `B ϕ : χ1 χO = χ1

χC , χF `Iϕ : χO
[EVENTUALLY-2]

Figure 10: Temporal mode checking ` judgements (temporal operator cases)
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ips(L, i, τ, π, σin,>) = {σin}
ips(L, i, τ, π, σin,⊥) = {}
ips(L, i, τ, π, σin, p(t1, . . . , tn)) = sat(L, i, τ, p(t1, . . . , tn), σin)
ips(L, i, τ, π, σin, ϕ1 ∨ ϕ2) = ips(L, i, τ, π, σin, ϕ1)

⋃
ips(L, i, π, σin, ϕ2)

ips(L, i, τ, π, σin, ϕ1 ∧ ϕ2) =
⋃
σc∈ips(L,i,τ,π,σin,ϕ1)

ips(L, i, τ, π, σc, ϕ2)

ips(L, i, τ, π, σin,∃~x.ϕ) = ips(L, i, τ, π, σin, ϕ) \ {~x}

ips(L, i, τ, π, σin,
∀~x.(ϕ1 → ϕ2))

=
let Σ1 ← ips(L, i, τ, π, σin, ϕ1)

return

{
{} if ∃σc ∈ Σ1.(ips(L, i, τ, π, σc, ϕ2) = {})
{σin} otherwise

ips(L, i, τ, π, σin, αS Iβ) = σin on π.A(αS Iβ)(i).R if B ∈ label(αS Iβ)

ips(L, i, τ, π, σin, αS Iβ) =

If B 6∈ label(αS Iβ)
let Sβ ← {〈σ, k〉|k = max l.((0 ≤ l ≤ i) ∧ ((τi − τl) ∈ I)

∧σ ∈ ips(L, l, τ, π, σin, β))}
SR1 ← {σ|〈σ, i〉 ∈ Sβ ∧ 0 ∈ I}
SR2 ← {./σαl 6= σ⊥|∃〈σβ , k〉 ∈ Sβ .k < i∧

∀l.(k < l ≤ i→ σαl ∈ ips(L, l, τ, π, σβ , ϕ1))}
return SR1

∪ SR2

ips(L, i, τ, π, σin,Iα) =


σin on π.A(Iα)(i).R if B ∈ label(Iα)

ips(L, i− 1, τ, π, σin, α) if i > 1, τi − τ(i−1) ∈ I, and B /∈ label(Iα)

{} otherwise

ips(L, i, τ, π, σin,Iα) =

{
σin on π.A(Iα)(i).R if B ∈ label(Iα)

{σ | ∃k.(k ≤ i ∧ τi − τk ∈ I ∧ σ ∈ ips(L, k, τ, π, σin, α))} if B /∈ label(Iα)

ips(L, i, τ, π, σin,Iα) =

{
σin on π.A(Iα)(i).R if B ∈ label(Iα)

{σ | ∀k.(0 ≤ k ≤ i ∧ τi − τk ∈ I ∧ σ ∈ ips(L, k, τ, π, σin, α))} if B /∈ label(Iα)

ips(L, i, τ, π, σin, αU Iβ) =

let Sβ ← {〈σ, k〉|k = min l.(l ≥ i ∧ ((τl − τi) ∈ I)
∧σ ∈ ips(L, l, τ, π, σin, β))}

SR1
← {σ|〈σ, i〉 ∈ Sβ ∧ 0 ∈ I}

SR2
← {./σαl 6= σ⊥|∃〈σβ , k〉 ∈ Sβ .k 6= i∧

∀(i ≤ l < k).σαl ∈ ips(L, l, τ, π, σβ , α)}
return SR1 ∪ SR2

ips(L, i, τ, π, σin,Iα) = {σ | σ ∈ ips(L, i+ 1, τ, π, σin, α) ∧ (τ(i+1) − τi ∈ I)}
ips(L, i, τ, π, σin,Iα) = {σ | ∃k.(k ≥ i ∧ τk − τi ∈ I ∧ σ ∈ ips(L, k, τ, π, σin, α))}
ips(L, i, τ, π, σin,Iα) = {σ | ∀k.(k ≥ i ∧ τk − τi ∈ I ∧ σ ∈ ips(L, k, τ, π, σin, α))}

Figure 11: The definition of the ips function.

Sr contains all the pairs of form 〈σ, k〉 where ϕ was true with substitution σ in k and it violates
the interval constraint [lo, hi]. Thus, we add the new pairs and throw out the old pairs from the
structure P(i−1) to get the new structure Pi. Once we have updated the structure Pi, we calculate
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the structure Ri by choosing σ out of pairs 〈σ, k〉 ∈ Pi for which the interval constraint is satisfied.

C.3 Summary Structure For Iϕ

In this section, we explain how to incrementally maintain the structure for buildable temporal
sub-formula of form [lo,hi]ϕ. For each such formula, we have two summary structures H and R.
We denote the summary structures at execution position i as follows: Hi and Ri. Each element
of Hi is a triple of form 〈σ, l, r〉 which signifies that the formula ϕ was true with substitution σ
from execution position l to r, inclusive. Each element of Ri is a substitution σ which signifies that
the formula [lo,hi]ϕ is true in the current execution position i with substitution σ. We now show
how can we incrementally maintain the structure Hi and Ri provided that we have access to the
structures H(i−1) and R(i−1). Note that, we assume both H(−1) and R(−1) to be empty.

In our construction, Σ denotes the set of substitutions for which ϕ holds in the current execution
position i. The construction first checks to see whether a current substitution can extend the range
of an existing triple from 〈σ, l, i − 1〉 ∈ H(i−1) to 〈σ′, l, i〉 where σ′ ≥ σ. If yes, those extended
tuples are added in the set Supdate. Then we add each substitution which does not extend an

existing triple, to start a new triple 〈σ, i, i〉 which signifies that ϕ holds for σ in position i. They
are added to the set Snew. Next we get all existing triples which cannot be extended with any
new substitution. They are added to the set Scarry-over. Finally, we throw out those triples whose
right end does not satisfy the interval constraint. They are stored in the set Sremove. We then
add all the triples either in Snew, Supdate, or Scarry-over and remove all the triples in Sremove.

The result is stored in Hi. Once Hi has been calculated, we then show how to calculate the result
set Ri.

Σ ← ips(L, i, τ, π, •, ϕ)

Snew ← {〈σ, i, i〉 | σ ∈ Σ ∧ ∀〈σ1, l, i− 1〉 ∈ H(i−1).σ on σ1 6= σ}
Supdate ← {〈σ1 on σ2, l, i〉 | σ1 ∈ Σ ∧ 〈σ2, l, i− 1〉 ∈ H(i−1) ∧ σ1 on σ2 6= σ⊥}
Scarry-over ← {〈σ, l, r〉 | 〈σ, l, r〉 ∈ H(i−1) ∧ (r < (i− 1)∨

(r = i− 1 ∧ ∀σ1 ∈ Σ.σ on σ1 6= σ))}

T ← Snew
⋃
Supdate

⋃
Scarry-over

Sremove ← {〈σ, l, r〉 | 〈σ, l, r〉 ∈ T ∧ (τi − τr) > hi}
Hi ← T \ Sremove
tl ← minPosition(τ, i, lo, hi)
th ← maxPosition(τ, i, lo, hi)
Ri ← {σ | tl 6= −1 ∧ th 6= −1 ∧ ∃l, r.(〈σ, l, r〉 ∈ Hi ∧ (l ≤ tl ≤ th ≤ r))}

For calculating Ri, we use two auxiliary utility functions, minPosition and maxPosition.
The function minPosition (resp., maxPosition) takes as input the time stamp sequence τ , the
current trace position i, the lower bound of the interval lo and the upper bound of the interval
hi. The function minPosition (resp., maxPosition) returns the minimum (resp., maximum)
position tp such that it satisfies 0 ≤ tp ≤ i and lo ≤ τi − τtp ≤ hi. If such positions are not found,
both functions return -1.

Let us consider tl to be the result of the minPosition function whereas th to be the result of
the maxPosition function. To calculate the substitutions in Ri, we choose the triples 〈σ, l, r〉 in
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Hi that satisfies the following constraint: (l ≤ tl ≤ th ≤ r).

C.4 Summary Structure For α in αS Iβ

In this section, we will show how the structure Sα at i is updated. We first use ips to calculate
a set of substitutions (Σα) that satisfy the following constraints: every substitution σ′ in Σα (1)
extends a substitution σ, which makes β true at a previous time point k and (2) makes ασ′ true
at position i. Next, we identify all substitutions σ such that ασ is true at position i and it is not
the case that ασ has been true since an earlier time point k till i. In other words, i is the first
position, from which till the current time point, ασ has been true. We store them in the set Snew.

Then we collect pairs 〈σa, k〉 from S(i−1)α such that α holds true at i. We then compute the join of
the substitutions with which α holds true in the current state with σa. These pairs are stored in
Supdate. Computing the join ensures that α has been true with the same substitution. In the case
where α(x, y) = A(x−)S IB(y−), the structure for α needs to record substitutions for both x and
y, even though sometimes only substitutions for y is available. If we omit substitutions for x, we
could run into situations where α(1, 2) is true at i, α(2, 2) at i + 1, and we mistakenly think that
α(x, y) has been true from i to i + 1 with y instantiated to 2. Recording substitutions for both x
and y, and taking a join will rule out this case. Finally the new summary structure Siα is the union

of the two sets. Note that, we assume S(−1)α to be empty.
Σα ←

⋃
〈σ,k〉∈Siβ∧k 6=i

ips(L, i, τ, π, σ, α)

Snew ← {〈σ, i〉 | σ ∈ Σα ∧ ∀〈σa, k〉 ∈ S(i−1)α .(σ on σa 6= σ)}
Supdate ← {〈σ on σa, k〉 | 〈σa, k〉 ∈ S(i−1)α ∧ σ ∈ Σα ∧ σ on σa 6= σ⊥}
Siα ← Snew ∪ Supdate

D Correctness of précis

In this section, we prove the correctness of our algorithm précis (Theorem 1). However, we first
prove some auxiliary lemmas which will be used to prove the Theorem 1. We also introduce the
readers with our different data structures (state π).

D.1 Properties of ` and `B Judgement

We start by defining what it means for a policy formula ϕ to be well-moded and then define when
do we call ϕ a B-formula.

Definition 1 (Well-moded formulas). A formula ϕ is well-moded with respect to a given χC and
χF if we can derive the following judgement for ϕ: χC , χF ` ϕ : χO where χO ⊆ fv(ϕ).

Definition 2 (B-formula). Given χC and χF , for all formulas ϕ such that χC , χF ` ϕ : χO
and χO ⊆ fv(ϕ), we say ϕ is a B-formula (or, B ∈ label(ϕ)) iff the following judgement can be
derived for ϕ: χC `B ϕ : χO

′ where χO
′ ⊆ fv(ϕ). In the same vein, if a formula ϕ does not satisfy

the above, we write B 6∈ label(ϕ) or ϕ is not a B-formula.

Lemma 1 (Upper Bound of `B). For all ϕ, χC and χO, if χC `B ϕ : χO, then χO ⊆ fv(ϕ).

Proof. Induction on the derivation of χC `B ϕ : χO.
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Cases [B-TRUE], [B-FALSE].

Then ϕ = > or ϕ = ⊥, χO = {} and fv(ϕ) = {}. Trivially χO ⊆ fv(ϕ).

Case [B-PRE].

Then ϕ = p(t1, . . . , tn), χO =
⋃
j∈O(p) fv(tj) by [B-PRE] and fv(p(t1, . . . , tn)) =

⋃
j∈{1,...,n} fv(tj)

by definition. Thus trivially χO ⊆ fv(ϕ).

Case [B-SINCE].

Then ϕ = ϕ1 S Iϕ2 and

{} `B ϕ2 : χ1 χ1 `B ϕ1 : χ2 χO = χ1

χC `B ϕ1 S Iϕ2 : χO . By inductive hypothesis,
χ1 ⊆ fv(ϕ2). Thus χO = χ1 ⊆ fv(ϕ2) ⊆ fv(ϕ1) ∪ fv(ϕ2) = fv(ϕ).

Case [B-AND].

Then ϕ = ϕ1 ∧ ϕ2 and

χC `B ϕ1 : χ1 χC ∪ χ1 `B ϕ2 : χ2 χO = χ1 ∪ χ2

χC `B ϕ1 ∧ ϕ2 : χO . By inductive
hypothesis, χ1 ⊆ fv(ϕ1) and χ2 ⊆ fv(ϕ2). Thus χO = χ1 ∪ χ2 ⊆ fv(ϕ1) ∪ fv(ϕ2) = fv(ϕ).

Case [B-OR].

Then ϕ = ϕ1 ∨ ϕ2 and

χC `B ϕ1 : χ1 χC `B ϕ2 : χ2 χO = χ1 ∩ χ2

χC `B ϕ1 ∨ ϕ2 : χO . By inductive hy-
pothesis, χ1 ⊆ fv(ϕ1) and χ2 ⊆ fv(ϕ2). Thus χO = χ1 ∩ χ2 ⊆ fv(ϕ1) ∩ fv(ϕ2) ⊆ fv(ϕ1) ∪
fv(ϕ2) = fv(ϕ).

Case [B-EXISTS].

Then ϕ = ∃~x.ϕ and

χC `B ϕ : χ1 χO = χ1 \ {~x}
χC `B ∃~x.ϕ : χO . By inductive hypothesis, χ1 ⊆ fv(ϕ1). By

set properties, χO = χ1 \ {~x} ⊆ fv(ϕ1) \ {~x} = fv(∃~x.ϕ).

Lemma 2 (Upper Bound of `). For all ϕ, χC , χF and χO, if χC , χF ` ϕ : χO, then χO ⊆ fv(ϕ).

Proof. Induction on the derivation of χC , χF ` ϕ : χO. Most cases are equivalent to Lemma 1. We
again show select cases.

Case [UNIV-3], [UNIV-2], [UNIV-1], [UNIV-4].

Then χO = {}, which is trivially a subset of the free variables of any formula.

Case [UNTIL-1].

Then ϕ = ϕ1 U Iϕ2 and

χC `B ϕ2 : χ1 χC , χF ∪ χ1 ` ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 U Iϕ2 : χO . By Lemma 1, χ1 ⊆
fv(ϕ2). Then χO = χ1 ⊆ fv(ϕ2) ⊆ fv(ϕ1) ∪ fv(ϕ2) = fv(ϕ).

Case [UNTIL-3].

Then ϕ = ϕ1 U Iϕ2 and

χC , χF ` ϕ2 : χ1 χC `B ϕ1 : χ2 χO = χ1

χC , χF ` ϕ1 U Iϕ2 : χO . By inductive hypothesis,
χ1 ⊆ fv(ϕ2). Then χO = χ1 ⊆ fv(ϕ2) ⊆ fv(ϕ1) ∪ fv(ϕ2) = fv(ϕ).
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Lemma 3 (Buildable temporal subformula). For a given χC and a formula ϕ, if χC `B ϕ : χO
holds, then for all sub-formula ϕ̂ of ϕ, there exists a χ′C for which the judgment χ′C `B ϕ̂ : χ′O
holds.

Proof. The proof proceeds by doing an induction on the derivation of the `B judgements.

Lemma 4 (∆ of buildable temporal formula). For all formula ϕ such that there exists a χC for
which χC `B ϕ : χO holds, then ∆(ϕ) = 0.

Proof. The proof proceeds by doing an induction on the structure of ϕ and case analysis of the ∆
function.

Lemma 5 (Monotonicity of `B judgement). For a given χC and a formula ϕ, if χC `B ϕ : χO
can be derived, then for any χ′C such that χ′C ⊇ χC , χ′C `B ϕ : χO can be derived.

Proof. We do induction on the derivation of the `B judgements. We show select cases and the
other cases are similar.

Cases [B-TRUE], [B-FALSE].

We can see from the derivation of χC `B > : {} and χC `B ⊥ : {} that the premise of the
judgements do not use χC , thus we can trivially write χ′C `B > : ∅ and χ′C `B ⊥ : ∅, without
changing the derivation.

Case [B-PRE].

From the first premise of the judgement, it is required that ∀k ∈ I(p).fv(tk) ⊆ χC . We
know χ′C ⊇ χC . Thus, we can write ∀k ∈ I(p).fv(tk) ⊆ χ′C . Then we get the judgement
χ′C `B p(t1, . . . , tn) : χO.

Case [B-SINCE].

Then

{} `B ϕ2 : χ1 χ1 `B ϕ1 : χ2 χO = χ1

χC `B ϕ1 S Iϕ2 : χO . We can see that the premises do not use
χC . Thus, we can replace χC with χ′C and can derive the judgement χ′C `B ϕ1 S Iϕ2 : χO.

Case [B-AND].

Then

χC `B ϕ1 : χ1 χC ∪ χ1 `B ϕ2 : χ2 χO = χ1 ∪ χ2

χC `B ϕ1 ∧ ϕ2 : χO . We see that it is required that
χC `B ϕ1 : χ1 and χC ∪ χ1 `B ϕ2 : χ2. From I.H., we can write χ′C `B ϕ1 : χ1 and
χ′C ∪ χ1 `B ϕ2 : χ2 as (χ′C ∪ χ1) ⊇ (χC ∪ χ1). Thus, enabling us to derive the judgement
χ′C `B ϕ1 ∧ ϕ2 : χO.

Case [B-OR].

Then

χC `B ϕ1 : χ1 χC `B ϕ2 : χ2 χO = χ1 ∩ χ2

χC `B ϕ1 ∨ ϕ2 : χO . We see that it is required that χC `B
ϕ1 : χ1 and χC `B ϕ2 : χ2. From I.H., we can write χ′C `B ϕ1 : χ1 and χ′C `B ϕ2 : χ2. Thus,
enabling us to derive the judgement χ′C `B ϕ1 ∨ ϕ2 : χO.
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Case [B-EXISTS].

Then

χC `B ϕ : χ1 χO = χ1 \ {~x}
χC `B ∃~x.ϕ : χO . We see that it is required that χC `B ϕ : χ1. From I.H.,

we can write χ′C `B ϕ : χ1. Thus, enabling us to derive the judgment χ′C `B: ∃~x.ϕχO.

Lemma 6 (Invariance of `B). Given χC and χF , for all formulas ϕ of form ϕ1 S Iϕ2, Iϕ, Iϕ,
or Iϕ, if χC `B ϕ : χ′O can be derived then {} `B ϕ : χ′O can be derived.

Proof. The proof follows from the judgements [B-SINCE], [B-ONCE], [B-HIST], and [B-LAST],
respectively, in Figure 7. None of the premises of the judgements [B-SINCE], [B-ONCE], [B-HIST],
and [B-LAST] use χC . We can thus replace χC with {} without changing the judgement result.

Lemma 7 (Invariance of `). For all formula ϕ and for some given χC , if χC `B ϕ : χO holds then
χC , {} ` ϕ : χO holds.

Proof. Induction on the derivation of the `B and ` judgements.

Lemma 8 (Monotonicity of `). Given χC , χF , and a formula ϕ, if χC , χF ` ϕ : χO can be
derived, then for any χ′C , χ

′
F such that χC ⊆ χ′C and χF ⊆ χ′F , the judgement χ′C , χ

′
F ` ϕ : χO can

be derived.

Proof. By induction on the derivation of the ` judgements. We show select cases.

Case [TRUE]/[FALSE].

The premise of the judgement neither uses χC nor χF . Thus, we can write χ′C , χ
′
F ` > : ∅ and

χ′C , χ
′
F ` ⊥ : ∅.

Case [PRE-2].

From the derivation of the judgement, we see that it is required that χC `B p(t1, . . . , tn) : χO.
In this premise of the judgement, χF is not used. So, we can easily replace χF with χ′F . By
Lemma 5, if we have χC `B p(t1, . . . , tn) : χO, we can write χ′C `B p(t1, . . . , tn) : χO. Thus, we
can derive the judgement χ′C , χ

′
F ` p(t1, . . . , tn) : χO.

Case [PRE-1].

From the derivation of the judgement, we see that it is required to satisfy
⋃
k∈I(p) .fv(tk) ⊆

(χC ∪ χF ). As χC ⊆ χ′C and χF ⊆ χ′F , we have (χC ∪ χF ) ⊆ (χ′C ∪ χ′F ). Thus, we have
χ′C , χ

′
F ` p(t1, . . . , tn) : χO.

Case [SINCE-1]

From the derivation of the judgement, we see that it is required to satisfy ∅ `B ϕ : χ1 and
χ1, (χC∪χF ) ` ϕ1 : χ2. The first premise of the derivation of the judgement neither uses χC nor
χF . However, this is not the case for the second premise. We can write (χC ∪χF ) ⊆ (χ′C ∪χ′F )
as χC ⊆ χ′C and χF ⊆ χ′F . From I.H., we have χ1, (χ

′
C ∪ χ′F ) ` ϕ1 : χ2. We can thus derive

the judgement χ′C , χ
′
F ` ϕ1 S Iϕ2 : χO.

The other cases are similar.
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Lemma 9 (Switching to ` judgements from `B judgements). For a given χC and a formula ϕ, if
χC `B ϕ : χO can be derived, then for any χF , χC , χF ` ϕ : χO can be derived.

Proof. The proof follows from Lemma 7 and 8. According to Lemma 7, if we have χC `B ϕ : χO,
we can write χC , ∅ ` ϕ : χO. By Lemma 8, if we have χC , ∅ ` ϕ : χO, we can write χC , χF ` ϕ : χO
for any χF as χF ⊇ ∅.

D.2 Substitutions and its Properties

The next notion necessary to understand our compliance checking algorithm is the notion of sub-
stitution. A substitution can be viewed as a finite mapping that maps free variables to concrete
values in the domain D. More formally, we define a substitution (denoted by σ) to be a finite
mapping from variables to values in the domain D, where σ(v) is in the domain of the variable v.
Given a substitution σ, dom(σ) is defined as follows: dom(σ) = {x | σ(x) 6= x}. We use Σ (possibly
with subscript or superscript) to denote a set of substitutions. We use • to represent the identity
substitution and σ⊥ to represent an invalid substitution.

We now define what it means for a substitution σ1 to extend σ2 (denoted σ1 ≥ σ2). We also
define how to apply a substitution σ to a formula ϕ with free variables.

Definition 3 (Extension of Substitution). Given two substitutions σ and σ′, we say σ′ extends σ,
denoted by σ′ ≥ σ, if the following holds: dom(σ′) ⊇ dom(σ) and ∀x ∈ dom(σ).(σ(x) = σ′(x)).

Definition 4 (Substitution Application). The application of a substitution σ to a formula ϕ,
denoted ϕσ, is recursively defined by

ϕσ =



> ϕ = >
⊥ ϕ = ⊥
p(σ(t1), . . . , σ(tn)) ϕ = p(t1, . . . , tn)

(ϕ1σ) ∨ (ϕ2σ) ϕ = ϕ1 ∨ ϕ2

(ϕ1σ) ∧ (ϕ2σ) ϕ = ϕ1 ∧ ϕ2

∃~x.ϕ[σ \ {~x}] ϕ = ∃~x.ϕ
∀~x.(ϕ1[σ \ {~x}]→ ϕ2[σ \ {~x}]) ϕ = ∀~x.(ϕ1 → ϕ2)

(ϕ1σ) S [c,d](ϕ2σ) ϕ = ϕ1 S [c,d]ϕ2

(ϕ1σ) U [c,d](ϕ2σ) ϕ = ϕ1 U [c,d]ϕ2

[c,d](ϕσ) | [c,d](ϕσ) | [c,d](ϕσ) ϕ =[c,d]ϕ | [c,d]ϕ | [c,d]ϕ

[c,d](ϕσ) | [c,d](ϕσ) | [c,d](ϕσ) ϕ =[c,d]ϕ | [c,d]ϕ | [c,d]ϕ

where σ is extended such that σ(e) = e for any e not a variable or in the domain of σ.

We now introduce the readers with some notations we use. Given a substitution σ, we use
σ ↓ S to denote a new substitution which is same as σ except all the variable, value mappings for
variables not in set S are removed in the new substitution. Let σ′ = σ ↓ S, then the following
holds: dom(σ′) ⊆ dom(σ), ∀x ∈ S.(σ(x) = σ′(x)), and ∀x ∈ dom(σ).(x 6∈ S → (σ′(x) = x)). We
now generalize the above operation for a set of substitutions. Consider Σ′ is a set of substitutions
and Σ = Σ′ ↓ S. We define Σ = Σ′ ↓ S in the following way, ∀σ ∈ Σ′.(Σ← Σ ∪ {σ ↓ S}).
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We use σ\S to denote a new substitution which is same as σ except the variable, value mappings
for variables in set S are removed. More precisely, consider σ′ = σ \ S, then dom(σ′) ⊆ dom(σ),
∀x ∈ dom(σ).(x 6∈ S → (σ(x) = σ′(x))), and ∀x ∈ dom(σ).(x ∈ S → (σ′(x) = x)) holds. We now
generalize the above operation for a set of substitutions. Consider Σ′ is a set of substitutions and
Σ = Σ′ \ S. We define Σ = Σ′ \ S in the following way, ∀σ ∈ Σ′.(Σ ← Σ ∪ {σ \ S}). Given a
substitution σ, we use σ[x 7→ t] to denote a new substitution which is same as σ except the variable
x is now mapped to the new value t according to the new substitution. We now generalize the
above operation for a set of substitutions. Consider Σ′ is a set of substitutions and Σ = Σ′[x 7→ t].
We define Σ = Σ′[x 7→ t] in the following way, ∀σ ∈ Σ′.(Σ← Σ ∪ {σ[x 7→ t]}).

Given two substitutions σ1 and σ2 such that dom(σ1)∩dom(σ2) = {}, we use σ1 +σ2 to denote
the concatenation of the variable, value mappings of both σ1 and σ2. Consider σ = σ1 + σ2, then
the following holds: ∀x ∈ dom(σ).((x ∈ dom(σ1) → σ(x) = σ1(x))) ∧ (x ∈ dom(σ2) → σ(x) =
σ2(x)))). We also have: σ + • = σ and σ + σ⊥ = σ⊥. If dom(σ1) ∩ dom(σ2) 6= {}, then the
substitution σ1 for variables in dom(σ1)∩dom(σ2) is overridden by the substitution σ2 for variables
in dom(σ1) ∩ dom(σ2).

Given two substitutions σ1 and σ2, we use σ1 on σ2 to denote a new substitution which is the
join of the two substitutions σ1 and σ2. Let σ = σ1 on σ2, σ is σ⊥ when the following holds:
∃x ∈ (dom(σ1) ∩ dom(σ2)).(σ1(x) 6= σ2(x)). When σ 6= {} then the following holds: dom(σ) =
dom(σ1)∪dom(σ2) and ∀x ∈ dom(σ).(((x ∈ dom(σ1)∧x 6∈ S)→ σ(x) = σ1(x))∧((x ∈ dom(σ2)∧x 6∈
S) → σ(x) = σ2(x)) ∧ (x ∈ S → (σ(x) = σ1(x) = σ2(x)))) where S = dom(σ1) ∩ dom(σ2). We
consider the on operation to be symmetric, that is σ1 on σ2 = σ2 on σ1. We also assume it is
possible to calculate the join operation of two finite substitutions in some finite amount of time.
We also have the following: σ on • = σ and σ on σ⊥ = σ⊥. We use ./0≤k≤j σk to represent
σ0 on σ1 on . . . σj−1 on σj . We write ./σk when the domain of k is understood from the context.

As the necessary notations have been introduced, we now discuss some obvious properties of
substitutions.

Lemma 10 (Basic Substitution Properties). Let σ and σ′ be arbitrary substitutions such that
dom(σ) ∩ dom(σ′) = ∅, and let ϕ be any formula. Then

1. if dom(σ) ∩ fv(ϕ) = ∅, then ϕσ = ϕ,

2. fv(ϕσ) = fv(ϕ) \ dom(σ),

3. ϕ(σ + σ′) = (ϕσ)σ′ = (ϕσ′)σ,

4. if dom(σ) ⊇ fv(ϕ), then fv(ϕσ) = ∅,

5. if dom(σ) ⊇ fv(ϕ), then ϕσ = ϕ(σ + σ′)

6. ϕσ = ϕ(σ ↓ fv(ϕ)).

Proof. The first three are by induction on the structure of ϕ. 4 follows from 2. 5 follows from 3, 4
and 1. 6 follows from 3 and 1.

Lemma 11 (Substitution - fv Restriction and Extension). Let σ and σ′ be substitutions and ϕ a
formula such that dom(σ) ∩ dom(σ′) = ∅ and dom(σ′) ∩ fv(ϕ) = ∅. Then for all L, j, η it holds
that L, j, η |= ϕ(σ ↓ fv(ϕ)) ⇐⇒ L, j, η |= ϕσ ⇐⇒ L, j, η |= ϕ(σ + σ′).
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Proof. By Lemma 10, we have ϕ(σ ↓ fv(ϕ)) = ϕσ = ϕ(σ + σ′). Thus the statement is trivially
true.

Corollary 1 (fv Substitution). Let σ be a substitution and ϕ a formula, with dom(σ) ⊇ fv(ϕ).
Then for all L, j, η and σ′ ≥ σ it holds that L, j, η |= ϕσ ⇐⇒ L, j, η |= ϕσ′.

Proof. Let σ′′ = σ ↓ fv(ϕ). Then L, j, η |= ϕσ′′ ⇐⇒ L, j, η |= ϕσ and L, j, η |= ϕσ′′ ⇐⇒
L, j, η |= ϕσ′ by previous lemma. Thus, L, j, η |= ϕσ ⇐⇒ L, j, η |= ϕσ′.

D.3 précis State (Π)

We now introduce the readers with the persistent state our algorithm précis uses to store the
appropriate summary structures for each of the B-formulas. We denote the state with π.

A state π is a tuple of form (A, idx) where A has the type Formula→ N→ (SS +S+S+S)
whereas idx has the type N. For a given π, we access the A component of it as π.A whereas we
access the idx component of π using the notation π.idx. For any given π = (A, idx) we require that
the A component of π be well-formed such that for a given i ∈ N, GMP B-formula formulas of
form: (1) αS Iβ are mapped to SS , (2) Iϕ are mapped to S, (3) Iϕ are mapped to S, and
(4) Iϕ are mapped to S.

We now describe the types of SS , S, S, and S. SS is a tuple (Sα,Sβ,R) in which Sα and Sβ
are structures containing pairs of form 〈σ, k〉 where σ is a substitution and k ∈ N. R is a structure
containing a set of substitutions. For a given state π = (A, idx) (where A is well-formed) and a
GMP formula ϕ of form αS Iβ, we can access ϕ’s structure Sα at a specific position i ∈ N using the
following notation: π.A(αS Iβ)(i).Sα. For a given state π = (A, idx) (where A is well-formed) and
a GMP formula ϕ of form αS Iβ, to specify that a specific 〈σ, k〉 is present in the structure Sβ of
ϕ at position i ∈ N, we use the notation 〈σ, k〉 ∈ π.A(ϕ)(i).Sβ. When the state (π = (A, idx)) and
the formula (ϕ ≡ αS Iβ) is understood from the context, we just write Siα to express π.A(ϕ)(i).Sα.
We follow these same notations for other structures too.

S is a tuple (P,R) where P has the same type as Sα. In the same vein, S is a tuple (H,R) where
H is a structure containing tuples of form 〈σ, left , right〉 where σ is a substitution and left , right ∈ N.
S is a tuple (T,R) where T has the same type as R.

Next we introduce the readers with what we mean by a well-formed state and define two proper-
ties (weak consistency and strong consistency) of a well-formed state which we use in the correctness
lemma later. However, first we define what we mean by buildable strict temporal subformulas of a
given formula ϕ. We use the concept of buildable strict temporal subformulas of a given formula ϕ
while defining weak and strong consistency of a well-formed state.

Definition 5 (Buildable Strict Temporal Sub-formula). Given a formula ϕ, the set of build-
able strict temporal sub-formulas of ϕ is denoted by b-s-tsub(ϕ) and is defined as b-s-tsub(ϕ) =
b-tsub(ϕ) \ {ϕ}.

We now define what it means for a state π to be well-formed at a specific position j ∈ N with
respect to a log L and a formula ϕ where B ∈ label(ϕ).

Definition 6 (Well-formed State, Ψ). Given a state π = (A, idx) (where idx ∈ N and π.A is
well-formed), we say π is well-formed at j ∈ N (where j ≤ idx) with respect to a log L, time stamp
sequence τ , and a formula ϕ of form αS Iβ, Iα, Iα, or Iα where ∅ `B ϕ : χO such that
χO ⊆ fv(ϕ), denoted by Ψ(L, τ, π, ϕ, j), if all of the following hold:
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b-tsub(ϕ) =



∅ if ϕ ≡ >|⊥|p(t1, . . . , tn)

b-tsub(ϕ1) ∪ b-tsub(ϕ2) if ϕ ≡ ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|ϕ1 U Iϕ2

{ϕ} ∪ b-tsub(α) ∪ b-tsub(β) if ϕ ≡ αS Iβ and B ∈ label(ϕ)

b-tsub(α) ∪ b-tsub(β) if ϕ ≡ αS Iβ and B 6∈ label(ϕ)

b-tsub(ϕ1) ∪ b-tsub(ϕ2) if ϕ ≡ ∀~x.(ϕ1 → ϕ2)

b-tsub(ϕ) if ϕ ≡ ∃~x.ϕ
b-tsub(ϕ) ∪ {ϕ} if ϕ ≡Iϕ | Iϕ | Iϕ and B ∈ label(ϕ)

b-tsub(ϕ) if ϕ ≡Iϕ | Iϕ | Iϕ and B /∈ label(ϕ)

b-tsub(ϕ) if ϕ ≡Iϕ | Iϕ | Iϕ

Figure 12: Function definition: b-tsub(ϕ)

• ϕ ≡ αS [c,d]β, ∅ `B β : χ1, and χ1 `B α : χ2 implies that:

1. (SOUNDNESS-π.A(j)(ϕ).Sα)
∀〈σ, k〉 ∈ π.A(ϕ)(j).Sα, η.dom(σ) ⊇ (χ1 ∪ χ2)∧ (∀σ′, l.(k ≤ l ≤ j)∧ σ′ ≥ σ → L, τ, l, η |=
ασ′).

2. (COMPLETENESS-π.A(ϕ)(j).Sα)
∀σ, k, σβ, η.(k < j)∧ 〈σβ, k〉 ∈ π.A(ϕ)(j).Sβ ∧ σ ≥ σβ ∧ dom(σ) ⊇ (χ1 ∪χ2)∧∀l.(k+ 1 ≤
l ≤ j) ∧ L, τ, l, η |= ασ → ∃σ′,m.σ ≥ σ′ ∧m ≤ (k + 1) ∧ 〈σ′,m〉 ∈ π.A(ϕ)(j).Sα.

3. (SOUNDNESS-π.A(ϕ)(j).Sβ)
∀〈σ, k〉 ∈ π.A(ϕ)(j).Sβ, η.dom(σ) ⊇ χ1 ∧ τj − τk ≤ d ∧ ∀σ′.(σ′ ≥ σ → L, τ, k, η |= βσ′).

4. (COMPLETENESS-π.A(ϕ)(j).Sβ)
∀σ, k, η.dom(σ) ⊇ fv(β) ∧ τj − τk ≤ d ∧ L, τ, k, η |= βσ → (∃〈σ′, k〉 ∈ π.A(ϕ)(j).Sβ. σ ≥
σ′).

5. (SOUNDNESS-π.A(ϕ)(j).R)
∀σ ∈ π.A(ϕ)(j).R, η.dom(σ) ⊇ χO ∧ ∀σ′.(σ′ ≥ σ → L, τ, j, η |= ϕσ′).

6. (COMPLETENESS-π.A(ϕ)(j).R)
∀σ, η.dom(σ) ⊇ fv(ϕ) ∧ L, τ, j, η |= ϕσ → (∃σ′ ∈ π.A(ϕ)(j).R. σ ≥ σ′).

• ϕ ≡ [c,d]α implies that:

1. (SOUNDNESS-π.A(ϕ)(j).T)
∀σ ∈ π.A(ϕ)(j).T, η.dom(σ) ⊇ χO ∧ ∀σ′.(σ′ ≥ σ → L, τ, j, η |= ασ′).

2. (COMPLETENESS-π.A(ϕ)(j).T)
∀σ, η.dom(σ) ⊇ fv(α) ∧ L, τ, j, η |= ασ → (∃σ′ ∈ π.A(ϕ)(j).T.σ ≥ σ′).

3. (SOUNDNESS-π.A(ϕ)(j).R)
∀σ ∈ π.A(ϕ)(j).R, η.dom(σ) ⊇ χO ∧ ∀σ′.(σ′ ≥ σ → L, τ, j, η |= ϕσ′).

4. (COMPLETENESS-π.A(ϕ)(j).R)
∀σ, η.dom(σ) ⊇ fv(ϕ) ∧ L, τ, j, η |= ϕσ → (∃σ′ ∈ π.A(ϕ)(j).R.σ ≥ σ′).

• ϕ ≡[c,d]α implies that:
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1. (SOUNDNESS-π.A(ϕ)(j).P)
∀〈σ, k〉 ∈ π.A(ϕ)(j).P, η.dom(σ) ⊇ χO ∧ τj − τk ≤ d ∧ ∀σ′.(σ′ ≥ σ → L, τ, k, η |= ασ′).

2. (COMPLETENESS-π.A(ϕ)(j).P)
∀σ, k, η.dom(σ) ⊇ fv(α)∧τj−τk ≤ d∧L, τ, k, η |= ασ → (∃〈σ′, k〉 ∈ π.A(ϕ)(j).P.σ ≥ σ′).

3. (SOUNDNESS-π.A(ϕ)(j).R)
∀σ ∈ π.A(ϕ)(j).R, η.dom(σ) ⊇ χO ∧ ∀σ′.(σ′ ≥ σ → L, τ, j, η |= ϕσ′).

4. (COMPLETENESS-π.A(ϕ)(j).R)
∀σ, η.dom(σ) ⊇ fv(ϕ) ∧ L, τ, j, η |= ϕσ → (∃σ′ ∈ π.A(ϕ)(j).R.σ ≥ σ′).

• ϕ ≡ [c,d]α implies that:

1. (SOUNDNESS-π.A(ϕ)(j).H)
∀〈σ, left, right〉 ∈ π.A(ϕ)(j).H, η.dom(σ) ⊇ χO∧τj−τright ≤ d∧∀σ′, l ∈ [left, right].(σ′ ≥
σ → L, τ, l, η |= ασ′).

2. (COMPLETENESS-π.A(ϕ)(j).H)
∀σ, L,R, η.dom(σ) ⊇ fv(α)∧(L ≤ R ≤ j)∧(τj−τR ≤ d)∧(∀t.(L ≤ t ≤ R)→ L, τ, t, η |=
ασ) → ∃σ′, left, right.(σ ≥ σ′) ∧ left ≤ L ≤ R ≤ right ≤ j ∧ 〈σ′, left, right〉 ∈
π.A(ϕ)(j).H.

3. (SOUNDNESS-π.A(ϕ)(j).R)
∀σ ∈ π.A(ϕ)(j).R, η.dom(σ) ⊇ χO ∧ ∀σ′.(σ′ ≥ σ → L, τ, j, η |= ϕσ′).

4. (COMPLETENESS-π.A(ϕ)(j).R)
∀σ, η.dom(σ) ⊇ fv(ϕ) ∧ L, τ, j, η |= ϕσ → (∃σ′ ∈ π.A(ϕ)(j).R.σ ≥ σ′).

As we have already introduced what it means for a state to be well-formed, we now formally
define two properties of a well-formed state, which we use in the statement of the subsequent
correctness lemmas, based on the definition of a well-formed state Ψ. Moreover, from now on,
when we mention a state we mean a well-formed state unless explicitly mentioned otherwise.

Definition 7 (Strong Consistency). A state π = (A, idx) (where idx ∈ N) is strongly consistent
at j ∈ Z (where j ≤ idx) with respect to a log L, a time stamp sequence τ , and a formula ϕ if: (1)
j < 0 or (2) for all ϕ̂ ∈ b-tsub(ϕ) and for all 0 ≤ k ≤ j, Ψ(L, τ, π, ϕ̂, k) holds.

Definition 8 (Weak Consistency). A state π = (A, idx) (where idx ∈ N) is weakly consistent at
j ∈ Z (where j ≤ idx) with respect to a log L, a time stamp sequence τ , and a formula ϕ if: (1)
j < 0 or (2) π is a strongly consistent state at j − 1 with respect to L and ϕ, and additionally for
all ϕ̂ ∈ b-s-tsub(ϕ), Ψ(L, τ, π, ϕ̂, j) holds.

We now define the size of a state with respect to a temporal B-formula ϕ and a position j ∈ Z.
The size of a state at a position j with respect to a B-formula ϕ, a log L, and a time stamp
sequence τ , is the summation of summary structure size of ϕ at all position k where 0 ≤ k ≤ j.
The finiteness of the state with respect to all B-formula of a given policy ϕ we enable us to show
the termination of our algorithm.

Definition 9 (Size of a state with respect to a buildable temporal formula). Given a log L, a time
stamp sequence τ , a formula ϕ of form αS Iβ, Iα, Iα, or Iα such that ∅ `B ϕ : χO where
χO ⊆ fv(ϕ), a state π = (A, i) where i ∈ N, a position j ∈ Z such that j ≤ i and π is strongly
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consistent at j with respect to L, τ , and ϕ, then the size of π at j with respect to ϕ, denoted by
Υ(π, j, ϕ), is defined as follows:

Υ(π, j, ϕ) =



0 if j < 0∑
0≤k≤j

(|π.A(ϕ)(k).Sα|+ |π.A(ϕ)(k).Sβ|+ |π.A(ϕ)(k).R|) if ϕ ≡ αS Iβ∑
0≤k≤j

(|π.A(ϕ)(k).P|+ |π.A(ϕ)(k).R|) if ϕ ≡Iα∑
0≤k≤j

(|π.A(ϕ)(k).H|+ |π.A(ϕ)(k).R|) if ϕ ≡ Iα∑
0≤k≤j

(|π.A(ϕ)(k).T|+ |π.A(ϕ)(k).R|) if ϕ ≡ Iα

D.4 Correctness

Now that we have established all the necessary notions to understand the correctness of our algo-
rithm précis, we first present several lemmas describing the properties of the different functions
our algorithm précis. This will be necessary to show the termination and correctness of précis.

We start of by describing the property of the sat function. Note that we use the sat function
as the building block of the ips function. The sat function satisfies the following claim.

Claim 1 (sat function). Given a log L, a position j ∈ N, a time stamp sequence τ , an input
substitution σin, and a predicate p(~t) such that for all k ∈ I(p) the following holds: ∀x ∈ fv(tk).x ∈
dom(σin), then sat(L, j, τ, p(~t), σin) terminates and returns the finite set of all substitutions Σout

for variables in
⋃
k∈I(p) fv(tk) ∪

⋃
i∈O(p) fv(ti) ∪ dom(σin), where for all σ ∈ Σout and η, σ ≥ σin

and L, τ, j, η |= p(~t)σ hold.

We now present a lemma about the ips function which states that all the substitutions returned
by the ips function is actually an extension of the input substitution σin that the ips function
takes as an argument. It can be shown that the semantics of GMP formulas and properties of it
are invariant under renaming quantified variables.

Lemma 12 (ips is Extension). For all formulas ϕ, for all j ∈ N, for all logs L, for all time stamp
sequences τ , for all states π = (A, i) where i ∈ N, for all substitutions σin, for any χC and χF ,
such that: (1) χC , χF ` ϕ : χO, (2) i ≥ j and τi − τj ≥ ∆(ϕ), (3) dom(σin) ⊇ χC ∪ χF , (4) π
is strongly consistent at i with respect to ϕ, τ , and L, if ips(L, j, τ, π, σin, ϕ) = Σout, then for all
σ ∈ Σout it holds that σ ≥ σin.

Proof. The proof proceeds by doing an induction on the structure of ϕ. We show select cases and
the other cases are similar.

Case ϕ ≡ >.
Then Σout = {σin}, so σin ≤ σin.

Case ϕ ≡ ⊥.
Since Σout = ∅, the statement is vacuously true.

Case ϕ ≡ p(t1, . . . , tn).
Then Σout = sat(L, j, τ, p(t1, . . . , tn), σin), and by Claim 1 we have, ∀σ ∈ sat(L, j, τ, p(t1, . . . , tn), σin).σ ≥
σin.
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Case ϕ ≡ ϕ1 ∨ ϕ2.
Then Σout = ips(L, j, τ, π, σin, ϕ1)∪ips(L, j, τ, π, σin, ϕ2). W.l.o.g., σ ∈ ips(L, j, τ, π, σin, ϕ1).
Inspection of the applicable mode checking judgements verifies that the inductive hypothesis
is applicable, which yields that σ ≥ σin.

Case ϕ ≡ ϕ1 ∧ ϕ2.
Then Σout =

⋃
σc∈ips(L,j,τ,π,σin,ϕ1)

ips(L, j, τ, π, σc, ϕ2). If σ ∈ Σout, then there exists σc ∈
ips(L, j, τ, π, σin, ϕ1) such that σ ∈ ips(L, j, τ, π, σc, ϕ2). Inspection of the applicable mode
checking judgements verifies that the inductive hypothesis is applicable, which first yields that
σc ≥ σin, and then σ ≥ σc. By transitivity of ≥, we have σ ≥ σin.

Case ϕ ≡ ∃~x.ϕ.
W.l.o.g., we have dom(σin) ∩ ~x = ∅ as we can rename ~x to some fresh ~y. Then Σout =
ips(L, i, τ, π, σin, ϕ) \ {~x}. Then there exists σ′ ∈ ips(L, i, τ, π, σin, ϕ) such that σ = σ′ \ {~x}.
By inductive hypothesis, σ′ ≥ σin from which we have σ′ \ {~x} ≥ σin \ {~x}. As σ = σ′ \ {~x},
we now have σ ≥ σin \ {~x} and as dom(σin) ∩ ~x = ∅, we have σin \ {~x} = σin. Then σ ≥ σin.

Case ϕ ≡ ∀~x.(ϕ1 → ϕ2).
If Σout = {}, then the statement vacuously holds. Else Σout = {σin}, so σin ≤ σin.

Case ϕ ≡ ϕ1 S [c,d]ϕ2.

Sub-Case B ∈ label(ϕ).

Then Σout = σin on π.A(ϕ1 S ϕ2)(i).R, so by on properties ∀σ ∈ Σout.σ ≥ σin.

Sub-Case B 6∈ label(ϕ).

Then σ ∈ SR1 or σ ∈ SR2 .

Sub-Sub-Case σ ∈ SR1 .
Then 〈σ, j〉 ∈ Sϕ2 , so σ ∈ ips(L, j, τ, π, σin, ϕ2). By inductive hypothesis, σ ≥ σin.

Sub-Sub-Case σ ∈ SR2 .
Then σ ∈ Sϕ1 = {./σ′l 6= σ⊥|∃〈σβ, k〉 ∈ Sϕ2 .k < j ∧ ∀l.(k < l ≤ j → σ′l ∈
ips(L, l, τ, π, σβ, ϕ1))}. Then σ = ./σ′l for some σ′l with a certain k, so ∀l.k < l ≤
j → σ ≥ σ′l by on properties. By inductive hypothesis, ∀l.k < l ≤ j → σ′l ≥ σβ, thus
σ ≥ σβ. Since 〈σβ, k〉 ∈ Sϕ2 , σβ ∈ ips(L, k, τ, π, σin, ϕ2). By inductive hypothesis,
σβ ≥ σin. By transitivity, σ ≥ σin.

Case ϕ ≡ ϕ1 U [c,d]ϕ2.
Then σ ∈ SR1 or σ ∈ SR2 .

Sub-Case σ ∈ SR1 .

Then 〈σ, j〉 ∈ Sϕ2 , so σ ∈ ips(L, j, τ, π, σin, ϕ2). By inductive hypothesis, σ ≥ σin.

Sub-Case σ ∈ SR2 .

Then σ ∈ Sϕ1 = {./σαl 6= σ⊥|∃〈σβ, k〉 ∈ Sϕ2 .k 6= i∧∀(i ≤ l < k).σαl ∈ ips(L, l, τ, π, σβ, α)}.
Then σ = ./σ′l for some σ′l with a certain k, so ∀l.j ≤ l < k → σ ≥ σ′l by on properties.
By inductive hypothesis, ∀l.j ≤ l < k → σ′l ≥ σβ, thus σ ≥ σβ. Since 〈σβ, k〉 ∈ Sϕ2 ,
σβ ∈ ips(L, k, τ, π, σin, ϕ2). By inductive hypothesis, σβ ≥ σin. By transitivity, σ ≥ σin.
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Lemma 13 (Upper Bound of Substitutions returned by ips and Stored in the State). 1. For all
GMP formulas ϕ either of form ϕ1 S Iϕ2, Iϕ, Iϕ, or Iϕ, such that {} `B ϕ : χO, for all
logs L, for all time stamp sequences τ , for a specific i ∈ N, for all states π = (A, i) where π is
strongly consistent at i with respect to L, τ , and ϕ, ∀σ(σ ∈ π.A(ϕ)(i).R→ dom(σ) ⊆ fv(ϕ)).

2. For all GMP formulas ϕ, for all j ∈ N, for all logs L, for all time stamp sequences τ , for
all empty environments η0 for all state π = (A, i) where i ∈ N, for all substitutions σin, for
some given χC and χF , such that: (1) χC , χF ` ϕ : χO, (2) i ≥ j and τi − τj ≥ ∆(ϕ),
(3) dom(σin) ⊇ χC ∪ χF , (4) π is strongly consistent at i with respect to ϕ, τ , and L, if
ips(L, j, τ, π, σin, ϕ) = Σout then ∀σ(σ ∈ Σout → dom(σ) ⊆ dom(σin) ∪ fv(ϕ)).

Proof. The proof is straightforward by structural induction on the policy ϕ and by using the
construction of ips and uSS.

Lemma 14 (Correctness of uSS and ips function). 1. For all GMP formulas ϕ either of form
ϕ1 S Iϕ2, Iϕ, Iϕ, or Iϕ, such that {} `B ϕ : χO, for all logs L, for all time stamp
sequences τ , for a specific i ∈ N, for all states π = (A, i) where π is weakly consistent at i
with respect to L, τ , and ϕ, if uSS(L, i, τ, π, ϕ) = π̂ then π̂ = (A′, i) is strongly consistent at
i with respect to ϕ, τ , and L.

2. For all GMP formulas ϕ, for all j ∈ N, for all logs L, for all time stamp sequences τ , for
all empty environments η0 for all state π = (A, i) where i ∈ N, for all substitutions σin, for
some given χC and χF , such that: (1) χC , χF ` ϕ : χO, (2) i ≥ j and τi − τj ≥ ∆(ϕ),
(3) dom(σin) ⊇ χC ∪ χF , (4) π is strongly consistent at i with respect to ϕ, τ , and L, if
ips(L, j, τ, π, σin, ϕ) = Σout then the following holds:

(a) (SOUNDNESS)
∀σ ∈ Σout.(dom(σ) ⊇ (χO ∪ χC ∪ χF ) ∧ ∀σ′.(σ′ ≥ σ → L, τ, j, η0 |= ϕσ′)).

(b) (COMPLETENESS)
∀σ.((σ ≥ σin ∧ dom(σ) ⊇ fv(ϕ) ∧ L, τ, j, η0 |= ϕ.σ)→ (∃σo ∈ Σout.(σ ≥ σo))).

Proof. We first show the proof of part (1) then part (2). Note that, when uSS is called for a
B-formula ϕ, it calls ips on strict subformulas of ϕ. However, ips does not call uSS directly
and hence we do not have any cyclic dependency. The proof does a mutual induction on the
structure of the policy ϕ.

Proof of part (1): Mutual induction on the structure of ϕ.
We are given that the state π = (A, i) is weakly consistent at trace position i with respect

to L, τ , and ϕ. We then have to show that the state π̂ = (A′, i) is strongly consistent at trace
position i with respect to L, τ , and ϕ. From Definition 7 and 8, it is thus sufficient to show that
π̂ is well-formed at i with respect to L, τ , and ϕ. In other words, it is sufficient to show that
Ψ(L, τ, π̂, ϕ, i) holds.

Case ϕ ≡ [c,d]α

(Soundness)
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Sub-Case π̂.A′(ϕ)(i).T
We have to show that ∀σ ∈ π̂.A′(ϕ)(i).T, η.dom(σ) ⊇ χO ∧ ∀σ′.(σ′ ≥ σ → L, τ, i, η |=
ασ′). Take any arbitrary σ ∈ π̂.A′(ϕ)(i).T. From construction of π̂.A′(ϕ)(i).T we know
that π̂.A′(ϕ)(i).T← ips(L, i, τ,
π, •, α). Hence, σ ∈ ips(L, i, τ, π, •, α). From the applicable mode checking judgement,
we have {} `B [c,d]α : χO where χO ⊆ fv(α). It follows that {} `B α : χO. By
Lemma 7, we have {}, {} ` α : χO. By Lemma 4, we have ∆([c,d]α) = 0. Moreover,
dom(•) ⊇ χC ∪ χF where χC = χF = {}. As π is weakly consistent at position i with
respect to L, τ , and [c,d]α, we know that π is strongly consistent at position i with
respect to L, τ , and α. We see that we have satisfied all the premises of the soundness of
ips(L, i, τ, π, •, α). By i.h., we have ∀σ ∈ Σout.(dom(σ) ⊇ (χO∪χC∪χF )∧∀σ′.(σ′ ≥ σ →
L, τ, j, η0 |= ϕσ′)) where Σout ← ips(L, i, τ, π, •, α). We have χC = χF = {}, ϕ = α,
and π̂.A′(ϕ)(i).T = Σout. Hence, we have ∀σ ∈ π̂.A′(ϕ)(i).T, η.dom(σ) ⊇ χO ∧ ∀σ′.(σ′ ≥
σ → L, τ, i, η |= ασ′) where η = η0.

Sub-Case π̂.A′(ϕ)(i).R
We can have the following two cases.

Sub-Sub-Case i = 0
By construction π̂.A′(ϕ)(i).R = ∅ hence the statement is vacuously true.

Sub-Sub-Case i > 0
We have to show that ∀σ ∈ π̂.A′(ϕ)(i).R, η.dom(σ) ⊇ χO∧∀σ′.(σ′ ≥ σ → L, τ, i, η |=
ϕσ′). Take any arbitrary σ ∈ π̂.A′(ϕ)(i).R. By construction π̂.A′(ϕ)(i).R = {σ |
σ ∈ π̂.A′(ϕ)(i − 1).T ∧ (c ≤ τi − τ(i−1) ≤ d)}. As π is weakly consistent at i with
respect to L, τ , and ϕ, from the definition, we can say that it is strongly consistent
at (i− 1) with respect to L, τ , and α. From the soundness of π̂.A′(ϕ)(i− 1).T, we
have σ ∈ π̂.A′(ϕ)(i−1).T, η.dom(σ) ⊇ χO∧∀σ′.(σ′ ≥ σ → L, τ, i−1, η |= ασ′). From
the semantics of  we have, L, τ, i, η |= [c,d]ασ ⇐⇒ i > 0∧L, τ, i−1, η |= ασ∧ c ≤
τi − τ(i−1) ≤ d. By construction we have (c ≤ τi − τ(i−1) ≤ d) and from π̂.A′(ϕ)(i−
1).T soundness and semantics of , we have ∀σ ∈ π̂.A′(ϕ)(i).R, η.dom(σ) ⊇ χO ∧
∀σ′.(σ′ ≥ σ → L, τ, i, η |= ϕσ′).

(Completeness)

Sub-Case π̂.A′(ϕ)(i).T
We have to show that ∀σ, η.dom(σ) ⊇ fv(α)∧L, τ, i, η |= ασ → (∃σ′ ∈ π̂.A′(ϕ)(i).T.σ ≥
σ′). With the same arguments as in soundness, we can show that we satisfy the premise
required to use the completeness statement for ips. From completeness of ips, we
have: ∀σ.((σ ≥ σin ∧ dom(σ) ⊇ fv(ϕ) ∧ L, τ, i, η0 |= ϕ.σ) → (∃σo ∈ Σout.(σ ≥ σo)))
where π̂.A′(ϕ)(i).T = Σout. Having η = η0, σin = •, ϕ = α we have, ∀σ, η.dom(σ) ⊇
fv(α) ∧ L, τ, i, η |= ασ → (∃σ′ ∈ π̂.A′(ϕ)(i).T.σ ≥ σ′).

Sub-Case π̂.A′(ϕ)(i).R
We can have the following two cases.

Sub-Sub-Case i = 0
By semantics of , there is no σ for which L, τ, 0, η0 |= [c,d]α holds hence the
statement is vacuously true.

Sub-Sub-Case i > 0
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We have to show that ∀σ, η.dom(σ) ⊇ fv(ϕ)∧L, τ, i, η |= ϕσ → (∃σ′ ∈ π.A(ϕ)(i).R.σ ≥
σ′). Take any arbitrary σ such that dom(σ) ⊇ fv(ϕ) and L, τ, i, η |= ϕσ. From the
semantics of  we know, L, τ, i, η |= [c,d]ασ ⇐⇒ i > 0 ∧ L, τ, i − 1, η |= ασ ∧ c ≤
τi − τ(i−1) ≤ d. As π is weakly consistent at i with respect to L, τ , and ϕ, from
the definition, we can say that it is strongly consistent at (i − 1) with respect to
L, τ , and α. From completeness of π.A(ϕ)(i − 1).T, we know that there exists
σo ∈ π.A(ϕ)(i − 1).T such that σ ≥ σo. From c ≤ τi − τ(i−1) ≤ d, the construction
of π̂.A′(ϕ)(i).R, and the above we have σo ∈ π̂.A′(ϕ)(i).R.

Case ϕ ≡[c,d]α

(Soundness)

Sub-Case π̂.A′(ϕ)(i).P
We have to show that ∀〈σ, k〉 ∈ π̂.A′(ϕ)(i).P, η.dom(σ) ⊇ χO ∧ τi − τk ≤ d ∧ ∀σ′.(σ′ ≥
σ → L, τ, k, η |= ασ′). Take any arbitrary 〈σ, k〉 ∈ π̂.A′(ϕ)(i).P. By construction of
π̂.A′(ϕ)(i).P, we have 〈σ, k〉 ∈ Sa or 〈σ, k〉 ∈ (π̂.A′(ϕ)(i− 1).P \ Sr).
Sub-Sub-Case 〈σ, k〉 ∈ Sa

By construction, Sa ← {〈σ, i〉 | σ ∈ ips(L, i, τ, π, •, α) ∧ 0 ≤ d} and k = i. By
checking the applicable mode checking judgements, by Lemma 7, by Lemma 4, and
from the premise, we see that the premise of ips soundness is satisfied. By i.h. of
ips soundness, we have (dom(σ) ⊇ (χO∪χC∪χF )∧∀σ′.(σ′ ≥ σ → L, τ, i, η0 |= ασ′)).
As χC = χF = {}, η = η0, and from construction we have τi − τk ≤ d, hence we
have dom(σ) ⊇ (χO) and ∀σ′.(σ′ ≥ σ → L, τ, k, η |= ασ′), concluding our proof.

Sub-Sub-Case 〈σ, k〉 ∈ (π̂.A′(ϕ)(i− 1).P \ Sr)
By construction, 〈σ, k〉 ∈ π̂.A′(ϕ)(i − 1).P and τi − τk ≤ d. As we know that π
is strongly consistent at (i − 1) with respect to L, τ , and π, from soundness of
π̂.A′(ϕ)(i− 1).P, we have dom(σ) ⊇ χO ∧ τ(i−1)− τk ≤ d∧∀σ′.(σ′ ≥ σ → L, τ, k, η |=
ασ′). From construction we additionally have τi − τk ≤ d. Hence we conclude
∀〈σ, k〉 ∈ π̂.A′(ϕ)(i).P, η.dom(σ) ⊇ χO∧τi−τk ≤ d∧∀σ′.(σ′ ≥ σ → L, τ, k, η |= ασ′).

Sub-Case π̂.A′(ϕ)(i).R
We have to show that ∀σ ∈ π̂.A′(ϕ)(i).R, η.dom(σ) ⊇ χO ∧ ∀σ′.(σ′ ≥ σ → L, τ, i, η |=
ϕσ′). Take any arbitrary σ ∈ π̂.A′(ϕ)(i).R. From construction of π̂.A′(ϕ)(i).R we
have ∃k.〈σ, k〉 ∈ π̂.A′(ϕ)(i).P and also (τi − τk ∈ [c, d]). Hence from the soundness of
π̂.A′(ϕ)(i).P we have dom(σ) ⊇ χO ∧ τi − τk ≤ d ∧ ∀σ′.(σ′ ≥ σ → L, τ, k, η |= ασ′).
From the semantics of [c,d], we have L, τ, i, η |=[c,d]α⇐⇒ ∃k ∈ N.k ≤ i∧L, τ, k, η |=
α ∧ (τi − τk ∈ [c, d]). Thus according to semantics, from the soundness of π̂.A′(ϕ)(i).P
and by (τi − τk ∈ [c, d]) (from construction), we have dom(σ) ⊇ χO and ∀σ′.(σ′ ≥ σ →
L, τ, i, η |= ϕσ′), concluding our proof.

(Completeness)

Sub-Case π̂.A′(ϕ)(i).P
We have to show that ∀σ, k, η.dom(σ) ⊇ fv(α)∧τi−τk ≤ d∧L, τ, k, η |= ασ → (∃〈σ′, k〉 ∈
π̂.A′(ϕ)(i).P.σ ≥ σ′). Take any arbitrary σ and k such that dom(σ) ⊇ fv(α), τi−τk ≤ d,
and L, τ, k, η |= ασ. We can have the following two cases:

Sub-Sub-Case k = i
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In the same vein of the soundness proof of π̂.A′(ϕ)(i).P, we see that the premise
of ips completeness is satisfied. From ips completeness we see that, ∃σo ∈
ips(L, i, τ, π, •, α).(σ ≥ σo). From this, τi − τi = 0 ≤ d, and σ′ = σo, accord-
ing to the construction of π̂.A′(ϕ)(i).P, σ′ ∈ Sa and in turn σ′ ∈ π̂.A′(ϕ)(i).P,
completing our proof.

Sub-Sub-Case k < i
Note that we are given that π is weakly consistent at i with respect to L, τ , and ϕ.
From the definition, we know that π is strongly consistent at (i − 1) with respect
to L, τ , and α. From premise we know that L, τ, k, η |= ασ where k < i. From
the completeness of π̂.A′(ϕ)(i− 1).P, we have the following: ∃〈σ′, k〉 ∈ π̂.A′(ϕ)(i−
1).P.σ ≥ σ′. From the above and τi − τk ≤ d, according to the construction of
π̂.A′(ϕ)(i).P, we know that σ′ ∈ (π̂.A′(ϕ)(i−1).P\Sr) and hence σ′ ∈ π̂.A′(ϕ)(i).P,
completing our proof.

Sub-Case π̂.A′(ϕ)(i).R
We have to show that ∀σ, η.dom(σ) ⊇ fv(ϕ)∧L, τ, i, η |= ϕσ → (∃σ′ ∈ π̂.A′(ϕ)(i).R.σ ≥
σ′). Take any arbitrary σ such that dom(σ) ⊇ fv(ϕ) and L, τ, i, η |= [c,d]ασ. From
the semantics of  we have, L, τ, i, η |= [c,d]ασ ⇐⇒ ∃k.k ≤ i ∧ c ≤ τi − τk ≤
d ∧ L, τ, k, η |= ασ. As fv(ϕ) = fv(α), τi − τk ≤ d, and L, τ, k, η |= ασ, from the
completeness of π̂.A′(ϕ)(i).P, we have ∃〈σ′, k〉 ∈ π̂.A′(ϕ)(i).P.σ ≥ σ′. From the con-
struction of π̂.A′(ϕ)(i).R, we know that σ′ ∈ π̂.A′(ϕ)(i).R.

Case ϕ ≡ [c,d]α

(Soundness)

Sub-Case π̂.A′(ϕ)(i).H
We have to show that ∀〈σ, left, right〉 ∈ π̂.A′(ϕ)(i).H, η.dom(σ) ⊇ χO ∧ τi − τright ≤
d ∧ ∀σ′, j ∈ [left, right].(σ′ ≥ σ → L, τ, j, η |= ασ′). Take any arbitrary 〈σ, left, right〉
in π̂.A′(ϕ)(i).H such that σ is defined. From the construction of π̂.A′(ϕ)(i).H, we know
that τi − τr ≤ d. Again from the construction, we know that σ, left, right〉 ∈ T where
T = Snew ∪ Supdate ∪ Scarry-over.

Sub-Sub-Case 〈σ, left, right〉 ∈ Snew
From construction, left = right = i and σ ∈ ips(L, i, τ, π, •, α). From applicable
mode checking judgements we see that ips soundness is applicable. From ips
soundness we know that dom(σ) ⊇ χC ∪ χF ∪ χO. From mode judgement we also
know that χC = χF = {} and hence dom(σ) ⊇ χO. From ips soundness we know
that ∀σ′.(σ′ ≥ σ → L, τ, i, η |= ασ′). From this we can say that ∀σ′, j.(i ≤ j ≤
i ∧ σ′ ≥ σ → L, τ, j, η |= ασ′) completing our proof.

Sub-Sub-Case 〈σ, left, right〉 ∈ Supdate
From construction we know that right = i and ∃σ1, σ2.(σ = σ1 on σ2 ∧ σ1 ∈
ips(L, i, τ, π, •, α) ∧ 〈σ2, left, i − 1〉 ∈ π̂.A′(ϕ)(i − 1).H). From applicable mode
checking judgements we see that ips soundness is applicable. From ips soundness
we know that dom(σ1) ⊇ χC ∪ χF ∪ χO = χO as χC = χF = {}. We also know
that ∀σ′1.(σ′1 ≥ σ1 → L, τ, i, η |= ασ′1. Moreover, 〈σ, left, i − 1〉 ∈ π̂.A′(ϕ)(i − 1).H.
We know that π̂ is weakly consistent at i with respect to L, τ , and ϕ. From which
we know that π̂ is strongly consistent at i − 1 with respect to L, τ , and ϕ. From

40



π̂.A′(ϕ)(i− 1).H soundness we have dom(σ2) ⊇ χO ∧ ∀σ′2, j.(left ≤ j ≤ i− 1 ∧ σ′2 ≥
σ2 → L, τ, j, η |= ασ′2).
As σ is defined and σ = σ1 on σ2, dom(σ) = dom(σ1 on σ2) ⊇ χO. Moreover,
σ ≥ σ1 and σ ≥ σ2. Thus, combining the soundness we have L, τ, i, η |= ασ and
∀j.(left ≤ j ≤ i− 1→ L, τ, j, η |= ασ). Again for any σ′ ≥ σ, we have σ′ ≥ σ1 and
σ′ ≥ σ2 hence completing out proof.

Sub-Sub-Case 〈σ, left, right〉 ∈ Scarry-over
From construction we know that 〈σ, left, right〉 ∈ π̂.A′(ϕ)(i− 1).H. We know that
π̂ is weakly consistent at i with respect to L, τ , and ϕ. From which we know that
π̂ is strongly consistent at i− 1 with respect to L, τ , and ϕ. From π̂.A′(ϕ)(i− 1).H
soundness we have dom(σ) ⊇ χO ∧ ∀σ′, j.(left ≤ j ≤ right ∧ σ′ ≥ σ → L, τ, j, η |=
ασ′). This completes our proof.

Sub-Case π̂.A′(ϕ)(i).R
We have to show that ∀σ ∈ π̂.A′(ϕ)(i).R, η.dom(σ) ⊇ χO ∧ ∀σ′.(σ′ ≥ σ → L, τ, i, η |=
ϕσ′). Take any arbitrary σ ∈ π̂.A′(ϕ)(i).R. From semantics L, τ, i, η |= ([c,d]α)σ′ ⇐⇒
∀j.(j ≤ i ∧ c ≤ τi − τj ≤ d → L, τ, j, η |= ασ′). Again from semantics we can write,
L, τ, i, η |= ([c,d]α)σ′ ⇐⇒ ∀j.(minPosition(τ, i, c, d) 6= −1∧maxPosition(τ, i, c, d) 6=
−1 ∧ minPosition(τ, i, c, d) ≤ j ≤ maxPosition(τ, i, c, d) ≤ i → L, τ, j, η |= ασ′).
From construction of σ ∈ π̂.A′(ϕ)(i).R implies that ∃L,R.(minPosition(τ, i, c, d) 6=
−1∧maxPosition(τ, i, c, d) 6= −1∧L ≤ minPosition(τ, i, c, d) ≤ maxPosition(τ, i, c, d) ≤
R ∧ 〈σ, L,R〉 ∈ π̂.A′(ϕ)(i).H). From soundness of π̂.A′(ϕ)(i).H we have dom(σ) ⊇
χO, τi − τR ≤ d, and ∀σ′, j.(L ≤ j ≤ R ∧ σ′ ≥ σ → L, τ, j, η |= ασ′). As L ≤
minPosition(τ, i, c, d) and maxPosition(τ, i, c, d) ≤ R, we can write ∀σ′, j.(minPosition(τ, i, c, d) 6=
−1∧maxPosition(τ, i, c, d) 6= −1∧minPosition(τ, i, c, d) ≤ j ≤ minPosition(τ, i, c, d)∧
σ′ ≥ σ → L, τ, j, η |= ασ′). From this and semantics, we have our desired result of
L, τ, i, η |= ([c,d]α)σ′.

(Completeness)

Sub-Case π̂.A′(ϕ)(i).H
We have to show that ∀σ, L,R, η.dom(σ) ⊇ fv(α) ∧ (L ≤ R ≤ i) ∧ (τi − τR ≤ d) ∧
(∀t.(L ≤ t ≤ R) → L, τ, t, η |= ασ) → ∃σ′, left, right.(σ ≥ σ′) ∧ left ≤ L ≤ R ≤
right ≤ i ∧ 〈σ′, left, right〉 ∈ π̂.A′(ϕ)(i).H. Take any arbitrary σ, L, and R such that
dom(σ) ⊇ fv(α), L ≤ R ≤ i, τi − τR ≤ d, and ∀t.(L ≤ t ≤ R)→ L, τ, t, η |= ασ.

Sub-Sub-Case L < i,R = i
We know: ∀t.(L ≤ t ≤ R → L, τ, t, η |= ασ). We can rewrite the above to : (a)
∀t.(L ≤ t ≤ i− 1→ L, τ, t, η |= ασ). and (b) L, τ, i, η |= ασ.
From (b) we see that ips completeness is applicable. From ips completeness we
have, ∃σ′2 ∈ ips(L, i, τ, π, •, α).σ ≥ σ′2. From construction σ′2 ∈ Σ.
From (a), we see that π̂.A′(ϕ)(i−1).H completeness is applicable. From π̂.A′(ϕ)(i−
1).H completeness we have, ∃L′, σ′1.(σ ≥ σ′1 ∧ L′ ≤ L ≤ (i − 1) ∧ 〈σ′1, L′, i − 1〉 ∈
π̂.A′(ϕ)(i− 1).H. We know σ ≥ σ′1 and σ ≥ σ′2, so σ′1 on σ′2 exists, and σ ≥ σ′1 on σ′2.
We know 〈σ′1, L′, i − 1〉 ∈ π̂.A′(ϕ)(i − 1).H, σ′2 ∈ Σ, and σ′1 on σ′2 6= σ⊥, from
construction 〈σ′1 on σ′2, L

′, i〉 ∈ Supdate. We also know L′ ≤ L ≤ R ≤ i. From

premise we know that τi − τR ≤ d hence 〈σ′1 on σ′2, L
′, i〉 not in Sremove hence in

π̂.A′(ϕ)(i).H.
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Sub-Sub-Case L = R = i
We know L, τ, i, η |= ασ. We see that ips completeness is applicable. From ips
completeness we have, ∃σ′ ∈ ips(L, i, τ, π, •, α).(σ ≥ σ′). By construction σ′ ∈ Σ.
Case decision on: ∀〈σ1, l, i− 1〉 ∈ π̂.A′(ϕ)(i− 1).H.σ′ on σ1 6= σ′.

Sub-Sub-Sub-Case True
Then 〈σ′, i, i〉 ∈ Snew, so 〈σ′, i, i〉 ∈ π̂.A′(ϕ)(i).H, as ti − ti ≤ d.

Sub-Sub-Sub-Case False
Then ∃〈σ2, l, i − 1〉 ∈ π̂.A′(ϕ)(i − 1).H such that σ′ on σ2 = σ′. Then 〈σ′ on
σ2, l, i〉 = 〈σ′, l, i〉 ∈ Supdate. As ti − ti ≤ d, hence 〈σ′, l, i〉 ∈ π̂.A′(ϕ)(i).H.

Sub-Sub-Case L < i,R < i

Sub-Sub-Sub-Case R = i− 1
From premise we know that ∀t.(L ≤ t ≤ R) → L, τ, t, η |= ασ. ∀t.(L ≤ t ≤
i − 1) → L, τ, t, η |= ασ. From the completeness of π̂.A′(ϕ)(i − 1).H, we have
∃σ′, left, right.(left ≤ L ≤ R ≤ right ≤ (i − 1) ∧ σ ≥ σ′ ∧ 〈σ′, left, right〉 ∈
π̂.A′(ϕ)(i − 1).H). We also know that τi − τR ≤ d and R ≤ right. Thus,
τi − τright ≤ d.
Case decision on ∀σ1 ∈ Σ.σ1 on σ 6= σ.
Case: True: In case the above is condition is true, by construction, 〈σ, left, right〉 ∈
Scarry-over but 〈σ, left, right〉 /∈ Sremove. Hence, 〈σ, left, right〉 ∈ π̂.A′(ϕ)(i).H.
Case: False: In case the above is condition is false, it means there exists a
σ1 ∈ Σ such that σ on σ1 = σ. According to the construction, we see that
〈σ, left, i〉 ∈ Supdate and τi − τi ≤ d ensures that 〈σ, left, i〉 /∈ Sremove, hence

〈σ, left, i〉 ∈ π̂.A′(ϕ)(i).H, completing our proof.

Sub-Sub-Sub-Case R < i− 1
From premise we know that ∀t.(L ≤ t ≤ R) → L, τ, t, η |= ασ. Thus it implies
that ∀t.(L ≤ t ≤ i− 1) ∧ L, τ, t, η |= ασ. From the completeness of π̂.A′(ϕ)(i−
1).H, we have ∃σ′, left, right.(left ≤ L ≤ R ≤ right < (i − 1) ∧ σ ≥ σ′ ∧
〈σ′, left, right〉 ∈ π̂.A′(ϕ)(i − 1).H). We also know that τi − τR ≤ d and R ≤
right. Thus, τi − τright ≤ d. By construction, 〈σ′, left, right〉 ∈ Scarry-over
but 〈σ′, left, right〉 /∈ Sremove and hence 〈σ′, left, right〉 ∈ π̂.A′(ϕ)(i).H which
completes our proof.

Sub-Case π̂.A′(ϕ)(i).R
We have to show that ∀σ, η.dom(σ) ⊇ fv(ϕ) ∧ L, τ, i, η |= ϕσ → (∃σ′ ∈ π.A(ϕ)(i).R.σ ≥
σ′). Take any arbitrary σ such that dom(σ) ⊇ fv(ϕ) and L, τ, i, η |= [c,d]ασ. Let
nP ← minPosition(τ, i, c, d) and xP ← maxPosition(τ, i, c, d). From semantics we
have: L, τ, i, η |= [c,d]ασ ⇐⇒ ∀j.(j ≤ i ∧ (c ≤ τi − τj ≤ d) → L, τ, j, η |= ασ). From
this we can also write: L, τ, i, η |= [c,d]ασ ⇐⇒ ∀j.(nP 6= −1 ∧ xP 6= −1 ∧ (nP ≤ j ≤
xP ) → L, τ, j, η |= ασ). From definition of maxPosition, we have τi − τxP ≤ d. We
see that completeness of π̂.A′(ϕ)(i).H is applicable. From the π̂.A′(ϕ)(i).H completeness
we know that ∃σ′, left, right.(σ ≥ σ′ ∧ left ≤ np ≤ xP ≤ right ≤ i ∧ 〈σ′, left, right〉 ∈
π̂.A′(ϕ)(i).H). As left ≤ np ≤ xP ≤ right ≤ i and 〈σ′, left, right〉 ∈ π̂.A′(ϕ)(i).H,
from the construction of π̂.A′(ϕ)(i).R, we see that σ′ ∈ π̂.A′(ϕ)(i).R, hence completing
our proof.

Case ϕ ≡ αS [c,d]β
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(Soundness)

Sub-Case π̂.A′(ϕ)(i).Sβ
The proof is exactly like the soundness proof of structure π̂.A′(ϕ)(i).P for [c,d]α.

Sub-Case π̂.A′(ϕ)(i).Sα
We have to show that ∀〈σ, k〉 ∈ π̂.A′(ϕ)(i).Sα, η.dom(σ) ⊇ (χ1 ∪ χ2) ∧ (∀σ′, l.(k ≤
l ≤ i) ∧ σ′ ≥ σ → L, τ, l, η |= ασ′). Take any arbitrary 〈σ, k〉 ∈ π̂.A′(ϕ)(i).Sα. From
construction π̂.A′(ϕ)(i).Sα ← Snew∪Supdate. Thus, 〈σ, k〉 ∈ Snew or 〈σ, k〉 ∈ Supdate.

Sub-Sub-Case 〈σ, k〉 ∈ Snew
By construction k = i and σ ∈

⋃
〈σβ ,j〉∈π̂.A′(ϕ)(i).Sβ∧j 6=i

ips(L, i, τ, π, σβ, α). From

premise and soundness of π̂.A′(ϕ)(i).Sβ, we know that dom(σβ) ⊇ χ1. Again
from investigating the applicable mode checking judgements and soundness of ips,
dom(σ) ⊇ χ1 ∪ χ2. Again from soundness of ips, we additionally know that,
∀σ′.σ′ ≥ σ → L, τ, i, η |= ασ′. We also trivially satisfy that ∀l.i ≤ l ≤ i. Hence, we
have our desired conclusion that ∀σ′, l.(k ≤ l ≤ i) ∧ σ′ ≥ σ → L, τ, l, η |= ασ′.

Sub-Sub-Case 〈σ, k〉 ∈ Supdate
By construction we have k < i. By construction we also have ∃σa, σ1.σ = σa on σ1 ∧
σ 6= σ⊥∧〈σa, k〉 ∈ π̂.A′(ϕ)(i−1).Sα∧σ1 ∈

⋃
〈σβ ,j〉∈π̂.A′(ϕ)(i).Sβ∧j 6=i

ips(L, i, τ, π, σβ, α).

From the premise, we have π is weakly consistent at i with respect to L, τ , and ϕ.
From definition of weak consistency, we can conclude that π is strongly consistent
at (i−1) with respect to L, τ , and ϕ. From soundness of π̂.A′(ϕ)(i−1).Sα we have,
dom(σa) ⊇ (χ1 ∪χ2)∧∀σ′′, l′′.(k ≤ l′′ ≤ (i− 1)∧ σ′′ ≥ σa → L, τ, l, η |= ασ′′). Again
from investigating the applicable mode checking judgements and soundness of ips,
dom(σ1) ⊇ χ1 ∪ χ2 and ∀σ′′′.(σ′′′ ≥ σ1 → L, τ, l, η |= ασ′′′). As σ = σa on σ1 and
σ 6= σ⊥, dom(σ) = dom(σa on σ1) ⊇ (χ1 ∪ χ2). Combining the above two soundness
statements and using the fact that for any arbitrary σ′ ≥ σ implies that σ′ ≥ σa and
σ′ ≥ σ1, we have our desired result.

Sub-Case π̂.A′(ϕ)(i).R
We have to show that ∀σ ∈ π̂.A′(ϕ)(i).R, η.dom(σ) ⊇ χO ∧ ∀σ′.(σ′ ≥ σ → L, τ, i, η |=
ϕσ′). Take any arbitrary σ such that σ ∈ π̂.A′(ϕ)(i).R. From construction of π̂.A′(ϕ)(i).R,
σ ∈ SR1 or σ ∈ SR2 .

Sub-Sub-Case σ ∈ SR1

From construction of SR1 , SR1 ← {σβ | 〈σβ, i〉 ∈ π̂.A′(ϕ)(i).Sβ ∧ c ≤ 0 ≤ d}.
From soundness of π̂.A′(ϕ)(i).Sβ we know that ∀〈σβ, k〉 ∈ π̂.A′(ϕ)(i).Sβ.dom(σβ) ⊇
χ1 ∧ τi − τk ≤ d ∧ ∀σ′′.(σ′′ ≥ σβ → L, τ, k, η |= βσ′′). We know k = i and χO =
χ1. From the semantics of S , we know that L, τ, i, η |= β ∧ (c ≤ 0 ≤ d) →
L, τ, i, η |= (αS [c,d]β). As σ ∈ SR1 the soundness of π̂.A′(ϕ)(i).Sβ applies to σ. From
construction we have c ≤ 0 ≤ d. Thus we have dom(σ) ⊇ χ1. From the soundness of
π̂.A′(ϕ)(i).Sβ and semantics of S , we have ∀σ′(σ′ ≥ σ → L, τ, i, η |= (αS [c,d]β)σ′.

Sub-Sub-Case σ ∈ SR2

From construction there exists σβ, σα, k, j such that σ = σβ on σα, σ 6= σ⊥,
〈σβ, k〉 ∈ π̂.A′(ϕ)(i).Sβ, k 6= i, c ≤ τi − τk ≤ d, 〈σα, j〉 ∈ π̂.A′(ϕ)(i).Sα, and
j ≤ (k+ 1). From the soundness of π̂.A′(ϕ)(i).Sβ, we have dom(σβ) ⊇ χ1∧ τj− τk ≤
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d ∧ ∀σ′′.(σ′′ ≥ σβ → L, τ, k, η |= βσ′′). Again from the soundness of π̂.A′(ϕ)(i).Sα,
we have dom(σα) ⊇ (χ1 ∪ χ2)∧ (∀σ′′, l.(k ≤ l ≤ i)∧ σ′′ ≥ σα → L, τ, l, η |= ασ′). We
know χO = χ1 and σ = σβ on σα from which we have dom(σ) ⊇ (χO ∪ χ2). Thus,
we have our desired dom(σ) ⊇ χO. From the semantics of S we have, L, τ, i, η |=
(αS [lo,hi]β) ⇐⇒ ∃m ≤ i.L, τ,m, η |= β ∧ lo ≤ τi − τm ≤ hi ∧ ∀t.m + 1 ≤ l ≤
i ∧ L, τ, l, η |= α. From the semantics, combining the soundness of π̂.A′(ϕ)(i).Sβ
and π̂.A′(ϕ)(i).Sα, by instantiating m = k and t = l, and using the fact that for
any arbitrary σ′ such that σ′ ≥ σ implies that σ′ ≥ σβ and σ′ ≥ σα, we have the
following L, τ, i, η |= (αS [c,d]β)σ′.

(Completeness)

Sub-Case π̂.A′(ϕ)(i).Sβ
The proof is exactly like the completeness proof of the structure π̂.A′(ϕ)(i).P of [c,d]α.

Sub-Case π̂.A′(ϕ)(i).Sα
Take any arbitrary σ, σβ, and k such that 〈σβ, k〉 ∈ A′(ϕ)(i).Sβ, σ ≥ σβ, dom(σ) ⊇
(χ1 ∪ χ2), and ∀l.(k < l ≤ i ∧ L, τ, l, η |= ασ). We have to show that ∃σ′,m.(σ ≥
σ′ ∧m ≤ k + 1 ∧ 〈σ′,m〉 ∈ A′(ϕ)(i).Sα).

Sub-Sub-Case k < (i− 1)
We know that ∀l.(k < l ≤ i ∧ L, τ, l, η |= ασ). From this we can write ∀l.(k < l ≤
i∧L, τ, l, η |= ασ)→ ∀l.(k < l ≤ (i−1)∧L, τ, i, η |= ασ). We know that π is weakly
consistent at i with respect to L, τ , and ϕ. From this we know that π is strongly
consistent at i−1 with respect to L, τ , and ϕ. From the completeness of π̂.A′(ϕ)(i−
1).Sα we know that ∃σ1,m.(σ ≥ σ1 ∧m ≤ k + 1 ∧ 〈σ1,m〉 ∈ π̂.A′(ϕ)(i− 1).Sα). We
also can write ∀l.(k < l ≤ i ∧ L, τ, l, η |= ασ) → L, τ, i, η |= ασ. From investigating
applicable mode judgements we see that the ips completeness is applicable. From
i.h. completeness of ips we know that ∃σ2.(σ ≥ σ2 ∧σ2 ∈ ips(L, i, τ, π̂, σβ, α). We
see from the construction of π̂.A′(ϕ)(i).Sα that σ2 ∈ Σα. So far we have σ ≥ σ1
and σ ≥ σ2. From this we know that σ1 on σ2 is defined and σ ≥ σ1 on σ2. By
construction of π̂.A′(ϕ)(i).Sα, σ1 on σ2 ∈ Supdate hence σ1 on σ2 ∈ π̂.A′(ϕ)(i).Sα.

Sub-Sub-Case k = (i− 1)
We know that ∀l.(k < l ≤ i ∧ L, τ, l, η |= ασ). We also can write ∀l.(k < l ≤
i∧L, τ, l, η |= ασ)→ L, τ, i, η |= ασ. From investigating applicable mode judgements
we see that the ips completeness is applicable. From i.h. completeness of ips we
know that ∃σ2.(σ ≥ σ2 ∧ σ2 ∈ ips(L, i, τ, π̂, σβ, α). We see from the construction
of π̂.A′(ϕ)(i).Sα that σ2 ∈ Σα. Now we will show that σ2 is either in Snew or in
Supdate and hence in π̂.A′(ϕ)(i).Sα.

Sub-Sub-Sub-Case ∀〈σ1, t〉 ∈ π̂.A′(ϕ)(i− 1).Sα.(σ1 on σ2 6= σ2)
In which case from the construction, the side condition for σ2 ∈ Snew is true
and consequently σ2π̂.A′(ϕ)(i).Sα.

Sub-Sub-Sub-Case ∃〈σ1, t〉 ∈ π̂.A′(ϕ)(i− 1).Sα.(σ1 on σ2 = σ2)
From this we can write ∃〈σ1, t〉 ∈ π̂.A′(ϕ)(i− 1).Sα.(σ1 on σ2 = σ2)→ ∃〈σ1, t〉 ∈
π̂.A′(ϕ)(i − 1).Sα.(σ1 on σ2 = σ⊥). Moreover, we have σ1 on σ2 = σ2. From
the construction of π̂.A′(ϕ)(i).Sα, we see that σ2 ∈ Supdate and hence σ2 ∈
π̂.A′(ϕ)(i).Sα, completing our proof.
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Sub-Case π̂.A′(ϕ)(i).R
We have to show that ∀σ, η.dom(σ) ⊇ fv(ϕ)∧L, τ, i, η |= ϕσ → (∃σ′ ∈ π̂.A′(ϕ)(i).R. σ ≥
σ′). Take any arbitrary σ such that dom(σ) ⊇ fv(ϕ) and L, τ, i, η |= (αS [c,d]β)σ. From
the semantics of S we have L, τ, i, η |= (αS [c,d]β)σ ⇐⇒ ∃k.((k ≤ i) ∧ L, τ, k, η |=
βσ ∧ (c ≤ τi − τk ≤ d) ∧ ∀l.(k < l ≤ i → L, τ, l, η |= ασ)). We have the following two
cases.

Sub-Sub-Case k = i
From the semantics of S , we have L, τ, i, η |= βσ ∧ c ≤ τi − τi ≤ d → L, τ, i, η |=
(αS [c,d]β)σ. From premise we have dom(σ) ⊇ fv(ϕ) from which we know dom(σ) ⊇
fv(ϕ) ⊇ fv(β). We also have τi−τi ≤ d. We see the completeness of π̂.A′(ϕ)(i).Sβ is
applicable. We thus have L, τ, i, η |= βσ → ∃σ1.(〈σ1, i〉 ∈ π̂.A′(ϕ)(i).Sβ ∧ (σ ≥ σ1)).
From construction of π̂.A′(ϕ)(i).R, 〈σ1, i〉 ∈ π̂.A′(ϕ)(i).Sβ, and c ≤ 0 ≤ d, we have
σ1 ∈ SR1 and hence σ1 ∈ π̂.A′(ϕ)(i).R, completing our proof.

Sub-Sub-Case k < i
From the semantics of S we have, L, τ, k, η |= βσ ∧ (c ≤ τi − τk ≤ d) ∧ ∀l.((k < l ≤
i) → L, τ, l, η |= ασ) → L, τ, i, η |= (αS [c,d]β)σ. From premise we have dom(σ) ⊇
fv(ϕ) from which we know dom(σ) ⊇ fv(ϕ) ⊇ fv(β). We also have τi − τk ≤ d.
We see the completeness of π̂.A′(ϕ)(i).Sβ is applicable. We thus have L, τ, i, η |=
βσ ∧ τi − τk ≤ d→ ∃σβ.(〈σβ, i〉 ∈ π̂.A′(ϕ)(i).Sβ ∧ (σ ≥ σβ)).
Investigating applicable mode checking judgements and using the Lemma 1 we have,
χ1 ⊆ fv(β) and χ2 ⊆ fv(α). We also know from the definition of the function
fv, fv(αS [c,d]β) = fv(α) ∪ fv(β). Thus, we have χ1 ∪ χ2 ⊆ fv(α) ∪ fv(β) =
fv(αS [c,d]β) ⊇ dom(σ). We see that the completeness of π̂.A′(ϕ)(i).Sα is applicable.
From which we have ∃σα,m.σ ≥ σα ∧m ≤ (k + 1) ∧ 〈σα,m〉 ∈ π̂.A′(ϕ)(i).Sα.
As we have σ ≥ σβ and σ ≥ σα, σβ on σα is defined and σ ≥ σβ on σα. From the
construction of π̂.A′(ϕ)(i).R, we know that σβ on σα ∈ SR2 and hence σβ on σα ∈
π̂.A′(ϕ)(i).R, completing our proof.

Proof of part (2): Mutual induction on the structure of ϕ. We show select cases and other
cases are similar.

Case ϕ ≡ >.
(Soundness)

From definition of ips, ips(L, j, π, σin,>) = Σout = {σin}. From premise 1 and from mode
checking judgement [TRUE], χC , χF ` > : ∅. From premise 3, dom(σ) ⊇ χC ∪ χF . From
above, for all σ ∈ Σout, dom(σ) ⊇ χC ∪ χF ∪ χO as χO = ∅. We have to show that ∀σ′.σ′ ≥
σ ∧ L, τ, j, η0 |= >σ′. From the semantics, any σ′ ≥ σ trivially satisfy L, τ, j, η0 |= >σ′.

(Completeness)

Let σo = σin. Then by premise σo ≤ σ, and by definition of ips σo ∈ Σout.

Case ϕ ≡ ⊥.
(Soundness)

From definition of ips, ips(L, j, π, σin,⊥) = Σout = ∅. Thus the statement is vacuously
true.

(Completeness)
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For any σ, ⊥σ = ⊥. Since there are no L, τ , η0, and j such that L, τ, j, η0 |= ⊥, the statement
is vacuously true.

Case ϕ ≡ p(t1, . . . , tn).
(Soundness)

From definition of ips, ips(L, j, τ, π, σin, p(t1, . . . , tn)) = Σout = sat(L, j
, τ, p(t1, . . . , tn), σin). From premise 1 and 3, pre-condition of the sat function is satisfied
(Claim 1). From Claim 1, for all σ ∈ sat(L, j, τ, p(t1, . . . ,
tn), σin), dom(σ) = χC ∪ χF ∪ χO. Thus, we can write, for all σ ∈ Σout, dom(σ) ⊇ χC ∪
χF ∪χO. It remains to show ∀σ′.σ′ ≥ σ → L, τ, j, η0 |= p(t1, . . . , tn)σ′. From Claim 1, for all
σ ∈ sat(L, j, τ, p(t1, . . . , tn), σin), L, τ, j, η0 |= p(t1, . . . , tn)σ. Note that, the function sat
returns grounding substitutions1 for p(t1, . . . , tn). Thus, by Corollary 1 for all σ′ ≥ σ where
σ ∈ sat(L, j, τ, p(t1, . . . , tn), σin), L, τ, j, η0 |= p(t1, . . . , tn)σ′ holds.

(Completeness)

Let V = fv(p(t1, . . . , tn)). By the semantics of predicates, it must be that dom(σ) ⊇ V . Then
by premise and Lemma 11, L, τ, j, η0 |= p(t1, . . . , tn)[σ ↓ V ]. Let σo = σ ↓ (V ∪ dom(σin)).
Since σin ≤ σ by premise, σ ↓ V ≤ σo ≤ σ. By Corollary 1, it follows that L, τ, j, η0 |=
p(t1, . . . , tn)σo.

Case ϕ ≡ ϕ1 ∨ ϕ2.
(Soundness)

Let Σ1 ← ips(L, j, τ, π, σin, ϕ1) and Σ2 ← ips(L, j, τ, π, σin, ϕ2). From definition of ips,
ips(L, j, τ, π, σin, ϕ1 ∨ ϕ2) = Σout = Σ1 ∪ Σ2. Then σ ∈ Σ1 or σ ∈ Σ2. W.l.o.g., σ ∈ Σ1. By
inspection of disjunction mode judgements (and Lemmas 5, 7, and 8), χC , χF ` ϕ1 : χ1. By
I.H., dom(σ) ⊇ (χC ∪ χF ∪ χ1) and ∀σ′.σ′ ≥ σ =⇒ L, τ, j, η0 |= ϕ1σ

′. Since χO = χ1 ∩ χ2,
dom(σ) ⊇ (χC ∪ χF ∪ χ1) ⊇ (χC ∪ χF ∪ χO). Further, by semantics of ∨, ∀σ′′.L, τ, j, η0 |=
ϕ1σ

′′ =⇒ L, τ, j, η0 |= (ϕ1 ∨ ϕ2)σ
′′. Thus, ∀σ′.σ′ ≥ σ =⇒ L, τ, j, η0 |= (ϕ1 ∨ ϕ2)σ

′, which
concludes soundness.

(Completeness)

If L, τ, j, η0 |= (ϕ1 ∨ ϕ2)σ, then L, τ, j, η0 |= ϕ1σ or L, τ, j, η0 |= ϕ2σ. W.l.o.g., L, τ, j, η0 |=
ϕ1σ. Since fv(ϕ1) ⊆ fv(ϕ1 ∨ ϕ2), by I.H. there exists σo ∈ ips(L, j, τ, π, σin, ϕ1) such that
σo ≤ σ. By definition of ips, σo ∈ Σout.

Case ϕ ≡ ϕ1 ∧ ϕ2.
(Soundness)

From the definition of ips,

ips(L, j, τ, π, σin, ϕ1 ∧ ϕ2) =
⋃

σc∈ips(L,j,τ,π,σin,ϕ1)

ips(L, j, τ, π, σc, ϕ1). Take an arbitrary

σ ∈ Σout. Then there exists σc ∈ ips(L, j, τ, π, σin, ϕ1) such that σ ∈ ips(L, j, τ, π, σc, ϕ2).
By inspection of the applicable mode checking judgements (and Lemmas 7, 5), the inductive
hypothesis is applicable and yields dom(σc) ⊇ χC ∪ χF ∪ χ1. Now, with the additional help
of Lemma 8 the inductive hypothesis yields dom(σ) ⊇ χC ∪χF ∪χ1∪χ2. Since χO = χ1∪χ2,
dom(σ) ⊇ χC ∪ χF ∪ χO.

1Substitutions for all free variables
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It remains to show that ∀σ′.(σ′ ≥ σ → (L, τ, j, η0 |= (ϕ1∧ϕ2)σ
′)). Take any arbitrary σ′ such

that σ′ ≥ σ. By inductive hypothesis on ϕ2 we have L, τ, j, η0 |= ϕ2σ
′. Further σ′ ≥ σc, since

σ ≥ σc by Lemma 12. Then we can apply the inductive hypothesis and get L, τ, j, η0 |= ϕ1σ
′.

From the semantics of ∧, we have L, τ, j, η0 |= (ϕ1 ∧ ϕ2)σ
′.

(Completeness)

If L, τ, j, η0 |= (ϕ1 ∧ ϕ2)σ, then L, τ, j, η0 |= ϕ1σ and L, τ, j, η0 |= ϕ2σ. Since fv(ϕi) ⊆
fv(ϕ1 ∧ ϕ2), the I.H. is applicable and guarantees ∃σi ∈ ips(L, j, τ, π, σin, ϕi).σi ≤ σ. By
Lemma 12, also σi ≥ σin, so dom(σi) ⊇ χC ∪ χF . Let σ′2 = σ ↓ dom(σ1) ∪ dom(σ2) ∪ fv(ϕ2),
which is a prefix of σ and dom(σ′2) = dom(σ1) ∪ dom(σ2) ∪ fv(ϕ2), since dom(σi) ⊆ dom(σ)
and dom(σ) ⊇ fv(ϕ) ⊇ fv(ϕ2). So σi ≤ σ′2 ≤ σ. By inductive hypothesis for soundness, since
σ′2 ≥ σ2, L, τ, j, η0 |= ϕ2σ

′
2. Thus we can apply the inductive hypothesis with σin = σ1 and

get ∃σo ∈ ips(L, j, τ, π, σ1, ϕ2).σo ≤ σ′2. By definition of ips σo ∈ Σout, and by transitivity
σo ≤ σ.

Case ϕ ≡ ∃~x.ϕ.
(Soundness)

W.l.o.g., we have dom(σin)∩ {~x} = ∅ as we can rename ~x to some fresh ~y. Let σ ∈ Σout. By
definition, ips(L, j, τ, π, σin, ∃~x.ϕ) = ips(L, j, τ, π, σin,
ϕ) \ {~x}. Thus there exists a ~t and a σ1 ∈ ips(L, j, τ, π, σin, ϕ) such that σ[~x 7→ ~t] = σ1. In
other words, σ = σ1 \{~x}. By inspection of the mode checking judgements, we can apply the
inductive hypothesis, which yields dom(σ1) ⊇ χC ∪ χF ∪ χ1 and ∀σ′′ ≥ σ1.L, τ, j, η0 |= ϕ1σ

′′.

From σ = σ1 \ {~x}, it follows that dom(σ) = dom(σ1) \ {~x}. From dom(σ1) ⊇ χC ∪ χF ∪ χ1,
we have dom(σ1) \ {~x} ⊇ (χC ∪ χF ∪ χ1) \ {~x} = (χC \ {~x}) ∪ (χF \ {~x}) ∪ (χ1 \ {~x}). From
dom(σin) ⊇ χC ∪χF and dom(σin)∩{~x} = ∅, we have dom(σ1)\{~x} ⊇ χC ∪χF ∪ (χ1 \{~x}) =
χC ∪ χF ∪ χO. Finally we have, dom(σ) ⊇ χC ∪ χF ∪ χO.

Take any arbitrary σ′ such that σ′ ≥ σ. We can write σ′+ [~x 7→ ~t] ≥ σ+ [~x 7→ ~t] = σ1. From
i.h., L, τ, j, η0 |= ϕ(σ′ + [~x 7→ ~t]). From semantics of ∃, we can write L, τ, j, η0 |= (∃~x.ϕ)σ′.

(Completeness)

L, τ, j, η0 |= (∃~x.ϕ)σ if and only if there exists a ~t such that L, τ, j, η0 |= ϕ(σ+[~x 7→ ~t]). From
premise we have σ ≥ σin and from which it follows that σ+[~x 7→ ~t] ≥ σin. From the definition
of fv we have fv(ϕ) ⊆ fv(∃~x.ϕ) ∪ {~x}. From premise we also have dom(σ) ⊇ fv(∃~x.ϕ).
dom(σ) ∪ {~x} ⊇ fv(∃~x.ϕ) ∪ {~x} ⊇ fv(ϕ). Thus, we can write dom(σ + [~x 7→ ~t]) ⊇ fv(ϕ)
as dom(σ + [~x 7→ ~t]) = dom(σ) ∪ {~x}. We now see that the i.h. is applicable, from which
we have, ∃σol ∈ ips(L, j, τ, π, σin, ϕ) such that σ + [~x 7→ ~t] ≥ σol. From which we can
write σ ≥ σol \ {~x}. From the definition of ips, σol \ {~x} ∈ ips(L, j, τ, π, σin, ∃~x.ϕ) which
completes our proof.

Case ϕ ≡ ∀~x.(ϕ1 → ϕ2).
(Soundness)

Consider, ips(L, j, τ, π, σin,∀~x.(ϕ1 → ϕ2)) 6= ∅. In which case, ips(L, j, τ,
π, σin,∀~x.(ϕ1 → ϕ2)) = {σin}. Consider any σ1 such that σ1 ∈ ips(L, j, τ,
π, σin, ϕ1) and σ2 such that σ2 ∈ ips(L, j, τ, π, σ1, ϕ2). If no such σ1 exists then ϕ is trivially
satisfied, by falsifying the antecedent, in which case ips returns σin and thus from premise
dom(σin) ⊇ χC ∪χFχO where χO = {}. If no such σ2 exists then ϕ is falsified the statement
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vacuously holds. Now consider both σ1 and σ2 exists. From premise 3, we know dom(σin) ⊇
χC ∪ χF . We also know σin ∈ ips(L, j, τ, π, σin,∀~x.(ϕ1 → ϕ2)). From mode checking
judgements we know, χO = ∅. Thus, for σ ∈ ips(L, j, τ, π, σin,∀~x.(ϕ1 → ϕ2)), dom(σ) ⊇
χC ∪ χF ∪ χO.

It remains to show that ∀σ′.(σ′ ≥ σ → (L, τ, j, η0 |= (∀~x.(ϕ1 → ϕ2))σ
′)). We know from the

definition σ = σin as ips(L, j, τ, π, σin, ∀~x.(ϕ1 → ϕ2)) 6= ∅. Take any arbitrary σ′ such that
σ′ ≥ σ = σin.

Inspection of the applicable mode checking judgements reveals that in all cases fv(φ2) ⊆ χC∪
χF ∪χ1 (with transitivity and additivity of ⊆). From premise (1) and Lemma 1 or Lemma 2,
χ1 ⊆ fv(φ1). Thus fv(φ2) ⊆ χC ∪ χF ∪ fv(φ1). Then always fv(φ1) ⊆ χC ∪ χF ∪ {~x}, so
that fv(φ2) ⊆ χC ∪ χF ∪ {~x}. Finally, by premise 3 we know dom(σin) ⊇ (χC ∪ χF ), which
means: (C-i) fv(φ2) ⊆ dom(σin) ∪ {~x}.
L, τ, j, η0 |= (∀~x.(ϕ1 → ϕ2))σ

′ is equivalent to ∀~t.(L, τ, j, η0 |= (ϕ1)(σ
′[~x 7→ ~t])→ L, τ, j, η0 |=

(ϕ2)(σ
′[~x 7→ ~t])). Take any arbitrary ~t such that L, τ, j, η0 |= (ϕ1)(σ

′[~x 7→ ~t]).

[Z] It is thus sufficient to show that : L, τ, j, η0 |= (ϕ2)(σ
′[~x 7→ ~t]).

By I.H. (Completeness), ∃σ1 ∈ ips(L, j, τ, π, σin, ϕ1).σ1 ≤ σ′[~x 7→ ~t]. By inspection of the
mode checking judgements and I.H. (Soundness), dom(σ1) ⊇ dom(σin)∪{~x}. From construc-
tion, ips(L, j, τ, π, σ1, ϕ2) 6= ∅. Take an arbitrary σ2 from this set. By I.H. (Soundness),
(C-ii) σ2 ≥ σ1 ∧ L, τ, j, η0 |= ϕ2σ2.

Now, we will show that: [T S] ∃σm2 ∈ ips(L, j, τ, π, σ1, ϕ2).(σ2 ≥ σm2 ∧dom(σm2 ) ⊆ dom(σin)∪
{~x} ∧ L, τ, j, η0 |= ϕ2σ

m
2 ). From (C-ii), we have (A-II) L, τ, j, η0 |= ϕ2σ2. From Lemma 11

and A-II, we have (A-III) L, τ, j, η0 |= ϕ2(σ2 ↓ fv(ϕ2)).

From Lemma 11, we have (A-IV) ∀σ, σ′, ϕ.((dom(σ) = fv(ϕ) ∧ dom(σ) ∩ dom(σ′) = ∅ ∧
L, τ, j, η0 |= ϕσ)→ (L, τ, j, η0 |= ϕ[σ+σ′])). From (C-i), we have (A-V) fv(ϕ2) ⊆ dom(σin)∪
{~x}. It follows that: ∃Y.(fv(ϕ2) ∪ Y ) = dom(σin) ∪ {~x}. From (A-III), (A-IV), and (A-
V), we have (A-VI) L, τ, j, η0 |= ϕ2(σ2 ↓ (dom(σin) ∪ {~x})). (X) By I.H. (Completeness),
∃σm2 ≤ (σ2 ↓ (dom(σin) ∪ {~x})).σm2 ∈ ips(L, j, τ, π, σ1, ϕ2(~x)). As σm2 ≥ σm2 , and by I.H.
(Soundness), L, τ, j, η0 |= ϕ2σ

m
2 . Thus, we have shown the third conjunct of T S to be

true. From (X), we know (Y) σm2 ≤ σ2 ↓ (dom(σin) ∪ {~x}). It implies that σm2 ≤ σ2.
Thus, we have shown the first conjunct of T S to be true. From (A-V) and from (Y),
dom(σm2 ) ⊆ dom(σ2 ↓ (dom(σin) ∪ {~x})) = dom(σin) ∪ {~x}. Thus, we have shown the second
conjunct of T S to be true. This implies that we have shown T S to be true.

Now, if we can show that σ′[~x 7→ ~t] ≥ σm2 then from the third conjunct of T S and I.H.
(Soundness), we can show L, τ, j, η0 |= (ϕ2)(σ

′[~x 7→ ~t]) to hold. σ′ ≥ σm2 [~x 7→ ~t] is equivalent
to the following:

[U] ∀v ∈ dom(σm2 ).σm2 (v) = σ′[~x 7→ ~t](v).

From second conjunct of T S, dom(σm2 ) ⊆ dom(σin) ∪ {~x}. From this and U, we can
say that for all v ∈ dom(σm2 ), either (E-1) v ∈ ((dom(σin) \ {~x}) ∩ dom(σm2 )) or (E-2)
v ∈ ({~x} ∩ dom(σm2 )) holds.

Sub-Case (E-1) v ∈ ((dom(σin) \ {~x}) ∩ dom(σm2 )):
We know σ′ ≥ σin. It implies that σ′(v) = σin(v). We also have dom(σ′) ⊇ dom(σin).
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Consider v 6∈ {~x}, so [R-1] σ′[~x 7→ ~t](v) = σin(v). We know σ2 ≥ σ1 ≥ σin \ {~x}. We can
write σ2 ≥ σin \ {~x}. This is equivalent to ∀v1 ∈ dom(σin) \ {~x}.σ2(v1) = σin \ {~x}(v1).
We also know from the first conjunct of T S that σ2 ≥ σm2 . It is equivalent to ∀v2 ∈
dom(σm2 ).σ2(v2) = σm2 (v2). As v ∈ ((dom(σin)\{~x})∩dom(σm2 )), v ∈ dom(σin)\{~x} and
v ∈ dom(σm2 ). It implies that σm2 (v) = σ2(v) = σin \ {~x}(v). As v 6∈ {~x}, it implies that
σm2 (v) = σin(v). From above and R-1, we have σm2 (v) = σ′[~x 7→ ~t](v).

Sub-Case (E-2) v ∈ ({~x} ∩ dom(σm2 )):
We have to show that σm2 (v) = σ′[~x 7→ ~t](v). We know σ2 ≥ σm2 which implies that
∀v1 ∈ dom(σm2 ).σ2(v1) = σm2 (v1). As σm2 ∈ ips(L, j, π, σ1, ϕ2(~x)), we have σm2 ≥ σ1.
It implies that ∀v2 ∈ dom(σ1).σ

m
2 (v2) = σ1(v2). We also know σ′[~x 7→ ~t] ≥ σ1 which

implies that ∀v3 ∈ dom(σ1).σ1(v3) = σ′[~x 7→ ~t](v3). By inspecting the mode checking
judgements we know {~x} ⊆ χ1. Thus, we know dom(σ1) ⊆ χC ∪ χF ∪ {~x}. As v ∈ {~x},
it implies that v ∈ dom(σ1). Thus, we have ∀v ∈ {~x}.σm2 (v) = σ1(v) = σ′[~x 7→ ~t](v)
completing our proof.

(Completeness)

We have to show that ∀σ.(σ ≥ σin ∧ dom(σ) ⊇ fv(ϕ) ∧ L, i, τ, η |= ϕσ → ∃σo(σo ∈
ips(L, i, τ, π, σin,∀~x.(ϕ1 → ϕ2)) → σ ≥ σo). Take any arbitrary σ such that σ ≥ σin,
dom(σ) ⊇ fv(ϕ), and L, i, τ, η |= ϕσ. W.l.o.g we assume dom(σ)∩~x = {} and dom(σin)∩~x =
{}. From semantics we know that, L, τ, i, η |= (∀~x.(ϕ1 → ϕ2))σ ⇐⇒ ∀~t.L, τ, i, η |= ϕ1σ[~x 7→
~t] → L, τ, i, η |= ϕ2σ[~x 7→ ~t]. Take any arbitrary σ′ from ips(L, i, τ, π, σin, ϕ1). By
Lemma 12, σ′ ≥ σin. By Lemma 13, dom(σ′) ⊆ dom(σin) ∪ fv(ϕ1). By analyzing mode
checking judgements: fv(ϕ1) ⊆ χC ∪ χF ∪ {~x} ⊆ dom(σin) ∪ {~x} (by premise χC ∪ χF ⊇
dom(σin)). By analyzing applicable mode checking judgements and ips soundness (IH) we
have : ~x ⊆ dom(σ′). By premise, σ ≥ σin and fv(ϕ) ⊆ dom(σ) and {~x} ∩ dom(σ) = {}.
Again, fv(ϕ) = (fv(ϕ1) ∪ fv(ϕ2)) \ {~x}. Let σ′′ = σ + [~x 7→ σ′(~x)]. We will now show that
σ′′ ≥ σ′. From the definition of ≥, σ′′ ≥ σ′ if for any v ∈ dom(σ′).σ′′(v) = σ′(v). We have
seen that dom(σ′) ⊆ dom(σin) ∪ {~x}. Thus for any v ∈ dom(σ′), v ∈ dom(σin) or v ∈ {~x}.
Sub-Case v ∈ dom(σin)

From Lemma 12, σ′ ≥ σin. From premise σ ≥ σin. σ′ ≥ σin → σ′(v) = σin(v).
σ ≥ σin → σ(v) = σin(v)→ σ(v) = σ′′(v) = σ′(v).

Sub-Case v ∈ {~x}
v ∈ ~x→ σ′(v) = σ′′(v) by construction as no other variables in domain of σ′.

Thus we have σ′′ ≥ σ′. By analyzing the applicable mode checking judgements we see that
ips soundness is applicable. From ips soundness we have L, i, τ, η |= ϕ1σ

′′ = L, i, τ, η |=
ϕ1σ[~x 7→ σ′(~x)]. Let us also assume ~t ← σ′(~x). By premise and the semantics of universal
quantifier: L, i, τ, η |= ϕ2σ[~x 7→ ~t]. From mode checking judgements we know that χC , χF ∪
χ1 ` ϕ2 : χ2. From premise we have i ≥ j and τi−τj ≥ ∆(ϕ) ≥ ∆(ϕ2). From ips soundness
of ϕ1, we know dom(σ′) ⊇ χC ∪ χF ∪ χ1. From premise we know that π is consistent at i
with respect to L, τ , and ϕ (ϕ2). We have shown σ ≥ σin. We also have fv(ϕ2) ⊆ dom(σ′′)
as fv(ϕ2) ⊆ χC ∪ χF ∪ χ1 ⊆ dom(σ′) ⊆ dom(σ′′). We also have L, i, τ, η |= ϕ2σ[~x 7→ ~t].
Hence we see that ips completeness is applicable. By ips completeness (IH) we have
∃σ′2 ∈ ips(L, i, τ, π, σ′, ϕ2).σ

′
2 ≤ σ[~x 7→ ~t]. Thus, ips(L, i, τ, π, σ′, ϕ2) 6= {}. Thus, there

does not exist a σ ∈ ips(L, i, τ, π, σin, ϕ1) such that ips(L, i, τ, π, σ, ϕ2) = {}.
Thus, ips(L, i, τ, π, σin,∀~x.(ϕ1 → ϕ2)) = σin. Now by premise σin ≤ σ.
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Case ϕ ≡ ϕ1 S [c,d]ϕ2.
(Soundness)

Sub-Case B ∈ label(ϕ)
From the definition of ips, we get ips(L, j, τ, π, σin, ϕ1 S [c,d]ϕ2) = σin on π.A(ϕ1 S [c,d]ϕ2)(j).R.
We can say that for all σ ∈ ips(L, j, τ, π,
σin, ϕ1 S ϕ2) where σ 6= ∅, there exists a σ1 ∈ π.A(ϕ1 S [c,d]ϕ2)(j).R such that σ = σin on
σ1. We have to first show that for all σ ∈ ips(L, j, τ, π, σin, ϕ1 S [c,d]ϕ2), dom(σ) ⊇
χC ∪ χF ∪ χO. From premise 3, Lemma 14 (1), and Definition 7, dom(σin) ⊇ χC ∪ χF
and dom(σ1) ⊇ χO. As σ = σin on σ1 and σ 6= ∅, we can see that dom(σ) ⊇ χC ∪χF ∪χO.
It remains to show that ∀σ′.(σ′ ≥ σ → (L, τ, j, η0 |= (ϕ1 S [c,d]ϕ2)σ

′)). Take any arbitrary,
σ′ such that σ′ ≥ σ. As σ = σin on σ1 and σ 6= ∅, we can write σ′ ≥ σ1. From Lemma 14
(1) and Definition 7, we know that ∀σ′1.σ′1 ≥ σ1 → L, τ, j, η0 |= (ϕ1 S [c,d]ϕ2)σ

′
1.

It follows that L, τ, j, η0 |= (ϕ1 S [c,d]ϕ2)σ
′, completing the proof.

Sub-Case B 6∈ label(ϕ)
Take an arbitrary σ ∈ Σout. By definition, Σout = ips(L, j, τ, π, σin, ϕ1

S [c,d]ϕ2) = SR1 ∪ SR2 . Thus, σ ∈ SR1 or σ ∈ SR2 .

Sub-Sub-Case σ ∈ SR1

From definition of SR1 , we know that σ ∈ ips(L, j, τ, π, σin, ϕ2) and c ≤ 0 ≤ d. We
first show that dom(σ) ⊇ (χC ∪χF ∪χO). From premise 3, we know that dom(σin) ⊇
(χC ∪ χF ). From the mode checking judgements for S and I.H., dom(σ) ⊇ (χC ∪
χF ∪ χ1). Since χO = χ1 by the applicable judgements, dom(σ) ⊇ (χC ∪ χF ∪ χO).
It remains to show that ∀σ′.(σ′ ≥ σ → (L, τ, j, η0 |= (ϕ1 S [c,d]ϕ2)
σ′)). Take an arbitrary σ′ such that σ′ ≥ σ. From the semantics of S we know
that, L, τ, j, η0 |= (ϕ1 S [c,d]ϕ2)σ

′ if and only if there exists k ∈ N and k ≤ j such
that (c ≤ τj − τk ≤ d) and L, τ, k, η0 |= ϕ2σ

′ and for all l ∈ N such that k <
l ≤ j, it implies that L, τ, l, η0 |= ϕ1σ

′ holds. So if L, τ, j, η0 |= ϕ2σ
′ holds and

c ≤ 0 ≤ d, then L, τ, j, η0 |= (ϕ1 S [c,d]ϕ2)σ
′ holds. Now from construction, since

σ ∈ ips(L, j, τ, π, σin, ϕ2), c ≤ 0 ≤ d, and σ′ ≥ σ, by inductive hypothesis it follows
that L, τ, j, η0 |= (ϕ2)σ

′. From this, it follows that L, τ, j, η0 |= (ϕ1 S [c,d]ϕ2)σ
′.

Sub-Sub-Case σ ∈ SR2

Then there exist 〈σβ, k〉 ∈ Sβ and σαl , such that c ≤ τj−τk ≤ d, ./σαl = σ and k < j
and for all l with k < l ≤ j we have σαl ∈ ips(L, l, τ, π, σβ, ϕ1). For brevity, from
here on we assume l is sufficiently restricted to the domain of σαl . By construction,
σβ ∈ ips(L, k, τ, π, σin, ϕ2). By inductive hypothesis, dom(σβ) ⊇ χC ∪χF ∪χ1, and
since χO = χ1, dom(σβ) ⊇ χC ∪ χF ∪ χO. Now by Lemma 12, ∀l.σαl ≥ σβ. Thus,
∀l.dom(σαl ) ⊇ χC ∪ χF ∪ χO, and so dom(σ) ⊇ χC ∪ χF ∪ χO.
It remains to show that ∀σ′.(σ′ ≥ σ → (L, τ, j, η0 |= (ϕ1 S [c,d]ϕ2)σ

′)). Take any
arbitrary, σ′ such that σ′ ≥ σ. Then σ′ ≥ σβ, so by inductive hypothesis L, τ, k, η0 |=
ϕ2σ

′ and also c ≤ τj−τk ≤ d. Also ∀l.σ′ ≥ σαl , so that again by inductive hypothesis
L, τ, l, η0 |= ϕ1σ

′. The semantics of S is L, τ, i, η0 |= (ϕ1 S [c,d]ϕ2)σ
′ ⇔ ∃m ∈ N.(m ≤

i∧L, τ,m, η0 |= ϕ2σ
′ ∧ (c ≤ τj − τm ≤ d)∧∀l ∈ N.((m < l ≤ i)→ L, τ, i, η0 |= ασ′)).

Instantiation of m with k and i with j lets us conclude.

(Completeness)

L, τ, j, η0 |= (ϕ1 S [c,d]ϕ2)σ if and only if L, τ, j, η0 |= (ϕ1σ)S [c,d](ϕ2σ) if and only if there
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exists k ≤ j such that c ≤ τj − τk ≤ d, L, τ, k, η0 |= ϕ2σ and for all l, where k < l ≤ j,
L, τ, l, η0 |= ϕ1σ. Let k be maximal.

Sub-Case B ∈ label(ϕ1 S [c,d]ϕ2)

Since B ∈ label(ϕ1 S [c,d]ϕ2), there exist χB
C , χB

O with dom(χB
O) ⊆ fv(ϕ1 S [c,d]ϕ2), χ

B
1 =

χB
O and χB

2 , such that ∅ `B ϕ1 : χB
1 , χB

1 `B ϕ2 : χB
2 and thus χB

C `B ϕ1 S ϕ2 : χB
O .

Let σ′ = σ ↓ χB
O . Note that dom(σ′) = χB

O , since dom(σ) ⊇ fv(ϕ1 S [c,d]ϕ2). Since π is
strongly consistent at i with respect to L, τ , and ϕ and j ≤ i, π is well-formed at j with
respect to ϕ1 S [c,d]ϕ2, L, and τ (Ψ(L, τ, π, ϕ1 S [c,d]

ϕ2, j)). So, by Definition 6 (Statement 6 of ϕ1 S Iϕ2) σ
′ ∈ π.A(ϕ1 S Iϕ2)(j).

R. Let σo = σin on σ′. Note that σo 6= ∅, because σ′ is a prefix of σ, which itself is an
extension of σin. Thus σo ∈ Σout. By the same arguments also σo ≤ σ.

Sub-Case B 6∈ label(ϕ1 S [c,d]ϕ2)

Sub-Sub-Case k = j.
Since fv(ϕ2) ⊆ fv(ϕ1 S [c,d]ϕ2), by inductive hypothesis ∃σo ∈ ips(L, j, τ, π, σin, ϕ2).σo ≤
σ. By construction, 〈σo, j〉 in Sβ. As j = k, τj − τk = 0, so from premise c ≤ 0 ≤ d.
Thus σo ∈ SR1 and so σo ∈ Σout.

Sub-Sub-Case k < j.
Then analogous to the previous case ∃σ2 ∈ ips(L, k, τ, π, σin, ϕ2).σ2 ≤ σ. From
premise we have c ≤ τj − τk ≤ d. Also, for all l such that j ≥ l > k σ2 6∈
ips(L, l, τ, π, σin, ϕ2), or k would not be maximal for σ. Thus, 〈σ2, k〉 ∈ Sϕ2 . By
inspection of the mode checking judgements (and lemmas) and soundness, dom(σ2) ⊇
χC∪χO∪χ1. Thus, by I.H. for all l with k < l ≤ j, ∃σαl ∈ ips(L, l, τ, π, σ2, ϕ1).σ

α
l ≤

σ.
Since all σαl are ≤ σ, the join σo = ./σαl exists and σo ≤ σ. Furthermore, by
construction σo ∈ SR2 and so σo ∈ Σout.

Case ϕ ≡ ϕ1 U [c,d]ϕ2.
(Soundness)

Take an arbitrary σ ∈ Σout. By definition, Σout = ips(L, j, τ, π, σin, ϕ1 U [c,d]

ϕ2) = SR1 ∪ SR2 . Thus, σ ∈ SR1 or σ ∈ SR2 .

Sub-Case σ ∈ SR1

From definition of SR1 , we know SR1 = ips(L, j, τ, π, σin, ϕ2) and c ≤ 0 ≤ d, so σ ∈
ips(L, j, τ, π, σin, ϕ2). We first show that dom(σ) ⊇ χC ∪ χF ∪ χO. From premise 3, we
know that dom(σin) ⊇ (χC ∪ χF ). From the mode checking judgements for UNTIL and
I.H., dom(σ) ⊇ χC ∪ χF ∪ χ1. Since χO = χ1 by the applicable judgements, dom(σ) ⊇
χC ∪ χF ∪ χO.
It still remains to show that ∀σ′.(σ′ ≥ σ → (L, τ, j, η0 |= (ϕ1 U [c,d]ϕ2)σ

′)). Take any
arbitrary, σ′ such that σ′ ≥ σ. From the semantics of U we know that, L, τ, j, η0 |=
(ϕ1 U [c,d]ϕ2)σ

′ if and only if there exists k ∈ N where k ≥ j and c ≤ (τk − τj) ≤ d, such
that L, τ, k, η0 |= ϕ2σ

′ and for all l ∈ N such that j ≤ l < k, it implies that L, τ, l, η0 |=
ϕ1σ

′ holds. So if L, τ, j, η0 |= ϕ2σ
′ and c ≤ 0 ≤ d holds, then L, τ, j, η0 |= (ϕ1 U [c,d]ϕ2)σ

′

holds. Now since σ ∈ ips(L, j, τ, π, σin, ϕ2), by I.H. it follows that L, τ, j, η0 |= (ϕ2)σ
′,

and so L, τ, j, η0 |= (ϕ1 U [c,d]ϕ2)σ
′.

Sub-Case σ1 ∈ SR2
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Then there exist 〈σβ, k〉 ∈ Sϕ2 and σαl , such that ./σαl = σ and k > j and ∀l.(j ≤ l < k →
σαl ∈ ips(L, l, τ, π, σβ, ϕ1). For brevity, again assume l restricted. By construction, σβ ∈
ips(L, k, τ, π, σin, ϕ2) and c ≤ (τk − τj) ≤ d. From premise 3, we know that dom(σin) ⊇
χC ∪ χF . From the mode checking judgements for UNTIL and I.H., dom(σβ) ⊇ (χC ∪
χF ∪χ1). Since χO = χ1 by the applicable judgements, dom(σ) ⊇ χC ∪χF ∪χO. Now by
Lemma 12, ∀l.σαl ≥ σβ. Thus, ∀l.dom(σαl ) ⊇ χC∪χF∪χO, and so dom(σ) ⊇ χC∪χF∪χO.
It remains to show that ∀σ′.(σ′ ≥ σ → (L, τ, j, η0 |= (ϕ1 U [c,d]ϕ2)σ

′)). Take any arbitrary,
σ′ such that σ′ ≥ σ. Then σ′ ≥ σβ, so by inductive hypothesis L, τ, k, η0 |= ϕ2σ

′. Also
∀l.σ′ ≥ σαl , so that again by inductive hypothesis L, τ, l, η0 |= ϕ1σ

′. The semantics of
U is L, τ, j, η0 |= (ϕ1 U [c,d]ϕ2)σ

′ if and only if there exists m ∈ N where m ≥ j and
c ≤ (τm − τj) ≤ d, such that L, τ,m, η0 |= ϕ2σ

′ and for all l ∈ N such that j ≤ l < m, it
implies that L, τ, l, η0 |= ϕ1σ

′ holds. Instantiation of m with k lets us conclude.

(Completeness)

L, τ, j, η0 |= (ϕ1 U [c,d]ϕ2)σ if and only if L, τ, j, η0 |= (ϕ1σ)U [c,d](ϕ2σ) if and only if there
exists k ≥ j, such that c ≤ τk − τj ≤ d, L, τ, k, η0 |= ϕ2σ, and for all l where j ≤ l < k
L, τ, l, η0 |= ϕ1σ. W.l.o.g. k is minimal.

Sub-Case k = j
Since fv(ϕ2) ⊆ fv(ϕ1 U [c,d]ϕ2), by inductive hypothesis ∃σo ∈ ips(L,
j, τ, π, σin, ϕ2).σo ≤ σ. Since c ≤ 0 ≤ d and construction of Sϕ2 , 〈σo, j〉 in Sϕ2 , thus
σo ∈ SR1 and so σo ∈ Σout.

Sub-Case k > j
Then analogous to the previous case ∃σ2 ∈ ips(L, k, τ, π, σin, ϕ2).σ2 ≤ σ. Also, for all
l < k σ2 6∈ ips(L, l, τ, π, σin, ϕ2), or k would not be minimal for σ. Thus, 〈σ2, k〉 ∈ Sϕ2 .
By σ ≥ σin, dom(σ) ⊇ dom(σin) ⊇ χC ∪ χF . By inspection of the mode checking
judgements (and lemmas) and soundness, dom(σ2) ⊇ χC ∪ χO ∪ χ1. Thus, by I.H. for
all l with j ≤ l < k, ∃σαl ∈ ips(L, l, τ, π, σ2, ϕ1).σ

α
l ≤ σ. Since all σαl are ≤ σ, the join

σo = ./σαl exists and σo ≤ σ. Furthermore, by construction σo ∈ SR2 and so σo ∈ Σout.

The following lemma states that the number of substitutions returned by ips is finite. It also
states that the size of our state π (which stores the summary structures) is also finite. The following
lemma is used to show the termination of ips, uSS, and consequently checkCompliance.

Lemma 15 (Finite substitutions). 1. For all formulas ϕ of form either ϕ1 S Iϕ2, Iϕ, Iϕ, or
Iϕ, such that B ∈ label(ϕ), for all i ∈ N, for all logs L, for all time stamp sequences τ ,
for all state π = (A, i) such that π is weakly consistent at i with respect to L, τ , and ϕ, if( ∑
ϕ̂∈b-s-tsub(ϕ)

Υ(π, i, ϕ̂)

)
+ Υ(π, i− 1, ϕ) is finite then

∑
ϕ̂∈b-tsub(ϕ)

Υ(π̂, i, ϕ̂) is finite where π̂ = (A, i)

and π̂ = uSS(L, i, τ, π, ϕ).

2. For all formula ϕ, for all j ∈ N, for all logs L, for all time stamp sequences τ , for all
state π = (A, i) where i ∈ N, for all substitution σin, for some given χC and χF , such
that: (1) χC , χF ` ϕ : χO, (2) i ≥ j and τi − τj ≥ ∆(ϕ), (3) dom(σin) ⊇ χC ∪ χF , (4) π
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is strongly consistent at i with respect to ϕ, τ , and L, (5)

( ∑
ϕ̂∈b-tsub(ϕ)

Υ(π, i, ϕ̂)

)
is finite, if

ips(L, j, τ, π, σin, ϕ) = Σout then |Σout| is finite.

Proof. Note that, when uSS is called for a B-formula ϕ, it calls ips on strict subformulas of ϕ.
However, ips does not call uSS directly and hence we do not have any cyclic dependency. Mutual
induction on the structure of ϕ. We show select cases. Other cases are similar.

Case ϕ ≡ >.

According to the definition of ips, ips(L, j, τ, π, σin,>) = Σout = {σin}. Thus, |Σout| = 1 and
is thus finite.

Case ϕ ≡ ⊥.

According to the definition of ips, ips(L, j, τ, π, σin,⊥) = Σout = ∅. Thus, |Σout| = 0 and is
thus finite.

Case ϕ ≡ p(t1, . . . , tn).

According to the definition of ips, ips(L, j, τ, π, σin, p(t1, . . . , tn)) = Σout = sat(L, j, τ, p(t1, . . . , tn), σin).
From premise (1) we can say the pre-condition of the sat function (Claim 1) is satisfied. From
Claim 1, we can say that |Σout| is finite.

Case ϕ ≡ ϕ1 ∨ ϕ2.

Let Σ1 ← ips(L, j, τ, π, σin, ϕ1) and Σ2 ← ips(L, j, τ, π, σin, ϕ2). According to the defini-
tion of ips, ips(L, j, τ, π, ϕ1 ∨ ϕ2) = Σout = Σ1 ∪ Σ2. From premise 1 and inspecting the
mode checking judgements, we can say the inductive hypothesis is applicable. By inductive
hypothesis, |Σ1| and |Σ2| are both finite. Thus, |Σout| is finite.

Case ϕ ≡ ϕ1 ∧ ϕ2.

From the definition of ips, ips(L, j, τ, π, σin, ϕ1 ∧ ϕ2) = Σout where
Σout =

⋃
σc∈ips(L,j,τ,π,σin,ϕ1)

ips(L, j, τ, π, σc, ϕ2). From premise 1 and inspecting the mode
checking judgements, we see that the inductive hypothesis is applicable to ips(L, j, τ, π, σin, ϕ1).
Let Σ1 ← ips(L, j, τ, π, σin, ϕ1). By inductive hypothesis, |Σ1| is finite. For all σc ∈ Σ1,
ips(L, j, τ, π, σc, ϕ2) is called. We also see that from premise 1 and inspecting the mode check-
ing judgements, the inductive hypothesis is applicable to ips(L, j, τ, π, σc, ϕ2) = Σ2 for some
σc ∈ Σ1. By inductive hypothesis, each such |Σ2| is finite from which it follows that |Σout| is
finite.

Case ϕ ≡ ∃~x.ϕ.

Let Σ1 ← ips(L, j, τ, π, σin, ∃~x.ϕ) According to the definition of ips, ips(L, j, τ, π, σin, ∃~x.ϕ) =
Σout = Σ1 \ {~x}. From premise 1 and inspecting mode checking judgements, we see the induc-
tion hypothesis is applicable. By inductive hypothesis, |Σ1| is finite from which it follows that
|Σout| is finite.

Case ϕ ≡ ∀~x.(ϕ1 → ϕ2).

Let Σout ← ips(L, j, τ, π, σin, ∀~x.(ϕ1 → ϕ2)). Σout can be either ∅ or {σin} according to the
definition of ips. In both cases, |Σout| is finite.
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Case ϕ ≡ ϕ1 S [c,d]ϕ2 and B ∈ label(ϕ)

Sub-Case To show (1):

Given

( ∑
ϕ̂∈b-s-tsub(ϕ)

Υ(π, i, ϕ̂)

)
+ Υ(π, i − 1, ϕ) is finite to show that

∑
ϕ̂∈b-tsub(ϕ)

Υ(π̂, i, ϕ̂) is fi-

nite, it is sufficient to show that
∑

ϕ̂∈b-tsub(ϕ)

Υ(π̂, i, ϕ̂) −
( ∑
ϕ̂∈b-s-tsub(ϕ)

Υ(π, i, ϕ̂)

)
− Υ(π, i − 1, ϕ)

is finite. From the definition of Υ (Definition 9), we know that:
∑

ϕ̂∈b-tsub(ϕ)

Υ(π̂, i, ϕ̂) −( ∑
ϕ̂∈b-s-tsub(ϕ)

Υ(π, i, ϕ̂)

)
−Υ(π, i− 1, ϕ) = (|π.A(ϕ)(i).Sα|+ |π.A(ϕ)(i).Sβ)|+ |π.A(ϕ)(i).R|).

Thus, it is sufficient to show that (|π.A(ϕ)(i).Sα| + |π.A(ϕ)(i).Sβ| + |π.A(ϕ)(i).R|) is fi-
nite. We will show that the following are all finite: |π.A(ϕ)(i).Sα|, |π.A(ϕ)(i).Sβ|, and
|π.A(ϕ)(i).R|.
By construction, |π̂.A′(ϕ)(i).Sβ| ≤ |π̂.A′(ϕ)(i − 1).Sβ| + |Σβ|. From definition of Σβ, we
know that Σβ ← ips(L, i, τ, π̂, •, ϕ2). From premise, Lemma 4, and consulting the appli-
cable mode checking judgements (and Lemma 5, 8), we see that the inductive hypothesis
of (2) is applicable. By inductive hypothesis, |Σβ| is finite and let us assume it is m1. From
the premise, we know that |π̂.A′(ϕ)(i − 1).Sβ| is finite and let us assume it is m2. Thus,
|π̂.A′(ϕ)(i).Sβ| ≤ m1 +m2, which is also finite.

Again by construction, |π̂.A′(ϕ)(i).Sα| ≤ (×|π̂.A′(ϕ)(i−1).Sα)|+|Σα|). From the induction
assumption, we know that |π̂.A′(ϕ)(i− 1).Sα)| is finite and thus to show |π̂.A′(ϕ)(i).Sα| is
finite it is sufficient to show that |Σα| is finite.

We will now show that |Σα| is finite. To construct Σα, in the worst case, for all 〈σ, k〉 pairs
in π̂.A′(ϕ)(i).Sβ, ips(L, i, τ, π, σ, ϕ1) is called. From the premise, Lemma 4, and consulting
the applicable mode checking judgements, we see that the inductive hypothesis of (2) is
applicable. By inductive hypothesis of (2), each call to ips(L, i, τ, π, σ, ϕ1) returns a finite
set of substitutions. Let us assume the maximum cardinality of, all the sets of substitutions
returned by the calls to ips, is m3. Thus by construction, |Σα| ≤ (m1 +m2)×m3, which
is finite. It follows that |π̂.A′(ϕ)(i).Sα| is finite.

From construction of π̂.A′(ϕ)(i).R, we know that π̂.A′(ϕ)(i).R = SR1 ∪ SR2 . Thus,
|π̂.A′(ϕ)(i).R| ≤ |SR1 | + |SR2 |. We will show that |SR1 | and |SR2 | are both finite, con-
cluding our proof.

From construction, |SR1 | ≤ |π̂.A′(ϕ)(i).Sβ|. As |π̂.A′(ϕ)(i).Sβ)| is finite (shown above),
|SR1 | is finite.

From construction, |SR2 | ≤ |π̂.A′(ϕ)(i).Sβ|×|π̂.A′(ϕ)(i).Sα)|. As shown above, |π̂.A′(ϕ)(i).Sβ|
and |π̂.A′(ϕ)(i).Sα| are both finite. This concludes our proof that |SR2 | is finite and in turn
|π̂.A′(ϕ)(i).R| is finite.

Sub-Case To show (2):

Let Σ1 ← π.A(ϕ1 S [c,d]ϕ2)(i).R. From the definition of ips, ips(L, i, τ,
π, σin, ϕ1 S [c,d]ϕ2) = Σout = σin on π.A(ϕ1 S [c,d]ϕ2)(i).R. As we are given by the premise

that

( ∑
ϕ̂∈b-tsub(ϕ)

Υ(π, i, ϕ̂)

)
is finite, we know that |Σ1| is finite. It follows that |Σout| is finite.
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Case ϕ ≡ ϕ1 S [c,d]ϕ2 and B 6∈ label(ϕ)

According to the definition of ips, ips(L, j, τ, π, ϕ1 S [c,d]ϕ2) = Σout = SR1 ∪ SR2 . It is
sufficient to show that |SR1 | and |SR2 | are both finite.

We will first show that by inductive hypothesis, |Sβ| is finite. In the worst case, c ≤ τj−τ0 ≤ d,
that is all prior trace positions satisfy the interval constraint [c, d].

Let us now consider, for all l where 0 ≤ l ≤ j, m = max|Σ1|.Σ1 ← ips(L, l, τ, π, σin, ϕ2). The
maximum size of |Sβ| can be (j + 1) ×m by construction. By the inductive hypothesis, m is
finite. As j ∈ N is finite, it follows that |Sβ| is finite.

By construction, as SR1 ⊆ Sβ, |SR1 | ≤ |Sβ| and it follows that |SR1 | is finite.

By construction of SR2 , for each 〈σβ, k〉 ∈ Sβ where k 6= j, ips(L, q, τ, π, σβ,
ϕ1) is called for all q such that k < q ≤ j. By inductive hypothesis, |ips(L, q, τ, π, σβ, ϕ1)| is
finite and let us say for all q such that k < q ≤ j, m1 = max|Σ2|.Σ2 ← ips(L, q, τ, π, σβ, ϕ1).
By construction (./ of all substitutions for all positions q), |SR2 | is finite.

Thus, it follows that |Σout| is finite.

Case ϕ ≡ ϕ1 U [c,d]ϕ2.

According to the definition of ips, ips(L, j, τ, π, ϕ1 U [c,d]ϕ2) = Σout = SR1 ∪ SR2 . It is
sufficient to show that |SR1 | and |SR2 | are both finite.

We will first show that by inductive hypothesis, |Sβ| is finite. Let us consider, for all l where
b ≤ l < e, l ≥ j, e is the minimal position such that τe − τj > d, b is the minimal position
such that c ≤ τb − τj ≤ d, and m = max|Σ1|.Σ1 ← ips(L, l, τ, π, σin, ϕ2). From premise 2,
we can say that such a finite e exists. The maximum size of |Sβ| is less than (e − b) ×m by
construction. By the inductive hypothesis, m is finite. As e ∈ N is finite, it follows that |Sβ| is
finite.

By construction, as SR1 ⊆ Sβ, |SR1 | ≤ |Sβ| and it follows that |SR1 | is finite.

By construction of SR2 , for each 〈σβ, k〉 ∈ Sβ where k > j, ips(L, q, τ, π, σβ,
ϕ1) is called for all q such that j ≤ q < k. By inductive hypothesis, |ips(L, q, τ, π, σβ, ϕ1)| is
finite and let us say for all q such that j ≤ q < k, m1 = max|Σ2|.Σ2 ← ips(L, q, τ, π, σβ, ϕ1).
By construction (./ of all substitutions of all positions q), |SR2 | is finite.

Thus, it follows that |Σout| is finite.

Lemma 16 (Termination). For all formula ϕ, the following holds:

1. For all logs L, for all time stamp sequences τ , for all j ∈ N, for all substitution σin, for all
state π = (A, i) where i ∈ N, for some given χC , χF such that: (1) χC , χF ` ϕ : χO, (2)
dom(σin) ⊇ χC ∪ χF , (3) π is strongly consistent at i with respect to ϕ, τ , and L, (4) i ≥ j
and τi − τj ≥ ∆(ϕ), then ips(L, j, τ, π, σin, ϕ) terminates.

2. For all logs L, for all time stamp sequences τ , for all i ∈ N, for all state π = (A, i) such that
ϕ is either of form ϕ1 S [c,d]ϕ2, [c,d]ϕ, [c,d]ϕ, or [c,d]ϕ such that ∅ `B ϕ : χO, and π is
weakly consistent at i with respect to ϕ and L, then uSS(L, i, τ, π, ϕ) terminates.
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Proof. Mutual induction on the structure of ϕ. We show select cases and rest of the cases are
similar.

Case ϕ ≡ >.

ips(L, j, π, σin,>) terminates trivially.

Case ϕ ≡ ⊥.

ips(L, j, π, σin,⊥) terminates trivially.

Case ϕ ≡ p(t1, . . . , tn).

According to the definition of ips, ips(L, j, τ, π, σin, p(t1, . . . , tn)) = Σout =
sat(L, j, τ, p(t1, . . . , tn), σin). From premise (1) we can say the pre-condition of the sat func-
tion (Claim 1) is satisfied. From Claim 1, we can say that sat terminates and from it follows
that ips(L, j, τ, π, σin, p(t1, . . . , tn)) terminates.

Case ϕ ≡ ϕ1 ∨ ϕ2.

According to the definition of, ips(L, j, τ, π, σin, ϕ1 ∨ ϕ2) = ips(L, j, τ, π, σin, ϕ1) ∪
ips(L, j, τ, π, σin, ϕ2). From premise 1 and inspecting the mode checking judgements, we can
say the inductive hypothesis is applicable. By inductive hypothesis, ips(L, j, τ, π, σin, ϕ1)
and ips(L, j, τ, π, σin, ϕ2) both terminate. Moreover, by Lemma 15, ips(L, j, τ, π, σin, ϕ1)
and ips(L, j, τ, π, σin, ϕ2), each independently returns finite number of substitutions. Hence,
taking the union of the substitutions terminate. It follows that ips(L, j, τ, π, σin, ϕ1 ∨ ϕ2)
terminates.

Case ϕ ≡ ϕ1 ∧ ϕ2.

From the definition of ips, ips(L, j, π, σin, ϕ1 ∧ ϕ2) = Σout where Σout =⋃
σc∈ips(L,j,τ,π,σin,ϕ1)

ips(L, j, τ, π, σc, ϕ2). From premise 1 and inspecting the mode checking
judgements, we see that the inductive hypothesis is applicable to ips(L, j, τ, π, σin, ϕ1). By
inductive hypothesis, ips(L, j, τ, π, σin, ϕ1) terminates. Let Σ1 ← ips(L, j, π, σin, ϕ1). From
Lemma 15, we have |Σ1| is finite. For all σc ∈ Σ1, ips(L, j, τ, π, σc, ϕ2) is called. We also see
that from premise 1 and inspecting the mode checking judgements, the inductive hypothesis is
applicable to ips(L, j, τ, π, σc, ϕ2). By inductive hypothesis, each call to ips(L, j, τ, π, σc, ϕ2)
terminates and there are finite number of such calls. It follows that ips(L, j, π, σin, ϕ1 ∧ ϕ2)
terminates.

Case ϕ ≡ ∃~x.ϕ.

According to the definition of ips, ips(L, j, τ, π, σin, ∃~x.ϕ) = ips(L, j, τ, π, σin, ∃~x.ϕ) \ {~x}.
From premise 1 and inspecting mode checking judgements, we see the induction hypothesis is
applicable. By inductive hypothesis, ips(L, j, τ, π, σin,∃~x.ϕ) terminates from which it follows
that ips(L, j, τ, π,
σin,∃~x.ϕ) terminates.

Case ϕ ≡ ∀~x.(ϕ1 → ϕ2).

According to the definition of ips, to calculate ips(L, j, τ, π, σin,∀~x.(ϕ1 → ϕ2)) we first make
a call to ips(L, j, τ, π, σin, ϕ1). Let Σ1 ← ips(L, j, τ, π,
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σin, ϕ1). From premise 1 and inspecting the mode checking judgements, we see that the in-
ductive hypothesis is applicable. By inductive hypothesis, ips(L, j, τ, π, σin, ϕ1) terminates.
From Lemma 15, we know that |Σ1| is finite. For all σc ∈ Σ1, a call to ips(L, j, τ, π, σc, ϕ2) is
made. From premise 1 and inspecting the mode checking judgements, we can again see that the
inductive hypothesis is applicable to ips(L, j, τ, π, σc, ϕ2). By inductive hypothesis, each such
call to ips(L, j, τ, π, σc, ϕ2) terminates and there are finite number of such calls. It follows
that ips(L, j, τ, π, σin,∀~x.(ϕ1 → ϕ2)) terminates.

Case ϕ ≡ ϕS [c,d]ϕ2 and B ∈ label(ϕ)

Sub-Case To show (1):

Let Σ1 ← π.A(ϕ1 S [c,d]ϕ2)(i).R. From the definition of ips, ips(L, j, τ,
π, σin, ϕ1 S [c,d]ϕ2) = Σout = σin on Σ1. From premise (1) and inspecting the mode checking
judgements, we see that the inductive hypothesis of Lemma 15 (1) is applicable. By
inductive hypothesis, |Σ1| is finite. Thus, the join operation terminates and it follows that
ips(L, j, τ, π, σin, ϕ1 S [c,d]ϕ2) terminates.

Sub-Case To show (2):

From definition of uSS, to calculate Σβ, ips(L, i, τ, π, •, ϕ2) is called once. From premise,
Lemma 4, and inspecting applicable mode checking judgements, we see that inductive hy-
pothesis of (1) is applicable. From inductive hypothesis (1), we can say that ips(L, i, π, •, ϕ2)
terminates.

According to the proof of Lemma 15 (1), we know that |Σβ| is finite. We also know that

π.A(ϕ1 S [c,d]ϕ2)(i − 1).Sβ is finite. From this, we can say calculating Sβremove and Sβnew
terminates. Finally, we can say that calculating π.A(ϕ1 S [c,d]ϕ2)(i).Sβ terminates, as each
of the set is finite.

While calculating π.A(ϕ1 S [c,d]ϕ2)(i).Sα, for each 〈σ, k〉 pair in π.A(ϕ)(
i).Sβ, ips is called once. From premise, Lemma 4, and inspecting applicable mode checking
judgements, we see that inductive hypothesis of (1) is applicable. By inductive hypothesis
(1), each such call to ips terminates. There are finite such calls to ips as there are
finite 〈σ, k〉 pairs in π.A(ϕ)(i).Sβ. Hence, calculating Σα terminates. In the same vein,
calculating Snew, Supdate, and π.A(ϕ1 S [c,d]ϕ2)(i).Sα terminates.

Finally, in the worst case, while calculating π.A(ϕ)(i).R, each 〈σ, k〉 pairs in π.A(ϕ)(i).Sβ
is joined with each 〈σ1, j〉 pairs in π.A(ϕ)(i).Sα. As |π.A(ϕ)(i).Sβ| and |π.A(ϕ)(i).Sα| are
finite, the join operations terminate from which it follows that uSS terminates concluding
our proof.

Case ϕ ≡ ϕ1 S [c,d]ϕ2 and B 6∈ label(ϕ)

According to the definition of ips, ips(L, j, τ, π, ϕ1 S [c,d]ϕ2) = Σout = SR1 ∪ SR2 . It is
sufficient to show that the construction of sets SR1 and SR2 terminates. We will then show
that |SR1 | and |SR2 | are both finite and thus the set union operation terminates.

We will first show that the construction of Sβ terminates. By construction of Sβ, a call to
ips(L, l, τ, π, σin, ϕ2) is made for all l where 0 ≤ l ≤ j and c ≤ τj−τl ≤ d. From premise 1 and
inspecting the mode checking judgements, we see that the inductive hypothesis is applicable to
ips(L, l, τ, π, σin, ϕ2). By inductive hypothesis, each call to ips(L, l, τ, π, σin, ϕ2) terminates
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and there are finite (j+1 in the worst case) number of such calls. It follows that the construction
of Sβ terminates.

By Lemma 15, |Sβ| is finite. By construction, each σ is added in SR1 where 〈σ, j〉 ∈ Sβ and
c ≤ 0 ≤ d. As there are finite number of such σ, the construction of SR1 terminates. By
construction, |SR1 | ≤ |Sβ| and it follows that |SR1 | is finite.

By construction of SR2 , for each 〈σβ, k〉 ∈ Sβ where k 6= j, ips(L, q, τ, π, σβ
, ϕ1) is called for all q such that k < q ≤ j. By inductive hypothesis, each call to ips(L, q, τ, π, σβ, ϕ1)
terminates and there are finite number of such calls. Thus, the construction of the set SR2

terminates.

As both |SR1 | and |SR2 | are finite, the set union operation terminates.

Thus, it follows that ips(L, j, τ, π, ϕ1 S [c,d]ϕ2) terminates.

Case ϕ ≡ ϕ1 U [c,d]ϕ2.

The proof for this case is similar to the preceding case.

The following two lemmas state that the checkCompliance function is correct and it termi-
nates. The Theorem 1 follows from the following two lemmas.

Lemma 17 (Correctness of checkCompliance function). For all GMP formulas ϕ, for all j ∈ N,
for all logs L, for all time stamp sequences τ , for all internal states π = (A, i) where i ∈ N, for all
empty environments η0, such that: (1) π is strongly consistent at i ∈ N with respect to L, τ , and ϕ,
(2) i ≥ j and τi−τj ≥ ∆(ϕ), (3) {}, {} ` ϕ : χO, if checkCompliance(L, j, τ, π, ϕ) = truthV alue,
then (truthV alue = true)↔ ∃σ.(L, τ, j, η0 |= ϕσ).

Proof. The proof follows from the soundness argument of ips correctness, Lemma 14.

Lemma 18 (Termination of checkCompliance function). For all GMP formula ϕ, for all j ∈ N,
for all logs L, for all time stamp sequences τ , for all state π = (A, i), for all empty environments
η0, such that: (1) π is strongly consistent at i ∈ N with respect to L, τ , and ϕ, (2) i ≥ j and
τi − τj ≥ ∆(ϕ), (3) {}, {} ` ϕ : χO, the function checkCompliance(L, j, τ, π, ϕ) terminates.

Proof. The proof follows from the termination argument of the ips function (Lemma 16 (1)), as
according to the definition of checkCompliance function, only the ips function is called from
the checkCompliance function.

E Policies and their Associated Mode Specification

The HIPAA policy we use in our experiments is shown in Figure 13 and the mode specification
for predicates used in this policy is shown in Table 3. The HIPAA policy is we use for our exper-
iments, contains rules from the following clauses of HIPAA: §164.502(a)(1)(i), §164.502(a)(1)(iv),
§164.502(g)(3)(ii)(A), §164.510(a), §164.512(b)(1)(v), §164.512(j)(1)(ii)(A), §164.512(j)(1)(ii)(B),
§164.508(a)(2), and §164.502(g)(3)(ii)(B). To get the original interpretation of HIPAA for these
selected clauses, one can just replace upper bound on the past temporal operators, bound, to ∞.

58



The GLBA policy we use in our experiments is the conjunction of the policies shown in Figure
14 and Figure 15. The mode specification for predicates used in this policy in shown in Table 2.
The GLBA policy we use for our experiments, contains rules from the following clauses of GLBA:
§6802(a), §6802(b), §6802(d), and §6803(a). To get the original interpretation of GLBA for these
selected clauses, one can just replace upper bound on the past temporal operators, bound, to ∞.

∀p1, p2, q,m, d, u, t.(send(p1, p2,m) ∧ info(m, d, u) ∧ contains(m, q, t)) −→
(

(
(inrole(p1, coveredEntity) ∧ samePerson(p2, q) ∧ attrIn(t,PHI))∨

(inrole(p1, coveredEntity) ∧ attrIn(t,PHI) ∧ (∃m1.(([0,bound](send(q, p1,m1))) ∧ isValidAuthz(m1, p1, p2, q, t, u))))∨
(inrole(p1, coveredEntity) ∧ attrIn(t,PHI) ∧ (purpose(u, treatment) ∨ purpose(u, payment)

∨ purpose(u, healthCareOperations)) ∧ (∃m2.(([0,bound]send(q, p1,m2)) ∧ isValidConsent(m2, p1, p2, q, t, u))))∨
(inrole(p1, coveredEntity) ∧ (inrole(p2, clergy) ∨ (notin(t, religiousAffiliation) ∧ ∃m3.(([0,bound]send(p2, p1,m3))

∧ isDirectoryRequestByName(m3, p2, p1, q, t, u)))) ∧ attrIn(t, directoryInfo) ∧ purpose(u, directory)

∧ (((∀m5.send(q, p1,m5)→ isNotDirectoryObjection(m5, p1, p2, q, t, u))S [0,bound](∃m4.send(p1, q,m4)∧

isOpportunityToObject(m4, p1, p2, q, t, u))) ∨ (notPracticalToProvideOpportunityToObject(p1, p2, q, t, u)∧
consistentWithPriorPreference(p1, p2, q, t, u) ∧ believesInBestInterest(p1, p2, q, t, u))))∨
(inrole(p1, provider) ∧ (workForceMemberOf(p1, p2) ∨ providerOfMedicalSurveillance(p1, p2)∨
providesInjuryEvaluation(p1, p2)) ∧ inrole(p2, employer) ∧ workForceMemberOf(q, p2)∧
((attrIn(t,workPlaceFindings) ∧ purpose(u, obligationToRecordWorkPlaceInjury))

∨ (attrIn(t,medicalSurveillanceFindings) ∧ purpose(u, obligationToPerformWorkPlaceSurveillance)))∧
∃m6.(([0,bound]send(p1, q,m6)) ∧ isNoticeofWorkplaceDisclosure(m6)))∨
(inrole(p1, coveredEntity) ∧ inrole(p2, lawEnforcement) ∧ attrIn(t,PHI) ∧ toIdentifyOrApprehend(u, q)

∧ consistentWithAppLaw(p1, p2, q, t, u) ∧ ∃m7.(([0,bound]send(q, p1,m7)) ∧ isAdmissionOfCrime(m7)

∧ believesCrimeCausedSeriousHarm(p1,m7)) ∧ notLearnedWhileTreatingPropensityForCrime(p1, q, t)∧
notLearnedThroughRequestForTreatment(p1, q, t) ∧ (∃m8.(([0,bound]send(q, p1,m8))

∧ isAdmissionOfCrime2(m8, q) ∧ containsMsg(m,m8) ∧ contains(m8, q, t) ∧ attrIn(t, attribute-list-164.512j3))))∨
(inrole(p1, coveredEntity) ∧ inrole(p2, lawEnforcement) ∧ attrIn(t,PHI) ∧ toIdentifyOrApprehend(u, q)

∧ consistentWithAppLaw(p1, p2, q, t, u) ∧ believesEscapeLawfulCustody(p1, q))∨
(inrole(p1, coveredEntity) ∧ (parentOf(p2, q) ∨ guardianOf(p2, q) ∨ localParentOf(p2, q))

∧ attrIn(t,PHI) ∧ permittedByOtherLaw(p1, p2, q, t, u))
)

∧
(notinrole(p1, coveredEntity) ∨ notin(t, psychNotes) ∨ (∃m9.(([0,bound]send(q, p1,m9))

∧ isValidAuthz(m9, p1, p2, q, t, u))) ∨ (inrole(p1, coveredEntity) ∧ forCounselingOrTrainingPrograms(u, p1))

∨ (inrole(p1, coveredEntity) ∧ forDefenseInLegalProceeding(u, p1, q)))∧
(notinrole(p1, coveredEntity) ∨ (notParentOf(p2, q) ∧ notGuardianOf(p2, q) ∧ notLocalParentOf(p2, q))∨

notin(t,PHI) ∨ notProhibitedByOtherLaw(p1, p2, q, t, u))

)

Figure 13: HIPAA policy used in our empirical evaluation.
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send (-,-,-)
contains (+,-,-)
info (+,-,-)
isNoticeOfDisclosure (+,+,+,+,+,+)
affiliateOf (-,+)
notconsumerof (+,+)
notin (+,+)
isOptOut (+,+,+,+,+,+)
isNoticeofPotentialDisclosure (+,+,+,+,+,+)
inrole (-,+)
notinrole (+,+)
nonAffiliateOf (+,+)
consumerOf (-,+)
organizationOf (-,+)
attrIn (+,+)
purpose (+,+)
existsConfidentialityAgreement (+,+,+)
lawyerOf (+,-)
notpurpose (+,+)
processConsumerAuthorizedService (+,+)
securitizationSale (+,+)
samePerson (-,+)
extendsCreditOnBehalf (-,+)
maintainConsumerAccount (-,+)
isConsentForDisclosure (+,+,+,+,+,+)
protectRecordSecurity (+,+)
beneficialInterestOf (-,+)
financialRepresentativeOf (-,+)
forResolvingCustomerDispute (+,+)
ratingAgencyOf (-,+)
complianceAssesor (-,+)
attorneyOf (-,+)
accountantOf (-,+)
auditorOf (-,+)
specificallyPermittedOrRequiredByLaw (+,+,+,+,+)
inAccordanceWithRightToFinancialPrivacyActOf1978 (+,+,+,+,+)
subUnitOf (-,+)
forSale (+,+)
forMerger (+,+)
forTransfer (+,+)
forExchange (+,+)
inAccordanceWithFairCreditReportingAgency (+,+,+,+,+)
isConsumerReport (+)
isResponseTo (+,+)
authorizedByLaw (+)
newCustomer (-,+)
renewedCustomer (-,+)
certifiedPublicAccountOfAState (+)
subjectToEthicalDisclosureProvision (+)

Table 2: Mode definition of predicates of the GLBA policy (Figure 14 and Figure 15) used in the experi-
ments.

F Experimental Results

In this section, we present the experimental results for our empirical evaluation. Figure 16 shows the
HIPAA experimental result for the average execution time over different trace length for varying
bounds when the event traces are stored in a memory-backed database. Figure 17 shows the
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send (-,-,-)
contains (+,-,-)
info (+,-,-)
attrIn (+,+)
inrole (-,+)
samePerson (-,+)
isValidAuthorization (+,+,+,+,+,+)
purpose (+,+)
isValidConsent (+,+,+,+,+,+)
notin (+,+)
isDirectoryRequestByName (+,+,+,+,+,+)
notPracticalToProvideOpportunityToObject (+,+,+,+,+)
consistentWithPriorPreference (+,+,+,+,+)
believesInBestInterest (+,+,+,+,+)
isOpportunityToObject (+,+,+,+,+,+)
isNotDirectoryObjection (+,+,+,+,+,+)
workForceMemberOf (-,+)
providerOfMedicalSurveillance (-,+)
providesInjuryEvaluation (-,+)
isNoticeofWorkplaceDisclosure (+)
notinrole (+,+)
notParentOf (+,+)
notGuardianOf (+,+)
notLocalParentOf (+,+)
notProhibitedByOtherLaw (+,+,+,+,+)
toIdentifyOrApprehend (+,+)
consistentWithApplicableLaw (+,+,+,+,+)
isAdmissionOfCrime (+)
believesCrimeCausedSeriousHarm (+,+)
notLearnedWhileTreatingPropensityForCrime (+,+,+)
notLearnedThroughRequestForTreatment (+,+,+)
isAdmissionOfCrime2 (+,+)
containsMsg (+,+)
believesEscapeLawfulCustody (+,+)
permittedByOtherLaw (+,+,+,+,+)
parentOf (-,+)
guardianOf (-,+)
localParentOf (-,+)
forCounselingOrTrainingPrograms (+,+)
forDefenseInLegalProceeding (+,+,+)

Table 3: Mode definition of predicates of the HIPAA policy (Figure 13) used in the experiments.

comparative maximum memory usage (excluding the event trace) of précis over reduce for the
HIPAA experiment just above. Figure 18 shows the HIPAA experimental result for the average
execution time over different trace length for varying bounds when the event traces are stored
in a disk-backed database. It is very apparent that the relative speed of précis increases over
reduce in case the event trace is stored in a disk-backed database. It is also apparent that with
the increasing bounds the memory usage of précis for storing the summary strucutres increases
significantly faster that reduce. When the event trace is stored in a disk-backed database, précis
achieves a speedup of 3.5x-10x over reduce which is higher than the speedup précis achieves
over reduce when traces are stored in a memory-backed database (2.5x-6.5x).

Figure 19 shows the GLBA experimental result for the average execution time over different
trace length for varying bounds when the event traces are stored in a memory-backed database.
Figure 20 shows the GLBA experimental result for the average execution time over different trace
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length for varying bounds when the event traces are stored in a disk-backed database. As the
number of B-formulas in the GLBA policy is 4 out of 9 (less than 50%), the speedup achieved
by précis over reduce is not as significant as in the case of the HIPAA policy. Moreover, the
speedup achieved by précis over reduce does not vary in the disk-backed and memory-backed
cases for the same reason. Figure 21 shows the comparative maximum memory usage (excluding the
event trace) of précis over reduce for the GLBA experiment where the event traces were stored
in a in-memory SQLite3 database. précis’s memory consumption increases with the increase
of the bound, of the past temporal operator, over reduce. This is to be expected as with the
increase of the bound on the past temporal operators, précis has to store more substitutions
in the associated summary structures. The curve representing the maximum memory usage of
précis flattens out when the trace length exceeds the bound because after that précis has the
substitutions for bound number of steps at each point of time.
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(
∀p1, p2, q,m, d, u, t.(send(p1, p2,m) ∧ info(m, d, u) ∧ contains(m, q, t))→

(
((notinrole(p1, institution) ∨ affiliateOf(p2, p1) ∨ notconsumerof(q, p1) ∨ notin(t, npi))

∨ ([0,bound](∃m1.((send(p1, q,m1) ∨ ∃p100.(send(p1, p100,m1) ∧ lawyerOf(p100, q))) ∧ isNoticeOfDisclosure(m1, p1, p2, q, t, u))))∨

([0, 30](∃m2.((send(p1, q,m2) ∨ ∃p101.(send(p1, p101,m2) ∧ lawyerOf(p101, q))) ∧ isNoticeOfDisclosure(m2, p1, p2, q, t, u)))))

∨ (processConsumerAuthorizedService(u, q) ∨ securitizationSale(u, q) ∨ ∃p107.((samePerson(p107, p1)

∨ extendsCreditOnBehalf(p107, p1)) ∧ (maintainConsumerAccount(p107, q))))

∨ (∃m6.(([0,bound]((send(q, p1,m6) ∨ (∃p108.send(p108, p1,m6) ∧ lawyerOf(p108, q))) ∧ isConsentForDisclosure(m6, p1, p2, q, t, u)))))

∨ (protectRecordSecurity(u, q) ∨ beneficialInterestOf(p2, q) ∨ financialRepresentativeOf(p2, q)∨
purpose(u, requiredRiskControl) ∨ forResolvingCustomerDispute(u, q)) ∨ (inrole(p2, insuranceRateAdvisoryOrg)∨
inrole(p2, guarantyAgency) ∨ ratingAgencyOf(p2, p1) ∨ complianceAssesor(p2, p1) ∨ attorneyOf(p2, p1)∨
accountantOf(p2, p1) ∨ auditorOf(p2, p1)) ∨ (specificallyPermittedOrRequiredByLaw(p1, p2, q, t, u)

∨ inAccordanceWithRightToFinancialPrivacyActOf1978(p1, p2, q, t, u) ∨ inrole(p2, lawEnforcementAgency)∨
inrole(p2, selfRegulatoryOrganization) ∨ purpose(u, publicSafetyInvestigation))∨
((inrole(p2, consumerReportingAgency) ∧ inAccordanceWithFairCreditReportingAgency(p1, p2, q, t, u))∨
([0,bound](∃p111,m8.(send(p111, p1,m8) ∧ inrole(p111, consumerReportingAgency) ∧ isConsumerReport(m8)

∧ contains(m8, q, t))))) ∨ (∃p110.(subUnitOf(p110, p1) ∧ consumerOf(q, p110) ∧ (forSale(u, p110) ∨ forMerger(u, p110)

∨ forTransfer(u, p110) ∨ forExchange(u, p110)))) ∨ (purpose(u, complianceWithLegalRequirements)

∨ purpose(u, complianceWithInvestigation) ∨ purpose(u, complianceWithSummons) ∨ (∃m7.([0,bound](send(p2, p1,m7)

∧ (inrole(p2, judicialProcess) ∨ inrole(p2, governmentRegulatoryAuthority)))∧

isResponseTo(m,m7) ∧ (purpose(u, examination) ∨ purpose(u, compliance) ∨ authorizedByLaw(u)))))

)
∧

(
((notinrole(p1, institution) ∨ affiliateOf(p2, p1) ∨ notconsumerof(q, p1) ∨ notin(t, npi)) ∨ ((∀m3.((send(q, p1,m3)

∨ ∃p104.(send(p104, p1,m3) ∧ lawyerOf(p104, q))) ∧ isOptOut(m3, p1, p2, q, t, u))→ false)S [30,bound](∃m4.(send(p1, q,m4)

∨ ∃p105.(send(p1, p105,m4) ∧ lawyerOf(p105, q))) ∧ isNoticeofPotentialDisclosure(m4, p1, p2, q, t, u))))

∨ (inrole(p1, institution) ∧ nonAffiliateOf(p2, p1) ∧ consumerOf(q, p1) ∧ attrIn(t, npi) ∧ purpose(u, performServices)

∧ existsConfidentialityAgreement(p1, p2, t) ∧ ([0, bound](∃m5.(send(p1, q,m5)

∨ ∃p106.(send(p1, p106,m5) ∧ lawyerOf(p106, q))) ∧ isNoticeofPotentialDisclosure(m5, p1, p2, q, t, u))))

∨ (processConsumerAuthorizedService(u, q) ∨ securitizationSale(u, q) ∨ ∃p107.((samePerson(p107, p1)

∨ extendsCreditOnBehalf(p107, p1)) ∧ (maintainConsumerAccount(p107, q))))

∨ (∃m6.([0, bound]((send(q, p1,m6) ∨ (∃p108.send(p108, p1,m6) ∧ lawyerOf(p108, q))) ∧ isConsentForDisclosure(m6, p1, p2, q, t, u))))

∨ (protectRecordSecurity(u, q) ∨ beneficialInterestOf(p2, q) ∨ financialRepresentativeOf(p2, q)

∨ purpose(u, requiredRiskControl) ∨ forResolvingCustomerDispute(u, q)) ∨ (inrole(p2, insuranceRateAdvisoryOrg)

∨ inrole(p2, guarantyAgency) ∨ ratingAgencyOf(p2, p1) ∨ complianceAssesor(p2, p1) ∨ attorneyOf(p2, p1)∨
accountantOf(p2, p1) ∨ auditorOf(p2, p1)) ∨ (specificallyPermittedOrRequiredByLaw(p1, p2, q, t, u)

∨ inAccordanceWithRightToFinancialPrivacyActOf1978(p1, p2, q, t, u) ∨ inrole(p2, lawEnforcementAgency)∨
inrole(p2, selfRegulatoryOrganization) ∨ purpose(u, publicSafetyInvestigation)) ∨ ((inrole(p2, consumerReportingAgency)

∧ inAccordanceWithFairCreditReportingAgency(p1, p2, q, t, u)) ∨ ([0,bound](∃p111,m8.(send(p111, p1,m8)

∧ inrole(p111, consumerReportingAgency) ∧ isConsumerReport(m8) ∧ contains(m8, q, t)))))∨
(∃p110.(subUnitOf(p110, p1) ∧ consumerOf(q, p110) ∧ (forSale(u, p110) ∨ forMerger(u, p110) ∨ forTransfer(u, p110)∨
forExchange(u, p110)))) ∨ (purpose(u, complianceWithLegalRequirements) ∨ purpose(u, complianceWithInvestigation)

∨ purpose(u, complianceWithSummons) ∨ (∃m7.([0,bound](send(p2, p1,m7) ∧ (inrole(p2, judicialProcess)

∨ inrole(p2, governmentRegulatoryAuthority))) ∧ isResponseTo(m,m7) ∧ (purpose(u, examination)

∨ purpose(u, compliance) ∨ authorizedByLaw(u)))))

)
∧

(
((notinrole(p1, institution) ∨ affiliateOf(p2, p1) ∨ notconsumerof(q, p1) ∨ notin(t, accountNumber) ∨ notpurpose(u,marketing))∨

(inrole(p1, institution) ∧ inrole(p2, consumerReportingAgency) ∧ consumerOf(q, p1) ∧ attrIn(t, accountNumber)))

))

Figure 14: GLBA policy (conjunct-1) used in our empirical evaluation. The rules in this policy correspond
to the privacy rules §6802(a), §6802(b), and §6802(d) of GLBA.
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(
∀pi, qi.(inrole(pi, institution) ∧ (newCustomer(qi, pi) ∨ renewedCustomer(qi, pi)))→

(((∃m9.([0,365](send(pi, qi,m9) ∨ (∃p112.(send(pi, p112,m9) ∧ lawyerOf(p112, qi)))∧
(contains(m9, pi, npiPoliciesAndPractices) ∨ contains(m9, pi, npiCategoriesCollected)∨
contains(m9, pi,npiSecurityPolicies) ∨ contains(m9, pi, npiDisclosuresToAffiliates))))) ∨ (

certifiedPublicAccountOfAState(pi) ∧ subjectToEthicalDisclosureProvision(pi))))

)

Figure 15: GLBA policy (conjunct-2) used in our empirical evaluation. The rule in this policy correspond
to the privacy clause §6803(a) of GLBA.
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Figure 16: Experimental timing results (HIPAA) with memory-backed database

65



Figure 17: Experimental memory results (HIPAA) with memory-backed database
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Figure 18: Experimental timing results (HIPAA) with disk-backed database
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Figure 19: Experimental timing results (GLBA) with memory-backed database
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Figure 20: Experimental timing results (GLBA) with disk-backed database
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Figure 21: Experimental memory results (GLBA) with memory-backed database
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